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ABSTRACT

Electromagnetic scattering from trees and vegetation is of prime importance in
radar and remote sensing. The actual problem of scattering from trees is rather
complicated and involves three dimensional scattering from lossy, electrically large,
and randomly oriented objects.

In this thesis, the radar cross section of a planar fractal tree is considered.
Although a planar tree is far from being real, scattering from it sheds light on the
scattering phenomenon from an actual tree. The planar tree is generated using
fractal geometry and its branches are considered perfectly conducting. The tree is
illuminated by a plane wave and the problem is solved using the moment method.
Data is presented for the radar cross section for different branching angles of the

tree and at different frequencies.
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I. INTRODUCTION

A. NEED FOR THE STUDY

The trees existing in the natural world are fractal anisotropic. They are made
up of long, intersecting and lossy objects. The geometry of these objects is not easy
to set up as they are randomly oriented in a three dimensional space. The use of
fractals facilitates the modeling of semi-randomly distributed structures.
Mandelbredt [Ref. 1} has shown that a number of naturally occurring phenomenon
such as coastlines, clouds, trees, etc. are fractal in nature. For instance, when a
branch is divided into two (or more), the ratio of the length of the subbranches to
the main branch length remains constant. Furthermore, the branching angle also
remains the same.

In this thesis, scattering from planar fractal trees is considered. The radar
cross section of a real fractal tree is a complicated scattering problem. The analysis
of this problem in a two dimensional space gives an approximate idea of the radar
cross section of a real tree.

The radar cross section of an object is a gquantitative measure of the ratio of
the power density that is received and scattered Ly the object to the power density
of the electromagnetic wave that illuminates that object. The radar ¢ross section is
independent of the range of the object for the far—field situvation. The thevretical

definition of the radar cross section "o" is given by the formula:

a=4:R2 lim I——ET-!
R- « :




where B is the incident electric field vector, 13 is the scattered electric field vector,
and R is the distance between the scattered object and the point of observation. The
radar cross section has dimensions of area. Usually, it is expressed in square

wavelengths.

B. STATEMENT OF THE PROBLEM

This thesis investigates the radar cross section of planar fractal trees. These
trees are composed of planar thin strip dipoles of arbitrarily dimensions and
orientations in a plane. These structures are excited by plane waves of various
frequencies.

The first step in solving the problem is to calculate the induced current
distribution on each strip. The calculation of the current distribution is based on the
theory of the moment method and requires a knowledge of the impedance between
any two of these strips as well as the voltage on each planar strip due to the
incident electric field. The basic concepts and the calculation of the current
distribution are described in Chapter 2.

In Chapter 3, the development of a FORTRAN program, is presented. The
evaluation of the radar cross section requires the knowledge of the scattered eectric
field due to the induced currents on the planar strips. The program computes the
scattered electric field and then the radar eross section of that structure. The details
of these calcuiations are also presented in this Chapter.

The computer models that are used by the developed program are presented in
Chapter 4. Their generation is based on the fractal geometry. An existing and
modified program is used to generate the geometry of the planar fractal trees i

order to be used as input in the developed program.

t




The numerical results of the radar cross section of a single planar dipole and a
a number of planar fractal trees are presented in Chapter 5. The scattering from a
single dipole is compared with standard results for a similar case. The limitations of
the developed program are also presented in this Chapter.

In Chapter 5, the conclusions of the radar cross section results and
recommendations are presented. The two programs that are used for this

investigation are listed in the Appendices.




II. METHOD OF MOMENTS THEORY

In this section of the study, the Lasic concepts of the moment method theory
are presented. This theory is used in the development of the RCS program to find
the current distribution on a planar strip due to an incident plane wave.

For a given structure consisting of planar dipoles the impedance between any
two of them is calculated from the knowledge of the geometry and the wavelength of
the incident plane wave. The voltage on each dipole is calculated from the
knowledge of the characteristics of the incident electric field. The induced current
distribution on each dipole of the structure is determined {rom the calculated

impedance and voltage using the mcthod of moments theory.

A.  GENERAL THEORY
The method of momeunts is a numerical procedure for solving integral

equations of the form:
y .
j fix'Pixx"Mx =g(x), a<x<b tegn 2.1)
a

where {(x') is an unknown fuaction, K(x,x") is a known Kernel or Green's function,
and g{x) s a given function. This procedure reduces the integral equation (equ 2.1)
o & system of simuitaneors linear algebraic equations in terns of some unknown
coeflicients. This method reqguires that the function {(x’) be approximated by a

series of N expansion Tunctions or * basis furttions ¥, such that




N
flx") = nf:'la.nfn(x'), n=1,2,......,.N (eqn 2.2)

where the domain of fy(x’) is the same as that of f(x’) and ag's are the complex
unknown expansion coefficients.

There are two types of basis functions. The subdomain functions, which are
nonzero cver a part of the domain of the unknown function f(x’), and entire domain
functions being nonzero over the entire domain of f(x’). In antennas, some
commonly employed subdomain basis functions are the piecewise sinusoid functions,
the unit height—pulse functions and the piecewise triangular functions.

The subdomain procedure requires subdivision of the structure into N
nonoveriapping segments. Figure 2.1 shows a segmented line where the segments are

assumed to be collinear and of equal length, although this condition is not necessary.
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Figure 2.1 Segmented Line. [From Ref. 2|
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Figure 2.2 shows a subdomain unit height—pulse function which produces a
staircase representation of the unknown function f(x’). Figure 2.3 shows a
subdomain sinusoid basis function and the representation of the function f(x”).
Figure 2.4 shows a subdomain triangular basis function producing a smoother
representation of the function f(x’) than the case of the unit height—pulse basis
function.

The use of entire—domain basis functions does not require any segmentation of
the structure. One of the most most commonly used basis functions of this kind is

the sinusoidal basis functions.
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Figure 2.2 Unit Height—Pulse Basis Function and a Staircase

Representation of f(x’). [From Ref. 2]
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Th= substitution of the function f(x’) by a sequence of N basis functions leads
0 one equation of N unknowns of the expansion coefficients a,, which can be found
by using N linearly independent equations. These equations are set up by the use of
"testing or weighting" functions wy(x), m=1,2,....N. At this point the definition of
the inner product is required. The inner product (f, g) between any two functions or

vectors f, g is a scalar operation defined as
(1,8 = ”S f-gds (eqn 2.3)
where S is the surface of the structure that is analyzed [Ref 4]. The inner product of

the selected testing functions wp(x), with the two sides of the original integral

equatior leads to the equation:

< wn(x), Ja

"t (s e Y= g0, )

(eqn 2.4)

or

b N \ ’
<wm(x).J Y apfu(x’)dx’ )= <g(x), wm(x)>, m=12,...,N

a n=i
Tle use of the above definition for the i..aer product, yields:

N b ~ b b
b auJ um(x)de fu(x JK(x,x)dx’ = J gX)uwa(x)dx, m=12...N
ns vd a a

(eqn 2.6)
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The following substitutions

Vp = Jabg(x)wm(x)dx, m=1,2,.......,N (eqn 2.7)
and
Zn = Jabwm(x)dx J abfn(x')K(x,x')dx’, m;n=12,...N
(eqn 2.8)

result in a matrix equation of the form:

[Zun] - [an] = [Vi) (eqn 2.9)

The unknowns [ap) can be obtained through a matrix inversion:
-
[8a] = [Zpa] [V (eqn 2.10)

where [Zmn]- 1 is the inverse matrix. The column vector V] depends upon the given
function g(x) and the selected testing functions wp(x). The matrix [Zpg] depends
upon the known kernel K(x,x’) and both the selected basis and testing functions.
Once the expansion coefficients are known, the function f(x’) is also known.

The choice of basis and testing or weighting functions is based upon experience
and the rule is that their number has to be the same. The procedure of using the

same basis and testing functions is called the " Garlekin's method ".

B. APPLICATIONS TO EM THEORY

A number of problems in electromagnetic radiation and scattering can be
solved by the method of moments. In the present case, the simple case of a perfectly
conducting object " situatec in free space " is considered.

The basic problem is tu investigate the case when an object is illuminated by

fields of known impressed electric and magnetic currents (J', M’). In the absence of

11




the object, the impressed currents radiate the assumed known incident electric and
magnetic fields (Ei, Hi). In the presence of this object, the impressed currents
radiate the unknown total fields (Et, Ht).

The integral equation is obtained by the surface equivalence principle,
replacing the object by free space together with the electric surface current density

J=nxE (eqn 2.11)
whiere J exists on the entire surface S of the object and ;1 is the unit vector normal
to that surface. In free space, J radiates the scattered fields B} B

E=g-g (eqn 2.12)
B=g-8 (eqn 2.13)

The boundary conditions for this case enforce the total tangential electric field

on the surface S to zero:

ax(ES+E)=0 (eqn 2.14)
This is an integral equation for J since the scattered electric field E® can be written
as an integral over S of the dot product of J and the dyadic free space Green's
function. [Ref. 5]

As the geometry of the object is known, it is more convenient to use the total
current I instead of the total current density J. So, the problem is to find the
unknown current I induced by the incident electric field. The method of moments
solve these kind of problems by the following procedure.

The first step is to expand the unknown current I in terms of some basis set:

N
Is SI,F, (egn 2.15)

=l
where the 1, are the sequence of N unknown complex coefficients, and the Fy is a




sequence of N known modes or basis functions. The best choice of Fy for a given
problem could be quite involved and is discussed in [Ref. 4, pp 308-310].

The second step is to select the testing or weighting functions wy, m=1,2,....N.
These can be identical with the basis functions or different. The inner product of the
sequence of N weighting functions wp, with both sides of the integral equation gives
a N x N system of simultaneous linear algebraic equations of the symbolic form:

[2)-1] = [V] (eqn 2.16)

where I is the current column vector whose N components give the values of I,

and [Z] is the N x N impedance matrix given by the equation
Zmn - _JJSEﬁ’WmdS (eqn 2-17)

where S is the surface of the structure being analyzed. The impedance matrix (Z] is
always symmetric, and, for the special case of a thin dipole instead of an arbitrary
object, is also a Toeplitz matrix. In a Toeplitz matrix, Zy, depends only on |m-n|.

Generally, [Z] is dependent only on the geometry and material composition of
the scatterer, but not on the incident fields [Ref 5]. The right—hand side of the last
equation is the voltage vector whose N components give the corresponding mode
voltage. The voltage vector depends only on the excitation, i.e., the inicident electric
field. The dimensions of the elements of [2] and V] are volt—amps (VA), while the
elements of (1] are dimensionless.

The solution of the last matrix equation is the column vector I}, whose
- Jlements represent the complex coefficients Io. As the total current 1 was expanded
by a sequence of N known modes or basis functions and the complex coefficients Iy,

are known, the total current and so the total current density J is also known.

13




Although the choice of weighting functions is free, it has to be considered that

the matrix equation being solved requires the evaluation of N2 terms and each term
requires two or more integrations. When these integrations are to be done
numerically, the computations become complicated. There is a way to reduce this
complexity by choosing as weighting functions the ::.rac delta functions. This is the
method of point—matching in which delta functions are enforced only at discrete
points on the surface S. The results of this method can be quite accurate especially
when the discrete points are selected to be equally spaced. The solution satisfies the
electromagnetic boundary conditions (e.g., vanishing tangential electric fields on the
surface of an electric conductor) only at discrete points [Ref 4]. Between these
points the boundary conditions may not be satisfied. In this case it is required to
define the deviation as a residual (e.g., residual=AE|an = E|cant Eil,,an # 0 on
the surface S of an electric conductor) and use the method of weighted residuals so
that the boundary conditions will be satisfied in an average sense over the entire

surface S.

14




III. ANALYSIS AND DEVELOPMENT OF RCS PROGRAM

In this chapter, the basic steps that are involved in the calculation of the
Radar Cross Section (RCS) of a planar structure composed of conducting strips are
presented. As mentioned earlier, the fractal tree is modeled as consisting of planar
thin strips. The radar cross section of the fractal tree is calculated using the method
of moments. A Fortran program is developed to calculate the RCS of the tree for a
specified geometry and at a given frequency.

The moment method discretizes an integral equation to a matrix cquation of
the form:

(Z)-[0 = (V] (eqn 3.1)
where [Z] is the impedance matrix whose elements represent the mutual impedance
between any two dipoies of a given structure depending upon the wavelength and
geometry of the structure, [V] is the voltage matrix whose elements correspond to
the voltage on each dipole due to excitation ( incident electric field ), and (I} is the

unknown matrix whose elements represent the induced current on each dipole.

A. DEVELOPMENT OF RCS PROGRAM

The numerical results for RCS are obtained from a Fortran programn that
calculates backscattered RCS of a planar structure consisting of arbitrarily oriented
dipoles. For convenience, the structure will be assumed to be in the y—z plane of an
xyz cartesian coordinate system.

Figure 3.1 shows the structure to be investigated. A large number of planar

dipoles of variable lengths, widths, and orientations in the y-z plane is

13




illuminated by a plane wave with electric field linearly polarized and characterized
by the angles ¢y and 6. It is required to calculate the backscattered RCS from this
structure.

The incident electric field B is given by the formula

B = o.oi(kx X + ky'y + k;-2) (eqn 3.2)
where k is the propagation vector and
kx + ky + kz = ko = U2ﬂofo (eqn 3.3)
ko = 2: (eqn 3.4)
ky = kosinfycospg (egn 3.5)
ky = kosinfgsingy (eqn 3.6)
kz = kocosfo (eqn 3.7)
e= Lxx + Eyy + Ezz (eqn 3.8)

The electric field E‘ lies on the plane perpendicular to the direction of
propagation of the plane wave. Hence, e k 0 implies that

Exkx + Eyky + Ejk. =0 (eqn 3.9)
The substitution of Ey and E; by the variables a and b (independent variables) gives

the coordinate Ex as a dependent variable

B, = — @Ky + bks) : bk, (cgn 3.10)
X

Equation 3.1 the becomes

(aky + bks ) 5 )o=i( ks + kyy + k2 )
Kx

* r . -
E’zlay+bz—

(eqn 3.11)

16
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The RCS program that has been developed makes the following assumptions:
1.  The dipoles are very thin planar strips. The width of the dipoles is
assumed to be electrically small s¢ that only the axial current is
significant. Further, there is no current variation along the width of

the dipoles.

o

The dipoles are not intersecting.
3.  The dipoles are perfect conductors.

The program uses the theory of moment method and the way that it solves the
problem csn be understood if a single planar thin dipole in the y—z plane is
considered. Each dipole is subdivided into equal segments. Overlapping Piecewise
Sinusoidal (PWS) modes are assumed to exist on the dipole. The length of each
W3 mode is equal to the lengih of two segments. Figure 3.2 shows the m,, PWS
mode. The PWS mode has a length 2hyp, and a width 2wy, The coordinates of its
center are (ym, 2m), and it is oriented at an angle ¢ measured from the 2 axis.

The incident electric feld induces current aleng the axis { of that mode. In
Figure 3.2, the induced current J varies s:nusoidally along the axis of the me, mode.
A new coordinate system n—¢ is introduced, where ¢ is the axis of the dipole and s
the axis perpendicular to {. The 7—¢ «oordinate sysiem js obtained by rotating the
y—2 system about the x—axis through an angle 908~ Figure 3.3 shows the details
of this rotation.

The relation betwsen the coordinates of the center of the mode along the axis
of the two orthogonal systems is found to be:

¥ = Yo + ¢Sin(tk) — 7008 V) (vgn 3.12)
2= 2 + (C03(¥h) + 18i0( ) (egn 3.13)

18




The corresponding vector equation is:
y = (sin(¥n) — 7cos(¢n) (eqn 3.14)
z = (cos(Yn) + 78i0(%n) (eqn 3.15)

L]

- ®m e e wmwoes m o e e

5%

Figure 3.2 Geometry o the my, PWS Mode of the Structure.

19




Figure 3.3 Transforation of PWS Mode's Center Coordinates.
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1. Voltage Equations
In this section, expressions for the elements of the voltage matrix |V]
due to the incident electric field, are presented. Each element of this matrix
corresponds t0 a PWS mode of the structure that is investigated. The size of the
voltage matrix is equal to the total number of modes of the structure.
The induced current density on the m¢y mode of the structure, due to

incident electric field, is

= ¢ sinfko(hn = 1¢])) (eqn 3.16)
2wp  sin(kohy)

where 2wy, is the width and 2hy, is the length of the m¢y mode. For each mode, the
induced current variation will be sinusoidal along its axis, beirg maximum at the

center and zero at the end points. The corresponding voltage Vy is

“fbeai g ded (eqn 3.17)
\% =J. J - J n eqn 3.
m ) =y Ix=0

From equaticns 3.11 and 3.16, it is seen that

a3 (a sin(4u) + b cos(vh)] oilky(yn + ¢sin(¥n) + ka(zn +(cos(¥u)]

(eqn 3.18)

where i, is the angle between the z axis (reference for angle measurements) and the

axis of the mode and yn, zy are the coordinates of vhe center of the mode along the

2]




y and z axis respectively. The substitution into equation 3.17, gives the followi..g

form of Vp:
_ ik + k) ho
" (e ein(e) + b cos(y) J-h,,, ¢ ¢ sin(ko(ba=] ¢|))d¢

(eqn 3.19)
where k¢ = kysin(¥n) + kzcos(¢n). A closed form evaluation of the integral in this

equation leads to final form of Vy

Vi = —XoVon [ cos(koh) — cos(k ) ] Ckettk
ke - ko
\ (eqn 3.20)
Vi = Von by sin(kohp) kc=2*ko
(eqn 3.21)
where

;‘j(kyym + kiZn)
Vom = ¢

a sin(¥n) + b cos(¢m) ]
sin(kohp) . .

(equ 3.22)

2. Radiation Equations
In this section, expressions for the far—zone scattered fields due to the
my PWS mode are developed. For far—field observatious the electric field is given

in spherical coordinates by the following equations [Ref 4):




E %0 (eqn 3.23)

: —jkol'
E()z_,]koe — (L, +1N,) (eqn 3.24)
4nr 4
) E 1'koe'jk0r L N "
9”~+ AT ( gt 1 cp) (eqn 3.25)
where
Ly= ”S [Mxcosfeosy + Mycosbsing —Msinf)] otikor” costn ds’
(eqn 3.26)
Lp= J S [Masing + Mycosy] et 3Kor"C05¢h 4o
(eqn 3.27)
Ng= JS [Jxcosfeosy + Jycosbsing — Josind)] oFHikor’ cost 4/
(eqn 3.28)
N,= ” S[_stm‘p + Jycosy) ¢ ikor " costn g
) (eqn 3.29)
h= 120 (eqn 3.30)

The quantities Jx, Jy, Jz, are the components of the electric current
density Js that are induced on the myy, mode over the surface S, and the quantities
My, My, M, are the coordinates of the magnetic current density Mg over the surface
S. As the structure is on the y—z plane and M; is zero, the quantities JoLplL, are

zero. Equations 3.24 and 3.25 become:

—ika—JKOT
1:20:: -1-13-“5“——-—-31.\"0 (eqn 3.31)

qar

o =Kol
Ev:: ot L UN (eqn 3.32)
dar




As the current density J; is along the ¢—axis, all quantities within the
integrals for J and M will be expressed in terms of the 7—( system. The surface
element that is used in all integrals is ds’ = dydz = d{dn = d(, as the width of the
mode is assumed to be very small in terms of its length. The transformations from

the y—z system to the (—» system are made by using the following substitutions:

1’ cos(¢m) = ysinésing + zcosf (eqn 3.33)
where

Y = Yn + (sin(¥n) (eqn 3.34)

z = zp + (cos(Yn) (eqn 3.35)
and

Ja=dyy + Jaz = ¢ | ——Lo——sin(ka(ba-|¢])

2wpsin(kohp)
(eqn 3.36)

where

Jy= JC sin(¢i) (eqn 3.37)

J.= JC cos( ¥n) (eqn 3.38)

These substitutions and algebraic manipulations give the quantities N fm and N om

for the my, mode in the (-7 system:

N = N()O —"}2‘5—07[ cos(Eghn) — cos(koha) En # tko
En - ko
(eqn 3.39)

Nom = NOO hm Sin(kohm) Em = *ko
(eqn 3.40)

and




-2k
Ncpm = N‘PO ﬁ[ COS(Emhm) - COS(kohm) ] En # ko
m - 80

(eqn 3.41)
N(pm = N(p() hm Sin(Emhm) .Em B *ko
(eqn 3.42)

where

N, = Sigpcosfsing — cosyysing I ei[ko(ymsin()sincp+zmcos())]

bo sin(koh)
(eqn 3.43)
N = Singpcosy I, ej[ko(ymsinﬂsinwzmcosﬂ)]
Y0 sin(kohg)
(equ 3.44)
o Ep = ko(sin¢ysinésing + cosymcosb)
(eqn 3.45)

In this thesis, only the monostatic radar cross section will be
considered. In the radiation equations the angles 6 and ¢ represent the orientation
angles of the scattered electric field ES. Their relation with the incident angles fo
and ¢ for the monostatic case is:

0=r1—16 (eqn 3.46)
p=T— (eqn 3.47)
If M denotes the total number of PWS modes in the structure under

investigation, then

M
Ng— El Nom (eqn 3.48)

T m=

M
N = N .
N o m-El om (eqn 3.49)




The final expression for the equations 3.24 and 3.25 is

M
E,=C- N n 3.50
0 moy fm (eq )
M
E‘p= Cmil N(pm (eqn 3.51)
where
—.k e—jkor :
C= .JOT_ZZ (eqn 3.52)
T

3. RCS Equations
When an incident plane wave with electric field B! strikes the object

and E° is the scattered electric field, the radar cross section ¢ is defined as

2
s
o= lim 47r_r2—|E—l§ (eqn 3.53)
I = w i
ol

For the scattered electric field ES, its spherical coordinates E P and E 0 have been

calculated by the equations 3.50 and 3.51. The incident electric field B! is known by

means of equation 3.11.

2 2 9 2
1B = |2l + |b] +|—¥—-——a“ “’k"‘ (eqn 3.54)
X

|ES|2= |E |2+ |E |2= |C|2 [[|N |2+ |N |2]
0 Q 0 @
(eqn 3.55)
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The combination of equations 3.11, 3.50-3.52, 3.54-3.55, and 3.53 leads to the final
formula for RCS:

2
_ ko7 [ 2 2] 1
o=l [Ngl“+ IN,|

2 2 2
la|” + [b] + aky + bk,

kx
(eqn 3.56)

This is the formula that the program uses to compute the RCS of a

planar structure for a given set of incident angles 6y, and ;.

B. INPUT-OUTPUT OF RCS PROGRAM
The RCS program, which is described in Appendix A, is a FORTRAN
program having two input files. The first input file, INPUT1, contains the data that
characterize the incident plane wave and the data that describe the geometry of the
planar structure whose broadside RCS is measured. The second input file, INPUT,
contains the set of incident angles o, wo.
The program reads from the INPUT]1 file the following input data:
1.  frequency of the incident plane wave in GHz,
2. parameters a and b that characterize the polarization of the incident
electric field.
number of dipoles that the structure consists of,
half length of each dipole in cm,
half width of each dipole in cm,

I A S o

coordinates in cm of the center of each dipole along the two axes of

the orthogonal system that the structure lies,
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7.  orientation angle of each dipole, measured from the vertical axis,
positive in the clockwise direction, and |
8. number of segments of each dipole.

As the program reads these input data it generates the geometry of the PWS
modes, calculates the impedance elements between any two modes of the structure,
and fills the impedance matrix [Z]. The size of the impedance matrix depends on the
total number of modes. When this matrix is calculated and filled, the program
inverts it to [Z]"1 and stores it for later use.

The next step is to read from the INPUT file the sets of incident angles 65, @
and for each one it calculates the voltage on each mode, filling the voltage matrix
[V]. This matrix is a column vector which depends upon the excitation only. Then it
multiplies the stored inverted impedance matrix [Z]_1 by the voltage matrix. This
yields the current vector {I]:

1] = (2] [V] (eqn 3.57)

As the induced currents are known, the program uses the previously described
radiation equations and calculates the RCS of the structure corresponding to the
given set of incident angles o, wo. The output RCS is normalized to the square of
the wavelength /\2, and is given in dB. The program reads the next set of incident
angles fy, ¢y and repeats the same procedure to compute the RCS of the new set.

Although the input lengths and widths are in cm, the program considers them
normalized to the wavelength. For accurate results at least 4 segments per
wavelength are chosen. The selection of the width of each dipole is arbitrarily taken
as L/W = 33.
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IV. FRACTAL TREE GENERATION

The problem of measuring the radar cross section of a real natural tree is
complicated as it requires an investigation in three dimensional space with very
long, intersecting elongated objects that are randomly oriented.

For simplicity the radar cross section (RCS) problem is solved in a two
dimensional space. RCS is calculated from a planar fractal tree whose branches are
considered as thin planar dipoles of different lengths and widths. In an actual tree,
the branches are lossy and in general anisotropic. However, in the present model,
the tree is comprised of perfectly conducting branches. The geometry of this tree is

based upon the fractal geometry.

A. DEFINITIONS

Fractal is a mathematical set or object whose form is extremely irregular or
fragmented at all scales [Ref. 6]. The requirement to describe the shape of many
objects that appear in the natural world, such as trees, mountains, coastlines, etc.,
led to the generation of fractal geometry. As Euclidean geometry cannot give
mathematical expressions to describe fractal objects, fractal geometry is used to

describe mathematically many natural patterns.
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The basic characteristics of fractal objects are [Ref. 7]:

1. A large degree of heterogeneity.

2. A self-similar structure over many size scales. Self—similarity refers
to the general preservation of form or characteristic regardless of the
scale of observation.

3. The lack of a well—defined (characteristic) scale.

The geometric characteristics of fractal objects are useful for describing phenomena
of nature, such as scattering of objects like landscapes or surface cracks. Although
these objects are irregular and randomly oriented in nature, they show structural
similarities on several different discrete size scales [Ref. 7).

One measure of structural complexity is the fractal dimension DF. There are
several definitions of DF depending upon the particular application. For the case of

fractal trees the fractal dimension DF is the measure of the space that a

self—similar structure fills, and it varies with the branching levels that the structure
consists of.
The most useful terms from fractal geometry that are used to describe a planar
fractal tree are the following:
1. The number of branch segments N formed from each preceding branch
segment.
2. The constant similarity ratio "r" that relates the fractional reduction
in segment length for each segment to previous level. this factor is less
than 1.0.

In this case, the fractal dimension DF is given by the formula [Ref. 7):

| - Dp = og(total branch length) _ _log(rN)
log(average branch length) log(1/r)
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This equation is accurate for symmetric structures or asymmetric structures having
a normal distribution function [Ref. 7]. More details about fractal geometry are
discussed in [Ref. 1] and [Ref. 7).

B. FRACTAL TREE GENERATION

In the planar fractal structures that are used for calculating the radar cross
section, the number of branch segments N formed from each preceding branch
segment is 2. The principal properties of these trees are that the branches are not
overlapping, and the angle 6 between any two branches is the same. The
nonoverlapping between the branches of each fractal model is achieved by choosing
the branch angle 6 for a given reduction factor by the following empirical formula
[Ref. 7]

Minimum § = 32.34 x 177 (Radians)

This angle is given in radians and r is the desired reduction factor which is a
constant for the structure. As the reduction factor r increases the tree fills more
space.

Five types of planar fractal trees are considered in this thesis. Each type
corresponds to a set of values for reduction factor r and minimum branch angle 4.
Table 4.1 shows these sets of r and minimum 6, where 6is given in degrees.

Each model is generated by selecting the desirable reduction factor r (r < 1.0),
the corresponding branch angle @ given by equation 4.1, the initial length from

which the reduction will start, the valuc of N (which in the investigated case is 2),
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and the number of the desired levels for branch generation. Each level contains 2°

points corresponding to the end points of the reduced length branches.

TABLE 4.1
NUMERICAL VALUES OF r AND MINIMUM ANGLE 4.

REDUCTION FACTOR (r) ANGLE ¢
0.53 29.940
0.55 46.430
0.60 95.890
0.66 145.350
0.71 180.000

Figures 4.1—4.5 show the planar fractal trees that correspond to each set of r
and 0 of Table 4.1 respectively. As the branch angle @ increases, the spreading of the
branches becomes larger. In all trees the physical length of the initial branch is
chosen as two centimeters. These models were gencrated by a FORTRAN program
which has the following input data:

1. The initial length. This the length of the first dipole whose length will
be reduced by the constant reduction factor (r).

2. The value of N, being 2 in all cases.

3. The initial point that the reduction starts. This point is the end point

of the initial wire.
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4.  The number of desirable levels for branch generation.
5. The branch angle 4.

The program generates two output files. The first is the input file for the RCS:
program containing all the required data that were mentioned in Chapter 3. The
second output file contains the coordinates of the start and end points of each
generated branch.

For the models characterized by reduction factors 0.53, 0.55, and 0.60, the
program limits the structure size when the length of a branch becomes smaller than
0.1 of the wavelength of the incident plane wave. For the models characterized by
reduction factor 0.66 and 0.71, this limit is taken as 0.15. The reason is that as the
reduction factor increases the number of branches in a particular branck level
increases. The size of the tree is truncated so that the number of unknowns is
manageable.

The geometry of all planar fractal trees is in the same coordinate system that
the RCS program uses. All models have been generated in the y—z plane of a

cartesian coordinate system.
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Figure 4.1 Fractal Tree for r = 0.53 and § = 29.94*.
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Figure 4.2 Fractal Tree for r = 0.55 and 0 = 46.43°.
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Figure 4.3 Fractal Tree for r = 0.60 and 0 = 95.89°.
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Figure 4.4 Fractal Tree for r = 0.66 and 0 = 145.35°
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V. NUMERICAL RESULTS

In this chapter, computed results for the radar cross section ¢ of planar
structures are presented. In order to check the program, the radar cross section
results of a single planar dipole are compared with the results given in [Ref. 8].
Details of this comparison are presented in the following section.

In all models where numerical results for the radar cross section are presented,
the following factors have been considered:

1. E-plane is the plane corresponding to ¢ = 00, and 6 varying from 0° to
1800,

2. H-plane is the plane corresponding to 6y = 900, and ¢y varying from —900
to +900,

3. The resulting RCS ¢ is normalized to the square of the wavelength A of the
incident plane wave (a/A2).

4. The number of segments, that each dipole is subdivided, is taken as four
per wavelength.

5. The physical dimensions and orientations of the dipoles used to construct a
planar structure are the same when this structure is investigated at different
frequencies, and only the segmentation is different depending upon the wavelength A
of the incident plane wave.

6. Each PWS mode has length equal to the length of two segments.

7. The incident electric field is linearly polarized and the parameters a and b
are token as 0 and 1 respectively for this investigation. This corresponds to having

only a horizontal magnetic field.
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A. SCATTERING FROM A SINGLE DIPOLE

In Figure 5.1 a centered loaded vertical planar thin dipole of length L and
width 2w is oriented along the z axis. This dipole is excited by a plane wave of
frequency 30 GHz traveling in the x—y plane (fp = 900, gy = 00). The same
situation is described in [Ref. 8, pp. 510-515] for a cylindrical dipole of radius a and
length L such that L/2a=74.2. In the present case of a planar dipole, the length of
the planar dipole is selected such that L/2w = 33 [Ref. 9]. Figure 5.2 shows, on a
semi—log scale, the results computed by the developed program of the monostatic
normalized radar cross section o/ 22 of this single dipole for values of L/A ranging
from 0 to 1.4, and for loads ZL = 0 and ZL = «. The case of ZL = w is achieved by
setting a small gap (0.01 wavelength) at the center of this planar dipole. In Figure
5.2, the corresponding values of o/ 22 from [Ref. 8, pp. 115] are also shown.

This comparison leads to an accurate check of the correct calculation of the
radar cross section by the developed RCS program. The small discrepancy between
the computed values and those given by [Ref. 8] is due to the error incurred in

reading values off the curves presented in [Ref. 8, pp. 115].
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B. SCATTERING FROM PLANAR FRACTAL TREES

In Chapter 4, five types of planar fractal trees were described. Each type of
these trees was lying in the y—z plane. The developed RCS program calculates the
broadside radar cross section o of each tree for frequencies 15 GHz—75 GHz, for the
monostatic case. The initial dipole that is being reduced by the reduction factor r
has physical length 2 cm and only the branch lengths are changed for each tree
depending upon the reduction factor r. As the frequency of the plane wave changes,
the electrical length of this dipole as well as the dipoles composing the tree will also
change. For the frequency range of 15 GHz—75 GHz, the electrical length of the
initial length will vary from one to four wavelengths.

Figures 5.3—5.6 show the variations of a//\2, in dB, in the E—plane and the
H-plane for the case of a fractal tree characterized by reduction factor r = 0.53 and
branch angle § = 29.940. The frequency of the incident plane wave varied from 15
GHz to 60 GHz in steps of 15 GHz. The tree is composed of 31 dipoles. This number
is small as the reduction factor is small and the branch lengths are reduced to very
small values at low levels.

The o/ 22 variations in the E—Plane are in & range of 10 dB approximately. In
the H—Plane. The a//\2 is symmetric about the 900 axis and is smoother at lower
frequencies. As the frequency increases, the maximum value of o/ 22 at 6o = 900 and
=00, increases from 2.73 dB at 15 GHz to 19.23 dB at 60 GHz. Figure 5.7 shows
the variation of the maximum ¢/ 22 in terms of frequency increments for the same

structure. This variation is very small between 30 and 45 GHaz.
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Figures 5.8—5.12 show the variations of a/,\2 , in dB, in the E and H planes

for the fractal tree characterized by a reduction factor r = 0.55 and branch angle 4

. = 46.430. In this case, the fractal tree is composed of 63 dipoles ard spreads more
than the previous one, and the lengths of the hranches are bigger than the previous
ones (due to a larger reduction factor of 0.55 instead of 0.53). This results in more
variations for o/ 22 in both E and H planes.

This model is investigated at a frequency range of 15-75 GHz. At all
frequencies, the o/ A2 varies in a range of 10-12 dB approximately. In the H--Plane
the variation of ¢/ 22 symmetric about the 900 axis. The maximum value of radar
cross section varies from 2.78 db at 15 GHz to 22.63 dB at 75 GHz. Figure 5.13
shows the maximur value of o/ /\2, corresponding to 6y = 900 and o = 00 in terms
of the frequency of the incident plane wave, varying from 15 GHz to 75 GHz. This
maximum ¢/ A2 increases linearly as the frequency increases except the range of

45—60 GHz where the variation is very small.
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Figures 5.14-5.18 show the variations of the normalized radar cross section
of A2 of 2 planar fractal tree characterized by reduction factor r = 0.60 and branch
angle 6 = 95.890. This model is composed of 63 dipoles and has more spreading than
the two models that were previously investigated. The branches have larger physical
lengths than the ones in other two models. At 15 GHz, the variation of o/ 22 in the
E-Plane is very low and similar to the variation in the other two models at the
same frequency. In the H—Plane this variation is different as the incident plane
wave strikes more dipoles from —900 to 900,

As the frequency increases, the electrical length of the dipoles is also increased,
and more lobes appear at 30 GHz and higher frequencies in both the E and the H
planes. The maximum value of a//\2 at o= 900 and ¢ = 00 varies from —0.23 dB
at 15 GHz to 21.60 dB at 75 GHz. Figure 5.19 shows the variation of the maximum
radar cross section in terms of the frequency of the incident plane wave. In a range
of 15~60 GHz the values of maximum o/ a2 follow a straight line approximately. In
the range of 60—75 GHz the variation of maximum o/ 22 is small.

The planar fractal trees characterized by r = 0.66, § = 145.35%, and r = 0.71, ¢
= 1800, have large values of branching angles. The large values of reduction factor r
generate fractal trees whose branches have large physical lengths compared with the
lengths of the branches of the previously investigated fractal trees. The result is that
the electrical lengths of these branches are large also at the range of 1575 GHz, and
a large number of modes is required to investigate the last two types of fractal trees.
It was found that the developed RCS program is not able to calculate the radar
cross section of fractal trees that are characterized by large values of reduction
factor r and branching angle # due to memory restrictions and other numerical

problems.
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For this reason the numerical results for o/ 22 are not presented in this thesis for
these two cases.
It is seen by comparing Figures 5.7, 5.13, and 5.19 that there is a frequency -
range over which the variation of maximum RCS is rather small. Furthermore, this
. range of frequencies shifts to higher frequencies as the tree structure is spread from r
= 0.53 to r = 0.60. The maximum RCS of each of these trees varies in a range of 3
dB approximately at the same frequency.
Scattering from an actual tree will not exactly follow all these patterns, but it
is felt that the trends would generally remain the same. This is specially true for the

frequency behavior.
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VL. CONCLUSIONS AND RECOMMENDATIONS

The radar cross section of natural trees is a complicated problem of
electromagnetic scattering. The real trees are made up of long, intersecting, and
lossy objects. The geometry of these objects is not easy to set up in a three
dimensional space.

In this thesis, the real fractal trees were approximated by planar fractal trees.
The radar cross section of these trees was calculated by developing a Fortran
program. The planar fractal trees that were used for this investigation were
symmetric planar structures composed of perfectly conducting and non—intersecting

planar dipoles. The geometry of these structures was generated using fractal theory.

A. CONCLUSIONS

The radar cross section of the planar fractal trees was calculated using the
moment method theory. For a given planar structuie composed of planar strips and
illuminated by a plane wave, the program generaies the geometry of the PWS
modes, calculates the impedance between any two of them, and fills the impedance
matrix [Z]. The voltage on each PWS mode, due to the incident electric field, is also
calculated, and the voltage column vector [V] is generated.

The RCS programn uses the moment method theory to calculate the current
distribution on each PWS mode. The radiation equations of clectromagnetic theory

are used to determine the scattered electric field due to the current induced on each

PW¢E mode of the structure. The knowiedge of both the given incident
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electric and calculated scattered electric fields leads to the calculation of the radar
cross section (a/AZ), for the given angles #,p0 of the incident electric field.

The calculated radar cross section of a single centered loaded vertical dipoie
was compared with the values given in [Ref. 8, pp. 115], for a similar dipole.

. Although the investigation was for a planar dipole and in [Ref. 8] the dipole was
cylindrical, the discrepancy of the results was very small.

In this thesis, five models of planar fractal trees were investigaied. The
geometry of these models was generated by a given program which was modified to
generate the input data for the developed KCS program.

The broadside radar cross section, for the monostatic case, was calculated for
three of these planar fractal trees, for a frequency range of 15 GHz to 75 GHz in
steps of 15 GHz. This investigation showed that the radar cross section varied in a
range of 10 dB in the E—Plane. In the H—Plane, the variation of a//\2 was
symumetric about the 900 axis and smooth at low frequencies and small branching
angles. For higher branching angles and reduction factors, more variations of 0//\2
with the frequency were seen in both ihe E and il planes.

The maximum RCS at 6, = 90b, gy = 0° showed a small variation over a
frequency range. This range was different on each investigated tree. The variation of
the maximum RCS followed a straight line at the other frequencies. In each tree and
at the same frequency, the maximum RCS varied in the range of 3 dB
approximately.

It was found that the developed RCS program was not able to calculate the
radar cross section of fractal trees that were cheracterized by large values of

reduction factor and branching angle due to memory restrictions and other

numerical problems.




The scattering from an actual tree will not exactly follow the patterns that
were described in Chapter 5, but it is felt that the trends would generally remain
the same. This is specially true for the frequency behavior.

B. RECOMMENDATIONS

One recommendation is to investigate the radar cross section of planar fractal
trees characterized by values other than those used in this thesis. Especially, a
limited set of reduction factor and branching angle has to be established for the
same physical length of the initial dipoie.

Another recommendation is to investigate the radar cross section of planar
fractal trees characterized by the same values of reduction factor and branching
angles as those that were used in this thesis but with different physical and
electrical dimensions of the fractal trees.

In this thesis, the branches of the fractal trees were assumed to be perfectly
conducting planar strips. The trees were considered without leaves. The radar cross
section of fractal trees composed of lossy planar surips and with leaves should be
investigated.

Finally, the generation of a three dimensional fractal tree and its radar cross

section may be investigated.
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APPENDIX A
PROGRAM RCS

THIS PROGRAM CALCULATES THE RADAR CROSS SECTION OF A
PLANAR STRUCTURE COMPOSED OF ARBITRARILY ORIENTED
PLANAR THIN DIPOLES. THE DIPOLES ARE NOT INTERSECTING.
THE DIPOLES ARE PERFECT CONDUCTORS.

GEOMETRY IN Y-Z PLANE
INPUT DATA:

F = FREQUENCY IN GHZ

NW = NUMBER OF DIPOLES

A,B = COORDINATES OF INCIDENT ELECTRIC FIELD ON Y AND Z
AXIS RESPECTIVELY.

LW = HALF LENGTH OF EACH DIPOLE IN CM

WW = HALF WIDTH OF EACH DIPOLE IN CM

SW, TW = COORDINATES OF THE CENTER OF EACH DIPOLE

ALONG Y AND Z AXIS RESPECTIVELY

PSIW = ANGLE IN DEGREES BETWEEN THE Z AXIS (REFERENCE)
AND DIRECTION OF CURRENT FLOW ON EACH DIPOLE

(POSITIVE ANGLES ARE MEASURED CLOCKWISE)

NW = NUMBER OF SEGMENTS THAT EACH DIPOLE IS

SUBDIVIDED

TllggﬁAO, PHIO = ANGLES IN DEGREES OF INCIDENT ELECTRIC

FIELD.

OUTPUT DATA:

NORMALIZED RCS (o AQ) IN dB

REAL LS$(1:230),5(1:230),T(1:230),PSI(1:230)

REAL LEN PG.SUTUWID,A,B,MAG(1:230)

INTEGER l,NMAX,INl)X(?(iO&,N'I‘,NP,L,M,N,K,NW
COMPLEX 7(1:230.1:230),V(1:230), CUR{ .:230)

COMMON/ RC1/ NMAX

COMMON/ RC2/ LS, WIS, T, PSI

COMMON/ RC4/ CUR

OPEN (UNIT=1,FILE="INPUTI' FORM='"FORMATTED')
OPEN (UNIT=2 FILE='OUTPUTI,FORM="UNFORMATTED")
OPEN éUNI'IES,FlLE::'INPU'I",FORM:’I-‘OR!\!A'I"I‘RI)_‘)
OPEN (UNIT=4 FILE='OUTPUT" FORM="FORMATTED")
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READ(1,*) F,NW,A,B
PI = 4.* ATAN(1.)
K0 = PI*F/15. "
RAD = PI/180.
CALL ZMATR (F,NW,Z)
NP =230
NT=NMAX
CALL CLUDCP (Z,NT,NP,INDX
22 READ (3,* END=11) THITA0,PHI0
CALL VOLT(F,THITA0,PHI0.A,B,V)
CALL CLUBSB (Z,NT,NP,INDX,V)
DO 54 K=1,NT
CUR(K)=V(K)
54 CONTINUE
CALL RADIAT gF,THITAO,PHIO,NMAX,A,B,RCS)
WRITE(4,*) THITAO,PHIO,RCS
PRINT* RCS
GOTO 22
CLOSE(3j
STOP
END

SUBROUTINE TO COMPUTE THE MUTUAL IMPEDANCE BETWEEN
THE PWS MODES OF N ARBITRARILY ORIENTED DIPOLES.

GEOMETRY IN THE Y-Z PLANE

SUBROUTINE ZMATR SF,NW,Z)
REAL F,5(1:230),7(1:230),LG,SG,TG,WI(1:230),PSI(1:230)
REAL PSIG,PSIW(1:70),LW(l:70'),H,W,DH,DW,WID’I‘H,LENG
REAL H1,H2,W1,W2 81,52 T1,T2,PS11,PSI2,L5(1:230)
REAL WW/(1:70),SW(1:70),TW(1:70),55(1:20),T5(1:20)
REAL PG,WID,LEN,SU,TU,A,B
INTEGER TEMP,P,L,NS(1:70),NMAX,I,N,NW
INTEGER FUN,GJ.GB,GR K
COMPLEX 712,7(1:230,1:230)
COMMON/ RC2/ LS,WLS,T,PSI
COMMON/ RC1/ NMAX _
COMMON/ JOHN/ LG,NG,5G,TG,PSIG,LENG
COMMON/ ZPAR/ H,W,DW DH
COMMON/ ZINC/ H1,H2,W1,W2.51,52,T1,12,PS11,PSI2
DO 101 =1, NW

READ(1,*) LW(I),WW(1),SW(I), TW(I),PSIW(I),N5(1)

101 CONTINULE

CLOSE(1)
NMAX =0
DO 75 =1 NW

NMAX = NMAX + (NS (1) - 1)

75 CONTINUE

P=]
GB=0

i
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DO 50 I=1,NW
LENG = LW(I)
LG=2*LW(I)/FLOAT(NS(I))
WIDTH=WW(I)

NG=NS(I

SG=SW(I

TG=TW§
PSIG=PSI I\51)
CALL GEOM(SS,TS)
GR=NS(I)+GB-1
M=P

DO 60 J=1,N§(I)-1
PSI(M)=PSIG
LS(M)=LG
WI(M)=WIDTH
S(M)=SS(J}
T(M)=T5(J)
PRINT*,S5(M),T(M)
M=M+1
CONTINUE
GB=GR
P=GR+1
CONTINUE
TEMP=NS§(1)-1
L=1
G=NMAX
DO 80 M=1,G
IF(M.LE.TEMP)GOTO 85
L=L+1
TEMP=TEMP+NS(L)-1
CONTINUE
K=TEMP
DO 90 N=M.,G
IF(N.LE.K)THEN
H:LS&M)
W=W (M)
D\W=0
DH=ABS(M-N)*H
CALL ZSDIP(F,Z212)
Z(M,N)=212
PRINT*,Z(M,N)
WRITE(2) Z(M,N)
ELSE

Hl:LS%M)
H2=1L5(N)
Wi=WI(A)
W2=WI{N)
S1=8(M)
$2=5(N)
TI=T(M)
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80

26
24
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T2=T(N)
PSI1=PSI(M)
PSI2=PSI N%{
CALL ZPSUR (F,Z12)
% =712
PRINT* Z(M,N)
WRITE(2) Z(M,N)
ENDIF
CONTINUE
CONTINUE
DO 24 M=2,G
DO 26 N=1.M1
Z(M,N)=7( N M)
RITE( 2) Z(M N)
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE TO COMPUTE THE MUTUAL/SELF IMPEDANCE
BETWEEN TWO DIPOLES. THE DIPOLES ARE ASSUMED TO BE
COPLANAR, IDENTICAL AND PARALLEL. THE DIPOLE TO
DIPOLE IMPEDANCE IS COMPUTED AS THE SUM OF FOUR
MONOPOLE TO MONOPOLE IMPEDANCES.

INFUT PARAMETERS:

F :: Frequency of operation (GHz
H = Half height of the dipole Ecm
W = Half wuglth of the dipole (cm
DH = Longitudinal distance between the two dipoles (cm)
DW = Transverse distance between the two dipoles (cm)

SUBROUTINE ZSDIP (F,Z12)

REAL H,W,DW, DH,F

COMPLEX Zl2 ZI‘

COMMON/ LPAR/ H,W.,DW DH

2T = (0 ,0.)

212 = (0.,0.)

CALL ZSMONP (F, H, W, DW, DH, 0,1,0, 1, 2T)
212=712 + 2T

CALL ZSMONP (F, H, W,DW, DH + 1,0, 1,1, 0, 2T)
212=72124+ 727

CALL ZSMONP (I, H, W, DW, DH - H, 1,0, 0, 1, 2T)
212=2124+ 77

CALL ZSMONP (IF, H, W, DW, Dii, 1,0,1, 0, 1)
212=712+ 2T

RETURN

END



SUBROUTINE TO COMPUTE THE SELF/MUTUAL IMPEDANCE
BETWEEN TWO IDENTICAL, COPLANAR MONOPOLES. THE
CURRENT IS ASSUMED TO BE CONSTANT IN THE
TRANSVERSE DIRECTION.

REF: R. JANASWAMY, A SIMPLIFIED EXPRESSION FOR THE
SELF/MUTUAL IMPEDANCE BETWEEN TWO COPLANAR
AND PARALLEL MONOPOLES, IEEE T—-AP, AP-35,
No. 10, pp. 1174-1176, October 1987.

INPUT PARAMETERS:

F = FREQUENCY IN GHz

H = LENGTH OF EACH MONOPOLE (cm)
W = WIDTH OF EACH MONOPOLE (cm)
D = CENTER TO CENTER SPACING BETWEEN THE TWO
MONOPOLES IN THE DIRECTION TRANSVERSE TO THE
CURRENT FLOW (cm)

HH = CENTER TO CENTER SPACING BETWEEN THE TWO
MONOPOLES IN THE DIRECTION OF CURRENT FLOW (cm)

I11 = TERMINAL CURRENT OF END 1 OF MONOPOLE 1.
121 = TERMINAL CURRENT OF END 2 OF MONOPOLE 1.
112 = TERMINAL CURRENT OF END 1 OF MONOPOLE 2.
122 = TERMINAL CURRENT OF END 2 OF MONOPOLE 2.

NOTE: 111, 121, 112, 122 can assume values only 0 or 1.

ICODE =0,1F D .LE. 4W

ICODE = 1, OTHERWISE

With ICODE = 0, the expression provided in the above paper is used.
With ICODE = 1, a modified form of the expression provided in the
above paper is used. (cf. notes)

OUTPUT PARAMETERS:

212 = COMPLEX IMPEDANCE BETWEEN THE TWO SURFACE
MONOPOLES.

SUBROUTINE ZSMONP (F, I, W, D, HIL 111, 121, 112, 122, Z12)
REAL F, i, W, D, HH, A, B. PI, K0, V, UB, UBP, UA, UAP
REAL KW, KH, KD, RC, PR, FI, 11, 12, 13, 14, SI, CI

REAL UABP, ZR, 21, X, AA (1), BB (1), SQXV, UAB, TINY
INTEGER 111, 121, 112, 122, M, N, NX, KI, iCODE

COMPLEX 212, AC (-1:1, =L:1), EI, E2, 21, J, CMN, E3, EI, FAC
EXTERNAL FR, Il

COMMON /PAR:\.\I{ N, V, KD, A, B, ICODE

EI(X) = CT (ABS (X)) = J * 1 (X)

SQXV (X) = SQRT (X * X + V* V)

TINY = 1.E-6

Pl =4.* ATAN (1)

NX = 1
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K0o=PI*F / 15.

KW =Ko *

KH=K0*H

KD=K0*D

ICODE =0

IF (KD .GT. 4. * KW) ICODE =

KI=10

Note that with this choice of KI accurate results are found in the
region 0 < D <4 W, and for D > 20 W. In between these two regions,
accurate results are found with KI = 20. Hence the above choice is
good only if this code is used for values of D satisfying the above
inequalities.

FAC = CMPLX (1.,0.)
A=KD-2.*K
B=KD+ 2 *KW
IF (ICODE .EQ. 1) GO TO 2
AA(1)=A
BB(1)=B
GO TO3
AA (1) =-2. *KW
BB (1) =2. * KW
Il = (121 * COS (KH) —111) * 112
12 = (111 =121 * COS (KH)) * 122
I3 = (121 — 111 * COS (KH)) * 112
14 = (121 - 111 * COS (KH)) * 122
J = CMPLX (0.,1.)
Z1 = CEXP (J * KH)
AC(-1,-1)=12+11 /71
AC —-l,l;=l2+ll *7Z1
AC(1,-1)=13-14*2)
AC(L,)=13-14 /71
AC(0,-1) = = {AC(-1,-1)*Z1 + AC (1, ~1) g Z1)
AC{0,1)=-(AC(1,1)*Z1 + AC(-1, 1) /21
RC = lo / (2. % SIN (M{) FRW) =2
212 = (0., 0.)
DOIM=-~],1
l)() IN=~1,1,2

= K0 " (HH + M * H)
Il‘ (IC()DI. Q. 0) G()'l()q
FAC=CEXP(J*N"*
CMN = CMPLX (6. 0)
GO TO 5
UA = SQXV (A) + NV
UAP=UA-2.°N"*V
UB=SQXV(B)+N*V
UBP=UB~2."N*V
UAB = SQXV (KD) + N* V
UABP = UAB-2.*N*V
21 = EI(UB)
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(?%’EA)) .GT. TINY) E2 = EI (UA)
IF (11(33’() D) .GT. TINY) E3 = EI (UAB)

CMN=05*(B*B*El+A*A*E2-2 *KD*KD* E3 +
CEXP (-] * UB) * (1. + J * UBP) + CEXP (—J * UA) *
(1. +J*UAP 22, % CEXP (- J * UAB) * (1. + J * UABP))
CALL HABER (NX, AA, BB, FR, KI, ZR)
CALL HABER (NX, AA, BB, FI, KI,ZI
zm:y}g& ;x (M, N)* (CEXP (J'* N * V) * CMN + (ZR + J * ZI)
CONTINUE
712 = 212 * RC
RETURN
END

REAL FUNCTION FR (XI, NX)

INTEGER N, NX, CODE

REAL X, V, T1, KD, A, B, XI (NX), TKW, T2, CI, SI, TINY
COMPLEX El, J

COMMON /PARAM{ N, V, KD, A, B, CODE
EI (X) = CI (ABS (X)) - J * I (X)

TINY = 1.E—6

X = XI (1)

J = CMPLX (0.,1.)

IF (CODE .EQ. 1) GO TO 1
T1=SQRT (X *X + V *V)

FR = COS (T1)

IF (ABS (V) .GT. TINY) FR = FR* (1. =N * V / T1)
IF (X .LE. KD) FR = FR * A

IF (X .GT. KD) FR = -FR * B

GO TO 2

TKW = 0.5% (B —A)

T2 = SQRT (KD + X) * (KD + X) + V* V)
FR = REAL (El (T2 + N * vg)

FR = FR * (TKW — ABS (X)

END

REAL FUNCTION FI (X1, NX)

INTEGER N, NX. CODE

REAL X, \, 'Il KD, A, B, XI(NX), TRW, T2, CI, SI TINY
COMPLEX L, J

COMMON /PARAM/ N, V, KD, A, B, COBE

;I (X) -( ()‘l (ABS (X)) =J *sI (X)

T lS\\ = }.k~6

J = CMPLX {0..1.)

T1 = SQRT (\ X+V*y)

IF{CODE .EQ.1)GOTO |




Qaaa

FI = —SIN Tg
IF (ABS (V) .GT. TINY) FI = FI * (1.=N*V / T1)
IF (X .LE. KD) FI = FI* A

IF (X .GT. KD) F1=-FI * B
GO TO 2

TKW = 0.5* (B—A) |
T2 = SQRT ((KD + X) * (KD + X) + V*V)
FI = AIMAG (EI (T2 + N * V))

FI= F1* (TKW — ABS (X))

SUBROUTINE TO COMPUTE THE COORDINATES OF THE PWS
MODES OF EACH DIPOLE IN THE Y-Z PLANE

SUBROUTINE GEOM (S,T)

REAL THI,H1,H2,Y,Z,5G,TG,LG,PSIG

REAL P,Q,5(1:20),T(1:20),LENG

INTEGER M,NG,K '

COMMON/ JOHN/ LG,NG,SG,TG,PSIG,LENG

COSD(X) = COS(X*RAD)

SIND(X) = SIN(X*RAD)

PI=4*ATAN(1.

RAD=PI/180.

THI=90.-PSIG

H1=COSD(THI)

H2=SIND(THI)

Y=SG—(LENG*H1

Z=TG—(LENG*H2

P=LG*H]

Q=LG*H2

S(1)=Y+P

T(1)=2+Q

DO 225 K=2,NG~1
S(K)=S(1)+(K-1)*P
T(K)="T(1)+(K-1)"Q

CONTINUE

RETURN

END

SUBROUTINE ZPSUR (F.212) |
REAL H1, W1, H2, W2, PSL, F, YSTAR, ZSTAR. K0, AL (2), B (2)
REAL C (3), D (3), RT, T, COT, CSEC, KOS, X, PI, PSI, PSI2
REAL $1, T1, 82, T2, RINTG, IMINTG, RESULT, SIND, COSD,S1,CI
INTEGER NX. KI

COMPLEX 212, )

EXTERNAL RINTG. IMINTG | |

COMMON/ ZINC/ HILH2,W1,W2,51.52, 11,12, PSI1.PSI2

COMMON /PARAM2] C, D, RT, ZT, CSEC, COT, KOS, J, K0

SIND {X) = SIN (X * PI / 180.)
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COSD (X) = COS (x* 1/180,)
DATA Al BI /2*-1,,2*1./
PI=4. * ATAN §1.)
PSI = PSI2 — PSI1
IF (ABS (PSI).LF 0.4) PSI= SIGN(1.,PSI)*0.4
J = CMPLX (0.,1.)

NX =2

KI =3
K0 = PI

* Fg
IN (K0 * H1)
0(1)
~2. * COS (K0 * H1) * C (1)
%)/sm (KO * H2)

~2.* COS (KO0 * H2) * D (1)
CSEC = 1. / SIND (PSI)

KOS = COSD (PSI)

COT = KOS * CSEC

YSTAR = (S2-§1) * COSD (PSI1) - (T2-T1) * SIND ipsm
ZSTAR = (52-81) “ SIND (PSI1) + (T2-T1) * COSD (PSl1)
RT = YSTAR * CSEC — H2

ZT = YSTAR * COT — H1 — ZSTAR

CALL HABER (NX, Al BI, RINTG, K1, RESULT)

712 = RESULT

CALL HABER (NX, Al BI, IMINTG, KI, RESULT)

212 = 712 + ] * RESULT

712 = —3.75 * 212

RETURN

END

REAL FUNCTION SI (XI)
REAL XI]

oooaaon
N =W

nwni ||

REAL AF (4), B (4), AG (4), BG (4), X, X2, X4, X6, X8, I'X, GX,

PI, SGN

DATA AF [ 38.027264, 260.187033, 335.67732, 38.102495 /
DATA BF /40.021433, 322.624911, 570.23628, 157.105423 /
DATA AG / 42.242853, 302.757565, 352.018498, 21.821890 /
gf«\’l‘g BG / 45.196927, 482.485954, 1114.978885, 449.690326 /
IF (X1 .EQ. §.) RETURN
SGN = +1.
IF (XI.LT. 0.) 5GN = -1.
X = ABS (XI)
X2=X"X
IF (X .GE. 20.) THEN
FX =1 /\"(l -2 /\")

GX=1./X2*(1.-6./X2)
GO TO 1
END IV
X4=X2"X2
X6 = X4*X2
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X8 = X4 * X4

IF (X .LT. 1.) THEN ,
SI = X*(1. -- X2 / 18. + X4 / 600. — X6 / 35280. + X8 / 32659,
SI = SI * SGN

ELSE
Fx=()l(.sfAF(I)/x2+AF(2)/X4+AF(3)/X6+AF(4)/
FX = Pg%/(‘i()x/*x(éj)-r BF (1) / X2+ BF (2) / X4+ BF (3) / X6 +
GX:%;LAG(I)/X2+AG (2) / X4 + AG (3) / X6 + AG (4) /

GX = GX / (X2* (1. + BG (1) / X2+ BG (2) / X4 + BG (3) / X6 +
BG\/4) X8))

PI = 4.* ATAN (1.

X = X = AINT (X /(2. * PI)) * 2. * PI

SI = SGN * (P1/ 2. — FX * COS (X) — GX * SIN (X))

END IF

END

REAL FUNCTION CI (X) .

REAL AF (4), BF (4), AG (4), BG (4), X, X2, X4, X6, X8, FX, GX

REAL PI

DATA AF / 38.027264, 265.187033, 335.67732, 38.102495 /

DATA BF [ 40.021433, 322.624911, 579.23628, 157.105423 /

DATA AG [/ 42.242855, 302.757865, 352.018498, 21.821899 /

DATA BG / 45.196927, 482.485984, 1114.978885, 449.690326 /

IF (X .LE. 0.)THEN

PRINT ¥, ‘Invalid argument for CI (x)','x =", x

RETURN

ELSE

X2=X*X

X4 = X2 * X2

IFF (X .GE. 20.) THEN

FX=1/X*(1.-2./X2

GX =1 fX2*(1.-6./X2)

GOTO 1

END IF

X6 = X4 " X2

X8 = X4 * X4

IF (X .LT. 1) THEN

Cl = 4.57721566 + ALOG (X) = X2 * (0.25 - X2 / 66. + X4 / 4320

= X6/ 322560.)

ELSE .

FX = ({. +AF(1)/ X2+ AF (2)/ X4+ AV (3)/ X6 + AF (4) /
8

FX = EX /(X * (L + BF (1) / X2 + BE (2) ] X4 + BF (3) / X6 +
BE(4) / Xs)) |
GX = (1. + AG (1) / X2+ AG (2) / X4 + AG {3) / X6 + AG (4) /

GX =GX/(X2° (1. + BG (1) / X2 4 BG (2) / X4 + BG {3) / X6 =




BG(4) / X8)
4.*AT/(N (i
X — AINT (X

X)

)
— AINT / *PI& *PI
CI = FX * SIN (X) — 0S (X

REAL FUNCTION RINTG (X, NX)
COMPi.EX J, EI, TERM1, TERMZ, INTGR

INTEGER NX, M, N, P, Q

REAL * 4 PSI1, PSI2, S1, T1, 2, 712

REAL * 4 C (3), D (3), R, Z, RT, ZT, U, V, CSEC, COT, KOS, Y
REAL * 4 X (NX), HI, H2, W1, W2, K0, PZQR, 3L, C.

,T'T, ZM, RN, RMN, TESC, TESD, PI, PZQRP
COMMON/ ZINC/ H1,H2,W1,W2.51,52,T1,T2,PSI1 PSI2
COMMON /PAR M2 C,D,RT, ZT, CSEC, COT, KOS, J, K0
EI (Y) = (,1 (ABS(Y)) —J * SI (Y)

U=X(1
VIX(2
INTGR = (0.0

1

TERM?2 = (0.,0.)

DO 2N = I,

IF (N .EQ. 2 .AND. TESD .LE. 1.E-6) GO TO 2

R = (N-1) * H2

RN = —U * W1 * CSEC + V * W2 * COT + RT + R

IF (ABS (KO * RN) .LE. 0.5E~1) THEN

PZQRP = K0 * ABS (ZM) — AINT (Ke * ABS (ZM) / (2. * PI)) *
2. * Pl

TERMI = CEXP (—J * PZQRP) * TT

GO TO 4

END IF

IF (ABS (KO * ZM) .LE. 0.5E~1) THEN

PZ RP K0 * ABS (RN) — AINT (KO * ABS (RN) / (2. * PI)) *

33
TERM! = CEXP (-J * PZQRP) * TT

GO TO 4

END IF

RMN = SQRT /RN * RN + ZM * ZM — 2. * RN * ZM * KOS)
TERMI = (0.,0.)

DO1P=-1,1,2

DO1Q=-1,1,2

PZQR = P * ZM + Q * RN

7
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PZQRP = PZQR * K0 — AINT (PZQR * K0 / (2. * PI)) * 2. * PI
TERM]1 = TERM1 + P * Q * CEXP (J * PZQRP) *
EI (KO * (RMN + PZQR))
CONTINUE
TERM2 = TERM2 + D (N) * TERMI1
CONTINUE
INTGR = INTGR + C (M) * TERM2
CONTINUE
RINTG = REAL (INTGR)
END

REAL FUNCTION IMINTG (X, NX)

COMPLEX J, EI, TERM1, TERM2, INTGR
INTEGER NX, M, N, P, Q
REAL * 4 PSII, PSI2, S1, T1, S2, T2
REAL * 4 C (3), D (3), R, Z, RT, ZT, U, V, CSEC, COT, KOS, Y
REAL * 4 X (NX), HI, H2, W1, W2, K0, PZQR, 81, CI
/TT, ZM, KN, RMN, TESC, TESD, Pi, "ZQRP
COMMON] ZINC/ H1,H2,W1,W2,81,52,T1,T2 PSI1,PSI2
COMMON /PARAM?/ C, D, RT, ZT, CSEC, COT, KOS, J, K0
EI (Y) = CI (ABS(Y)) ~J * SI (Y)
U=X(l
V=X(2
INTGR = (0.,0.)
TESC = ABS (C (2 /C( )
TESD = ABS (D (2) / D (1))
TT = ALOG (AB ( 1.+K08)/(1.-K08)))
PI = 4, * ATAN (1.)
DO3M=1,3
IF (M .EQ. 2 .AND. TESC .LE. 1.E-6) GO TO 3
7 = (M-1) * Hl
ZM = —U* W1 * COT + V * W2 * CSEC + ZT + Z
TERM?2 = (0.,0.)
DO2N=1,3
IF (N .EQ. 2 .AND. TESD .LE. 1.E-6) GO TO 2
R = (N-1) * H2
RN = —U* W1 * CSEC + V *W2* COT + RT + R
IF (ABS (K0 * RN) .LE. 0.5E~1) THEN
PZ RP KO * ABS (ZM) — AINT (KO0 * ABS (ZM) / (2. * PI)) *
* PI
TERMI CEXP (-J * PZQRF) * TT
GOTO 4
END IF
IF (ABS (K0 * ZM) .LE. .5E—1) THEN
PZQRI; = 13? * ABS (RN) — AINT (K0 * ABS (RN) / (2. * PI)) *
TERMI = CEXP (-J * PZQRP) * TT
GO TO 4
END IF
RMN = SQRT (RN * RN + ZM * ZM — 2. * RN * ZM * KOS)
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Car

TERMI = (0.,0.)
DO1P=-11,2
DO1Q=-1,1,2

PZQR =P *ZM + Q *RN

PZQRP = K0 * PZQR — AINT (K0 * PZQR / (2. * PI)) * 2. * PI

TERM1 = TERM1 + P * Q * CEXP (J * PZQRP) *
EI (KO * (RMN + PZQR))

CONTINUE

TERM2 = TERM2 + D (N) * TERM1

CONTINUE

INTGR = INTGR + C (M) * TERM2

CONTINUE

IMINTG = AIMAG (INTGR)

END

Subroutine to compute a sequence of estimates EST1 (K) and
EST2 (K), 1 .LE. K1 .LE. K .LE. K2 for the N—dimensional integral
Bl BN
Int ... Int FUN (x1, x2, ... xN) dx1 dx2... dx3
Al AN
by Haber's method.
Ref: P. J. Davis and P. Rabinowitz, Methods of Numerical
Integratation, Academic Press, 1984.

For each estimate EST1 (K), two additional quantities ERR1(K)

and DEV1 (K) are computed. If the values of DEV1 gK) do not

vary by more than 10% between consecutive values of K, then

ERRI1 (K) can be taken as a reliable bound on the difference

between EST1 and t:e integral. A similar situation holds for

EST2, DEV?, and FiR2 (K). The total number of functional
evaluations is 4 * (K1 ** N + (K14+1) ** N + ... + K2 ** N) and K2
should be chosen so as to make this may be halfed by eliminating the
computation of the EST2 (K). In other situations, these values

are much better than the EST1 (K). A program FUNCTION FUN (X, N)
must be supplied by the user with X declared by the statement
DIMENSION X (N). FUN must be declared EXTERNAL in the calling
program. If N <1lorN > 10or K1 < 1 or K2 < K1, the program
terminates with IND = 0. Otherwise IND = 1.

Modified by R. Janaswamy so that the output is average of EST1
EST2. Also, K1 = K2 = K.

SUBROUTINE HABER (N, LL, UL, FUN, K, RESULT)

INTEGER N, IND, KEY, I, K, J

DOUBLE PRECISION AL (10), BE (10), GA (10), B, G

REAL FUN, Y1, Y2, Y3, Y4, EST1, EST?, ERR1, ERR2,

DEV1, DEV2, RESULT

REAL * 8 SI, S2, D1, D2

REAL LL (N), UL (N), DEX (10), P1 (10), P2 (10), P3 (10), P4 (10),
Q1 (10), Q2 (10), Q3 (10), Q4 (10), RAN (10), AKN, AK, T, JAC

REAL AKI, BK
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EXTERNAL FUN

DATA AL/.4142135623730950, .7320508075688773, .2360679774997897,
6457513110645906, .3166247903553998, .6055512754639893,
.1231056256176605, .3580389435406736, .7958315233127195,
.3851648071345040/

IND = 0

IF (N .LT.1.0R. N .GT. 10) RETURN

S

1  DEX(I)=0.
AK = FLOAT (K)
KEY =0
AKl = AK - 1.1
S1=0.
D1 = 0.
S2 = 0.
D2 = 0.
AKN = AK ** N
T = SQRT (AKN) * AK
BK = 1. / AK
5 KEY =KEY +1
IF (KEY .EQ. 1) GC TO 6
KEY = KEY - 1
J=1
4 IF (DEX (J) .GT. AK1) GO TO 8
DEX (J) = DEX (J) + 1.

2IRTLTS




P4 (I) = (DEX (I) + 1. - GA (1)) * BK
7 Q4(I) = LL (I) + RAN (I) * P4 (1)
Y1 = FUN (Qi, N
Y2 = FUN (Q2, N
Y3 = FUN (Q3, N
. Y4 = FUN (Q4, N
S1=S1+YI + Y2
DI = DI + (Y1 - Y2) **2
. 82 = 52 + Y3 + Y4
D2 = D2 + (Y1 + Y3 — Y2 —Y4) ** 2
GO TO 5

3 EST1=05%*S1/AKN
ERRI = 1.5 * DSQRT (D1) / AKN
DEVI = ERR1 * 7
EST2 = 0.25 * (Sl+S2) AKN
ERR2 = 0.75 * DSQRT (D2) / AKN
2 DEV2=ERR2*T * AK
RESULT = 0.5 * (EST? + ESTZ) * ABS (JAC)
RETURN
END

SUBROUTINE VOLT WHICH CALCULATES THE VOLTAGE MATRIX
VM

GEOMETRY IN THE Y-Z PLANE

sleoleololieleole

. SUBROUTINE YOLT(F,THITAO,PHIO,A,B,V)
REAL TSI,TCO,PS,PC,KY,KZ,A,B,K0,F KX
REAL MAR,GTI,PRS,PRC,MOD KZHTA

, REAL S(1:230),T(1:230),PS1(1:230),LS(1:230), W1(1:230), THIT A0,PHI10
INTEGER NMAX
COMPLEX V(1:230),J,STR,VOM
COMMON/ BRAVO/ KX, KY,KZ
COMMON/ RC2/ LS,WI,8,7,PSI
COMMON/ RC1/ NMAX
COSD(X)=COS(X*RAD)
SIND(X)=SIN(X*RAD)
Pl=4*ATAN(1.)
RAD=PI/180.
K0=PI*F/15.
J=CMPLX(0.,1.)
TSI=SIND(THITA0
TCO=COSD(THITA0)
PS=SIND(PHI0)
PC=COSD(PHI0)
KY=KO0*TSI*PS
KX=K0*TSI*PC
KZ=K0*TCO
DO 234 K=1,NMAX

: PRS=SIND(PSI(K))
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PRC=COSD§PSI(K?

MAR=KY*S(K)+KZ*T(K)

STR=CEXP(-J*MAR)

VOM=(STR/SIN(LS(K)*K0))*(A*PRS+B*PRC)

KZHTA=KY*PRS+KZ*PRC

MOD=COS(K0*LS(K))~COS(KZHTA*LS(K))

GTI=KZHTA**2-K0**2

IF(ABS(KZHTA—K0)/K0.LT.1.E-2.0R.
ABS(KZHTA+K0)/K0.LT.1. E-2)THEN

\éf(lé)=VOM*LS(K)*SIN( 0*LS(K))

LSE

V(K)=(2*K0/GTI)*VOM*MOD

ENDIF

CONTINUE
RETURN
END

SUBROUTINE CLUDCP (A, N, NP, INDX
INTEGER NP, N, INDX (NP). 1, J, K, P, NMAX
PARAMETER (NMAX = 230)

COMPLEX A (NP, NP), TEMP, ETA. W (NMAX)
REAL AAMAX, DUM

DO 1K =1, N-1

AAMAX = CABS (A (K, K))

P=K

DO 21=K+1, N

DUM = CABS (A (I, K))

IF (DUM .GT. AAMAX) THEN

AAMAX = DUM
P=1

END IF
CONTINUE
INDX (K) = P
DO3J=1,N

TEMP = A (K, J)
A éK, J)=A (P,J)
A (P, Jj = TEMP
CONTINUE

DO 4J =K+1, N

W (J)1= A (X, J)
CONTINUE

DOSI =K+, N
ETA=A(,K) /A (K K)
A (I,K)=ETA
DO6J=K+1,N
A(l,J)=A(,J)-ETA *W(J)
CONTINUE

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE CLUBSB (A, N, NP, INDX, X)
INTEGER N, NP, I, J, INDX (NP), NMAX
PARAMETER (NMAX = 230

COMPLEX A (NP, NP), X (NP), TEMP, Y (NMAX)

DO PERMUTATIONS ON THE EXCITATION VECTOR USING THE
INFORMATION ON THE ROW OPERATIONS DONE IN CLUDCP.

DO1K =1, N-1
TEMP = X (K)

X (K) = X (INDX (K))
X (INDX éK)) = TEMP
1 CONTINUE

FORWARD ELIMINATION

DO2I=1,N
Y (I) = X (I)
DO2J=1,1-1
Y=Y (1) -A(LJ)*Y(J)
2 CONTINUE

oleleole)

olele!

BACK SUBSTITUTION

DO3I=N,1,-1
. X (1) =Y (I)
DO 4J=I+1,N
X(I) =X ~A0JI*XJ)
4 CONTINUE
XMH=X1) /AL
3 CONTINUE
RETURN
END

SUBROUTINE RADIAT TO COMPUTE THE RADAR CROSS SECTION
OF A PLANAR STRUCTURE COMPOSED OF ARBITRARILY
ORIENTED PLANAR DIPOLES.

SUBROUTINE RADIAT (F,THITAO0,PHIO,NMAY A,B,RCS)
REAL RC,THITA0,PHI0,LS(1:230), WI(1:230),5(1:230),T(1:230),P1
REAL CR,F,K0,P1,UN,DM,EM,RAD,P,R,A,B, THITA,PHI,RCS,PSI(1:230)
REAL KX,KY,KZ KRON,KG

INTEGER G,NMAX

COMPLEX J,NTHIO,NPHI0, TEMP1,TEMP2,CUR(1:230)
COMMON/ BRAVO/ KX,KY,KZ

COMMON/ RC2/ LS,WI,S,T,PSI

COMMON/ RC4/ CUR

COSD(X) = COS(X*RAD)

SIND(X) = SIN(X*RAD)

QOO

oMo
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58

PI = 4. * ATAN(1.)
RAD = P1/180.

K0 = PI*F/15.
UN=120.*P1
THITA =180.— THITAO
PHI = 180. + PHIO
J=CMPLX(0.,1.)
TEMP1=(0.,0.
TEMP2=(0.,0.
NTHI0=(0.,0.
NPHI0=(0.,0.

DO 58 G=1,NMAX

P1=PSI(G
DM-KO(* g( )*SIND(THITA *SIND(PHI)+T(G)*COSD(THITA))
EM=K0* SIND P1)*SIND(THITA )*SIND{PHI)+

+COSD(P1)*SIND(THITA) g
P=SIND(P1)* OSDLTHITA)* IND(PHI —COSD(Pl)*SIND(THITA)
TEMP1=P*CEXP(J*DM)*CUR(G)/SIN(K0*LS(G))
TEMP2=CEXP(J*DM)*CUR(G)*SIND(P1)*COSD(PHI)/SIN(K0*LS(G))
IF(ABS%EM—KO K0.LT.1.E-2.0R.ABS(EM+K0)/K0.LT.1. E~2)THEN
1E<GS=LS G)*SIN(K0*LS(G))

LSE
KG=—2*K0*(COS(EM*LS(G))—COS(KO0*LS(G)))/ (EM**2—K0**2)
ENDIF
NTHI0=TEMP1*KG+NTHI0
NPHIO=NPHI0+KG*TEMP?2

CONTINUE

CR=CABS(NTHI0)**2+CABS(NPHI0)**2

KRON=(A*KY+B*KZ)/KX

RC=(K0 *2)*§UN**2)* R/(4.PI*(ABS(A)**2+ABS(B)**2+

+ABS§ {RON)**2))
IF( (RC/((30 F)**2)).LT.1.E~6)THEN
RCS = 10.*ALOG10(1.E~6)
ELSE

RCS=10.*ALOG10(RC/((30./F)**2))
ENDIF
RETURN
END
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APPENDIX B
PROGRAM TREE

PROGRAM TREE

PROGRAM TO GENERATE A PLANAR FRACTAL TREE WITH
REDUCTION FACTOR (COND) AND BRANCHING ANGLE THETA
WRITTEN BY T.R. NELSON, PhD, UNIVERSITY OF CALIFORNIA
SAN DIEGO, LA JOLLA, CA, 90293, AND MODIFIED BY

LT. JOHN DEMIRIS TO GENERATE THE INPUT DATA FOR

THE RCS PROGRAM.

INPUT DATA:

L = NUMBER OF BRANCHING LEVELS.

N = NUMBER OF BRANCH SEGMENTS.

ILEN = INITIAL LENGTH.

ISP = INITIAL STARTING POINT.

COND = REDUCTION FACTOR.

THETA = BRANCHING ANGLE. ’

OUTPUT DATA:

IX, 1Y = COORDINATES OF FIRST AND END POINT OF EACH
GENERATED BRANCH.
INPUT DATA FOR RCS PROGRAM

REAL 77 (1:5,1:1024),ISP,ILEN,IX,IY,ITH1

OPEN (UNIT=1, FILE = 'INGEOM',FORM = 'FORMATTED')
OPEN (UNIT=2, FILE ='0UT', FORM = 'FORMATTED")
OPEN (UNIT=10,FILE ='INPUT1' FORM='FORMATTED")
READ(1,*,END=10) L,N,ILEN,ISP,COND,THETA

CLOSE(1)

77( 1,1) = ISP
27 }4,} = ILEN
Z27.(3,1) = 0.

7L = 77 (4.1)

7272 (2,1) = 0.

41 = N

Pl = 3.14159265
IX=0

IY = 0.-ILEN

IX = 27(2,1)

1Y = Z7(1.1)

DO 100 LOOP =1,L




QOO0

ZLOOP = LOOP

NPTS = N**2LOOP
INC=0

NPREV = N**(ZLOOP-1)
PREV = NPREV

ANGLE = (ZN-1.0)/2.0
ZINDX = —ANGLE

DO 200 J =1,NPTS

7l =]

IF (INC.GE.N) ZINDX=-ANGLE
IF (INC.GE.N) INC=0
IW=NPTS-J+1

IR = PREV-ZJ/ZN+1.0
7L=77(4,IR)

T = 2Z(3,IR

X = Z7(1,IR

Y = Z2(2,IR

ZL1 = ZL*COND

IF (ZL1.LT.0.1) GOTO 300
THI = ZL1/33.0

T1 = T+THETA*ZINDX
727(3,]W) = Tl

T2 = T1*P1/180.0

IX=Y

Iy = X

TEMPX1=IX
TEMPY1=1Y

IX,1Y ARE THE COORDINATES OF THE FIRST POINT OF THE
BRANCH ALONG THE X,Y AXIS RESPECTIVELY

WRITE(2,*) IX,IY

X1 = ZL1*COS(T2)+X
Y1 = ZLI*SIN(T2)+Y
IX=Y]

1Y=X1

IX.]IY ARE THE COORDINATES OF THE END POINT OF THE
BRANCH ALONG THE X,Y AXIS RESPECTIVELY

WRITE(2,*) IN,IY
TEMPX2=IX
TEMPY2=1Y

S AND T ARE THE COORDINATES OF THE CENTER OF EACH
BRANCH

S = (TEMPX2+TEMPX1)/2.

T = (TEMPY2+TEMPY1)/2.
PSII=ATAN((TEMPX2-TEMPX1)/(TEMPY2-TEMPY1))
PSI=P811*180./P1




200

ZLHALF=ZL1/2.

THIHALF=TH1/2

WRITE(10,*) ZLHALF,THIHALFS,T,PSI
77(1,]W)=X1

77(2,]W)=Y1

72(4,IW)=ZL1

ZINDX=ZINDX+1.0

INC=INC+1

CONTINUE

100 CONTINUE

300 STOP
END

87




:~!

LIST OF REFERENCES

Mandelbrot, B.B., The Fractal Geometry of the Nature, W.H. Freeman and
Company, New York, 1983.

Harrington, R.F. , Field Computation by Moment Methods, Robert E. Krieger
Company, Florida, 1968.

Stutzman, W.L. and Thiele, G.A., Antenna Theory and Design, John Wiley
& Sons, Inc, 1981.

Balanis, C.A., Antenna Theory and Design, Harper & Row, Publishers, New
York, 1982.

Newman, LE.H., Simple Ezamples of the Method of Moments i
Electromagnetics, IEEE  Transactions on Education, Vol. 31,
No. 3, pp. 193199, August 1988.

Jakeman, E., Seattering by Fractal Objects, Nature, Vol. 307, No. 3946, pp.
110, 311 January 1984. .

Nelson, T.R. and Manchester, D.K., Modeling of Lung Morphogenesis Using
Fractal Geometries, IEEE Transactions on Medical Imaging, Vol. 7, No. 4,
pp. 321327, December 1988.

Harrington, R.F. and Mautz, J.R., Straight Wires with Arbitrary Ercitation
and Loading, IEEE Transactions on Aptennas and Propagation, Vol. AP~15,
No. 4, pp. 502519, July 1967.

Janaswamy, R. and Lee, S.W., Sealtering from Dipoles Loaded with Diodes,
IEEE Transactions on Anteanas and Propagation, Vol. AP-36, No. 11, pp.
1649-1651, November 1988.




<o

-t
.

o
5

INITIAL DISTRIBUTION LIST

Hellenic Navy General Staff

Second Branch, Education Department
Stratopedo Papagou, Cholargos
Athens, Greece

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Professor R. Janaswamy, Code 62JS

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943

Professor M. A. Morgan, Code 62MW

Department of Electrical and Computer Engincering
Naval Postgraduate School

Monterey, California 93943

Professor R. Hippenstiel, Code 6211 7
Department of Electrical and Computer Engineering
Naval Postgraduate School

Mouterey, California 93943

Chairman, Code 62

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943

John Demiris
Ploutarchou 17, Marousi
Athens, 22131, Greece

50

]

[ 2%




10.

Grigorios Voulgarakis
Thessalonikis 8, Cholargos
Athens, 15562, Greece

Professor T.R. Nelson

Cepartment of Radiology

University of California

San Diego, La Jolla, California 92093

90




