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Final Report

SYSTEM STRUCTURE FOR FAULT-TOLERANT PROCESSES

IN DISTRIBUTED SYSTEMS

Summary

This is the final technical report on the RADC Post-Doctoral Program Contract F30602-81-C-0205,

Task # B-6-3508 titled System Architecture for Fault-Tolerant Processes in Distributed Systems, funded

through the University of Kansas Center for Research. The primary thrust of this project has been on the

development of system architectures and protocols for building fault-tolerant distributed systems.

During the course of this effort we addressed various aspects related to building fault-tolerant distri-

buted systems. The four basic functions required for building a fault-tolerant system are: error detection,

fault diagnosis, fault isolation/reconfiguration, and error recovery/restart. Error detection involves detect-

ing those states of the computation that do not satisfy the specifications. Fault-diagnosis algorithms identify

the malfunctioning components in the system. Reconfiguration techniques isolate the faulty components

from the rest of the system and possibly replace them with "healthy" units. Finally, the error recovery tech-

niques bring the system back to some consistent state before restarting the operations again. In some sys-

tems a sufficient level of redundancy is provided to mask the effects of malfunctioning components. Such

systems continue to function correctly even in the presence of some limited number of faulty components.

In such systems one does not have to execute any fault diagnosis or error recovery algorithms given that

there exist only some limited number of faulty components in the system. Such redundancy is called mask-

ing redundancy.

In this research effort we studied and investigated algorithms and protocols in four different areas:

fault diagnosis, error recovery in systems with replication of processes or data, error recovery based on

self-stabilization, and use of masking redundancy in replicated systems using agreement protocols.

This final report is a collection of six technical reports presenting the results of the research under-

taken during the course of this contract. These reports are listed below:
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(1) Construction of Resilient Actions Using Replication and Checkpointing in Distributed Systems, (A.

Tripathi, S. Azadegan, and S. Ranka)

(2) Constant Expected Time Randomized Byzantine Agreement Protocol without Shared Secrets and

Cryptography, (S. Ranka, A. Tripathi, and S. Azadegan)

(3) A Protocol for Self-Stabilization in Binary Trees, (S. Dong and A. Tripathi)

(4) An Improved Algorithm for Termination Detection in Asynchronous Distributed Computations, (A.

Tripathi and S. Dong)

(5) Fault Diagnosis in Distributed Systems -- Interim Report, (V. Raghavan, S. Dong, and A. Tripathi)

(6) Towards an Improved Diagnosability Algorithm, (V. Raghavan and A. Tripathi)

The first report describes a system architecture for building resilient processes using replication and check-

pointing. It describes protocols for managing a replicated object and the processes executing the actions

invoked on the object. In our design one of the copies of a replicated object acts as the primary copy for

executing a requested action. A process is created to execute a requested action, and periodically the exe-

cution state of the process is checkpointed with the other copies of the object, which act as the backup

copies. In our design we have adopted an object-oriented view of distributed computing. Nevertheless, the

protocols developed here are equally applicable to conventional process-oriented models of computing. In

designing these protocols we first build a facility to detect if a site in the system is up or down. The proto-

cols for checkpointing and recovery make use of this information. We assume fail-stop nature of site

failures. The process replication protocols function correctly even in the presence of network partitioning,

in which case every partition that has at least one available copy of the object will continue to function

correctly. We have not addressed the problems related to merging or reconciling the copies when a parti-

tion is repaired.

The second report presents an agreement protocol that provides a consistent view of the computation

to each correctly functioning copy of a replicated process. This protocol provides a mechanism to imple-

ment masking redundancy in the system. The algorithm developed here is probabilistic and does not

require any shared secrets or cryptography.
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The third report presents a protocol for self-stabilization in binary trees. The term self-stabilization

means that if at any time the system is in some inconsistent state, then the normal execution of each process

eventually brings the system back to some consistent state. Such systems do not require any special error

handling protocols. The protocols for normal operations are sufficient to guarantee recovery from an

erroneous state.

The fourth report presents a protocol for detecting the termination of a set of cooperating communi-

cating processes. The interprocess communication is based on asynchronous message passing.

The last two reports address the problems related to fault-diagnosis in interconnected systems. The

first of these two reports presents a survey of various fault-diagnosis algorithms based on the model pro-

posed by Preparata, Metze, and Chien (PMC model). The last report presents some of the new results that

we have obtained in the direction of designing more efficient fault-diagnosis algorithms.
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Construction of Resilient Actions in Distributed Systems using
Replication and Checkpointing

Anand Tripathi, Shiva Azadegan and Sanjay Ranka
Department of Computer Science

University of Minnesota
Minneapolis, MN 55455

1. Introduction

This report addresses the problem of building resilient actions and processes by replicating them to

have a higher probability of surviving site crashes and completing successfully as compared to their non-

replicated implementations. The ability of a system to continue its operations in spite of failures of some of

its components is called the resiliency of the system. In this report we present a set of protocols for con-

structing such resilient operations in object-oriented environments by replicating the objects at multiple

sites in a distributed system. We have used an object-oriented model of distributed computing; neverthe-

less, these protocols are equally applicable to the conventional, process-oriented, view of computation.

The protocols described in this report facilitate checkpointing during executions of actions of a replicated

object and restarting of an action at a different copy of the object when its primary execution copy crashes.

The primary contributions of this report are an interrupt-driven structure of the error recovery proto-

cols in replication management and a system architecture which primarily uses the unreliable datagramn

facilities for normal operations and makes limited use of reliable message transmission protocols for

transmitting exception conditions in the network during error recovery. We also present a novel protocol

for status monitoring in the system using unreliable datagrams. One of the features of our design is that we

do not require sites to have access to a secondary storage for recovery. This makes it ideal for applications

where providing secondary storage is infeasible. Nevertheless, availability of secondary storage at certain

sites will enhance the reliability of the system.

We assume that the distributed system environment underlying our protocols consists of fail-stop

processors communicating across a communication network. The fail-stop assumption implies that a mal-

functioning processor simply fails by crashing and does not behave maliciously or act as an adversary to

This work was supported by Rome Air Development Center under the Post-Doctoral Fellowship Program (Grant No. F-30602-
8 1-C-0205).
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the system. Thus the need of any Byzantine Agreement protocol [Ill is eliminated in our design. The com-

munication network provides a datagram facility which transports messages on the "best effort" basis, i.e.,

the delivery of messages is not guaranteed. We do not require the host sites to have access to secondary

storage devices. The communication network is assumed to introduce delivery delays or loss of messages.

In order to keep the primary focus of this report on the management of primary/secondary copies and

recovery when the primary copy fails, we will assume that the communication network never gets parti-

tioned. In the absence of this assumption we will have to incorporate some network partition repair proto-

cols [6] in our designs.

In the past several systems have been designed to support replication of objects or processes. Some

of the most noteworthy of these designs are Tandem's Guardian operating system [1], ISIS [31, FTMP [9]

and SIFT [131. We have adopted several concepts from the designs of ISIS and Tandem's Guardian

operating system. SIFT supports replication of processes for real-time applications and recovery from arbi-

trary failures; it uses Byzantine agreement protocols for inter-process communication between the repli-

cated copies. ISIS uses a variety of reliable broadcast primitives [4] for replication managemenL In Guar-

dian replication is limited to pairs only. We assume a reliable broadcas: protocol as described in f5] only

for communicating signals (exception conditions) during the recovery phases. Thus our design uses the

more expensive reliable broadcast primitives only during the recovery phases for communicating signals.

In an object oriented environment each object comprising the system encapsulates some local data

and a set of actions to manipulate the data. We might require that some of these objects, which might be of

critical importance in the reliability and availability of the system, have higher resilience to error than the

other objects. This can be achieved by replication of these objects at different sites. We use the concept of

a k -resilient object [3], which is guaranteed to remain operational up to k site failures. We use the con-

cept of k-resiliency in the context of resilient actions. In this report, we describe a scheme for establishing

distributed checkpoints and recovery from site crashes that can be used to implement k--resilient actions.

The next section describes an abstract view of resilient actions (and objects) in our system. Section 3

outlines the requirement for achieving this functionality in replicated environments. Section 4 presents the

functional layers in our design. It also outlines the important assumptions in our design. Section 6

describes the protocols for normal primary/secondary copy operation. Section 7 contains the protocols for
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error recovery and the arguments for their correctness.

2. An Abstract View of Resilient Objects and Actions

Before discussing the issues involved in replicating an object and its actions, this section describes

the logical view of a resilient object and its associated actions. Our design achieves this abstract view of an

object by replicating it. Each object in an object-oriented environment encapsulates some data and a set of

actions. To perform any execution on a particular object, the object is called to execute one of its actions. A

result is returned after the action is completed. This action may be viewed as a sequence of synchronous

operations (a a...,a,). Each operation is a computation on one of the following types of data: (1) local

data of the object, (2) temporary data of the object, (3) d-a of another object (in case of nested action).

We will use the term "environment of an action" to refer to the temporary data maintained by the action

and the state variables of the object to which that action belongs.

In the abstract view, each object has access to some k-resilient storage' which survives crashes of up

AAction

EOBJECT A

Figure 1: Abstract view of Resilient Objects
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to k different processors or storage units in the system. This k-resilient storage is used for saving check-

points during execution of an action. The following discussion presents this abstract view of a resilient

object using an example. During normal operations, depicted in Figure 1, when an object A is called to

perform Action 1, it will do a set of operations (I to 6 in this example). In performing this invocation it will

call object B and C to perform some actions. If the invocation is successfully executed, then the object will

send some result to the object it was called from, i.e. client object. However in case of failure, object A

may temporarily halt its execution. When the site comes up, based on its log information maintained on the

k-resilient storage, it may restart its execution from some previous operation i.e. it may re-execute some

operations. In order to cope with the consistency problems which may arise due to the re-execution of

operations, we need that in case of failure, any action which may be re-executed on an object must be

idempotent, so that when the same action is performed on an object it returns the same value,2 without

changing its local data. This can be achieved in two ways. The first way to achieve this is to undo all

actions performed since the last execution of the action, and then execute the action again. Thus perform-

ing the action again returns the same value and has the same effects on the local data as before. The second

way is to retain the results of the action performed on the object long enough, so that if a previously exe-

cuted actions on the object is asked to be performed again, the retained value can be sent to the client

object. This will retain the idempotency.

Let us now consider a recursive call, as shown in Figure 2, on object A. Object A executes an action

which results in a chain of i..vocations on other objects( the length of which is nil in case A calls itself

directly), the last of which calls A again. In such a case, the state of local data of object A, which may be

modified, should be the state in which last call was made from object A. This state can be easily identified

by looking at the call-id of the recursive call. In our design, a call-id for any action invoked by an object is

obtained by concatenating the call-id of the action this object was invoked with, its object UID, action-id

and operation number. The call-id for the top-most level action is a globally unique identifier. In this

example object A calls another object B in operation 4 of Action I and object B calls object C and object

C in turn calls object A. Now the state of object A which this invocation of operation on A by C should see

Such a storage can be implemented using either some disk storage devices or the volatile storage of some other sites in the
system.

2 One shouid note here that such a model will not applicable in systems where the results of some invecations are time-

dependent.
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is the state in which object A was left when the operation 4 was performed.

In the above examples we described some characteristics of an action performed on an object. We

want these characteristics be preserved when one or more of the objects is replicated, i.e. whether an

object, on which an action is invoked, is replicated or non-replicated is transparent to the client object. In

the later sections, we describe a scheme on how to replicate objects and their actions preserving the above

required characteristics.

3. Replicated Environment

In a replicated distributed environment an object can continue execution of its actions despite site

failures. For achieving this objective, information about the execution must be distributed among different

processes as the execution proceeds so that another copy of the process, at another site, can take over and

continue the operation when the executing copy fails. Moreover it is necessary that copies of an object be

consistent in performing further actions. This requirement is important for a consistent behavior of all

copies as a single object.

In a replicated object-oriented environment an action is performed, as in the non-replicated case, by

invoking an action on a replicated object. In fact, it is totally transparent to the invoker that the called

object is replicated. These actions are guaranteed to be executed atomically. The operating system under-

lying our design supports locating objects (or some of the copies of a replicated object) and delivering the

invocation messages to them. In addition, these objects can be accessed concurrently, which requires some

concurrency control mechanism in order to preserve the object consistency. Many such mechanism have

, Action Action Action

OBJECTA OBJECT B OBJECT C

I'- Loa [t -4 oal Data I  / _4 L_5
Dat 46 6 oca Dta

Figure 2: Recursive Call
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already been developed [21 and we wi l not discuss any of these here. Our scheme is orthogonal to any

specific concurrency control mechanism.

When an action on an object is invoked, we must determine which copies of the object will start the

execution of the action. We refer to such copies as the primary copies for that invocation. We can either

have multiple copies of an object executing the same action concurrently or only a single copy executing

the action. We chose to have a single copy executing as we believe that multiple concurrent executions of

an action is a wastage of system resources and it does not increase the availability of the system in a very

significant way. In some situations one might require to execute more than one copy concurrently. In the

scheme which we describe here no consistency requirement will be violated even if we allow simultaneous

execution of multiple copies. Since we chose to have a single copy executing, we must determine which

copy should start the operation. There are two possible cases: either both the invoker and invoked object

have copies on the same site or they have copies on different sites. In the former case, it is logical to choose

the site for the primary copy as the one that hosts both objects. In the latter case, the site can be chosen

either based on some criterion such as of CPU utilization of the site or physical distance of the site to the

invoker, etc., or the site can be chosen statically by having a default primary copy for each action. We

chose to have a default primary copy, which initiates the execution, when both the invoker and invoked

objects do not have copies on the same site. Once the primary copy of an action starts the execution, it

periodically sends synchronous and asynchronous checkpoint information to all secondary copies. If the

primary copy of an action fails, then the recovery protocol is initiated to elect a new primary copy.

4. System Architecture for Replication Management and Recovery

An abstract view of the system architecture is shown in Figure 3. The top-most layer represents the

processes executing the currently on-going actions of a replicated object by its copies at different sites.

Such a process may be either in the normal computation (i.e., executing the action as the primary or secon-

dary copy) or in the recovery phase (i.e. executing election protocol). The primary focus of this report is

on the protocols executed by these processes. In our model each site has only one copy of the object.

Underlying these processes, corresponding to each copy of the replicated object, there is an object

manager process which is responsible for scheduling these processes, enforcing necessary concurrency
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control protocois, and interrupting these processes when some exception conditions (signals) arise.

Corresponding to every executing action at a copy of a replicated object, there is a process which executes

that action. We refer to this process as the primary/secondary copy of that action. The object manager also

coordinates with the object managers at other sites to maintain the current status of the replication

configuration, i.e. the status of the other copies as up or down. For this purpose each object manager

periodically executes the status monitoring protocol in which it broadcasts status information to other

object managers which are participating in the same action; we will denote this period by T. In this proto-

col we also assume that the clocks in the network are synchronized using some network clock synchroni-

zation algorithm[O]. The following properties of this status monitoring protocol, the details of which are

given in the Appendix, are of interest to us in this design. (1) If a copy crashes during the interval

[kT, (k+1)T], then other up copies will detect this failure by the time (k+3)T. (2) If a copy restarts during

the interval [kT, (k +I)T], then with a very high probability3 all other up copies will know about this restart

by the lime (k+3)T. (3) If at time kT a copy incorrectly assumes some other copy to be down, then there

is very high probability that this incorrect view will get corrected by time (k+l)T.

With every object manager some configuration related data is maintained. This includes list of the

unique identifiers (UD1s) of the other copies, list of copies which are currently available, default primary

copy, the current operation being performed and their primary copies (Figure 4). Moreover, for every repli-

cated object there is a static ordering of copies, called the election manager list (EMlist), which is used to

designate one of the copies as an election manager to elect a new primary copy for an on-going invocation,

in case of primary copy failure. The election manager elects one of the available copies, and hopefully the

one with the latest checkpoint, as the new primary copy.

Our protocols are interrupt-driven in the sense that the execution of a statement during the normal

computation phase or during the recovery phase may get interrupted if any of the specified exception con-

ditions arises. An exception condition is enabled if an exception handler is associated with any statement

or any of its outer blocks. Reception of a signal, for an enabled exception condition, at an object may

cause interruption of some of its currently executing actions. we have referred to signals, such as

1This probability is a function of the reliability of the underlying datagrams communication network.
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Site A Site B

Checkpoint Messages
EXECUTION PROTOCOL (using datagrams) EXECUTION PROTOCOL
Execution of Object's Actions Execution of Object's Actions
(Primary/Secondary copies) Election signals (Primary/Secondary copies)

and Recovery Protocols ElectionCall, ElectionTerminate and Recovery Protocols

ElectionAbort
sipa signal

PrinuiyCopy_Pfatu, EM tailure 4 PrinryopyFaiu. EMFailure

OBJECT MANAGEMENT OBJECT MANAGEMENT
Replication Configuration Replication Configuration

Status Monitoring Protocol, Status Monitoring Protocol,
Concurrency Control Protocols, Status Monitoring Messages Concurrency Control Protocols,

Interruption of Actions and Request Messages Interruption of Actions and
Management of Signals, Management of Signals,
Copy restart protocol, Copy restart protocol,

syncsend syncsend

RELIABLE BROADCAST Signals RELIABLE BROADCAST
for communicating signals for communicating signals

DATAGRAMS Messages DATAGRAMS
Unreliable communication Unreliable communication

Figure 3: System Layers of Abstraction

ElectionCall, ElectionTermination, ElectionAbort, as global signals since they are sent from one site to

another site: in other words they are sent through the reliable broadcast system. Local signals, such as

EMFailure and PrimaryCopyFailure, are those which are generated by the object manager as the result

of detecting some failures. The local signals are sent only to the local processes of the object. In contrast

to signals, the arrival of a message does not cause any interrupt at the destination object.

Whenever an object manager detects (by executing status monitoring protocol), that some other copy

x has gone down, it updates its configuration data. It also checks whether x had been the primary copy of

some on-going actions, in which case it sends a signal called PrimaryCopyFailure to the locai processes

executing those actions as secondary copies. This signal will cause the secondary copies to execute the

recovery protocol (election protocol). Similarly, if x was the election manager copy for some action, an
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exception condition called EMFailure is signaled to the local process, corresponding to that action, exe-

cuting the recovery protocol. When an election manager copy starts election, it signals an exception con-

dition called ElectionCall to interrupt all other copies to participate in the election. This signal causes all

processes (at those copies) executing as secondary copies to participate in electing a new primary copy.

Similarly, the successful completion of an election is signaled as a condition called Election Terminate.

An unsuccessful completion of the election is signaled using ElectionAbort.

The underlying communication system provides an unreliable, asynchronous message passing primi-

tive send(msg) to destination which sends the message msg to the object (or objects) specified in the desti-

nation field. Also it provides a primitive receive(msg) from source for receiving a message msg from the

object (or objects) specified in the source field. In this model receive is a blocking operation, i.e. a call to

this function returns if and only if expected message(s) is(are) received, and in such a case this function

returns true. The source and destination are specified as the unique identifiers (UIDs) of the objects. In

case of replicated objects, a specific copy is specified by extending the unique identifier with the ID of the

host site of that copy, called ExtendedObjectUID, (assuming that only one copy resides at any host site).

The send primitive is implemented using the datagram facility which does not guarantee the delivery of a

/* List of the copies of the replicated object, and their status */
Configuration : list of (copy: ExtendedObject_UID;

status: (up, down));

avail-copies : list of copies in the Configuration list with up status;

/* Static list of copies which can act as election managers */
EMList: list of ObjectUID; /* object's copies */

/* Current calls being executed on the object */
CurrentCallTable : list of (Call id : String;

Action id : Integer;
Initial version: Memory_address;
Latest-chkpnt : Integer;
Currentversion: Memoryaddress;
PrimaryCopy : ExtendedObjectUID)

/* Retained values of the different calls performed on the object */
Retained-values : list of (Callid : String;

Response: Messagetype
)

Figure 4: Data Structures Maintained with an Object
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message.

Global exception conditions (signals) are communicated by a copy of the replicated object to

another copy (or copies) using the primitive signal(condition) to destination which raises the specified

exception condition at the objects specified by the destination field. It is possible to pass some parameters

to the destination object when signaling an exception condition. We assume here that the signals are com-

municated using the reliable broadcast protocol described in [5]. This broadcast protocol has the following

properties: (1) All objects in the destination list receive the signal. (2) The order in which signals are sent

by a sender is preserved at the receivers. (3) Signals sent by different senders are received by all common

receivers in the same order. We assume that the reliable broadcast protocol tries to persistently deliver sig-

nals to only those copies which remain up during the execution of the broadcast protocol and ignores any

copy which goes down. For the correctness of our recovery protocols we require that the status broadcast

period T be selected such that all signals are guaranteed to be delivered to all the up copies within 2T.

In this report we do not discuss the copy restart protocol which is executed by the object managers

when a failed copy tries to rejoin the configuration. To ensure the correctness of the election protocol in

our design, we assume that the restart protocol has the property that it delays inclusion of a restarting copy

in the configuration if a recovery (election) is currently on-going for some action. Also, if the permission

to join the configuration is signaled to a restarting copy during the interval [kT,(k+l)T], then the latest by

the time (k +2)T this copy will start sending its status messages to all other copies. Which means that with

very high probability all other copies will include this copy in their avail-list by time (k+4)T. A new (or

restarted) copy does not act as an intermediary to include other new copies in the configuration during this

4T period.

5. Notation for Protocol Descriptions

All protocols are presented in a Pascal-like notation. Most of the constructs have conventional

meaning. The loop...end construct represents iteration of the enclosing sequence of statements; the itera-

tion is terminated with the execution of an exit statement. We also use an exception handling model with

the statements to provide an interrupt driven execution of the protocols.
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We use the termination model of exception handling[12] to describe the protocols. Simil.a models

have been used in several programming languages such as Ada[81, Gypsy[7], and CLU[12]. In our model

an exception handling block can be associated with any program statement for dealing with anticipated

exception conditions. The exception handling block lists the exception conditions and the actions (called

exception handlers) associated with them. If any of the listed exception conditions arise during the execu-

tion of its associated statement, the corresponding exception handler is executed and the execution of this

handler terminates the execution of that statement. For example, in the program fragment shown below, a

timeout condition will terminate the computation enclosed within the begin..end block and execute the

actions associated with the timeout condition. The settimer(timeou_period) construct is used to set the

timer with the desired timeout value; this will cause raising of the timeout exception after the expiration of

the specified units of time.

set time(100);
begin

SI; S2;.... ; Sn;
end when

CI: X1;
C2: X2;
C3: X3;
timeout: /* execute the timeout action */

end;
S;

In the above example the execution of the sequence of statements S1;S2;...;Sn will be interrupted and ter-

minated if any of the exception conditions C1, C2, C3 or timeout is signaled. If more than one conditions

are signaled, then the exception handler corresponding to only one of the signaled conditions will be

selected and executed. This selection is non-deterministic. After executing the exception handler, the exe-

cution will proceed with the next following statement, which is S in the above example. If none of the

specified exception conditions arise during the execution of the sequence S 1; ..... ;Sn, then all exception

handlers are ignored and the execution proceeds with the next statement.

We also use the when...end construct to wait concurrently on some number of exception conditions

or message reception events. The execution of such a statement completes when any of the specified con-

dition arises; in such an event the corresponding exception handler is executed. If more than one conditions

arise concurrently, then one of them is selected non-deterministically and the corresponding exception
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handler (which can be a null statement) is executed. For example:

when
Cl: Xl; /* C1 and C2 are some exception conditions */
C2: X2;
receive (msg) from a: X3;
timeout;

end;

The execution of the above statement will complete if any of the conditions C 1, C2 or timeout is raised, or

a message is received from a, and the corresponding exception handler is executed. In this example, in

case of timeout, no action is taken for exception handling. In case of nested blocks, the exception condi-

tions defined with the outer blocks always have priority over the ones associated with the enclosing blocks.

Sometimes it is required that all external exception handling (i.e., defined with the outer blocks) be

masked and kept pending during the execution some sequence of statements. As a notation we enclose

such a sequence of statements within square brackets "[" and "]". This only means that any exception han-

dling associated with the outer blocks will not be effective during the execution of this sequence. If any of

the statements in this sequence have exception handling associated with them, then thofe exception

handlers will still be enabled and executed when those conditions arise. (This makes the execution of the

sequence atomic with respect to outer exception conditions.)

Using the unreliable communication primitives described earlier we implement a new primitive

sync_send as described in Figure 5. The sync-send primitive persistently tries to send a message to each of

the destination objects until a response is received from all the objects which appear to be up; it ignores

any destination objects which goes down during the broadcast (this sync-send primitive should not be con-

fused with the reliable broadcast protocol assumed for sending signals). When sync send is invoked, a

procedure can be passed to it through the formal parameter ackhandler to handle the response messages

from the destination objects.

6. Replicaion Management Protocol

This section describes the Execution Protocol, shown in Figure 6, executed by each of the replicated

copies. A copy can function as a primary copy ( executing the protocol shown in Figure 7) or as a secon-

dary copy (executing the protocol shown in Figure 8) and this role can change dynamicaly due to the
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Procedure syncsend(msg: message; dest: list of ObjectUID, ackhandler)
begin

All := [dest ];
loop

if All = 4 then exit else;
send(msg) to All:
set timer(timeout_period);
loop

if All = 0 then exit;
when

receive( ack ) from some a in All:
All := All -[a];
ackhandler(ack, a);

down(a) for some a in All: All All - a;
end /* of when *1

end /* of loop */
when

timeout:;
end /* of when */

end; /* of loop */
end; /* of sync_send */

Figure 5: Synchronous Send

failure and recovery as determined by the execution protocol described below. The description of the pro-

tocol is presented here in terms of its four major components -- protocols for primary copy, secondary

copy, election manager, and election participant. When an action is invoked, after the execution of

appropriate concurrency control protocols and designation of the primary copy ,the action is scheduled for

execution. All the up copies of the object execute the Execution Protocol described in Figure 6. The

invoked action is passed as a parameter to this procedure. A copy can determine whether it is the primary

copy or a secondary copy for the action by executing the function IAMPRIMARY (A). It then executes

the appropriate protocol as described below. One must note here that a copy can be concurrently acting

both as the primary copy for some invocations and as the secondary copy for the others. This feature can be

effectively used in incorporating various load balancing protocols in our design. The execution of the pri-

mary or secondary copy protocol can get interrupted if the local signals PrimaryCopyFailure or

ElectionCall are raised. Under these conditions, the exception handler for the condition is executed which

essentially forces each copy to participate in the Election Protocol to elect the new primary copy. It is pos-

sible for the execution of the Election Protocol at a copy to get interrupted if any of the conditions

EM_failure or Election Terminate is raised. After such an interruption and the execution of
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corresponding exception handler, the election protocol continues until the new primary copy is known.

6.1. Primary/Secondary Copy Execution

When an object starts executing an action, the primary copy for that action first performs a synchro-

nous checkpoint with the secondary copies. This informs all other (secondary) copies that a call was made

with a particular unique number for performing an action. Moreover all the copies should be in the same

state to perform that action, so appropriate checkpointing is also required.

After performing the above steps, the primary copy executes action in the same fashion as an unre-

plicated object, but periodically sends synchronous or asynchronous checkpoints to other copies (see Pri-

mary Cop), Exccution protocol in Figure 7). Such checkpoint operations are inserted in the code by the pro-

grammer. All checkpoints messages are sent using the unreliable datagram facility. All checkpoints are

numbered in the increasing order starting with initial checkpoint as 0. A checkpoint message contains

complete state of the object's local data which has been modified by the primary copy. A secondary copy

Procedure ExecutionProtocol (A: Action);
var
crashrestart: Boolean; /* indicates whether a crash has occurred during the execution of this action */

Procedure PrimaryCopyProtocol(A: Action); /* Figure 7 */
Procedure SecondaryCopyProtocol(A: Action); /* Figure 8 */

begin
crash restart := false;
loop

begin
if IAMPrimary(A) /* This function is true iff this copy is currently the primary copy */
then PrimaryCopyProtocol(A);

exit; /* completion of the primary copy execution */
else SecondaryCopyProtocol(A);

exit; /* completion of the secondary copy execution *1
end when

PrimaryCopy_Failure, Election Call:
/* detection of primary copy failure or an election has been started */

primary copy := unknown;
ElectionProtocol;
crash restart := true;

end; /* of when */
end;

end; /* end of Execution Protocol */

Figure 6: Execution Protocol
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receiving a checkpoint is not required to wait for any previous checkpoint messages except the initial mes-

sage. In order to preserve the correctness of checkpoint information kept by secondary copies ,the excep-

tion conditions are masked while a secondary copy is storing the received information. In case of synchro-

nous checkpoints, the primary copy waits for all the other copies to respond before it continues the execu-

tion of the action. However in an asynchronous checkpoint, the primary copy simply broadcasts the check-

points and continues the execution of the action. Thus if the primary copy does not go down, the action is

performed almost in the same way as in the case of an unreplicated object.

After the end of all the operations, a final synchronous checkpoint is performed. In this checkpoint

all the final values of the modified local data and the results to be sent to the invoker are recorded by other

copies. In case of the primary copy failure during any of the three phases, a new primary copy is selected

Procedure PrimaryCopyProtocol (A:Action);

begin

1: if not crash-restart
then

/* Establish the first checkpoint */
sync send(<Call_.id,Curversion,Initial>, avail copies, ack-hdlr);

else
/* load the latest checkpoint information */

II: /* Perform the action */
loop

if end of action(A) then exit;
case operation of

A_checkpoint: /* Establish an asynchronous checkpoint */
send(<A chkpnt, Call_id, Curversion, chkpnt#>) to avail copies;

S-checkpoint:/* Establish a synchronous checkpoint */
syncsend(<S chkpnt, Callid, Curversion, chkpnt#>, availcopies, ack_hdlr);

Otherwise: [/* Execute the requested operation with all exceptions masked */]

end;
end;

III: /* Establish final checkpoint */
syncsend(<Call id, Cur version, Final>, availcopies, ackhdlr);
/* Send the result to the invoker */
syncsend(<resuit>, invoker, ackhdlr)

end; /* of PrimaryCopyProtocol */

Figure 7: Primary Copy Execution Protocol
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Procedure Seconda y Copy Protocol (A: Action);

begin
loop

receive(Chkimsg) from primarycopy
[ case Chkpt msg.chkpntnum of

Initial :/* add the received information to current call table for the specified action */
Call id:= Callid;
Initial version := Address(curversion);
PrimaryCopy := Senderid;

Otherwise :/* update the current call tbl for the given cal-id */
if chkpntnum > Latest chkpnt
then

Latest chkpnt := chkpntnum;
currentversion := Address(curversion);

end; ]
/* send an acknowledgement back */
if Schkpnt then send(ack) to PrimaryCopy
if chkpntnum = Final then exit;

end;
end; /* of SecondaryCopy_Protocol */

Figure 8: Secondary Copy Execution Protocol

by executing the election protocol (described in Figure 9) and a new primary copy continues the execution

from the latest checkpoint. Thus a replicated object does not stop its execution in case of site failures and

the execution of its actions is guaranteed to complete as long as an active copy exists.

In case of a recursive action call to the object, we ensure that the copy which starts the execution is

the same as the active copy of the parent operation of this call. If the primary copy of the parent operation

had failed, the call will be blocked till the new primary copy reaches the state in which the parent operation

was executed; such a state can be easily identified by looking at the call-id of the recursive call. This keeps

the behavior of the replicated object the same as that of an unreplicated one, in case of recursive calls.

When an object is acting as a server object, it retains the result message sent to the client for an invo-

cation. This is needed as the client might be replicated and in case of failure of one of its copy, another

copy may re-execute the invocation operation and call the server to perform the same action. We have

adopted this idea from the ISIS design. Thus whenever a call is made to an object to perform certain

action, it checks whether the operation was performed earlier. If it was performed earlier, then it simply

sends the retained value for that action. Hence these results must be stored by the server object till it is sure
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that the client object can never make a call again. This can either be done when the client object has com-

pleted all the operations for its action, and has stored its own result with the other copies. However this

may not be very efficient. A more efficient way would be to store results for a certain duration and discard

them after some long time. This time should be large enough so that the operation cannot be performed

again.

6.2. Recovery Protocols -- Election of A New Primary Copy

If the primary copy ot an invocation fails, the other copies are informed of this failure by their object

managers. The execution of the secondary copy protocol may get interrupted if either

PrimaryCopyFailure or ElectionCall signal is received (see the exception handling part in Figure 6).

A secondary copy execution when interrupted because of these signals executes the Election Protocol (Fig-

ure 9). In case of a secondary copy failure, other copies are informed and they just need to update the list

of available copies. Among all the copies executing the Election Protocol one of the available copy with

the highest priority (according to the EM-list) acts as the election manager and executes the Election

Manager Protocol (Figure 10); all other copies execute the Election Participant Protocol (Figure 1i). The

function IAMEM returns true if and only if the copy executing this function is eligible to act as the elec-

tion manager. After the completion of election protocol a new primary copy is designated to carry on the

execution.

The Election Protocol execution may get interrupted if an EMjfailure or ElectionTermination sig-

nal is received. In case of the first signal, a copy restarts its Election Protocol and once again checks if now

it should be the new election manager, and then accordingly executes either the Election Manager Protocol

or the Election Participant Protocol. In case of ElectionTermination signal, the id of the new primary

copy is sent to all copies through the signal, the execution of the Election Protocol is terminated, and the

Execution Protocol continues executing either the Primary Copy Protocol or the Secondary Copy Protocol.

The election protocol is structured such that if due to some error conditions two copies start execut-

ing the Election Manager Protocol, then only one of them will be able to complete the election success-

fully. The three-phase structure of the election protocol is very similar to that of reliable broadcast proto-

cols described in [5]. A copy acting as the election manager first sends a signal called Election Call to all
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Procedure ElectionProtocol;
var

newprimary : Object UID;
successful : Boolean;
EM : ObjectUID; /* Current Election Manager copy */

Procecnre ElectionManagerProtocol; /* Figure 10 */
Procedure ElectionParticipant Protocol; /* Figure 11 *

begin
loop

begin
if _AMEM
then

Election_ Manager-Protocol;
if successful
then exit /* election successfully completed */

else
Election ParticipantProtocol;
exit;

end when
EM Failure:;
Election Termination ( PrimaryCopy ): exit;

end; /* of when */
end;

end;
Figure 9: Protocol for Electing New Primary Copy

other available copies to make sure that all those copies are also ready to participate in the election. This

signal is sent persistently until an acknowledgement is received from all the other copies. An election parti-

cipant sends an ac 1 only if it has not received an Election Call signal from some other higher priority

copy acting as an election manager. Otherwise it sends back a nack. When a participant sends an ack 1, it

sets its EM variable to the id of the copy which sent this Election_Call signal. If in the first phase any

nack is received by the Election Manager procedure, its execution terminates setting the global variable

successful to false.

In the second phase, the copy executing as an election manager and receiving all ack , messages in

the first phase requests the latest checkpoint numbers from all the participant copies. Meanwhile if some

participant has received an ElectionCall from some other higher priority copy, its EM would be set to the

id of that copy. Therefore, in response to the latest checkpoint request, a participant copy sends the latest

checkpoint only if the requester's ID is equal to EM; otherwise it sends a nack The Election Manager Pro-

tocol terminates with successful set to false if any nack is received during this phase.
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Procedure Election_ManagerProtocol;
var

no nack received: Boolean;
participants : list of ExtendedObject_UID;

begin
begin

participants := avail_Copies;
successful := true;
signal(ElectionCall) to participants;
settimer(timeout-period);
remaining copies:= participants;
StartTime := clock;
loop /* Phase I */

when
received(ack) from a, down(a):

remainingcopies := remainingcopies - [a];
if remainingcopies = then exit;

time out:
if-remaining-copies
then

signal(ElectionCall) to remainingcopies;
settimer(timeoutjperiod);

else exit
end; f* of when */

end; /* of loop */

participants := participants n avail-copies; /* Phase II */
if no nack received
then

syncsend('latest chkpnt?',participants ,elect.primary)
if no nack received
then F f*mask exception handling from outside blocks */

syncsend('ElectionSuccess',participants,all_acks); /* Phase III */
if no nack received
then

when
(clock - StartTime) 2t 4T:

end;
signal(ElectionTerminate) to avail-copies; /* signal to all up copies */

else
successful := false;
signal(ElectionAbort) to availcopies; ]/* resume exception handling */

else successful := false;
else successful := false;

end when
ElectionCall from a where priority(a) > priority(mycopy):

EM := a; send(ack i) to a; successful := false;
end;

end;/* of ElectionManagerProtocol */

Figure 10: Election Manager Protocol
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The Election Manager Protocol enters the third phase if no nack is received during the second phase.

In this phase, the election participant copy with the largest checkpoint is elected as the primary cop:, It

then sends a message 'ElectionSuccess' to all the participants. A participant which still has its EM set

equal to the id of the sender of this message sends an ack 3 message, otherwise it sends a nack. Up to the

point of sending this ack 3 message, a participant is free to send an ackI or the latest checkpoint number to

any other higher priority copy which might start executing the election manager protocol. However, once

the ack 3 in the third phase is sent, a participant has to wait for either the Election Abort or the

ElectionTermination signal and during this period it may not send ackI messages to any other election

manager. Therefore no ElectionCall signal is accepted in the third phase.

Acceptance of an ElectionTermination signal clears all pending ElectionCall signals. Similarly

the acceptance of an Election Call signal clears all pending ElectionTermination or Election-Abort sig-

nals. If the election completes successfully, the Election Manager Protocol sets successful to true and that

Procedure ElectionParticipantProtocol;
begin

EM highest priority in (avail-copies r'EMList);
loop

when
Election Call from copy a:

if a has the highest priority in (availcopies rEMList)
then EM := a; send (ackl ) to EM;
else send ( nack ) to a;

receive( 'Latestchkpnt?' ) from a:
if EM = a
then send( Latest chkpnt) to EM;
else send( nack ) to a;

receive ( 'ElectionSuccess' ) from a:
if EM = a
then

send( ack 3 ) to EM;
when

Election Terminate( PrimaryCopy): exit; /* the loop and terminate election */
ElectionAbort from EM:

end;
else send( nack ) to a;

end /* of when */
end; /* of loop */

end; /* of ElectionParticipant_Protocol */

Figure 11: Election Participant Protocol
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causes the termination of the Election Protocol at the election manager copy. Whenever the Election

Manager Protocol terminates with successful equal to false, the Election Protocol is retried.

One should note here that a successful election is forced to last at least 4T units of time. Also, the

election termination signal is sent to all available copies and not just to those which participated in the elec-

tion. This makes sure that any copy which was given permission to join the configuration before the start of

the election will also receive this signal. Because of the 4T duration, all such new copies will be in the

available list when the termination signal is sent.

It is possible that the an execution of the Election Manager Protocol may get interrupted if it receives

an ElectionCall signal from some other higher priority copy. In this case the Election Manager Protocol

terminates by sending an ack 1 message to the sender of the signal, and setting successful to false and EM

to the id of the sender of the signal. (See the exception handling part of Figure 10.) However, during the

third phase all exception conditions associated with the outer blocks are masked. This means that once an

election manager enters the third phase, an Election-Call signal from some higher priority process will be

kept pending during this phase. If the election completes successfully then all copies including the waiting

election manager will also receive the ElectionTermination signal and all pending Election_Call signals

will be cleared.

7. Correctness of the Election Protocol

In order to show that this recovery protocol functions correctly we need to show that this protocol is

(I) free from deadlocks and livelocks, (2) once an election is started eventually only one

ElectionTermination signal will be generated, and (3) the same election signal will terminate the election

protocol at all participant copies.

The absence of deadlocks in the election protocol follows from the following observations. Only in

the following situations can a copy hold sending a response message to another copy and cause it to wait.

(1) A participant which has sent an ack3 message to an election manager waits for either an

ElectionTermination or ElectionAbort signal and does not send any response to other election managers

which have issued either an ElectionCall or the latest checkpoint request. (2) An election manager

which is in phase III holds responding to any ElectionCall signal from some other election manager. (3)
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An election manager in phase IlU holds sending either the ElectionTermination or ElectionAbort signal

until it has received the response messages from all participants in the protocol. Note that a participant

never holds response messages to an election manager which is in the third phase. To show absence of

deadlocks we show that only a higher ordinality process can hold sending responses to a lower ordinality

process. Assign a time-dependent ordinality to a process as a pair of integers <p,q > where p is equal to

the current phase number for an election manager process and for a participant it is the highest phase

number messages it has received from and responded to any election manager. q is equal to 0 for a partici-

pant and 1 for an election manager. The value of this number is interpreted as the lexicographic ordering of

p and q. Thus an election manager in phase III has ordinality 31 and a participant which has sent it an ack3

message has ordinality 30.

The proof of absence of livelocks is based on the observation that the sequence of values assigned to

the variable EM of any process has monotonically increasing values (in terms of priorities assigned to the

election managers in the EMlist), unless an election manager goes down. Thus if two or more election

managers repeatedly execute their protocols, then eventually all participants will have their EM set to the

id of the highest priority election manager which does not fail. Eventually only that election manager will

complete the election successfully and generate the Election-Termination signal.

Now we want to show that all participants will terminate their election because of this signal. The

only other possibility for a participant to terminate the election protocol with its current election manager

(which is in its third phase) is when it receives the EMjfailure signal. If the election manager fails

immediately after signaling Electi, n_Termination, then all participants will receive this signal with in the

next T period; moreover, the EM_failure condition will be detected and signaled only 2T units of time

after the failure event. Thus all participant will terminate the election successfully due to the same election

termination signal.

Appendix: Status Monitoring Protocol

This protocol is used for monitoring the up/down status of some set of processes in the network. The

protocol assumes that the clocks in the network are synchronized using some network clock synchroniza-

tion protocol. The protocol executes in synchronous steps; at every T interval, each process broadcasts its
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view of the status information to all the other processes in the network. (Assume that T >> the maximum

message delay in the network.) This status information consists of status of other processes from the view

point of this sender. For each process, the status is maintained in terms of three colors: white, grey, and

black. White and grey colc.s are interpreted as up status for that process, and black implies down. During

phase k, a process u computes the status of the some other process v based on the status messages it

received from other processes in phase (k-I). After computing this new status, it broadcasts it all other

processes.

Phase 1:

/* mark status of every copy in the configuration as grey */
send(status info) to others

Phase k>l:

for all v in configuration
do

if a status message was received from v in phase k-I
then mark v as white
else if any status message (received in phase k-i) had v marked as white

then mark v as grey
else mark v as black

end
send(status-info) to others

References
[1] Joel Bartlett, "The Nonstop Kernel," Proc. of the Eighth Symposium on Operating Systems Princi-

ples, pp. 22-29 (December 1981).

[2] P.A. Bernstein and Goodman, Nathan, "Concurrency Control in Distributed Database Systems,"
ACM Computing Surveys, Vol. 13, No. 2, pp. 185-222 (June 1981).

[3] K.P. Birman, T.A. Joseph, T. Raeuchle, and AE. Abbadi, "Implementing Fault-Tolerant Distributed
Objects," IEEE Transactions on Software Engineering SE-11, Number 6 pp. 502-508 (June 1985).

[4] Kenneth P. Birman, "Replication and Fault-Tolerance in the ISIS System," Tenth ACM Symposium
on Operating Systems Principles, pp. 79-86 (December 1985).

[5] Jo-Mei Chang and N.F. Maxemchuk, "Reliable Broadcast Protocols," ACM Transactions on Com-
puter Systems Vol. 2, No. 3 pp. 251-273 (August 1984).

[6] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen, "Consistency in Partitioned Networks,"
ACM Computing Surveys Vol. 17 No. 3 pp. 341-370 (September 1985).

[7] D.I. Good, R.M. Cohen, C.G. Hoch, L.W. Hunter, and D.F. Hare, Report on the Language Gypsy,
Version 2.0, Institute of Computing Science, The University of Texas at Austin, Austin TX 78712
(September 1978).

[8] Honeywell, Reference Manual for ADA Programming Language July 1980.
[9] A.L. Hopkins, T. Basil Smith III, and J.H. Lala, "FTMP - A Highly Reliable Fault-Tolerant Mul-

tiprocessor for Aircraft," Proceedings pf the IEEE 66, 10 pp. 1221-1239 (October 1978).

[10] Leslie Lamport, "Time, Clocks, and the Ordering of Events in Distributed System," Communica-
tions of the ACM Vol. 21, No. 7 pp. 558-564 (July 1978).

Page 23



[111 L. Lamport, Robert Shostak, and Marshall Pease, "The Byzantine Generals Problem," ACM Tran-
sactions on Programming Languages and Systems, pp. 382-401 (July 1982).

[12] Barbara Liskov and Alan Snyder, "Exception Handling in CLU," IEEE Transactions on Software
Engineering, (November 1979).

[131 J.H. Wensley and et al., "SIFT: Design and Analysis of a Fault-Tolerant Computer for Aircraft Con-
trol," Proceedings of IEEE 66, 10 pp. 1240-1255 (October 1978).

Page 24



Constant Expected Time Randomized Byzantine Agreement Protocol

without Shared Secrets and Cryptography

Sanjay Ranka, Anand Tripathi and Shiva Azadegan

Department of Computer Sciences

University of MinnesotaMinneapolis

Abstract

Reaching agreement in a distributed system with malfunctioning components is an impor-

tant issue in building reliable computer systems. Byzantine agreement in a distributed environment has

been an important problem in this context. Randomized algorithms for reaching Byzantine Agreement

were proposed by Rabin 2 and further studied by many other researchers. These algorithms use shared

secrets and cryptography to reach agreement in a constant expected number of phases. These shared secrets

have to be boot-loaded during system intitation. This may become a serious drawback in practical situa-

tions. In this paper we present an algorithm which reaches agreement within a constant expected number of

phases, independent of the number of processes in the system, without using shared secrets and digital sig-

natures. The only shared information among processes is the knowledge of a logical configuration of all

processes in a virtual ring. This information is boot-loaded with every process during system initiation.

This algorithm can -'wercome [-I faults, where n is total number of processes. The algorithm

presented here achieves Byzantine agreement on binary values. However, this algorithm can be easily con-

verted into multi-valued Byzantine agreement using the techniques described by some other researchers 3,1
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1.0 INTRODUCTION

We consider a set of n communicating processes P = [P.P2, •P-] with initial value {MiM 2 ,..

.M,). The processes execute an agreement algorithm to agree on some common value m from the set

[M1,M 2 ,.. MJ}. The processes are assumed to be connected by a complete graph with n vertices i.e there

is a communication link between any two processes. The system contains proper processes which follow

the algorithm faithfully and faulty processes which may deviate sometimes maliciously, to prevent an

agreement. We say that the system is proper if all proper processes have the same value for variable M.

Byzantine agreement is defined as follows:

(1) If the system is proper in its initial state with m as the initial value of the proper processes,, then the

algorithm terminates with system in the proper state with value m.

(2) If the system is not proper in the initial state, then the algorithm termiantes with system in a proper state

with any value.

The Byzantine agreement has been an extensively studied algorithm for the past few years. It has

been proved that any deterministic Byzantine agreement cannot be reached with less than (t+l) phases,

where t is the number of faulty processes in the system 4' 3 . This lead to randomized algorithms 6 for

reaching Byzantine agreement, which reach agreement in a small constant expected number of phases.

Rabin's algorithm can tolerate upto [ il] faulty processes in the synchronous case but it assumes that

some messages may be required to be authenticated by digital signatures. Morever it assumes a presence of

a stream of secretly shared7 bits distributed by a non-faulty dealer at system initiation time, large enough

to last during system's operational life. Other researchers 8,5 have imporoved Rabin's algorithm in terms

of the number of faulty processes that can be tolerated in order to achieve agreement. However, all these

algorithms still require shared secrets and authentication. This turns out to be a serious drawback of the

above schemes. Other algorithms, which do not require authenticatitn and shared secrets and reach Byzan-

tine agreement within a constant amount of expected time, can survive only 4n_ faulty processes 2,1.

In this paper we propose an algorithm that can tolerate upto L-J faulty processes in synchronous

cases and does not use any shared sequence of bits or digital signatures for authenticating messages.
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We organize the remainder of the paper in the following manner. In section 2, we briefly give our

model asssumptions. In section 3, we describe our algorithm. In section 4, we prove that the expected

number of phases it will take to reach an agreement is a constant, independent of the number of faulty

processes.

2.0 MODEL ASSUMPTIONS

Let P= {P IP 2, .,P } proceseses participating in the protocol. Assume that they have binary values

{M1 ,M2 .. .. M. } before the execution of the protocol. These processes are interconnected by a totally con-

nected network. We assume synchronous communication among processes which implies that there exists

a upper bound on the message delays between any pair of proper processes. We define a phase to be the

interval of time in which each proper process is able to communicate with all other proper processes. A

round consists of 2 phases of information exchange. One of the processes is designated to be the dealer for

a particular round. This dealer is decided in a round robin fashion for each consecutive round i.e if P 1 is

the dealer for the first round, then P 2 is the dealer in the second round and so on. For this purpose all

processes form a virtual ring, and the knowledge of this virtual ring configuration is the only shared infor-

mation which is required to be boot-loaded with every process during system initialization. Thus each pro-

cess has the information about who is the dealer for the current round and who will be the dealer in the

later round. The starting dealer for every agreement run is also chosen in a round robin fashion. Faulty

processes may deviate from the algorithm and may maliciously, and possibly in collusion with each other,

try to jeopardize the agreement.

Since the processes are interconnected by a totally connected network, each processor can recognize

the sender of each message and faulty processes cannot change the message of a non-faulty processor.

Each message is of the form (r,p,m) where r is the round number, p is the phase and m is a binary mes-

sage.

3.0 THE ALGORITHM

A process Pp starts the algorithm by setting the value of variable x to its initial value Mp. This is fol-

lowed by R rounds of message exchange, each having 2 phases. The number of rounds R is selected on the
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Process P
X:= Mp
for Round :_1 to R do
begin
Phase 1: Send (Round, l,x) to all processes includi agi

If (Round, 1,x) recieved from more than - processes
I

begin
Decided:= true ; x:=m

end
else Decided: =false;

Phase 2: If p=dealer for this round then
begin

If Decided then
send (Round,2,x)

else
begin

x = random(O, 1); {Function random returns either

0 or 1 with probability }

send(Round,2,x) to all other processes
end

end
else

begin
If recieved (r,2,m) from the dealer for this round then

If not decided then x:=m
end

end;

Algorithm: Randomized Byzantine Agreement

basis of desired level of confidence in the final agreement value as a correct agreement.

In phase 1, process sends its value x to all the processes and waits to recieve messages from every

other process. If a message is not recieved within a particular amount of time, maximum time of the phase,

it is assumed to be 0. A proper process is supposed to send a response within the maximum time of the

phase. A process decides on a particular value of m if/[ messages are of the same type and changes

it's value of x to m. Otherwise its state is undecided.

In phase 2, if the process is a dealer and if it is decided it sends its value of x to everyone else. If it is

dealer and undecided it randomly chooses between (0,1) with probability 1/2 and sends this value to every-

one and updates its own value. If the process is not a dealer and undccided for that round, it changes its
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value to the value recieved from the dealer. Otherwise it does not do anything.

The total number of messages sent by all the processes to each other in one round is n 2.

Theorem 1: An asynchronous system with n>3t and binary initial values executing the above algorithm

will satisfy the following

1. At the end of first phase of every round two proper processes cannot decide on 2 different values.

2. If the system is proper with initial value m, then every proper process terminates the algorithm with

x=m.

3. If the system is not proper, then with the probability of at least 1- ]k-+ [ 21] every proper pro-

cess terminates the algorithm after R rounds, where k=R div n and I=R mod n.

Proof

(1): Suppose P1 and P 2 decide on X1 andX 2 respectively at end of phase I of any round. Then P, must

have recieved message X1 from more than -nT- proper processes. Similiarly P 2 must have recieved mes-

sage X2 from more than -- proper processes. Thus at least one proper process must have sent message

XI toP1 and X2 to P 2. Contradiction.

(2): Suppose if all the proper processes start with the same values of x at the beginning of any round. Let

the value be m. We will show that all the proper processes will have the same values of x, equal to m, at the

end of the round. Consequendy, once an agreement is reached by all proper processes, this agreement will

hold after each subsequent round. Hence if the system properly commences with value m, all proper

processes will agree on the same value after every subsequent round. The following is the proof.

After the end of the first phase all the processes will recieve (n-t) messages of the same value. Since

s+I(n-t)> - as n > 3t. Therefore all processes wil decide, on the same value. In the second phase the

decided processes do not change there values, independent of the dealer's value.

(3): Let us consider the scenario after completion of the first phase of any round before which the system

was not in a proper state. The proper processes can be classified into two sets D and N referring to decided
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and undecided processes respectively. By end of the first phase all the decided processes must have

agreed on one particular value say m. There are 3 cases

1. Dealer is proper and undecided

2. Dealer is proper and decided

3. Dealer is faulty

In Case 1, the dealer will generate a random m =(O,l) each with probability 4. This is the value

which will be assumed by all undecided processes at the end of this round. If this value matches with the

value of the decided processes with a probability 4, all proper processes will have the same value and

their will be an agreement at the end of this round.

In Case 2, the dealer will send its decided value to everyone and this value will be assumed by all

undecided proper processes. Thus at the end of this round there will be an agreement.

IThus we conclude that there is a probability of at most - of not reaching an agreement at the end of

this round if the dealer is not faulty. Let us consider a sequence of y dealers (y .n).

D1 )2,..,-y

The probability of x dealers being faulty out of these y dealers is

If there are x faulty processes out of these y processes the probability of not reaching an agreement after y

rounds is at most [-] .Therefore, the probability of not reaching agreement in y rounds is at most

f/(Y) = Mi rL xt)[i -

Thus our claim is true for yn. Let us consider a sequence of n dealers

D1 .D2,. 0.
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The sequence will contain at least n-t proper processes, as the dealers are chosen in a round robin fashion.

Thus probability of not reaching an agreement at the end of n rounds will be at most [ times the pro-

bability of disagreement at the beginning of the sequence. Thus for y =kn +l it can be easily shown that the

probability of not reaching an agreement is at most

Thus the probability of reaching an agreement is at least

4.0 ANALYSIS

Let the expected number of round for reaching agreement be E. Let

where k= y div n, I = y mod n

Let P(y) be the maximum probability of achieving agreement in ygj round.

P(y)= ((1-f (y))-(l-f (y -1))

=f(y-l) -f(y)

Es JyP (y)

=1 + Z+ Z+[ Z...

where Z=Af (y)

E 5_1+ < ,A--<_1+8 Z asN>3tandt>O

)= I n+y+ fory < n
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Z:p + p2 +.. p, where p= +

Sincen>3t, p5 -,e .Hence p50.975.

Now it can be easily shown that Z<39 and E<46. For n > 5t the values are 3 and 4 respectively. Note

that these are not the tightest bounds on E. With some more calculations, the value of E can be bounded to

39 and 3 respectively.

The following theorem states that for the case n>5t it is possible for a process to detect agreement

when the system has indeed entered a proper state.

Theorem 2 a) For n>5t, if in round k some process, Pa, finds (n-t) messages with the same value, then by

round k +I all the processes in the system will be able to detect that agreement has been reached.

b) If the system is in agreement, then every process will find (n-t) messages with the agreement value.

(The proof is omitted.)

5.0 CONCLUSION

A new algorithm for achieving fast Randomized Byzantine Agreement has been presented in this

paper. This algorithm does not require any secret sharing of information and digital signatures to authenti-

cate. This algorithm can overcome upto -1 malicious processors and reaches agreement in constant

expected number of rounds. The number of messages required for each round are o(n2). The algorithm

presented here achieves Byzantine agreement for binary values; this algorithm can be converted to a

multi-value Byzantine agreement using the techniques described by some other researchers 9, 5 .

This algorithm, without having the practical drawbacks of earlier algorithms, takes a constant

expected number of rounds to achieve agreement. In comparision to algorithms which do not use shared

secrets and cryptography, it has a much better bound on the expected number of rounds required to achieve

agreement.
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1. Introduction

A self-stabilizing system has the property of recovering from erroneous (illegitimate) states by continuing

to execute its actions as in normal states. No additional mechanisms, other than those for normal opera-

tions, are required to recover from errors and enter a legitimate state. Such systems were first introduced

by Dijkstra [1] and were called self-stabilizing systems. In this paper, we present a protocol for a self-

stabilizing system consisting of a network of processes in the form of a binary tree and prove its correct-

ness.

In his paper (11, Dijkstra gives three protocols that achieve self-stabilization, two of which are for

processes connected in a ring and one for processes connected in a chain. In his design, Dijkstra defines

legitimate states as those states in which exactly one privilege is present in the system. Our design is based

on Dijkstra's model of self-stabilizing systems. The system consists of a network of processes, each of

which can obtain the states of some but not necessarily all of the processes in the system. A process

obtains the state of another process by reading the contents of the local memory of that process. Each pro-

cess decides whether it has the privilege to make a move (i.e. local state transition); a privilege is defined

as a Boolean function of its local state and the states of some other processes in the network.

An action by a process consists of checking whether it has one or more privileges present, and if so, then

selecting one of the privileges and executing the corresponding move. To ensure that the privilege

corresponding to a move holds when that move is executed, each such action is assumed to be executed

This work was supported by a grant from Rome Air Development Center under the Post-Doctoral Fellowship Program (Grant
No. F-30602-8 I -C-0205).
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atomically. Alternatively, this consistency can be ensured by a "daemon" [11 which selects privileges to be

executed sequentially.

In a self-stabilizing system, with these local moves made by the individual processes, the whole system

would eventually reach some globally consistent state (legitimate state) regardless of the initial system

state. In addition, if by accident the system is in some illegitimate state, the local moves made by the

processes should bring the system back to some legitimate state after a finite number of moves.

2. The protocol

The system of processes are connected in a binary tree-like topology, and our protocol is adapted from

Dijkstra's second protocol [1]. For the sake of clarity in presenting the protocol, a process in the binary

tree is assumed to have either no children or exactly two sons. The protocol can be easily extended to elim-

inate this restriction. We assume that each process knows if it is the left or right son of its father. A left son

does not consult its right sibling in making its move while a right son needs the state information of its left

sibling to deide if it has the privilege. Only adjacent processes can examine each other's local memory in

order to obtain the state information of its neighbor. When a process is examining the states of its neighbor,

the neighbor is not allowed to make a move.

Each process has two boolean state variables : UP and S. For any process, the state variables of its father,

left son, right son, left sibling (if those nodes exist) are denoted by UPF, SF; UPL, SL; UPR, SR and UPLS,

SLs respectively. By definition, the root has its UP = false and a leaf has its UP = true. To simplify the

protocol, a process that is a left child will have its UPLB = true and SS = SF although there are actually no

siblings to its left.

For the root, its move is given by
if UPL and UPR and (S = SL) and (S = SR)

then S := -, S;

For an internal node other than the root, its move is given by

if-, UP and UPL and UPR and (S = SL) and (S = SR)
then UP := true;
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if UP and - UPF and UPIS and (SF = St) and (S * SF)

then begin UP :=false; S := SF; end;

For a leaf, its move is given by

if - UPF and UPu and (SF = SU) and (S Sp)
then S := SF;

Observe that whenever a process u has its UP = false, there always exists at least one privilege in the sub-

tree rooted at u. (This can be easily proved by induction on the size of the subtree rooted at u.) Now,

UP,,,, = false by definition. Hence, there is always at least one privilege in the system. In addition, if at

some point all nodes except the root have their UP = true and S = S, at the same instant, the system is

stabilized and will remain stabilized if the protocol is observed. In this case, when the root makes a move,

the privilege is passed to its left and then to its right subtree before the root regains the privilege. When a

node u * root obtains the privilege from its father, u makes a move, passes the privilege to its left and then

to its right subtree before it regains the privilege from its sons and passes it up again.

Note that in this protocol we do not need any additional mechanisms such as a "daemon" or locking proto-

cols to ensure the consistency of the actions. This can be seen from the fact that when a process has a

privilege present based on the states of some other processes, then those processes cannot be possessing

any privileges.

3. Correctness proof of the protocol

Under normal situation (i.e. when the system is stabilized), each of the processes in the binary tree takes

turn to make a move in the order as described in the previous section. When the system has more than one

privileges, each move of the root causes a "frontier" of stabilization to expand and diffuse from the root.

Eventually this frontier covers all the leaves and the system is stabilized. The proof proceeds as follows:

Let G = G(V,E) be a binary tree with at least three nodes representing the network of processes.

Definition Let P = <vo, v 1, ..., vk > be a path in G. Then P is an up-path if vo is the root and V vi,
li<__k, UPj = true and Si = -, So.

Definition An up-tree, T, is a subgraph obtained from a snapshot of G taken right after a move by the
root which satisfies the following properties:
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(i) root : V(T).
(ii) u E V(T) only if there exists an up-path to u in that snapshot.

Lemma 1 If a father node and a son node have been in the same up-tree once and since then they make

their moves according to the protocol, then from that time onwards, UPfalh, = true implies

UP..n = true.

Proof Consider the first move (made by one of these two nodes) that results in a state contrary to

that stated in the lemma. Before this move, UPMar = UPo., no moves that are allowed in

the protocol could have resulted in the aforementioned state. [

Theorem 1 For any two successive moves by the root, if the up-tree, T 1, corresponding to the first move

has V(TI) * V(G), then the up-tree, T2, corresponding to the second move, will satisfy V(T 1)

c V(T2) andl V(T)1 < I V(T 2)1 •

Proof Let v be a node with the shortest distance from the root in G such that v E V(T 1) but v

V(T 2). Let v 's father be u. [ Observe that v * root since by definition the root is in all up-

trees. Also, u * root otherwise by the fact that the root has the privilege to make a second

move, v will be in V(T 2 ). Finally, v e V(TI) implies u r V(T1 ). ] Let Sr., - x in T1. In T 2 ,

S., = -, x since successive moves made by the root always flip Sr,,. v not in V(T 2) implies

UP, = false or S, = S. (=- ix) in T2.

Case 1. UP, , false. By the choice of v, U E V(T 2). Thus, UP. = true in T2. By lemma 1,

UP, = true. This is a contradiction.

Case 2. S, -x. Let P be the up-path to v in T1. In T1 , S, =--x. This implies v has made

an even number of moves made possible by an even number of privileges obtained from

above. The number of moves must be zero for otherwise v would have at least executed two

privileges from u before the snapshot of T2 is taken; and since UP. = UP, in T1, this implies

u has at least executed two privileges from its father. Continuing this argument, one of the

sons of the root in P would have executed at least two privileges obtained from the root after

T, but before T2 is formed. This is impossible. Hence, v has executed zero privileges from u

when T 2 is formed. However, u has executed its privilege from above (as witnessed by S, =

x). At the time S, = x, UP. = false; UP, cannot turn back to true without v 's making its

Page 37



move. This contradicts the fact that UP. = true as implied by u E V(T 2).

To show I V(T 1) I < I V(T 2) I. Since V(TI) * V(G), there exists a node w in T1 such that at

least one of its two sons is not in TI. For the root to execute its move again after the first

move, S., must be flipped. When it is flipped, UP,, = false. The only way to make UP,., =

true again is to have both sons of w having their UP = true and S = S,,,.. The sons will hold

their states until T 2 is formed. Thus, I V(T)I < I V(T 2)I. 0

Lemma 2 Any node u * root with UP,. = false will eventually have UP,. = true.

Proof By induction on the size of the subtree rooted at u.

For the base, consider a subtree rooted at u with two leaves of G as its sons. Since UPL and

UPR are true by definition, it suffices to show that SL and SR will equal S.. (u will then have

the privilege to move, setting UP., = true.) This follows from the protocol for the leaves.

Now, consider a subtree rooted at u with size larger than three. Let S. = x. Consider the left

subtree of u rooted at v. (The right subtree can be handled similarly.)

Case 1. S, f x and UP, = true. v holds its states until u makes a move by which UP. =

true.

Case 2. S, = x and UP, f false. By induction hypothesis, UP, will eventually be true.

Observe from the protocol that this move made by v does not affect S,. Thus Sv = x and UP,.

= true and this becomes case 1.

Case 3. S. = -, x and UP, = true. v has the privilege to move, setting S, to x and UPv to

false. Apply case 2 's argument.

Case 4. S, = -, x and UP = false. By induction hypothesis, UPv = true eventually without

affecting S,. Apply case 3 's argument.

With both sons of u having UP = true and S = S,, u will make a move, setting UP. to true.

0

Lemma 3 For any node u * root, if UP. = true and there are no privileges from its father, the subtree

rooted at u will eventually have no privileges.

Proof By induction on the size of the subtree rooted at u.

Consider a subtree, T, rooted at u with two leaves of G as its sons. Since UP-, UPL, UPR are
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true, and given no privileges from u 's father, T has no privileges. This establishes the base

of the induction.

Now, consider a subtree rooted at u with size larger than three. Consider the left subtree of u

rooted at v.

Case 1. UP, - true. v has no privileges from u. By induction hypothesis, the left subtree of

u will eventually have no privileges.

Case 2. UP, = false. By lemma 2, UP, will become true. Apply case 1 's argument.

Similarly, the right subtree of u will eventually have no privileges. Thus the subtree rooted at

u eventually has no privileges. 0

Theorem 2 Within finite number of moves, G is stabilized.

Proof If the root executes its privileges infinite number of times, the successive up-trees formed will

eventually covers G by theorem 1. At that point, G is stabilized. Otherwise, the root executes

a finite number of moves. We will show that this cannot happen. Consider the last move

made by the root. Let S,,.. = x after this move. The left son, u, of the root will make a move,

setting UP, false and S, - x. By lemma 2, UP., will eventually have value true. And

since the root has made its last move, u cannot obtain another privilege from the root. By

lemma 3, the subtree rooted at u eventually has no privileges. Similarly, the right subtree of

the root will eventually have no privileges. At this point, only the root has the privilege to

move, and it will make a move provided it is not infinitely lazy. This contradicts the finite

number of moves made by the root. 0
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1. Introduction

Topor [41 gives an elegant derivation of a termination detection algorithm, however, his algorithm impli-

citly requires that message delays be bounded. Otherwise, the algorithm may declare termination (of a dis-

tributed computation) while some processes are still actively engaged in the computation. We give an

upper bound on the message delays that is necessary and sufficient for Topor's algorithm to function

correctly in a system of processes where message transmission is not instantaneous as in CSP [2]. Next we

give an improved (termination detection) algorithm that allows arbitrary (but finite) message delays in a

system. Finally, we prove the correctness of the improved algorithm.

Our algorithm is siihlar to that of Misra [3] in the sense that we use special messages on every communi-

cation channel to flush out messages in transit. However, our algorithm uses a spannng tree instead of a

cycle (consisting of all channels in a system) as is used in [3]. We assume the readers are familiar with the

work of Dijkstra [1] and Topor [4]. (See appendix for a brief description of Topor's algorithm.)

2. Preliminaries

We assume there is a set of processes cooperating in some computation. The processes are modeled by a

graph G = (VE) where V represents the set of processes and E the communication channels among the

processes. Processes can be active or idle. Only an active process may send messages to its neighbors in

G. An active process may turn from active to idle at any time but an idle process can only become active

on the receipt of some message. All messages are received in the same order as they are sent; this applies to

This work was supported by a grant from Rome Air Development Center under the Post-Doctoral Fellowship Program (Grant
No. F-30602-81-C-0205).
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all types of messages. A distributed computation is said to have terminated if all processes are idle and

there are no messages in transit.

To establish an upper bound on message delays for Topor's algorithm to function correctly, we need the

following notations. Let:

T be a fixed spanning tree in G. (The tree used in Topor's algorithm.)

For any node u, v in V,
I. is the distance (level) of u from the root in T;
T, is the subtree of T which is rooted at u;
h. is the height of T. where h. =max{,, -I, :w E V(T.)1.

If u sends a message to v, delay (u ,v) is the time between u's sending and v's receipt of the message.

8 ( > 0) is the minimum message delay time for all e E E. Thus, 8 < delay (u,v).

[a,b ] with a < b is the time interval between global time a and global time b, including both a and b in
the interval. Similarly, [a,b) is the interval between a and b, including a but excluding b. (a,b], (a, b)
are defined analogously.

Rj (i > 1) is the global time when the root sends the irI wave of (repeat) signals in Topor's algorithm or
when it declares termination after (i - 1) waves of signals. By definition, Ro = 0.

T., is the global time when it is the i time u sends a token up to its father.

Note: For i > 1, r% < Ri, Ri - ", 1- l, 8, Ri < ",,., and r%, - R > (l + 2h)8.
The last inequality comes from the fact that u cannot send its token up until it has received a sig-
nal from above (which takes at least 1., 8 ) , passed signals to nodes below (which requires at least
hA 8 ) and got new tokens from nodes below (which takes at least h. 8 ).

If before the distributed computation has started, all nodes are white with leaf nodes having white tokens

and there are no messages in transit, it is possible for Topor's algorithm to declare termination without the

sending of any (repeat) signals by the root. This can happen only if no nodes have sent any messages

throughout the computation. In reality, this is unlikely to be the case; some messages for computational

purposes are exchanged before termination, hence we assume without loss of generality that the root will

send at least one wave of signals downwards. In the following discussion, we exclude the trivial case of no

signals being sent by the root and assume that the root will not declare termination at R 1, i.e. it sends at

least one wave of signals.

Page 41

. . . . . . ==.== = == i ,, == = ", , I I I IIMIIOI"



3. Analysis of the bound on message delays for Topor's algorithm

Lemma 1 For Topor's algorithm to function correctly in a system of asynchronous communicating

processes, it is necessary that for any distinct u ,v E V, delay (u ,v) < (4, + 1, + 2h, )8.

Proof Suppose not, then the following scenario can occur. Let p, q E V be two sons of the root in

T. Pick u E V(T,) and v r V(Tq) with (u,v) E E. u sends a message to v and turns black.

u then immediately sends a black token to its father and paints itself white. Meanwhile, all

other nodes are white and idle and the root has received white tokens from every child

except p. Say the black token sent by u takes exactly 1, 8 time to get to the root. After that,

the root initiates a new wave of signals since having received a black token forbade it to

declare termination. If the signal reaches v in exactly 1, 8 time and v receives all white tokens

from its sons in 2h,8 time, then (I. + 1, + 2h,)8 time has elapsed since u's sending of mes-

sage to v. By assumption, this message has not arrived at v yet. v as well as u can send white

tokens up, causing the root to declare termination. However, v can become active after

receiving the message in transit, invalidating root's conclusion of the system. 0

To prove the sufficiency of the above bound, we examine the time when the root initiates different waves

of signals. If the root declares termination at time R5+1 (i > 1), we show that for any node u, all messages

sent by u before time -r,, are all received by the receiving nodes and there are no messages sent by u after

Lt-mma 2 For i > 1, if delay (uv) < (1. + I, + 2h,)8 and the root does not declare termination at Ri,

then any messages sent before ., from u to v are received by r,1.*

Proof The proof is by induction on i. For i = 1, the root does not declare termination at R 1 since

we assume that the root sends at least one wave of signals. Hence %,, exists. From the Note

in the previous section, c,, - ,,, > (1, + 1, + 2h,)8. By the fact that u sends the message to v

before r., and the bound on delay (u ,v), v must have received the message by ',. Thus, the

basis of induction is established.

For i = k + 1, assume the root does not declare termination at Rk+1. By induction hypothesis,
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we only need to consider messages sent by u to v in the interval [ Again rv... exists

and ,,.. - ,. > (1. + 1, + 2h, )8. Hence by timer,,., v should have received all messages

sent by u during [0,.) because of the bound on delay (u ,v). 0

Lemma 3 If the root declares termination at Rj+j (i > 1), then no node u has sent a message in the

interval ['r,, Rj+j] and u remains idle and white in [tM, Ri+1].

Proof Assume some nodes become active or black between the interval of their last sending of

tokens up and the declaration of termination by the root at R. 2 . Pick from these nodes a

node u such that it is the earliest (in global time after R,) to be activated. Say u is activated

by some node w. By lemma 2, w cannot have sent the wake-up message to u before T,.

Also, w cannot have sent the message in [T,,, ,.,) for otherwise the root cannot have

declared termination. Thus w has turned from idle to active in [T,.,, Ri+1 ) before it can send

the message to u. This implies that w is activated at least 5 time before u. This contradicts

the choice of u. 0

By ensuring that the root sends at least one wave of signals together with the bound on delay (u ,v), lemma

2 and 3 guarantee that when the root declares termination, there are no messages in transit and all nodes

are inactive and white. Thus we have:

Theorem 1 Given that the root sends at least one wave of signals, Topor's algorithm will function

correctly in a system where message transmission is not instantaneous if and only if for any

two distinct nodes u, v, delay (u,v )(l + I, + 2h,)8.

4. An improved termination detection algorithm

Given G = (V,E), our algorithm will use a fixed spanning tree T. The root of T will be responsible for

termination detection.

Definition For any node u, v E V such that (u,v) C E,
(a) u is above v if /, < !4.
(b) u is below v if v is above u.
(c) u is a sibling of v if/ =1,.
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Our algorithm is a modification of Topor's algorithm. We shall use four colors to color the nodes : blue,

grey, black and white. Roughly speaking, when the algorithm has been initiated, blue and grey nodes are

those that have seen a new wave of signals but have not sent their tokens up while black and white nodes

are those that have sent their tokens up. There are also two colors for the token : black and white. A black

token means there are possibly messages in transit and it is not safe to declare termination while a white

token represents a possibility of no messages in transit from a local point of view of some node. Our algo-

rithm consists mainly of alternately sending a wave of signals from the root downwards, propagating to the

leaves and a wave of tokens upwards in the reverse direction, changing the color of nodes if necessary. If

the root has received white tokens from all nodes below and is idle and blue, then it will declare termina-

tion.

Initially, i.e. before the computation has started, all nodes are white, there are no nodes with tokens or sig-

nals and there are no messages in transit. The algorithm is informally given as a set of rules.

For initiating the algorithm:

Rule 1 When the root is idle, it sends signals on all edges to nodes below and paints itself blue. (This
rule is applied only once.)

On receiving a token:

Rule 2 A node on receiving a black token from below paints itself grey. Otherwise, there are no changes
to its color.

For sending tokens upwards:

Rule 3 A node u other than the root (u may be a leaf node) sends tokens to all nodes above when:
(a) it is idle and
(b) it has received tokens from all nodes below it (this is trivially satisfied for a leaf node) and
(c) it has received signals from all its siblings.
The color of u and the color of the tokens u sends are as follows:
If u is blue, it sends out white tokens and paints itself white. 1

If u is grey, it sends out black tokens and paints itself black.
After sending out tokens, u loses its tokens.

For normal signal sending:

Rule 4 After the root has received all tokens from below and is idle, if it is blue, it declares termination. 2

Otherwise, it loses all its tokens, sends signals to nodes below and paints itself blue.

'in this case, all tokens received by u must be white by Rule 2.
21n this case, all tokens received by the root must be white by Rule 2.
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Rule 5 When an internal node other than the root has received signals from all nodes above, it waits

until it is idle, sends signals to its siblings and all nodes below and paints itself blue.

Rule 6 A leaf, on receiving signals from all nodes above, waits until it is idle, sends signals to its siblings
and paints itself blue.

For sending messages :

Rule 7 When any node u E V sends a message along any of its incident edge, it changes color as fol-
lows :
If u is white, it changes to black.
If u is blue, it changes to grey.
Otherwise, there are no changes to u's color.

5. Correctness Proof

We need to show that when the root declares termination, all nodes in V are white and idle. If this is the

case, we claim there are no messages in transit. If there is a message sent by u in transit, either it is sent

before the last time u turns blue in which case the message should have been flushed out by the signals (if

the receiving node is a sibling of u or is below u) or tokens (if the receiving node is above u) u sent or the

message is sent after u turns blue in which case u is black when the root declares termination and is

impossible. Hence it suffices to establish for the above algorithm the following :

Theorem 2 When the root declares termination, all nodes in V are white and idle in the system.

Proof Suppose not, then there exists some node u such that its color is not white or is active. If u is

blue or grey, then the root could not have declared termination for u has not sent out its

tokens yet. If u is white and active, it must have received a message from a grey or black

node w that wakes up u. If w is grey right after sending this message, the root could not

have declared termination because w has seen the last wave of signals and will send black

tokens up. Thus, w is black (right after sending this message). If w was grey before it turns

black, again the root could not have declared termination. Hence, w must have changed from

blue to white to black. Among all nodes that have changed from blue to white to black, con-

sider the one node x that has the change from white to black the earliest since the last time

the root sent signals. Since x had been white, all its neighbors have seen the last wave of sig-

nals from the root. All messages sent by x's neighbors to x before they turned blue the last

time were received by x when x turned white. Hence the node y that wakes up x must have
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sent the wake-up message to x after it turned blue but before it sent its token up (this follows

from the choice of x), i.e. y changed its color from blue to grey to black. Again the root

could not have declared termination. 0

It can easily be seen that if the distributed computation has ended, the above algorithm will eventually

declare termination.
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Appendix: Topor's Algorithm

Given a graph G = (V,E), this algorithm will make use of a fixed spanning tree T in G. Initially, each leaf
has a token.

Rule 0 An idle leaf that has a token transmits a token to its parent; an idle internal node that has received
a token from each of its children transmits a token to its parent; an active node does not transmit
a token. When a node transnits a token, it is left without any tokens.

Rule 1 A node sending a message becomes black.

tiale 2 A node that is black or has a black token transmits a black token, otherwise it transmits a white
token.

de 3 A node transmitting a token becomes white.

i,! ie 4 If root has received a token from each of its children, and it is active or black or has a black
token, it becomes white, loses its tokens, and sends a repeat signal to each of its children. If root
is white, idle and tokens received from all its children are white, it declares termination.

Rule 5 An internal node receiving a repeat signal transmits the signal to each of its children.

Rule 6 A leaf receiving a repeat signal is given a white token.
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1. Introduction

With the increase in the number of processing elements, computational power and complexity of

interconnection, the reliability and fault tolerance of distributed systems have become areas of acute con-

cern. A distributed system, like any other digital system, is subject to faults which make it deviate from its

specified behavior; unlike other systems, however, most distributed systems come with a promise to deliver

reliability and high availability of resources even in pathological cases of processor failures. Indeed, this is

one of the main reasons for having distributed systems at all. To support the claims of fault-tolerance and

reliability, such systems need to have the ability to diagnose faults when they occur and initiate recovery

procedures.

A self-diagnosing system is one in which faults can be isolated to within replaceable parts of the sys-

tem. As noted in [Kime80] fault diagnosis in distributed systems is generally a 2-step procedure- it involves

both the detection of a fault when it occurs and its location, before repair or graceful degradation may be

initiated. In this report, our principal concern is with the latter. We refine the notion of fault location in later

sections, but it may be pointed out that the purpose of fault location is to identify a superset of the units

which must definitely be faulty to cause the syndrome whic, afflicts the system.

Several models have been proposed for fault diagnosis in distributed systems. In this report, we res-

trict ourselves to just one model and its offshoots. We illustrate the salient features of this model with

examples and explore the interesting theoretical contributions of this model. Finally, we identify a host of
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unsolved problems with our own preliminary results and map the course of future research to be done in

this area.

2. The PMC model

In the two decades since the introduction of the so-called PMC model [Prep67] , significant progress

has been made in the development of the theory associated with the model. The reasons for this are not

difficult to find: first, the simplicity and elegance of this model have made it appealing to both theoretical

scientists and system designers alike. Second, the universality of the model makes it suitable for capturing

the essence of diagnosis in distributed systems. Third, the model permits a level of abstraction where faulti-

ness of a processor/software module is reduced to being just 2-valued: faulty or non-faulty. While this may

not be the best picture of "real-world" processors and modules, which are susceptible to a fuzzy behavior

between the two extremes of being faulty and non-faulty, this simplification has the beneficial effect of

enabling diagnosis algorithms developed for the PMC model to be applicable in all layers of the system

architecture. Indeed, one may drop the distinctions between hardware processors and software modules and

just talk of units when modeling the system for the purpose of fault diagnosis.

A distributed system is one in which computational tasks are performed by multiple units. There are

2 principal assumptions which are made in the PMC model about the distributed system being modeled:

first, the variables which characterize the fault behavior of units - Mean Time Between Failure, Mean Time

To Repair inter alia- are assumed to be independent random variables; second, the units are assumed to

have the capability to administer tests among themselves for the purpose of diagnosis. We concern our-

., ,es neither with the precise nature of these tests nor with how and when they are actually administered,

beyond insisting that they be complete, i.e. a fault-free unit should always correctly identify the units it

tests as being faulty or fault-free.

The system that is to be diagnosed is partitioned into logical units. These units need not be similar in

their functionality within the distributed system, except in their ability to test singly or in -ombination,

another one of the units. The outcome of the tests may be classified simply as "pass" or "fail", indicating

that the testing unit evaluates the tested unit as being fault-free or faulty, respectively. We assume that the

evaluation is meaningful only if the testing unit itself is fault-free, otherwise the outcome is unreliable. This
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assumption is known as the symmetric invalidation assumption and forms the basis of many offshoots of

the PMC model. An alternative assumption, which is also frequently used (and considered by some to be

more representative of real systems and real tests) is the asymmetric invalidation assumption, wherein a

"pass" outcome necessarily implies that the tested unit is fault free, but a "fail" outcome only implies that

either the tested unit or the testing unit or both are faulty. The rationale behind this assumption

[Bars76, Kime8O] is that a complete test in systems composed of complex units entails the checking of a

large number of responses from the tested system, rendering it extremely unlikely that the faults in the units

performing the test would completely cancel the faults in the unit under test causing a test to pass, when it

should have failed.

The test system is modeled as a directed graph G (V,E), with the units represented by vertices in the

graph and the tests by directed edges. Thus if <i, j > is a directed edge from unit u to unit uj, the unit u

tests the unit uj. This directed graph is called the connection assignment of the system.

Weights are assigned to edges depending on the test outcomes: the weight aij associated with the

edge <i, j> is defined as follows:-

aJ 0 if u tests uj with outcome pass

a I - if ui tests uj with outcome fail

The set of test outcomes aj is called the syndrome of the system. There are 2 1 IE possible syn-

dromes for any connection assignment.

We use an example to motivate the discussion and definitions which follow.

Example I

Consider a system composed of 5 units U 1,U2.us whose connection assignment is in the form of a ring. A

synd. , ae for the system can be represented as a 5-bit vector (a 12,a23,34,a 45,asl).
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Assume exactly one of the units, say u 1, is faulty. Then

a23=a34=a 45=O; a5l=l

i.e. u 5 correctly identifies u I as being faulty, and

a12=x i.e. Oor 1

since u 1 being faulty, may or may not diagnose U2 properly.

Thus the syndrome for exactly one of the units being faulty can be only of the form

(x 000 1)

or one of its cyclic permutations. Moreover, it can easily be proved that the connection assignment is capable of identi-

fying the faulty unit when exactly one unit is faulty.O

The example raises the question of whether the modeled system is capable of identifying more than I

fault. This question is ambiguous on 3 counts since the system's "capability to identify more than one fault"

is open to 3 different interpretations:

First, it could mean the capability of locating upto t faults (t > 1) instantly, i.e. with just one syn-

drome. Note that an upper bound on the number of faults is necessary since the entire set of units, V, is

always a consistent fault set for any possible fault set. Moreover, if a system has the ability to identify fault

sets unequivocally, this necessarily implies that the number of faulty units is less than [-I
Second, it could mean the capability to identify at least 1 fault if the number of faulty units do not

exceed t. In this case, we would be able to identify the remaining faulty units after replacing the faulty unit

with a non-faulty one and repeating the test. This might involve as many repetitions of the test as the size of

the fault set, and therefore represents an approach which is a compromise between having a small number

of 'st links and performing a small number of tests.

Third, the word "identification" could be interpreted as meaning "locating within a set which con-

tains the units sought". Thus, we could be questioning the system's ability to isolate the set of faulty units

to be within a larger set, for we could then replace the larger set with impunity, knowing that all the faulty

units have been replaced, albeit with some fault-free units. This represents the system designer's willing-

ness to sacrifice a few good units for the sake of getting a fast response time in the fault detection and loca-

tion phase before initiating system repair or graceful degradation.
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All three interpretations are equally valid and give rise to 3 different diagnosability measures of a

system.

Definition 1

A system of n units is one-step t-fault diagnosable (or simply t-diagnosable) if all faulty units

within the system can be identified without replacement provided the number of faulty units present does

not exceed t.

Definition 2

A system of n units is sequentially t-diagnosable if at least one faulty unit can be identified without

replacement provided the number of faulty units present does not exceed t.

Definition 3

A system of n units is k-step tIs-diagnosable if by no more than k applications of the diagnostic

t3-me. a set of size not more than s units can be identified, such that all faulty units are within the set, pro-

vided the number of faulty units present does not exceed t.

If a system is 1-step t/s -diagnosable, we say simply that it is tIs -diagnosable.

Example 2

Consider the system of Exampe 1 again. The syndrome (x0001) is compatible with 2 possible fault sets:

{u 1 ,U 2 and fu 2). Therefore the system is not 2-diagnosable. However, it is sequentially 2-diagnosable as we demon-

strate below:

Since there are no more than 2 faults in the system, there must always be two fault-free processors adjacent to

each other. So there is definitely some edge with weight 0, no matter what the syndrome is. Assume, without loss of

generality, that a0,1 is 0.

Case I Suppose that a5.1 is the only link with a 1 weight. Then, if u I is assumed to be fault-free, we have to conclude

that U2,13 .... u 5 are all fault-free. But then ast = 1 implies that u, is faulty, which is a contradiction.

Hence, in this case u I must be faulty.

Case 2 Suppose that as~l is also a link with a 0 weight. Then if u 2 is assumed to be faulty, we have to conclude that

both u I and u 5 are also faulty. But then we have more than 2 units which are faulty, which contradicts the

assumption that there are at most 2 faulty units in the system. Hence, U2 must be fault-free and we just have to

follow the links after u2 around the ring until we come to a link with a weight of 1. The unit that this link points
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to must be faulty.

Case 3 Suppose that as.1 is not the only link with a I weight. Then consider each of the possible following sub-cases

distinguished by the 5-bit vector X = (as5,,a 1.2,..... a4,5). In each of the sub-cases the assumption that not

more than 2 processors are faulty immediately leads to the identification of a faulty processor.

X = (10001): Then us must be faulty.

X = (10010): Then U4 must be faulty.

X = (1001 1): Then U4 must be faulty.

X = (10100): Then us must be faulty.

X = (10101): Then U3 must be faulty.

X = (10110): Then u3 must be faulty.

X = (10111): Then U 3 must be faulty.0

3. Main Results and Open Problems

There are three main kinds of problems in the distributed system diagnosis environment as en-

visaged by the PMC model, each of which is discussed below with a summary of the main results.

3.1. The Characterization problem

It is natural to ask what kind of system architecture or interconnection strategy is to be adopted

to design a distributed system having a certain diagnosability. Since we have three different diagno-

sability measures, this question then is really 3 different characterization problems:

1.The t-characterization problem: Given a certain t, (i.e an upper bound on the number of

faulty units) what are necessary and sufficient conditions for a distributed system to be t -

diagnosable?

Note that this problem (and as a matter of fact, the other 2 problems below) can be answered in

purely graph-theoretical terms, which is yet another vindication of the PMC model. A system

designer can assure himself of a certain amount of diagnosability if a complete characterization is

possible, for then he only has to ascertain that the connection assignment for his system satisfies the

requirements of diagnosability.

The first complete t -characterization appeared in [Haki74] We give below a simpler version
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([Su1184, Alia75] ):

A directed graph G (VE) is t-diagnosable if and only if

VZ QV Z * 0 > +r- Z[> t.

An application of this theorem reveals the following facts about t-diagnosable systems: first,

the number of units must be at least 2t+l, else the system cannot be t-diagnosable; second each unit

must be tested by at least t other units, else certain scenarios of t -fault situations will remain undiag-

nosable.

Designs for t-diagnosable systems which are symmetric (i.e the interconnection strategy is the

same for every processor) and optimal (i.e using the minimum number of testing links) have been

achieved in the so-called Da, system: ([Prep67] ).

2.The sequential t-characterization problem: Given a certain t, what are necessary and

sufficient conditions for a distributed system to be sequentially t -diagnosable?

The first paper on the PMC model introduced the concept of sequential diagnosability and

gave very weak necessary conditions. It also dealt with the special class of single-loop systems and

gave a complete characterization for sequential diagnosability in such systems. (Interestingly

enough, at the time the paper was published, the authors did not realize that their characterization of

single loop systems was complete. In a separate paper [Prep68) , Preparata demonstrated that the

'sufficient" conditions were, in fact, necessary also). Since then, the sequential t -characterization

problem has been solved for other special classes of systems (see for example, [Karu79] ); however,

as far as can be determined, this problem still remains open for general connection assignments.

3.The tIs -characterization problem: Given a certain t and s, what are necessary and

sufficient conditions for a distributed system to be t Is-diagnosable?

This is another problem for which there appears to be no published solution for arbitrary con-

nection assignments. Again, characterization for special classes of systems have been achieved. For

example, Karunanithi and Friedman have addressed single-loop systems in jKaru79] ; Chwa and

Hakimi have characterized the so-called Dx 8t systems and the restricted class of systems which are
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t/t-diagnosable ([Chwa8l] ); Sullivan in [Su1184] , has given (without a proof) a characterization of

tIt +1-diagnosable systems (which because of a typographical error is actually incorrect as stated). It

also appears that no significant work has been done in designing optimal or sub-optimal arbitrary

tI/s -diagnosable systems, although it must be mentioned again that for special classes of systems, this

issue has been settled satisfactorily (see for example, [Chwa81 ).

3.2. The diagnosability problem

The flip side of the characterization problems are the corresponding diagnosability problems,

one for each diagnosability measure defined above. Instead of asking for the characterization of a

distributed system which supports a certain diagnosability measure, here we assume that the inter-

connection strategy for diagnosis (i.e the connection assignment) has already been given to us and

want to determine the maximum diagnosability that it can support.

t-diagnosability. Allan et al. [Alla75] introduced the concept of the diagnosability number,

which is the largest number of faults, t, that a system with a given connection assignment G (VE)

can tolerate and still remain t-diagnosable. For about a decade or so, only algorithms with time

complexities exponential in n, the number of units in the system, were known for determining the

diagnosability number for arbitrary connection assignments; recently, Sullivan ([Su1184] ) used net-

work flow techniques to obtain a remarkable O(n23) algorithm, thus scotching the suspicion that a

polyninial time algorithm did not e,,isL.

Sequential t-diagnosability The corresponding algorithm for determining the sequential t-

diagnosability number for arbitrary connection assignments has not appeared in the published litera-

ture so far. In fact, it is not even known whether this problem is tractable (in terms of polynomial

time solvability) or not.

i/s-diagnosability. Sullivan, in his landmark paper [Su1184] on a polynomial time algorithm for

t-diagnosability, also proved that t/s-diagnosability is co-NP complete, i.e the following decision

problem

Page 54



Given a directed graph G(VE) and positive integers t and s, is G is-diagnosable?

cannot be answered in time polynomial in n, unless the old debate of whether P equals

NP ([Gare79] ) is settled affirmatively. Actually, negative results like this abound in the diagnosis

area (see for example [Mahe76, Fuji78] and [Soma86] ); nevertheless, the theoretical importance of

such results cannot be gainsaid. Polynomial time algorithms have been achieved for special classes

of t s-diagnosable systems: in [Sul84] , for example, is an algorithm for t/It-diagnosable systems,

which can be generalised to yield efficient algorithms for t/t+k -diagnosable systems as long as k is

much smaller than t.

3.3. The diagnosis problem

Even when a system has a demonstrable amount of diagnosability, there still remains the prac-

tical problem of diagnosing faults when they occur. This is perhaps the area of utmost concern to the

system designer and surprisingly, is the area where there are the fewest results. Again, we examine

the main results in diagnosis algorithms under the 3 measures of diagnosability:

t-diagnosis: Given a directed graph G(VE) which 1 -diagnosable, and a syndrome in a t-fault

situation,find the unique fault set consistent with the syndrome.

The above problem, which is as old as the PMC model itself, eluded all attempts at an efficient

solution for 17 years. Kameda et al. [Kame75] , gave an 0(n 3) algorithm for it, but as pointed out in

[Corl76] , the algorithm was flawed by a technical error, which nevertheless does not render it unus-

able ([Madd77] ). Only very recently ([Dahb84] ), did Dahbura and Masson come up with a really

elegant O(n 25) algorithm which uses the concepts of maximal matching and minimum vertex covers

in undirected graphs. As such, all 3 problems (characterization, diagnosability and diagnosis) for the

t -diagnosability measure can be considered to be completely solved.

Sequential t-diagnosis: Given a directed graph G(V,E) which is sequentially i-diagnosable,

and a syndrome in a i-fault situation, find at least one unit which is definitely faulty, regardless of

which set of units, among all the possible consistent fault sets for the syndrome, actually cauved the
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syndrome.

As mentioned earlier, the characterization and diagnosability problems for this class of

directed graphs are still unsolved in the literature. Unfortunately, the same is true of diagnosis.

Except for the restricted classes of single-loop and D8,, systems ([Prep67I and [Karu79] respec-

tively), no attempt has been made to solve the sequential t-diagnosis problem for systems with arbi-

trary connection assignments.

tIs-diagnosis: Given a directed graph which is i/s-diagnosable, and a syndrome in a t-fault

situation, locate a set X of cardinality no greater than s, such that every consistent fault set for the

syndrome is a subset of X.

Here again, no decent algorithm is known, although Yang et al. ([Yang86 ) gave an O(n 25)

algorithm for t/t-diagnosable systems, using ideas from [Dahb84I Also, Chwa and Hakimi

([Chwa81]) have given an optimal algorithm for Dx,5.t systems (which are restricted versions of

t/t-diagnosable systems). So, except for the co-NP completeness result of Sulli an, little is known

about general t Is-diagnosable systems.
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The following table summarizes the state of affairs in the fault-diagnosis area:

Diagnos- Problem type

ability

measure Characterization Diagnosability Diagnosis

t Solved Solved Solved

Open; but Open; but Open; but

Seq. t solved for solved for solved for

special graphs special graphs special graphs

Open; but Solved: Open; but

Vs solved for generally solved for

special graphs intractable special graphs

4. Our results and directions for future research

We have used concepts from set partitioning to solve the characterization problems mentioned

in the previous section and which are still considered open in the literature[Ragh86] The characteri-

zation reveals some very interesting and heretofore unL-own properties of t/s -diagnosable systems.

We hope to take advantage of these properties to generalise the earlier work ([Dahb84] and

[Yang86] ) to produce an efficient algorithm for It+k -diagnosable systems. We are in the process of

writing up our results for publication in the IEEE Transactions on Computers.

The main thrust of our immediate research will be in solving the other open problems men-

tioned in the previous section. There are two other areas in fault diagnosis of distributed systems

which we consider worth investigating and are part of our agenda. First, the pioneering work of
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Masson, Mallela, Dahbura and Yang [Mall78, Dahb84., Yang86 ...... Yang86] in modeling intermit-

tent faults has opened up a fresh and very practical area for future work. Second, the problem of fault

diagnosis in distributed systems with dynamic failure and repair which are not so easily modeled

using the PMC method deserves attention. One weakness of the PMC model is the underlying

assumption that the test results are available simultaneously to a "global observer" who is an unmo-

deled entity not subject to faults. This runs counter to fundamental principles of distributed comput-

ing, where there is no fault-free, omniscient supervisor. Only very recently has research been aimed

at producing systems in which diagnosis is performed by the modeled units themselves

([Holt85, Hoss84] ) and the outlook is promising.

References

Kime80.

Charles R. Kime, Craig S. Holt, John A. McPherson, and James E. Smith, "Fault diagnosis of

distributed systems," Compsac, pp. 355-364, 1980.

Prep67.

Franco P. Preparata, Gernot Metze, and Robert T. Chien, "On the connection assignment

problem of diagnosable systems," IEEE Trans. Electronic Comput., vol. EC-16, pp. 848-854,

Dec., 1967.

Bars76.

Ferruccio Barsi, Fabrizio Grandoni, and Piero Maestrini, "A theory of diagnosability of digital

systems," IEEE Trans. Comput., vol. C-25, pp. 585-593, June 1976.

Haki74.

S. L. Hakimi and A. T. Amin, "Characterization of connection assignment of diagnosable sys-

tems," IEEE Trans. Comput., pp. 86-88, Jan., 1974.

Sul184.Gregory F. Sullivan, "A polynomial time algorithm for fault diagnosability," Proc. 25th

Annual Syrup. on Foundations of Computer Science, pp. 148-156, IEEE Computer Society

Publications, Oct., 1984.

Page 58



AlIa75.F. J. Allan, T. Kameda, and S. Toida, "An approach to the diagnosability analysis of a sys-

tem," IEEE Trans. Comput., pp. 1040-1042, Oct., 1975.

Prep68.

Franco P. Preparata, "Some results on sequentially diagnosable systems," Proc. of Hawaii Int.

Conf. Syst., pp. 623-626, 1968.

Karu79.

S. Karunanithi and Arthur D. Friedman, "Analysis of digital systems using a new measure of

system diagnosis," IEEE Trans. Comput., vol. C-28, pp. 121-133, Feb., 1979.

Chwa8l.

Kyung-yong Chwa and S. Louis Hakimi, "On fault identification in diagnosable systems,"

IEEE Trans. Comput., vol. C-30, pp. 414-422, June 1981.

Gare79.

M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, San Francisco, CA,

1979.

Mahe76.

Shachindra N. Maheshwari and S. Louis Hakimi, "On models for diagnosable systems and

probabilistic fault diagnosis," IEEE Trans. Comput., vol. C-25, pp. 228-236, March 1976.

Fuji78.Hideo Fujiwara and Kozo Kinoshita, "On the computational complexity of system diag-

nosis," IEEE Trans. Comput., vol. C-27, pp. 881-885, Oct., 1978.

Soma86.

A. Somani, D. Avis, and V. Agarwal, On complexity of diagnosability and diagnosis problems

in system-level diagnosis, 1986.

Kame75.

T. Kameda, S. Toida, and F. J. Allan, "A diagnosing algorithm for networks," Information

and control, vol. 29, pp. 141-148, 1975.

Cor176.

Page 59



A. M. Corluhan and S. L. Hakimi, -O1, an algorithm for identifying faults in a t-diagnosable

system," Proc. 1976 Conf. Inform. Sci. Syst., pp. 370-375, Dep. Elec. Eng., John Hopkins

Univ., April 1976.

Madd77.

R. F. Madden, "On fault-set identification in some system-level diagnostic models," Proc.

1977 Symp. on Fault Tolerant Comp., p. 204, June 1977.

Dahb84.

Anton T. Dahbura and Gerald M. Masson, "An O(n 2 -5) fault identification algorithm for diag-

nosable sysiems," IEEE Trans. Comput., vol. C-33, pp. 486-492, June 1984.

Yang86.

Che-liang Yang, Gerald M. Masson, and Richard A. Leoneti, "On fault isolation and

identification in tl/ti- diagnosable systems," IEEE Trans. Comput., vol. C-35, pp. 639-643,

July 1986.

Ragh86.

Vijay Raghavan, Saikeung Dong, ad Anand Tripathi, "A Characterization of Sequential and

t Is -diagnosable systems," Universitv of Minnesota Tech. Report TR 86-49, October 1986.

Mall78.

Sivanarayana Mallela and Gerald M. Masson, "Diagnosable systems for intermittent faults,"

IEEE Trans. Comput., vol. C-27, pp. 560-566, June 1978.

Dahb84.

Anton T. Dahbura, "Fault diagnosis in multiprocessor systems," Ph.D. Thesis, Johns Hopkins

University, Baltimore, Maryland, 1984.

Yang86.

Che-Liang Yang, "Fault identification and isolation in multiprocessor systems," Ph.D. Thesis,

Johns Hopkins University, Baltimore, Maryland, 1986.

Page 60



Yang86.

Che-liang Yang and Gerald M. Masson, "A fault identification algorithm for ti - diagnosable

systems," IEEE Trans. Comput., vol. C-35, pp. 503-509, June 1986.

Holt85.

Craig S. Holt and James E. Smith, "Self-diagnosis in distributed systems," IEEE Trans. Corn-

put., vol. 34, pp. 19-32, Jan., 1985.

Hoss84.

S. H. Hosseini, Jon G. Kuhl, and Sudhakar M. Reddy, "A diagnosis algorithm for distributed

computing systems with dynamic failure and repair," IEEE Trans. Comput., vol. 33, pp. 223-

233, March 1984.

Page 61



Towards an improved diagnosability algorithm
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1. Introduction

1.1. The PMC model

In the two decades since the introduction of the so-called PMC model -Prep67], significant progress

has been made in the development of the theory associated with the model. The reasons for this are not

difficult to find: first, the simplicity and elegance of this model have made it appealing to both theoretical

scientists and system designers alike. Second, the universality of the model makes it suitable for capturing

the essence of diagnosis in a variety of distributed systems as well as VLSI systems. Third, the model per-

mits a level of abstraction where the behavior of processors/software modules is limited to just two states:

faulty or non-faulty. While this may not be the best picture of "real-world" processors and modules, which

are inclined to a more fuzzy behavior between the two extremes of being faulty and non-faulty, this

simplification has the beneficial effect of enabling diagnostic algorithms developed for the PMC model to

i"" applicable in all layers of the system architecture. Indeed, one may drop the distinctions between

hi.-dware processors and software modules and speak only of units when modeling the system for fault

diagnosis.

A distributed or a multiprocessor system is one in which computational tasks are performed by multi-

ple units. In the PMC model, two principal assumptions are made about the system: first, the variables that

characterize the fault behavior of units - Mean Time Between Failure, Mean Time To Repair inter alia-

are assumed to be independent random variables; second, the units are assumed to have the capability to

administer tests among themselves for diagnosis. We concern ourselves neither with the precise nature of

these tests nor with how and when they are administered, beyond insisting that they be complete, i.e., a

fault-free unit should always correctly identify the units it tests as being faulty or fault-free.
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The system that is to be diagnosed is partitioned into logical units. These units need not be similar in

their functionality within the distributed system, except in being able to test singly or in combination,

another unit. The outcome of the tests may be classified simply as "pass" or "fail", indicating that the test-

ing unit evaluates the tested unit as being fault-free or faulty, respectively. We assume that the evaluation is

significant only if the testing unit itself is fault-free, otherwise the outcome is unreliable. This assumption is

known as the symmetric invalidation assumption and forms the basis of many offshoots of the PMC model.

An alternative assumption, which is also frequently used (and considered by some to represent real systems

more closely) is the asymmetric invalidation assumption, wherein a "pass" outcome necessarily implies

that the tested unit is fault free, but a "fail" outcome only implies that either the tested unit or the testing

unit or both are faulty. The rationale behind this assumption [Bars76, Kime8O] is that a complete test in

systems composed of complex units entails the checking of many responses from the tested system. There-

fore, it is extremely unlikely that the faults in the units performing the test would completely cancel the

faults in the unit under test, causing a test to pass when it should have failed.

The test system is modeled as a directed graph G (VE), with the units represented by vertices in the

graph and the tests by directed edges. Thus if (i, j) is a directed edge from unit u to unit uj, the unit u

tests the unit u,. This directed graph is called the connection assignment of the system. A more or less

natural measure of the "diagnosability" of a connection assignment is the following:

A system of n units is one-step t-fault diagnosable (or simply t-diagnosable) if all faulty units

within the system can be identified without replacement provided the number of faulty units present does

not exceed t.

The diagnosability problem, then, is to identify the largest t for which a given connection assign-

ment remains t-diagnosable. Sullivan[SuU84l, in a remarkable tour deforce, presented the first polynomial

time algorithm for the diagnosability problem. In what follows, we we develop some concepts which,

though not completely used in our present version of our algorithm, are likely to improve the complexity
5 -3

even further. In a forthcoming report, we use some of the concepts presented here to get an O F 7f VI -F)

algorithm for t-diagnosability.
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1.2. Preliminaries: Definitions and notation

For a given connection assignment, represented by a digraph G (V ,E), the diagnosability number TG

is the largest non-negative integer t for which G is t -diagnosable. Where the digraph is clear from the con-

text, we may drop the subscript in TG. A total function o:E -(0,1} is said to be a syndrome for G. The in-

tuitive idea behind this definition is that since every directed edge represents a "test" in the system being

modeled, the test results (or the "syndrome") must simply be a collection of "passes" and "fails", each edge

having exactly one of the 2 possibilities. In our notation, a 0 signifies a pass and a I a fail.

F c V is a consistent fault set for the syndrome a if neither

(a) o(u,v) = 0 where u E V-F & v E F nor

(b) a(u,v) = 1 where u,v 6 V-F

holds.

FO= (F: F is a consistent fault set for a).

F, t = (FFFa& IFI <t).

The definition of Fot allows the following observations: first, a syndrome a occurs in a t-fault

situation if and only if Fat # 0. Second, the earlier definition of the diagnosability measure may be res-

tated as follows:

G (VE) is t-diagnosable if and only if for every syndrome a for G in a t-fault situation, I F ,tj = 1.

Let v r V be any vertex of G. di. (v) and do, (v) denote, respectively, the in and out degree of the

vertex v. The set of vertices of G from which there are directed edges to v is denoted by Fr-v, i.e.,

F-1v=(u:ue V & <u,v> E}

'- ISO,

rv=(u:uEV & <v,u> E

Let X _ V be some set of vertices, then

r-1X =vATW-'v - X

rX = .rv -X

When we are dealing with more than one digraph, we sometimes use the notations r,1 and rG to avoid

ambiguity. The operators r-1 and r take precedence over union and intersection. Thus

F-IX U Y = (F-1X) t. Y.
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A tournament T, on n vertices, is a digraph in which every pair of vertices u ,v contributes exactly

one of (u ,v) and (v ,u) to the set of edges, i.e., there are no directed cycles of length 2 and the total number

of edges is n,1. A weighted tournament is a tournament in which every vertex is assigned a positive

weight.

2. Properties of minimal bottleneck sets

The following theorem provides a completely graph-theoretical characterization of t -diagnosability.

For a proof, see the referenced papers.

Theorem 1 [Su1184, Alla75]

G(VE) is t-diagnosable if and only if VZ QV [(Z*) = + +I l"-zjZ > t]. o

Let r be the diagnosability number of G. Theorem 1 implies that there exists a non-empty set Z c V

such that L1 + 1--4 = t+l. This motivates the following definition.

Definition A bottleneck set of G (VE) is a set Z Q V which satisfies [LL] +1 -'Z = r+l, where tis

the diagnosability number of G. A minimal bottleneck set is a bottleneck set, no smaller subset of which is

also a bottleneck set. The bottleneck function, OG. of a set X cV is defined by OG (X) + I x
When the context permits no ambiguity, we will drop the subscript in 4 G.

Theorem 2 The cardinality of a minimal bottleneck set is either 1 or even.

Proof:- Suppose not. Let Z Q V, for some digraph G (V ,E), be a minimal bottleneck of odd (>3) cardinali-

ty. Let v e Z be any vertex. Then Z' = Z-(v) satisfies

tD(Z )[1L1 +IFZ -z 5[L4L1 + IPr1Zj = 4)(Z), which contradicts the minimality of Z. I]

Theorem 3 Let Z be a minimal bottleneck set of G (VE). Then the subgraph induced by Z is strongly

connected.

Proof- Suppose not. Then there is a strongly connected component Z' in the subgraph induced by Z,

which is a proper subset of Z and has no arcs entering it from within Z. Therefore,

F(Z')= 2-L +1 1 Z r L4z1-- +I F- 1ZI <51 4L] +l F-1Zj = O(Z), which is a contradiction. -

In what follows, we show that a minimal bottleneck set satisfies a property which is stronger than

strong connectivity. We call this property "collapsibility".
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Definition Z c V is collapsible iff

(a) I(Z = 1or

(b) Z is the union of 2 collapsible sets X and Y such that

X lr-'Y *Oand

Y - "-X *0.

We need a few lemmas to prove that a minimal bottleneck set is collapsible.

Lemma 1:- Vn, n > 1, there exists a tournament T,. on n vertices which satisfies:

(a) If n is odd, Vv e V(T.),di.(v)=dO,,(v)= n-

(b) If n is even, there exist n vertices v such that di. (v) + 1 = d.., (v) = and n vertices v such that

d,. (v) = do,, (v) + I = -n

Proof:- By induction. As basis, observe that (a) holds trivially for n = 1. Assume that (a) and (b) hold for

all j n.

(- vertices

(n -.. I.ertce

°2

Case I n+1 is even. Then n is odd. Build T.+, as follows. By the induction hypothesis, there exists a

tournament T,, on n vertices which satisfies (a). Add a vertex v.+, to this tournament. Connect v,,,.

to n-I- vertices of T. and from the remaining n-1 +1. Then the resulting graph has n+ vertices

of in-degree 1+1 and 2 - vertices with in-degree _ and out-dcgrcc
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n+1 which satisfies (b).

n vertices of

in-degree n-1 and

out-degree n
n."

n vertices of

in-degree n and

out-degree -1.

4..."

Case 2 n +1 is odd. By the induction hypothesis, we have a tournament T which satisfies (b). Build T.+i

by connecting an extra vertex v,+ to all the vertices of T, which have in-degree of n-I and from

all the vertices which have out-degree of n -1. The resulting tournament on n+1 vertices satisfies

(a), since all the vertices now have in- and out-degree of .0

Definition A balanced tournament is a tournament which satisfies (a) and (b) of Lemma 1.

Lemma 2:- Let T. be a tournament on n vertices. Then,

(a) Ifn is odd 3v e V(T,) [- +I Fvj s

(b) Ifn is even, EN c V(T.) T +T F'vf <  -]

Proof:-

~di,,(v) -
1vj = - 1
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3 v e I( . I i- v -. (n 2

If n is even, the inequality above is strict and the lemma follows. 0

Lemma 3:- let T. be a weighted tournament on n vertices with weight function o: V -* Z+. Then,

3vE V(T.)[1-.-_ + ""v) < ]

Proof.- By contradiction. Let T. be a tournament with weight function (a such that

Vv e V(T.) [.61 + o (I-lv) > (1)(V) I. Let M = wo(V). Number the vertices v1,v2,v3,' ,v. and let

their weights be, respectively, a 1,a 2,a 3, • a,. Then we have -aj= M and

Vi l-i-,n -+o(Fllv)> M (A)

Build a tournament T~t on 2M vertices

VlIlIs V129 V 139 "'' Vl, ,  V l,a,+l. "' VI,2a,

V21, V22, V23, "',V2.a,, V2.a,+l, "'V2.2

Vii, Vx2, Vn3, , VA, Vii+I, "Vxa.

with edges defined by the following two rules:-

(a) Ifi jthenVkl l_1k2aj. l5I 2a, (vakvj)e E(Tzj) iff (vj.vi)E E(T.).

(b) Vi li.5n, add edges to E(T~m) so that the subgraph induced by the row vi1 1i2. • ••, vi.2 is a

balanced tournament on 2ai vertices.

By lemma 2(b), 3v e V(T 2,.) [ - +I flvj :5M-- ]. Without loss of generality, let vil be a vertex

which satisfies this inequality.

Then,

I 7fr"vd >2o(Flf'v)+a1-1

=2W f'vj) +al-I !5M-1

f v l) + -2- 
P 68
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which contradicts (A). 0

Theorem 4:- Every minimal bottleneck of G is collapsible.

Proof:- Suppose not. Let XcV(G) be a minimal bottleneck which is not collapsible. Then X can be ex-

pressed as the union of m > 2 disjoint collapsible sets X IX2,•.. ,X. such that

Vi j i *j = I"-PXi - XJ = 0 or F-Xj n Xi = 0

Build a weighted tournament T. on m vertices V 1,V2,- . Vm with weight function &) as follows:-

WO(vi) =I Xi1 1 i!m

The edges of this tournament, E (Tm) are built as follows:-

For every pair of vertices, vi and vj, exactly one of (vi,vj) or (vj,vi) must belong to E (T.) If

r-'Xi n Xj * 0, then let (v, ,vi) belong to E (T.), else if both F-IXi (-) Xj and 1-'Xi r X are empty, let

(vi ,vj) belong to E (T.) if and only if i < j. Clearly, the edges as defined above will produce a tournament

on m vertices.

By lemma 3,

3v E V(T) [_!1 + W('Tf2v) < (V(T,))2

3qi lT4 -m [ -2_+I FXil !57<I--1FXI]

3qi l:!i. -n [ ((Xi) ! 4(X)]

which contradicts the minimality of X. 0

Corollary [Haki74I If G (VE) is a digraph with no directed cycles of length 2, then the diagnosability

number of G is the minimum in-degree of any vertex in G.

Proof:- If there are no directed cycles of length 2, then the largest collapsible set has cardinality 1. There-

fore, every minimal bottleneck set consists of a single vertex and the bottleneck function for m'inimal

bottlenecks is minimized when a vertex of minimum in-degree is chosen. 0
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Note 1:- In the proof of the above theorem, we are generous in adding edges to get a tournament on m ver-

tices even when the original graph may not have had such edges. This raises the question of whether the

theorem can be improved to produce the following claim:

A minimal bottleneck is strongly collapsible, where strong collapsibility is defined by:

Definition X QV (G ) is strongly collapsible iff

(a) Ixi = 1,or

(b) X can be partitioned into 2 strongly collapsible sets Y and Z such that

3V E Y, 3Z E Z [(Vz), (z ,V) E E (G)].

That a minimal bottleneck set need not be strongly collapsible is seen by the following example:

Minimal bottleneck set 7 vertex complete

..... .°.°..... ... .......° ....... .° ..... d gr p

Here, the unique minimal bottleneck set [A, B, C, D is not strongly collapsible since the only par-

t. )n into two strongly collapsible sets does not satisfy (b) of the definition. 0

Note 2:- Can Theorem 4, however, be strengthened as follows:

Let Z be a minimal bottleneck set and let vrZ be some vertex in Z. Then there is a collapsing sequence

starting with v which collapses Z, where we define a collapsing sequence as follows:

Definition A collapsing sequence is a sequence of m vertices V1,V2, 3 ," ,v,. such that

Vi 2:4<m vi 1-v1 V1,V2, • • ,vi-1) and 7-vvi {v1,v2 , ' ,v-1) * 0. Here m is the lengh of the col-

lapsing sequence. We say that a vertex v eZ collapses Z if there is a collapsing sequence starting with v

of length I ZI which consists only of vertices in Z.
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It should be clear that not all collapsible sets need have the property that they are collapsible from

every vertex contained in them. In fact, one can quite easily build collapsible sets which do not contain

even a single vertex from which the entire set may be collapsed. Unfortunately, it turns out that minimal

bottleneck sets may have vertices from which they cannot be collapsed, as the following example illus-

trates:

B C

In the above digraph, the minimal bottleneck set is again unique, and consists, in fact, of the entire

set of vertices {A ,B ,C ,D ,E ,F }. However, there is no collapsing sequence starting with A which collapses

the set. ]

We do succeed in proving (Theorem 6) a weaker form of the claim envisaged in the above note, viz.,

that a minimal bottleneck set consists of at least one vertex from which it may be collapsed. Theorem 5

below is a refinement of Theorem 3. We show that the distance between any 2 vertices in a minimal

bottleneck set must be quite small.

Definition The distance from vertex u to vertex v, denoted by dist(u,v) is the length of the shortest

directed path from u to v. If no path exists, then dist(u ,v) =-.
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Theorem 5:-

Let u ,v e Z, where Z c V(G) is a minimal bottleneck set. Then dist (u ,v)! 1 + 109 2(2T + 1), where

-r is the diagnosability number of G.

Proof, Let= [x: xe Z & dis (xyv) i)ThusCo= (v. Let y be defined by

and for i > 0,

, = -1 r-1 .- z

(Look at picture below.)

z

TA-I

Ti'
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Let h be the least number such that C 0. Then Z = and "- Z A'

By the minimality of Z, we get the following h inequalities:

E..1

+1.VyI +1iCAI > r +

Substituting 'T+ 1- [E4L] +1 "-'Zj =1 Cj+1 I in the above inequalities and rearranging

terms, we get

I A> +1,.__@,1

I U > + _1 +1.1

Sincea > [-j +c = 2a >b + 2c,we have,

>1 +

a> ge7
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Unfolding the recurrence inequalities backwards and allowing fori YI = 0, 1Si <h, we have,

KI W = Ch

I -Ch-11ICA + I

IKh -~ 21l+2

ICh- -21 i+3

I -> ! 21- 1 + (h- 1)

Id =Ifv)I = )

Since

2,r 2(2j-+ 1 +1 I-1Z, -l)

I-

I ZI + I r-'ZI - 2

-I Z -2

_2h-11A + 1 +(h-1h - 2

we get

- >2 + I1 2h_1 + h h _1

h !5 192( - +

Since I Ch > 1, we have the desired inequality. 0l
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Definition X cV (G) is sequentially collapsible if there exists a vertex V E X which collapses X.

We need the following lemma to prove that a minimal bottleneck set is sequentially collapsible.

Lemma 4 Let G (VE) be a digraph such that V = yX, where each of the Xi s is neither empty nor equal

to V and

Vi lI_<i I-'mXi n' FXi = 0 (A)

holds.

ThenforsomeXi, 1<--m,

3Y .X [Y 0 & 0(Y)< L _]]

Proof The proof is by induction on the cardinality of V. As basis, observe that if I VI = 1, the antecedent of

the lemma can never be satisfied since it is impossible to find a non-empty subset of a 1-element set which

is not equal to the set. Therefore, the lemma is vacuously true in this case. Assume that it is true whenever

V1 _< n. We must show that it holds forI Vj = n + 1.

Case I n+1 is odd.

Consider the subgraph G I(V 1,E i) induced by deleting some vertex v E V. Now I Vd =I VI -1 = n is

even. If there exists some Xi 1<4.5 m such that Xi = V1, then certainly

4G a(X,) = n +IF-X i +l=[-nn-+ =[I-=L ,andthelemmaisprovedbyletingY=Xi.

If there is no such Xj, then since V, = ,__1,', where Xi'= Xi - (v), and since (A) holds in the

induced subgraph as well, by the induction hypothesis there exists a non-empty subset Y of some X,' such

that

• D ,, Y ) : + I r e';' _< I i

But thcn,

q),;(Y) _ (DG,(Y) +1_ ± n I IL

nd the lemma holds.
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Case 2 n +1 is even.

(This case is much more difficult than the previous case and the proof is in 4 parts. In the first part, we

show that any given digraph which satisfies the antecedent of the lemma can be converted to an equivalent

digraph in which an additional key property is satisfied. This property provides the inequality necessary to

identify at least one subset Y which will prove the lemma. In part 2, we define an equivalence relation

which partitions the given digraph into disjoint equivalence classes of vertices; the rest of the proof is

directed toward demonstrating that one of these equivalence classes is, in fact, the Y needed to complete

the proof. With this in mind, we transform the digraph so that every vertex in any equivalence class A* has

exactly the same in- and out-neighbors from other equivalence classes as the other vertices in Ak; the sub-

graph induced by the equivalence class itself is made a balanced tournament. This has the effect of setting

up a correlation between the in-degree of every vertex in the equivalence class Ak, and 4D(Ak). In part 3, we

prepare the ground for the final pigeonholing argument in part 4, which will demonstrate that thcre must be

some vertex which has a small enough in-degree for the equivalence class to which it belongs to satisfy the

requirement of the lemma.) )

Part I

In this part, we show how the given graph G may be modified to obtain a new graph in which some

key properties are true. More precisely, we have the following claim:

Claim 1

Given a graph G which satisfies the antecedent of the lemma, there exists a graph G'(V',E') which

satisfies:

(a) V'= V

(b) V'= , where each of the X'i s is a non-empty set not equal to V', and m' m, and

Vi l! i <n" 3ij <_m [X'i Q Xj]

(C) Vi 1 i <-' [Fg'X'i r,-rGX 'i = 01.

(d) Vi 1l _g-m' VY X'i [(DG'(Y)=@O(Y)]

and

(e) 'vii<i,j ,n, if FGX'j r"y'i * then I1tX' (-¥VlI 76X',(-)X',!
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Proof of Clam I Note that (a)-(d) are satisfied by setting X', = Xi E i5m and m'= m. The only new re-

quirement is (e). If it is already satisified in G, we are done. So suppose that for some pair of sets

Xi,X) 1 i j:m, (e) does not hold. Therefore rrX, ,-rYi * 0 and I re1,'X r)X1i !51 rGX, n-Xj . (Look at

figure below.)

Clearly, (Fa1X 1 -Xj) -)r'(IGXj(-,X) = 0 and (roXsr'tX,)-r5'Xj(r)Xj) = 0, else (A) of the lemma

is not satisfied for G.

Let Xi 51  x -InX,'X, and Xi 2 =rGXj rXi Let f : XI -+ rGX -sX, be any one-one mapping. Such

a mapping is possible since X51 I1 J IGX! r-)XI

XE 1 i

Now, for every vertex V E Xi 2, delete all directed edges from vertices u E X11 and replace each

deleted edge by a new edge from f (u), which is in FG Xi( Xj

Call the graph thus obtained //j. Let m, = m + 1. In HI~, rH 1 r_-X,2 =0, SO(C) is satisfied between

,V,; and X, 2 Similarly, (e) is satisfied between X1 and X, 1, and between X, and X,2.
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It can be verifed that (a)-(d) are still satisfied for all the m I sets i in .

If Xi ,Xj was the only pair of sets which violated (e) in G, then we are done by setting G' = 111 and

m" = m1. Else, we repeat the above transformation for some pair of sets in 111 for which (e) is not satisfied

to obtain H 2 and so on. The sequence of graphs G=H0 , H1, H2, "-. obtained by these repeated transfor-

mations is finite and the last graph G' in the sequence satisfies all the properties (a)-(e). 11

Note that it suffices to prove case 2 in the transformed graph G' because of properties (b) and (d).

For this reason, and in the interests of avoiding avoidable superscripts, we will suppose without loss of gen-

erality that the given graph G satisfies properties (a)-(e).

Part 2

Define an equivalence relation = on V as follows:

u = v if and only if for every i lnim, either both u and v belong to Xi or both u and v do not

belong to Xi, and, in addition, if u and v do belong to Xi then

VI j.m [( )=* ((rGu rx, *o=* r, v (nxi =o) & (rGv r-,"x,* o=, rdu (n-x = o)).

That = is an equivalence relation may be easily verfied. Being an equivalence relation, z partitions V

into a finite number of equivalence classes A IA2,A3, •• ,Aq which are pairwise disjoint and do not span

setboundaries, i.e, Vk 1_k!_q Vij I!i,j am (i *j) =* (Ak('Xi * 0 & Ak( 'XJ * 0 =- A, Xi ("yXj).

Build a new graph G1(V 1,Ei) from G using the following rules:-

(a) V =VI.

(b) The edges in E 1 are built according to one of 2 rules:

(bl) Let Ak,A, be any 2 distinct equivalence classes induced by = in V. For every pair of vertices

u,v such that u E Ak and v r A,, let (u,v)e E1 if and only if Fr'A, (-) Ak * 0.

(b2) Add enough edges to E 1 so that the subgraph induced by every A 1:5k <q is a balanced tour-

nament.

Note that G I as constructed above preserves properties (a), (b), (c), and (e) of claim 1, but (d) may

be violated.

Claim 2

Let Ak be any equivalence class induced by z in V and let v c Ak be some vertex. Let d,, (v) denote

the in-degree of v in G 1. Then d4'(v) > 0 (Ak) - I.
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Proof of claim 2
G

d5.'(v) = I r v1

= I re, v -)AkI +115,V r -) fAhI

Now r 'vnAA*I 4i ] -1 by lemma 1 and r v AA I = r,'Ak by the construction (bi)

above. Therefore, the claim follows. 0

Claim 3

Let u,v E V be any pair of vertices. Then there exists a 2-cycle between u and v in G I only if both

the conditions below are satisfied:

(i) For some X 1<5 <m, both u and v belong to distinct equivalence classes in Xi. Moreover,

then there is a 2-cycle between every pair of vertices x ,y where x E Ak and y E A,.

(ii) There exists some Xj 1<j!m such that either u E FraXj and v E rGXj or u r rGXj and

v E F 5IXj.

Proof of (i): If u and v belong to distinct sets, Xi and Xj, then property (c) of claim I is violated for both

X, and Xj. If u and v belong to the same equivalence class Ak, then construction (b2) ensures that there is

anly one directed edge between u and v. Therefore u and v must belong to distinct equivalence classes,

say Ak and A,, which are both contained in the same set, say Xi. Moreover, all x E Ak are equivalent under

= to u, and all y E A, are equivalent under = to v. By the construction (bl) therefore, there is a 2-cycle

between x and y if and only if there is one between u and v.

Proof of (ii): By (i), u, v belong to the same set Xj, but not to the same equivalence class. Therefore, (ii)

follows from the definition of the relation z. 0

Part 3

The aim of this part is to establish that I E n(n+l). There seems to be no straightforward

pigeonholing argument to prove this and we resort to another construction:

For every pair u ,v of vertices in V, such that a 2-cycle exists between u and v, color one edge, say

(u ,v), red and the other edge (v,u) blue. Now repeat the following algorithm for all pair of sets X,, X,

l<!i<j<_m in G.

Step 1:

Delete all red edges (u ,v) such that one of the following is satisfied:
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i u E rX FaX j X and V E Fd!Xj r'X,.

ii u e FcdXj (-Xi and v e rGX (-)X/.

iii U rGXi -).Xj andy V rG)xi -.xj.

iv u E F7'Xi (-)Xj and V E reX/(-3Xj.

Step 2:

Add an edge (u,v) between every pair of vertices (u,v) such that u E r- Xj(-)Xi and

v - rz;xi -,xj or u E rGXj rlXi and v E rGxj r-xj.

Call the graph so obtained G2(V2 ,E2).

Claim 4 G 2 has no 2-cycles.

Proof of Claim 4 All the red edges must have been deleted in step 1 above because of claim 3(ii). There-

fore, all the old 2-cycles in G I have been broken. The only new edges added in step 2 are between vertices

which in G I could not have had any edges between them (else property (c) of claim 1 would have been

violated), and even then precisely one edge is added between every such pair. fl

Claim5 n! > - I EA > I Ej.

Proof of Claim 5 Let el,, and e2 denote, respectively, the number of edges deleted in step I and the

number of edges added in step 2, for any pair of sets Xi and Xj, 15 i < j < m. Let a, b, c, d, denote,

respectively, I F,]X,(-,IX,.I, I rGXi'Xdl, I rGx(--Xjl , I r fX jI. Then, e11, <ab +cd and

e 2jj =ad + bc.

Now, if b or c is equal to 0, then certainly elj = e2ij =0. Else, if both b and c are not equal to 0,

then by property (e) of claim 1, which holds for G 1, a > c and d > b. Therefore,

a(d-b) > c(d-b)

or ad+ bc > cd + ab

which implies that e 2ij > e laj.

From the above, we can conclude in any case that e2jj > e5,j for any pair of sets X, and Xj.

Therefore,

I EA =I E,j + (e2 i -elij) > E

and since there are no 2-cycles in G 2,
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IEA n(n+l) [2

Part 4

Now we finally prove case 2 of the lemma.

By claim 5,1 Ell !5n . _. Also I = gd '(v), so there must exist some vertex v e VI such

that d .(v) < Since + i and d1 ,(v) must be an integer, we can say that dg,(v) < nTI

Let AA be the equivalence class to which v belongs. Then, by claim 2, we have di(v) > 4O (Ak) - 1.

From this and the above, we can conclude that

4)G(Ak)- 1 n-I

or, DC(A') < - I = I-V

The lemma then follows by letting Y = Ak. 0

Theorem 6 Every minimal bottleneck of any digraph G (VE) is sequentially collapsible.

Proof Suppose not. Let Z c V be a minimal bottleneck set which is not sequentially collapsible. For each

v c Z, define

X,= x: There is a collapsing sequence vo,v1 ,v2 , ,vk, for some 0<k 1 ZI, with vo=v and

vk =x andVi l1<k vi E Z).

Clearly, w E X,, X, c X,. Let X 1,X 2, ,X, be the maximas of the partial order defined by c on

the set IX,, i.e., Vi li5m Vj lj:-n (ij) = (Xi atXj). Then Z =L,_X and

Vi 1:5i_ rm r7 X(I-rGX = 0 (else Xi is not maximal.)

Therefore, the subgraph G1 induced by Z satisfies the antecedent of lemma 4. Consequently, for

some X, 1<i <m, we can find a non-empty subset Y of Xi such that G,%(Y) <_ [ --. But then,

(DG (Y)< G,(Y) +1 __I 1 +1 r'z,

contradicts the minimality of Z. C1
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