
0p
lot.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

0 VLSI Memo No. 89-520
April 1989

00

DRIFS - A Data Retrieval Interface for Integrated Circuit
Fabrication Systems< DTi2
Michael P. Ruf

MAY 2 4i89 ,

Abstract
W, %

People who operate a factory need to access data from many aspects of the fabrication
environment. Many IC fabrication facilities store manufacturing data in distributed,
heterogeneous database networks, meaning that data exists in several dissimilar databases
and computer systems. Retrieval and integration of data can be a cumbersome task due to
this configuration. The ideal solution to these problems is to standardize a data model,
storing the manufacturing data in a single database. However, since such a standardization
is not likely to occur in the near future, a more immediate solution is needed.

DRIFS (Data Retrieval Interface for Fabrication Systems) addresses the problems of
integration and data retrieval by providing a standard query interface and data model for
heterogeneous, distributed fabrication databases. The DRIFS prototype is described and
illustrated in this thesis.

'Aicrosvsterns 'Aassacnusetts jinnrIlae -ieohone
Research Center Institmie 'AassacnuseTts 317) 253-8138
ROom r39-S21 ,) Teonomqy)2139

Acknowledgements

Submitted to the Department of Electrical Engineering and Computer Science at MIT on
April 7, 1989 in partial fulfillment of the requirements for the Degree of Master of Science
in Electrical Engineering and Computer Science. This work was supported in part by the
Defense Advanced Research Projects Agency under contract number MDA972-88-K-0008.

Author Information

Ruf: Electrical Engineering and Computer Science, Room 36-667, MIT, Cambridge, MA
02139. (617) 253-7811.

Copyright9 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form "private
communication." For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Research Center, Room
39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

DRIFS - A DATA RETRIEVAL INTERFACE FOR
INTEGRATED CIRCUIT FABRICATION SYSTEMS

by

Michael P. Ruf

submitted in partial fuljillment

of the requirements for the degree of

MASTER OF SCIENCE

IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

April 7, 1989

@Massachusetts Institute of Technology 1989

Signature of Author
Department of Electrical Engineering and Computer Science

April 7, 1989
Certified by

Donald E. Troxel
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Departm-ntal Committee on Graduate Students

0

DRIFS - A Data Retrieval Interface for
Integrated Circuit Fabrication Systems

by

Michael P. Ruf

Submitted to the Department of Electrical Engineering

and Computer Science on April 7, 1989 in partial

fulfillment of the requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

People who operate a factory need to access data from many aspects of the fab-

rication environment. Many IC fabrication facilities store manufacturing data in

distributed, heterogeneous database networks, meaning that data exists in several

dissimilar databases and computer systems. Retrieval and integration of data can

be a cumbersome task due to this configuration. The ideal solution to these prob-

lems is to standardize a data model, storing the manufacturing data in a single

database. However, since such a standardization is not likely to occur in the near

future, a more immediate solution is needed.

DRIFS, (Data Retrieval Interface for Fabrication Systems, adresses the problems

of integration and data retrieval by providing a standard query interface and data

model for heterogeneous, distributed fabrication databases. The DRIFS prototype

is described and illustrated in this thesis.

Thesis Supervisor: Donald E. Troxel Acce.u ,

Title: Professor of Electrical Engineering and Computer Science NS TI .S

UJ .i 4! ,b ' :

Dist

Acknowledgements

My thesis work has been done at the Computer Science Center of Texas Instruments

in Dallas as my third assignment in the VI-A program. I appreciate the guidance

and assistance of the following people at TI: Richard Hawkeye, Aditya Srivastava,

Steve Walker, Tom Ekberg, and Cynthia Martin. I also acknowledge the support of

Prof. Donald E. Troxel and of Michael Heytens. Discussions with Michael provided

valuable help in the design of DRIFS. The data model for DRIFS structures was

derived from GESTALT, a database he authored for computer aided fabrication.

0
2

*Biography

Michael Ruf is a candidate for the degrees of Master of Science and Bachelor of

Science in Electrical Engineering at the Massachusetts Institute of Technology. He

worked at Texas Instruments as a member of the M.I.T. VI-A program and was a

graduate research assistant for the Computer Aided Fabrication project at M.I.T.

He is also a student member of the IEEE. His primary research interest is in the

management of information systems, and in the computer aided fabrication of in-

tegrated circuits.

Contents

Abstract I

Acknowledgements 2

Biography 3

Contents 4

1 Introduction 9

2 Fabrication Data in Heterogeneous Databases 10

2.1 Shop Floor Control Systems 11

0 2.2 Supplemental Data Systems 11

2.3 Downloading from Supplemental Databases to the SFC Database . 13

2.4 Categorizing Data Retrieval Needs 13

3 Overview of DRIFS 15

3.1 DRIFS Schema Levels 15

3.1.1 Local Database Level 15

3.1.2 DRIFS Primitive Level 15

3.1.3 DRIFS User Level 16

3.2 DRIFS Primitive Structures 16

3.3 DRIFS User Level Structures 17

4

4 DRIFS Testbed 18 @

4.1 DLOG-I Management Structure 18

4.2 Manufacturing Data 19

4.3 Structure and Content of PROMIS Database 20

4.3.1 Facility Information 20

4.3.2 Engineering Data 25

4.3.3 Lot Data 28

4.4 Structure and Content of Engineering Test Database 28

4.5 Structure and Content of Financial Database 31

4.6 Database Retrieval Mechanism for PROMIS 31

4.7 Database Retrieval Mechanism for the Engineering Test Database 34 9
4.8 Database Retrieval Mechanism for the Financial Database 35

5 DRIFS Prototype 37

5.1 DRIFS Software Environment 39

5.1.1 Window Interface 39

5.1.2 On Line Help Facility 39

5.1.3 Creating Primitive Structures 41

5.1.4 Creating User Level Structures 44

5.2 Retrieving Primitive Level Data 45

5.2.1 Retrieving Primitive Structure Data from PROMIS 47

5

6.2.2 Retrieving Primitive Structure Data from the Engineering

Test Database 50

5.2.3 Retrieving Primitive Structure Data from the Financial Database 50

5.3 The User Level Interface 51

5.3.1 Combining PROMIS and Financial Data 51

5.3.2 Combining PROMIS and Engineering Test Data 52

6 Evaluations 5T

6.1 Evaluation of DRIFS Prototype Implementation 57

6.1.1 Heterogeneous Hardware Environment 57

6.1.2 DRIFS User Interface 57

6.1.3 DRIFS Data Model 58

6.1.4 Access Times 58

6.2 Evaluation of the DRIFS Concept 60

References 63

6

*List of Figures

1 Broad categorization of fabrication data 10

2 Example of a TDB file 30

3 Listing of financial database 32

4 Column and row formats in PROMIS 33

5 Partial schematic representation of Ethernet network at TI Computer

Science Center38

6 Drifs Window Interface 40

7 Promis Help command, file level 42

8 Promis Help command, field description 43

9 Sample structure definition menu 43

10 Sample structure definition menu 44

11 Constraints used in a DEVICE primitive query 46

12 LISP representation of the PROMIS]oc -.1 database, connection nodes

and retrieval connections 48

13 Description of DEVICE primitive level structure 52

14 Description of DEVICE-COST-DATA primitive level structure. . . 53

15 Description of FIN-DEVICE user level structure 53

16 Description of ACTIVE-LOT primitive level structure..... . . . 55

17 Description of LOT-TEST-RESULT primitive level structure56

18 Description of ENG-ACTIVE-LOT user level structure56

*List of Tables

1 Access times for one DEVICE structure 59

2 Access times for 20 DEVICE structures 59

3 Access times for 15 LOT-TEST-RESULT structures 60

4 Access times for 114 LOT-TEST-RESULT structures 61

5 Access times for one DEVICE-COST-DATA structure 61

6 Access times for 10 DEVICE-COST-DATA structures 62

0S

. 1 Introduction

With the growing complexity of integrated circuit processes, the increasing number

of technoiogies and product lines, and the relentless demand for higher volumes.

commercial IC fabrication is increasingly dependent on information management.

Information is coiiected from almost every aspect of the manufacturing process.

Financial, marketing, design, engineering, production, scheduling, resource man-

agement, parametric, and control information all contribute to a vast collection of

fabrication data. To maintain high productivity, IC manufacturers must draw

on technical, historical, and corporate data at all levels of the fabrication process.

More importantly, this data must be integrated and easily retrievable.

The past decade has seen the growth of commercial MIS systems for fabrication

data. These systems are responsible for handling information for all aspects of

the fabrication cycle, from design through packaging. However, in most cases, the

systems are piecemeal, covering only a particular stage or aspect of the fabrication

process. For example, separate computers and software are commonly used for logic

design, process design, scheduling, fabrication, and facility support. Because these

systems do not share data or communicate efficiently with each other, they do not

support integration of data at a global level. Furthermore, these large conglomera-

tions of data are not always equipped with efficient retrieval interfaces. Due to the

magnitude and complexity of such systems, often only highly trained individuals

can access and interpret the data.

Improving the inadequacies of existing IC fabrication management systems will be

a key factor in adapting to the growing information needs of factories of the future.

9

2 Fabrication Data in Heterogeneous Databases

Fabrication data can be categorized as shown in Figure 1 into two broad areas:

" Operations Data. This encompasses the data directly associated with the

operation of the IC plant, including physical layout, engineering, scheduling

facilities support, historical, parametric, work in progress (WIP), yield, and

inventory data.

" Financial/Planning Data. This includes management level data such as

costing, pricing, demand and market forecasting data as well as WIP, yield,

and inventory data.

Fabrication Data

DATA PLANNING
DATAP DATA

Engineering e Costing/Pricing

* Equipment o Orders

o Lot
* Scheduling Scheduling

o Historical o Forecasting

Figure 1: Broad categorization of fabrication data

:0

2.1 Shop Floor Control Systems

The majority of the fabrication data is usually managed by a shop floor control

(SFC) system. Several shop floor control (SFC) systems for IC fabrication are in

use today. These systems include:

" PROMIS

* COMETS

" SMS/370

* GE-Fanuc

" CADAM

PROMIS and COMETS, the two leading commercial manufacturing systems use

table-based databases. SMS/370, GE-Fanuc, and CADAM use hierarchical databases.

These systems normally handle a major portion of the information needs for a partic-

ular facility. Most shop floor control systems concentrate on Operations Data, sepa-

rating it into three major categories: facilities, engineering, and lot tracking/history.

These categories are discussed in detail in Section 4.3.

2.2 Supplemental Data Systems

Supplemental systems are used to collect and manage additional information not

covered by shop floor control systems. Such systems might specialize in the following

areas:

" Testing/yield. Stores th3 results of circuit probe operations (lot and yield

data). Often, summaries of this data are downloaded into the SFC databases.

" Scheduling. Refers to dynamic routing of lots through the facility to achieve

optimum throughput, given certain constraints. Information needed for schedul-

ing often comes from the SFC databases. However, some scheduling programs

may need additional information (such as constraints) not present in the SFC

database. Such scheduling systems may maintain their own databases.
11

" Production/inventory planning . Refers to information associated with

planning new lot starts, desired stock levels, order commitments, etc. Produc-

tion planners may draw on information from SFC and testing/yield as well as

financial/marketing databases.

" Equipment maintenance. Includes preventive maintenance, repair, and

idle time histories, mean time to repair, mean time between failure, and mean

time between assists.

" Equipment control. Handles supplemental recipe information not covered

by the SFC. This may include furnace controls and settings (recipes) associ-

ated with specific operations, alignment and sizing information for lithogra-

phy equipment, etc. These systems may reside on level H or level III computers

which are directly interfaced to the fabrication equipment.

" Financial/marketing. Handles sales order processing, standard cost ac-

counting, market trend analysis/forecasting, etc. The detkil and breadth of

financial/marketing systems vary depending on the corporate structure of

the plant. Many SFC systems handle financial/marketing needs, but supple-

mental data is often maintained on a stand-alone system, or as part or the
corporate financial databases.

* Facility support. Monitors and controls temperatures, humidity, gas flows

and pressures, liquid weights, valves, etc. Facility support systems also record

air-born particle count information and particle count, resistivity, total oxi-

dation and oxided carbon content of the deionized water used in the facility.

These systems have alarms giving notification of processes that are out of

control, and procedures to correct such situations. Such systems are normally

stand-alone and run on level I or level II computers.

The shop floor databases and the databases which store additional manufacturing

data will be referred to as local databases. Often, users want to perform queries

which draw on data from two or more of these local databases. How these queries

are executed is an integration issue.

12

2.3 Downloading from Supplemental Databases to the SFC
Database

One common method of integrating the data is to download information from sup-

plemental databases into the main shop floor control database. This method has a
number of disadvantages:

* Any outside information integrated into the SFC system must conform to the

structure of the SFC database. If this structure cannot accomodate a certain

data model, part of the data may be forfeited in converting to a suitable

model.

* Integration is not real-time. An intermediate program must port the data from

supplemental database to an SFC database. Queries may generate outdated

information because the intermediate program can only be run periodically.

* As applications change, or new applications are written, integration needs

may change. To restructure the integration model, the schema of the SFC
databases must be modified. This is a -high overhead procedure. Therefore,

this integration method is not dynamic with regard to information needs.

* Because all access to integrated information must be through the SFC system,
the demands on the system increase as more information from other databases

is duplicated in the SFC databases to support integration.

2.4 Categorizing Data Retrieval Needs

Because different people associated with the fabrication process may want access

to different types of information, it is helpful to categorize these people into several

groups with similar information needs. A typical breakdown is:

* Equipment operators run the factory machinery. They transfer lots from
point to point, and initialize machines with the proper parameters for each

O operation.

13

* Engineers. Some engineering groups do the experimentation and ground-

work for developing new processes. A process is a sequence of operations on

a wafer which change its state. Processes include, wafer cleaning, deposition,

exposure, development, etching, ion implantation, etc. Other engineering

groups refine and sustain the processes. They work with logic and wafer pro-

file specifications to develop new devices. They adjust processes to fit the

needs of particular devices.

Manufacturing managers and supervisors are responsible for the day to

day activities of the factory. They monitor work in progress, handle produc-

tion scheduling within the facility, identify bottlenecks, work to decrease cycle

time and increase throughput, and, in general, provide for smooth operation

of the facility.

* Quality control personnel are responsible for monitoring processes to de-

tect abnormalities (processes gone out of control), diagnosing those abnormal-

ities, and correcting errant processes.

* Production planners decide which and how many devices will be fabricated

and when they will be started. They may also handle the accounting and

financial affairs associated with product manufacturing.

e Support and maintenance personnel are responsible for maintaining and

repairing equipment, and identifying and evaluating replacement needs.

" Top level managers provide long term direction and strategies for the fa-

cility. They are interested in summary-type data.

Most shop floor control systems provide reports tailored for certain groups listed

above, but cannot provide each group with a separate "view" of the underlying

schema. Hence, new reports are difficult to generate, since retrieval interfaces are

not designed to address the specilized interests of each group.

14

* 3 Overview of DRIFS

DRIFS is intended to relieve the integration and ease of access problems by pro-

viding a standard query language and data model for heterogeneous, distributed

fabrication databases. It is designed to provide an integrated data representation

without requiring changes to the existing local databases.

DRIFS provides a software environment on a separate computer system, defining and

storing a representation of each fabrication database. Using those representations,

it generates queries particular to each fabrication database and retrieves data from

them via computer networks.

3.1 DRIFS Schema Levels

In order to separate the tasks of providing homogeneity and integration, DRIFS

brealp data acquisition into three levels: the local database level, the primitive

level, and the user level.

3.1.1 Local Database Level.

The local database level consists of existing data stored in local fabrication databases.

It consists of the shop floor control system database and supplemental databases,

all of which are external to DRIFS.

3.1.2 DRIFS Primitive Level.

The primitive level is the crux of DRIFS, interfacing with the local database level

through various networking techniques. It stores a mapping of each local database

schema to the DRIFS data model. The primitive level provides homogeneity, because

it interfaces to each data model of the local databases. Providing homogeneity is

the most involved task of DRIFS, since many issues must be considered, such as

computer networking, data models and query languages at the local level, and data

formats of output files at the local level.

15

While data representations from separate local databases are all stored using the

DRIFS data model, they are not integrated at this level.

3.1.3 DRIFS User Level.

Once the data has been mapped to the homogeneous data model of the primitive

level, it can be integrated at the user level. This level combines representations

from the primitive level to allow data from various local databases to be integrated

in common structures. User level data representations can be tailored for specific

groups such as planners or engineers, allowing each group to have separate "views"

into the primitive level.

3.2 DRIFS Primitive Structures

The DRIFS data model is comprised of primitive structures, which are templates

for data retrieved from the local databases. Each structure consists of several titled

slots where the data is stored. Each slot is defined with the following fields:

" Slot Name. Describes what kind of data is stored in the slot.

" Slot Type. Specifies what format the data is stored in (i.e. string, number).

* List/Singleton. Tells whether the data is stored as a list of values or as a

single value.

Associated with each primitive structure is information specifying from which local

database to retrieve its data and how to query that database. This information

indicates in which relation, file, record, etc. the data is stored. It also defines

a variable map linking each slot in the primitive structure to a particular field

in the local database. Primitive structures are grouped by local database, and

the collection of all primitive structures for a particular local database makes up

DRIFS's representation for that database.

16

3.3 DRIFS User Level Structures

The user level provides the means for integrating related data from each local

database. User level structures combine data from the primitive structures by

incorporating relevant slots from each primitive structure. The primitive struc-

tures which comprise a particular user level structure must have at least one slot in

common. These key slots are used to combine the results of primitive level queries.

17

4 DRIFS Testbed

The Texas Instruments Dallas Logic II (DLOG-fl) IC fabrication facility was used

as a testbed for a prototype implementation of DRIFS. DLOG-II is a low volume,

fast turn-around manufacturing facility. A significant amount of manufacturing is

dedicated to special work requests. These are normally process development exper-

iments handled as split lots, where half the lot is fabricated and acts as the control,

and the other half is fabricated with certain experimental processes. Because of the

developmental nature of lot fabrication at DLOG-II, the make-up of the fabrication

data has emphasis on engineering and parametric data rather than financial and

planning data.

4.1 DLOG-II Management Structure

DLOG-II management can be broken down into the following divisions:

Manufacturing. Responsible for assuring the smooth operation of the fac-

tory. Schedules, routes, and monitors lots as they progress through the factory.

Works to avoid bottlenecks and reduce cycle time.

" Product Engineering. Developes new processes and fabrication techniques.

" Process Engineering. Adjusts and refines processes and techniques to fit

the needs of a particular device.

* Systems. Provides technical and software support and maintains the systems

that manage manufacturing data.

" Quality Control. Does statistical analysis on process data, detecting and

diagnosing abnormalities.

" Planning. Responsible for production planning of new parts. Calculates flow

costs and cycle times associated with product manufacturing.

18

4.2 Manufacturing Data

The main computing resource at DLOG-U1 is a VAX 8650 running at 6 MIPS with

128 MB of memory. It manages the following databases:

* PROMIS. This is the shop floor control database. By far the largest and

most involved system, demanding a major portion of the computing time.

" Engineering Test Database. This is a supplemental database storing test

results from various integrated circuit test equipment.

" Engineering Data Collection Database. Stores supplemental engineer-

ing information from PROMIS. This data is used for generating charts and

trend analysis.

Additionally, DLOG-II maintains the following supplemental databases which run

on separate computer systems:

* SCADA Database. A facility support/control system to monitor and con-

trol temperatures, humidity, gas flows and pressures, liquid weights, valves,

etc. The system runs on a TI-990 mainframe computer.

" LASS Database. Stores alignment and sizing information by level, device,

and lot. The information in this database is used in controlling lithography

equipment. LASS is a stand-alone system on a micro-VAX.

" BTU Database. Stores furnace controls and settings (recipes) associated

with specific operations. These recipes store information not covered by

PROMIS. They are used to program the furnaces for a specific set of op-

erations. This database is stored on a PDP-11 minicomputer.

" Royco Database. Monitors and records air-born paricle count information.

Runs on a VAX minicomputer.

" DI Water Database. Monitors and records particle count and resistivity of

the deionized water used in the facility. Runs on a VAX minicomputer.

1.9

* TOC Database. Monitors and records total oxidation content and oxidized

carbon content of the deionized water. Runs on a VAX minicomputer.

Representations of the DLOG-ll PROMIS Database and the Engineering Test Database

were defined in DRIFS. Since DLOG-ll does not maintain a financial database, a

mock one was created with Ingres, a relational database management system. The

financial database was created on a VAX 785 running ULTRIX, DEC's version of

UNIX. A separate computer and operating system were chosen for the financial

database to demonstrate how DRIFS would perform in a heterogeneous hardware

and operating system environment.

4.3 Structure and Content of PROMIS Database

PROMIS collects and provides information for engineering, manufacturing, main-

tenance, and management. Most of the data it manages can be divided into three

categories.

9 Facility Information

* Engineering Data

e Lot Tracking and History

4.3.1 Facility Information

The facility information is defined by 24 tables. Each of these tables is stored as

one record of a single ISAM file. The tables can be broken into two categories:

1. STRUCTURE

" production areas

" work centers

" equipment types within work centers

2.0

* equipmentunits

e automated equipment

* inventory locations

2. CHARACTERISTICS and OPERATION:

" equipment statuses

" lot types

" material types

" reject information

" rework information

" product stages

" labor types

* order statuses

Off line modification of the tables is supported through menu functions, which take
"snapshots" of on line tables. The user may edit the copies, check their consistency,

and install final versions. The information in the tables may be retrieved through

specialized reports actived from the PROMIS menu, or it may be extracted through

a general file extraction facility.

The 24 tables are stored in an ISAM file named TBLS. This file contains one record

for each entry of each data table in the system. The record format as a key value

followed by a fixed length byte buffer. Separate table access routines can then

reference the byte buffer as a set of fields. The maximum length of a character

field is 130 characters. Certain fields in some files are stored as composite fields,

composed of information from two other fields, concatenated together. Composite

may not be entered directly, but are automatically generated by PROMIS. The

following provides a brief description of each record of the PROMIS TBLS file.

* AUTO record. Stores information pertaining to automated equipment.

There is one entry for each equipment unit. The data in this table sup-

plements that in the EQUN record.

21

" ECAT record. Describes characteristics of automated equipment that is

common to certain groups of units.

" EQST record. Stores codes which are used to describe the statuses of equip-

ment units. Associated with each status are descriptive codes which indicate

the equipment's availability for lot trackin.

" EQUN record. Stores information describing individual units of equipment

in the facility. It is used by lot tracking, equipment reporting, etc.

" ESET record. Outdated.

" GTNK record. Stores information pertaining to Gas Tanks.

" INVT record. Describes characteristics of inventory locations in the Facility

" LABT record. Stores labor types for labor capacity requirements in the

planning system.

" LOTT record. Defines lot type codes, which indicate ownership and tracking

aspects of lots.

" NLkTT record. Records material types and type codes. Material types are

used to generate certain prompts in lot tracking.

" ORDS record. Defines order status codes used by the Sales Order Entry

and Planning Systems.

" PRAR record. Describes production areas, the highest level of description

in the hierarchical PROMIS site tables.

" PRSY record. Describes PROMIS systems in a multi-system (multi-site)

configuration.

" PSTA record. Defines stages, which are groups of one or more sequential

process steps.

* REJC record. Defines reject categories for wafers, die, finished chips, and

certain material types. Used by the lot tracking system.

" REPD record. Contains information regarding report directories and access

privileges.

22

" REPT record. Stores the title used in production report headers.

" REWK record. Defines rework codes used in lot tracking during rework

and recovery.

" ROUT record. Used by DLOG-Il to define equipment types, which are

groups of equipment units with similar characteristics.

" TRIP record. Outdated.

" UNIT record. Describes base units of measurement, including SECS-specified

and user-defined units.

" UTYP record. Contains information to allow interconversion of certain

units.

" WAFT record. Defines wafer types used in lot tracking.

" WRKC record. Describes work centers.

The PROMIS tables containing the most extensive and significant information are

those describing the production areas, work centers, equipment types and equipment

units. These tables are hierarchically related. Production areas are groups of work

centers. Work centers and equipment types are groups of equipment units.

Production Areas The production area is the highest hierarchical level of infor-

mation pertaining to a site. Examples of production areas include:

" Front End. This is the main production area. Blank silicon wafers enter a

front end, and processed wafers leave in sealed containers to be packaged.

" Back End. Here, the processed wafers are cut and packaged in ceramic

casings. The final products are sample-tested.

" Reticle Fab. This is where new masks for lithography are made. Although

the reticle fab may be entered as a separate production area, reticles are

normally produced in the front end or ordered from outside suppliers.

Production areas are described in the PRA1. record.

23

Work Centers A work center is an area of the facility where a particular type of

operation is performed on a lot. Examples of workcenters include:

" Wafer Cleaning

" Deposition

" Furnace

" Implant

" Stepper

" Plasma Etch

" Metallization

* Test Probe

" Failure Analysis/Repair

Each work center has a field indicating its parent production area.

Equipment Types Equipment Types are groups of equipment units which per-

form similar functions. For example, a furnace work center of a large front end

might contain as many as 30 or 40 furnace tubes of varying functions: initial oxi-

dation, CMOS oxidation, gate oxidation, LPCVD nitride, etc. Each furnace tube

could entered as an equipment unit and categorized into separate equipment types.

All of these equipment types would belong to the furnace work center.

Equipment Units Equipment Units identify individual pieces of equipment in

the factory. They represent the lowest hierarchical level of information describing

the site. Equipment units may or may not be available for lot track-in. For exam-

ple, a positive resist developer may have lots regularly tracked in and out, but an

arsine/phosphine alarm would not. Both could be entered as equipment units. The

status of equipment units are modified in a separate on line file.

24

4.3.2 Engineering Data

Most of the engineering data in PROMIS is associated with IC process specifica-

tion. PROMIS records processing instructions defined by engineers and relays it to

operators or automated fabrication equipment. PROMIS also collects engineering

data such as measurements and test results from operators or automated equip-

ment. This data is used by management, quality control, and engineering for yield

analysis, engineering analysis, quality assurance, etc. Promis breaks down process

specification into four levels of detail:

* Device

* Process

* Recipe

9 Operation

The device is at the top of the hierarchy, providing the most general information.

Each of the next levels incorporates a greater amount of detail on how to manu-

facture the IC device. The operation is at the bottom of the hierarchy, giving the

highest level of detail. Once all the necessary modules have been defined, they are

combined to from a complete manufacturing process flow.

Devices Device records most commonly describe summary level instructions for

processing wafers to manufacture IC's. However, they can also be used to describe

other types of parts, both manufactured and purchased. For example, device records

are used to describe reticles used in the facility. Since most of these reticles are

purchased from photolabs, device reticle device records don't normally contain any

manufacturing information. When unprocessed wafers come into the factory, they

undergo a certain amount of epitaxial pre-processing, and are stored in inventory

as "raw" wafers. An inventory may stock variou3 types of raw wafers, depending

on the type of epitaxial pre-processing prescribed by different IC's. Raw wafers

are entered as devices and are referenced as starting material for other devices. A

device's starting material is not limited to raw wafers. In some cases, the same

25

initial process flow can be used manufacture a number of different devices. In

this situation, a device is created to define the initial process flow for the partially

processed wafers which will serve as starting materials for the finished devices.

For example, initial wafers for gate arrays can be manufactured in mass and later

customized for with additional processing particular devices.

The information in a device record can be divided into 3 major categories:

" Administrative. Contains descriptive information such as dates, the device

record's history, personnel associated with the device, categories, etc.

" Parametric. Contains parameter names and values. Parameters may specify

such things as lithography masks, probe tests, equipment settings, etc. They

allow a general description of a device type to be tailored for specific devices.

" Instructional. Contains a description of the manufacturing flow for the de-

vice. Instructions can specify how to start making a device, specify a process

flow, describe inventories for the device, or describe a "nested" device. All

devices have an instruction of the first type, and most have a final inven-

tory instruction. Some devices, such as purchased parts, do not have process

instructions.

Processes PROMIS process records provide a higher level of detail than the de-

vices which reference them. Several different devices may reference the same pro-

cess. In this situation, each device applies its own set of devices parameters to the

process. Different sets of processes are defined for each type of IC (e.g. CMOS,

NMOS, PMOS, BIPOLAR). Process information is divided into two major cate-

gories: administrative and instructional. Each record contains administrative in-

formation such as dates, planning information, statuses, etc. as well as a sequence

of instructions, or steps. Processes typically have between 50 and 100 steps, each

one naming a recipe to be used at that point. A single process may use the same

recipe at different process steps. In addition to recipe names, each process step may

specify optional data, such as rework information and control wafer instructions.

Recipes A recipe describes a sequence of operations on a lot at a particular

work center on a particular equipment type. Each step, or operation of a recipe W

26

describes a set of actions to be performed by equipment operators. A recipe may

call the same operation at different steps, and the same operation may be called by

several different recipes. Lots are tracked at the recipe level. Therefore, each recipe

record contains tracking information, such as data collection operations, facility

monitor (FM) points, and prerequisite FM values for lot mark-in. Recipes also

contain general information such as dates, statuses, equipment type, processing

times, equipment set up, equipment capacity and load sizes, input parts, etc.

Operations Operations are the most detailed building blocks for processing spec-

ifications. Each operation describes the processing instructions at a single step in

a recipe. There are four types of operations:

" Fabrication Operations

" Identify Operations

* Data Collection Operations

" Hybrid Operations

Fabrication operations are textual instructions which are displayed on an operator's

terminal at the lot's current work center. Since only a single line of text is provided,

instructions are usually highly abbreviated.

Identify operations instruct the operator to scribe a system-generated serial number

on each unit (wafer) in the lot. After an identify operation, units in a lot can be

referenced individually by their serial numbers.

Data collection operations specify certain data to be collected regarding individual

die, wafers, a lot as a whole, or a piece of equipment. Instructions on how to collect

the data are provided in as a single line of text.

Hybrid operations are used to assemble a single part from two separate parts.

27

4.3.3 Lot Data

PROMIS continually collects information on each lot as it is processed. Lot data

is stored in two files: the active lot file and the lot history file. The active lot file

contains one record for each lot, describing what is currently happening to the lot.

Active lot reco, ds are updated at each work center. The lot history file stores an

account of what happened to a lot at each step of processing. Each time a lot is

tracked into a new work center, lot history entries are recorded. Therefore, each lot

may have many lot history records. Lot data is grouped into four categories:

" Lot Info

* Step Info

* Data Collection Info

" Wafer Details

Lot info specifies general lot level information such as lot ID, device name, lot level

yield, start and current sizes, dates, and planning information. Step info includes

work center, recipe, step, operator, start time, end time, start size, end size, step

yield, and control, rework, hold, and reject data. Data collection info includes all

the data collected at each step of lot processing. Wafer details specify information

for each wafer in the lot, including wafer ID's, wafer state, and rework information.

4.4 Structure and Content of Engineering Test Database

The engineering test database (TDB) was designed and implemented by DLOG-II

to manage control test data from integrated circuit test equipment. Each kind of

test equipment at DLOG-II produces a different type and format of data. In fact,

data formats can change from session to session on the same tester. The engineering

test database consolidates the floating format test data from all the machines, and

provides a standard query mechanism to the data.

The TDB is stored in VAX datalog format. Datalog files are composed of sequential

ASCII variable length text records. There is one datalog file for each test session

28

performed on each lot by each tester. The ASCII datalog files contain three types

of records:

" Header Records

" Format Records

" Data Records

There are two types of data records: test session data records, and test value data

records. Test session data records contain the information necessary to locate a set

of test data for any given wafer. Test value data records contain the test results for

a given test session. A single test session data record precedes each set of test value

data records.

Header records define a format for the test session records. Test header records,

and therefore test session data records, must specify the following mandatory fields:0
* TESTER

" TECH (technology)

" DEVICE

" LOT

" WAFER (slice number)

* TEMP (temperature)

" STATUS

" TEST-DATE

" TEST-TIME

Since only one lot is allowed per datalog file, the TESTER, TECH, DEVICE, and

O LOT fields will remain constant throughout the file.

29

HDRI TESTER TECH DEVICE LOT WAFER TEMP STATUS TEST-DATE TEST-TIME

FMT2 SUPPLY
FMT3 ICC2 ICC3 ICC5 VIL VIH VOH VOL
DATI SENTRY50 DMOS DPU-1 137380 23 25C PREBURNIN 861231 14:49:34
DAT2 LHH
DAT3 832.OE-03 -2.OOOE-03 174.14E-03 1.399 1.99 1.988 338.1E-03
DAT3 821.OE-03 -2.OOOE-03 175.14E-03 1.320 1.98 1.981 340.2E-03

Figure 2: Example of a TDB file.

Format records define the format for test value data records. They specify field

names which describe the values in the data records that follow. Figure 2 is an

example of a datalog TDB file with header, format, test session data, and test value

data records.

The datalog files composing the test database are hierarchically categorized by

tester, technology, device and lot stored separate VMS directories. The TDB stores

data from the following testers:

* VTPROBE. An in line tester used early in the fabrication process. Measures

threshold voltages.

o BECOLT. A back end tester used after packaging.

o FECOLT. A front end tester used in laser repair.

e SENTRY50. A back end tester similar to BECOLT.

o KIETHLY. A parametric tester. Measures voltages, resistance, and currents

on test bars.

30

4.5 Structure and Content of Financial Database

Because DLOG-lI does not maintain a networked financial database, a small database
was created using one Ingres relation. The relation stores flow cost and yield data

associated with each device. Actual cost data was taken from a separate shop floor
control system (SMS-370) at another TI facility. This data was randomly modified
so as not to expose confidential information. The relation used to store the data is
composed of the following domains:

" devid. Device ID.

" nobars. Number of bars, or die, per slice.

* cqflowcost. Average flow cost per slice for the current quarter.

* cqyld. Average yield for the current quarter.

" pqflowcost. Average flow cost per slice for the previous quarter.

* pqyld. Average yield for the previous quarter.

The the values for the devid field were chosen to match the DEVNAME field (a
composite key field) from selected devices in the PROMIS database. The values
for the remaining fields were supplied by the modified cost data. Figure 3 is an

Ingres-generated listing of the of the financial database.

4.6 Database Retrieval Mechanism for PROMIS

PROMIS has a module, DATALINK, which provides the ability to extract and
manipulate data from any PROMIS file. The extraction procedure can only be
activated via the DATALINK menu in the PROMIS system. Once selected, this
menu provides general extraction functions as well as data conversion functions.
The General extract function provides an interactive method of retrieving data
from individual PROMIS files. The extracted data is stored in an ascii work file
in the user's PROMIS directory. After extraction, the user can select DATALINK

commands to view the extracted data.

31

cost relation

Idevid Inobarslcqflowcostlcqyld Ipqflowcostlpqyld I

17202AEPI-01.01 5041 286.0601 631 252.7701 561
18847C2-02.01 1 36081 358.4401 541 372.0001 511
ICF94553C-04.01 1 23041 260.0501 411 224.9001 401
IBULL-AO1.02 1 75911 299.8001 661 298.1301 731
ICIMTDI-01.04 1 12771 335.1501 821 265.8501 661
158225D-01.09 1 19031 265.9601 661 225.8401 611
18847C2-02.01 1 24601 234.1101 691 210.8801 691
I9000CS-15.02 1 6451 336.0201 641 328.1401 571
IACT8836A-06.03 1 20701 257.0001 581 377.0001 551
IACT8867-02.02 1 18221 250.4201 651 203.6301 651
1ACT8837-06.03 1 26021 406.0001 491 337.0001 441
IACT8842-01.07 1 16911 260.6901 621 232.0101 571
19100A-02.05 1 12241 257.3501 561 250.7401 521
IACS-FASTR3.01 1 60121 369.8301 841 358.0001 681
19989D-16.01 1 34741 241.3701 871 188.3301 681
IACT215OG-BP3.01I 73791 244.2101 901 0.0001 01
IACT2158-02.02 1 27041 250.7301 861 0.0001 01
IACT2158T-02.01 1 8641 308.1601 421 254.6401 391
IACT2160-01.01 1 5511 297.0101 531 294.7101 531
IACT2702-01.02 1 1531 334.4801 301 0.0001 01
IACT7202A-03.01 1 3321 261.8701 331 239.5701 241
IACT7204-03.02 1 3601 228.6701 431 0.0001 01
IACTGCX5-05.01 1 13991 227.2001 421 224.6101 341
IALICAT-04.02 1 9751 228.8301 391 179.6001 351
IBIC256F-WO1.02 1 18991 204.6401 581 222.3501 531
IASAM-04.01 1 16641 261.9101 881 247.5501 881
IASAM-TS.02 1 16761 236.9201 841 239.6301 841
IBRAHMA-07.04 1 70021 180.3401 931 172.6001 851

1I--- I

Figure 3: Listing of financial database.

32

L . m mmm m m • m mm mmm m m m

Column Display

(Scalar) (Scalar) (Array)
LOTID ENGINEER WAFNUMS

10245.1 SMITH .21
10245.1 SMITH .22
10245.1 SMITH .23

Row Display

LOTID ENGINEER WAFNUM_ 1 WAFNUM_2 WAFNUM_3

10245.1 SMITH .21 .22 .23

Figure 4: Column and row formats in PROMIS

LOTID and ENGINEER are scalars and WAFNUM is an array.

After initiating the General extract function, the user must specify which file is to be

queried, name the work file, and the extraction and search criteria. The extraction

criteria identify which fields are to be extracted from each entry, and the search

criteria, or query constraints, specify which entries to extract. When selecting

fields for extraction or search criteria, PROMIS provides.on line help menus which

describe every file, record and field in the PROMIS database. PROMIS records

contain two types of fields: Scalar and Array. When array fields are selected, for

extraction, PROMIS allows either a row or a column format. If row format is

selected, only one line of data is extracted per entry, with the array field expanded

within the line. If column format is selected a separate line of is used for each

element in the array, with the scalar data in the entry duplicated for each line.

If row output is chosen, the user must indicate how many array elements are to

be displayed in the work file. The selection of row/column format is important,

because it specifies not only how the data is displayed on the screen, but also how

it is stored in the work file. Figure 4 shows column and row display for the same

data.

Search criteria are entered as a deid name, a relational operator, and a value. The

33

following relational operators are allowed:

" EQ or =

" NE or/=

" GT or>

* LT or <

" GE or >=

" LE or <=

" IN or

" FR

IN allows up to 10 values to be entered individually. FR allows values to be read

from a work file. When more than one search criterion is entered, PROMIS extracts

only the entries which meet all the criteria (i.e. the intersection of entries matching

each criterion). Once the extraction is complete, PROMIS can convert the work file

to several different formats, including the standard data interchange format (DIF).

4.7 Database Retrieval Mechanism for the Engineering Test
Database

The engineering test database provides a program, TDBEXTR, to extract data.

The extract criteria, or query constraints, can be entered from the VMS command

line. TDBEXTR generates three output files: a description file, a data file, and a

log file. The data and description files are in Enhansys format. Enhansys is a set

of software tools for analyzing and manipulating engineering data.

The extract criteria are specified using a simple extract language. Each criterion

begins with a field name and is followed by a list of values for that field, enclosed

in parenthesis. The values can be singular, a list separated by commas, a range

separated by two periods, or a wild card expression. If more than one extraction

criterion is entered, TDBEXTR only returns the entries which match all of the

criteria.

34

4.8 Database Retrieval Mechanism for the Financial Database

Data is retrieved from the financial database using QUEL, the standard query

language for Ingres. Query constraints in QUEL are called clauses. Each clause

consisits of a pair of expressions separated by a comparison operator. Comparison

operators can be any of the following:

0<

* <=

0>

*>=

Expressions can be any of the following:

" Constant. (string, integer, or floating point)

" Attribute.

" Functional expression. [sin(n), cos(n), exp(n), etc.]

" Aggregate or aggregate function. (sum, count, avg, etc.)

" Combination of numeric expressions and arithmetic operators.

Basic queries can be formulated using only constant and attribute expressions.

Attributes take the following form:

variable.domain

Variable specifies a particular relation, and domain identifies a field in that relation.

A typical clause might consist of an attribute followed by a comparison operator

followed by a constant. For example:
35

cost.nobars < 200

Here coat identifies the Cost Relation and nobars is a field, or domain, in that re-

lation. Before this clause can be evaluated, the coat variable must be linked to the

Cost Relation in a separate QUEL command. QUEL clauses can be linked together

with logical operators to form a qualification. The following logical operators are

allowed: not, and, or. An Ingres retrieve command specifies the relation and do-

mains to extract from each tuple, as well as a qualification indicating which tuples
to retrieve. Normally, Ingres will print the results of the query on the screen, but

an optional argument to the retrieve command can specify a new relation to hold

the output data. Ingres also provides a copy command to port data from an ingres

relation to an outside file.

36

*5 DRIFS Prototype

DRIFS was prototyped on a Texas Instruments Explorer LISP machine. The Ex-

plorer is a single-user workstation designed for rapid development and prototyping

in a symbolic processing environment. Running Common LISP with incremental

garbage collection, the Explorer can manage up to 128 megabytes of virtual memory.

The internal Nubus architecture uses a 32-bit LISP processor running at 10 mega-

hertz (100 ns clock period). An ethernet controller is provided for communications

with local area networks. Among the networking services available are:

" Transparent file I/O

" Remote login.

" Task-to-task communication.

To support these services, the Explorer uses the following communication protocols:

" Chaosnet

" TCP/IP

" NFS

" DECnet

Chaosnet is used for communications between LISP machines. TCP/IP is a stan-

dard communications protocol adopted by the Department of Defense and other

users of wide-area networks. NFS is a UNIX standard for transparent file access.

It is used in conjunction with the TCP/IP protocol. DECnet is used for com-

munications with systems produced by Digital Equipment Corporation, allowing

transparent file access, inter-task communication, and remote login.

Figure 5 shows the networking configuration for the Explorer used to prototype

DRIFSThe networking names of the machines are shown in parenthesis.

37

VAX: V'MS
(Exgefe)

DEEetnthe

I Local

Utiex (A114) DECnet Explorers

(Eplrero Chaosnet
(NFS TCP/IP (Espresso)

Other Unix Other
Machines Machines

Figure 5: Partial'schematic representation of Ethernet network at TI

Computer Science Center

The networking name of each computer is shown in parenthesis.

38

5.1 DRIFS Software Environment

5.1.1 Window Interface

The DRIFS window interface (Figure 6) is broken into the following panes which

allow the user to easily interact with the DRIFS environment:

" Five command panes (bottom). Used for defining, modifying, access-

ing, saving, and restoring primitive and user level structures. Also used for

retrieving data and providing help features.

" Interaction pane (upper left). A scrollable window used to display mouse-

selectable items that can be described in the Type-out pane.

" Type-out pane (upper right). A scrollable window used for displaying the

structure descriptions, the progress of an active query, and retrieved data.

5.1.2 On Line Help Facility

The PROMIS Help command in the lower right pane allows the user to view any
level of on line help available from the PROMIS menus. It is intended as an aid in

creating primitive structures.

The text for this help command was automatically retrieved from PROMIS via a

LISP ascii-translating character stream connected to EXGEFE. Once retrieved, the

help data was parsed into LISP lists and stored on disk as help files. Each help

file corresponds to a data file in PROMIS and provides information regarding its

structure and fields. When requested, each file is read into a buffer that can hold

up to 10 help files. The buffer management is transparent to higher level routines

which access help data. When the user selects the PROMIS help command, all

of the help files are displayed in the Interaction pane. He may then click on the

PROMIS file of interest to see a description of that file in the Type-out pane. The

Interaction pane will then display all of the names of the fields for that file. He may

then select any field to see its description. This hierarchy is used for all PROMIS

files with one exception: then TBLS file, which has several different records, each

39

Cn v
0 m

a vC
IV1

- 040

having its own fields. In this case, the user will first select the TBLS file, then a

record, then any fields within that record. Figures 7- 8 show a typical progression

of the PROMIS Help command.

5.1.3 Creating Primitive Structures

Primitive structures (described in Section 3.2) are created and manipulated via

pop-up menus. When defining a structure, the user must specify a DRIFS structure

name, a local database, a query type for that database, and each slot in the struc-

ture. Once a primitive structure is completely defined, DRIFS creates a LISP flavor

as a template for data retrieved from the local databases. The flavor for a primitive

structure has an instance variable for each slot in that structure. When data is

retrieved from a local database it is parsed into primitive structures, and stored in

flavor instances. The flavor instances are displayed in the Interaction pane, and the

user may select them to view their data in the Type-out pane.

* DRIFS identifies a set of query types associated with each local database: PROMIS,

engineering test, and financial. Ideally, only one query type would be needed for

each database. However, since the file structure for the PROMIS database is not

consistent, a separate query type was defined for reading the TBLS file, which

has several different record types. Slots are defined by specifying a slot name,

slot type, and list/singleton specifier. The slot name is used only by DRIFS as a

reference, the slot type indicates the type of data which will be stored in the slot.

For most purposes, "string" and "number" should be sufficient as data types, since
LISP handles parsing between numerical formats (e.g. fixnum, bignum, flonum)

automatically. Finally, the list/singleton specifier indicates whether the data will

be stored as a single item, or as a list of zero or more items. Figure 9 shows the

DEVICE structure being defined.

Once the primitive structure has been defined, the user must create a mapping

which associates each slot in the structure with a specific field in the PROMIS

database file. The PROMIS fields are selected using pop-up menus, which are

generated from the help files. Since PROMIS treats array fields differently from

other fields, as described in Section 4.6, they must be handled specially by DRIFS.

When an array field is selected in a mapping, DRIFS asks for the maximum number

41

C F Ie
Fil

aP FIle
DAN FII:

D~CFile
1 Fi:

Gls Fil*:
,7 File:

am File
SIX1 FIleIll File

File

15C 91 1 Te-out PWe

Primitive User Level Save: Commands Help
Structures Structures aluoSrcue tius0"ROI
Retrieve Retrieve Jeer LOWe Structures
Df inse Do tMl

Cepae oeo.,eRestore:

PrIfutive Structures

Ueer Level structures

5C Local-01 DOWeacrt Device Flie
File This File containse mu record fo everv Yeeiil Of
-- --------------------- eOuWV deice tiDcdinl tile faclitw. It al love a uLnele

lVKIM FId Process t tie *peas" orite to oroc 'a verilet of
Nl~UFildof tle deVICe file ie diecuesed in detail in tile eel

UVCiNME Field sectioc a11 tile device file

EN11 Field Tle *DM- file act. M ateneiw, of tis file, containing
Fiela' tile pluMin stanowuds Ulforlatioll far tile device.

S~IUS Field

TEMIAULr ield
Field119Fil

ITKNG Field Fel
11W0 Field

HRField
I VIC T i l

I5 Field
.1SISENDIEU Field

110 0 F IeldOField

'TPIFieldVFSW Fieold
.. IIYFOE~CO field

ROFART7FEC1Fd Field WSOtPn

Prmitive User Level Saves Commands Help
Structures Structures PI1A tutrs Rtiu'ot OI
Retrieve Retiev Je Leve StrliCtire
Befl W define
Mo00115 Moify

~ove Restores
PrIlitive siructuree

lee Level Structuree

Figure 7: Promis Help command, file level.

The DEVC file was selected. 4

me, Local-ob 612*oo.Usea Nue

?WW~ Field device asttus. coc,. This cco. indoicaes vle owyes toS uflCm a
I UFi~d Field dev Icet a~e 4014l for .se,
DE,.Fielda Fole .tatuses are

oo~e~Field U4. UN 1FROZEN
DSIts Field The Ceowces Can be Updated only.

021Fild$ No scs co. O sctso sIng chis, aecice.
3 Field "aO 00O nhd uses th~is device can Do 'rao.,

"STR Field

-RSI LFALE

- Ftid
06e1lable faror , N~ltion inie orooluctionlot car o.6

E NTOR111 Field NscWREo cU. eie
S If4WU5YIJO Field Th' - !Ic canrtaetWilsi ayhoifrvni'
a-I RIOLf. Field trtoo seic CEnt otcot an cK &fees.zl~IRFieldArw~PROD@ Colling tho ice VCq Cnot os froze,.
.-S Field - CT

)toTFild NONERI rUleS aply
TIOfField No late calm em scawtso F0 inie devices.
T Field .09 ossaITs

ANNIlUcMIldl Field MIEFRZ ea liOSTINIS misse daly.
Got Field AN1 lat UIN this device Wil DO OUt ORill b6 y l1 ot

OEC ' Fie ldcadig
191 DNT!FI Fiedri

TYYPREA0 Field
,TC Field

I Fild
ield

I SF 11
TTPIEOREoa Wield

I HATYPEtmOd Field Tplotpn

Primitive User Level Save: Commands Help
Structures Structures T"IleWcss ilti" akPRNA

onri1iMiSeASwiucs rere1Retoi ve netal

oaf the oaf the
Mollify4 ModifyI

eelwe eweveRetore:

Piitlve Structure@

Jeer Leve Stljctiree

Figure 8: Proinis Help command, field description.

The PRODSTATTJS field was selected.

Structure Mn:~i: DEVICELocal Database pre"Ae Test Database Ptnarciall Database
Query Type: PROMIS-GEN-3UERY
Num~ber of Slots: 15

Slot Name Slot Type Lil2teingleton
NM~E string shingeton Ust

DESCRIPTION string Sblqeoe Ust
ACTIVE string skogeen Ust
FROZEN number sigrtu Ust
STATUS string 04pgetol Ust

CREATE-DATE string SIt'gieton Ust
ACTIVE-DATE string SingheteoUs%

LAST-PlOD-DATE string Skeilexa Ust
INTRUCT-TYPE string Singleton st

I NSTRUCT-COMMENT string singleton List
INSTRUCT-PROC-ID string Singleton Lin

INSTRUCT-I NIENT-I S string Singleton List
NO-ENO-PARAflS numlber *Sgleon Ust

MO-PLANNING-PARA S ---

NIL 0 l pa:Drail-Ja US

Figure 9: Sample structure definition menu.

43

~YE-!21E cM~D22 TnT I 1qWISY
It ZoRl-0OO RTBI OIVICECATEOORYD

FleM-nD2T TwoE2 Mweter F~Y3 2~ ~RTOZE ~ G
lIE~TTYP (ELDCV IETYPE12hITC~T)VIIC~CGAT 2CVICCCTOGS
IITU.T-CU9pf (YLEIE T Iin~OIE.T 2 IETIMT TDCVI Crn2Gmg1 EV!CCTRMYR

two. EKTEVOATI9 VEDTR(0A2
-ie .L

Rel INWcM IITTP

3EW LAM[MOCHMMMIIT

I~~~~~ I 1Y*~ev N4 D~R IE U

-It 7 r-t!; ;T J ERV ;INW
lot144 yriEi4 4" 1IETCV E

IE TIFED IDTE4 IOAY1D

ACTqVYE. YEA2UFO IPDCT DT3.

ROM~ ITVPATROV -TOJRTE.U

CTIV E DATE ? AC V Y I EM O 8 N6TLERIGOY9
Lostm~ Restore:ND _t E.TODY3 OEIECT 0

INSTIXTTYP (FRRO-CLME" M6TYP 12 IiTCOUN StflIO 95 A E

D EI4-AMN VICEMT st1cur being defined.

DRILPJ-FS W groups primtiv stutue by; local ataba e lowigte srtrtiv
allM-AMN of1INM the primitiveM structures19MM19 defnedfortha loal aRtbas. Th usemayals

retrieveK aIL structure wih ariclr lo am Pe"tusorpodcin
area") The sructurs are isplayd in teCOIntrcto pane, andtheuseca

select~ ~ ~ ~ ~D tetoiethidfntI th STpe-outKD pane Note:retrevingprim
itive ~ ~ ~ ~ ~ ~~OM14EFOOUCLN strctre shul notOMV becnueNihrtivn aafo oa aaae

Pnmiesrcuedeiiin r nirl ihnDIS

Pr1.4treatn User Level StructuSTLresM MSPOSY"

Selestructures cobnSlt ro rmtv tructures, allwin data from'FF
separat databaes to b integrtedOinT cOmmo dat Ame.Tyarcetd

using pop up menus that specify which primitive structures are to be used, and

which slots to include from each primitive structure. One slot from each primitive

structure must be identified as a key slot. DRIFS expects the data in key slots to

be stored in the same format across primitive structures.

5.2 Retrieving Primitive Level Data

To initiate a DRIFS primitive level query, the user selects a primitive structure to

retrieve and specifies the search criteria (known to DRIFS as query constraints)

pertaining to that structure. The query constraints are entered via pop-up menus.

Figure 11 shows how query constraints are specified using the DRIFS window inter-

face.

Once the query constraints have been specified by the user, DRIFS translates them

into the query language of the local database and issue the proper query to the
server for that database. Two methods were evaluated for communicating query

commands to local database servers:

" Remote batch jobs.

• Ascii-translating character streams.

Batch jobs have the advantage of standard handshaking provided by the network

protocols. Such handshaking allows for better handling of error conditions, and less

programming overhead. However, response time for batch jobs can be unacceptably

slow, depending on the configuration of the host computer. For example, EXGEFE

(the host computer for PROMIS and the engineering test database at DLOG-II)

gives batch jobs minimal priority at peek computing hours. In fact, during certain

times of the day, batch processing virtually stops until the computing load is re-

lieved. Another disadvantage to remote batch jobs is that they must initiate and

release a new process each time a retrieval is requested. A large portion of the time
it takes to run a PROMIS query is consumed in getting to the proper PROMIS

menu and exiting the system. With batch jobs, this must be done each time a

*query is run.

45

BII 1010 ---- M Oh1C4ST1IM ACIT" MWU2N STATue CINEATF-OATt ACT"EOA11! IAST"4000-ATC WSNJCTTryP INO'-ohaIi?
MINC-@rC-10 MMI14C-MOVINT-O ON.#RM INO OA AARAM PARAM-MAAE PAWA-VAUI

PM01GFAFUMLMI I. () (- M* IN

O lOt NMO OGSCNTWN AC'FV1 MSZVE STATUS O14ATI-OATt ACTrVt-OATE LAST-MOO-DATC MTMJCT-T91I MWiT T-COW&*ftT
WTUJCT-0C.. 046? CTE.WVNTC NO-ff40-AIIA684 NO-LF#AAM S" UAAAM-AA PAAIAM-AWI

OSreeMSt Fun~ction, . /. > <.) Ns

ISlot PlNin.S P4AIS OCSOCITON ACT"I PSOZM STATUSP COIATE-OAUt ACIVIEOATI! LAT01-Oa~t POSTMOCT-TYP ?NC-CU
8111WSNJT-ROC-O 1461 JCT-0WOI-0 NOODO-PARAMS NO-PANaId-PAAM PAAM-MADW SAIIAM-vAUI

Pred1Oate! 1~t~ 1 . ()(.). IN
[.1.46 - MAIMSlb

Figure 11: Constraints used in a DEVICE primitive query.

These constraints request all DEVICE's with names beginning in "A"
that have been modified after Jan. 1, 1989.

46

In contrast, an ascii-translating character stream is a direct connection to another

computer via remote login. The stream has an output buffer through which a

program can send commands to the remote host as if a user were typing them.

The output from the host is piped into the stream's input buffer where it can be

interpreted by the program. Ascii-translating character streams have the advantage

of efficiency but are more prone to unanticipated errors. For example, if the host

sends a system message to all users, the DRIFS will not know how to interpret that

message, or, if a process times-out or aborts for any reason, DRIFS may continue to

send commands to the non-existent process, not knowing it has been deactivated.

Also, if a stream has been inactive for a certain length of time, the remote login

session may terminate automatically in what is called an autologout.

Ascii-translating streams were used to communicate with the PROMIS and the en-

gineering test databases on EXGEFE, and batch jobs were used to communicate

with the financial database on TILDE. Batch jobs were acceptable for TILDE be-

cause even at high system load, there was little or no time between queuing a,.d

execution. LISP structures were defined for the PROMIS and engineering test

databases to hold. the character streams and the information necessary to generate

them. Since direct network connections may not exist from the DRIFS computer

to the local host, local database structures define a connection path which lists the

hosts, or connection nodes, leading to the desired host. The ascii-translating char-

acter stream must login to each node separately until it reaches the desired host.

The connection nodes hold the information necessary for login at each host. The

retrieval connection is a LISP structure holding the character stream and its per-

tinent information. Local database structures were designed to allow for parallel

query processing through use of more than one retrieval connection and a query

queue and results queue. However, parallel processing was not implemented in the

initial prototype, and these mechanism were not used. Figure 12 describes the LISP

representation of the PROMIS local database and its connection nodes and retrieval

connections.

5.2.1 Retrieving Primitive Structure Data from PROMIS

Note from Figure 5 that there is more than one network path between ESPRESSO

and EXGEFE. To generate a retrieval connection, ESPRESSO can use DECnet

47

Description of PROMIS local database structure.

#':LOCAL-DB -64740176>
NAME: PROMIS
HOST-NAME: Wexgefe"
SYSTEM-TYPE: VMS
TELNET-PORT-NO: 23
CONN-PATH: (#CONN-NODE -75300401> #<CONN-NODE -75300157>)
LOCAL-DB: PROMIS
INITIAL-NO-OF-RETRIEVAL-CONNS: 1
RETRIEVAL-CONNS: C#RETRIEVAL-CONN -75300152>)
QUERY-QUE: SYS:: Iunbound I
RESULTS-QUE: SYS:: Iunbound I

#CCONN-NODE -75300401>
HOST-NAME: "all4l"
SYSTEM-TYPE: VMS
USERNAME: "ruf"
PASSWORD: "zimbabwe"

#<CONN-NODE -75300157>
HOST-NAME: "exgefe"
SYSTEM-TYPE: VMS
USERNAME: "rut"f
PASSWORD: mayajaw"

#<RETRIEVAL-CONN -75300152>
OWNER: #<LOCAL-DB -64740176>
LOCAL-DB: PROMIS
STREAM: #<IP: :ASCII-TRANSLATING-CHARACTER-STREAM
-75300046>
IN-USE: NIL

Figure 12: LISP representation of the PROMIS local database, con-
nection nodes and retrieval connections.

48

expressly to connect to tle local router, and then to EXGEFE, or it can use TCP/IP

to connect to ALL41 and then login to EXGEFE through DECnet. Because the

Explorer provides more comprehensive support for TCP/IP streams, the latter path

was chosen. In order to specify this path, the connection nodes were defined as

shown in Figure 12.

PROMIS can take as long as 3 minutes to activate the DataLink menu, which pro-

vides the general file extract commands. Exiting that menu and returning to VMS

can require up to 2 minutes. To reduce overhead, the ascii-translating character

stream loads the DataLink menu only once during initialization, and all queries are

conducted without exiting DataLink.

PROMIS allows batch commands to be executed from any of its menus. The com-

mands are stored in a script file, exactly as a user would type them in. When a

script file is executed, PROMIS simply reads its command data from the file rather

than the user's terminal. To minimize use of the character stream, DRIFS writes

its queries to a script file on EXGEFE and uses the stream only to activate and

monitor the progress of the script command. Due to a problem with the Explorer

implementation of DECnet, files longer than about 600 bytes could not be trans-

ferred directly from the ESPRESSO to EXGEFE. The following work-around was

used:

1. Script files are first copied from ESPRESSO to ALL41 using TCP/IP.

2. ESPRESSO issues a batch job on ALL41 to copy the script file to EXGEFE.

3. ESPRESSO reads EXGEFE's directory until the script file has been success-

fully copied from ALL41.

4. ESPRESSO deletes the script and batch files from ALL41.

5. Using the ascii-translating character stream, ESPRESSO issues a command

to activate the script file from the DataLink menu.

Each script file includes commands to perform the specified query and to convert

the PROMIS output file into DIF format. While the script is executing, DRIFS

monitors its progress in the Type-out pane and watches for a key string at the end

49

of the script file identifying its completion. Using DECnet, the DIF file is then read

from EXGEFE and parsed into a format suitable for the primitive structure type

being queried. A LISP flavor instance is created for each entry extracted from the

PROMIS database, and these instances are listed in the Interaction pane. The user

may then select them individually to view their contents in the Type-out pane.

5.2.2 Retrieving Primitive Structure Data from the Engineering Test

Database

DRIFS uses a separate character stream connected to EXGEFE to query the engi-

neering test database. This character stream communicates at the VMS command

level, passing query constraints to the extract program (TDBEXTR) from the com-

mand line. Once the TDBEXTR command has been issued, DRIFS monitors its

progress in the Interaction pane and watches for a VMS prompt indicating comple-

tion of the extract. Using DECnet, the a description file is then read to identify the

format of the data file. Then, the data file is read and parsed into flavor instances

of primitive structures. These are listed in the interaction pane.

TDBEXTR writes the output data file in wide tabular format. The width of the

data file varies depending on the number of fields retrieved with each entry. Be-

cause of a networking problem, VMS files wider than 256 characters could not be

transferred across the network. Therefore, DRIFS queries to the test database had

to be restricted so as not to generate output files wider than 256 characters. A pos-

sible work-around for this networking problem is to write a program on EXGEFE

to parse the tabular files into an acceptable format for network transfer. However,

no work-around was implemented in the prototype.

5.2.3 Retrieving Primitive Structure Data from the Financial Database

To query data from the financial database, DRIFS creates a script file containing

Ingres commands. The script file is copied to TILDE, and a batch file is then used to

load Ingres and activate the script file. The script file instruct Ingres to retrieve the

requested fields and copy them to an output file. When the script has completed,

DRIFS reads the output file from TILDE, parsing the data into flavor instances of

50

primitive structures, which are then listed in the interaction pane.

5.3 The User Level Interface

5.3.1 Combining PROMIS and Financial Data

To describe the DRIFS user level interface, an example user level structure, FIN-

DEVICE, will be used. FIN-DEVICE combines data from two primitive level struc-

tures:

" DEVICE (from PROMIS)

" DEVICE-COST-DATA (from the financial database)

The primitive structure, DEVICE (Figure 13), is the template for retrieving device

data from PROMIS, just as DEVICE-COST-DATA (Figure 14) is the template

for retrieving cost data from the financial database. FIN-DEVICE (Figure 15)

incorporates fields from DEVICE and DEVICE-COST-DATA which might be of

interest to a production planner. Thus, retrieving FIN-DEVICE structures requires

data to be integrated from PROMIS and the financial database.

DRIFS divides a user level query into separate primitive level queries and uses the

key slots to match corresponding results from each query. For example, suppose

the user wants to view all FIN-DEVICE's with device ID's beginning in "ASAM".

He would query the FIN-DEVICE structure with that constraint. DRIFS would

perform two separate primitive level queries. First it would retrieve device data

from PROMIS by querying all DEVICE structures with NAME's beginning in

ASAM". Then it would retrieve cost data from the financial database by querying

all DEVICE-COST-DATA structures with NAME's beginning in "ASAM". At this

point, DRIFS compares the data in the key slots (in this case, the full NAME's)

to match each DEVICE structure with its corresponding DEVICE-COST-DATA

structure. Once these primitive structures are paired up, each pair is combined to

form a FIN-DEVICE structure.

In the preceding example, the query constraints involved the key slots of the DE-

VICE and DEVICE-COST-DATA structures. If no key slot was included in the
.51

DEVICE (PROMIS)
NAME: string SINGLETON

DESCRIPTION: string SINGLETON
ACTIVE: string SINGLETON
FROZEN: number SINGLETON
STATUS: string SINGLETON

CREATE-DATE: string SINGLETON
ACTIVE-DATE: string SINGLETON

LAST-MOD-DATE: string SINGLETON
INSTRUCT-TYPE: string LIST

INSTRUCT-COMMENT: string LIST
INSTRUCT-PROC-ID: string LIST

INSTRUCT-INVENT-ID: string LIST
NO-ENG-PARAMS: number SINGLETON

NO-PLANNING-PARAMS: number SINGLETON
PARAM-NAME: string LIST
PARAM-VALUE: string LIST

Figure 13: Description of DEVICE primitive level structure.

constraints, the user level query would be handled differently. For example, sup-

pose the user wants to retrieve all FIN-DEVICE structures with current quarter

yields less than 40%. In this case, DRIFS would still perform two primitive level

queries. First it would retrieve all DEVICE-COST-DATA structures from the fi-

nancial database with current quarter yields less than 40%. Then, it would use the

data in the DEVICE-COST-DATA key slots (in this case, the NAME's) to build

the query constraints for the DEVICE structure. DRIFS would use those query con-

straints to retrieve from PROMIS a matching DEVICE structure for each DEVICE-

COST-DATA structure it has already retrieved from the financial database. The

pairs are then combined to form FIN-DEVICE structures.

5.3.2 Combining PROMIS and Engineering Test Data

Integrating data from PROMIS and the engineering test database cannot be handled

the manner described in Section 5.3.1, because there is not a one-to-one correspon-

52

DEVICE-COST-DATA (FINANCIAL-DB)
NAME: string SINGLETON

BARS-PER-SLICE: number SINGLETON

CUR-QTR-FLOW-COST: number SINGLETON
CUR-QTR-YIELD: number SINGLETON

PREV-QTR-FLOW-COST: number SINGLETON
PREV-QTR-YIELD: number SINGLETON

Figure 14: Description of DEVICE-COST-DATA primitive level

structure.

FIN-DEVICE

Slots:
NAME (from DEVICE)

DESCRIPTION (from DEVICE)
ACTIVE (from DEVICE)
FROZEN (from DEVICE)
STATUS (from DEVICE)

CREATE-DATE (from DEVICE)
ACTIVE-DATE (from DEVICE)

LAST-MOD-DATE (from DEVICE)
BARS-PER-SLICE (from DEVICE-COST-DATA)

CUR-QTR-FLOW-COST (from DEVICE-COST-DATA)
CUR-QTR-YIELD (from DEVICE-COST-DATA)

PREV-QTR-FLOW-COST (from DEVICE-COST-DATA)
PREV-QTR-YIELD (from DEVICE-COST-DATA)

Key Slots:
NAME (from DEVICE)
NAME (from DEVICE-COST-DATA)

Figure 15: Description of FIN-DEVICE user level structure.

53

dence between PROMIS entries and entries in the test database: For each lot in

PROMIS, there are several entries in the entries in the test database. For example,

suppose the user wants to combine data from the following primitive structures:

" ACTIVE-LOT from PROMIS (Figure 16)

" LOT-TEST-RESULT from the engineering test database (Figure 17)

There are many LOT-TEST-RESULT's which correspond to each ACTIVE-LOT.

To handle this situation, DRIFS allows user level structures to identify sub-structures.

Sub-structures are primitive structures, such as LOT-TEST-RESULT, which have a

many-to-one correspondence to other primitive structures, such as ACTIVE-LOT.

The user level structure, ENG-ACTIVE-LOT (Figure 18), incorporates slots from

ACTIVE-LOT which are of interest to an engineer. It also incorporates lot test

data associated with each active lot by identifying LOT-TEST-RESULT as a sub-

structure.

54

ACTIVE-LOT (PROMIS)
NAME: string SINGLETON

COMMENT: string SINGLETON
DEVICE-NAME: string SINGLETON

CUR-PROCESS-NAME: string SINGLETON

CUR-RECIPE-NAME: string SINGLETON
CUR-PROD-AREA-NAME: string SINGLETON
CUR-WORKCENTER-NAME: string SINGLETON

CUR-EQUIP-TYPE-NAME: string SINGLETON
CUR-EQUIP-UNIT-NAME: string SINGLETON

COMPLETION-CLASS: string SINGLETON
STATE: string SINGLETON

STATE-ENTRY-TIME: string SINGLETON

STAGE: string SINGLETON
TRACKING-STAGE: string SINGLETON
CUR-STEP-NUMBER: number SINGLETON
END-STEP-NUMBER: number SINGLETON
EMPL-ID-TRACKIN: string SINGLETON

EMPL-ID-TRACKOUT: string SINGLETON

STEP-COMMENT: string SINGLETON
QUEUE-TIME: string SINGLETON

STEP-START-DATE: string SINGLETON
STEP-END-DATE: string SINGLETON

RELEASE-TIME: string SINGLETON
STEP-START-SIZE: number SINGLETON
MECH-STEP-YIELD: number SINGLETON

NO-OF-DIE-IN: number SINGLETON
DIE-STEP-YIELD: number SINGLETON

CUR-MECH-LOT-YIELD: number SINGLETON
CUR-EFF-DIE-YIELD: number SINGLETON

Figure 16: Description of ACTIVE-LOT primitive level structure.

55

LOT-TEST-RESULT (TEST-DB)
TESTER: string SINGLETON

TECHNOLOGY: string SINGLETON
DEVICE: string SINGLETON

LOT-NAME: string SINGLETON
TEST-DATE: string SINGLETON
TEST-TIME: string SINGLETON
TEST-TYPES: string LIST

TEST-RESULTS: TEST-RESULT LIST

Figure 17: Description of LOT-TEST-RESULT primitive level struc-
ture.

ENG-ACTIVE-LOT

Slots:
NAME (from ACTIVE-LOT)

COMMENT (from ACTIVE-LOT)
DEVICE-NAME (from ACTIVE-LOT)

CUR-PROCESS-NAME (from ACTIVE-LOT)
CUR-RECIPE-NAME (from ACiLIVE-LOT)

CUR-PROD-AREA-NAME (from ACTIVE-LOT)
CUR-WORKCENTER-NAME (from ACTIVE-LOT)
CUR-EQUIP-TYPE-NAME (from ACTIVE-LOT)
CUR-EQUIP-UNIT-NAME (from ACTIVE-LOT)

STATE (from ACTIVE-LOT)
STAGE (from ACTIVE-LOT)

CUR-STEP-NUMBER (from ACTIVE-LOT)
STEP-COMMENT (from ACTIVE-LOT)

Key Slots:
NAME (from ACTIVE-LOT)

Sub-structures:
LOT-TEST-RESULT Key Slot: LOT-NAME

Figure 18: Description of ENG-ACTIVE-LOT user level structure.

56

* 6 Evaluations

6.1 Evaluation of DRIFS Prototype Implementation

The DRIFS prototype is successful in providing a standard data model and retrieval

interface to data in three heterogeneous databases:

" PROIS Database. The shop floor control system database used by

DLOG-II, a Texas Instruments fabrication facility. This database resides on

a VAX 8650 running VMS.

" Engineering Test Database. The database used by DLOG-I for storing

IC probe and test results. This database resides on a VAX 8650 running VMS.

* Financial Database. A mock financial database created with Ingres. This

database resides on a VAX 785 running ULTRIX.

6.1.1 Heterogeneous Hardware Environment

Because the financial database resides on a separate computer system from the

DLOG-ll VAX which stores the PROMIS and engineering test databases, the pro-

totype demonstrates that the DRIFS concept can be implemented in a heterogeneous

hardware environment.

6.1.2 DRIFS User Interface

The window-oriented menu interface of the DRIFS prototype provides a flexible and

convenient method for defining representations of the local fabrication databases.

The extensive text provided by the PROMIS help feature is a useful aid in designing

primitive level structures.

57

6.1.3 DRIFS Data Model

The model for DRIFS primitive structures is sufficient for defining representations

of each of the local fabrication databases. In addition to providing homogeneity,

the primitive structures are easily integrated at the user level.

The use of key slots and substructures allows primitive data from separate fabri-

cation databases to be integrated via user level structures. Additionally, user level

structures provide a means of defining specialized "views" of the fabrication data

for certain groups (i.e. engineers, production planners, etc.) This was demon-

strated in the prototype through the ENG-ACTIVE-LOT and FIN-DEVICE user

level structures, tailored for engineers and production planners, respectively.

6.1.4 Access Times

While the Explorer LISP machine used to implement DRIFS provides an excellent

environment for rapid prototyping, networking from the Explorer to other comput-

ers is slow and cumbersome. The work-around to the networking problem described

in Section 5.2.1 adds substantial overhead to running PROMIS database queries

from DRIFS. This overhead, combined with the already slow transfer rate (about

500 to 800 bytes/sec) between the Explorer and the DLOG-l1 VAX severely limits

the performance of PROMIS queries from DRIFS. Table 1 shows the access times

required to retrieve one DEVICE structure from PROMIS. Note that transferring

the PROMIS script file to EXGEFE accounts for 68% of the total access time (due

to the networking work-around). Since transfer time for script files is constant with

respect to the number of DEVICE's retrieved from PROMIS, this percentage be-

come less significant (15%) when a larger number (20) of DEVICE structures are

retrieved (see Table 2).

Access times for queries to the engineering test and financial database are more

acceptable. Table 3 shows the access times for retrieving test data for an active lot

with 15 LOT-TEST-RESULT entries. Table 4 shows the access times for retrieving

test data for an active lot with 114 LOT-TEST-RESULT entries. Notice that at

114 entries, reading the output file over the network is the dominant time factor.

Table 5 shows the access times for retrieving the cost data associated with one

58

Access Times to Retrieve one DEVICE Structure from PROMIS

Transfer Execute Read DIF Total Access
Script File to Script File on Output File Time
EXGEFE EXGEFE from

EXGEFE

Trial 1 10:36 0:11 0:11 0:58
Trial 2 0:33 0:07 0:10 0:50
Trial 3 0:34 0:09 0:07 0:50
Trial 4 0:35 0:08 0:07 0:50

Average 0:35 0:09 0:09 0:52
Average % 68% 17% 17%

Table 1: Access times for one DEVICE structure.

Times are in M:SS format.

Access Times to Retrieve 20 DEVICE Structures from PROMIS

Transfer Execute Read DIF Total Access
Script File to Script File on Output File Time
EXGEFE EXGEFE from

EXGEFE

Trial 1 0:38 1:46 1:55 4:19
Trial 2 0:41 2:19 2:00 5:00
Trial 3 0:40 1:46 1:59 4:25
Trial 4 0:39 1:49 1:58 4:26

Average 0:40 1:55 1:58 4:33

Average % 15% 42% 43%

Table 2: Access times for 20 DEVICE structures.

Times are in M:SS format.

39

Access Times to Retrieve 15 LOT-TEST-RESULT Structures
from the Test Database

Run TDBEXTR Read Total Access
Extract on Output File from Time
EXGEFE EXGEFE

Trial 1 0:19 0:07 0:26
Trial 2 0:17 0:10 0:27
Trial 3 0:20 0:08 0:28
Trial 4 0:22 0:08 0:30

Average 0:20 0:08 0:28

Average % 71% 29%

Table 3: Access times for 15 LOT-TEST-RESULT structures.

Times are in M:SS format.

device. Table 6 shows the access times for retrieving the cost data associated with

10 devices. The Ingres execution time increases from 21 sec. to 32 sec. (an increase

of 52%) when the number of DEVICE-COST-DATA structures retrieved increases

from one to 10 (an increase of 990%). These figures indicate that with small queries,

a major portion of the access time is overhead in loading and executing the Ingres

script file.

6.2 Evaluation of the DRIFS Concept

While DRIFS provides a standard retrieval interface and data model for heteroge-

neous fabrication databases, its effectiveness can be limited by the existing inter-

faces to the individual local databases and by networking demands. For example,

the only interface to PROMIS data is through menus intended to handle interac-

tive commands from a user console. Automated interaction with these menus is a

cumbersome and error-prone method. DRIFS could be more effective if each local

database provided a retrieval interface designed to handle automated data retrieval.

Even without such interfaces, however, DRIFS can provide an excellent means for

60

Access Times to Retrieve 114 LOT-TEST-RESULT Structures
from the Test Database

Run TDBEXTR Read Total Access
Extract on Output File from Time
EXGEFE EXGEFE

Trial 1 10:31 0:25 0:56
Trial 2 0:27 0:27 0:54
Trial 3 0:23 0:27 0:50
Trial 4 0:22 0:33 0:55
Average 0:26 0:28 0:54

Average % 48%o 52%_

Table 4: Access times for 114 LOT-TEST-RESULT structures.

Times are in M:SS format.

Access Times to Retrieve one DEVICE-COST-DATA Structure
The Financial Database

lTransfer Execute Read Ingres Total Access

Script File to Script File on Output File Time
TILDE TILDE from TILDE

Trial 1 0:04 0:24 0:08 0:36
Trial 2 0:04 0:20 0:12 0:36
Trial 3 0:07 0:21 0:13 0:41
Trial 4 0:04 0:19 0:12 0:35
Average 0:05 .0:21 0:11 0:37
Average % 13% 57% 30%f_

Table 5: Access times for one DEVICE-COST-DATA structure.

Times are in M:SS format.

61

Access Times to Retrieve 10 DEVICE-COST-DATA Structures
The Financial Database

Transfer Execute Read Ingres Total Access
Script File to Script File on Output File Time
TILDE TILDE from TILDE

Trial 1 0:05 0:32 0:12 0:49
Trial 2 0:04 0:41 0:12 0:55
Trial 3 0:04 0:31 0:12 0:47
Trial 4 0:04 0:25 0:11 0:40

Average 0:04 0:32 0:12 0:48
Average % 08% 67% 25%

Table 6: Access times for 10 DEVICE-COST-DATA structures.

Times are in M:SS format.

off line data retrieval in converting to a homogeneous fabrication database.

62

0 References

[1] Dolins, S.B., A. Srivastava, I. Mani, and A. Myjack. Intelligent Factory Man-

agement System. Technical Report, AI Laboratory, Texas Instruments, Dallas,

TX. 1988.

[2] Ephraim, 0. M. Integrating CAD/CAM Systems. Conference on Computer

Aided Manufacturing and Productivity. London, 1981.

[3] Explorer Technical Summary, Rev. C, Texas Instruments, Inc., Austin, TX.

1987.

[4] GEFE Engineering Test Database (TDB) User's Guide Document. Texas In-

struments, 1988.

[5] Heytens, M. Database Schema of the MIT CAFE System. Massachusetts Insti-

tute of Technology, 1987.

[6] Heytens, M. and R. Nikhil. GESTALT: An Expressive Database Programming

System. Massachusetts Institute of Technology, 1987.

[7] Heytens, M. GESTALT User's Manual. Massachusetts Institute of Technology,

1987.

[8] INGRES Reference Manual. Version 3.0, VAX/VMS, Relational Technology,

Inc., Berkeley, CA. 1984.

[9] Katz, R. H. "Database Management and Computer-Assisted VLSI Fabrica-

tion." Database Engineering. Vol. 7. No. 2, pp. 35-38. IEEE Computer Soci-

ety, 1984.

[10] Landers, T. and R. Rosenberg. An Overview of Multibase. North-Holland Pub-

lishing Co., 1982.

[I1] Moore, R. D. CIM Applications: An Architectural Overview. Harris Semicon-

ductor.

[12] PROMIS Standard System Guide. Vol. 1-2, Rel. 4.2, PROMIS Systems Cor-

poration, 1987.

63

[13] Ruf, M. DRIFS: Data Retrieval Interface for Fabrication Systems. Third

DARPA/SRC Workshop on Computer-Integrated Manufacturing of Integrated

Circuits, Stanford, CA. 1988.

(14] Smith, J.M. et. al. Multibase - integrating heterogeneous distributed database

systems. Conference Proceedings of National Computer Conference. Chicago,

1981.

64

