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L. Introduction

Since the pioneering work of Tsu and Esaki, there has been a growing interest in
double-barrier resonant tunneling devices (hereafter referred to as RTD). Structures

rown by both molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition

MOCVD) have been reported with improved peak-to-valley ratios, exhibiting negative
differential resistance (NDR) at room temperature. To date, the best peak-to-valley
current ratios ever reported were obtained with pseudomorphic Ing §3Ga( 47As/AlAs/InAs
resonant tunneling diodes [1]. (A schematic cross-section of the device is shown in figure
1). For this RTD, the peak-to valiey current ratios are as high as 30 at 300K and 63 at 77K
were obtained. In table I, we show some of the substantial improvements in the
peak-to-valley ratios of typical Al,Ga_yAs/GaAs/Al,Gaj_yAs RTD’ made over the last
fifteen years [2,7].

The theoretical understanding of the current voltage characteristics of typical RTD’s is still
far from being complete. Several mechanisms have been proposed to explain the NDR
region, including; 1) coherent resonant tunneling throughout the RTD f‘s% and 2) the ,
mechanism of sequential tunneling proposed by Luryi in which electrons first tunnel
through the first barrier, then suffer elastic or inelastic collisions before tunneling through
the second barrier [9]. The usual approach to treat coherent resonant tunneling involve
various refinements of the original work by Tsu and Esaki {8] and include contributions of a
spatially dependent effective mass [10], self-consistent space-charge effects [11] and
electron-electron interactions [12]. The Tsu-Esaki approach leads to large peak-to-valley
ratios, in some cases one or two orders of magnitude greater than those seen experimental-
ly. The Tsu-Esaki approach also introduces conceptual difficulties, one of which was
brought to light by Jogai et al [12b]. In one important case, as pointed out by Jogai et al, in
the Tsu-Esaki approach, in which carriers are emitted from the two boundaries, the

resulting wave function cannot in general accurately represent the electron density in any
accumulation layer that forms at a barrier, particularly when low doped spacer layers are
introduced into the design of the device. For if the spacer layers were sufficiently wide,
then the electrons would need to tunnel significantly long distances to contribute to current.
Indeed the introduction of space layers in the Tsu-Esaki formalism has resulted in
significant decreases in the calculated current level [12b], although not necessarily that
observed experimentally. Thus additional mechanisms are needed to explain the current
observed levels. Jogai et al [12b] tproposed that electrons can be thermionically emitted
over the spacer layer barrier and fall into the accumulation zone by the emission of a
phonon. This process is cumulative and can lead to significant amounts of charge prior to
the upstream barrier. In addition if the potential in the well and in the accumulation layer
are below that of the emitter Jogai et al [12b] remind us that additional quantum states will
form, states that are not part of the streaming Tsu-Esaki formulation. One approach that
can avoid many of these difficulties involves use of the Wigner-distribution formalism. In
some cases this last approach reproduces the current-voltage characteristic of RTDs {13,14].
However, when the necessary inclusion of scattering is included, this last formalism predicts
peak-to-valley ratios that are smaller than experimental values (13]. The origin of these
difficulties is discussed in [14].

In this report we describe the results of a Phase I study in which we implement another
approach to examine quantum transport in RTDs. We use the moment representation of
the density matrix equation. These equations are solved numerically together with Poisson’s
e?uation. This is the first time an attempt has been made to solve numerically thc moments
of the density matrix equation.

The goal of this Phase I study was limited to demonstrating a capability for analyzing typical
AlGaAs/GaAs resonant tunneling structures using the moments of the density matrix. The
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results of the Phase I study are:

(1) The current voltage relation observed in the RTD reflects contributions from a variety
of effects. The phenomena of resonance is dominantly a single particle wavefunction effect
arising from the placement of a half-integral number of wavelengths in the quantum well.
The presence of accumulation in the upstream region prior to the first barrier, and
depletion in the second barrier are dominantly single particle wave function contributions.
The voltage at which the peak current occurs is dominated by space charge effects and by
the details of the quantum distibution function. Negative differential resistance is
accompanied by locally increasing charge in the well, and by very low carrier velocities in
the quantum well; a result that is consistent with arguments demonstrating long dwell times
at resonance. Physical dissipation within the device prior to the collecting contacts is a
necessary requirement for understanding transport in the RTDs.

(2) Specificially, numerical simulations using the first two moments of the density matrix
equation show the occurence of negative differential conductivity in the current-voltage
characteristics of resonant tunneling structures. The current levels obtained in numerical
simulations have the correct order of magnitude when compared with experimental resulis.

(3) The I-V characteristics of typical device are sensitive to the shape of the resonant
tunneling structure and to the doping profile in the cladding layers sandwiching the RTD.

(4) The voltage at which NDR is calculated is obtained only for the tunnel structure

and its immediate adjacent layers. Thus, the voltage is only a small fraction of the actual
device size. The numerical values are thus lower than that seen experimentally. For
situations where the quantum distribution function plays a role similar to that implemented
in the Tsu-Esaki picture, the voltage at peak current occurs at values similar to that
predicted by others.

(5) For the first time, this study has shown that the quasi Fermi-level is changing rapidly
over the region of interest, i.e., the RTD itself. This result generalizes previous theories
where the Fermi level was assumed to be constant for electrons incident from either
contacts and equal to its value in the corresponding contact.

(6) Asymmetric RTDs were studied, tending to reinforce many of the above comments.
Additionally several new device applications as current rectifiers, emerge.

(7) The key conclusion is that resonance is dominated by single particle contributions, and
that the voltage dependence is dominated by the boundary conditions and the particle
distribution function.

The purpose of this report is to describe in detail the above key results arising from SRA’s
Phase I SBIR study. The report is divided into seven sections. Sections II and III provide a
brief description of the equations used in this Phase I study. Starting with the quantum
density matrix equation, we derive the first two moment-equations thereof, for examining
transport in quantum phase based devices. Two significant features of the approach are
taken at SRA: (1) the introduction of Bohm’s quantum potential into the transport
formulation, (2), the use of the first two moment equations of the density matrix equation
coupled to Poisson’s equation to calculate self-consistently the current-voltage
characteristics of typical RTD’s. Additionally, we also calculate the self-consistent charge
density, conduction band energy profiles throughout the entire device. Section IV describes
briefly the numerical approximations used to solve the governing equations given in section
I11. Section V contains a description of the different resonant tunneling structures studied
in this Phase I, and the general features of resonance. A systematic study including the
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influence of barrier of barrier height, barrier and well thickness and doping profiles on the
shape of the current-voltage characteristics has been performed and is described in Section
VI. Additionally, we have studied the rectifying characteristic of the I-V curve of an
assymetric RTD (with different barrier heights). Finally, Section VII contains the
conclusions and recommendations. Appendices are included that describe in more detail
the numerical procedures used to solve the governing equations, the basis for the governing
equations and alternative procedures.

II. Trans in Quantum Based Device

The quantum mechanical description of transport in the Phase I study of resonant tunneling
structures is based upon the use of the Bohm quantum potential [14b], and we spend some
time discussing this potential. The potential is best understood by beginning with a single
particle formulation of quantum mechanics. We start with the single particle Schrodinger
equation:

indv (x,t) - _ ﬁ a _:E av(x,t)
it 2 axX\lm ax

] + E(x,t)¥ (x,t) (1)

where we are assuming that the effective mass is spatially dependent, and that we are in a
time dependent mode.

Without any loss of generality we write the single particle wavefunction in the following
form:

¥(x,t) = R(x,t)exp(iS(x,t)/#] (2)
(Note: under special cases it is possible to separate S(x,t) into a part that is dependent only
on position and a part that is dependent only upon time, as in the case of the separation of

variables that leads to the time independent Schrodinger equation.) Then defining
momentum and probability density as:

m(x)v(x,t) = 8S(x,t)/dx (3)
p(x,t) = R(x,t)? (4)

Schrodinger’s equation can be written in the form:
ap apv

—_— e —— =

at ax 0 (5)

mdv _  3(E+Q) 1 amv? (6
R ax 2 ax )

where Q(x,t) is a pogential that is quantum mechanical in origin, and has been referred to as
the quantum potential (see ref. 14b and references therein). Q(x,t) is defined as:

R2 1 a[_l_ﬁ]

Q(x,t) = T2 Jp axlm ax

Equations (5) and (6) represent the hydrodynamic form of Schrodinger’s equation. They
are, however, subject to the constraint of single-valuedness of the wave-function. In writing
down the single-valuedness condition it is important to recognize an important difference
between the hydrodynamic formulation and the usual form of Schrodinger’s equation.
Schrodinger’s equation is correctly written in terms of the canonical momentum and allows

(7)
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for the presence of a vector potential A(r,t) . Thus the momentum must be generalized
from equation (3) to read (in three dimensions):

m(r)v(r,t) = vS(r,t) - eA(r,t) (8)

and the constraint is expressed as:
§vS.dr = nh (9)

The above constraint means that allowed movements of a quantum fluid have to be
restricted in such a way that the integral of the velocity around a circuit containing a flux
line depends upon the flux in that circuit.

In the single particle picture, if the particle history was determined along a characteristic

path then the acceleration would be determined by the applied classical field, which in

equation (6) is given by -3 E/ax and by the quantum mechanical force, which is dependent

upon gradients of probability density and introduces nonlocality. To examine it5

significance we consider a simple contribution obtained by examining the form of the

quantum potential, at one instant of time for a particle that is described by a minimum wave
acket. Recall, that in time the shape of the minimum wave packet is constant and is of the
orm [14c]:

p(x,t) = [1/]2n0)exp[-(x-<x>)?/20] (10)

where <x> is the expectation value of position at time t, and o = #/2mw. For p(x,t) given
by equation (10), the quantum potential is given by

Q(x,t) = (hw/2)[1 - 2(x -<x>)?/0] (11)

and the quantum mechanical force associated with the quantum potential is given by:
-3Q(x,t) /3% = 2aw (X-<x>)/0 (12)

Let us now consider what is occuring. Classically, if a particle is subject to a constant
accelerating force, i.e., E(x,t) = -Fx, where x represents position along a characteristic path,
then along this path the velocity will increase in one direction at a rate that is linear in time.
When the quantum potential js included there are two cases to consider. The first case is
that in which o is sufficiently large such that the quantum potential is always positive. For
this case quantum effects are negligible. The second case 1s that where o is very small, and
the wave packet has a sharp peak. Here, Q can be negative over a small region and specific
quantum effects occur. Indeed, to the left of the packet, the quantum force tends to
decelerate the wave packet, whereas to the right of the wave packet the quantum force
tends to enhance the acceleration. Indeed it may be anticipated that this quantum force is
responsible for the spreading of the wave packet as it travels in time. But more to the point,
the effect of a narrow, large density gradient charge distribution has the effect of retarding
the motion of carriers and may also be responsible for the reflection of wavepackets at
boundaries.

Now the Schrodinger equation is second order in space, and dissipationless numerical
schemes have been developed to examine the space and time dependence of a host of
different problems, including double barrier structures. The implementation of these
procedures has been discussed earlier by the present authors [14d]. We emphasize however
the fact that the quantum potential above is obtained from the single particle wave function.
Further, since present algorithms for solving the single particle Schrodinger’s equation are
limited in their ability to calculate probability current, and since multiparticle current is
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is one of the connectors to measurement, alternative approaches are required. The
approach at SRA is based upon the quantum hydrodynamic equation. To develop an
intuition for the multiparticle approach, we first illustrate the hydrodynamic features of the
singl(e6 g)artic]e Schrodinger equation, in the limit of zero time derivatives of equations (5)
and (6).

I1a. Hydrodynamic Aspects of the Single Particle Schrodinger Equation.

The presence of a zero time derivative of the momentum balance equation implies that
S(x,t) =S, (x) + S,(t), and R(x,t) = R(x). In the case of zero time derivatives, one space
integration yields (ignoring spatial derivatives of the effective mass):

mvZ/2 + (E+Q) = E, (13)
pv = J (14)

where E, and J are constants of integration. We rewrite equation (13) by replacing v by the
constraint of constant current, then

d'ﬁ]? + 2m
dx? h2

2
(B, - Ee01 - 53]lp = o0 (15)

2p?

Let us examine the above equation in the context of generic problems. First consider a
bound state problem. For bound states the wave function of the system, apart from an
arbitrary phase, is a real function. The probability current, J, is zero. For the case of a
harmonic oscillator, with E =kx2/2, the above differential equation is that of a harmonic
oscillator, with the concomitant bound states. The situation of a particle in a box is equally
interesting. For the case of large walls, the wavefunctions outside the box are real and
evanescent. The probability current is zero, and the above equation leads to bounds states.
The question of interest is how do we solve equation. The traditional approach is to solve
the equation in separate regions and match boundary conditions. Consider the case of a
particle approaching a wall. Assume a structure as given below:

and we assume that 0 < E; < V. The wave function for this problem consists of an
oscillatory component to the left of the barrier followed by a evanescent wave to the right of
the barrier (see, e.g., Fig. 7, pg 326 of Bohm [14¢]). A simple examination of the above
differential equation indicates that the solution to the left of the barrier is

[p = Asinkx + Bcoskx, (16)

where
k = [2mE,/n2]1/? (17)

To the right of the barrier:

J; = Cexp-«x (18)




where

k = [2m(E,~V)/h2]'/? (19)
Continuity of | p and its first derivative yields a solution in terms of one coefficient. To
obtain this coefficient, unity particle normalization is invoked. Now the J = 0 situation
leads to eigenvalue problems, and bound states can be found. When J = 0, equation (15) is
nonlinear, and we are no longer dealing with an eigenvalue problem; but as in the case of a
regional approximations solutions can be obtained for well defined values of 'k’ and ’«’,
(see equations (17) and (19)).

At this point we consider approximate regional solutions to the situation depicted in the
above double barrier figure. In examining the solutions we define several quantities to
simplify the form of equation (15). First, let

a = (mJ/#)? (20)

Then, equation (15), in the first, third, and fifth regions, reads:

dzJT'; - o —

axz T KT - ;3]f; =0 (21)
Defining,

£ = (Up)’ (22)

and dividing equation (21) by ’¢’, the following differential equation emerges

d¢ [ . _ @ ]17 -
+ [k,2 - =|&= =0 23
d|p ° p2) ¢ (23)
Equation (23) integrates directly to:
£ + [kp + afp] = £,° (24)

where ¢, ?, is an integration constant. A second integration, using 2.261 of reference [14e],
yields:

2k, 2p(X) = £,% + [£,4-4ak, 2]/ ?2sin(2k, % + ¢) (25)

where ¢ is a second constant of integration. The differential equation in the barrier region
has solutions:

2,2p(x) = (4% + [daxy 2-C ¢4)1/2sinh(2x,x + ®) (26)

where ¢ , and ¢ are constants of integration.




Consider the significance of the above results. Standard textbook examples demonstrate
that for a square potential well of width 2a, that unity transmission resonance occurs when,

2k,a = nm (27a)

The resonance condition for a double barrier is in the WKB approximation (see Bohm;
Quantum Theory, p. 286 [14c])

+a
J kK, (x)dx = (n+1/2)x (27b)
-a

Exact solutions that incorporate finite barrier height and width introduce

additional phase contributions. Returning to equation 23, for purposes of illustration, we
assume ¢ = =/2. Then between the two barriers of the above gﬂure, the maximum value of
p(x) occurs at x = 0, and the minimum value occurs at x = =a. These values are:

p= £, [£,4-4ak,?11/2/2k," (28)
Solutions within the barrier are fit with the hyperbolic functions, and are matched to
solutions outside the barrier. The solutions outside the barrier maintain their oscillatory

nature, and as such there is a region outside the barrier that will show local accumulation
followed by depletion, et cyclic, as displayed below:

E=V
___W———Eo
E=0

-b -a +a +b

The ahove picture is artificial because it doesn’t account for the fact that in a situation in
which particles are subject to bias, the transport is not symmetric. In the presence of this
asymmetry the solutions for a net flow of carriers from left to right is expected to look like
that shown in the diagram below:

E=V
E=0

-b -a +a +b

The above solutions suggest that the presence of charge accumulation at the upstream
barrier, and charge depletion at the downstream barrier are a consequence of the single
particle wavefunction quantum properties. These conclusions will emerge from our later
discussion.

The above qualitative discussion was entirely set around finding solutions to the differential
equation for the amplitude of the single particle wave function, where we invoked the
constraint of conservation of probability current. It is useful to recall that the formal

steps leading to the WKB approximation [14f] involves the same philosophy, but instead of
solving the differential equation for amplitude, the differential equation for the gradient of
the phase is solved. To see this we use the definitions of v and p, as given by equations (3)

and (4); then writing as shorthand S’ = 3S/3x, equations (13) and (14) combine as:
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$’% = 2m(E,-E)+(r2/4) [3(S"/S’)2-2(5""/S")] (29)

As discussed by Messiah [14f], the above equation is rigorously equivalent to Schrodinger’s
equation. However, in the WKB approximation one expands the phase S in a power series
ina?:

S =8, + A’S, + ..., (30)

0
substitutes this expansion into equation (29) and keeps only the zero-order terms. Thus S’?
~ §,’2, and the quantum potential is ignored, except as higher order effects. The turning
points require a different approach. Thus, within the context of the WKB approximation,
the time independent Schrodinger equation, is replaced by another equation (see Messiah,
equation VI. 48 [14f]). In the approach taken below, the WKB approximation is not
invoked. But the SRA approach has its own approximation, which are identified in Section
IV.

I11. Evolution of the Quantum Transport Equations

While the above numerical considerations will be discussed below, a principle point that
must be emphasized is that the above description is in terms of single particle
wavefunctions. For the systems that we are concerned with, it is the multiple particle wave
functions that are of importance. This will require a considerable discussion, and is
deferred to appendix C. At this point, we refer to some recent work of Ancona and lafrate
(15], who demonstrated, through an expansion of the Wigner-Bloch differential equation
with off diagonal contributions, that the quantum potential with p, representing the carrier
density of the system, was the lowest order quantum statistical contribution to carrier
transport in semiconductors. They derived a generalized drift and diffvsion equation
formulation that differed from the classical drift and diffusion equation formulation
through the incorporation of the quantum potential. The constant proceeding the Quantum
potential in the study of Ancona and Iafrate differ from that in the SRA study. The origin
and significant of this difference is currently under study.

One important feature of the Ancona and lafrate study [15} is the presence of dissipation.
Now the discussion of the the single particle Schrodinger equation, which is dissipationless,
offers conceptual difficulties when we make a transition from a single particle picture to a
to a multiparticle problem with contacts. These difficulties are present in both quantum
and classical transport. It is important to consider this point. For example, in the case of
classical multiparticle transport, with electrons assumed to be moving ballistically within the
N- region of a symmetrically fabricated N+ NN+ structure, the mean carrier energy
increases in going from the cathode to the anode, as would the carrier velocity.
Conservation of multiparticle current requires thai increases in velocity are accompanied by
decreases in particle density. Thus classically in the absence of dissipation there will
necessarily be charge depletion at the downstream anode - unless dissipation is present in
the interior of the device. If the assumption is made, as is ususally done, that the physical
contact conditions are represented by boundaries where the numbers of carriers at the
cathode and anode are equal, then scattering within the interior of the structure is
conceptually necessary. Similar dissipation issues arise quantum mechanically. In the
problems we are solving the device is represented by a 2000A computational domain. The
size of the simulated device is at least a factor of at least five smaller that the transport
domain of the structure shown in figure 1, which has additional anode and cathode layers.
Thus, the effects of physical dissipation in the problem studied studied in the Phase I
program may be over emphasiscd. In the Tsu-Esaki formulation which is for multiparticles,
all interior dissipation is 1ignored. For the hydrodynamic formulation of the single particle




Schrodinger’s equation, there is no meaning to introducing N * cathode and anode regions,
since we are dealing with a single particle. This is not the case when the density matrix is
invoked.

In the problems studied below, we have started from the density matrix, and include
disspation. The equations used have the same relation to that of Ancona and lafrate [15],
as the first two moments of the Boltzmann transport equation have to the semiconductor
drift and diffusion equations (although without the rigor of development). The first two
moment equations we deal with are the continuity and momentum balance equations. The
continuity equation is as given by equation (5) with p as carrier density, and v as mean
carrier velocity. The momentum balance equation is written in terms of velocity flux
densities, pv. We now examine the intuitive evolution of the quantum momentum balance
equation. We again start from the single particle wave function.

For the case of the single particle wave-function, combining equations (S) and (6) yields the
following probability momentum balance equation:

dpv . 3pv? _  p3(E+Q) pv? am
at ax ma x 2m 9x

(31)

Now from the classical moments of the Boltzmann transport equation, the momentum
balance equation , assuming Boltzmann statistics, is:
dpv + apv? _ p[aE +[mv2 3kT]l am] 1 3pkT

2 2

at ax m{ax T m - VD (32)
On the basis of equations (31) and (32), incorporation of the quantum potential is direct.
The resulting quantum momentum balance equation for a collection of carriers of density p
is:

apv + dpv: _ p[(3(E+Q) . m__v"’_ 3kT]1 dm
at X m|ax 2 2 m X
33
1 apkT _ VT (33)
m ax p

In equations (32) and (33), T represents an electron temperature and I’ represents a
momentum scattering rate. During the phase I study isT constant and equal to
3.3x 10" ?/sec.

In the case of Fermi statistics, with the inclusion of the quantum potential, the relevant
momentum balance equation is:

2 2
apv + apv __°r d (E+Q) + AA NkTF3/2 1 dm
it ax m{dx 2 P m dx
2 4NKTF (34)
- = 3/2 _
3m 3x a0
where, N is the density of states of the conduction band,
1 [2mmkT)3/?2
= L (35)
47 h

9.




and
_ 2 x2dx
Fgp (xg) = I= I T+exp (x-Xg) (36)
Here,
Xg = (Ef—s)/kT. (37)

The incorporation of the pressure gradient in equations (33) and (34) represents the effect
of the mixed states. At this point there is no reason to assume that the form of the pressure
gradient as used here is either correct or incorrect. Indeed the form of the pressure
gradient is a consequence of assuming that the quantum distribution function has the form
of a displaced Fermi Dirac distribution function. The solutions are dependent upon this
choice. It is anticipated that a rigorous form of the quantum pressure gradient will emerge
from the energy balance equation to be studied during a Phase II program.

During the Phase I study the pressure gradient is as given by equation (34), although some
modifications, as discussed below, were introduced. Within the context of equation (34) we
introduce the Fermi energy, which within the framework of the discussion below is strictly a
mathematical transformation. Now classically equation (36) identifies Ef as the Fermi
energy, £ the bottom of the conduction band, and under equilibrium conditions:

F,/, (Xg)= p/N, (38)
Under the quantum mechanical conditions, xg is identified as
X¢g = (Ef‘E“Q)/kT (39)

which we recognize as being similar in philosophy to that of Ancona and Iafrate [15]. In the
study discussed below the carrier density p is obtained self-consistently. The quantity Eg is
defined and obtained through equation (38). In terms of E¢, the momentum balance
equation reads:

apv , 3pv? p(3Eg [pv2 NKTF, /, ]1 am

at Ix m[ax 2 p m dx a0 (40)
where we have used the identify:

2 dF3/2

3 af = F1/2 (Xf) (41)

In implementing equation (41) and in order to avoid the time consuming efforts of inverting
the Fermi-integral in equation (41), the latter was replaced by the following approximate
relationships:

i

Xf 4n(p/N) + p/(N]8), for x¢ < 4.4426 (42a)

xg = (9n/16)1/2(p/N)2/3,  for xf > 4.4426 (42Db)

Equation (41) coupled to the equation of continuity, equation (5), with p identified in both
equations as the ensemble averaged density of particles are two of three governing
equations in the study performed. The third equation is Poisson’s equation. To write this
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down it is necessary to have a more complete definition of the energy E(x) appearing in the
above equations. For the study considered here E(x) is the energy of the conduction band
with the presence of the heterostructure represented by the Anderson rule:

E =3 - X(x) (43)

where x (x) is a position dependent electron affinity. T is obtained from Poisson’s equation:
VeVEI = e2[p - p,] (44)

where € (x) is position dependent permitivity, and p, is a position dependent doping level.

For conduction band variations between GaAs and Al,Gaj_yAs, the following relationships
were used:

m* = 0.067 + 0.083x (45a)
OE; = 0.697x (45Db)

At the present stage of our study, no attempt was made to include the energy balance
equation. In other words, no energy dissipation is actually included in the present
formulation. The last term on the right-hand side of equation (40) describes at bcst some
momentum relaxation in the device. Refinements to be made to our approach to include
energy dissipation (such as due to phonon scattering which is-an inelastic scattering
mechanism) will be considered in the future. '

It is instructive, for purposes of later discussion to introduce two expressions. The first is a
rewriting of the quantum equation (39):

2
94£Z + 22 [[Ef - E(x) —kaf]IZ =0 (46)
dx h :
Thus the density of particles is altered by statistics. The second, introduces a quantity:
<k> = [<2m*Q/n?>]1/2 (47a)

with Q in ev, and m’ in units of the free electron mass
<k> = 0.5123 (A1) [<m*Q>]1/? (47Db)

Consider equation (46). Anticipating later results, we note that all of our calculations
indicate that the quantum quasi-fermi level is anroximately constant up to the beginning of
the second barrier. In these calculations the value of Ef at the emitter is arbitrarily set to
zero. We now consider several key features of the above crucial quantities.

IlI.a The Shape of the Quantum Potential

First we note that classical statistics teaches that the presence of low or undoped spacer
layers, can result in built-in potential (or barrier) associated with the spacer layer, and that
the barrier can have energies exceeding the energies of the carriers at the emitter. It is not
an issue at low temperatures. In the absence of any quantum mechanical contributions,
E(x) = Eg- kTx¢; when quantum mechanical contributions are introduced, any difference
between the left and right hand sides of this equation is a consequence of quantum
mechanical contributions. For example, for wide spacer layers quantum mechanical
tunneling into these spacer layers is unlikely, there is a buildup of charge to the left of the
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classical barrier height, resulting in a decrease in the upstream barrier height.
Figure 2 shows the equilibrium distribution of charge , quantum potential, and energy
under zero bias conditions for a double barrier structure located at the center of a
nominally undoped portion of a structure containing Nt contacts. The structure will be
discussed in more detail later. Note the gresence of local charge accumulation within the
spacer layer, and the presence of local charge accumulation in the symmetric center of the
evice. The quantum potential, which is plotted in figure 2b shows small positive values
within the space layer, as well as between the barriers. However, within the barriers Q is
negative.

Moving into the device, for a sufficiently long spacer layer, the charge density will approach
its classical value until the barrier is reached. Within the barrier tunneling is possible for
sufficiently narrow barriers; and charge exists where none would be present classically.
Classically, the absence of any charge would result in kTx¢ ~ -Eo/2, where Ej is the bandgap
of the barrier material. The presence of tunneling reduces the ﬁmagnitude of xf, i.e. Qis
negative in the barrier. But prior to tunneling through the well, it 1s clear that not all
carriers will achieve this tunneling, and thus there will be an accumulation of charge
upstream from the well, as there was upstream from the spacer layer. Thus prior to a
negative value of Q in the barrier, Q will be positive upstream from the well. (See figure 2b)

The well is classically accessible by thermionic emission over the barriers, and quantum
mect 1nically through tunnelling. Particles in the well, as well as the carriers upstream of the
built-in potential and the emitter barrier will accumulate, and Q is positive. In the second
barrier Q is negative.

How may we expect Q to vary with applied bias. Increasing the potential difference
between the emitter and collector, with the carriers entering the device with the
reference Fermi energy, will result in a gradual decrease in energy E(x) between the
contacts, Thus it is anticipated that the affect of charge accumulation at the upstream built
in potential, or barrier, is mitigated as the barrier is pulled down below the emitter energy.
en, the carriers reach the first barrier they are subject to the same constraints as under
zero bias conditions, and Q remains positive prior to the upstream barrier and negative
within the barrier. With regard to the magnitudes of Q, the increase in the numbers of
carriers reaching the first barrier results in a disproportionate increase in electrons near the
upstream barrier. When the increase is confined to the same or smaller distances, there is a
consequent increase in Q. Increases in charge in the upstream barrier result in increases in
charge tunneling through the first barrier into the well. What happens to this excess
charge? Either 1t increases or decreases! In order for the charge to decrease as a function of
bias, either the dwell time in the well must be relatively insensitive to bias, or the tunnel
time through the second barrier must decrease with increasing bias. Because of the small
potential difference across the first and second barriers the tunnel times are approximately
the same. Further independent analytical calculations demonstrate that as resonance is
approached the dwell times increases. Thus it is anticipated that the charge density in the
well increases as a function of bias. This is seen numerically.

If the increase in charge is confined to the well Q must increase! When its value approaches
that of the energy for classical transmission resonance, a condition of resonance exists,
where the charge density in the well displays a half integral number of wavelengths (with
suitable phase adjustments), a condition of resonance exists (see equation 47b). The point
to be emphasized is that as the bias is increased the density of carriers in the quantum well
increases. This is the point emphasized by Rico and Azbel [16]). The detailed calculations
indicate this.
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IILb The Distribution of Veloci

The charge distribution under equilibrium conditions for the structure discussed in

the above paragraphs is shown in figure 2. Note the small local accumulation layer in the
center. As discussed in the above paragraphs the density in the quantum well increases with
increasing bias. Now current continuity requires that local increases in charge are
accompanied by local decreases in mean velocity, and vice versa. It is found that at low
values of bias the average time spent in the well, defined as L/ <v >, where L is the width of
the well, and <v> is the mean velocity in the well, varies at low values of bias from 10fs, to
approximately S00fs at bias levels in the region of negative differential resistance. Indeed,
the calculations suggest that it is the significantly reduced velocity at resonance that is
responsible for NDR. Now the time spent in the well has been referred to as the dwell
time. The concept of a dwell time should be confined to those situations where the RTD is
part of a transient experiment. For calculations, such as that discussed here, carriers are
continually being replaced by carriers from the contacts, and so transit time is likely to be a
more appropriate description. which as as discussed by others is accompanied by an
increase in the amount of time spent in the well. In the calculations performed below the
dwell time, as this is sometimes referred to is not calculated. Rather the mean velocity is
calculated. It is found that the mean velocity in the well decreases as resonance is reached.

Since current continuity constrains all of the results of this study, the transition from the
guantum well to the downstream barrier is accompanied by a substantial decrease in carrier
ensity and a corresponding increase in mean velocity. While an integration of this has not

been performed simple estimates indicate that the integrated charge in the structure
decreases in the NDR region, with most of the decrease occuring in the downstream barrier
and the region between the downstream barrier and the collector contact. Now there will
be scattering events that will limit the value the velocity will attain. Very recent calculations
where numerical inaccuracies were significantly reduced, suggest that the most significant
number of scattering events occur in the downstream barrier. This last conclusion is similar
to that of Luryi [9].

IIl.c The Quasi-Fermi Level and the Electron Energy Distribution

The quasi-Fermi level is treated here as a mathematical concept. Under equilibrium
conditions the quasi-Fermi level is constant. It is set to zero in our calculations. For a
structure with a long low doped spacer layer, the equilibrium conduction band energy
distribution is displayed in figure 2. At the contacts the density is high and the conduction
band energy is below the quasi-Fermi level E¢. For the case of the long spacer layers, the
equilibrium charge distribution is such that the conduction band energy exceeds that of the
Ejy, thereby introducing a barrier and a consequent low value of current due to tunneling.
At high bias levels carriers can be thermionically emitted over the barrier associated with
the built-in potential. How are both these profiles expected to change as the bias is
changed?

First we note that because the conduction band energy is governed by Poisson’s equation
throughout the entire structure, the conduction band energy undergoes very smooth
variations between the emitter and collector contacts. Thus as a function of bias the
potential diagram in figure 2 will be tilted. The quasi-Fermi energy, which is governed by
distribution of a carriers at each point in the structure undergoes a severe variation. From
the emitter to the first barrier, where there is substantial charge accumulation the Fermi
energy is near zero. The Fermi energy begins to track the conduction band energy smoothly
as it goes through the well, but now begins to assume values below E(x), as it should.
Finally, at the collector is reached the termi energy increases above E(x). This crossover is
a universal feature of the calculations, as it should be. The interesting feature is that as
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resonance is approached the charge in the second barrier decreases precipitously, and the
Fermi energy drops significantly below the energy of the conduction band. (One deficiency
in the present formulation is that there is no mechanism for constraining the value of
Fermi-energy by the band gap of the material.) These features will be illustrated below.

II1.d The Voltage at Resonance

We can now ask when resonance will occur. In terms of equation (46), the simplest picture
is given near absolute zero, where conditions associated with the built in potential are not
an issue. In this case equation (46) teaches that resonance will occur when the quasi bound
state as determined by a half-integral number of wave lengths crosses the Fermi energy.
Calculations at 42K for a 40/50/40 AlIGaAs-GaAs RTD confirm this result. At 4.2K where
where the effect of the quantum distribution function is less pronounced this occurs at a
bias that is approximately equal to 2(Eg - E)) where E,, is the energy of the resonant state.
The factor of 2’ is a consequence of the potential drop across the rest of the structure. This,
of course, is the standard argument for resonance. The moment balance equations indicate
something additional, namely that the position of resonance is also influenced by the
detailed particle distribution function in the well and barrier. For example, if we assume
Boltzmann statistics and the density of particles in the well is below the conduction band
density of states, then resonance, which is governed by single particle effects, should occur
at extrinsic voltage levels significantly lower than that in which statistics is ignored. If the
statistics is governed, by e.g., equation (42b) resonance should occur at values much higher
than that where statistics is ignored. This was also observed. The equations also indicate
that resonance when space charge effects are included can also be sustained for a finite
range of bias values. This feature does not emerge from any other study.

When will the current begin to decrease? Again, if Ef = x¢ = 0, we should begin to see a
departure from the peak current when the energy of the carriers in the well departs from
resonance. In other words, the carrier energy increases. The presence of the space
charge distribution in the RTD complicates matters. To see this we approximate
equation 40 by time independent conditions, ignore spatial variations in the effective
mass, and assume the scattering rate is constant. It is then a straight forward matter to
demonstrate that the net velocity flux in the RTD is given by

1 ;I)' dE
= = - —|2 Z2F g

J o= v [‘Ll[m ax o (48)
As may be expected Eg undergoes its stron(%est position dependence at the second barrier,
which is also where p exhibits 1ts strongest depletion. Thus the results of equation 48
su%gest that while the NDR region is a consequence of resonance and the very low
velocities of the carriers, the structure of the current is likely to be determined by the net
decrease in charge in the structure. Additionally, the above results suggest that NDR, while
accompanied by a net decrease in charge, does not necessarily imply a decrease of charge in
the well.

The results discussed above are dependent in a detailed manner on the quantum
distribution function, whose form was assumed for the Phase I study. Thus, the presence of
a charge distribution in the well that is governed by the logarithmic term could result in a
decrease in current at a premature value of voltaﬁe. On the other hand, if x¢ is always
positive, there can be a delay in reaching the peak current. It is important to note that when
harge considerations enter, and there 1s, e.g., accumulation at the upstream barrier, a

condition of resonance could occur arising from bound states in the accumulation layer,
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Ill,e The Minimum in Current

When will there be a minimum in current? The argument here is direct. As the bias is
increased and the condition of resonance is exceeded, the velocity in the barrier begins to
increase. Thus increases in charge density within the well are now accompanied by
increases in velocity and the current rises. Of course if the downstream barrier falls below
the energy of the entering carriers the current will again rise, but this latter increase in not
associated with tunneling.

IV. Numerical Approximations...Artificial Diffusion

In using the hydrodynamic approach to solving the ?uantum mechanical problem,
Schrodinger’s equation, which is a second order differential equation, is replaced by two
first order differential equations. The numerical technicLues used to solve the governing
equations employ central difference apgroximations to the spatial derivatives agpearing in
the governing equations. Such a procedure generates a numerical scheme which is
non-dissipative. As such, depending on the grid structure and the boundary conditions
employed, spatial oscillations, or wiggles, in the solution may arise. These wiggles are
usually associated with high frequency components which are present in the solution, but
cannot be resolved by the local mesh. As a result, errors in the solution accumulate about
the Nyquist frequency (wave length 24x ) and wiggles appear. To eliminate these wiggles,
some form of spatial dissipation 1s typically introduced in the numerical scheme. The
procedure followed here 1s to introduce numerical, or artificial diffusion based on gradient
diffusion, into the governing continuity and momentum equation. This is a very common
procedure, and results in the continuity equation, instead of being expressed as that given
by equation (5) being given by the following equation, in one dimension:

ap apv d ap
— + — - — — =
at ax ax[D ax] 0 (49)

where D = vax/2. Here ax is the spatial increment in the calculation. Obviously, the

introduction of artifical diffusion into the continuity equation reduces the formal accuracy

of the difference approximation from O(ax?) to O(ax). Similarly, as in the case of the

}:ontinuity equation, artifical diffusion is introduced into the momentum equation as
ollows:

dpv 3pv? _ g[aEf _[pV? _ NKTF, /, ]_1_ am
at X m(dx 2 P m dx

(50)

3 (. 3V
- pvl + — ID—
p ax[ ax]

where the diffusion term in equation (50) is given by D= pvax/2. Thus the relevant
balance equations used in the study are equations (49) and (50). In addition, all studies for
finite bias use as initial conditions the solution to the equilibrium solution. This occurs for
pv = 0. From equation (50), we obtain:

(51)
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V. Applications and Results

Va. Structure of a Typical Device

Most of the structures studied in this report are described in figure 3 and table II. An
additional asymmetrically doped structure was also examined. In this structure the ID
and two cladding layers, each of which are S0A wide, are nominally undoped at 5x10 cm3,
The quingj'n the remaining part of thf iddle region of the structure was taken as either
as 1019cm™2 (type I device) or as 5x10*cm™ (type 11 devicieg. Tl}e low doped region is
then sandwiched between two heavily doped contacts (2x101%cm™) where the carrier
concentration is assumed to reach its equilibrium at the two end points of the device
simulation. There is also one asymmetric simulation. The presence of undoped cladding
layers helps to reduce the migration of impurities from the more heavily doped regions.
Impurities could partially destroy the phase coherence of typical RTD and reduce the size
of the PVR observed experimentally. Another reason for introducing spacer layers is to
keep a greater degree of symmetry of the overall structure since an applied bias would be
dropped over a longer, undoped region. As Ricco and Azbel pointed out [16], asymmetry in
the conduction band profile degrades the peak in transmission through the RTD, thereby
reducing the resonant tunneling through the structure.

The RTD itself is modeled has shown in figure 3b. To avoid numerical problems
connected with sharp interfaces, a typical RTD is taken as trapezoidal in shape, the
consequences of which are marginal as will be discussed later. Because comparison to
earlier studies will be made, it is important to review the Tsu-Esaki and Luryi, formalism to
describe RTD’s.

Vb. Current-voltage characteristics in previous formalisms

There have been several calculations [10-14] of current-voltage characteristics of RTD’s
following the pioneering work of Tsu and Esaki [8]. In this approach, two major
assumptions are made:

1. The total device length is assumed to be short enough (or the mean-free path lon
enough) that electrons can traverse the device without scattering (elastic or inelastic). This
is the so-called assumption of ballistic transport. As discussed earlier, and also more
recently by Landauer [16b], this assumption is incomplete. Further, for consistency it may
be necessary to include scattering in the interior of the device.

2. The contacts at each end of the device are in local thermodynamic equilibrium,
launching electrons into the device with a spectrum of wavevectors, weighted according to
Fermi-Dirac statistics.

The Tsu-Esaki approach, is different from ours since it is based on an individual electron
picture whereas our approach, while dominated by ’single particle’ contributions, is more
global, treating the total gas of electrons flowing from the contacts in a "hydrodynamic"
picture, i.e., using the moment-equations of the density matrix equation. In the Tsu-Esaki’s
picture the occurrence of NDR in the current-voltage characteristics of typical RTD’s is
explained as follows:

In a typical RTD, there exists one (or several) quasi-bound state(s) E, (as shown in figure
(4)) due to the quantum confinement of the two-dimensional electron gas in the well.

When a small dc voltage is applied across the structure, the metastable resonance state (E, )
is not low enough to let sufficient numbers of electrons with Fermi energy in the left contact
flow through the structure and only a small current flows through the RTD. Increases in
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bias result in increases in current and it is generally believed that the peak current occurs
when the quasi-bound state lines up with the Fermi energy of the emitter (see figure 4):

Vpdr = 2[E, - Efl/e (52)

where the factor of 2 occurs because it is assumed that the bottom of the well shifts by
one-half of the applied voltage. Estimates of the NDR position in the Tsu-Esaki formalism
are given for the structures studied here in Table III.

An alternative argument offered by Luryi [9] indicates that the current begins to increase
from zero at the above value of voltage, which is then referred to as

Ven = 2[E, - Efl)/e (53)
and peaks at
Vpar = 2[E, - Ecl/e (54)

where E_ is the bottom of the conduction band at the emitter contact.

As discussed by Tsui et al [16¢, 16d] the situation becomes more complicated when an
accumnulation layer exists at the emitter barrier and a depletion layer exists at the collector
barrier. In the former the accumulation layer lowers the conduction band edge in the
emitter closer to the barrier, thus lowering the peak-voltage or threshold voltage; the
second shows the tendancy to raise the threshold voltage at the barrier.

Each of the above features along with the contributions of statistics may be assessed within
the framework of the hydrodynamic approach, some of which were accounted for during
this Phase I study. Note in the hydrodynamic approach, the mean energy used in
calculating the resonant energy includes a contribution from xg.

From the above discussion, an important parameter to determine is the actual of the quasi-
bound state and it’s value for a given RTD geometry. This is discussed next.

Ve. Location of the Quasi-bound state

In order to facilitate the discussion of the position of the quasi-bound state in the well,
which is determined self-consistently in the hydrodynamic calculation, but is a separate
calculation in all other approaches, we have supplemented our study with calculations of the
transmission coefficient using transfer matrix methods. This was implemented for a
perfectly symmetric resonant tunneling structure such as the one shown in figure 3. This
technique has been widely used in the past to calculate the current-voltage characteristics of
resonant tunneling structures [10,11,12]. Figure 5a shows the transmission coefficient
versus total energy of the electron incident from either side of the resonant tunneling
structure for the case of zero bias. The situation under finite bias is shown in figure 5b. In
figure Sa we show for comparison the transmission coefficient versus energy in two cases:
(I%Uthe effective mass throughout the entire structure is constant and equal to the GaAs
effective mass m* =(0.067m,, ;(2) the effective mass is spatially and equal to m* =0.092m,,

in the Al,Gaj_yAs barriers which corresponds to an Al concentration x =0.3.

The transmission coefficient reaches unity when the energy of the incident electron
erfectly matches the energy of the quasi-bound state in the well. As can be seen from
igure 5a, the energy of the quasi-bound state is actually lower when the effective-mass

variation with position is taken into account. Also, the transmission coefficient no longer

reaches unity under non zero bias condition. For high current density levels, asymmetric
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barriers would then be preferable to keep the transmission coefficient (and therefore the
current) through the RTD as high as possible once it is under bias {16]. This point will be
discussed in more detail below.

In the figure Sb calculation the applied voltage is distributed linearly across the two barriers
and the well, and so the downward shift in the resonance level is relative to the applied
voltage.

In figure Sc, the bias dependent calculation is repeated for a higher barrier height. The
quasi-bound state is higher in energy, and the width of the transmission peak at
half-maximum is smaller, for the higher barrier.

In our numerical simulations, the resonant tunneling structure was assumed to have a
trapezoidal rather than perfectly rectangular shape %see figure 3b). The trapezoidal
approximation was taken to avoid numerical roglems in the actual calculation of the
Gquantum potential across sharp interfaces. (In practice, the interfaces between GaAs, and
AlGaAs layers are never perfectly sharp and a trapezoidal approximation might actually be
closer to the actual shape of resonant tunneling devices grown by MBE or MOCVD.)

Replacing the rectangular barriers by trapezoidal ones with relatively steep walls has little
effect on the position of the quasi-bound state in the well. This was checked by using the
transfer matrix technique to derive the transmission through a perfectly rectangular
resonant tunneling structure and its "trapezoidal" approximation. The transmission
coefficients through the two structures are shown in figure 6a and 6b for comparison. Little
difference is seen between the two curves . The same is true when the structure is under
bias although not shown below.

The position of the quasi-bound state in the well is also a function of well width. We show
in figure 7 the transmission coefficient versus energy for three resonant tunneling devices
with different well thicknesses (devices #2, 3, 4 of Table II). As can be seen from figure 7,
the quasi-bound state position is lower for wider wells while keeping all other parameters of
the RTD the same. Typically, the position of the quasi-bound states have been used to
infer the position of the negative differential region of the RTD’s. While, we do this below,
it will be demonstrated by the simulations of this study that this procedure is sometimes
misleading.

VI. Numerical Examples
Vla. Type I, Device #1

The first set of calculations is for the type I structure with a barrier of 30A and a well width
of S0A. The equilibrium distribution was discussed earlier and displayed in figure 2.
Recall, for this calculation, the quasi-Fermi level is constant throughout the structure and
arbitrarily set to the value zero. The equilibrium charge density shows a small peak in the
center of the structure (figure 2a). The quantum potential is shown in figure 2b. Note that
its peak values occur at the peak values of the conduction band profile, shown in figure 2c.
The offset in potential in the structure is a consequence of the low density in the quantum
well and implies that Boltzmann statistics prevails. In this calculation the quantum
potential has a peak value within the well of approximately 0.031 eV.

Note that the solutions are symmetric, that the small excess peak charge within the well,
is consistent with the single particle nature of the solution. Also, as a result of the low
doping concentration in the middle of the structure, the conduction band energy profile is
higher in that region. The detailed calculation indicates that the conduction band in the
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center of the well is approximately 7mv above the fermi energy at the emitter. The quasi
bound state for this structure is approximately 57mv. Thus according to the Tsu-Esaki
formula the peak current should occur at 0.128mv, whereas the current-voltage curve for
this structure shows a peak current between 0.06 and 0.08v, as shown in figure 8.

What are the origins of the above differences? To examine this we look at the variation of
conduction band energy E(x), space charge p(x), and quantum potential Q(x) as a function
of bias, as displayed in figure 9. The conduction band energy shows the expected tilt as the
bias is increased. The distribution of energy is such that at a bias of 0.1v, approximately
20% of the voltage drop falls across the upstream accumulation layer, 30% across the
double barrier plus well, and 50% downstream from the second barrier. Within the
framework of Tsu-Esaki, the large voltage drop across the upstream accumulation layer
tends to lower the voltage at which the peak current occurs, while the large voltage across
the downstream region tends to increase the voltage at which the peak current occurs. Thus
within the framework ot Tsu-Esaki it is not clear whether the calculations for this structure
should peak at voltages above or below that at which they occured.

The charge distribution for this structure is bias dependent; with several key features.

As seen in figure 9b, there is a region of charge accumulation upstream of the barrier that
increases with increasing bias. The charge in the well continues to increase with increasing
bias. In most of our numerical examples the bias dependence of the charge density profile
shows the general trend reproduced in figure 9b. We notice an important charge
accumulation inside the well which keeps increasing when the applied bias increases. The
charge density within the first barrier is small at low values of bias. This is concomitant with
large values of the quantum potential in the same region. As can be seen from eq. (7), the
large value of the quantum-potential prevents the electron from moving through the second
barrier and forces them to pile up in the quantum well. For larger values of bias, the
strength of the quantum potential gradually decreases through the second barrier and the
charge density starts increasing in that region (figure 9¢).

In all our numerical simulations, including those of figure 9 we notice the formation of a
depletion layer downstream of the second barrier once we pass the valley current of the I-V
characteristic. This depletion layer is a specific single particle quantum effect. The
‘depletion layer keeps on extending for biases greater tgan the voltage at t&e val&ey of the
I-V curve until the depletion layer touches the heavily doped region (2101°cm™). Then,
the electron density downstream of the second barrier gradually increases and the depletion
region disappears. For the range of biases for which the depletion is formed, the electrons
piling ug in the resonant tunneling will feel an important electric field downstream of the
second barrier. This stresses the importance of the doping profile and concentration on the
right-side of the second barrier.

The above discussion has concentrated on carrier density rather than velocity. Figure 9d
displays the general velocity trend seen in all of our calculations. The low average velocity
in the well in contrast to the very high average velocity in the barrier reflects the fact that
the electron spends more time in the well than in the barrier. Correspondingly, the charge
density in the well is more prominent than in the barriers. The average velocity is always
large in the depletion region after the second barrier. Indeed, very recent calculations in
which numercial error was significantly reduced, displayed very high velocities in the second
barrier. These velocities were limited in value by scattering; a result consistent with the
roposal by Luryi [9]). This fast sweep of electrons after crossing the RTD is desirable for
ast-switching applications70f the device. The average velocity is bigger than the saturation
velocity in GaAs (~0.8x10/cm/s) for large values of bias in the depletion region. This
situation is possible since it occurs on relatively small distances (<500A). We also note
that the average velocity quickly drops back to a minimum while approaching the right-hand
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side heavily dOﬁed region. But most significantly, the velocity in the well under conditions
of resonance, shows a steady decrease with increasing bias. For example in one set of
calculations, prior to resonance the mean velocity in the well led to a nominal transit time
of 10fs. At resonance, the nominal transit time was increased to S00fs!

While the mean velocity for this structure, shows the expected increase in velocity in the
downstream barrier where the charge density is reduced to extremely low values (see figure
9d); and the carrier velocity in the well begins to drop near the peak current, how can we be
certain that we are near resonance? In figure 9c¢ the bias dependence of the quantum
potential is plotted. It is our observation that when the value of Q approaches the resonant
energy level that the mean carrier velocity decreases. Further, the bias value at which Q
approaches resonance is dependent upon the value of charge in the well, as reflected in the
quantum distribution function, through the term x{.

Thus peak currents can occur at voltage levels below that predicted by Tsu-Esaki. Further
the distribution of carriers in the well increases with increasing bias, which is shown in
figure 9b. We note-once again, however than at 4.2K, where the effect of the x¢ is reduced
the voltage at peak current occurs at values close to that predicted by Tsu-Esaki. The

voltage at which the current peaks appears to be strongly model dependent and should be a
cornerstone of any Phase II study.

The quantum potential is displayed in figure 9c. If we concentrate on its value in the well,
the most dramatic point to note is that as the bias is raised the value of the quantum
potential tends to cluster around a narrow range, increasing in magnitude from the
upstream barrier to the downstream barrier. These values are given in the table below, at a
value in the center of the structure:

v: |.01].02 |.04 |.06 |.08 |.10 |.11 |.12 |.14 }.16 |.20

Q: |.020|.029|.044]|.049|.053|.054].055|.056].057|.058|.059

<k>L|0.94]1.13|1.39|1.47|1.53|1.54|1.55|1.57|1.58|1.60|1.61

The first point to note about the table is that for a bias of approximately 0.06 to 0.08 volts
we are approaching the classical condition for transmission resonance within the well. And
at these values we are approaching the peak current level. Indeed, as shown in figure 8, the
peak current for this structure occurs at bias of between 0.06 and 0.08. This result when
coupled to the fact that the values of <k>L approach resonance, indicates that the
characteristics are dominated by the single particle wave nature of the equation.

To supplement the discussion of the space charge profiles it is useful to plot the
quasi-Fermi level in the RTD, recognizing that the quasi-Fermi level is not a physical
quantity, but rather a mathematical transformation between charge density and energy (see
fig. 9¢). The plots stress the strong position dependence of the quasi-fermi level in the
immediate vicinity of the resonant tunneling structure for different values of bias. Outside
the double barrier structure, the quasi-Fermi level is nearly constant and equal to its value
in the respective contact. This is an important difference with previous treatments of
double barrier structures where, under the assumption of ballistic transport, the

quasi Fermi level for electrons impinging from the contacts are assumed to be constant
throughout the entire double barrier region. However, we are aware that the variation of
the quasi-Fermi level, such as derived from equation (42a, b), is not rigorous. Indeed,
equation (42a,b) implicitly assumes that thermal equilibrium has been reached throughout
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the entire structure. We also note that E¢-E. must have a constraint that it not exceed
a material constant, e.g. Eg/2. To include this will require the constraint of the energy
balance equation.

The results for this device are that the peak to valley ratio is small and that the voltage at
peak current is below that predicted by the Tsu-Esaki formalism. In this context it is
worthwhile digressing to consider the PVR in the context of wavepackets. Consider a
double barrier structure with a transmission peak at an energy E. Assume that the
transmission at E has a spread of 't at FWHM. Further assume that a ’'minimum’
wavepacket was propagating at a momentum k, corresponding to the resonant resonant
ener%y, and that the spread in energy of the wavepacket at FWHM is T, If ['y, < <T,, it
may be anticipated that most of the wavegacket will get through. If T'y, > >T' [, only a small
portion of the wavepacket is expected to be transmitted. In the former case it is expected
that a large PVR is possible, whereas in the latter case a smaller PVR is likely. For the
situation where ['y, > >T it is also possible that for wavepackets with propagating
momentum that differs from k, that there may be portions of the wavepacket that will be
transmitted through the resonant level. The situation with respect to the time independent
solutions displayed here is unclear. The solutions obtained are for mean density and mean
velocity. The Fourier decomposition of density will necessarily peak at values of
wavelength that are characteristic of the number of wavelengths that fit into the well. The
relationship between the spread in significant wavelenghts, the width of the resonant level
and the PVR has not been determined, but should form part of the Phase II study. Itis
anticipated that if if the spread in wavenumbers, associated with the spread in wavelengths
is much greater than ' than the PVR will be small.

VIb. Type I, Device # 2

The above calculations were for a structure with a 30A barrier and SOA wells. What
happens when the width of the barrier is increased to 40A? We first display a calculation of
the transmission curves for the 30A and 40A barriers (see figure 10). Figure 10 illustrates
that the width of the transmission peak through RTD’s with thinner barriers is broader than
that of the thicker barrier. From the same figure, we also notice that the position of the
quasi-bound state is not very much affected by the barrier width. Since the width of the
1:1asi-bound state is broader for thinner barriers, we expect the current level to be higher in
the RTD with the smaller barrier. This is indeed the trend observed in our numerical
examples.

The situation where tiie barrier width is increased to 40A is tabulated below:

v: |.01 |.02 |.04 |.06 |.08 |.10 |.11 |.12 |.14 |.16 |.20

Q: |.032|.039|.050]|.055|.057|.059|.060|.060|.061|.062|.062

<k>L|1.19]1.30|1.48/1.55|1.58|1.61]1.62|1.62|1.64|1.65|1.65

The broad charge distribution for ius case is similar to the diode with the 30A barrier. Of
course the current level is lower, (compare figures 8 and 11) because of the larger barrier;
but the voltage at peak current is approximately the same. The important point to note
here is that the resonance occurs at a higher value of mean Q for the wider barrier than for
the 30A barrier. But the zero bias quasi-bound state is also higher in energy for the 40A
barrier.




Vlec. Type I Device #3 and #4

In order to investigate the effect of well width on the properties of the RTD, two types of
calculations were performed. In the first, the well width was reduced to 30A, and in the
second, the well width was increased to 70A. The current-voltage characteristics of these
structures are shown in figures 12 and 13 respectively. In the first, at a given value of bias
the mean Q values in the well were higher than that for the SOA well. This was expected, as
the position of quasi-bound state increases in energy when the well width is reduced. The
results however show negative conductance at values of bias that are only marginally
above that obtained for the wider well, and for Q values below that expected for
resonance. The distribution of charge while qualitatively similar to that for device

#1 is significantly smaller in value at comparable bias levels. The carrier velocity in

the well shows a decrease on the resonance is approached. Indeed, it was expected that
resonance would occur for mean well widths near 0.08v or 0.09v. This situation requires
further analysis. The situation for the well width of 704, yielded low Q values, and a very
small negative conductance was not seen. In fact, the traversal time for electrons is
obviously larger for structures with thicker wells; a smaller peak-to-valley should therefore
be expected 1n those structures since the scattering mechanisms are more effective in
increasing the valley current (while destroying the phase coherence of electrons in the
well). In the table below, the values <k > L were obtained by assuming a well width of
35A.

v: |.01 ].02 |.03 |.04 |.06 [.08 |.10 |.12 |.14 |.16 |.18

Q: |.028|.038|.048|.053|.057|.060|.063|.065|.068].070|.072

<k>L[0.78|0.90|1.02|1.07|1.11|1.14]1.16/1.18|1.21]|1.23]|1.25

Experimentally, there has only been one systematic study of the dependence of resonant
tunneling current on well widths in A1As/GaAs/AlAs double barrier diode structures [17].
In those structures, where the well width is increased, the resonant tunneling is found to be
reduced because the increase in the well width lowers the resonant levels, increases the
effective barrier height, and results in a sharpening of the transmission coefficient around
the resonance peak (or equivalently, the decrease of the resonant level widths). A
comparison to this work should be performed as part of a Phase Il study.

VId. Type I, Device #5 with higher barriers (0.318 ev)

Having established that a condition of resonance exists, is it possible, for a specific cladding
distribution to control the voltage at which the resonance condition occurs. A calculation
was performed for a structure with a large barrier, 0.318v, and with no variation in the
effective mass. (A comparison of calculations with and without a spatial variation in the
effective mass, shows that the differences lie in a lower current level when the majsg var'bes.
The voltage at peak current is essentially unaltered.) In addition, the doped 5x101%/cm?,
regions were extended an additional 50 A into the structure. The presence of the increased
barrier height results in an increase in the quasi-bound state energy, and an increase in Q at
resonance. The result is an increase in the voltage at peak current, although the current
levels are lower than that of the comparable figure 11 curve; with the differences arising
from the increased barrier height. The tabulated mean values are given below, while the
current-voltage relation is displayed in figure 14.




v: |.01 |.02 |.04 |.06 |.08 |.10 |.11 |.12 |.14 |.16 |.20

: |.039|.043].060|.068|.073|.076|.077|.078|.081|.081|.083

<k>L|1.31|1.37|1.62}1.72|1.79[1.82|1.83[1.85(1.88(|1.88(1.91

Vle. Type I1, Device #6

The calculations for the above two tables are qualitatively similar, wit re%onances occuring
at the same conditions within the well. The situation when the 5x101%/cm? are removed
from the structure leads to different results. First, it must be noted that the effect of
eliminating the more heavily doped cladding layer, will reduce the concentration of carriers
in the well, and as seen in figure (16a), where we note that while there is local accumulation
within the well, it is not nearly as strong as that for figure (9b). There is another difference.
There is a larger potential drop across the region upstream and downstream of the well
(figure 16b); as a result there is not as significant a voltage tilt within the well as for the
structures associated with figure 9. The quantum potential is displayed in figure 16¢ and
shows the same structure as that of earlier calculations. The mean velocity is shown in
figure 16d, and displays the precipitous drop in value under conditions for resonance. The
important difference occurs with respect to the voltage at which the peak in current occurs;
here it is at approximately 0.03 volts, which is a factor of two smaller than that discussed
above. The contribution again indicates that the premature resonance arises because of the
contribution of x¢ in the interior of the structure. Nevertheless as the table below
demonstrates, the condition for resonance is similar.

V: |.01 |.02 |.04 |.06 |.08 |.10 |.11 |.12

.14 | .16 | .20

Q: |.033|.041|.047|.050].052]|.053| | .054].056].057|

<k>L|1.20|1.34}1.43|1.48|1.51|1.52]| |1.54|1.57|1.58]

The current voltage characteristic for the above data is displayed in figure 15, where we see
that the extended spacer layer reduces the number of carriers available for tunnelling and
thus reduces the current level .

Because the calculations for this structure show a very small amount of charge accumulation
at low bias levels, this structure was studied for different and arbitrary values of x¢ to
determine the efficacy of the argument that the properties of the pressure gradient have a
determining influence on the characteristics of the device. In one such calculation xs was
arbitrarily altered such that, with reference to equation 42, for values of x¢ < 4.442({, the
logarithm contribution was ignored. It was found that the quantum potential in the well
fairly well tracked the variation of E(x) and that the condition for resonance was not
reached until the bias reached 0.25 volts. At this point there was the quasi bound state
crossed the Fermi energy and there was a substantial flow of current as predicted by Luryi
[9]. A drop in current was not observed.




VIf. Effects of Asymmetric Barriers on Resonant Tunneling Current

In this paragraph, we discuss asymmetric resonant tunneling structures. In ail experimental
situations, any RTD is never perfectly symmetric. This lack of symmetry is related to the
control of growth conditions and is always present. We are interested in the actual case
where an asymmetric RTD is grown either by changing the thickness of the barriers or their
heights. Numerical I-V calculations based on the "T'su-Esaki" formulation [8] have
suggested that the resonance effect and the negative differential resistance characteristics
can be substantially improved in the resonant tunneling diodes with a high-low asymmetric
barrier configuration [17,18].

We performed similar calculations using our approach for the structure shown in the inset
of figures 16 and 17 The resonant tunneling device was chosen to have the configuration
Aly3Gag 7As/GaAs/Alj 45Gag 45As. The thickness of the well and the two barriers were
chosen to be SOA and 4(?A respectively. Note, once again we took the Al concentration x in
both barriers lower than 0.45. Beyond this value, one encounters the controversial issues of
multivalley transfer [19] and phonon scattering involved in the conversation of momentum.

For the asymmetric structure we see an expected rectification (compare the forward and
reversed I-V curves on figures 17 and 18). Of interest here is the broad plateau in current
for the higher anode barrier, and the presence of a low-voltage negative conductance for
the low barrier height anode. The space charge distributions for this case are shown in
figures (19a and 20a) and show significant differences. First consider the high anode
barrier. For the high anode barrier there is more significant depletion within the second
barrier as well as downstream from the second barrier. The charge in the well is lower for
the high cathode barrier at all values of bias. Of these fewer carriers in the well a larger
percentage tunnel through the second barrier. The energy distribution for the two
structures is shown in figures 19b and 20b. Recall that Poisson’s equation is determined by
the difference between the mobile density and background. In both cases the mobile
concentration within and downstream barrier of the second barrier are much smaller than
background, and so Poisson’s equation yields similar results.

The values of the quantum potential are displayed in figures 19¢ and 20c¢. For the high
anode barrier the mean Q values are distributed as follows:

vV: |.01 |.02 |.04 |.06 |.08 |.10 |.11 |.12

.14 | .16 |.20

Q: |.044|.048|.053].057|.060]|.062]| | .064|.065|.066]|.068

<k>L|1.39/1.45]1.53|1.58]1.62|1.65] |1.68]1.69]1.70]1.73

The above values are consistent with the results discussed earlier for all type 1 devices.
For the situation where the barriers are reversed we see an unusual trend, one where the
mean Q values decrease at low values of bias. The detailed space charge profiles shown
that this decrease is accompanied by a decrease in space charge in the well, as some of the
type II devices display. This is not resonant behavior.
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v: |.01 |.02 |.04 |.06 |.08 |.10 |.11 |.12 |.14 |.16 |.20

Q: |.038|.025|.024|.063|.065].067| | .068|.068|.068|.068

<k>L|1.29/1.05/1.03}1.66|1.69|1.72] |1.73]1.73]1.73|1.73

For an asymmetric structure, one expects an increase in the peak-to-valley ratio (compared
to the case of a perfectly symmetric structure; x =0.3 for both barriers) since the valley
current will be substantially reduced when one of the barrier height is higher. This results
from the fact that a large component of the valley current is due to thermionic emission
above the barriers and is therefore smaller in the case of asymmetric RTD. Though it is
true that a further increase in the barrier height may lead to an even greater peak-to-valley
current ratio, such an increase will, however, result in a rapid drop in the peak curent that
is not desirable for many practical purposes where current densities as high as 10° A cm-
are needed. One important feature of the high-low resonant tunneling diode is the
rectifying effect associated with the asymmetric I-V characteristics as seen in figures 17a)
and 18). Applications of this effect are exploited in [17].

The above asymmetry in concentration and perhaps doping has recently been considered
for interesting device applications [17,18]. A new device using quantum-well injection and
transit-time effects, the QWITT diode, is shown on figure 20. The quantum mechanical
tunneling in the QWITT diode is a low-noise injection mechanism with superior high
frequency characteristics. In ref. [17], it was shown that the length of the transit-time region
(see figure 21) could be optimized to obtain the best power-frequency performance device
superior to the rf performance of pure quantum well oscillators. The presence of a drift
region (transit-time region) increases both the device impedance and optimum bias voltage
so that higher output power can be obtained. On the other-hand, the quantum well offers
the opportunity to control the phase of the injected carrier population, i.e., the injection
phase angle, as a function of dc bias, a new feature for a transit-time device. To the best of
our knowledge, our calculations are the first ones to actually show the formation of a
depletion layer downstream of the second barrier. As stated above, this could have
interesting device applications and our simulations might be quite useful in the future in
better design of new device concepts, such as the QWITT structure.

VII. Conclusions

The calculations display several very distinct features. For most of the structures:

(1) The charge from the emitter tunnels through the first barrier into the well, and the
amount of charge in the well increases with increasing bias.

(2) Resonance and NDR are single particle effects and are always accompanied by a
decrease in velocity in the well, usually approximately a decrease of two orders of
magnitude. This increased dwell time is accompanied by a significant decrease in
tunneling through the second barrier, and a concomitant increase in velocity in the

second barrier. Resonance occurs at mean values of <Q> corresponding to the value of
energy associated with unity tramsmission, althought the values of <Q > are not calculated
from the scattering matrix.

(3) Excessive increases in velocity in the second barrier must be accompanied by either
elastic and/or inelastic scattering to prevent the mean velocity from reaching
unrealistically high values.




(4) The detailed charge distribution and current voltage relationships are sensitively
dependent on the properties of the cladding layers.

(5) At resonance estimates of the mena charge density show <p > decreasing with
increasing bias under resonance.

(6) The current voltage relationships exhibit peak-to-valley ratios which are smaller than
the experimental values. However, for a device with a cross-section of 25um x 25x4m (which
is a typical experimental cross-section), the peak-current calculated numerically are of the
order of 0.2-20 mA. This is the typical range of peak current of various RTD’s studied
experimentally [2,3,4,5,6,7]. The peak and current levels obtained in our numerical
simulations have the right order of magnitude. Our peak-to-valley ratios are typically only a
factor 2 to 4 lower than the experimental findings. This probably results from the following:
(a) As discussed in section 2, a numerical simulations using the moments of the

density matrix equation must include the energy balance equation. Energy balance is
indeed an important issue in the presence of (inelastic scattering). The low peak to valley
ratios are related to the inclusion of a relaxation term in the momentum balance equation.
It has been shown experimentally that the presence of scattering in typical RTD (voluntary
doped) could substantially reduced their peak-to-valley ratios [14,20].

A detailed investiﬁation of the above conclusion must await a more complete investigation
of the influence of the doping profile on the shape of the current-voltage characteristics of
typical RTD. For instance, very recent calculations [20,21) making use of the Wigner
distribution formalism have shown the importance of a better treatment of the contact
regions in developing a full quantum kinetic theory of RTD’s and of any system open with
respect to electron (or holes). Also, in the single-particle Wigner distribution formalism,
no attempt is made to specify a priori what states electrons occupy in the contacts (which
are assumed to be scattering states in the Tsu-Esaki approach). In our approach, we do not
identify the individual states occupied by those electrons launched from the contacts.
Rather we adopt an hydrodynamic picture in which mean boundary protperties are
identified. we treat the overall gas of electrons at once. This striking difference between
our model and the Tsu-Esaki’s picture can partly explain why our peak-to-valley ratios are
substantially lower than in the Tsu-Esaki formalism and in closer agreement with the
peak-to-valley ratios obtained in the Wigner distribution formalism.

At this point, it is worth mentioning that the high peak-to-valley ratios obtained in the
Tsu-Esaki formalism are somehow dependent on the assumed plane-wave eigenstates for
the electrons impinging from the contacts. In ref. [22}, it has been shown that while using
wave-packets instead of idealized plane-wave representation, in the Tsu-Esaki formalism,
the peak-to-valley ratios of typical RTD’s are substantially reduced and in better agreement
with the experimental results. In other words, the assumption of the plane-wave solutions
for electrons coming from the contacts is somehow an idealistic situation.

(7) The peak current occurs at a rather small bias and its location is strongly dependent on
the actual doping profile outside the resonant tunneling structure itself. The results are
strongly dependent upon the details of the quantum distribution function, whose form was
assumed rather than calculated.

(8) Our previous discussion has stressed the importance of a better treatment of the
boundary problem linked to the flow of electrons from the contacts. On the other hand, it is
now recognized that meaningful theoretical attempts to reproduce the current-voltage
characteristics of typical RTD’s must be self-consistent in nature, i.e., must include the
space-charge effects through a solution of Poisson’s equation. Quite recently [23), it has
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been shown that, while performing self-consistent calculations, the calculated I-V
characteristics show an intrinsic bistability in the negative-differential conductivity region of
the curve. This intrinsic bistability results from charge storage and the subsequent shifting
of the internal potential of the device. On the cathode side of the RTD, there is a
formation of a deep triangular well (the depth of this well depends on the actual doping
profile). This can lead to quantized electron states and a large accumulation of charge
which reduces the barrier height to a ballistic electron injected from the cathode. This
effect could enhance the valley current and thereby reduce the peak-to-valley ratio. Our
hydrodynamic model allows for the electron population of the triangular well on the
cathode side of the RTD. This is presumably one of the reasons why our peak-to-valley
ratios are substantially lower than those usually calculated in the Tsu-Esaki’s picture. A full
investigation on the influence of the doping profile on the actual population of the
triangular well is therefore of primary importance in the design o?typical RTD. Our
numerical simulations have shown that the position of the NDR also strongly depends on
the actual doping cf)rofile in the device and thereby the actual population of the triangular
well on the cathode side of the RTD. A full investigation of the precise control of the NDR
shift must await further numerical simulations.

In conclusion, even though incomplete, our approach making use of the first two
moment-equations of the density matrix equation has been shown to lead to occurence of a
NDR region in typical resonant tunneling structures. Further work is needed to include the
energy-balance equation in our model together with a more sophisticated treatment of
scattering (both elastic and inelastic) in our formulation. When included, those refinements
will allow us to distinguish between the possibilities of coherent and/or sequential tunneling
in resonant tunneling structures, and be used as a powerful tool to design typical RTDs.
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diodes proposed in Ref.(1]. Peak-to-valley current ratios
as high as 30 at 300K and 63 at 77K were obtained with this

structure.
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GaAs/AlIGaAS RTD

PEAK-TO-VALLEY
DATE BARRIER WELL
RATIO REFERENCE
Al Ga,  As
JUNE 74 x=03 GaAs FIRST OBSERVATION #2
80 A 50 A - OF NDR
(MBE)
Al Ga,  As
SEPT. 83 X = 0.3 GaAs P.V.R. = 6 AT 25K #3
50 A 50 A
(MBE)
AlAs GaAs NDR AT TEMP. AS
FEB. 85 42 A 62 A HIGH AS 260K. #4
(MOCVD) (MOCVD) | P.V.R. =34 AT 4.2K
Al Ga_ As GaAs P.V.R. = 1.48 (300K)
JUNE 86 X = 0.45 50 A = 6 (77K) #5
50 A
(MOCVD)
x =03
Alea1 < As GaAs P.V.R. = 2.2 (300K)
JULY 87 50 A 50 A = 7.0 (77K) #6
(MBE) X = 0.42
P.V.R. = 3.9 (300K)
=143 (77K)
AlAs GaAs P.V.R. = 2.9 (300K)
JUNE 88 20A 56 A = 12.5 (77K) #7
(MBE)
Si SUBSTRATE

TABLE I: Evolution of peak-to-valley ratios since 1973. A brief overview.
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DOPING | BARRIER (A) | WELL (A) VoteV) | Vvyev) | DEVICE
TYPE | 30 50 0.209 0.209 #1
40 50 0.209 0.209 #2
40 30 0.209 0.209 #3
40 70 0.209 0.209 #4
40 50 0.310 0.310 #5
TYPE I 40 50 0.209 0.205 #6
TYPEI 40 50 0.209 0.318 #7

(ASYMMETRIC})

RTD 40 50 - 0.318 0.209 #8

TYPE | AND Il REFER TO THE DOPING CONCENTRATIONS SHOWN IN
FIGURE 2. BOTH WELLS ARE ASSUMED TO HAVE IDENTICAL WIDTH.
Vo .V4 ARE THE BARRIER HEIGHTS OF THE LEFT AND RIGHT BARRIER
RESPECTIVELY.

TABLE II: Parameters of varicus Resonant Tunneling Devices.
Studied in this report.

_31-




. 10
a)
€
© -1 TYPE |y
@« 10 +
o
(.\|J -2 \\
" 10 1
e |
% |
2 3 Al
- 10 - J/l
z TYPE | |
S & 0 T
10 1
© %o | 2
DISTANCE (x 1000 R)
! 1 1 '
1 8 ' 1 B i
' 1 i 1
o) I T
) ( ' 1
i ' 1 |
1 ' i '
i ' 1 )
: I w > :
i ‘ ' '
1 1 ' '
1 ' ‘ ]
1 ' ' 1
) i 1 1
—_ i . . i T
! ! ¢ i | ! ! i
1 ! ! 1 ( ! ! |
! ! ! 1 ) ! ! (
i ! ! 1 | ! i 1
t ! ! 1 1 ! ; {
' 1 ( ' ' 1 1 '
' i ‘ ! ' ' 1 '
' ! ! 0 | ! ! (
¢ ! ! 1 1 ! ! 1
: ] 1 ' ' ' ' '
( ! ! H 1 ! ! 1
( ! ! i i ! ! (
0 ! ! { ) ! ! (
' ! ! ¢ ‘ ! ! 1
0 ! ! h ( ! ! )
' ! ! h M ! ! 1
' ! ! i 1 ! ! |
A A
' ( '
! rtef01<—-—1 W, f“—_"?'87'1 !
: : : :
' ' 1 1
! ' ] '
' i ' '
1 1 i '
' ) ‘ '
' 1 1 )
' 1 ) 1
' ( ' |
' ' i )
' ) ' 1
1 1 w ' )

Figure 3: a) Doping profiles (type 1 and 11) considered in our numerical
simulations. The RTD is at the center of the devicc as the shape
shown in Figure 2b). b) Trapezoidal approximation of a typical RTD.
This approximation is used in our calculations to avoid the
numerical problems with shape interfaces. B,W are the Barrier/
well thickness respectively. By, and W,,, are chosen such that

B = (B, + B,)/2 and W = (W, + W,)/2.

- 32 -




CURRENT (orb. unit)

0.0 0.1 0.2 03 04
VOLTAGE (V)

k!
2) €,
E
Ky
Voot 711888801
LS (o) Bios voltage not sufficient
to couse resonant tunneling
kl
gh ) : {\l & |
14
7 e
K, IIITIT]
(b) On resonance
k!
y &
L)
K 75018088

(c) Bias too large for resonont tunneling

Figure 4: 1) Typical I-V characteristic of a resonant tunneling
structure. For coherent resonant tunneling, there is drop
in the I-V curve (NDR region) when the Quasi-Bound state E,
is pulled below the conduction band in tl.c left contact
(Figures 2a-b-c).




“ .

*(g'0 = X) Aroat3yoadsax %w z60'0/.L90°'0 2I° ¥ " leoX(y
/6YRO U SSew dATI0VIIS OYL 'A® 602°0 ST IYSTAY 18TIIEg BYL
‘uoTatTeod YIATM UOTARTIRA SEPW SATI0SIID Byl (2AIND TINJ)
but3oatbau/ (3axnd peysep) HuTpniouT oTTYM (YOV-YO0S-YOb) aly

e 103] ABisud SNSEIBA JUBTOTFJIS0D0 uoTssTwsuerl ayl 3o uostTaedwo) :e¢ @anbr3

(A) AOY3N3
0£°0 $2°0 81'0 210 900 0
T === -7 0
/ /
1
i
I
!
' < 2910
._
'
|l
; 4 see°0
RN “_«/.zo:.q_%;
,/ __“ LU HLIM
‘ | —— .
) ! NOLLVI¥VA ! 000
| 44U LNOHLIM N
| __
I “._
_A“ — ¢98°0
i
"
1]
'
1 - ££8°0
yOv- yos~ yov }
aLy f
“ o

34

IN310144300 NOISSINSNVY L




‘uETTeWwIoy €,3)es3i-nsl 2yl uyl poarasqo s1 Abisua aaTiebsu
YyoryM 1@ ¢etq oyl €T 67yl ‘c7xe Abrsusd aayiebsu sy3 ug
.61eaddestp, xeed aouruoecar aya ‘ybnous ybiy €7 sejq pajrdde
2y3 uayMm * (AP602°0 ©3 Tenba 3uybysy IBTIIRQ B YiTA)
21n35n138 Huryauuny jueuosea Ted7dA3 v ssoxoe partrdde serq

JUD1833ITP £ 103 ABIdUD SNEIBA JUITOTJIV0D uUOTESTWSURIL QG dInbTa
(A3)  AOH3N3
00g¢'0 geeo osSI'0 6200 0
T
AOI'O = svi8 _|
AO = Svig \ ASO'0= Svi8
(2 35)A30) YOb-VOS-VOb

G220

0sS 0O

GLL°0

o0

IN3ID14430D NOISSIASNVYY L

35




00e0

‘WETTPWIO] TYesI-~-NEL

3yl ut seY7Q I3aYyBTY e P £INDD0 WAN dY3I ‘9103219Yl

"qs @anbyry uy ueyl Abisus uy 19ybIy ps3IeDO] 6T SIelE

punoqg-tsend ayl 'A9gT¢ 0 03 1enba ybyay 1aTIzeq B YITM
81n3on136 buyreuunl Jueuosaz e 103 qG 21nbtj se sweg :0G a1nbrg3

(A3) A9M3N3I
G220 0SI'0 S.0°0

_ O
S00 /AOIO
>o_.fw" Svig
ASO'0=svig
V
A O = SvIg~
¢ (A2 81€°0 = LHOIZH HIIHHVYE) moq- mon- mov

6220

0660

§LL°0

0011

IN3IDI44300 NOISSINSNVY L

36




DOPING DEVICE V(NDR) V(NDR)
(SEE TABLE 1l) TSU - ESAKI (OUR CALCULATIONS)
TYPE | #1 0.13 eV 0.08 eV
TYPE | #2 0.13 eV 0.08 eV
TYPE | #3 0.14 eV 0.06 eV
TYPE | . #4 NO NDR
TYPE Il #6 0.12 eV 0.03eV

TABLE 111: Estimates of the position of the NDR region in the
Tsu-Esaki Formalism.
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a)

TRANSMISSION COEFFICIENT

b)

TRANSMISSION COEFFICIENT
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I i
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- )
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O i I 1 1 4 Pl S 1 " 41 1 1 & ]
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ENERGY (V)
Figure 6: Transmission coefficient versus energy in the case a) of

verfectly sharp interfaces b) in the approximation of a
trapezoidal shape for the RTD. The effective mass variation
was taken into account,

- 38 -




‘STTeM 29%OTY3

Y3ITs §,01d 103 10MO0T 91 soTbieul go3eIF punog-feend ayy
‘UOTIBTNOTED 8Y3 U PapnTOUT 6T UOTIBRTIRA ESBW JAT3IDDIFO dYL
"A® 602°0 ST 3Iybyey 18TIxeg OYL ‘SO2TS TTOM JUISIITP YITAM

L

£,01d ubnoayl Abrsue sneILA JUDTOTIIV0O uoTssTWEURIy : L danbrg
(A?) AOY3N3
120 20 FA 810 SI'o ci'o 600 300 €00
I 1 1 - = L Al T AN + T
P - ~ \\,«l / ! \

/ A
, Yov-vyos-yor-/ !

!
1
!
!
!
I

yOb-yoL-yob 7

{
mo?xon-mof\’

-
—— - -
— - = -
— - - - —— - — -
- -

- -
— —

29170

gee 0

0080

4990

£e8'0

NOISSINSN VYL

LN310144300

39 -




DEVICE |

PVR = I.2

Q
W =50 A
8 =302R%
T =77K

] | | 1

12 t
10 +
8
e
€
O
~
p= ¢
"o
§ 6 -
e}
=
-
4
o L
7/
/
0
0
Figure 8:

0.04 0.08 0.12 0.16 0.20
VOLTAGE (V)

Current-Voltage Characteristic for device #1 of Table II.
The parameters of the RTD are shown in the inset. The
dashed line is the expected shape of the I-V curve at
low value of bias.
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TOTAL CONDUCTION BAND PROFILE, (eV)
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Figure 9a: Total conduction band energy profile as a function of bias

for Device #1 of Table II. The different curves are labeled
with the value of the voltage at which they are calculated.
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Figure 9b: Charge density as a function of bias for Device #1 of
Table II. N, is the doping profile (type II; see fig. 2a).
The different curves are labeled with the
value of the voltage at which they are calculated.
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Figpure Sc: Quantum potential as a function of bias for Device “1 of Table T7.
The lower firure is a closer look at the Quantum potential
variation shown in the uppner figure. The different curves are
labeled with the value of the voltage at which they are calculated.
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ELECTRON VELOCITY, (10 cm/s)
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Figure 9d:
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Average velocity as a function of bias for Device f1 of Table II.
The different curves are labeled with the value of the voltage

at which they are calculated. The average velocity in the well
increases for biases higher than the one corresponding to the
minimum in the I-V curve.
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Fermi level as a function of bias for Device #1 of Table 1I.

The lower figure zooms on the interior of the device. The different
curves are labeled with the value of the bias at which thev are
calculated. Notice the strong position dependence of the Fermi
level across the double barrier resonant tunneling structure.
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Figure 11: Current-voltage characteristics for device #2 of Table II.

The parameters of the RTD are shown in the inset.
The dashed line is the expected shape of the I-V curve

at low value of bias.
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Figure 12: Dependence of the current-voltage characteristic on the

well thickness

(compare with figures 11 and 13).

The resonant tunneling structure is shown in the inset.
The dashed line is the expected shape of the I-V curve at

low value of bias.
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Figure 13: Dependence of the current-voltage characteristic on the

well thickness (compare with figures 11 and 12).

The resonant tunneling structure is shown in the inset.
The dashed line is the expected shape of the I-V curve
at low value of bias.
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Figure 14: Current-voltage characteristic for RTD shown in the

insert. The barrier height is 0.318eV and the
effective mass is assumed to be constant (m‘CaAs =0.067mg) .
The doping profile of type II is considered in our numerical
simulations. However, the 50A regions on both sides of the
RTD were assumed to be undoped. The dashed line is the
expected shape of the I-V curve at low value of bias.
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Figure 15: Current-voltage characteristics for device #6 of Table II.
The parameters of the RTD are shown in the inset.
The dashed line is the expected shape of the I-V curve

at low value of bias.
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Figure 16a: Charge density as a function of applied bias for device t6

of Table II. The sloping in the middle of the device is
S x 1016cm~3. The bias increases in the direction indicated
by the arrow (0.01; 0.02; 0.03; 0.04; 0.06; 0.08; 0.10;

0.18). N, is the doping profile (type II; see fig. 2a)

- 52 -




0.60

TOTAL CONDUCTION BAND PROFILE, (eV)
°
o

-0.40

= T =77K —

a1 .

[ 11

/]

1 1 1 i 1 1 1 1

Figure 16b:
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Conduction Band Energy profile as a function of applied
bias for Device #6 of Table II. The bias increases

in the direction indicated by the arrow (0.01; 0.02; 0.03:
0.04; 0.06; 0.08; 0.10; 0.18).
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Figure 16c: Quantum Potential as a function of applied bias for
device #5 of Table 1I. The charge density profile for the
same structure is shown in figure l6éa. The bias increases
in the direction indicated by the arrow (0.01; 0.02: 0.03;
0.04; 0.06; 0.08; 0.10; 0.18).
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Figure 1€d: Average velocity as a function of bias for Device 6

of Table II. The different curves are labeled with the
value of bias at which they are calculated. The arrow
indicates the direction of increasing biases.
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Figure 17: Current-Voltage Characteristic for device #7 of Table II.

The parameters of the RTD are shown in the inset. The
dashed line is the expected shape of the I-V curve at
low value of bias.
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Figure 18: Current-Voltage Characteristic for device #8 of Table II.

This I-V curve corresponds to the reversed bias case of
the I-V curve shown in figure 17. The parameters of the
RTD are shown in the inset. The dashed line is the
expected shape of the I-V curve at low value of bias.
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Figure 19a: Charge Density profile as a function of applied bias for device #7
of Table II. The arrows indicate the evolution of the charge
density for increasing valucs of blas (0.01; 0.02; 0.04; 0.06;
0.08; 0.10: 0.12; 2.14; €.20). The lower figure zooms on the
inner portion of the upper one.
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Figure 19b: Conduction Band Enerqgy profile as a function of applied bias
for device #7 of Table II. The arrows indicate the evolution
of the charge density for increasing values of bias (0.01;
0.02; 0.04; 0.06; 0.08; 0.10; 0.12; 0.14; 0.20).
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Variation of the nuantum potential as a function of

apnlied bias for device #7 of Table 1. Only the interior
nortion of the device is shown. The curves are labeled with
the value of bias at which they are calculated (0.01: 0.02;
N.04: 0.0G; 0.09; 0.10; 0.12; 0.20)
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Figure 20a: Charge-Density profile as a function of applied bias for
device #8 of Table 11. The lower curve zooms on the
inner portion of the device. Notice the decrease ot the
charge-density in the well for low values of bias.
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Figure 20b: Conduction Band Energy profile as a function of applied

bias for device #8 of Table I1. The arrows indicate the
evolution of the charge density for increasing values of
bias.
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Variation of the Quantum Potential as a function of applied
bias for device #8 of Table II. Only the interior nortion
of the structure is shown. The curves are labeled with the
value of bias at which they are calculated.
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Figure 21:
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a) Physica’ structure of a Transit-Time Device using
Quantum-well injection (QWITT) (Ref. 20).

b) Energy band diagram of the device when no bias is
applied. The length of the transit-time region W must
be greater than the quantum-well thickness for typical
millimeter-wave frequencies.
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Appendix A - Solution of the Governing Equations

In order to solve the systems of equations (42a, 42b, 44, 48, 49) numerical techniques must be used.
The numerical method used in the present algorithm is based on application of consistently split,
linearized, block implicit (LBI) methods, as developed by Briley and McDonaid [24] to the system of
eqs. (42a, 42b, 44, 48, 49). LBI techniques center about the use of a formal linearization procedure in
which systems of coupled nonlinear PDEs in one space dimension are reduced to a system of linear
equations, which upon application of spatial differencing, may be expressed as a block coupled matrix
system. The resulting system may then be solved efficiently to advance the solution in time, or to
iterate to a steady state.

Briley and McDonald [24] considered the coupled system of £ nonlinear, time-dependent,
multidimensional equations given by

. (A-1)
20) _ pgg) + S(ap)

In Eq. [A-1] ¢ represent the vector of depenaent variables. H(¢,) and S(¢4 ) are nonlinear
functions of ¢ 4 which contain no spatial operators, and D(¢ ) is a general, nonlinear,
multidimensional, partial differential operator, Equation (A-1) is first time differenced about t? + g
At as

(A-2)

n+l _ n
H(¢) H(¢)" _ BID(4)M1 4+ S(e)N*1) + (1 - B) [D(¢)D + S(4)D]

At

where at=t1*1 {1, and the subscript £ has been dropped for clarity. The parameter 8 =1 for a fully
implicit scheme or # =0.5 for the Cranck-Nicolson formulation. The implicit level nonlinear
operators H, D, and S are then formally linearized using a Taylor series expansion about the explicit
time level

(A-3)

ATl 4+ 0(at2)

+1 3G(e)|n
G(¢)n G(o)M + P

Equation (A-2) may then be expressed at each grid point in the solution domain as a matrix equation
of the form

(A + OAtL) aeM*l = At [D(eM) + S(eM) ], (A-4)
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where
3H 3s (A-3)
n o) e [
3¢ ae
and
(A-6)
dD|n
L= -f5

As a result, the nonlinear, coupled system of PDEs given by Eq. (A-1) has been reduced to a block IxI
coupled, linear system of temporal difference equations (Eq. A-4) which, upon spatial differencing,
need only be solved once per time step to obtain a transient solution. Additionally, since the
linearization error is at worst of the same order as the temporal discretization error, the linearization
is not expected to introduce significant inaccuracies.

Application of Eq. (A-4) to second order PDEs in one space dimension, using standard three-point
spatial difference approximations requires the solution of one block Ix! tridiagonal system per time
step. Such a system can be solved efficiently using standard block-tridiagonal elimination procedures.

Since in the present application only steady state solutions are of interest, the time step may be
viewed as a relaxation parameter, and as the solution approaches convergence the time step may be
allowed to become very large without consideration of transient accuracy. As the time step goes to
infinity the LBI scheme in one dimension reduces to Newtons method. Thus, as applied here, the
LBI scheme may be thought of as a relaxed Newton method.

We note, however, that Poisson’s equation, the equation defining Q and the equation relating N, N,
and xf do not contain time derivatives. Since Poisson’s equation 1s linear there is no potential
problem there. However, the nonlinearities in the Q and x¢ equations do represent possible problem
sources in the numerical scheme. Numerical experiments revealed no problem with the Q equation,
however in order to obtain converged solutions under arbitrary bias conditions it was necessary to
recast Egs. (42a,b) as

(A-T)
—— = Xg¢ - f(n/Nc)

where f(n/Nc) represent the appropriate function depending on the magnitude of x¢. This gives rise
to an exponential decay of the carrier density to its steady state value and provides the necessary
stabtlity to the scheme.

With regard to spatial difference approximation standard three noint central differences were applied
in a manner which assured conservation of current and momentum.
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Appendix B - Moments of the Density Matrix

The motivation for the equations discussed in the text finds further justification in
examining the moments of the density matrix. We start the discussion from the single
electron Hamiltonian:
p2

H=°-+E (q) + Hge (B-1)
The eigenstates of the single particle Hamiltonian in the absence of scattering form the
basis for calculating the ensemble averages of such ?uanties as the mean density, the mean
current, etc. For example, the time rate of change of the ensemble averaged density

operator:

P(o) = N(dg) = |gg > <dgo| (B-2)
is:

a 1 3 (1) _ c .

3t <<N(ggp)>> + - E <<p >> = <<[N(4ggy) ,Hgc)>>/1%

3 (B-3)
- 51<:<N(q°)>>-| collision

where

p(1) = —[plqo><qo| + lqo><qo|p] (B-4)

is a symmetrized momentum density operator. The above operators have simple expressions
in the energy representation:

<<N(dg)>> = T ,pmms¥m’ (Go)¥n(do) = N(do) (B-5)
If density matrix is diagonalized

<<N(do)>> = I pum¥m (do) ¥ (do) (B~6)
Recalling the definition of a trace of a matrix

Trp = 1 (B-7)

for a pure state ppyy = /N, and:

<<N(qo) >> = ¥pltay)¥n(de) (B-8)

Also
*
(1) = ﬁ__] r[- A dim *] -

<<P >> {2i Z\m’pmm 740 Vo + dg Yms (B-9)

If density matrix is diagonalized
A auk AUm_ 4
<<p(‘)>> = —2—-:[ 2“1 pmm[- a—qlgqlm + Ewm ] (B‘lO)
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For a pure state

A v, * v
<<p(1)>> = EI[- 5§§Wm + 56§W;]

Without any loss of generality, let
¥ = Apexp(iSy/#)

where Ap, and Sy, are real functions of position and time, and where ¥ is a solution to

Schrodinger’s equation

- [B2
HY = [Zm + E(q)]

Now in a diagonal energy representation
<< Ng >> =Y pum ¥ ¥

= Z pmmAﬁ = Z Pmm nm(qo) = n(qo)

Also
*
(1)s> = 2 [.. 8y, ¥y *]
<<Pit)>> = —= Y Pmm aqo‘l'm + aqo‘pm
= 295
= Z pmmAmaqo - Z pmmnm(qo)pm(qo)
where
a8
P ) = O
m (9o 34,
With

<<P(1)>> = P(qp)

(B-11)

(B-12)

(B-13)

(B-14)

(B-15a)

(B-15b)

(B-16)

(B-17)

identified as a momentum density, and with the following definitions of a drift velocity and

drift momentum:
vq = P(qo)/mn(qo)
Pq = MVg

we obtain the familiar continuity equation:

dn(dg) ,9n(do)Va  _ 6n(qQ)J
it ddg at collision

Consider next the time rate of change of the ensemble averaged momentum density

operator:
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(B-18a)
(B-18b)

(B-19)




a 1 4
Z_<«<p(1)s> + = T _<c<pl(2)>>
at a

° fo)

- W<<P(°)>> + <<{P{(1) H  ]>>/in

o
(B-20)
= - %§g<<P(°)>> + §E<<P(1)>>J o1l
where
p(2) = [5 ] [p2 |Go><qol + 2P| do><dp|P? + |9o><qo] p"’] (B-21)
is the symmetrized energy density operator. In the energy representation
*
2 1 av * 3%y
(2 ) = .h__ a_.m.i el 11} ] -
<<P >> [Zi mem,[—__m_wm zaqo 390 + Wm’aqg (B-22)
For a diagonal density matrix
2 azw* BW* av * 32y
(2)5> = [R_ 9V gy 59%%m 9%¥m 9 ¥y ] -
<<P >> [Zi] mem[aqg ¥ Zaqo 2ag + ¥ aqg (B-23)
For a pure state
2y > avy v * g2y
<<p(2)>> = [2f] [2—E§¢m -2—R I 4+ yn E—Tm] (B-24)
21 aq ddg 9dg agg
In terms of the amplitude and phase, in a diagonal representation
84Sy, 2 f? a2a AL 2
(2)>> = 35p)"p2 - BT [___m LIS -
<<P >> = Ypmm [aqo] AZ 3 Yomm FrE 390 (B-25)
Now
a2A [aA ]?] a?
2 - = AZ AnA
[ m 3 qé 3 qO m F) 3 ( m)
(B-26)
2
= N 3 (£nng)
Now
zpmm pm(Qo) nm(qo) = zpmm(pm-pd+pd)2nm (B-27)
Thus
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2
<< p(2) >> = n(ds)Pa + LPmmPm(Pn—Pg) >

. (B-28)
h* d“
Y 2P mmMm gagz(lnnm)
Defining a stress tensor, in one dimension as
Q= m-lzpmm(pm"pd)z (B-29)
equation 2-28 becomes
(2) _ 2 ﬁz 32
<< P >> = npg + md - . YPmm P :a—q—é (2nnp) (B-30)

In one dimension, the stress tensor, with the distribution function representing a Maxwellian, is
equal to

0 = nkTe (B-31)
where Tp is an electron temperature. Thus the momentum balance equation has the form

dnpg , 3npgvg _

at 3dg
- iE_. - J + fii.z n i (lnn ) + 2_ <<P(1)>> (B—32)
3dy 44g 4m 3qg, P mm Maq2 m at Jcoll
For the case when derivatives and summation signs may be interchanged:
n? 3 a2 72 a (a2
i E;mem anqé(Jlrmm) = 4—m2pmm8§;[a—qg(lnnm)] (B-33)
Straight forward manipulation shows that
72 3 a2 52 a3 1 32 (ng) %
— — — (4nn = — I B-34
am mem aqo[nm Bqé (4n m)] 2m Xpmm 3d, (nm)% aqé ( )
and the momentum balance equation reads (after further manipulation)
a anpgv d a
2 + 22Pg¥q . . v+ -
at Pd T g, L PmmPm 5£V+Qm) - 350
(B-35)
+ 3 <<p(1) >>J
at coll
where )
2 1 a7 3
Op = - (ny) (B-36)

2m (np)? 392
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behaves as a density dependent potential

We next consider the energy balance equation:

9 < p(2) >> + 1.9 << p(3) >> = 2ﬁ <<p(1) >>
at m dqgg, ddg

+ <<P(2) JHg >>/ni (B=37)
where
1 3
p(3) = [5] [p3 |do><do] + 3P|ao><do|P? + 3P7|do><qp|p + |qo><qo|p3]
(B~38)
In the energy representation
R )3 a3y a2w* av aw* a2y asw*
<p(3)>>={— ¥ "m 4 mm _ 3%%m m - m
<RI [21] memr['l'm a3y | 343 4o | ado 997, 6q’o"‘]
(B-39)

In the diagonal representation, and expressing the results in terms of the amplitude and
phase

2 a2 as 2 3
<<p(3)>> = nopé+3mpd0+U-%i mem[n innm]__m - f_zpmmnmgagm](8—40)
o o

where
U = YpmmPm(Pn-Pa) * (B-41)

Equation (B-37) with < <P(3) > > given by equation (B-40) are to be inserted into the
energy balance equation for solution.
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Appendix C - Alternative Theoretical Formulation

There has been previous attempts to derive a close self-consistent set of moment equations
of the Liouville equation [25,26]

irdp (x,x’i;t)/8t = [H,p(x,x";t)] (c=b

where p is the full density matrix and H is the Hamiltorian of the system (the gas of electrons
flowing from both contact in our case). In their derivation, Ploszojczak and Rhoades-Brown
[25] use the Wigner representation [20] as a tool to approximate the Liouville equation for
the time evolution of the density matrix. In their approach, the off diagonal elements of the
density matrix are expanded in powers of deviations from the mean momentum value defined
as follows

_ 1 _ (Cc-2)
<(p-p)M>=pgq Jf(x,p) (p-p) "'dp

where p is defined as
— (C-3)
PoP =Jf(x,p)pdp

and corresponds to the time-dependent momentum-distribution function p(x,t).

p o is the diagonal one-body density matrix and f(x,p) is the one-body Wigner distribution
function. Using their approximation for the off-diagonal elements of the density matrix,
Ploszajczak and Rhoades-Brown derive the following set of moment equations

« Continuity equation

?.__ -1 _8__( —) (C-4)
at Po m ax'PoP
+ Momentum balance equation
(C-5)
d - J 1 a -
. = -2 - 2 -p)2
7t P axHCL Mg 3% [Po < (P-pP)“>]
« Energy balance equation
gy quati (C-6)
pomr < (P-P)2> = -p—(po<(P-P)2>] + p < (p-p)2 > Lo
Oat —I-nax o —!1.'1‘ Ix

ap 2
-— _< -
ipo Py (p-p) <>




2
where H.p, = [_p__] + Vofge(x) and the constraining equation

2m

(C-7)

| [+1)

- 2 63V -
[Po<(P-pP)2>] = %5 —5§§ff po [<(p-p)2>)~1

gl
Y

X

This last equation is an expression of the spatial properties of p , < (p- 32>
in terms of the higher-order derivatives of Vegr. The potential Q/ef :S

includes the conduction band discontinuities and the Hartree contribution, i.e., the
electrostatic potential solution of Poisson’s equation.

The formalism above doesn’t include any relaxation contribution on the right hand side of
egs (C-5) and (C-6). While using the constraining condition (C-7) into eq. (C-5), the
momentum balance equation can be rewritten.
(C-8)
_8Hgy, _ #2 33Vees
ax 12AP 3X3

| @
el
!

where (C-9)

AP = < (p-p)2>

This equation should be compared with the one obtained in our formalism
equation (34), after manipulation with the continuity equation, while neglecting the 1/7
relaxation term and assuming a constant effective-mass throughout the structure. In that
case, equation (34) becomes
(c-10)
- ,

a d
- - LB v - o - 5o- 5% (POKT SL(Ep~Ec) /kgT))

@@
s

Where G represents the contribution of mixed states - a feature missing from the

formalism of equations C-1 thru C-10. In the limit where #-0, both egs. (C-8) and (C-10)
agree with the momentum-balance equation of the Boltzman equation. The difference
between eqs. (C—%) and (C-10) comes basically from the quantum correction (term
proportional to #< in both equations). Further work is needed to understand the relationship
between the two approximations.

The full derivation of the energy-balance equation using our formalism and its
implementation in our numerical algorithm will be undertaken in the future. We also intend
{u cumpaie the resuiws of our approach to that taken by Stroscio [26] which nobody has so far
tried to solve numerically to the best of our knowledge.
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