AD-A208 190

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLS| PUBLICATIONS

VLSI Memo No. 89-520
April 1989

DRIFS - A Data Retrieval Interface for Integrated Circuit

Fabrication Systems
DTIC

TUECEE m

MAY 2 4 3309 ;N

wh ¥

Michael P. Ruf

u
;
AR
Larss

Abstract

) People who operate a factory need to access data from many aspects of the fabrication

environment. Many IC fabrication facilities store manufacturing data in distributed,
heterogeneous database networks, meaning that data exists in several dissimilar databases
and computer systems. Retrieval and integration of data can be a cumbersome task due to
this configuration. The ideal solution to these problems is to standardize a data model,
storing the manufacturing data in a single database. However, since such a standardization
is not likely to occur in the near future, a more immediate solution is needed.

DRIFS (Data Retrieval Interface for Fabrication Systems) addresses the problems of
integration and data retrieval by providing a standard query interface and data model for
heterogeneous, distributed fabrication databases. The DRIFS prototype is described and

illustrated in this thesis. _ ,

DIS“DTDT”I"ON Srans

"‘--—-~ ““___. 2
Appvo“_d fO’ 1: —
Dji pupliz 1l s¢y
1stnm.u:m \J.)l“ “‘ !
~ -~
e
“Aicrosystems “Massacnusetts “ambridge ’?igohone
Research Center ‘nsutite "Massacnusetts 3171 283-8138
Room 39-321 af Technology 2129

R e

Acknowledgements

Submitted to the Department of Electrical Engineering and Computer Science at MIT on
April 7, 1989 in partial fulfillment of the requirements for the Degree of Master of Science
in Electrical Engineering and Computer Science. This work was supported in part by the

Defense Advanced Research Projects Agency under contract number MDA972-88-K-0008.

Author Information

Ruf: Electrical Engineering and Computer Science, Room 36-667, MIT, Cambridge, MA
02139. (617) 253-7811.

Copyright® 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form “private
communication.” For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Research Center, Room
39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

‘

DRIFS — A DATA RETRIEVAL INTERFACE FOR
INTEGRATED CIRCUIT FABRICATION SYSTEMS

by
Michael P. Ruf

submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
April 7, 1989

(©Massachusetts Institute of Technology 1989

Signature of Author

Department of Electrical Engineering and Computer Science
April 7, 1989

Certified by
Donald E. Troxel
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

DRIFS — A Data Retrieval Interface for
Integrated Circuit Fabrication Systems
by
Michael P. Ruf

Submitted to the Department of Electrical Engineering
and Computer Science on April 7, 1989 in partial
fulfillment of the requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

People who operate a factory need to access data from many aspects of the fab-
rication environment. Many IC fabrication facilities store manufacturing data in
distributed, heterogeneous database networks, meaning that data exists in several
dissimilar databases and computer systems. Retrieval and integration of data can
be a cumbersome task due to this configuration. The ideal solution to these prob-
lems is to standardize a data model, storing the manufacturing data in a single
database. However, since such a standardization is not likely to occur in the near
future, a more immediate solution is needed.

DRIFS, (Data Retrieval Interface for Fabrication Systems, adresses the problems
of integration and data retrieval by providing a standard query interface and data
model for heterogeneous, distributed fabrication databases. The DRIFS prototype
is described and illustrated in this thesis.

Thesis Supervisor: Donald E. Troxel ReTevon Far

Title: Professor of Electrical Engineering and Computer Science ' NTis Ciznar {/

CDTIC Ty r;
; U-'n(] LRNTS B)

P Justto

o . - . -
BY,ﬂLc’“ﬂ&,
Dutioun

Avoion

e - - ..

. X
Dist .

-

Acknowledgements

My thesis work has been done at the Computer Science Center of Texas Instruments
in Dallas as my third assignment in the VI-A program. I appreciate the guidance
and assistance of the following people at TI: Richard Hawkeye, Aditya Srivastava,
Steve Walker, Tom Ekberg, and Cynthia Martin. I also acknowledge the support of
Prof. Donald E. Troxel and of Michael Heytens. Discussions with Michael provided
valuable help in the design of DRIFS. The data model for DRIFS structures was
derived from GESTALT, a database he authored for computer aided fabrication.

Biography

Michael Ruf is a candidate for the degrees of Master of Science and Bachelor of
Science in Electrical Engineering at the Massachusetts Institute of Technology. He
worked at Texas Instruments as a member of the M.I.T. VI-A program and was a
graduate research assistant for the Computer Aided Fabrication project at M.L.T.
He is also a student member of the IEEE. His primary research interest is in the
management of information systems, and in the computer aided fabrication of in-

tegrated circuits.

[

‘ Contents
Abstract
Acknowledgements
Biography
Contents

1 Introduction

2 Fabrication Data in Heterogeneous Databases
2.1 Shop Floor Control Systems
‘ 2.2 Supplemental Data Systems | e e
2.3 Downloading from Supplemental Databases to the SFC Database . .

2.4 Categorizing Data Retrieval Needs

3 Overview of DRIFS
3.1 DRIFSSchemalevels0....... e
3.1.1 Local DatabaseLevel.

3.1.2 DRIFS PrimitiveLevel.

3.2 DRIFS Primitive Structures

. 3.3 DRIFS User Level Structures

10

11

11

13

13

15

15

15

15

16

16

17

4 DRIFS Testbed

4.1 DLOG-II Management Structure
4.2 Manufacturing Data
4.3 Structure and Content of PROMIS Database
4.3.1 Facility Information
4.3.2 EngineeringData,
433 LotData
4.4 Structure and Content of Engineering Test Database
4.5 Structure and Content of Financial Database
4.6 Database Retrieval Mechanism for PiIOMIS
4.7 Database Retrieval Mechanism for the Engineering Test Database
4.8 Database Retrieval Mechanism for the Financial Database

5 DRIFS Prototype

5.1 DRIFS Software Environment
5.1.1 Window Interface.,
5.1.2 On Line Help Facility
5.1.3 Creating Primitive Structures
5.1.4 Creating User Level Structures

5.2 Retrieving Primitive Level Data.
5.2.1 Retrieving Primitive Structure Data from PROMIS

(<1

18

18

19

20

20

25

28

28

31

31

34

35

37

3.2.2 Retrieving Primitive Structure Data from the Engineering
Test Database 50

5.2.3 Retrieving Primitive Structure Data from the Financial Database 50

5.3 The User Level Interface 51
5.3.1 Combining PROMIS and Financial Data 51
5.3.2 Combining PROMIS and Engineering Test Data 52

6 FEvaluations 57

6.1 Evaluation of DRIFS Prototype Implementation 57
6.1.1 Heterogeneous Hardware Environment 57
6.1.2 DRIFSUserInterface. 57
6.1.3 DRIFSDataModel e e e e e e 58
6.14 AccessTimes i i i i i i it i i e e 58

6.2 Evaluation of the DRIFSConcept 60

References 63

6

| . List of Figures

1 Broad categorization of fabricationdata

2 Exampleof a TDBfile.
3 Listing of financial database.
4 Column and row formats in PROMIS

5 Partial schematic representation of Ethernet network at TI Computer

Science Centert

6 Drifs Window Interface

7 Promis Help command, filelevel.

8 Promis Help command, field description.

‘ 9 Sa.m;‘)le structure definitionmenu. EE
10 Sample structure deﬁnit';ion 0 1=) 11 DU

11 Constraints used in a DEVICE primitive query. e e e

12 LISP representation of the PROMIS loc :1 database, connection nodes
and retrieval connections.

13 Description of DEVICE primitive level structure.
14 Description of DEVICE-COST-DATA primitive level structure. . . .
15 Description of FIN-DEVICE user levgl structure.
16 Description of ACTIVE-LOT primitive level structure. e ..
17 Description of LOT-TEST-RESULT primitive level structure.

18 Description of ENG-ACTIVE-LOT user level structure.

-3

32

38

40

42

43

43

44

46

48

52

53

53

35

56

36

o

. List of Tables

1 Access times for one DEVICE structure.
2 Access times for 20 DEVICE structures.
3 Access times for 15 LOT-TEST-RESULT structures.

4 Access times for 114 LOT-TEST-RESULT structures.

6 Access times for 10 DEVICE-COST-DATA structures.

5 Access times for one DEVICE-COST-DATA structure.

........

1 Introduction

With the growing complexity of integrated circuit processes, the increasing number
of technoiogies and product lines, and the relentless demand for higher volumes,
commercial IC fabrication is increasingly dependent on information management.
Information is coiiected from almost every aspect of the manufacturing process.
Financial, marketing, design, engineering, production, scheduling, resource man-
agement, parametric, and control information all contribute to a vast collection of
fabrication data. To maintain high productivity, IC manufacturers must draw
on technical, historical, and corporate data at all levels of the fabrication process.
More importantly, this data must be integrated and easily retrievadle.

The past decade has seen the growth of commercial MIS systems for fabrication
data. These systems are responsible for handling information for all aspects of
the fabrication cycle, from design through packaging. However, in most cases, the
systems are piecemeal, covering only a particular stage or aspect of the fabrication
process. For example, separate computers and software are commonly used for logic
design, process design, scheduling, fabrication, and facility support. Because these
systems do not share data or communicate efficiently with each other, they do not
support sntegration of data at a global level. Furthermore, these large conglomera-
tions of data are not always eﬁuipped with effictent retrieval interfaces. Due to the
magnitude and complexity of such systems, often only highly trained individuals
can access and interpret the data.

Improving the inadequacies of existing IC fabrication management systems will be
a key factor in adapting to the growing information needs of factories of the future.

2 Fabrication Data in Heterogeneous Databases
Fabrication data can be categorized as shown in Figure 1 into two broad areas:

o Operations Data. This encompasses the data directly associated with the
operation of the IC plant, including physical layout, engineering, scheduling
facilities support, historical, parametric, work in progress (WIP), yield, and

inventory data.

¢ Financial/Planning Data. This includes management level data such as
costing, pricing, demand and market forecasting data as well as WIP, yield,

and inventory data.

~ ™

Fabrication Data

FINANCIAL/
PLANNING
DATA

¢ Costing/Pricing

OPERATIONS

Engineering

e Inventory

e Orders

Equipment

e Yields
o Lot

Scheduling

Scheduling

Historical e Forecasting

Figure 1: Broad categorization of fabrication data

2.1 Shop Floor Control Systems

The majority of the fabrication data is usually managed by a shop floor control
(SFC) system. Several shop floor control (SFC) systems for IC fabrication are in
use today. These systems include:

¢ PROMIS

¢ COMETS

SMS/370

¢ GE-Fanuc

CADAM

PROMIS and COMETS, the two leading commercial manufacturing systems use
table-based databases. SMS/370, GE-Fanuc,and CADAM use hierarchical databases.
These systems normally handle a major portion of the information needs for a partic-
ular facility. Most shop floor control systems concentrate on Operations Data, sepa-
rating it into three major categories: facilities, engineering, and lot tracking/history.
These categories are discussed in detail in Section 4.3.

2.2 Supplemental Data Systems

Supplemental systems are used to collect and manage additional information not
covered by shop floor control systems. Such systems might specialize in the following
areas:

o Testing/yield. Stores the results of circuit probe operations (lot and yield
data). Often, summaries of this data are downloaded into the SFC databases.

¢ Scheduling. Refers to dynamic routing of lots through the facility to achieve
optimum throughput, given certain constraints. Information needed for schedul-
ing often comes from the SFC databases. However, some scheduling programs
may need additional information (such as constraints) not present in the SFC
database. Such scheduling systems may maintain their own databases.

11

e Production/inventory planning . Refers to information associated with
planning new lot starts, desired stock levels, order commitments, etc. Produc-
tion planners may draw on information from SFC and testing/yield as well as
financial /marketing databases.

¢ Equipment maintenance. Includes preventive maintenance, repair, and
idle time histories, mean time to repair, mean time between failure, and mean
time between assists.

¢ Equipment control. Handles supplemental recipe information not covered
by the SFC. This may include furnace controls and settings (recipes) associ-
ated with specific operations. alignment and sizing information for lithogra-
phy equipment, etc. These systems may reside on level II or level III computers
which are directly interfaced to the fabrication equipment.

° Financial/marketin'g. Handles sales order processing, standard cost ac-
counting, market trend analysis/forecasting, etc. The detail and breadth of
financial /marketing systems vary depending on the corporate structure of
the plant. Many SFC systems handle financial/marketing needs, but supple-
mental data is often maintained on a stand-alone system, or as part or the
corporate financial databases.

¢ Facility support. Monitors and controls temperatures, humidity, gas flows
and préssurw, liquid weights, valves, etc. Facility support systems also record
air-born particle count information and particle count, resistivity, total oxi-
dation and oxided carbon content of the deionized water used in the facility.
These systems have alarms giving notification of processes that are out of
control, and procedures to correct such situations. Such systems are normally
stand-alone and run on level I or level I computers.

The shop floor databases and the databases which store additional manufacturing
data will be referred to as local databases. Often, users want to perform queries
which draw on data from two or more of these local databases. How these queries
are executed is an integration issue.

12

2.3 Downloading from Supplemental Da*abases to the SFC
Database

One common method of integrating the data is to download information from sup-
plemental databases into the main shop floor control database. This method has a
number of disadvantages:

e Any outside information integrated into the SFC system must conform to the
structure of the SFC database. If this structure cannot accomodate a certain
data model, part of the data may be forfeited in converting to a suitable
model.

o Integration is not real-time. An intermediate program must port the data from
supplemental database to an SFC database. Queries may generate outdated
information because the intermediate program can only be run periodically.

e As applications change, or new applications are written, integration needs
may change. To restructure the integration model, the schema of the SFC
databases must be modified. This is a high overhead procedure. Therefore,
this integration method is not dynamic with regard to information needs.

¢ Because all access to integrated information must be through the SFC system,
the demands on the system increase as more information from other databases
is duplicated in the SFC databases to support integration.

2.4 Categorizing Data Retrieval Needs

Because different people associated with the fabrication process may want access
to different types of information, it is helpful to categorize these people into several
groups with similar information needs. A typical breakdown is:

¢ Equipment operators run the factory machinery. They transfer lots from
point to point, and initialize machines with the proper parameters for each
operation.

13

e Engineers. Some engineering groups do the experimentation and ground-
work for developing new processes. A process is a sequence of operations on
a wafer which change its state. Processes include, wafer cleaning, deposition,
exposure, development, etching, ion implantation, etc. Other engineering
groups refine and sustain the processes. They work with logic and wafer pro-
file specifications to develop new devices. They adjust processes to fit the
needs of particular devices.

¢ Manufacturing managers and supervisors are responsible for the day to
day activities of the factory. They monitor work in progress, handle produc-
tion scheduling within the facility, identify bottlenecks, work to decrease cycle
time and increase throughput, and, in general, provide for smooth operation

of the facility.

¢ Quality control personnel are responsible for monitoring processes to de-
tect abnormalities (processes gone out of control), diagnosing those abnormal-
ities, and correcting errant processes.

e Production planners decide which and how many devices will be fabricated
and when they will be started. They may also handle the accounting and
finaricial affairs associated with product manufacturing.

- o Support and maintenance personnel are responsible for maintaining and
repairing equipment, and identifying and evaluating replacement needs.

¢ Top level managers provide long term direction and strategies for the fa-
cility. They are interested in summary-type data.

Most shop floor control systems provide reports tailored for certain groups listed
above, but cannot provide each group with a separate "view” of the underlying
schema. Hence, new reports are difficult to generate, since retrieval interfaces are
not designed to address the specilized interests of each group.

14

3 Overview of DRIFS

DRIFS is intended to relieve the integration and ease of access problems by pro-
viding a standard query language and data model for heterogeneous, distributed
fabrication databases. It is designed to provide an integrated data representation
without requiring changes to the existing local databases.

DRIFS provides a software environment on a separate computer system, defining and
storing a representation of each fabrication database. Using those representations,
it generates queries particular to each fabrication database and retrieves data from
them via computer networks.

3.1 DRIFS Schema Levels

In order to separate the tasks of providing homogeneity and integration, DRIFS
breaks data acquisition into three levels: the local database level, the primitive

level, and the user level.

3.1.1 Local Database Level.

The local database level consists of existing data stored in local fabrication databases.
It consists of the shop floor control system database and supplemental databases,
all of which are external to DRIFS.

3.1.2 DRIFS Primitive Level.

The primitive level is the crux of DRIFS, interfacing with the local database level
through various networking techniques. It stores a mapping of each local database
schema to the DRIFS data model. The primitive level provides homogeneity, because
it interfaces to each data model of the local databases. Providing homogeneity is
the most involved task of DRIFS, since many issues must be considered, such as
computer networking, data models and query languages at the local level, and data
formats of output files at the local level.

15

While data representations from separate local databases are all stored using the
DRIFS data model, they are not integrated at this level.

3.1.3 DRIFS User Level.

Once the data has been mapped to the homogeneous data model of the primitive
level, it can be integrated at the user level. This level combines representations
from the primitive level to allow data from various local databases to be integrated
in common structures. User level data representations can be tailored for specific
groups such as planners or engineers, allowing each group to have separate ” views”
into the primitive level.

3.2 DRIFS Primitive Structures

The DRIFS data model is comprised of primstive structures, which are templates
for data retrieved from the local databases. Each structure consists of several titled
slots where the data is stored. Each slot is defined with the following fields:

e Slot Name. Describes what kind of data is stored in the slot.
e Slot Type. Specifies what format the data is stored in (i.e. string, number).

o List/Singleton. Tells whether the data is stored as a list of values or as a
single value.

Associated with each primitive structure is information specifying from which local
database to retrieve its data and how to query that database. This information
indicates in which relation, file, record, etc. the data is stored. It also defines
a variable map linking each slot in the primitive structure to a particular field
in the local database. Primitive structures are grouped by local database, and
the collection of all primitive structures for a particular local database makes up
DRIFS’s representation for that database.

16

3.3 DRIFS User Level Structures

The user level provides the means for integrating related data from each local
database. User level structures combine data from the primitive structures by
incorporating relevant slots from each primitive structure. The primitive struc-
tures which comprise a particular user leve! structure must have at least one slot in

common. These key slots are used to combine the results of primitive level queries.

17

4 DRIFS Testbed

The Texas Instruments Dallas Logic II (DLOG-II) IC fabrication facility was used
as a testbed for a prototype implementation of DRIFS. DLOG-II is a low volume,
fast turn-around manufacturing facility. A significant amount of manufacturing is
dedicated to special work requests. These are normally process development exper-
iments handled as split lots, where half the lot is fabricated and acts as the control,
and the other half is fabricated with certain experimental processes. Because of the
developmental nature of lot fabrication at DLOG-II, the make-up of the fabrication
data has emphasis on engineering and parametric data rather than financial and
planning data.

4.1 DLOG-II Management Structure

DLOG-II management can be broken down into the following divisions:

e Manufacturing. Responsible for assuring the smooth operation of the fac-
tory. Schedules, routes, and monitors lots as they progress through the factory.
Works to avoid bottlenecks and reduce cycle time.

e Product Engineering. Developes new processes and fabrication techniques.

e Process Engineering. Adjusts and refines processes and techniques to fit
the needs of a particular device.

e Systems. Provides technical and software support and maintains the systems
that manage manufacturing data.

¢ Quality Control. Does statistical analysis on process data, detecting and
diagnosing abnormalities.

¢ Planning. Responsible for production planning of new parts. Calculates flow
costs and cycle times associated with product manufacturing.

18

4.2 Manufacturing Data

The main computing resource at DLOG-II is a VAX 8650 running at 6 MIPS with
128 MB of memory. It manages the following databases:

¢ PROMIS. This is the shop floor control database. By far the largest and
most involved system, demanding a major portion of the computing time.

e Engineering Test Database. This is a supplemental database storing test

results from various integrated circuit test equipment.

¢ Engineering Data Collection Database. Stores suppl emental engineer-
ing information from PROMIS. This data is used for generating charts and
trend analysis.

Additionally, DLOG-II maintains the following supplemental databa.ses which run
on separate computer systems:

e SCADA Database. A facility support/control system to monitor and con-
trol temperatures, humidity, gas flows and pressures, liquid weights, valves,
etc. The system runs on a TI-990 mainframe computer.

e LASS Database. Stores alignment and sizing information by level, device,
and lot. The information in this database is used in controlling lithography
equipment. LASS is a stand-alone system on a micro-VAX.

e BTU Database. Stores furnace controls and settings (recipes) associated
with specific operations. These recipes store information not covered by
PROMIS. They are used to program the furnaces for a specific set of op-
erations. This database is stored on a PDP-Il minicomputer.

¢ Royco Database. Monitors and records air-born paricle count information.
Runs on a VAX minicomputer.

e DI Water Database. Monitors and records particle count and resistivity of
the deionized water used in the facility. Runs on a VAX minicomputer.

19

e TOC Database. Monitors and records total oxidation content and oxidized ‘
carbon content of the deionized water. Runs on a VAX minicomputer.

Representations of the DLOG-II PROMIS Database and the Engineering Test Database
were defined in DRIFS. Since DLOG-II does not maintain a financial database, a
mock one was created with Ingres, a relational database management system. The
financial database was created on a VAX 785 running ULTRIX, DEC’s version of
UNIX. A separate computer and operating system were chosen for the financial
database to demonstrate how DRIFS would perform in a heterogeneous hardware

and operating system environment.

4.3 Structure and Content of PROMIS Database

PROMIS collects and provides information for engineering, manufacturing, main-
tenance, and management. Most of the data it manages can be divided into three
categories.

¢ Facility Information
¢ Engineering Data

o Lot Tracking and History

4.3.1 Facility Information

The facility information is defined by 24 tables. Each of these tables is stored as
one record of a single ISAM file. The tables can be broken into two categories:

1. STRUCTURE

e production areas
e work centers

e equipment types within work centers ‘

20

e equipment units
e automated equipment

e inventory locations

2. CHARACTERISTICS and OPERATION:

¢ equipment statuses
e lot types

e material types

e reject information
¢ rework information
e product stages

¢ labor types

o order statuses

Off line modification of the tables is supported through menu functions, which take
”snapshots” of on line tables. The user‘rna.y edit the copies, check their consistency,
and install final versions. The information in the tables may be retrieved through
specialized reports actived from the PROMIS menu, or it may be extracted through
a general file extraction facility.

The 24 tables are stored in an ISAM file named TBLS. This file contains one record
for each entry of each data table in the system. The record format as a key value
followed by a fixed length byte buffer. Separate table access routines can then
reference the byte buffer as a set of fields. The maximum length of a character
field is 130 characters. Certain fields in some files are stored as composite fields,
composed of information from two other fields, concatenated together. Composite
may not be entered directly, but are automatically generated by PROMIS. The
following provides a brief description of each record of the PROMIS TBLS file.

¢ AUTO record. Stores information pertaining to automated equipment.
There is one entry for each equipment unit. The data in this table sup-
plements that in the EQUN record.

21

ECAT record. Describes characteristics of automated equipment that is

common to certain groups of units.

EQST record. Stores codes which are used to describe the statuses of equip-
ment units. Associated with each status are descriptive codes which indicate
the equipment’s availability for lot trackin.

EQUN record. Stores information describing individual units of equipment
in the facility. It is used by lot tracking, equipment reporting, etc.

ESET record. Outdated.
GTNK record. Stores information pertaining to Gas Tanks.
INVT record. Describes characteristics of inventory locations in the Facility

LABT record. Stores labor types for labor capacity requirements in the
planning system.

LOTT record. Defines lot type codes, which indicate ownership and tracking
aspects of lots. -

MATT record. Records material types and type codes. Material types are
used to generate certain prompts in lot tracking.

ORDS record. Defines order status codes used by the Sales Order Entry
and Planning Systems.

PRAR record. Describes production areas, the highest level of description
in the hierarchical PROMIS site tables.

PRSY record. Describes PROMIS systems in a multi-system (multi-site)
configuration.

PSTA record. Defines stages, which are groups of one or more sequential
process steps.

REJC record. Defines reject categories for wafers, die, finished chips, and
certain material types. Used by the lot tracking system.

REPD record. Contains information regarding report directories and access
privileges.

22

‘ e REPT record. Stores the title used in production report headers.

¢ REWK record. Defines rework codes used in lot tracking during rework
and recovery.

e ROUT record. Used by DLOG-II to define equipment types, which are
groups of equipment units with similar characteristics.

¢ TRMP record. Outdated.

e UNIT record. Describes base units of measurement, including SECS-specified
and user-defined units.

e UTYP record. Contains information to allow interconversion of certain
units.

e WAFT record. Defines wafer types used in lot tracking.

¢ WREKC record. Describes work centers.

‘ The PROMIS tables containing the most extensive and significant information are
those describing the production areas, work centers, equipment types and equipment
units. These tables are hierarchically related. Production areas are groups of work

centers. Work centers and equipment types are groups of equipment units.

Production Areas The production area is the highest hierarchical level of infor-

mation pertaining to a site. Examples of production areas include:

¢ Front End. This is the main production area. Blank silicon wafers enter a
front end, and processed wafers leave in sealed containers to be packaged.

e Back End. Here, the processed wafers are cut and packaged in ceramic
casings. The final products are sample-tested.

¢ Reticle Fab. This is where new masks for lithography are made. Although
the reticle fab may be entered as a separate production area, reticles are
normally produced in the front end or ordered from outside suppliers.

Production areas are described in the PRAR record.
23

Work Centers A work center is an area of the facility where a particular type of
operation is performed on a lot. Examples of workcenters include:

Wafer Cleaning
¢ Deposition

e Furnace

e Implant

o Stepper

¢ Plasma Etch

¢ Metallization
e Test Probe

e Failure Analysis/Repair

Each work center has a field indicating its parent production area.

Equipment Types Equipment Types are groups of equipment units which per-
form similar functions. For example, a furnace work center of a large front end
might contain as many as 30 or 40 furnace tubes of varying functions: initial oxi-
dation, CMOS oxidation, gate oxidation, LPCVD nitride, etc. Each furnace tube
could entered as an equipment unit and categorized into separate equipment types.
All of these equipment types would belong to the furnace work center.

Equipment Units Equipment Units identify individual pieces of equipment in
the factory. They represent the lowest hierarchical level of information describing
the site. Equipment units may or may not be available for lot track-in. For exam-
ple, a positive resist developer may have lots regularly tracked in and out, but an
arsine/phosphine alarm would not. Both could be entered as equipment units. The

status of equipment units are modified in a separate on line file.

24

4.3.2 Engineering Data

Most of the engineering data in PROMIS is associated with IC process specifica-
tion. PROMIS records processing instructions defined by engineers and relays it to
operators or automated fabrication equipment. PROMIS also collects engineering
data such as measurements and test results from operators or automated equip-
ment. This data is used by management, quality control, and engineering for yield
analysis, engineering analysis, quality assurance, etc. Promis breaks down process
specification into four levels of detail:

Device

Process

e Recipe

Operation

The device is at the top of the hiera.rchy, providing the most general information.
Each of the next levels incorporates a greater amount of detail on how to manu-
facture the IC device. The operation is at the bottom of the hierarchy, giving the
highest level of detail. Once all the necessary modules have been defined, they are
combined to from a complete manufacturing process flow.

Devices Device records most commonly describe summary level instructions for
processing wafers to manufacture IC’s. However, they can also be used to describe
other types of parts, both manufactured and purchased. For example, device records
are used to describe reticles used in the facility. Since most of these reticles are
purchased from photolabs, device reticle device records don’t normally contain any
manufacturing information. When unprocessed wafers come into the factory, they
undergo a certain amount of epitaxial pre-processing, and are stored in inventory
as “raw” wafers. An inventory may stock various types of raw wafers, depending
on the type of epitaxial pre-processing prescribed by different IC’s. Raw wafers
are entered as devices and are referenced as starting material for other devices. A
device’s starting material is not limited to raw wafers. In some cases, the same

25

initial process flow can be used manufacture a number of different devices. In
this situation, a device is created to define the initial process flow for the partially
processed wafers which will serve as starting materials for the finished devices.
For example, initial wafers for gate arrays can be manufactured in mass and later

customized for with additional processing particular devices.

The information in a device record can be divided into 3 major categories:

¢ Administrative. Contains descriptive information such as dates, the device

record’s history, personnel associated with the device, categories, etc.

e Parametric. Contains parameter names and values. Parameters may specify
such things as lithography masks, probe tests, equipment settings, etc. They
allow a general description of a device type to be tailored for specific devices.

e Instructional. Contains a description of the manufacturing flow for the de-
vice. Instructions can specify how to start making a device, specify a process
flow, describe inventories for the device, or describe a "nested” device. All
devices have an instruction of the first type, and most have a final inven-
tory instruction. Some devices, such as purchased parts, do not have process
instructions. '

Processes PROMIS process records provide a higher level of detail than the de-
vices which reference them. Several different devices may reference the same pro-
cess. In this situation, each device applies its own set of devices parameters to the
process. Different sets of processes are defined for each type of IC (e.g. CMOS,
NMOS, PMOS, BIPOLAR). Process information is divided into two major cate-
gories: administrative and instructional. Each record contains administrative in-
formation such as dates, planning information, statuses, etc. as well as a sequence
of instructions, or steps. Processes typically have between 50 and 100 steps, each
one naming a recipe to be used at that point. A single process may use the same
recipe at different process steps. In addition to recipe names, each process step may
specify optional data, such as rework information and control wafer instructions.

Recipes A recipe describes a sequence of operations on a lot at a particular
work center on a particular equipment type. Each step, or operation of a recipe
26

describes a set of actions to be performed by equipment operators. A recipe may
call the same operation at different steps, and the same operation may be called by
several different recipes. Lots are tracked at the recipe level. Therefore, each recipe
record contains tracking information, such as data collection operations, facility
monitor (FM) points, and prerequisite FM values for lot mark-in. Recipes also
contain general information such as dates, statuses, equipment type, processing

times, equipment set up, equipment capacity and load sizes, input parts, etc.

Operations Operations are the most detailed building blocks for processing spec-
ifications. Each operation describes the processing instructions at a single step in
a recipe. There are four types of operations:

Fabrication Operations

Identify Operations

Data Collection Operations °

®

Hybrid Operations

Fabrication operations are textual instructions which are displayed on an operator’s
terminal at the lot’s current work center. Since only a single line of text is provided,
instructions are usually highly abbreviated.

Identify operations instruct the operator to scribe a system-generated serial number
on each unit (wafer) in the lot. After an identify operation, units in a lot can be
referenced individually by their serial numbers.

Data collection operations specify certain data to be collected regarding individual
die, wafers, a lot as a whole, or a piece of equipment. Instructions on how to collect
the data are provided in as a single line of text.

Hybrid operations are used to assemble a single part from two separate parts.

27

4.3.3 Lot Data

PROMIS continually collects information on each lot as it is processed. Lot data
is stored in two files: the active lot file and the lot history file. The active lot file
contains one record for each lot, describing what is currently happening to the lot.
Active lot recoids are updated at each work center. The lot history file stores an
account of what happened to a lot at each step of processing. Each time a lot is
tracked into a new work center, lot history entries are recorded. Therefore, each lot
may have many lot history records. Lot data is grouped into four categories:

¢ Lot Info
e Step Info
e Data Collection Info

o Wafer Details

Lot info specifies general lot level information such as lot ID, device name, lot level
yield, start and current sizes, dates, and planning information. Step info includes
work center, recipe, step, operator, start time, end time, start size, end size, step
yield, and control, rework, hold, and reject data. Data collection info includes all
the data collected at each step of lot processing. Wafer details specify information
for each wafer in the lot, including wafer ID’s, wafer state, and rework information.

4.4 Structure and Content of Engineering Test Database

The engineering test database (TDB) was designed and implemented by DLOG-II
to manage control test data from integrated circuit test equipment. Each kind of
test equipment at DLOG-II produces a different type and format of data. In fact,
data formats can change from session to session on the same tester. The engineering
test database consolidates the floating format test data from all the machines, and
provides a standard query mechanism to the data.

The TDB is stored in VAX datalog format. Datalog files are composed of sequential
ASCII variable length text records. There is one datalog file for each test session

28

performed on each lot by each tester. The ASCII datalog files contain three types
of records:

e Header Records
¢ Format Records

e Data Records

There are two types of data records: test session data records, and test value data
records. Test session data records contain the information necessary to locate a set
of test data for any given wafer. Test value data records contain the test resulits for
a given test session. A single test session data record precedes each set of test value
data records.

Header records define a format for the test session records. Test header records,

and therefore test session data records, must specify the following mandatory fields:

o TESTER

e TECH (techn;logy)

e DEVICE

e LOT

o WAFER (slice number)
e TEMP (temperature)
e STATUS

o TEST-DATE

e TEST-TIME

Since only one lot is allowed per datalog file, the TESTER, TECH, DEVICE, and
LOT fields will remain constant throughout the file.

29

HDR1 TESTER TECH DEVICE LOT WAFER TEMP STATUS TEST-DATE TEST-TIME
FMT2 SUPPLY

FMT3 ICC2 ICC3 ICC5 VIL VIH VOH VOL

DAT1 SENTRYBO DMOS DPU-1 137380 23 25C PREBURN_IN 861231 14:49:34
DAT2 LHH

DAT3 832.0E-03 -2.000E-03 174.14E-03 1.399 1.99 1.988 338.1E-03
DAT3 821.0E-03 -2.000E-03 175.14E-03 1.320 1.98 1.981 340.2E-03

Figure 2: Example of a TDB file.

Format records define the format for test value data records. They specify field
names which describe the values in the data records that follow. Figure 2 is an
example of a datalog TDB file with header, format, test session data, and test value
data records.

The datalog files composing the test database are hierarchically categorized by
tester, technology, device and lot stored separate VMS directories. The TDB stores
data from the following testers:

e VTPROBE. An in line tester used early in the fabrication process. Measures
threshold voltages.

e BECOLT. A back end tester used after packaging.
e FECOLT. A front end tester used in laser repair.
e SENTRYS50. A back end tester similar to BECOLT.

e KIETHLY. A parametric tester. Measures voltages, resistance, and currents
on test bars.

30

4.5 Structure and Content of Financial Database

Because DLOG-II does not maintain a networked financial database, a small database
was created using one Ingres relation. The relation stores flow cost and yield data

associated with each device. Actual cost data was taken from a separate shop floor

control system (SMS-370) at another TI facility. This data was randomly modified

so as not to expose confidential information. The relation used to store the data is

composed of the following domains:

e devid. Device ID.

nobars. Number of bars, or die, per slice.

cqflowcost. Average flow cost per slice for the current quarter.

cqyld. Average yield for the current quarter.

e pqgflowcost. Average flow cost per slice for the previous quarter.

payld. Average yield for the previous quarter.

The the values for the devid field were chosen to match the DEVNAME field (a
composite key field) from selected devices in the PROMIS database. The values
for the remaining fields were supplied by the modified cost data. Figure 3 is an
Ingres-generated listing of the of the financial database.

4.6 Database Retrieval Mechanism for PROMIS

PROMIS has a module, DATALINK, which provides the ability to extract and
manipulate data from any PROMIS file. The extraction procedure can only be
activated via the DATALINK menu in the PROMIS system. Once selected, this
menu provides general extraction functions as well as data conversion functions.
The General extract function provides an interactive method of retrieving data
from individual PROMIS files. The extracted data is stored in an ascii work file
in the user’s PROMIS directory. After extraction, the user can select DATALINK
commands to view the extracted data.

31

cost relation

|devid Inobars|cqflowcosticqyld |pqflowcost|pqyld |

|7202AEP1-01.01 |
18847C2-02.01 I
|CF945563C-04.01 |
|BULL-401.02 [
| CIMTDI-01.04 |
i68226D-01.09 |
18847C2-02.01 |
|9000CS-15.02 |
|ACT8836A-06.03 |
|ACT8867-02.02 |
|ACT8837-06.03 |
|ACT8842-01.07 |
19100A-02.05 |
|ACS-FASTR3.01 |
|9989D-16.01 |
|ACT2150G-BP3.011
|ACT2158-02.02 |
|ACT21568T-02.01 |
{ACT2160-01.01 |
|ACT2702-01.02 |
|ACT7202A-03.01 |
fACT7204-03.02 |
|ACTGCX5-06.01 |
|ALICAT-04.02 |
|BIC256F-w01.02 |
|ASAM-04.01 |
|ASAM-TS .02 I
|BRAHMA-07 .04 |

Figure 3:

286.060| 63| 252.770| 56|
368.440] 54| 372.000]| 51]
260.0560| 41] 224.900| 40|

299.800/{ 66| 298.130| 731
335.150| 82| 265.850] 66|
265.9601 66| 225.840] 611
234.110] 69] 210.880] 691
336.020]| 64| 328.140| 57|

267.000| 68| 377.0001 55|
260.4201 65| 203.6301 65|
406.0001 49| 337.0001 44|
260.6901 621 232.0101 57|
267.360] 66| 260.7401 52|
369.830| 84| 368.000| 68| .
241.370) 87| 188.330| 68|

244.210| 90| 0.0001 ol
2560.7301 86| 0.000| ol
308.160/| 42| 254.640| 39|
297.010| 63| 294.710| 53|
334.4801 30] 0.000| ol
261.870| 331 239.570| 24|
228.670| 43| 0.000| ol

227.200| 42| 224.6101 34|
228.830| 39| 179.600]| 36|
204.6401 58| 222.350]| 53|
261.910]| 88| 247.5650| 88|
236.9201 84| 239.630| 84|
180.340| 93| 172.600]| 85|

Listing of financial database. .

32

Column Display

(Scalar) (Scalar) (Array)
LOTID ENGINEER WAFNUMS
10245.1 SMITH .21
10245.1 SMITH .22
10245.1 SMITH .23

Row Display
LOTID ENGINEER WAFNUM_1 WAFNUM_2 WAFNUM_3

o - S - - D D - D P D D M e D D D TR S P D WP W D WS WD W AP W W W AR -

10245.1 SMITH .21 .22 .23

Figure 4: Column and row formats in PROMIS
LOTID and ENGINEER are scalars and WAFNUM is an array.

After initiating the General extract function, the user must specify which file is to be
queried, name the work file, and the extraction and search criteria. The extraction
criteria identify which fields are to be extracted from each entry, and the search
criteria, or query constraints, specify which entries to extract. When selecting
fields for extraction or search criteria, PROMIS provides-on line help menus which
describe every file, record and field in the PROMIS database. PROMIS records
contain two types of fields: Scalar and Array. When array fields are selected, for
extraction, PROMIS allows either a row or a column format. If row format is
selected, only one line of data is extracted per entry, with the array field expanded
within the line. If column format is selected a separate line of is used for each
element in the array, with the scalar data in the entry duplicated for each line.
If row output is chosen, the user must indicate how many array elements are to
be displayed in the work file. The selection of row/column format is important,
because it specifies not only how the data is displayed on the screen, but also how
it is stored in the work file. Figure 4 shows column and row display for the same
data.

Search criteria are entered as a {ield name, a relational operator, and a value. The

33

following relational operators are allowed:

e EQor =

NE or /=

GT or >

LT or <

GE or >=

LE or <=

IN or |
e FR

IN allows up to 10 values to be entered individually. FR allows values to be read
from a work file. When more than one search criterion is entered, PROMIS extracts
only the entries which meet all the criteria (i.e. the intersection of entries matching
each criterion). Once the extraction is complete, PROMIS can convert the work file
to several different formats, including the standard data interchange format (DIF).

4.7 Database Retrieval Mechanism for the Engineering Test
Database

The engineering test database provides a program, TDBEXTR, to extract data.
The extract criteria, or query constraints, can be entered from the VMS command
line. TDBEXTR generates three output files: a description file, a data file, and a
log file. The data and description files are in Enhansys format. Enhansys is a set
of software tools for analyzing and manipulating engineering data.

The extract criteria are specified using a simple extract language. Each criterion
begins with a field name and is followed by a list of values for that field, enclosed
in parenthesis. The values can be singular, a list separated by commas, a range
separated by two periods, or a wild card expression. If more than one extraction
criterion is entered, TDBEXTR only returns the entries which match all of the
criteria.

34

. 4.8 Database Retrieval Mechanism for the Financial Database

Data is retrieved from the financial database using QUEL, the standard query
language for Ingres. Query constraints in QUEL are called clauses. Each clause
consisits of a pair of expressions separated by a comparison operator. Comparison
operators can be any of the following:

o <

. Expressions can be any of the following:

Constant. (string, integer, or floating point)

Attribute.

Functional expression. [sin(n), cos(n), exp(n), etc.]

Aggregate or aggregate function. (sum, count, avg, etc.)

Combination of numeric expressions and arithmetic operators.

Basic queries can be formulated using only constant and attribute expressions.
Attributes take the following form:

variable.domain

Variable specifies a particular relation, and domasn identifies a field in that relation.
. A typical clause might consist of an attribute followed by a comparison operator
followed by a constant. For examplie:

cost.nobars < 200

Here cost identifies the Cost Relation and nobars is a field, or domain, in that re-
lation. Before this clause can be evaluated, the cost variable must be linked to the
Cost Relation in a separate QUEL command. QUEL clauses can be linked together
with logical operators to form a qualification. The following logical operators are
allowed: not, and, or. An Ingres retrieve command specifies the relation and do-
mains to extract from each tuple, as well as a qualification indicating which tuples
to retrieve. Normally, Ingres will print the results of the query on the screen, but
an optional argument to the retrieve command can specify a new relation to hold
the output data. Ingres also provides a copy command to port data from an ingres
relation to an outside file.

36

5 DRIFS Prototype

DRIFS was prototyped on a Texas Instruments Explorer LISP machine. The Ex-
plorer is a single-user workstation designed for rapid development and prototyping
in a symbolic processing environment. Running Common LISP with incremental
garbage collection, the Explorer can manage up to 128 megabytes of virtual memory.
The internal Nubus architecture uses a 32-bit LISP processor running at 10 mega-
hertz (100 ns clock period). An ethernet controller is provided for communications

with local area networks. Among the networking services available are:

e Transparent file I/O
e Remote login.

e Task-to-task communication.
To support these services, the Explorer uses the following communication protocols:

Chaosnet

TCP/IP

o NFS

DECnet

Chaosnet is used for communications between LISP machines. TCP/IP is a stan-
dard communications protocol adopted by the Department of Defense and other '
users of wide-area networks. NFS is a UNIX standard for transparent file access.
It is used in conjunction with the TCP/IP protocol. DECnet is used for corm-
munications with systems produced by Digital Equipment Corporation, allowing

transparent file access, inter-task communication, and remote login.

Figure 5 shows the networking configuration for the Explorer used to prototype

DRIFSThe networking names of the machines are shown in parenthesis.

(]
-3

DECnet

VAX:
Ultrix
(Tilde)

VAX: VMS
(All41)

(NFs

Other Unix
Machines

Other
Machines

VAX: VMS

(Exgefe)
Local
Router
() Other
DECnet Explorers
Explorer '
(Espresso) | Chaosnet

Figure 5: Partial schematic representation of Ethernet network at TI
Computer Science Center

The networking name of each computer is shown in parenthesis.

38

5.1 DRIFS Software Environment
5.1.1 Window Interface

The DRIFS window interface (Figure 6) is broken into the following panes which
allow the user to easily interact with the DRIFS environment:

e Five command panes (bottom). Used for defining, modifying, access-
ing, saving, and restoring primitive and user level structures. Also used for

retrieving data and providing help features.

¢ Interaction pane (upper left). A scrollable window used to display mouse-
selectable items that can be described in the Type-out pane.

¢ Type-out pane (upper right). A scrollable window used for displaying the
structure descriptions, the progress of an active query, and retrieved data.

5.1.2 On Line Help Facility

The PROMIS Help command in the lower right pane allows the user to view any
level of on line help available from the PROMIS menus. It is intended as an aid in
creating primitive structures.

The text for this help command was automatically retrieved from PROMIS via a
LISP ascii-translating character stream connected to EXGEFE. Once retrieved, the
help data was parsed into LISP lists and stored on disk as help files. Each help
file corresponds to a data file in PROMIS and provides information regarding its
structure and fields. When requested, each file is read into a buffer that can hold
up to 10 help files. The buffer management is transparent to higher level routines
which access help data. When the user selects the PROMIS help command, all
of the help files are displayed in the Interaction pane. He may then click on the
PROMIS file of interest to see a description of that file in the Type-out pane. The
Interaction pane will then display all of the names of the fields for that file. He may
then select any field to see its description. This hierarchy is used for all PROMIS
files with one exception: then TBLS file, which has several different records, each

39

Type-out Pane

Primitive
Structures

Retrieve
Def {ne
Hodify
Renove

User Level
Structures

Retr teve
Def ine
Modify
Remave

Save:
Prinitive Structures

User Level Structures

Restore:
Primitive Structures

User Level Structures

Commands

Retrieve Data

PRONIS

Help

Figure 6: Drifs Window Interface

40

having its own fields. In this case, the user will first select the TBLS file, then a
record, then any fields within that record. Figures 7- 8 show a typical progression
of the PROMIS Help command.

5.1.3 Creating Primitive Structures

Primitive structures (described in Section 3.2) are created and manipulated via
pop-up menus. When defining a structure, the user must specify a DRIFS structure
name, a local database, a query type for that database, and each slot in the struc-
ture. Once a primitive structure is completely defined, DRIFS creates a LISP flavor
as a template for data retrieved from the local databases. The flavor for a primitive
structure has an instance variable for each siot in that structure. When data is
retrieved from a local database it is parsed into primitive structures, and stored in
flavor instances. The flavor instances are displayed in the Interaction pane, and the

user may select them to view their data in the Type-out pane.

DRIFS identifies a set of query types associated with each local database: PROMIS,
engineering test, and financial. Ideally, only one query type would be needed for
each database. However, since the file structure for the PROMIS database is not
consistent, a separate query type was defined for reading the TBLS file, which
has several different record types. Slots are defined by specifying a slot name,
slot type, and list/singleton specifier. The slot name is used only by DRIFS as a
reference, the slot type indicates the type of data which will be stored in the slot.
For most purposes, "string” and "number” should be sufficient as data types, since
LISP handles parsing between numerical formats (e.g. fixnum, bignum, flonum)
automatically. Finally, the list/singleton specifier indicates whether the data will
be stored as a single item, or as a list of zero or more items. Figure 9 shows the
DEVICE structure being defined.

Once the primitive structure has been defined, the user must create a mapping
which associates each slot in the structure with a specific field in the PROMIS
database file. The PROMIS fields are selected using pop-up menus, which are
generated from the help files. Since PROMIS treats array fields differently from
other fields, as described in Section 4.6, they must be handled specially by DRIFS.
When an array field is selected in a mapping, DRIFS asks for the maximum number

41

Pronis help

Tups-out Pane

User Level
Structures

Retrisve
Oaf ine
Hodify
Renove

Save: Commands Help
Printtive Structurss Retrisve Data Paon1 S

User Level Structures

Restore:
frinitive Structures

User Level Structures

1819
IRAUMATERTAL Figld
lrmmvn.x

Fleld
HAST RACK mrs Fisla
EMH‘ER Field
PLAMMER F 18ty
ICREATEDT Field
ACT IVEDT Field
ICHANGEDT Fie1d
INMOCHANGEDT Field
MOOREDDT Fisla
DESCR Field
uxmrmn Pl’!d

isid
FWTTYPEIEFORECONY Figld

MUNBEROFMRT TYPECOMY Fleid

Description: Nevice File

hie vu- :cntum one record for svery wersion of
overy proouced in the facility. [t allous a single
orocess t u. *paraneterized® to proouce a variety of
cifferent cevices that uss a basically simlar . Use
of the device flle is discussed in oetail in the SRS
section on the device fils

Tha *DEVGE® file acte 48 an extsnsion of this file, containing
the planmning stancards informnation for the device.

Tups-ocut Pane
Primitive User Level Save: Commands Help
Structures Structures rints tve 8 et iove tace _—
Aetrieve Retrisve User Level Structures
Daf 1ne Dut ine
Modify Modify
fenave Remove Restore:

Prinitive Structures

User Lsvel Structures

Figure 7: Promis Help command, file level.

The DEVC file was selected.

42

I8 Local-0B -

ile

ACTINEY Flelg
TIVFLD Flald

produtatus
Type: Character, 612e: |, Usage: MNon-Key
SeVice ‘3TATUS’ COOS.

osVICE 18 aallably for use:
Fosgible statuses are:
'YS -- UNFROZEN

This cOO® iNCIcatEs the Oegres %o which a

s1d
RAMMATERI AL, Fie1d
GTNW“V"’.ID Fietg

INEER Figld

R Fiala

TERT Field

TIVEDT Fisid
[CHANGED!

The cevice can be upcated only.

NG GCS can 08 STArtsd using Chis oevice.

HO Drog which uses <Nis Gevice can be ‘roren
RURTLABLE

Avaliable for oroouction use; proouction 'ots can te

ur:;g on this cevice.

The devics Cannot participats n any Nev freeaing.
MY PRODS CA11iNg tH1S device CAMNOt D8 rozen.
NOSTRAR'

NOMEMFRZ rules apply
“G_lots can be started for this cevices.
OBSOLETE
NONEWFRZ ana MOSTARTS ruies apgiy.
Ay 10t using this device will De put on holo by ‘ot
Tracking.

COnV #
MATTYPECOMY Fisid

1019

Twoa-out Pare

Primitive
Structures

Rerrieve
Def ine
rouify
fenove

User Level
Structures

wtrisve
Def ina
fodiry
fanove

Save: Commands

Pr
1nitive Structures Retrisve Oata
J88r Lgvel Structures

Reastore:
Prinitive Structures

User Level Structures

Help

Figure 8: Promis Help command, field description.

The PRODSTATUS field was selected.

Structure Name:
Local Database:

DEVICE

Number of Slots: 16
Slot Name
NANE
DESCRIPTION
ACTIVE
FROZEN
STATUS
CREATE~DATE
ACTIVE-DATE
LAST-MOD-DARTE
INSTRUCT-TYPE
INSTRUCT -COMMENT
INSTRUCT-PROC~-1D
INSTRUCT-INVENT-1D
NO-ENG-PARAMS
NO-PLANNI NG~PRRAMS
PRRAM-NAME
NIL

Promis Test Database Financial Database
Query Type: PROMIS-GEN-JUERY

Slot Type ListrsSingleton
string Singletan Ust
string Singleton Ust
string Singlston List
number Singleton List
string Singleton Ust
string Singleton List
string Singleton List
string Singleton Ust
string Singieton List
string Singleton List
string Singleton List
string Singieton List
nunber Singleton List

Wt l-'-h 1 » -U:-x Tue <
i paramn-vaiue

Tiooaew

[AEORY

Figure 9: Sample structure definition menu.

43

— TS
FROZEN
PRODSTATUS
RAMPATER] AL
WASTRACKINGIHPARTS
PLANMER
ACTTVEDT
s 01 [NGCHANOEDT
Stot hane var1an e e ISIDENTIFTED AT TYPECODE
DESCRIPT | 0N JEsCR TATE i
ACTIVE ACTiurLO TYPEREFORECONY UMBEROFMAT TYPECON
FROZEN FROZEN ont 1YPERE TERCOW AT CONVRATE
STRTUS PRODSTATUS accEssCAT PLANGTARTSI 2E
CRERTE-DATE CREATEDY TART | NGPRONSYSMANE 0EVI CECATEOORY
RCT | VE-DATE ACT1VEDT DEV] CECATEGORY B2
LRST~NOD-DATE CHANGEDT CECAT EGORY@I DEVICECATEOORY Q4
INGTRUCT-TYPE (ARRAY-ELEMENT INSTTYPE 12 !MSTCOUNT) SEVICECAT EGORYQS
INGTRUCT-COMMENT (RRRAY-ELEMENT |NSTCOMMENT (2 INGTCOUNT } CAT EGORY Q7 DEVICECATEBIRY 9@
INGTRUCT-PROC- 10 (ARRRY-ELEMENT INSTPROID 12 (NETCOUNT) £00RY09 DEVICECATEGORY!D
INGTRUCT~{MVENT~{D (ARRAY-ELEMENT INSTINVENTORYID 12 | NETCOUNT) CECATEQORY11 OEVICECATEGORY12
NO-ENG-PRRANS NEMGPRRNE CECATEBORY 13 DEVICECATEOORY1 4
NPRRTS CECATEGORY 1S 0EVICECATEGORY1S
Ao o (FAMTY-ELEMENT FARRORE 38 N1OTALPARIS) Schreoomi? bevickoartooeviy
¢ CECATEGORY19 DEVICECARTEGORY29
PARR-UNLUE NIt Teatt
STARTMATCOUNT
e TGS, SN
TTYPESEFORECONY Fla1d SuPP 1 SUPPLIER]
PRTTYPECON Fislo l TDESTCOUNT 1DESTPRONSY
Tuos-out Pane TDESTINVENTORYID INGTST
: NgY |NSTDEVICELD
:;ngal'lni INBTIMVENTORY D
. L :
frimitlve Soer Lavel Save: e ereien
tructures ctures ot}
r tructures PARY QUTPART BINCLASS
e S o paaT $aLDY T OUTPARTTARGY I
fetrisve Retrieve User Leve! Structures 15nxn”g: % 1ed
NTOTALPARNS
et ine Def ine pililly
noaLry noaify INSTLERD
tenove Remove Restore:

Primitive Structures

User Leve! ftructures

Figure 10: Sample structure definition menu.

of elements to retrieve from the array and for the PROMIS field which specifies
exactly how many elements are in the array. Figure 10 shows the query for the
DEVICE structure being defined.

DRIFS groups primitive structures by local database, allowing the user to retrieve
all of the primitive structures defined for that local database. The user may also
retrieve all structures with a particular slot name (e.g. "status” or "production-
area”). The structures are displayed in the Interaction pane, and the user can
select them to view their definitions in the Type-out pane. Note: retrieving prim-
itive structures should not be confused with retrieving data from a local database.

Primitive structure definitions are entirely within DRIFS.

5.1.4 Creating User Level Structures

User level structures combine slots from primitive structures, allowing data from

separate databases to be integrated in a common data model. They are created

44

using pop up menus that specify which primitive structures are to be used, and
which slots to include from each primitive structure. One slot from each primitive
structure must be identified as a key slot. DRIFS expects the data in key slots to
be stored in the same format across primitive structures.

5.2 Retrieving Primitive Level Data

To initiate a DRIFS primitive level query, the user selects a primitive structure to
retrieve and specifies the search criteria (known to DRIFS as query constraints)
pertaining to that structure. The query constraints are entered via pop-up menus.
Figure 11 shows how query constraints are specified using the DRIFS window inter-
face.

Once the query constraints have been specified by the user, DRIFS translates them
into the query language of the local database and issue the proper query to the
server for that database. Two methods were evaluated for communicating query
commands to local database servers:

¢ Remote batch jobs.

e Ascii-translating character streams.

Batch jobs have thg advantage of standard handshaking provided by the network
protocols. Such handshaking allows for better handling of error conditions, and less
programming overhead. However, response time for batch jobs can be unacceptably
slow, depending on the configuration of the host computer. For example, EXGEFE
(the host computer for PROMIS and the engineering test database at DLOG-II)
gives batch jobs minimal priority at peek computing hours. In fact, during certain
times of the day, batch processing virtually stops until the computing load is re-
lieved. Another disadvantage to remote batch jobs is that they must initiate and
release a new process each time a retrieval is requested. A large portion of the time
it takes to run a PROMIS query is consumed in getting to the proper PROMIS
menu and exiting the system. With batch jobs, this must be done each time a

query is run.

45

TOR MEIRE cooreemsocimenas
m—meﬂo NETRUCT -INVENT D NG

DEBCAPTION ACTIVE PROZEN sTAﬂl CQAT!-OA" AGTN!-OA?! LABT-~ noo-ouz INBTAUCT-TVIE INSTRUCT-COMMENT
ARAN-=YALUE

lelﬂ" e/e()CadeN
N0

OESCAIPTION ACTIVE FROZEN STATUS CAREATE-DATE ACTIVE-OATE LABT-MOO~DATL INGTAUCT = TYFE INGTAUCT ~COMMENT
~PARAMS PARAM-NAME PARAM=-vALUL

1ot Mene: - -oeor NN
NETRUCT-PROC10 INETAUGT -VENT 10 NO-ENG-P

H'nlcu. Smcuom /e Cy(nie N

vllh.x ‘s.91'8

DEVICE Constraint #3

ON ACTIVE PROZEN !?AT\IS QMAT!-DA" AC“I‘N!-DAY! MM’! INSTRUCT-TYI INBTAUCT ~-COMMENT
ALLE

[S10t Name) NAME
NS TAUCT -PROC-0 INSTRUCT -INVENT-D
Predicats FUNCLION: « /s <) (ade i
01781799

TTLIT TR

b—

Figure 11: Constraints used in a DEVICE primitive query.

These constraints request all DEVICE’s with names beginning in A
that have been modified after Jan. 1, 1989.

46

In contrast, an ascii-translating character stream is a direct connection to another
computer via remote login. The stream has an output buffer through which a
program can send commands to the remote host as if a user were typing them.
The output from the host is piped into the stream’s input buffer where it can be
interpreted by the program. Ascii-translating character streams have the advantage
of efficiency but are more prone to unanticipated errors. For example, if the host
sends a system message to all users, the DRIFS will not know how to interpret that
message, or, if a process times-out or aborts for any reason, DRIFS may continue to
send commands to the non-existent process, not knowing it has been deactivated.
Also, if a stream has been inactive for a certain length of time, the remote login

session may terminate automatically in what is called an autologout.

Ascii-translating streams were used to communicate with the PROMIS and the en-
gineering test databases on EXGEFE, and batch jobs were used to communicate
with the financial database on TILDE. Batch jobs were acceptable for TILDE be-
cause even at high system load, there was little or no time between queuing a..d
execution. LISP structures were defined for the PROMIS and engineering test
databases to hold the character streams and the information necessary to generate
them. Since direct network connections may not exist from the DRIFS computer
to the local host, local database structures define a connection path which lists the
hosts, or connection nodes, leading to the desired host. The ascii-translating char-
acter stream must login to each node separately until it reaches the desired host.
The connection nodes hold the information necessary for login at each host. The
retrieval connection is a LISP structure holding the character stream and its per-
tinent information. Local database structures were designed to allow for parallel
query processing through use of more than one retrieval connection and a query
queue and results queue. However, parallel processing was not implemented in the
initial prototype, and these mechanism were not used. Figure 12 describes the LISP
representation of the PROMIS local database and its connection nodes and retrieval
connections.

5.2.1 Retrieving Primitive Structure Data from PROMIS

Note from Figure 5 that there is more than one network path between ESPRESSO
and EXGEFE. To generate a retrieval connection, ESPRESSO can use DECnet

47

Description of PROMIS local database structure.

#<LOCAL-DB -64740176>

NAME: PROMIS

HOST-NAME: "exgefe"”

SYSTEM-TYPE: VMS

TELNET-PORT-NO: 23

CONN-PATH: (#<CONN-NODE -75300401> #<CONN-NODE -75300157>)
LOCAL-DB: PROMIS

INITIAL-NO-OF-RETRIEVAL-CONNS: 1
RETRIEVAL-CONNS: (#<RETRIEVAL-CONN -75300152>)
QUERY-QUE: SYS:: |unbound|
RESULTS-QUE: SYS:: |unbound|

#<CONN-NODE -75300401>

HOST-NAME: "all4i®
SYSTEM-TYPE: VMS
USERNAME: "ruf"
PASSWORD: "zimbabwe"

#<CONN-NODE -75300157>

HOST-NAME : "exgefe"

SYSTEM-TYPE: VMS

USERNAME : "ruf"

PASSWORD: "ayajaw"

#<RETRIEVAL-CONN -75300152>

OWNER: #<LOCAL-DB -64740176>

LOCAL-DB: PROMIS

STREAM: #<IP::ASCII-TRANSLATING-CHARACTER-STREAM
~75300046> :

IN-USE: NIL

Figure 12: LISP representation of the PROMIS local database, con-
nection nodes and retrieval connections.

48

. expressly to connect to the local router, and then to EXGEFE, or it can use TCP/IP
to connect to ALL41 and then login to EXGEFE through DECnet. Because the
Explorer provides more comprehensive support for TCP /IP streams, the latter path
was chosen. In order to specify this path, the connection nodes were defined as
shown in Figure 12.

PROMIS can take as long as 3 minutes to activate the DataLink menu, which pro-
vides the general file extract commands. Exiting that menu and returning to VMS
can require up to 2 minutes. To reduce overhead, the ascii-translating character
stream loads the DataLink menu only once during initialization, and all queries are
conducted without exiting DataLink.

PROMIS allows batch commands to be executed from any of its menus. The com-
mands are stored in a script file, exactly as a user would type them in. When a
script file is executed, PROMIS simply reads its command data from the file rather
than the user’s terminal. To minimize use of the character stream, DRIFS writes
its queries to a script file on EXGEFE and uses the stream only to activate and

. monitor the progress of the script command. Due to a problem with the Explorer
implementation of DECnet, files longer than about 600 bytes could not be trans-
ferred directly from the ESPRESSO to EXGEFE. The following work-around was
used:

[y

. Script files are first copied from ESPRESSO to ALL41 using TCP/IP.
2. ESPRESSO issues a batch job on ALL41 to copy the script file to EXGEFE.

3. ESPRESSO reads EXGEFE’s directory until the script file has been success-
fully copied from ALLA41.

4. ESPRESSO deletes the script and batch files from ALL41.

5. Using the ascii-translating character stream, ESPRESSO issues a command
to activate the script file from the DataLlink menu.

Each script file includes commands to perform the specified query and to convert
' the PROMIS output file into DIF format. While the script is executing, DRIFS

monitors its progress in the Type-out pane and watches for a key string at the end

49

of the script file identifying its completion. Using DECnet, the DIF file is then read
from EXGEFE and parsed into a format suitable for the primitive structure type
being queried. A LISP flavor instance is created for each entry extracted from the
PROMIS database, and these instances are listed in the Interaction pane. The user
may then select them individually to view their contents in the Type-out pane.

5.2.2 Retrieving Primitive Structure Data from the Engineering Test
Database

DRIFS uses a separate character stream connected to EXGEFE to query the engi-
neering test database. This character stream communicates at the VMS command
level, passing query constraints to the extract program (TDBEXTR) from the com-
mand line. Once the TDBEXTR command has been issued, DRIFS monitors its
progress in the Interaction pane and watches for a VMS prompt indicating comple-
tion of the extract. Using DECnet, the a description file is then read to identify the
format of the data file. Then, the data file is read and parsed into flavor instances
of primitive structures. These are listed in the interaction pane.

TDBEXTR writes the output data file in wide tabular format. The width of the
data file varies depending on the number of fields retrieved with each entry. Be-
cause of a networking problem, VMS files wider than 256 characters could not be
transferred across the network. Therefore, DRIFS queries to the test database had
to be restricted so as not to generate output files wider than 256 characters. A pos-
sible work-around for this networking problem is to write a program on EXGEFE
to parse the tabular files into an acceptable format for network transfer. However,
no work-around was implemented in the prototype.

5.2.3 Retrieving Primitive Structure Data from the Financial Database

To query data from the financial database, DRIFS creates a script file containing
Ingres commands. The script file is copied to TILDE, and a batch file is then used to
load Ingres and activate the script file. The script file instruct Ingres to retrieve the
requested fields and copy them to an output file. When the script has completed,
DRIFS reads the output file from TILDE, parsing the data into flavor instances of

50

primitive structures, which are then listed in the interaction pane.

5.3 The User Level Interface
5.3.1 Combining PROMIS and Financial Data

To describe the DRIFS user level interface, an example user level structure, FIN-
DEVICE, will be used. FIN-DEVICE combines data from two primitive level struc-
tures:

e DEVICE (from PROMIS)
e DEVICE-COST-DATA (from the financial database)

The primitive structure, DEVICE (Figure 13), is the template for retrieving device
data from PROMIS, just as DEVICE-COST-DATA (Figure 14) is the template
for retrieving cost data from the financial database. FIN-DEVICE (Figure 15)
incorporates fields from DEVICE and DEVICE-COST-DATA which might be of
interest to a production planner. Thus, retrieving FIN-DEVICE structures requires
data to be integrated from PROMIS and the financial database.

DRIFS divides a user level query into separate primitive level queries and uses the
key slots to match corresponding results from each query. For example, suppose
the user wants to view all FIN-DEVICE’s with device ID’s beginning in ASAM”.
He would query the FIN-DEVICE structure with that constraint. DRIFS would
perform two separate primitive level queries. First it would retrieve device data
from PROMIS by querying all DEVICE structures with NAME’s beginning in
" ASAM”. Then it would retrieve cost data from the financial database by querying
all DEVICE-COST-DATA structures with NAME’s beginning in ”ASAM”. At this
point, DRIFS compares the data in the key slots (in this case, the full NAME’s)
to match each DEVICE structure with its corresponding DEVICE-COST-DATA
structure. Once these primitive structures are paired up, each pair is combined to
form a FIN-DEVICE structure.

In the preceding example, the query constraints involved the key slots of the DE-
VICE and DEVICE-COST-DATA structures. If no key slot was included in the

a1

DEVICE (PROMIS)

NAME: string SINGLETON

DESCRIPTION: string SINGLETON

ACTIVE: string SINGLETON

FROZEN: number SINGLETON

STATUS: string SINGLETON

CREATE-DATE: string SINGLETON

ACTIVE-DATE: string SINGLETON -

LAST-MOD-DATE: string SINGLETON
INSTRUCT-TYPE: string LIST
INSTRUCT-COMMENT: string LIST
INSTRUCT-PROC-ID: string LIST
INSTRUCT-INVENT-ID: string LIST

NO-ENG-PARAMS: number SINGLETON

NO-PLANNING-PARAMS: number SINGLETON
PARAM-NAME: string LIST
PARAM-VALUE: string LIST

Figure 13: Description of DEVICE primitive level structure.

constraints, the user level query would be handled differently. For example, sup-
pose the user wants to retrieve all FIN-DEVICE structures with current quarter
yields less than 40%. In this case, DRIFS would still perform two primitive level
queries. First it would retrieve all DEVICE-COST-DATA structures from the fi-
nancial database with current quarter yields less than 40%. Then, it would use the
data in the DEVICE-COST-DATA key slots (in this case, the NAME’s) to build
the query constraints for the DEVICE structure. DRIFS would use those query con-
straints to retrieve from PROMIS a matching DEVICE structure for each DEVICE-
COST-DATA structure it has already retrieved from the financial database. The
pairs are then combined to form FIN-DEVICE structures.

5.3.2 Combining PROMIS and Engineering Test Data

Integrating data from PROMIS and the engineering test database cannot be handled
the manner described in Section 5.3.1, because there is not a one-to-one correspon-

52

DEVICE-COST-DATA (FINANCIAL-DB)

NAME: string SINGLETON
BARS-PER-SLICE: number SINGLETON
CUR-QTR-FLOW-COST: number SINGLETON
CUR-QTR-YIELD: number SINGLETON
PREV-QTR-FLOW-COST: number SINGLETON
PREV-QTR-YIELD: number SINGLETON

Figure 14: Description of DEVICE-COST-DATA primitive level
structure.

FIN-DEVICE

. Slots:

NAME (from DEVICE)
DESCRIPTION (from DEVICE)

ACTIVE (from DEVICE)

FROZEN (from DEVICE)

STATUS (from DEVICE)
CREATE-DATE (from DEVICE)
ACTIVE-DATE (from DEVICE)

LAST-MOD-DATE (from DEVICE)
BARS-PER-SLICE (from DEVICE-COST-DATA)
CUR-QTR-FLOW-COST (from DEVICE-COST-DATA)
CUR-QTR-YIELD (from DEVICE-COST-DATA)
PREV-QTR-FLOW-COST (from DEVICE-COST-DATA)
PREV-QTR-YIELD (from DEVICE-COST-DATA)

Key Slots:
NAME (from DEVICE)
NAME (from DEVICE-COST-DATA)
. Figure 15: Description of FIN-DEVICE user level structure.

53

dence between PROMIS entries and entries in the test database: For each lot in .
PROMIS, there are several entries in the entries in the test database. For example,

suppose the user wants to combine data from the following primitive structures:

o ACTIVE-LOT from PROMIS (Figure 16)

e LOT-TEST-RESULT from the engineering test database (Figure 17)

There are many LOT-TEST-RESULT’s which correspond to each ACTIVE-LOT.
To handle this situation, DRIFS allows user level structures to identify sub-structures.
Sub-structures are primitive structures, such as LOT-TEST-RESULT, which have a
many-to-one correspondence to other primitive structures, such as ACTIVE-LOT.
The user level structure, ENG-ACTIVE-LOT (Figure 18), incorporates slots from
ACTIVE-LOT which are of interest to an engineer. It also incorporates lot test

data associated with each active lot by identifying LOT-TEST-RESULT as a sub-
structure.

ACTIVE-LOT (PROMIS)

NAME :

COMMENT :
DEVICE-NAME:
CUR-PROCESS-NAME:
CUR-RECIPE-NAME:
CUR-PROD~-AREA-NAME:
CUR-WORKCENTER-NAME:
CUR-EQUIP-TYPE-NAME:
CUR-EQUIP-UNIT-NAME:
COMPLETION-CLASS:
STATE:
STATE-ENTRY-TIME:
STAGE:
TRACKING-STAGE:
CUR-STEP-NUMBER:
END-STEP-NUMBER:
EMPL-ID-TRACKIN:
EMPL-ID-TRACKOUT:
STEP-COMMENT:
QUEUVE-TIME:
STEP-START-DATE:
STEP-END-DATE:
RELEASE-TIME:
STEP-START-SIZE:
MECH-STEP-YIELD:
NO-OF-DIE-IN:
DIE-STEP-YIELD:
CUR-MECH-LOT-YIELD:
CUR-EFF-DIE-YIELD:

Figure 16: Description of ACTIVE-LOT primitive level structure.

string
string
string
string
string
string
string
string
string
string
string
string
string
string
number
number
string
string
string
string
string
string
string
number
number
number
number
number
number

SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON

LOT-TEST-RESULT (TEST-DB)

TESTER:
TECHNOLOGY:
DEVICE:
LOT-NAME:
TEST-DATE:
TEST-TIME:
TEST-TYPES:
TEST-RESULTS:

Figure 17: Description of LOT-TEST-RESULT primitive level struc-

ture.

ENG-ACTIVE-LOT

Slots:
NAME
COMMENT
DEVICE-NAME
CUR-PROCESS-NAME
CUR-RECIPE-NAME
CUR-PROD-AREA-NAME
CUR-WORKCENTER-NAME
CUR-EQUIP-TYPE-NAME
CUR-EQUIP-UNIT-NAME
STATE
STAGE
CUR-STEP-NUMBER
STEP-COMMENT

Key Slots:
NAME

Sub-structures:
LOT-TEST-RESULT

Figure 18: Description of ENG-ACTIVE-LOT user level structure.

string
string
string
string
string
string
string
TEST-RESULT

(from ACTIVE-LOT)
(from ACTIVE-LOT)
(from ACTIVE-LOT)
(from ACTIVE-LOT)
(from ACiIVE-LOT)
(from ACTIVE-LOT)
(from ACTIVE-LOT)
(from ACTIVE-LOT)
(from ACTIVE-LOT)
(from ACTIVE-LOT)
(from ACTIVE-LOT)
(from ACTIVE-LOT)
(from ACTIVE-LOT)

(from ACTIVE-LOT)

Key Slot: LOT-NAME

56

SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
SINGLETON
LIST

LIST

6 Evaluations

6.1 Evaluation of DRIFS Prototype Implementation

The DRIFS prototype is successful in providing a standard data model and retrieval
interface to data in three heterogeneous databases:

¢ PROMIS Database. The shop floor control system database used by
DLOG-II, a Texas Instruments fabrication facility. This database resides on
a VAX 8650 running VMS.

¢ Engineering Test Database. The database used by DLOG-II for storing
IC probe and test results. This database resides on a VAX 8650 running VMS.

¢ Financial Database. A mock financial database created with Ingres. This
database resides on a VAX 785 running ULTRIX.

6.1.1 Heterogeneous Hardware Environment

Because the financial database resides on a separate computer system from the
DLOG-II VAX which stores the PROMIS and engineering test databases, the pro-
totype demonstrates that the DRIFS concept can be implemented in a heterogeneous
hardware environment.

6.1.2 DRIFS User Interface

The window-oriented menu interface of the DRIFS prototype provides a flexible and
convenient method for defining representations of the local fabrication databases.
The extensive text provided by the PROMIS help feature is a useful aid in designing
primitive level structures.

6.1.3 DRIFS Data Model

The model for DRIFS primitive structures is sufficient for defining representations
of each of the local fabrication databases. In addition to providing homogeneity,
the primitive structures are easily integrated at the user 'evel.

The use of key slots and substructures allows primitive data from separate fabri-
cation databases to be integrated via user level structures. Additionally, user level
structures provide a means of defining specialized ”views” of the fabrication data
for certain groups (i.e. engineers, production planners, etc.) This was demon-
strated in the prototype through the ENG-ACTIVE-LOT and FIN-DEVICE user

level structures, tailored for engineers and production planners, respectively.

6.1.4 Access Times

While the Explorér LISP machine used to implement DRIFS provides an excellent
environment for rapid prototyping, networking from the Explorer to other comput-
ers is slow and cumbersome. The work-around to the networking problem described
in Section 5.2.1 adds substantial overhead to running PROMIS database queries
from DRIFS. This overhead, combined with the already slow transfer rate (about
500 to 800 bytes/sec) between the Explorer and the DLOG-II VAX severely limits
the performance of PROMIS queries from DRIFS. Table 1 shows the access times
required to retrieve one DEVICE structure from PROMIS. Note that transferring
the PROMIS script file to EXGEFE accounts for 68% of the total access time (due
to the networking work-around). Since transfer time for script files is constant with
respect to the number of DEVICE’s retrieved from PROMIS, this percentage be-
come less significant (15%) when a larger number (20) of DEVICE structures are
retrieved (see Table 2).

Access times for queries to the engineering test and financial database are more
acceptable. Table 3 shows the access times for retrieving test data for an active lot
with 15 LOT-TEST-RESULT entries. Table 4 shows the access times for retrieving
test data for an active lot with 114 LOT-TEST-RESULT entries. Notice that at
114 entries, reading the output file over the network is the dominant time factor.

Table 5 shows the access times for retrieving the cost data associated with one

58

Access Times to Retrieve one DEVICE Structure from PROMIS

Transfer Execute Read DIF Total Access
Script File to | Script File on | Output File Time
EXGEFE EXGEFE from
EXGEFE
Trial 1 0:36 0:11 0:11 0:58
Trial 2 0:33 0:07 0:10 0:50
Trial 3 0:34 0:09 0:07 0:50
Trial 4 0:35 0:08 0:07 0:50
Average 0:35 0:09 0:09 0:52
Average % || 68% 17% 17%

Times are in M:SS format.

Table 1: Access times for one DEVICE structure.

Access Times to Retrieve 20 DEVICE Structures from PROMIS

Transfer Execute Read DIF Total Access
Script File to | Script File on | Output File | Time
EXGEFE EXGEFE from
EXGEFE
Trial 1 0:38 1:46 1:55 4:19
Trial 2 0:41 2:19 2:00 5:00
Trial 3 0:40 1:46 1:59 4:25
Trial 4 0:39 1:49 1:58 4:26
Average 0:40 1:55 1:58 4:33
Average % | 15% 42% 43%

Table 2: Access times for 20 DEVICE structures.

Times are in M:SS format.

—
Access Times to Retrieve 15 LOT-TEST-RESULT Structures
from the Test Database

Run TDBEXTR | Read Total Access
Extract on Output File from | Time
EXGEFE EXGEFE

Trial 1 0:19 0:07 0:26

Trial 2 0:17 0:10 0:27

Trial 3 0:20 0:08 0:28

Trial 4 0:22 0:08 0:30

Average 0:20 0:08 0:28

Average % 71% 29%

Table 3: Access times for 15 LOT-TEST-RESULT structures.

Times are in M:SS format.

device. Table 6 shows the access times for retrieving the cost data associated with
10 devices. The Ingres execution time increases from 21 sec. to 32 sec. (an increase
of 52%) when the number of DEVICE-COST-DATA structures retrieved increases
from one to 10 (an increase of 990%). These figures indicate that with small queries,
a major portion of the access time is overhead in loading and executing the Ingres
script file.

6.2 Evaluation of the DRIFS Concept

While DRIFS provides a standard retrieval interface and data model for heteroge-
neous fabrication databases, its effectiveness can be limited by the existing inter-
faces to the individual local databases and by networking demands. For example,
the only interface to PROMIS data is through menus intended to handle interac-
tive commands from a user console. Automated interaction with these menus is a
cumbersome and error-prone method. DRIFS could be more effective if each local
database provided a retrieval interface designed to handle automated data retrieval.

Even without such interfaces, however, DRIFS can provide an excellent means for

60

from the Test Database

Access Times to Retrieve 114 LOT-TEST-RESULT Structures

Run TDBEXTR | Read Total Access
Extract on Output File from | Time
EXGEFE EXGEFE

Trial 1 0:31 0:25 0:56

Trial 2 0:27 0:27 0:54

Trial 3 0:23 0:27 0:50

Trial 4 0:22 0:33 0:55

Average 0:26 0:28 0:54

Average % 48% 52%

Table 4: Access times for 114 LOT-TEST-RESULT structures.

Times are in M:SS format.

Access Times to Retrieve one DEVICE-COST-DATA Structure
The Financial Database

Transfer Execute Read Ingres | Total Access
Script File to | Script File on | Output File | Time
TILDE TILDE from TILDE

Trial 1 0:04 0:24 0:08 0:36

Trial 2 0:04 0:20 0:12 0:36

Trial 3 0:07 0:21 0:13 0:41

Trial 4 0:04 0:19 0:12 0:35

Average 0:05 .0:21 0:11 0:37

Average % | 13% 57% 30%

Table 5: Access times for one DEVICE-COST-DATA structure.

Times are in M:SS format.

Access Times to Retrieve 10 DEVICE-COST-DATA Structures
The Financial Database

Transfer Execute Read Ingres | Total Access
Script File to | Script File on | Output File | Time
TILDE TILDE from TILDE

Trial 1 0:05 0:32 0:12 0:49

Trial 2 0:04 0:41 0:12 0:55

Trial 3 0:04 0:31 0:12 0:47

Trial 4 0:04 0:25 0:11 0:40

Average 0:04 0:32 0:12 0:48

Average % || 08% 67% 25%

Times are in M:SS format.

Table 6: Access times for 10 DEVICE-COST-DATA structures.

off line data retrieval in converting to a homogeneous fabrication database.

62

References

(1] Dolins, S.B., A. Srivastava, I. Mani, and A. Myjack. Intelligent Factory Man-
agement System. Technical Report, Al Laboratory, Texas Instruments, Dallas,
TX. 1988.

(2] Ephraim, O. M. Integrating CAD/CAM Systems. Conference on Computer
Aided Manufacturing and Productivity. London, 1981.

[3] Ezplorer Technical Summary, Rev. C, Texas Instruments, Inc., Austin, TX.
1987.

(4| GEFE Engineering Test Database (TDB) User’s Guide Document. Texas In-
struments, 1988.

[5] Heytens, M. Database Schema of the MIT CAFE System. Massachusetts Insti-
tute of Technology, 1987.

[6] Heytens, M. and R. Nikhil. GESTALT: An Ezpressive Database Programming
System. Massachusetts Institute of Technology, 1987.

[7] Heytens, M. GESTALT User’s Manual. Massachusetts Institute of Technology,
1987.

[8] INGRES Reference Manual. Version 3.0, VAX/VMS, Relational Technology,
Inc., Berkeley, CA. 1984.

[9] Katz, R. H. "Database Management and Computer-Assisted VLSI Fabrica-
tion.” Database Engsneering. Vol. 7. No. 2, pp. 35-38. IEEE Computer Soci-
ety, 1984.

(10] Landers, T. and R. Rosenberg. An Overview of Multibase. North-Holland Pub-
lishing Co., 1982.

(11] Moore, R. D. CIM Applications: An Architectural Overview. Harris Semicon-
ductor.

[12] PROMIS Standard System Guide. Vol. 1-2, Rel. 4.2, PROMIS Systems Cor-
poration, 1987.

63

(13] Ruf, M. DRIFS: Data Retrieval Interface for Fabrication Systems. Third
DARPA/SRC Workshop on Computer-Integrated Manufacturing of Integrated
Circuits, Stanford, CA. 1988.

(14] Smith, J.M. et. al. Multibase - integrating heterogeneous distributed database
systems. Conference Proceedings of National Computer Conference. Chicago,
1981.

64

