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DIRECTOR’S OVERVIEW

This report presents a summary of the scientific progress and acomplishments on
research projects funded by the Joint Services Electronics Program (JSEP) for the
contract period from 1 April 1988 through 31 December 1988. It also includes work
accomplished under CONTRACT NO. F49620-85-C-0078 from 1 January 1988 to 31
March 1988. It does not contain information regarding accomplishments on research
projects funded in other ways.

The Joint Services Electronics Program at Polytechnic University is the core of
interdisciplinary research in electronics conducted by faculty members of the in the
Departments of Electrical Engineering, Physics and Chemistry under the aegis of the
Weber Research Institute. The Weber Research Institute JSEP Director and Principal
Investigator is Professor Erich Kunhardt. He is responsible for the selection of the
best individual proposals, coordination between Polytechnic University and the JSEP
TCC and coordination between the selected areas of the JSEP Program. In planning
the JSEP Program at WRI, a general objective is to develop new projects with 3-6
years of JSEP sponsorship, leading to transition to DoD or other agency program
funding. This report covers the first year of our current 3 year cycle. The research
encompassed by this program is grouped into two broad categories: Interactions of
Wide-Band Electromagnetic Radiation with Complex Macro- and Micro-Structures
(EM) and Field-Particle Interactions in Matter: Single Particle, Collective and
Cooperative Phenomena (FP). The detailed projects (research units) comprising the
complete program are listed in the Table of Contents.

Following our previous practice, Section 2 of every research unit contains a short
summary of the recent progress. Further details regarding that progress are contained
in Section 3, State of the Art and Progress Details.

Each of the research units described in this report is designated, for example, as
EMS-1 or FP8-1, corresponding the the category, year (1988) and the number within
the category. These numbers follow the numbers given in our proposal dated 1 July
1987 except that each proposed unit which was phased out in accord with instructions
of the TCC has been eliminated and the number of each subsequent project was
reduced by one.

Folowing this Overview, we present a Report on Significant Scientific
Accomplishments which highlights important contribution this year.
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REPORT ON SIGNIFICANT ACCOMPLISHMENTS
December 31,1988

High Frequgncy Propagation at Long Ranges near a Concave Boundary
(T. Ishihara and L.B. Felsen)

High frequency propagation along and near a concave boundary excited by a
source close to the boundary exhibits anomalous effects attributable to the failure of
ray theory for the high-order multiply reflected fields. For moderate values of the
universal parameter 4 = (ka/2)/3s/a, where k is the wavenumber, "a" is the boundary
radius and s is the propagation distance along the boundary, the anomalies can be
accounted for by a self-consistent combination of legitimate ray fields (with moderate
number of reflections) and a few whispering gallery modes. This parametrization
becomes deficient for very large ~, corresponding to long propagation distances and
(or) very weak surface curvature. A new hybrid ray-parabolic equation (PE) scheme
has been developed that replaces the whispering gallery modes by a beam-type
propagator. This scheme, which is efficiently implemented numerically,
accommodates the large 4 domain not only for the prototype circular boundary that
serves to generate an independent reference solution, but also for variable radius of
curvature, including concave-to-convex transitions. The earlier ray-mode
parametrization fails completely for concave-convex surface contours.

(1) .Department of Electrical Engincering, National Defense Academy, Hashirimizu, Yokosuka 239,
Japan.




SECTIONI:
INTERACTIONS OF WIDE-BAND ELECTROMAGNETIC
RADIATION WITH COMPLEX MACRO- AND MICRO-STRUCTURES (EM)




A. WIDE-BAND ELECTROMAGNETIC WAVE INTERACTION
WITH LARGE APERTURE-COUPLED ENCLOSURES

Profs. L.B. Felsen and I-T. Lu
Unit EM8-1

1. OBJECTIVE(S)

Present technologies relating to communication, surveillance, identification, and
other similar tasks demand understanding of the interaction of electromagnetic waves
with complex penetrable environments, with the need becoming increasingly more
acute for future system development, and with a trend toward wide-band operation in
successively higher ranges of frequencies. The environments can be natural (like the
earth and its substructure, the troposphere, or the ionosphere) or man-made (like
integrated-electronics circuits, aircraft, vehicles or buildings). The objective of this
long term research program is to parameterize the electromagnetic field in complex
environments in terms of "good observerables” that can be coordinated with the form
of the detected signal. Such a parametrization can then be employed to predict the
interior-exterior response, to classify the environment, and to lay the basis for the
inverse problem of identification. To achieve this goal, new analytical techniques must
be developed for coping with electrically large partially enclosed complex configurations
which have no apparent symmetries. The problem will be attacked by classifying
structural interior and exterior units on the scale of the wavelengths contained in the
spectrum of the electromagnetic signal, and exploring the self-consistent dynamic
interaction of these units to produce the overall response. New wave phenomena -
both fundamental (canonical) and interactive, and based on physical phenomenology -
will be sought for providing "good" building blocks in the parametrization scheme.

2. SUMMARY OF RECENT PROGRESS

This section presents a brief summary of recent progress; a more detailed
description is contained in section 5.

Three problems are being investigated. The first test is to construct the complex
resonances of an open-ended plane parallel waveguide cavity. A global resonance
formulation including all ray field interactions between reflection and diffraction
centers has'been derived. These interactions have been grouped so as to distinguish
between interior and exterior effects. We also formulate partial resonances which
highlight the interior and exterior effects separately by decoupling the external from
the internal. Modal reflection and coupling coefficients have been constructed and
numerical implementation of the radar cross section algorithm has been initiated.




The second study involves a new method which combines the hybrid ray-mode and
boundary element methods. The latter is used to formulate the aperture scattering
process and the former to provide the Green’s function of the layered environment.
Numerical implementations have been initiated for computing both source-excited
and source-free problems for a test configuration involving a perfectly conducting,
thin-walled plane parallel waveguide whose interior is coupled to the exterior by an
aperture in one of the walls.

The third study embodies a substantial generalization of that for the first test
problem. A slit-coupled complex perfectly conducting thin cylindrical shell with
interior convex pe.fectly conducting cylindrical loading is being investigated via the
external-ray and internal-local mode formulation. The prediction of the location of
the resonance spikes in the bistatic scattering cross section is pursued by a
perturbation scheme.

3. STATE OF THE ART

The state of the art in this problem area has been a piecemeal approach wherein
disconnected strategies have been brought to bear on different parametric regimes.
For wavelengths that are larger or at most comparable with the scale of the entire
structure, boundary integral equation [1] and T-matrix techniques [2] can attack
moderately complex structural shapes, while numerical methods involving finite
element and finite difference schemes [3] can model more substantial complexity.
The required computational effort is appreciable, and the result, even when
numerically reliable, provides no explanation of the wave phenomena that are
operative in producing the response.

For shorter wavelengths, the problems become successively "larger" in a
computational sense, and overall direct numerical modeling by the above-mentioned
and other similar approaches is no longer feasible. One may now attempt to extract
global information about the structure by determining its "resonances", which are field
patterns (eigenstates) that maintain themselves at their characteristic resonant
frequencies without external excitation. The resonances are undamped for lossless
fully enclosed systems (closed cavities) but damped (with complex resonant
frequencies) when the structure has access to, or is embedded within, an infinite
space. The resonances are broad, and decay rapidly, for low-Q structures (either due
to loss or due to strong radiation damping), but can be narrow and highly peaked for
high-Q aperture coupled interiors. The most significant and reliably resolvable

"resonances are those at the lower frequency end where overall dimensions are not
substantially larger than the signal wavelength. Thus, the corresponding data
processing schemes eliminate the high frequency portion of the signal spectrum.
Within the context of transient signal scattering, the resonance approach is known as
the singularity expansion method (SEM) because the complex resonances appear as
pole singularities in the complex frequency plane; observations (pro and con)




pertaining to its implementation for exterior problems may be found in the recent
literature [4-9]. Basically, the algorithm requires a good signal to noise ratio, and its
ability to resolve structural detail is limited by the inherent global nature of the
resonances and the concentration on the lower frequency end.

When the wavelengths are small compared not only to the overall extent of the
structure but also to structural features (substructures) within the conglomerate, the
ray techniques of the geometrical theory of diffraction (GTD), asymptotic techniques
associated with physical optics (PO), and related procedures become applicable [10].
These procedures can also be employed for transient analysis near the wavefronts of
the impinging signal. However, their implementation so far has been primarily for
exterior scattering.

The proposed program is new because it addresses a class of complex
electromagnetic wave interaction problems that has not been explored heretofore. Its
implementation requires a thorough understanding of waves and spectra, of
asymptotic techniques for localization, of the interrelation between rays, modes,
wavefronts, resonances, and other similar "good observable”, etc. The groundwork for
the new extensions has been laid in our previous pioneering studies of wave
phenomena under the JSEP program. Results from these studies have been reported
in a large number of publications, a sample of which is included in [11-25].

4. PROPOSED RESEARCH PROGRAM

A. Problem Strategy

The solution strategies described in Section 3 are tailored to distinct portions of
the signal spectrum, without mutual connection. Moreover, in the short wavelength
range, they address almost exclusively the exterior problem. In the new scenario
proposed here, the wide-band scattering problem will be treated in its entirety. By the
scale of the wavelengths in various portions of the signal spectrum, it will be attempted
to decide whether the behavior of the electromagnetic field in constituent parts of a
complex system is determined primarily by guiding, leakage, diffraction, resonance, or
disarray that is best described stochastically. The overall system will then be analyzed
by self-consistent interaction among these constituent parts. To effect this
characterization, it is necessary to study the time-harmonic behavior over a range of
frequencies, and also the impulse-excited behavior when appropriate. The resulting -
information forms the basis for self-consistent synthesis of the response to transient
excitation.

The analytical machinery for implementation of this adaptive approach will be
structured around new concepts in the treatment of wave spectra, both in the space
(wavenumber) and time (frequency) domains. As mentioned in Section 3, the
background for the concepts can be found in our previous work; the spectral building




blocks in the frequency or time domain involve real and complex rays and modes, or
wavefronts and resonances, as well as their self-consistent hybrid combinations. These
concepts need to be generalized and tested under new conditions, and entirely new
methodologies will be sought out, in addition. One of these is the method of
"shooting" rays (Fig. 1), through which one establishes in the high frequency region
those domains within a complex structure where high field intensities are produced; in
its simplest version, this method has been used in seismology [26,27], but it is new to
electromagnetics and will be refined for these applications. Another, which is
particularly exciting in this spectral game, involves new rigorous representations of
general (actual or induced) source distributions in terms of basis functions (for
example, Gaussians) in a discretized (time-frequency) and (space-wavenumber) phase
space [28,29].

Fig. 1 Ray shooting due to edge diffraction on a concave boundary. Ray

traces depict multiple reflection, and formation of caustics, where
closely adjacent rays intersect. The caustics indicate regions of
enhanced fleld strength but ray theory fails near the caustics. Ray
shooting algorithms are readily implemented on a computer.
Beam shooting algorithms are also readily implemented for paraz-
iwal beams, and they are finite at caustics. But paraxial beam algo-
rithms have nonpredictable accuracy. We shall explore schemes
for correcting the deficiencies of these algorithms.

Because Gaussian basis fields have favorable propagation properties, this places new
relevance on our previous studies of time-harmonic and transient Gaussian beams
(especially our complex source point method), and on their interaction with various
environments [23,30-35]. Gaussian beam fields are not only natural descriptors of
energy concentration by focusing, they also serve to smooth out radical changes in




behavior associated with transitions from one wave process to another, and therefore
are favored in numerical algorithms.

The testing of the proposed ideas will be performed on canonical problems,
initially in coordinate-separable geometries which permit analysis by rigorous
methods. The essential ingredient here is to cast the solution into a form that
highlights the various postulated wave processes as enumeratec above, with numerical
comparisons to establish when these processes are optimally excited and therefore
furnish "good" characterizations. Furthermore, these good characterizations will be
phrased so that they can be generalized when the configuration departs from the
canonical model, i.e., they must be phenomenologically robust under gradual changes
in the environment. By this strategy, which requires an intricate interplay of global
and local wave phenomena, it is envisioned to provide eventually a catalog of
interactions, by which complex systems can be :unalyzed as interacting subsystems [8],
with the latter chosen by their predominant response characteristics under the given
conditions of excitation.

B. Test Geometries

Canonical test geometries have been selected for consideration. The first, already
well advanced, is the classical open-ended parallel plane waveguide, but the solution
strategy has been cast in a new format that clarifies the hybrid ray-beam-mode
interplay for plane wave coupling into, and radiation out of, this configuration at very
sinall wavelength-to-plate spacing ratios [24). The more complicated semi-infinite
circular waveguide has also been considered from this new perspective [25].

Next will be the non-classical configurations of wave coupling into, and out of, a
thin slitted circular cylinder, first empty inside, and then with interior and(or) exterior
loading (see Fig. 2). From parametric studies for various slit width-to-diameter ratios,
and for various ranges of wavelengths, we shall seek to ascertain robust
characterizations in terms of self-consistent combinations of direct and edge-diffracted
ray fields on the inside and outside, whispering galley modes on the concave interior
portion, etc. The ray shooting method will also be tried out here. Furthermore, the
construction of full and partial complex resonances by cumulative treatment of
multiple interactions, and the corresponding partition of the overall structure into
interacting substructures, will be considered, as will the influence of these scenarios on
the characterization of the interior field and the target signature. For reference, we
shall make use of available reliable numerical solutions [36]. We also plan to obtain
experimental verification at optical frequencies by utilizing the laser technology
resident within the Group on Wave Particle Interactions. Efforts will be made to
design these experiments so that they can actually implement the ray shooting
algorithm.

Another prototype structure, in spherical-conical coordinates (Fig. 3), is intended
to model effects of large complicated cavity-like enclosures with non-parallel, non-




a) without loading b) with loading

Fig. 2 Slitted cylinder cavity
(a) without loading
(b) with loading.

planar walls. Depending on the choice of the boundary surfaces, this configuration
can model a shell-like enclosure of broad lateral extent (Fig. 3a), an elongated
enclosure with curved (Fig. 3b) or straight (Fig. 3c) axis and a broad variety of other
structural features. External coupling can be provided through any single boundary
surface (when completely removed), or through apertures in any of these surfaces.
Emphasis here shall be especially on the tracking of local modes, which are defined by
periodicities (local eigenvalues) appropriate to the local spacing between the
boundaries along one of the coordinates, and which follow ray trajectories in the
lateral domain defined by the remaining two coordinates (Fig. 3a) [37,38]. This
prototype study will clarify the validity of the (local mode)-(lateral ray) concept under
quite general conditions.

5. PROGRESS DETAILS

The long term research program described above charts a systematic course
toward gaining an understanding of the electromagnetic wave response of large
complex interior-exterior environments under wide band signal illumination. Results
from these studies will provide a catalog of "good observables," which parameterize a
complex system in terms of physical meaningful interacting subsystems. Such a
parametrization will have direct impact on prediction of overall performance, on
ascertaining field penetration into the interior, on signature mterpretatlon, and
eventually on identification, of complex configurations.

Currently we are investigating three problems to test and demonstrate the utility of
these techniques.
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Fig. 3 Prototype structures, in spherical-conical coordinates, to model
large complicated cavity-like enclosures.

A. Complex Resources of an Open Ended Plane Paralle]l Waveguide Cavity’
1. General Remarks

For a first test of the problem strategy outlined in Sec. 4, we have chosen as a
cavity geometry a thin-walled, perfectly conducting, infinitely long rectangular trough
shown in Fig. 4. This prototype structure has the following desirable attributes:

(*) This phase is being worked on by E. Heyman, G. Friedlander and L.B. Felsen.




Fig. 4 Thin-walled rectangular trough of inflnite length along Y.

Relevant internal and external ray interactions are schematized by
solid and dashed lines, respectively, with the Interior Roman
numerals identifying the number of (internal) reflections between
diffraction events at the edges )= 1,2. The sketch includes up to
three internal reflections. Local coordinates (r,§;) identify
phenomena associated with edge J.

(a) It models interior-exterior effects.

(b) Being comprised of plane surfaces terminated in straight edges or corners, it

(©)

permits description of the propagation, reflection diffraction and interaction
mechanisms experienced by an incoming signal in a simple manner, without
obscuring the physics of the process by mathematical complexities.

Since the spacing between the sides is considerably less than their length, the
interior portion can be viewed as plane parallel waveguide which is open at one
end and closed at the other; this is a simple environment for introduction of
guided modes as alternatives to multiple reflected wavefronts.

(d) The various constituent portions (edges, corners, open waveguide end) constitute

classical and rigorously solvable diffraction problems with known solutions [25],
thereby facilitating assessment of the quality of asymptotic and ‘other
approximations when implementing the wavefront, partial resonance, and hybrid
wavefront-resonance schemes. Thus, the test configuration is ideal for exploring
wavefront or ray fields (which are non-dispersive); guided modes (which are
dispersive); high-Q phenomena due to partial internal resonances; low-Q




phenomena due to external effects which are expressed much more suitably by ray
interactions than by partial external resonances; and the interaction of all of these
constituent wave processes in a well parametrized format.

To proceed, we first cast the previously developed general wavefront-resonance-
partial resonance procedure [8] in a form that associates the partial internal
resonances explicitly with the guided modes. This is expected to lead to a good
parametrization of the global scattering behavior provided that the signal spectrum
has an upper cutoff which keeps the number of propagating waveguide modes within
acceptable limits. The derivation shows how the internal wavefront interactions are
treated collectively via the guided modes (propagating and evanescent), and that the
eigenvectors of the matrix resonance equation play a direct role in describing self-
consistently the mode couplng due to an open end. It is also shown how the more
prominent internal resonances are loaded by the much weaker external effects which
are adequately retained as ray interactions. The format thus being set, we address the
quantitative description of internal and external wavefront (ray) interactions (like
those in the interior) in partial resonance form. Various partial resonance options are
played out, the most important being those that neglect intermode coupling entirely or
account for it selectively. Numerical implementation is presently in progress.
Preliminary results for interior partial resonances are shown in Fig. 5.

2. Formulation of the Scattering Problem

i. Global resonance formulation

In the frequency domain, with suppressed dependence exp(-iwt), the self-
consistent formulation of the scattering problem by multiple ray interactions may be
found in Eqs. (8a) and (8b) of reference [8). The ray field interaction between
scattering centers, denoted by indices i and j, is given in Eq. (4) of reference [8], and it
encompasses the high frequency asymptotic approximation of the geometrical theory
of diffraction (GTD) [10]. With an evident change of notation, it is written here as
follows

Sij(w) ~ Aj(w)exp(ikLy), k = w/v ey

where w is the radian frequency, Aj; is the excitation (diffraction) coefficient at j, and
L;; is the propagation path (ray trajectory) from i to j. The ray interaction functions
Sij can be organized as elements in a ray interaction matrix S.

Because of the mulfiple undamped internal ray reflections in the present
application, it is desirable to re-express some or all of these internal interactions
collectively in terms of the guided modes. The restructuring is done most generally in
a hybrid ray-mode representation whereby various angular spectrum intervals
centered at the edges j=1,2 can be filled either with rays or modes, depending on
which species has the most favorable properties there. Details of this procedure are
given in [24]. This most versatile approach is not pursued here; instead, all of the
internal ray fields are replaced by the complete set of modes propagating (or
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Partial resonances corresponding to antisymmetric fleids. Internal
TM, resonances (n odd) without mode coupling and with the
following f‘n'n models computed from (18) and (19): AAA - single
edge diffraction without external coupling; the near-cutofl
resonances lie too close to the triple diffraction values to be
plotted on the graph; xxx - triple edge diffraction without external
coupling; + + + - external resonances (antisymmetric) without
internal coupling; * — TM, mode resonances (triple diffraction)
coupled to external interactions by including the effects in (22).
The influence of the coupling on the eXxternal resonances is as
shown (-); the effect on the internal resonances is toc small to be
distinguished from the xxx on the graph.

The asymptotic results from (16) and (19) are Inaccurate near
mode cutoffs. The correct results obtained from (18), with (21),
are shown in the insets. The resonances in the insets can be
related to those in the main resonance map by using the arrows
that identify resonances with the same index p for which the two
representations give almost identical results.

evanescent) along the z direction of Fig. 4. Interaction centers for these modes are at
the open end z=0 and the closed end z=L. With n denoting the mode index, a typical
mode field has the form

up (x,2) = Vi exp(iknz)¥n(x) ()

where r,=(k?-k,_ )!/? is the modal propagation coefficient, y,(x) describes the

transverse mode shape, and V, represents the modal aplitude. The paired plus and
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minus signs go with propagation along the (+z) and (-z) directions, respectively. For
the prefectly conducting plane parallel waveguide with width a, the transverse
eigenvalues are k, =nr/a, and the mode shapes are

cosky x , n=0,1,2... , for TM polarization (3a)

Yn(x) =
sinke x , n=12.., for TE polarization (3b)

The modal amplitudes V; and V, can be assembled as elements in column
vectors V* and V-, respectively. If their phase reference is placed at z=0, the perfect
reflection condition at z=L leads to the following relation between V- and V*,

V=TV, T =diagffml, )

where T is a diagonal matrix whose elements account for the round trip phase
accumulation

T'hn = = exp(i2e,L) (4a)
and the upper and lower signs apply to the TM or TE polarization, respectively.
Similarly, looking from z=0* toward the open end at z=0, one has the relation

V' =TV, T =[lml )

where T',,, m#n, expresses the intermodal coupling, and T, the modal reflection
coefficient. These coefficients account for fotal effects at the edges j=1,2 in Fig. 4,
and include modal excitations from the inside as well as external ray field returns due
to all interactions involving edges j=3,4. Combining (4) and (5) leads to the self-
consistency condition

RV*=0,R=1-TT (62),
where [ is the identity matrix.

Non trivial solutions occur at the resonance frequencies w,, ¥=1,2..., determined
by the resonance condition

detR=0=det([ -T!) at w=w, . (7

Because of radiation damping at the open end, the roots w, are complex, with
Imuw, <0. Since this leads to exponentially growing elements in the matrix T (see Sec.

5.A 4 for the analytic continuation of x, and thereby of T'), the second form in (7),
with I‘ "1 denoting the inverse matrix, has computational advantages. The eigenvectors

vz, which define the self-consistent mode combination in the w, resonance field, can
be chosen as
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V)oo V;=T,V) ,T,=T(w) 8

The preceding format can now be built into a formulation for the scattered field u®
excited by a time-harmonic incident field u'. Recalling that the modal expansion
allows for all multiple interaction mechanisms (I' contains internal as well as external

contributions), one may write, with coordinate designation suppressed for simplicity,
v* =Du' + C'V- 9)

where D is a scalar function which includes all single scatter field contributions at the
observer (direct scattering from edges, single reflections, etc.). All multiple scatter
contributions arise from the second term in (9), where C' is a transposed (i.e. row)
vector whose functlonal elements express the conversion into the radiation field of a
unit amplitude n'" modal field propagating toward the open end of the waveguide.
The actual modal amplitudes with

V' =Bu'+T

W=}

v, (10)

are synthesized by the direct excitation, due to u', of the modes propagating into the
waveguide, with the column vector B containing the corresponding conversion
coefficients, and by the multlple interactions between the closed :and open ends of the
guide in the second term in (10) (which also accounts through [ T for all the external
interactions). The two sets of equations (9) and (10) have a form analogous to Egs.
(8a) and (8b) in [8]. Combining them leads to the collective form for the scattered
field

V* =R1Bu (11)

v* = C'T R'Bu' + Du (12)

The inverse matrix R1=RY/detR, where R! is the adjoint matrix, can be
expanded in terms of the (resonant) eigenvectors V,;; or V;, in (8), which correspond
to the resonant frequencies w, in (7). This permits (12) to be expressed in the form

a' B u CLV;

v =Du +¥

v SodetR | Wi

(13)

where C,‘, = C'(w,) while the transposed vector o' is obtained from the Gauss
elimination of the singular matrix R ().

The series over v in (13) represents the SEM expansion of the scattered field u,,
augmented by the direct scattering term Du' (the intrinsic entire function [8]), which
cannot be incorporated into the resonance series. The strength of each resonant
contribution to u® is determined by the "couplng coefficients" [7] a' B and C!, which
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project the resonant field structure of the target onto the incident and scattered fields,
respectively.

Since the resonant fields are expressed in terms of the waveguide cavity
resonances, the scattered field in (13) has been parametrized around the more
prominent (high-Q) observables pertaining to the interior portion of the target, with
the observables pertaining to the exterior pornon included indirectly through the
corresponding loading of the reflection matrix T',. By an alternative approach
emphasizing the external observables, one may express the external interactions
involving the edges j=1 to 4 self-consistently, and load the external scattering
coefficients for edges j=1,2 by the collective coupling to the interior field. Either
procedure generates the same resonance frequencies w, but a different eigenvector
structure for the resonant fields.

ii. Partial resonance formulation

Although the global resonance formulation includes all ray field interactions
between reflection and diffraction centers, these interactions have been grouped so as
to distinguish between interior and exterior effects, as noted in the preceding
paragraph. By decouplig the external from the internal contributions, one may
highlight each through the corresponding parfial resonances. Decoupling for the
internal partial resonances is achieved by omitting effects due to edges j=3,4 in T,
while decoupling for the external partial resonances is achieved by omitting internal
contributions to the j=1,2 diffraction coefficients. The global formulation is recovered
by coupling the partial internal and external formulations.

Proceeding further along these lines, one may define partial resonances for the
interior problem alone by ignoring some or all of the intermode coupling at edges
j=1.2 as incorporated in the matrix I' (it may be recalled from (4) that intermode
coupling is identically zero in T'). Ignoring all intermode coupling implies that T, =0,
n#m, so that (7) reduces to the partial resonance condition

Tonlan =1 at w, =wpp, p=12.. (14)

where the index p tags the resonance solutions pertaining to the n-th waveguide mode.
These partial resonances yield a good parametrization if they furnish good
approximations to the global field structure. It is expected that this is indeed the case
for the high-Q global resonances, which are found to occur near the n-th mode cutoff
frequencies. Verification will have to be established by numerical experiment.

Similar partial resonance decompositions can be performed for the exterior
problem, for example, by including all interactions between edges j=2,3 and j=1,4,
while ignoring some or all between edges j=3,4. Because of the strong radiation
damping, which accompanies each edge diffraction, it is impractical to carry out the
external resonance construction. Instead, it is expected to treat the external effects by
tracking a few multiple ray field interactions.

e ————————————————
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3. Construction of the Mode Reflection and Coupling Coefficients

i. Internal contributions

Here, contributions due to external interactions with edges j=3,4 are ignored,
thereby rendering the internal contributions identical with those for the canonical
infinite open-ended parallel plane waveguide. The canonical problem has been solved
exactly by integral transform techniques [38], and asymptotically, in the high frequency
domain, by ray techniques for modes not too close to cutoff [39-41], and by
approximate transform techniques for modes near cutoff [31]. We shall concentrate
on the asymptotic approach because it leads to a simpler form for the modal reflection
coefficients (it shall be understood that mode "reflection” implies reflection into the
same mode as well as coupling to other modes), and also because it generalized more
readily to non-plane parallel configurations. Moreover, the asymptotic solution is
readily continued into the lower half of the complex w-plane where the resonances are
located. It could be argued that overall consistency requires asymptotic treatment of
the internal effects because the external effects, when included, can only be computed
asymptotically. However, asymptotic consistency, to a given order in (1/k), should not
be imposed a priori because a more accurate treatment, not warranted for weak
interactions, may yield better results and insight for a set of dominant interactions.

By the ray approach to mode reflection, diffraction of the incident modal
congruences at edges 1 and 2 is followed by a succession of multiple diffractions
between these edges before the ray field of the last interaction gets back into the
waveguide; the multiple ray reflections inside the waveguide are treated collectively to
synthesize the reflected model fields. This process has been formalized in [39] to yield
the following result for the coupling coefficient T g (see (5)) from an incident mode n
to a reflected mode m,

Tmn = (2i/4kma)(em/en)[1+(-1)™ " (O, 0,) (15)

where here and henceforth, upper and lower signs correspond to T™M or TE
polarization, respectively, and e, =1 or &, =2 for n=0 or n>1, respectively. From (15)
one finds that even and odd modes are uncoupled.

The edge diffraction pattern functions f(6n,0,) is synthesized by the multiple
diffraction process mentioned previously. Because the second and higher order
diffractions take place along the reflection shadow boundary of the preceding
diffraction, the interactive ray fields must be treated by uniform asymptotics, [40,41],
which improves the earlier results in [39]. This solution can be expressed as follows:

f(0m,0n) = D(0m,0n)L+ (m )L+ () (16)
where

6 = sin'! (jr/ka) (17)
with j=m or n, is the modal angle of the j-th mode,




D (0, 00) =-56C(0 -0 )/2F s€c(Om +0) =F2V ktkm V kK, [(kn+rm) (18)
is the edge diffraction coefficient, and, for x;#0,
L, = 1-(-1yK;e®® + (K} /2!-K; /23/2)e?™2

-(-1P (K3 /31-K? /232 +K; /3/2)edika 1 (19)
with
K; = e"/*(2nka) /2 (k/x;) (20)

In (19) we have retained only fcur terms that correspond to direct diffraction at the
edges plus the first three interactions across the open end.

As has been shown in references [40,41], the function L, in (19) is the asymptotic
approximation of an exact function L., (x;) that renders the expression in (16) exact.

The exact function L, (x) is used to factorize the function [lTexp(ia K2-k? )] for the

symmerical or antisymmetrical even or odd j, respectively, in the Wiener-Hopf
analysis of reflection from open-ended parallel plate waveguide. This function is given
by L. (x) =expU(x/k,ka) or exp V(x/k ka) for the symmetrical or the antisymmetrical
problem, respectively, where U and V are Weinstein functions defined in egs. (10.07)
and (10.18) in [42]. By numerical comparison of the asymptotic ray-optical result and
the exact solution, one finds that the asymptotic form is accurate for both propagating
and evanescent modes. However, from (15) with (16) and (19), the reflection
coefficient diverges as 5;—0, j=n,m. The transition function for xj=~0, as obtained by
Weinstein [42,43], is given by

Lo (g) = 5 VZa/k exp | (-1)fe; Vak-in/4 (21)

where 8=¢(1/2) /\/;r- =0.82391 and ¢ is the Riemann zeta function.

ii. External contributions -

The external contributions arise from single and multiple diffracted ray fields
involving edges 1 to 4, and terminating at edges 1 and 2 before diffracting back into
the waveguide. These interactions can be treated collectively in their totality or in part
to synthesize global or partial external resonances, respectively. Because of the
substantial radiation losses at each diffractions, these resonances are strongly damped
relative to the higher-Q internal resonances. Therefore, as argued in [44] and verified
by numerical comparison in Section III, the external loading of the higher-Q internal
resonances is minimal, and can be accounted for adequately by retention of a few ray
interaction events. Therefore, only the dominant interactions j=1-4-1 and j=2-3-2
have been taken into account, with the corresponding contribution

fe(Om,0n) = G3(L)D(27,0,)D(0rm,27)D, /2(0,0) (22)
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where Gy(L) =(8xkL)1/2 exp(ikL+ir/4) is the normalized GTD propagator between
the edges in question, D is the half plane diffraction coefficient in (16a), and D,/; is
the diffraction coefficient for a wedge 90° internal angle [45]. This external pattern
function can be added to the internal function (16), thereby generating external
loading of the internal effects, or it can be treated individually to furnish the external-
internal coupling. The internal coupling, in turn, can proceed directly from edges j=1
and 2, respectively (first term inside the braces in (16)), or with inclusion of
diffractions across the open end, as expressed by the remaining terms in (16).

4. Extension into the Complex Frequency Domain

Since, for the exp(-iwt) dependence assumed here, the relevant portion of the
complex frequency plane for describing the resonance and other transient phenomena
in Imw<0, it is necessary to continue the expressions for the various wave objects
defined in the preceding sections into this complex domain. The analytic continuation
of the exact edge diffraction pattern function in (16) with the exact function L, is
presently unknown. However, the analytic extension of the approximate expressions
using the function L, from either (19) or (21) is direct and requires only the proper
definition of the multivalued functions (a)k'/2 in (20), (b)x,=(k>-k2)"? and
(¢) (k:oc,,)l/2 in (18). All functions have already been defined to be positive (when
real) for positive real k. This allows their unique analytic continuation into the
multibranched k-plane, subject to the choice of branch cuts. For (a), we choose a
branch cut extending from k=0 to infinity along the negative imaginary axis. For (b),
we choose a cut extending along the real k-axis from (-k,) to (+Ky,) so that Im«, <0
in the lower half of the w-plane; this also defines indirectly the analytic continuation of
(c). A numerical comparison, for Imw>0, of the exact function L, with the
approximated functions in (19) and (21) has revealed that the ray optical formula (19)
may be used for |«x; | >V k/ra, whereas near the cutoff frequency of the j-th mode,
one should use (21).

5. Numerical Resﬁlts

Numerical implementation of the radar cross section algorithm in (13) has been
initiated. Initial emphasis has been placed on testing the partial vs. global resonance
descriptions detailed in Sections 1 and 2. This involves solving the internal partial
resonance equations for individual internal modes, solving the external partial
resonance equations, etc., and then repeating by allowing for selected couplings
between these individual effects to generate modified partial resonances. The various
partial resonances are then to be compared with the fully coupled global resonances to
identify the features that partial resonances explain well. The role played by
evanescent modes in the coupled case requires special attention, and certain subtleties
in tl}is connection, especially for the more strongly damped resonances, will also
receive attention.




The numerical calculations involve a waveguide length-to-width ratio L/a=5, and
asymmetrical TM,, modes (n=1,3,5...). Thus, there is no coupling to TM, modes with
n even. Since the resonance map in the lower half of the (normalized) complex (ka)
plane is symmetric about the imaginary axis, only the fourth quadrant is shown. The
frequency window has been restricted to Re(ka)<20, thereby eliminating the
propagating modes to n=1,3,5. Modes with n>7 are evanescent.

Preliminary results for the partial resonances in (14) attributed to the internal
TM, mode resonances n=1,3,5 are plotted in Fig. 5. The resonances are arranged in
layers (n,p), where n identifies the layer and p position inside the layer. External
coupling has been omitted and included, and reflection at the open end has been
modeled by single and multiple edge diffraction as expressed by the various terms
inside the braces in (19). Also shown in Fig. S are the external resonaces, decoupled
from the internal ones. The external resoances have been determined from the roots
of the flow graph determinant, following the procedure in [8].

The n-th mode individual resonance layer is seen to start with the least damped
resonance near the n-th mode cutoff frequency Re(ka)=nr. At frequencies near
modal cutoff, the ray optical formula for the modal reflection coefficient diverges (cf.
[39-41]), with a resulting error in the location of the near-cutoff resonances (small p),
which are found to lie incorrectly in the upper half of the complex w-plane. The
correct results in these frequency windows, shown in the insets in Fig. S, are found
using the transitional form of L, in (21). At frequencies away from modal cutoff, the
ray optical formula is valid, and the corresponding (large p) results are correct.
Certain basic features of the partial resonances as described below. The near-cutoff
resonances have high Q because diffraction losses at the open end are minimized by
the nearly vertical propagation direction (with r,.¢) of the corresponding wave
spectra, as expressed by the propagation vectors ki p = +X nr/a-Z xy 5, where X and 2
are unit vectors along x and z. The wave tilt is such as to accommodate approximately
a longitudinal quarter-wavelength ), =2r/Re(x,p) over the cavity length L. As
Re(ka) increases away from cutoff, A,,, decreases, and resonances p>1 may be found
which correspond to

L/, = %p- i— ,p=12.. 23)

These resonances have lower Q because of higher edge diffraction losses attributable
to the more oblique wave spectra. Eventually, when Re(ka) is sufficiently large so
that xp, p > >nr/2, the wave spectra are nearly horizontal, and threfore experience
approximately the same diffraction losses, for various p. This causes the resonances to
stabilize around an asymptotic Im(ka) value, with approximate Re(ka) values that
correspond to A, , =X, =2L/p, where X, is the free space wavelength. Thus, the
small-p resonances convey information, essentially, about the waveguide plate spacing
a, while the large-p resonances convey information about the waveguide length L.




The resonances are affected, of course, by the modeling of the open end
diffraction. When multiple diffraction between edge 1 and edge 2 in Fig. 1 is ignored,
the layer contour slope is monotonic (Fig. 5). When one or more multiple diffractions
are taken into account (see (19)), the contour shows kinks near Re(ka) values
corresponding to the cutoff frequencies of the higher order modes, with small
differences in resonance location between including two diffractions (not shown in Fig.
S) and three diffractions, and with no noticeable difference in shape by including four
or more interactions. Therefore, reflection has been modeled by retaining up to triple
diffraction. Multiple diffraction evidently conveys additional information about the
waveguide height a via the higher mode cutoff perturbation.

The antisymmetric external resonances generate a low Q layer and, when coupled
to the internal modes, perturb the TM, resonances only slightly (see Fig. 5 for the
TM; mode perturbation). In fact, the external loading of the internal resonances is
found to be adequately expressed by the few dominant ray interactions in (22).

Calculation of the corresponding eigenvectors (see (8)), of similar results allowing
for selected mode coupling, and of the global resoances accounting for all interactions,
is in progress.

B. Hybrid (Ray-Mode)-(Eoundary Ele.ment) Method for Wave Scattering
from Aperture Coupled Systems

This study involves a new method which combines the hybrid ray-mode and
boundary element methods. The latter is used to formulate the aperture scattering
process and the former to provide the Green’s function of the layered environment.
Following the standard procedure of the boundary element method [1], we first
formulate integral equations for the field distribution across the aperture. By
expressing this unknown distribution in terms of appropriate basis functions, the
integral equations are then reduced to algebraic equations which are solved
numerically. In the integral equations, one needs to compute the Green’s function of
the internal environment for various arrangements of locations of source and receiver.
None of the conventional approaches (rays, modes and spectral integration) is
satisfactory to evaluate the Green’s function for all possible arrangements. The newly
developed hybrid ray-mode method [11,22,24] is best suited for this purpose because it
combines rays and modes self-consistently within a single framework and optimizes
the advantage of each.

To test this approach, we have chosen a simple prototype structure, similar to the
one in Section A, for which the various constituents in the analysis can be treated with

(*) This phase is being worked on by I-T. Lu and B. Ma.
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good accuracy and without undue complication. The configuration involves a perfectly
conducting, thin-walled plane parallel waveguide whose interior is coupled to the
exterior by an infinitely long slit of large width in one of the walls (Fig. 6). The
interaction will be analyzed by the (GTD-ray)-mode parametrization as for the
problem in Section A, but generalized to include the hybrid ray-mode scheme for the
interior. The interaction will also be analyzed by the moment method applied to the
aperture field, with the above-described coupling to the hybrid waveguide Green’s
function. This will furnish the numerical reference solution. Although the moment
method is efficient only for moderate slit width (in terms of wavelength), there will be
a region of overlap with the lower ¢nd of the high-frequency asymptotic ranges that
are best suited to the GTD ray approach.

Fig. 6 Perfectly conducting, thin-walled plane parallel waveguide with an
infinitely long slit in one of the walls.

Thereafter, following the procedure in [18], wherein GTD methods were applied
to constructing the complex resonances for a slit in an infinite plane boundary, the
new approach described above will be used to account for the changes in the
resonance behavior of the slit when the environment on one side is the plane parallel
waveguide.

After these fundamental studies will have been completed, the new (ray-mode)-
(boundary element) method will be applied to the more complex configurations shown
in Fig. 2.

At the present stage of this investigation, the formulation of the problem has been
completed, and numerical implementation is being initiated. The GTD-mode scheme
will be considered soon. :




C. Slit-Coupled Convex Perfectly Conducting Thin Cylindrical Shell .
with Interior Convex Perfectly Conducting Cylindrical Loading

This configuration, which generalizes the one schematized in Fig. 2, to noncircular
shapes, is being investigated via the external-ray and internal-local mode format. The
analysis embodies a substantial generalization of that for the problem in Section A.

First consideration has been given to the appropriate parametrization of the
scattering problem. When the interior load has dimensions approaching those of the
enclosing shell, a waveguide with variable cross section is formed along the interior
peripheral direction. This requires treatment via local modes, which may undergo
cutoff at narrow portions. On the outside, the treatment is via creeping rays. The slit
is assumed to be narrow, thereby localizing its scattering properties and endowing the
interior cavity resonances with high Q. The formulation suited to this model has been
carried out via a system of state vectors, propagation matrices and coupling matrices
that tie the hybrid ray-mode constituents together self-consistently. Reduced
simplified alternative parametrizations of the scattering problem have also been
considered, which emphasize the different parameter regimes away from, or near, an
interval resonance, respectively.

The near-resonance problem is the most difficult. Pursuit of a perturbation
scheme is in progress, which seeks to predict the location of the resonance spikes in
the bistatic scattering cross section from the resonances of the closed asymmetrically
loaded cavity and the slit coupled symmetrically loaded cavity.
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1. OBJECTIVE(S)

The main goal of this project is to investigate both experimentally and theoretically
the intrinsically nonlinear interaction of intense electromagnetic waves with three-
dimensional optically nonlinear structures whose refractive indices are functions of the
intensity of the local electric field. These structures can have sizes which are small or
large when compared with the wavelength. Our research program will first be
directed to the study of isolated structures with well-defined geometries. The results
will then be extended to include collections of these microstructures either randomly
distributed in a gaseous environment or embedded in regular arrays inside a
transparent host medium. Our aim is to understand, on one hand, the limitations on
the performance of electromagnetic systems due to scattering and absorption by
particles suspended along the propagation path, and on the other, to establish a new
approach to nonlinear electromagnetic problems, with a view towards developing a
whole new class of optical devices and a new discipline, best called microparticle
photonics.

2. SUMMARY OF RECENT PROGRESS

In this section we will review our recent progress since April, 88 when this contract
started. A number of areas of progress associated with Microparticle Photonics will
be briefly discussed. In the next section each of these advances will be elaborated on
in greater detail.

We have attacked the problem of nonlinear 3-D structures by imagining a sphere
to be the basic building block. Since the general nonlinear solution for the EM fields
within such a structure is unknown, except for the limiting case of a Rayleigh particle
[1], experimental data on such structures are paramount. In this regard we would
particularly like to know the strength to which the EM fields can grow in a spherical
dielectric structure. Since the maximum strength of the electric field is proportional
to the quality factor at a so-called Morphologically Dependent Resonance (MDR), Q,
we first attempted to determine the largest quality factor obtainable. Here we were
aided by a recent theory in the literature in which the degree of intermolecular energy
transfer within a spherical structure is related to the quality factor of various MDR’s
[2). Our recent experiments have confirmed this theory and allowed us to estimate
the photon lifetime within the longest lived resonances of a particle 10 nm in radius.
The corresponding Q within these modes was found to be 4.4x10° [3]). This
unprecedented value for the room temperature quality factor suggested that incident
intensities needed to produce nonlinear behavior could be extremely small. To further
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take advantage of this situation a "so-called" artifical Kerr medium [4] consisting of
Rayleigh-sized particles (60 nm in diameter) which are free to move within a Mie-
sized particle was constructed. The addition of the these small particles was found to
produce optical bistability at the extremely small intensity of 1200W/cm?. As we will see
in the next section this bistability may be understood in terms of a change in the
refractive index profile within the particle caused by intensity dependent gradient
forces. The artifical Kerr medium is by no means ideal due to its slow response,
however, it is a good model system because of the relatively large effective nonlinear
Kerr coefficient n;, [i.e., with the refractive index expressed as n = ng+n,I,n; values
10° times the value for CS, have been measured] and thus experiments can be made
using low power CW lasers. In order to advance to faster materials which are
analogous to the liquid drops which we have been using, we have begun to construct
nonlinear glass spheres by utilizing a new device developed in our laboratory known as
a Convective Oven. With this technique in hand we are able to fabricate glass spheres
of a number of different materials. Perhaps the most interesting of these materials
are filter glasses with large values of n;. These glasses are attractive media for such
devices since recent work has shown that relatively large nonlinear coefficients are
possible while still maintaining response times below 100fs [S]. In fact an all optical
nonlinear fiber coupler switch recently constructed by P.W. Smith and his group at
- Bell Communication Research [6] has already proven to be the fastest optical fiber
switch known [7]. While examining amorphous media at the Polytechnic, we have
entered into a collaboration with the A. Pluchino and his group at the Aerospace
Corp. where work is currently underway on spherical particles which are composed of
traditional semiconducting materials. Although single crystals of these materials have
larger nonlinearities than glass, our semiconducting particles are polycrystalline and
internal scattering losses tend to damp the normally high Q resonances. This aside,
we have observed optical hysteresis in these particles, and this hyteresis currently
occurs only near frequencies corresponding to MDR’s of the semiconductor particles.

On the theoretical side we have calculated the effective nonlinear dielectric
function of a mixture consisting of a random distribution of Rayleigh-sized
microparticles. We assumed that the particles are made up of materials whose
dielectric function depends on the local intensity. The results are rather general, and
apply regardless of the particular form of dependence of the refractive index on the
intensity. The main assumption is that the concentration of microparticles is small.
We find that at low intensity, an effective Kerr coefficient for the mixture can be
defined. At higher intensity, the effective nonlinear dielectric function of the
composite can itself be a multi-valued function of the intensity. Specific results have
been computed for the case of a Kerr-like material whose Kerr coefficient can be
either positive or negative.

3. STATE OF THE ART AND PROGRESS DETAILS

The areas mentioned in Sec. 2 above are reviewed here in more detail.
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(1) Measurement of the Quality factor of the highest Q modes of a Microparticle

The quality factor of the longest lived resonance of a spherical dielectric particle
was estimated by the use of a new method based on the phenomenon of Microparticle
Enhanced Energy Transfer (MEET) [8]. Here energy from an excited donor
molecule is transferred to an acceptor indirectly. The donor molecule is stimutated by
its interaction with high Q MDR’s of the particle to deposit its energy in the particle.
The photon so deposited remains in the particle until it is either absorbed by an
acceptor molecule or leaks out. At an acceptor concentration at which absorption by
acceptors far exceeds leakage, the energy transfer is independent of concentration
(i.e., it saturates). However as the concentration of acceptors is reduced to the point
at which absorption by acceptors is comparable to leakage the energy transfer falls to
1/2 of its saturation value. By determining this critical concentration one can obtain
an estimate for the Q of the longest lived resonances. A quantum electrodynamic
theory for the MEET process has recently been worked out by P.T. Leung and K.
Young {2]. The concentration dependence predicted by theory is born out through our
experiments. The largest Q value for a particle having a refractive index of 1.47+10°%i
and a radius of 10u is 4.4x10°. Recently the largest quality factor for individual
particles in a stream has been estimated by interpreting the delay between a
picosecond pulse and the onset of Stimulate Raman Scattering (SRS) as equivalent to
the photon lifetime [9]. Although there are no current calculations to support this
notion, it is interesting to note that our Q factor is within a factor of 2 of that obtained
from SRS experiments 9], and that both numbers fall short of the prediction from
Mie theory by orders of magnitude. It is thought that photon coupling to mechanical
modes associated with surface roughness is responsible for this effect. Our paper on
the measurement of Q using the theory of Leung and Young is in press [3].

(2) Measurements on a Microparticle Containing an "Artifical” Kerr Medium

To address nonlinear problems we have given liquid droplets for which the linear
physical characteristics are known (i.e. size, refractive index, quality factors of
resonant modes) a pronounced nonlinear character. Qur interest at this point is in a
model system, not a practical system. Our means for doing this is through the
generation of an artifical Kerr medium in which we take advantage of the motion of
Rayleigh size particles in optical fields having intensity gradients.

A Rayleigh particle in an electromagnetic field in vacuum experiences a force in
the direction of the gradient of the time averaged intensity. Thus the Rayleigh particle
is pulled into regions of high intensity. In a condensed system such as a liquid
containing a statistical number of particles, high local intensities will therefore
produce a relatively large refractive index; the new medium (i.e., particles in liquid)
acts as an "artifical" Kerr medium. If this Kerr medium fills a Mie particle, than the
particle becomes a model system for a nonlinear 3D structure. More importantly it is
a Kerr medium with a very large Kerr coefficient. Consequently one has the potential
of experimenting on this structure with a low power CW laser without competition
from other effects (e.g., thermal, etc).




We have done just such experiments on droplets ~10x in radius in which as many
as 10>-10* Rayleigh particles 60 nm in diameter have been placed. Our current results
are preliminary, however, these results show a clear optical bistability (OB) in the
wavelength dependence of the elastic scattering. Further work is necessary to verify
that the mechanism for this OB is entirely associated with n, and not a thermal effect
[10].

(3) Semiconducting Particles

In collaboration with A. Pluchino of the Aerospace Corp. we have begun to
perform experiments on semiconducting particles on glass substrates. In our first
experiments on spherical CdS particles we have measured the intensity dependence of
the elastic scattering from individual particles 1-Sx in diameter. In all cases we find a
pronounced optical hysteresis beyond a critical intensity. The associated wavelength
dependence of this effect indicates that the effect is strongest near MDR’s of the
particle. Our present experiments have only been carried out to MHz frequencies,
however, in the future these experiments will be extended to higher frequencies in
order to separate effects which are thermal from those which are intrinsic.

(4) Theoretical Determination of the Effective Dielectric
Function of an Inhomogenous Medium

The problem of determining the effective dielectric function of an inhomogenous
medium given the properties of its constituents has been of interest for quite a long
time. A number of theories are available in the linear regime, including the widely
popular theories of Maxwell-Garnett [11], and Bruggeman [12]. In these theories it is
assumed that the particles as well as the host medium both behave linearly. There is a
recent work on the effective dielectric function of composite materials in the nonlinear
regime [13]. In this work it was assumed that the dielectric function is periodic, with
the period approaching zero. It was concluded that explicit computation of this
function is in general impossible, even by numerical methods. In our work here, by
extending the theory developed by Landau and Lifshits, we are able to obtain explicit
result for the effective dielectric function for composite media. Our calculation relies
on the results we obtained previously on the intrinsically nonlinear interaction of EM
waves with single spherical Rayleigh-sized particles [1). The real part of the nonlinear
dielectric function of the composite is plotted as a function of the reduced incident
intensity in Fig.1. It can be seen that an effective Kerr coefficient can be defined at
low intensity from the slope of the curve near q=0. However, away from the low
intensity region, it is clear that it is no longer possible to define such an effective Kerr
coefficient. Dependence on higher powers of the intensity becomes so important that
the effective dielectric function itself can become a multi-valued function of the
intensity. This is a highly unusual result because in nonlinear optics, one almost
always starts out with a dielectric function which is a single-valued function of the
field, although under appropriate circumstances certain physical quantities may end
up multi-valued. The origin of this anomaly clearly lies in the composite character of
the mixture and that each nonlinear microparticle can individually exhibit optical
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Fig. 1 The real part of the effective nonlinear dielectric function of a random
distribution of spherical Rayleigh-sized microparticle embedded in a
transparent host medium.

bistable behavior.

It is hoped that our work will enable us to better understand the manner in which
intense EM waves interact and propagate through aerosols containing optically
nonlinear microparticles. Our results can also be applied to give the effective
dielectric function of glasses doped with optically nonlinear semiconductor micro-
crystallites. The use of such man-made materials in nonlinear optics has been
attracting some attention in recent years [14]. In fact an experimental observation of
optical bistability in CdS,Se;., doped glasses has recently been reported [15].

4. REFERENCES

1. KM. Leung, "Optical Bistability in the Scattering and Absorption of Light from
Nonlinear Microparticles", Phys. Rev.A 33, 2461 (1986).

2. P.T. Leung and K. Young, "Theory of Enhanced Energy Transfer in an Aerosol
Particle", J. Chem. Phys. 89,2894 (1988).

3. S. Arnold and L.M. Folan, "Energy Transfer and the Photon Lifetime within a
Microparticle”, Opt.Lett.(in press).




10.

11.
12.
13.

14.
15.

P.W. Smith, P.J. Maloney, and A. Ashkin, "Use of a Liquid Suspension of
Dielectric Spheres as an Artifical Kerr Medium", Opt. Lett. 7, 347 (1982).

I. Thomazeau, J. Etchepare, G. Grillon, and A. Migus, "Electronic Nonlinear
Optical Susceptibility of Silicate Glasses", Opt. Lett. 10, 223(1985).

S.R. Friberg, Y. Silberberg, M.K. Oliver, M.J. Andrejco, M.A. Saifi, and P.W.
Smith, "Ultrafast All-optical Switch in a Dual-core fiber Nonlinear Coupler”,
Appl. Phys. Lett. 51, 1135(1987).

P.W. Smith, Private Communication.

LM. Folan, S. Arnold, and S.D. Druger, "Enhanced Energy Transfer within a
Microparticle", Chem. Phys. Lett. 118, 322-327 (1987).

Jian-Zhi Zhang, D.L. Leach, and R.K. Chang, "Photon Lifetime within a Droplet:
Temporal Determination from Elastic and Raman Scattering”, Opt.Lett. 13,
270(1988).

S. Arnold, K.M. Leung and A.B. Pluchino, "The Optical Bistability of an Aerosol
Particle”, Opt. Lett. 11, 800-802(1986).

J. C. Maxwell Garnett, Philos. Trans. Roy. Soc. 203, 385 (1904); 205, 237 (1906).
D. A. G. Bruggeman, Ann. Phys. (Leipzig), 24, 636 (1935).

G.C. Papanicolaou, Electromagnetic Problems in Composite Materials in Linear
and Nonlinear Regimes in Nonlinear Electromagnetlcs ed. by P. L. E. Uslenghi,
p. 253 ( Acad. P, N.Y., 1980).

K. C. Rustagi and C. Flytzanis, Opt. Lett. 9, 344 (1984).

J. Yumoto, S. Fukushima, and K. Kubodera, "Observation of optical bistability in
CdS,Seyx doped glasses with 25-psec switching time" Opt.Lett. 12, 832 (1987).




-31-

C. BEAM-FIELD INTERACTIONS WITH NONLINEAR THIN FILMS
Professors K. Ming Leung and Theodor Tamir
Unit EM8-3

1. OBJECTIVES

The aim of this project is to investigate a new class of electromagnetic phenomena
that involve bounded beams propagating under nonspecular regimes in the presence of
planar nonlinear media. These phenomena are produced by the combination of (a)
unexpectedly large nonspecular effects involving beams in thin films, with (b) the
field-modification behavior of dielectric layers whose refractivity is intensity-
dependent. The overall effects include beam displacements of the lateral, angular and
longitudinal types, field focusing or fragmentation, as well as other varieties of field
changes and beam distortions.

By exploiting the action of nonlinearities to enhance and modify the nonspecular
effects, novel techniques for dynamically controlling beam trajectories can be
explored. These techniques will thus be useful in the design of optical components and
in the implementation of optoelectronic devices. '

2. SUMMARY OF RECENT PROGRESS

During the past period, our investigation has considered two major aspects
involving propagation of fields in or along nonlinear layers. First, we have studied the
transmission of a homogeneous plane wave through Kerr-like media characterized by
a negative nonlinearity. Specifically, our previous exact analytical study of the
scattering of plane TE polarized waves from a nonlinear film has been extended to the
case of films with a self-defocusing nonlinearity. The reflectivity and the internal field
intensity were calculated as functions of the angle of incidence, the film thickness, and
the incident intensity. All the possible allowed types of behavior were investigated and
optical bistability in the reflectivity was found to be possible. The phenomena of
induced resonance scattering and induced transparency were also studied.

In a parallel second study, we have explored beam waves of the type that are
emitted at the output of a prism coupler containing a nonlinear layer along which a
surface wave is incident at the input. Because these beam waves can be fully
characterized by a leaky wave field, we have extended to nonlinear layers the leaky-
wave concept that has so far been restricted to linear configurations. In addition to
beam-coupling configurations, this novel field approach to nonlinear media is
applicable to a broader class of field varieties.
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3. STATE OF THE ART AND PROGRESS DETAILS

Recent work on the interaction of electromagnetic waves with nonlinear dielectric
films having intensity-dependent refractive indices has revealed [1,2] a number of
remarkable phenomena which have stimulated the development of many ultra-fast
and compact all-optical and optoelectronic devices. Besides their compactness,
nonlinear thin-film devices have the additional advantage that the waves inside the
film can be compressed to a dimension comparable to a wavelength, or even smaller,
so that nonlinear processes which depend sensitively on the field intensity can be
drastically enhanced [3]. Moreover, the waves can be guided along the film through a
great distance, thereby providing a long path for the interaction and mixing of the
waves and thus further enhancing the nonlinear effects. However, most theoretical
results reported so far in this area have assumed that the incident field is a plane wave.
This is often an inadequate assumption even in the low intensity (linear) limit. In fact,
by considering® incident bounded beams instead of plane waves, lateral beam
displacements have been identified [4-11] even in linear dielectric or metallic layers.
Most recently, we have reported [12] an entire set of fascinating nonspecular effects
which include not only large lateral beam displacements, but also focal and angular
beam shifts, anomalous absorption phenomena and strong beam-profile deformations.
Analogous effects occur for transmitted (refracted) beams [9].

In the nonlinear regime, on the other hand, a beam wave can undergo self-focusing
or self-fragmentation even in an infinite homogeneous medium [13]. In a one-
dimension spatially homogeneous medium, detailed studies have conclusively
indicated [14] that the propagation characteristics of nonlinear waves depend crucially
on the initial wave profile. Furthermore, a huge lateral beam shift of the Goos-
Hénchen type has already been reported [15]. All these considerations indicate that
the presence of nonlinear thin films can drastically modify the plane-wave results and
significantly magnify nonspecular effects which are large already in the absence of
nonlinearities.

Work in this area has also emphasized [2] effects associated with optical-bistability
phenomena which, of course, have tremendous potentials for a variety of device
applications. However, bistability is associated with an intrinsic nonlinear behavior
that has no counterpart in the linear regime and cannot, in fact, exist unless the
incident power is above a threshold level [16-18]). By contrast, the phenomena
considered here involve nonlinearities which account for fields that are not subject to
threshold effects but, in the limit of very weak intensities, their behavior reduces to
that of linear media. The nonlinear situations to be studied are therefore inherently
different from those leading to bistability and, in particular, they can be regarded as
generalized analogs of the particular linear case.

The nonlinear generalized analogs addressed by our research program consist of
planar configurations that contain one or more layers whose refractivity is field-
intensity dependent. A principal concept motivating this research is that, by judiciously
combining the effects of nonlinearities with the non-specular behavior of beam fields,
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new beam-controlling techniques can be developed for application to thin-film optical
components. In this context, our studies during the past period have dealt with the
two inter-related aspects outlined below.

A. Propagation of plane waves through media having
Kerr-like nonlinearities with negative coefficients.

We have previously carried out [26] an exact analytical study of the scattering of
plane TE polarized waves with a nonlinear thin film whose refractivity is a function of
the local field intensity. Detailed results were also reported in the case where the film
has a Kerr-like optical nonlinearity with a positive (self-focusing) Kerr coefficient.
These results have now been extended to the case of a negative Kerr coefficient, and
therefore can be applied to a much larger class of nonlinear films. A particularly
interesting case is that of a film made up of InSb, which is known to have a
remarkably large and negative Kerr coefficient.

An independent work on this problem has recently been published by Chen and
Mills [25] whose main results are very similar. However, there are a few but
significant differences between their results and ours, which are highlighted below.

Our results apply to any angle of incidence while those in Ref. [25] hold only for
normal incidence. We have also shown that, by a suitable choice of scaling of the
various parameters, the basic results are generally independent of the incidence angle.
In our work, all possible types of behavior within a rather large parameter region of
interest were investigated. We have thus found that there are only four universal types
of possible behaviors, which depend on the incidence angle and the linear dielectric
constants of the film and the adjacent media. The methodology used in Ref. [25]
requires that a specific parameter be scanned through a certain range to find
particular values which yield a solution consistent with the boundary conditions. This
in effect amounts to solving for the roots of a single but very complicated algebraic
equation, which can be somewhat non-trivial because multiple roots may occur. In
our work, by contrast, we show that a suitable parametrization of the problem can be
implemented which avoids the need to solve any equation numerically at all. Our
treatment is therefore much simpler. As a result, we were able to study the problem
at much greater depth. In particular, the phenomenon of induced resonance
scattering can be investigated in detail. The incident intensity at which such
resonances occur was calculated as a function of the film thickness. Induced
transparency of the film was also studied, and the required intensity has been
calculated.

It is important to note that the work in Ref. [25] is restricted to the case in which
the Kerr coefficient is positive. On the other hand, their results have been extended to
bilayers and superlattices involving nonlinear dielectric layers [27] while our results
apply only to a single nonlinear layer.
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Our plane wave studies of nonlinear layers are interesting in their own right
because of their fundamental importance. Moreover, they form the basis for
developing other techniques in the study of bounded beam effects. An important
example is the case of leaky waves associated with the coupling of radiation into a
nonlinear waveguide structure which is discussed below.

B. Leaky waves guided by nonlinear layers.

In order to study beam-wave (rather than plane-wave) fields in the context of
nonlinear media, we have considered the geometry shown in the inset of Fig. 1, which
is relevant to prism-coupler problems. For simplicity, we examine TE modes of the
monochromatic two-dimensional wave equation for which we seek solutions of the
form

E(x,z) = F(z) exp(ikx) exp[ ifn(z)dz], (1

where ky is a complex quantity. For real values of ky, analytical solutions are available
for guided surface waves [19-22] and for homogeneous plane waves [23-26). However,
the field supported by the configuration in Fig. 1 involves leaky waves characterized by
complex values of kx. For such inhomogeneous fields, only numerical colutions in
nonlinear regions having infinite extent have been obtained so far [27-30];
furthermore, analytical results are not available and bounded regions such as those
required by layers of finite thickness have not been treated. We have therefore
developed a semi-analytical procedure for systematically deriving modal (resonant)
solutions characterized by complex values k, = 8 + ia. This approach is applicable to
both bounded and infinite nonlinear regions.
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For that purpose, we introduce Eq. (1) into the pertinent wave equation, suppress
the x variable and separate real and imaginary parts to obtain

®F/dz? +[(F)-B* +c?-n*(z) JF = 0, (2)
2n(z)(dF/dz) + (dn/dz)F - 2BaF =0, (3)

which leads to
n(z)F? - 2BafFrdz={, (4)

where { is a constant given by the physical parameters involved.

In general, 8 and « are functions of x if the layered configuration contains a
nonlinear region, as is the case for the region with permittivity ¢; in Fig. 1. To solve
the above equations, a particular cross-section x = x, is considered where the intensity
F = F, is specified. For that cross-section, an arbitrary complex value of k, is
assumed and we can then find the incident power needed to maintain the specified
value of F,, by using the analytical technique developed by us previously [26].

In this manner, we have generated the curves shown in Fig. 1, which exhibit an
interesting instability. More importantly, point A suggests that o and # can be
judiciously changed so that no incident power is required to maintain a guided field.
Such a situation fulfills the definition of a mode, which in the present case is leaky
because k, = f+ia is complex. By next assuming that particular (resonant) value of
k,, the intensity was evaluated at a small distance Ax away from the x, cross-section.
The values of 8,« and F(x) were thus found at all x>x,. The resulting field represents
the leaky wave supported by the given nonlinear layer.

We have thus obtained a leaky-wave modal solution having varying values of 8 and
o, as shown in Fig. 2(a). For completeness, Fig. 2(b) shows a comparison between the
guided power along x of such a field and that of the conventional leaky wave along a
linear layer. Although Figs. 1 and 2 hold for a specific non-linear layer and for a given
initial intensity F,, the results apply also to other initial F<F, because smaller values
of F simply imply that we start considering the leaky field at transverse planes x>x,.
In this sense, Fig. 2 represents universal results which hold for all F<F, in the given
geometry.

In view of the novelty of the above results, we project to continue our study of
leaky waves along nonlinear layers. In particular, we shall apply the above method to
derive the fields in nonlinear configurations of the prism-coupler variety and other
applications.
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A. RESONANT INTERACTIONS IN CRYSTALS AT X-RAY WAVELENGTHS
Professors G. Schaefer and E.E. Kunhardt
Unit FP8-1

1. OBJECTIVE(S)

The objective of this project is to investigate the possibility of obtaining a non-
divergent beam of partially coherent x-ray radiation from the interaction of active
oscillators that are either imbedded in or constituting a crystal lattice.

2. SUMMARY OF RECENT PROGRESS

A model has been formulated for investigating the emission properties of one or
more identical oscillators imbedded in a host lattice. The "guided-wave" technique of
electromagnetic theory! has been used to develop the governing equations. Two
oscillator(s)-lattice configurations are being investigated for which (a) the excited
oscillator(s) are either substitutional or interstitial impurities in the host (non-
resonant) lattice, and (b) the host lattice is resonant to the radiation emitted by the
oscillators. For the cases of interest, the wavelength of the radiation, A, is of the order
of the oscillator spacing, d. The issues being addressed are: (1) the coupling of the
emitted radiation to normal (guided) modes of the lattice, and (2) coherence
phenomena in the radiation of the oscillators which can lead to enhanced emission in
well-defined directions. This consideration, namely, that the sought emission is into a
well-defined direction, more generally, into specific guiding modes of the lattice,
makes the guided-wave technique most suitable for the formulation of the radiation
problem.

The overall radiation problem has been decomposed into a "modal" problem for
determining the guided modal fields of the host lattice (which, as in case (b) above,
may resonantly scatter the radiation), and the "emission" problem for the excitation of
the guided modes by the active oscillator(s). The symmetry properties of the lattice
serve to simplify the modal problem by allowing a decomposition into two: (1) a
(microscopic) "field" problem for determining the (resonant for case (b)) scattering
from a crystal plane, and (2) a one-dimensional "network" problem of combining this
scattering periodically so as to infer the (macroscopic) modal fields of the lattice. The




“field" problem is cast in terms of a single cell scattering leading to a multiple-
scattering equation for the scattered wave. In the following section, the basic
equations that constitute the theoretical approach outlined above are presented. A
classical model has been adopted for the oscillators since it is simple to use and more
than adequately serves to illustrate the principles involved.

3. STATE OF THE ART AND PROGRESS DETAILS

The effect on the emission properties of an oscillator due to its iateraction with
others of the same kind that surround it and are periodically arranged, has been
investigated in the limits A >> d (super-radiant regime)>® and A << d.*> Moreover,
this effect has been studied for cases where the interaction is mediated through
particles,’ photons,>3 and ~ and x rays.*>7 For the last two cases, the investigations
have been restricted to the regime A << d, (by necessity in the case of « rays). The
radiation pattern observed outside a 3-D lattice exhibits a set of light and dark Kossel
cones, corresponding to the various internal Bragg reflections. The theory of the
Kossel effect for x-rays emitters that are non-resonant with the surrounding
oscillators, and its application the determination of the crystal structure, have been
extensively discussed in the literature.®® The corresponding resonant lattice problem
for ~ rays was treated by Hannon et al.!°

An analogous problem that has received consideration attention recently is that of
the effect on the emission properties of an oscillator due to its interaction with a
surrounding cavity. 113 In this case, the modes of the surrounding medium form a
discrete set so that the radiation line width of the isolated oscillator can be
significantly altered by the presence of the cavity. In the case of the lattice, even
though the modes of the periodically arranged oscillators form a continuum, there are
preferred directions for which the radiation line widths may be significantly affected.
The degree of the effect depends on the coupling between the oscillators and their
coupling to the lattice modes. One interesting possibility is that of mode
locking/suppression by increasing the coupling between the oscillator.

Recently, K. Das Gupta published a series of papers'® reporting results from
experiments in which a high intensity source is used to excite various doped crystals.
As sources, he has used a focused electron beam and a combination of focused
electron beam and characteristic x-radation of the crystal. Since he has also used a
number of configurations and crystals (type and properties), it is not possible to
discuss all his observations here. However, the most notable observations are: (a) a




significant narrowing of the fundamental width of the K, line as the intensity of the
sources (pump power) increases, (b) a nonlinear rise with pump power of the intensity
of this line, and (c) a beam of negligible divergence.

These results have attracted some attention, both theoretical® and
experimental’®, However, no satisfactory explanation has been given. Das Gupta
qualitatively explains!’ these observations as resulting from an anomalous Kossel
emission (arising from the decay of active oscillators inside the crystal).!® Although it
is not clear at this point what really is happening in the crystal, it is reasonable to
assume that the behavior of a system comprised of active oscillators and a radiation
field may depend on the intensity (and frequency) of the radiation. Thus, as the
intensity is increased, nonlinear effects (such as mode coupling, enhanced spontaneous
emission into the Borrmann modes, etc.) may be significant and lead to the
observation of "anomalous phenomena" reported by Das Gupta.

There exists a wealth of resonant interactions that need to be investigated in this
system. Our objective is to maximize the effect by properly choosing the properties of
the oscillators (density and radiation wavelengths, for example), and of the host lattice
(lattice constant and either resonant or non-resonant scattering). We will focus on the
regime for which A > d. Note that the spacing between the emitting oscillator (or
resonant scatterers) need not be the same as the spacing of the host lattice in which
the oscillators are imbedded.

As previously mentioned, the analysis of the emission of an oscillator that is
surrounded by others (some or all of which may be of the same kind) into well-defined
directions is most appropriately formulated using a guided wave representation for the
macroscopic fields in the medium. In this report, we discuss that aspect of the
problem denoted as the "modal" problem in Section 2. As a model for the overall
radiation problem, consider a simple cubic lattice whose sites are at the point
I; = ds;, where s; is a vector in the direct lattice constant. Suppose that each site is
occupied by discrete oscillators which can be represented by a current distribution
Ji(q1,1i, t), as shown in Fig. 1(a). (Note that in the "emission" problem, we will also
consider cases where the active oscillators may be located at points other than the
lattice sites, as is the case for example, in interstitially doped crystals.) The lattice may
equivalently be viewed as a waveguide whose "walls" maintain the transverse
periodicity of the lattice (Fig. I(b)). A transfer matrix U is defined that relates the
modal field state vectors at the longitudinal boundaries B of the unit cell (Fig. 1(c)).
Eigenvalues of the transfer matrix U characterize the dispersion relations of the
macroscopic modal fields. This calculation constitutes the "network” problem (from
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Fig. 1 (a) Periodic arrangement of oscillators (denoted by circle) constituting
a crystal. (b) Equivalent "guide" representation. The dashed lines
correspond to “guide” walls indicative of transverse periodicity. (c)
Equivalent unit cell "field” problem (see text).

Section 2). The explicit calculation of U requires solution at the microscopic level of
the resonant scattering of the X-rays by a single element (cell) in the longitudinally
infinite guide (Fig. 1(c)), i.e., the "field" problem.

To effect the decomposition of the "modal" problem into a network and field
problem, consider a guided coordinate basis where the guiding direction, a, is chosen
to be one of the directions of translational symmetry. In this basis,

t (0

1 =28 +aa =1L+

i

where a, is a vector transverse to a,. Introduce a basis of orthogonal functions
(modes)
ei(k,t'*'hi)f
Ho) = ———= 3 ()
gt Vo <p

where p is the radius vector transverse to a,, k; is a (two-dimensional) prescribed, but
arbitrary transverse wavenumber, h; is a (two-dimensional) reciprocal transverse
lattice vector, a, is a (two-dimensional) polarization vector, and o is the area of the
transverse unit cell. The mode functions, Eq. (1), possess the orthogonality propérties

[1¢i () 8(p)ds = & (3)




in the transverse plane of a unit cell. These mode functions can be used to represent
the radiation field with prescribed k, everywhere in the lattice.

E(r) = ¥ %(2) () = DEi() 5)

In a e ~ 1t basis, Maxwell’s equations may be written in the form

[VxVxl - uoeowzé]E_ = iwpod (42)

Letting J = LJ E, where Ly} is the inverse of the oscillator operator, Eq. (4a)
becomes

[VxVx 1-L) -k ;]1;; =0 (4b)

where

k2 = o uye, . (4¢)

For the time independent electric field

E() = X a2 4() = £ Ei) 5)

Using Eq. (5) in (4), we obtain for the modal amplitudes in the interstitial regions
(where the currents are assumed to be zero)

d? 2
[g + K-i] ai(z) = 0 (6a)
where
ki =Vks - (ke + ;) (6b)

In regions where the currents are not zero, the representation (4) still holds but the
coefficient equations (6a) are coupled. Thus in the interval where Eq. (6a) holds, it is
evident that the field is representable via (4) as a superposition of plane wave modes
of the form




. = e*1MZ g(p) 7

which are propagating or attenuating along z, depending respectively on whether
x? > 0 or k? < 0. In the case of a rectangular transverse lattice with unit cell of sides a
and b,

2 2m
hi== &+ "3 , mn=0z21 2

From Eq. (6b), for sufficiently low k, of the order of (x/a, x/b), only two modes,
i=0 and i=1 are propagating. The evanescent behavior of the higher i > 1 modes
implies that the representation (4) is rapidly convergent at a point between the atomic
planes. In consequence, the dominant mode component of E(r), viz:

Eo(r) = (af e%oZ + a; e%02) ¢ (p) (8a)

Ei(r) = (af %1% + af e12) ¢, (p) (8b)

provide a good first approximation to E(r) at such points. Although higher mode
contributions can be readily included, the subsequent analysis will, for the most part,
characterize the "macroscopic” behavior of E(r), i.e., the behavior at the midplanes in
terms of the dominant modal description in Egs. (8). In Egs. (8), the quantities a*
represent the amplitude of waves travelling twoard and away from an atomic plane at
z=0. They assume different values on opposite sides of the plane. The knowledge of
the discontinuities in the values of a* and a~, which are induced by the resonant
scattering at the atomic plane, permits a ready calculation of the macroscopic
behavior of the field. Thus, the field problem is cast into that of ascertaining the
discontinuities in a* from the resonant scattering properties of an atomic plane. By
linearity considerations, preliminary to explicit solution of the scattering problem, one
can ascertain the nature of the relation between the a* and a™. This in turn permits
one to infer the plane to plane variation of the guided wave amplitudes a* and as well
the dispersion relation for such waves, i.e., the network problem.

Linearity implies, in matrix notation, that
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where the subscripts R and L refer respectively to the right or left of the atomic
planes, and (u;) denotes a "transfer" matrix characterizing the discontinuities in a*
induced by the scattering atom. If one introduces the wave vector notation
characterizing the dominant guided wave amplitudes at the n'" mid-plane

[ag [(n - 1/2)d]]
ay [(n-1/2)d]
af [(n-1/2)d]

af [(@-1/2)d]

X+

We can rewrite Eq. (9) for the guided wave amplitudes atz = d/zand z = -d/z as
£H1=U& (10)

where

U= O(Uij)e

where (u;;) is now a 4x4 matrix and

e:“’°/2 0 0 0 -

-8, /2

with 6, = x;d. The translational invariance of the lattice requires that

a* [(n+1/2)d] = A2* [(n - 1/2)d] (11)
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where the " distinguishes the guided wave amplitudes that compose a translationally
invariant mode, i.e., a Bloch wave, and A is a translation factor independent of n. From
Egs. (11) and (10), one obtains

Ubi=X& (12)

that determines both the translation factors A; and the relation between the guide
wave amplitudes 2. for the modal Bloch wave.

The explicit evaluation of Eq. (12) requires the solution of the problem of
scattering of a plane wave ®; of Eq. (7) by a single atomic plane (Fig. 1c). This plane is
characterized by source currents with two-dimensional periodicity which are assumed
to be localized near the center of a cell. For this purpose we introduce a free space
Green’s function, G(r, r -) which has the transverse periodicity of the lattice and is
defined within a unit cell by

[VxVx1 ~K11G0.17) = -6 -1°)1 (13)

subject to the requirements,
G(r,r°)—0 as |r-r-| -oo if Imk, >0

G(r +pi, 1) = G(r, 1 -)e¥t &

where pg; is a transverse lattice vector and k2 is given by Eq. (5c). In a basis noted in
Egs. (2) and (7), the solution to Eq. (13) is discontinuously represented by

S BORE) e
G(r.r°) = 1)
by LL‘I.’j(ﬂ):‘!’-j(.r ) z<z’) (14b)

_j 21K._j

The Green’s function G(r, r ©) provides the means for transforming the relevant
wave equation for E into the integral equation,

Ei(r) = &(r) - [G(r, 1) Li'®i(r ) dr - (15)

where the volume integral dr - is extended only over one sphere of radius R about the




scattering atom. To the right and left of the atomic plane at z=0, one infers from Egs.
(14) that
1
oi(r) + 3 Eg_?j(!)'rji z>R
i
Ei = (168.)
1
o;(r) + 2 —ZI]— ®(r)T;; z<-R (16b)
!

where R denotes the distance from the atomic plane beyond which the current
distribution is zero, and where

Ty = [&(r) Ly Ei(r)dr (17)

denotes the ji™ element of a transition matrix T indicative of the degree of excitation
of the j*™ guided mode &; by an incident mode .

The above formulation of the scattering problem in terms of a guided wave basis
®;, characteristic of the transverse periodicity of the lattice, provides a simple
expression, Eq. (17), for the elements of the transition matrix.] Knowing Tj;, the
elements of the transfer matrix U, Eq. (10), can be evaluated. The explicit evaluation
of these components is more conveniently carried out in an alternative (spherical)
guided wave basis

$u(r) = jm(xo7) Yrmn (6, 6) (18)

where jn, is the spherical Bessel function and Y, are the spherical harmonics. The
details of these calculations will be presented in a subsequent report, together with the
solution to the "emission" problem (see Section 2).
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B. RESONANCES IN X-RAY PHONON INTERACTIONS IN CRYSTALS
Professor H.J. Juretschke

Unit FP8-2

1. OBJECTIVE(S)

The development of a dynamical theory of x-ray phonon interactions that is
adequate for proper treatment of these interactions under conditions where the
conventional description leads to singularities. It is expected that these singularities
are indicative of resonances. Therefore, a second objective is the study of the role of
these resonances in enhancing the coupling to a level of practical experimentation on
the interaction of x-rays with IR-laser induced polaritons. A third objective is the
optimization of the nonresonant background coupling of such interaction by proper
choice of the host crystal, and the TR frequency, as well as the x-ray diffraction planes.

2. SUMMARY OF RECENT PROGRESS

The work on this program has progressed in a number of directions. Some of
these concern consequences or completion of earlier results, others deal with the
initial work on the new phase that followed from the recent proposal as given above.

In brief, two new papers deal with special applications of the approximate theory
of x-ray propagation near n-beam points, showing, in one case, that the influence of
n-beam points is pervasive, and cannot be ignored in high precision work, and in the
second, that the interpretation of asymmetries in intensities in this region may have
more than one origin. An experimental program on verifying some of the further
consequences of this theory was carried out at Brookhaven this summer, and, while
the copious results remain to be studied in detail, they seem to have revealed features
which have not been observed so far. The new program has been initiated by
developing a degenerate perturbation theory applicable to the x-ray problem, and by
testing it out on the earlier theories of x-ray coupling; and also by organizing a
computer program for a systematic survey of likely strong x-ray polariton
configurations.




3. STATE OF THE ART AND PROGRESS DETAILS

The areas mentioned in Section 2 above are reviewed here in more detail.

1) A study of the influences of n-beam interactions on the precision determination
of 2-beam structure factors has been published [1]. This work called attention to the
" almost universal need of n-beam corrections whenever one wants to determine
structure factors to an accuracy better than one part in 10, Long-range influences of
this order of magnitude exist everywhere in diffraction space, and must be taken into
account when interpreting the data, especially when these are to be compared with
theoretical models or predictions. In order for such correction to be successful,
however, it is essential that experimental results are accompanied by specifying their
complete embedding in reciprocal space. This is needed to identify the pertinent
leading correction terms, which can then be applied from previous, standard accuracy,
knowledge of the parameters of these n-beam interaction points.

2) A detailed theoretical analysis of some new experimental data on the special
case of the interaction of a strong primary beam with weak secondary beams has
shown that the theoretical formulation published earlier [2] is in quantitative
agreement with the experimental results. This is the first case in which the effect of
the modification of absorption in the neighborhood of an n-beam interaction leads to
important corrections of the usual interpretation of the asymmetry of the integrated
intensity in the neighborhood of the n-beam point. A paper on this work has been
accepted for publication in Acta. Cryst. A [3].

3) This past summer, in collaboration with N. Alexandropoulos (Visiting Research
Professor at the Polytechnic, permanent position at the University of Ioannina,
Greece ), an experimental test was undertaken in order to investigate the recent
prediction [4] of the differences in the intensity asymmetries near an n-beam point
shown by x-rays of differing polarization. This work was carried out on a beam line at
the Brookhaven synchrotron, with the diffractometer positioned in such a way that the
silicon crystal saw either o- or w-polarized incident radiation. In fact, the resolution of
the n-beam was such that it was impossible to obtain integrated intensities
experimentally by direct measurement. These have to be evaluated by integration over
the rocking curve, determined with a second of arc resolution. As a consequence, we
also obtained detailed results for rocking curves in the neighborhood of the n-beam
point; they showed occasional anomalies that had been anticipated (4), but whose full
physical interpretation remains to be understood. The more than 800 experimental
scans obtained in the period of a few weeks will begin to be analyzed systematically in
the near future.

4) Work has begun on extending the second order perturbation theory for
describing x-rays near an n-beam point developed earlier [6] into the most interesting
region where this problem becomes degenerate, so that the solutions obtained so far
diverge. This will be used as a trial problem in which to explore the usefulness of the




techniques that are to be applied also to the problem of resonances (degeneracies ) in
the x-ray-phonon interaction, the major topic of the current proposal. It has already
been shown by the results so far that, other than in a few exceptional cases, the
general methods of degenerate perturbation theory can also be formulated such as to
be applicable to the interactions of interest here. In their own right, the results have
led to a new formulation of the problem originally discussed a few years ago [7]; this
formulation can be characterized as the optimal effective two-beam representation of
the n-beam problem. The implications of this approach, especially relative to various
outstanding issues concerning practical applications of the n-beam region, are being
explored intensively at present.

5) A general computer program is being developed for allowing a systematic
survey of the nonlinear x-ray-polariton response in various polar materials, over a
range of wavelengths, and for selected diffraction conditions. This survey is one of the
fundamental needs in developing a proposal for a concrete experiment demonstrating
the dynamical interaction of lasers with x-rays.
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C. NON-EQUILIBRIUM EM WAVE-COOPER PAIR INTERACTION
IN HIGH T¢ SUPERCONDUCTORS

Professors E. Wolf, P. Riseborough and E. Kunhardt

Unit FP8-3

1. OBJECTIVE(S)

This work seeks to determine the characteristic times for relaxation processes in
cuprate superconductors. Comparison of such times and the relevant temperature
dependence with theory is likely to constrain the possible mechanisms for pairing in
these materials, and provide a different means of determining certain parameters of
the superconducting state. For example, the temperature dependence of the
quasiparticle recombination time provides a means of determining the energy gap
parameter, for which the most obvious methods, infrared optical absorption and
electron tunneling, have provided conflicting results.

2. SUMMARY OF RECENT PROGRESS

Progress has been made toward fabricating thin film samples of the RBa,Cu; O,
compounds, where R is Dy and Sm, by thermal coevaporation of R, BaF,, and Cu.
Three rate controllers and an additional quartz microbalance have been installed in a
diffusion pumped evaporator with base pressure of 10”7 Torr. The additional thickness
monitor, mounted on the lower surface of a shutter, is found necessary to normalize
the rates of deposition on the substrate from the three separate sources. Oxygen is
introduced in the region of the MgO or SrTiO; substrates, at a local pressure in the
0.1 to 1.0 Torr range with the chamber pressure in the 10° range. Rutherford
Backscattering (RBS) measurement of the composition of a typical film after oxygen
anneal at 850°C showed deficiency of Cu and also showed a decrease in oxygen
concentration from the outer surface of the film toward the substrate interface. The
reason for weak Cu incorporation is not known with certainty, but may arise in part
from the tendency of Cu evaporated films, used to calibrate the thickness monitors, to
condense at less than bulk density. We have also made Auger Spectroscopy
measurements on the films, in rough agreement with the RBS results.

A commercial helium refrigerator, capable of reaching 10°K with optical windows
and fast electrical and microwave coaxial line access has been purchased [1].

3. STATE OF THE ART AND PROGRESS DETAILS

Optically generated quasiparticles can be detected by use of a biased quasiparticle
tunnel junction. However, little progress has been achieved toward fabricating




reliable quasiparticle junctions on the cuprate superconductors. Effort has been
directed toward the alternative use of Sharvin type metal microcontacts of gold or
silver to determine the energy gap of the material {2]. In this case, a nominal 100
Angstrom layer of the metal is evaporated onto the cuprate superconductor, and a
mild heat treatment in oxygen performed. This proposal is based on the success of
annealed gold and silver deposits in making excellent Ohmic contacts to the cuprate
superconductors [3] and the conceptual singularity to Proximity Tunneling
Spectroscopy methods which are also based on Andreev scattering [4]. A small
cryogenic scanning tunneling microscope is being used to test the properties of such
microcontacts.

On the theoretical side, the nonequilibrium properties of the high T,
superconducting materials pose a difficult challenge. The difficulty stems from the
dense nature and the strong interactions between the quasi-particles, thereby
invalidating the assumptions necessary for the usual Boltzmann equation approach to
apply [5]. This problem is exacerbated by the very nature of the underlying electronic
states being poorly defined, in that the effects of the Coulomb correlations are strong
and cannot be included by standard manybody techniques. Therefore, it has been
decided to find an expansion parameter other than the strength of the Coulomb
interaction. One alternative parameter is N, the degeneracy of the d orbitals of the
Cu atom. A boson version of this expansion has been previoulsy formulated [6-9]. We
have shown that the effects of the Coulomb interaction may be organized in powers of
1/N. To lowest order in 1/N, we obtain a soluble two band mean field theory which
retains the full periodic translational invariance of the underlying lattice. The non-
trivial effects of the Coulomb correlations and fluctuations first occur to order 1/N.

This level of approximation is also tractable. We have shown that this
approximation satisfies Luttinger’s theorem [10] and is also periodic translationally
invariant. We have calculated the electronic Green’s function to order 1/N which
yields both the one electron density of states and the associated lifetimes of these
states. Knowledge of these quantities is sufficient to calculate rates for non-
equilibrium processes from the standard Boltzmann approach. However preliminary
calculations show that such an approach would lead to spurious results. In fact, using
Ward identities we have shown that transport processes when calculated correctly to
order of less than 1/N? must vanish identically. This cancellation is a specific case of
a general result due to Peierls [11] concerning steady state flows. We intend to
calculate the 1/N? contribution to the self energy which on utilizing Ward identities
[12,13] will directly provide us with the frequency dependent conductivity, or the
optical response of these systems. In order to obtain finite results, it is necessary to
include the Umklapp processes due to the underlying lattice structure.

The calculation of the order 1/N? terms is also necessary in order to estimate the
possible convergence or asymptotic nature of the expansion.
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