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ABSTRACT

The engineering methodology for producing a fully tested VLSI chip from a design
lavout is presented. A 16-bit correlator, NPS CORNSS, that was previously designed,
was used as a vehicle to to demonstrate this methodology. The study of the design and
simulation tools, MAGIC and MOSSIM I, was the focus of the design and validation
process. The design was then implemented and the chip was fabricated by MOSIS.

This fabricated chip was then used to develop a testing methodology for using the
digital test facilities at NPS. NPS CORNSS8 was the first full custom VLSI chip, de-
signed at NPS. to be tested with the NPS digital analysis system, Tektronix DAS 9100
series tester. The capabilities and limitations of these test facilities are cxamined within
this thesis. NPS CORNSS test results are included to demonstrate the capabilities of the
digital test system. A translator, MOS2DAS, was developed to convert the MOSSIM
IT simulation program to the input files required by the DAS 9100 device verification
software, 91DVS. Finally, a tutorial for using the digital test facilities, including the
DAS 9100 and associated support equipments, is included as an appendix.
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I. INTRODUCTION

A. BACKGROUND

“For the past 20 vears chip complexity and thus the functional capability of a single
integrated circuit (IC) have roughlyv doubled every vear.” [Ref. 1,p. 1]. Chip development
has progressed from the small scale integration (SSI) to that of the very large scale in-
tegrated (VLSI) circuit. Current technology considers a VLSI chip to contain more than
100,000 gates and transistors. As advances have been made in the manufacturing process
and composition materials, the chip density has become greater and the chips operate
at a faster rate. This growth in more devices per unit area and complexity of VLSI cir-
cuits has required that the testing and validation process of these chips become more
sophisticated.  Most custom VLSI chips that are developed are produced for a specitic
purpose and are referred to as application specific integrated circuits (ASICs). For each
of these full custom chips a methodology must be used to implement and validate the
design, functionallv test the completed cell before manufacture, and comprehensive
tesung of the VLSI chip after it returns from the manufacture’s foundry. Again. due to
the complexity of the circuits this methodology is often driven by the computer tools
that are available to assist the circuit designer and test engineer. Computer-aided design
{CAD) computer-aided testing (CAT) and computer simulation routines have become
essential in the development of high performance VLSI chips.

CAD programs assist the VLSI chip designer in the physical lavout of the design
cireuitry.  These CAD programs help isolate the designer from the masking details. al-
fowing the design effort to concentrate on higher level development. [llustrating the
explosion of interest in the area of CAD development, a recent Computer Llesign 1Ssue
[Ref. 2], listed over 29 commercial vendors with 53 difTerent models of printed circuit
board CAD systems. The printed circuit board based CAD system uses a combination
of specially designed hardware and software to layout the design. At the Naval Post-
graduate School (NPS), the CAD lavout tools of MAGIC and GENESIL are imple-
mented in software.

MAGIC. developed at the University of California at Berkeley, is a research soft-
ware tool that is installed on the Digital Vax 780 1185 and three Integrated Solutions
Incorporated (1S1) work stations. It provides the circuit designer with an intcractive

lavout editing svstem for large-scale MOS custom integrated circuits and is discussed 1n




detail in [Ref. 3]. It allows the designer to engage in full custom VLSI design from the
transistor to the library cell level. Knowledge of silicon semiconductor technology is
required for various forms of transistor development but designs at the gate level and
higher are possible by using library cells that have already been designed. Once the cells
have been developed, or recalled from the cell library, MAGIC can assemble them hi-
erarchically into the required circuitry. It also provides a powerful router to establish the
connectivity between cells. One of the key advantages of using MAGIC is the feature
that is provided called design-rule checking. MAGIC maintains a continuous design-rule
check to ensure that the proper topology and layout parameters are maintained for the
technology (CMOS,NXMOS, PMOS) as well as the technology required by the foundry.
This design-rule check is updated incrementally during the design and if an error occurs
then that area of concern is highlighted by white dots. Magic does not offer any timing
or fault isolation simulation, but the MAGIC design file can be extracted and several
simulation tools can then be run to validate the design.

“The GENESIL Silicon Development System is a comprehensive turnkeyv design
automation svstem for creation of integrated circuits, NMOS or CMOS.” [Ref. 4].
GENESIL 1s a commercial CAD tool from Silicon Compiler Systems that also runs on
the VAN with an interface either a schematic capture graphics display terminal or from
its own graphics termunal. The user manual for the svstem [Ref. 4] stresses that the goal
of GENLESIL 1s to make IC design approachable to svstems designers who lack 1C de-
signer expertise.  To that end GENESIL is a menu driven interactive lavout editing
svstem that concentrates on high-level systems design. There are hundreds of complex
functional parts available in its libraryv of cells, and the designer selects the cells from
which to build and connects them together with the netlist of routing commands.

It is important to stress the difference between this method of assembling cells in
GENESIL contrasted to that of the MAGIC CAD tools. The GENESIL system de-
signer does not view or build the library cells below the gate level. No knowledge of
silicon semiconductor technology is required by the designer and there is no reason for
GENESIL to provide for design-rule checking because the library cells have already met
all design performance criteria. GENESIL also provides a design verification package
as part of its software package. Timing analysis, power requirement analysis, and au-
tomatic test generation allow the designer to functionally verify that the chip design is
sound. This is done entirely within the GENESIL system without interfacing with other
simulation software. This definitely speeds up the design and verification process of the

custom VLSI chip considerably. Decreasing the development time of the VLSI chip en-




courages the designer to experiment and optimize the circuit design. Once the design is
set and verified, GENESIL can translate the design to the geometric masking data used
by several different manufacturing foundries. From design concept to fabrication tool-
ing, GENESIL produces high performance custom ASIC designs. Three NPS graduate
thesis illustrate the robust features of the GENESIL silicon compiler. Settle examined
the design methodology of using the GENESIL silicon compiler by designing a pipeline
16-bit multiplier [Ref. 5]. Rocky implemented a Kalman Filter Algorithm as an ASIC
on GENESIL [Ref. 6]. Davidson examined testability strategy using GENESIL's fea-
tures on Automatic Test Generation (ATG) and the test latch library cell [Ref. 7]. Re-
viewing these thesis will provide a solid foundation for utilizing the GENESIL silicon
compiler.

MAGIC is the CAD tool used by N\PS students enrolled in VLSI course work and
was used for the development of NPS CORXNSS during this thesis research. It stresses
silicon senmuconductor technology and provides a greater insight into masking design and
lavout rules. But, verifving a MAGIC design requires that the circuit must be extracted
into a format that a computer simulation model will utilize. The three electrical circuit
simulation models that are widely used at NPS are MOSSIM 11, SPICE, and Register
Notational Language (RNL).

MOSSIM I1 is a logic simulator based on the switch-level logic model. It models a
MOS digital circuit as a network of nodes connected by transistor switches and can ac-
curately model such circuit structures as bi-directional pass transistors, ratioed and
complementary logic buses, dvnamic memory and charge sharing. MOSSIM 11, de-
scribed in detail in the user’'s manual [Ref. 8§ ], is designed primarily for simulating
clocked svstems where a clocking scheme consists of a set of state sequences to be ap-
plied cyclicallv to a set of nodes. Identifving the input forcing vectors and the outputs
to be watched, MOSSIM II will run the modeled circuit and produce the simulated
output results at each clock cvcle identified. Although MOSSIM II provides minimum
timing information, it can identify potential timing errors. Because MOSSIM I is based
on a switch-level model, it can handle large-scale sequential and combinational logic
design projects relatively quickly, but it can not be used on analog designs.

Another digital circuit simulator, RNL, is a timing simulator for digital MOS cir-
cuits. It is an event-driven simulator that uses a simple resistance and capacitance (RC)
model of the circuit to estimate node transistor time and to estimate the effects of charge
sharing. RN\L provides similar features to MOSSIM II which are outlined in the R\L

user manual [Rel. 9]. The user interface for the RNL simulation program is a version




of LISP. RNL appears to run as fast as MOSSIM II but it can not handle bi-directional
pass transistors. It also can only be used to simulate digital circuitry and can not be used
on analog circuitry.

SPICE simulation is based on the numerical solution of the network’s differential
equations. After the MAGIC file is extracted, each transistor, resistor, and capacitor is
modeled. Detailed instructions on using SPICE are included in users guide [Ref. 10] and
are applicable for analog and digital circuits. It is important to note that because SPICE
computes the differential equation for each transistor it is very slow and is practical for
only small circuits or in validating library cells. It does produce superior simulation
timing results, electrical parameters at all observed nodes, and statistical features that
allow the designer to examine in detail the complete operation of the circuit. For that
reason SPICE is valuable in validating individual leaf cells, but is seldom used on the
entire VLSI digital designs.

Once the final design has been functionally validated it must be packaged for the
manufacturing foundry. MOSIS is an a acronvm for MOS Implementation System and
acts as a clearing house facilitv to handle the details in manufacturing a chip. Coordi-
nated from the Information Sciences Institute of the University of Southern California
MOSIS ensures that the chip has correct syntax upon receipt of the lavout geometry and
delivers a sct of bonded and packaged chips to the user. This can be done at a very
reasonable cost because several different designs of the same silicon technology share the
same silicon wafer. The complete process from submitting the VLSI chip layout to the
delivery by MOSIS of the fabricated chip is outlined in the users manual [Ref. 11 ].

Once the VLSI chip has been manufactured and returned to NPS, the Tektronix
DAS 9100 series tester is used to test the fabricated chip. This stand-alone, digital anal-
vsis system can functionally verify that the VLSI chip meets the required performance
standards for various operational speeds. The user manual for the Tektronix DAS 9100
series tester {Ref. 12} details the pattern generation and data acquisition features. The
DAS 9100 tester at N\PS can also link to a personal computer (PC) and device verifica-
tion software (DVS). This configuration generates test patterns in vector format and
configures the Tektronix DAS 9100 tester to the device under test (DUT).

When designing a custom ASIC, it is extremely important for the design engineer
to take into consideration and understand all the tools that are available. The testing and
testability of a VLSI circuit must be considered in every phase of the chip development,
from the conceptual design phase of the circuit to the final functional validation of the

manufactured VLSI chip.




B. THESIS GOALS

This thesis will examine the methodology used to produce a VLSI chip from initial
design to final validation of the manufactured VLSI chip. concentrating on the testing
and testability issues. The development of a 16-bit correlator, NPS CORNSS, will be
followed throughout the phases to illustrate the process methodology.

Another goal of the thesis is the development of a program that will translate the
results of a Mossim I1 simulation program to that suitable for use in the Tektronix DAS
9100 series tester. An introduction for the new user to the Tektronix hardware test
equipment, and associated software features, will also be presented. A tutorial for the
digital test facilities at \PS is presented as Appendix A.

C. THESIS ORGANIZATION

Chapter Il provides the methodology for taking a design from the conceptual phase
to the completion of the VLSI chip. This will include: a functional overview of NPS
CORNSS, its design implementation in Magic, follow on simulation with the MOSSIM
Il simulator. and subsequent manufacturing by MOSIS. Chapter III will concentrate
on the TEKTRONIX DAS 9100 series tester and its operational capabilities. The test
results of the manufactured VLSI chip, NPS CORNSS, will also be examined and inter-
preted in this chapter. Chapter IV will present the development of the MOS2DAS
translator and other support softwarc. Chapter V summarizes the salient features of the
thesis and offers recommendations for improving VLSI chip testing at the Naval Post-
graduate School. Suggestions for future research are also presented. Appendix A con-
tains a tutorial for the TEKTRONIX DAS 9100 series tester and the NPS digital test
facilities. Appendix B contains the Fortran source program for the MOS2DAS translator
and supporting programs. Appendix C contains the source programs necessary for
generating multiple 16-bit MOSSIM 11 test vectors and calculating the expected results.




I. DESIGN IMPLEMENTATION

How does a VLSI chip designer advance from the design phase, through the devel-
opmental stage, to having the chip manufactured, using the facilities at NPS? What
methodology is considered at each of the major phases in this process? Figure 1 on page
7 illustrates this processing flow from design to receipt of the manufactured VLSI chip.
This chapter provides an overview of each of the major phases involved in the develop-
ment process. Discussion of each of these phases is augmented by following the devel-
opment of a 16-bit correlator, NPS CORNS8. Examples are provided to highlight the
methodology and salient features at each development phase. Testability issues at each
phase will be addressed within that phase. The understanding of each phase of devel-

opment will allow for a smooth transition between phases.

A. NPS CORNSS
1. Initial Design Methodology

A correlator takes a binary string from a data source and compares that string
with a reference binary string. The results of this are either an exact correlation, where
each digit of the data string matches that of a reference string, or some subset of that
exact correlation. Because of the many and varied applications that can be performed
by a correlator, NPS CORNSS was designed to be as general as possible and produces
the number of string matches as a binary coded decimal (BCD) output.

The initial iteration of this design effort [Ref. 13] was accomplished by Beck and
Galinas, students at NPS. Thev produced a functional, stand-alone, working prototype
of a correlator at the Magic architecture level. An additional design team composed of
Walt Corliss, Michael Roderick. Yong Ha Ko, and David Carleton, led by Professor
Chyan Yang. optimized the lavout of the design, added the pad frame and associated
routing, conducted additional testing. and submitted the finished design effort to MOSIS
for manufacturing.

Throughout this second design iteration the concerns of testability and testing
were addressed. Each individual cell (D flip flop, 2-1 multiplexer, full four bit adder, etc.)
of the optimized design was functionally tested using the MOSSIM II and SPICE sim-
ulators. After these cells were assembled into the correlator, as illustrated in Figure 2
on page 9 by a Coordinate Free Lap (CFL) program, the completed design was divided

into two sections for further testing. the sequential and combinational logic sections.
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After successfully testing each of these sections the entire design was tested by forcing
every possible 16-bit data string combination available onto the parallel input pins.
Because of the large number of 16-bit vectors that had to be generated, a C language
program was written to generate 65,536 (2'%) different vectors. Another program was
written to calculate the output for each input vector. A C-Shell program was used to run
the MOSSIM Il simulation with this exhaustive list of vectors and compare the
correlator outputs to that of the calculated outputs. The source code for these programs
are listed in Appendix C. After the successful completion of this exhaustive test, the
design and simulation program were considered validated.
2. Functional Description

As discussed previously, NPS CORNSS8 is a 16-bit correlator that compares a
data binary string with that of a reference string and outputs the BCD number of
matches. As illustrated in Figure 2 on page 9, the correlator can be divided into the
combinational and sequential logic sections.

The sequential logic area consists of four 16-bit register banks and various
control signals. Table I on page 10 is a summary of the input and control pins that are
contained in this section. Each of the four 16-bit register banks are identical and hold
data, reference. masking and test binary string information. The register bank consists
of 16 “D” flip flops controlled for either serial or parallel input by a 2-1 multiplexer and
the serial parallel control (SPCON) line. In the parallel load mode the data string is
loaded into the register bank that is selected by that control line. The active control line
allows the clock to toggle the input into the register and inhibits the other registers. In
the serial data mode the register banks can be loaded either one at a time or simultane-
ously. If the serial control line is selected and the associated control line is activated, the
data on the input serial line to each register bank is passed. The serial string is rippled
from one bit to the next bit in the register bank at the falling edge of the clock. If de-
sired. the output control line (OUTCON) can be active every 16 clock cvcles to gate the
output and synchronize the serial data stream. A listing of the correlator output pins is
included in Table 2 on page 10.

After the register banks are loaded, the correlation process takes place at each
clock cycle. The exclusive nor (XNOR) circuitry compares each bit of the data register
bank and the reference register bank and if a match is obtained a "1’ is present. The
mask register allows the user to select the bits to be compared bv blocking the output

of the XNOR circuitry. If the mask register is loaded with all '1's all compared bits from
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Table 1. NPS CORNSS8 INPUT PINS

NAME DESCRIPTION

In 1-16 Parallel input pins

SPCON Serial or parallel load

DATACON Controls DATA register bank

MASKCON Controls the MASK register bank

REFCON Controls the REFERENCE register bank

OUTCON Toggles the output

CLOCK Controls the timing of the chip

SDATIN Serial data for DATA register bank

SMSKIN Serial data for MASK register bank

SREFIN Serial data for REFERENCE register bank

TSTCON Allows the XNOR circuitry to enter the TEST register
bank

PADIN Test signal to check operation of the input pad

VCC Power connection to the chip

GX\D Ground connection to the chip

Table 2.  NPS CORNSS8 OUTPUT PINS

Name Description

OUT I-5 Output coded decimal pins

SDATOUT Serial output from DATA register bank

STSTOUT Serial output from the TEST register bank
SREFOUT Serial output from REFERENCE register bank
SMSKOUT Serial output from the MASK register bank
BMSBOUT Output of the most significant bit into the first adder

the XNOR circuitry will be passed to the input of the combiner. Table 3 on page 11,

for both binary values columns, illustrates the results with the masking feature disabled.

If certain bits are not to be included in the corrclation process then those bits
can be masked by the mask register. With the mask register set to "1 for the bits to be

compared and ‘0" for the remaining bits, the circuitry will pass to the combiner the

number of matches from the compared bits plus the number of ‘'0’s in the remaining bits.

Table 4 on page 11 column A illustrates that the masking value of ‘00 11111111111111°
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Table 3. CORRELATOR RESULTS (NO MASKING)

REGISTER BINARY VALUES A BINARY VALUES B
DATA REG IN ISERRIRRRERRIREY 0000000011111111
REF REG IN IRRRRRRRERRRRARD 1Tt
MASK REG IN ISURORRRRRR NIRRT I
XNOR REG OUT Tl 000000001 11111T11
(?LC'II') OUT.DIGITAL 10000:16 01000.08

will compare bits 3-16 for matches, and that number of matches plus the first two bits
will give the number of 'I's passed to the combiner. This method of implementing a
masking scheme was chosen because, no matter how manyv bits to be compared, if the
bits chosen match perfectly then the output will be a BCD "10000°, or the decimal
equivalent of 16. This allows the designer to check the output pin OUTS5 to determine
if a complete correlation is obtained, no matter how many bits were masked. Table 4

column B demonstrates this feature.

Table 4. CORRELATOR RESULTS (WITH MASKING)

REGISTER BINARY VALUES A BINARY VALUES B
DATA REG IN 000000001 1111111 0000000011111111
REF REG IN |SRRERRRERRARRN R |RERRSRREDRRERR!
MASK REG IN OOLTITEETLLLNLL 00000000 1111111
XNOR REG OUT 0000000011111111 0000000011111111
BCD OUT DIGITAL 010108 1000016

ouT

It 1s important to note that each bit of the correlator is treated the same; that
is, the position of the bit is irrelevant. Serial output lines from each register bank allow
for expansion of the correlator. With the addition of an external adder, two correlators
can be combined and a 32-bit correlation process is possible from either serial or parallel
input data. The test register bank in this section was included to improve testability and

will be discussed in the next section on testability issues.
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The combinational logic section contains combiner and adder circuits. The
combiner is four identical logic circuits that each convert a four input signal from the
XNOR circuitry to three outputs that represent a BCD number. For example, if the four
input lines to the combiner where all ‘I’s, then the three lines out of the combiner would
be "100" or the decimal representation of four. The outputs of the combiners are then
processed by the adder circuitry. This network is composed of three 4-bit full adders.
In the first set of two full adders, each adder adds the three outputs from two of the
combiners and produces a 4-bit result of the number of "I's on the input lines. The
carry-in and the most significant bit to each of these two adders are set to "0". The final
adder adds the results from the previous set of adders. The final result is the five output
lines which includes the carrv-out pin. If the data stream matches the reference stream
and the mask register bank is set to all "1’s, the output from the last adder is "10000" or
the decimal equivalent of 16. When the output control line (OUTCON) is active the
outputs are presented at each clock cvcle.

3. Partitioning for Testability

The functionality of the design was validated by the MOSSIM II simulation
program. but the design oflered little observability within the circuit. The initial design
used 35 pins of a 40 pin pad {rame package leaving five pins to access the internals of
the chip for possible fault isolation. Although other VLSI chips have been manufactured
for NPS by MOSIS, this was the first chip that would be tested upon return. With that
in mind 1t was decided that adding complex circuitry to conduct insitu testing or adding
redundant features was increasing the risk of producing a faulty VLSI chip. However,
a test register was added to partition the combinational section from the sequential sec-
tion. When the test control line (TSTCON) is raised, the input to the combiner {from the
XNOR circuitry is fed to the test register bank. The output of the register bank is then
clocked out serially and read from the corresponding serial output. This allows for
observability of the critical interface between these two sections. An input pad
(PADIXN) and an output pad (PADOUT) were connected without additional circuitry to
validate the pad frame characteristics. The remaining pin was taken from the most sig-
nificant input bit of the adder to check the output of the combiner. This partitioning
of the design, while not elegant, significantly increased the observability of the manu-

factured chip.
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B. MAGIC LAYOUT SYSTEM
MAGIC is an interactive lavout editing svstem that was developed at the University
of California at Berkelev for the design implementation of custom VLSI circuits. At
NPS it allows the circuit designer, using a mouse and either the Advanced Electronic
Device (AED) or one of three Integrated Solutions Incorporated (ISI) work stations, to
lavout circuits from the transistor device level to a full custom VLSI circuit. If transistor
level design is required then knowledge of silicon semiconductor theory is a prerequisite.
The goal of MAGIC “... is to increase the power and flexibility of the layout editor, so
designs can be entered quickly and modified easilv.” [Ref. 14 ,p. 20]. Additional goals
for an efficient routing capability, short turnaround time for small bug fixes and allowing
the designer the ability to rearrange a cell in order to trv out a different topology were
also considered by the designers of MAGIC. Along with these layvout goals a design-rule
checking procedure to incrementally check a circuit for proper lavout during the circuit
creation was developed. This section will not attempt to provide the details that a de-
signer must know to produce a design lavout in MAGIC. The topographical lavout
procedurcs are described in detail in the nine tutonals provided in the MAGIC user’s
manual [Ref. 3]. An overview of silicon senuconductor technology, selected lavout fea-
tures of MAGIC, and an examination of the design-rule checking process will be dis-
cussed in this section.
1. Silicon Semiconductor Technology Overview
“A metal-oxide-silicon (MOS) structure is created by supcrimposing several
lavers of conducting. insulating and transistor forming materials.” {Ref. 15.p. 3]
Figure 3 on page 14 is the palette of materials that can be combined in MAGIC to
construct a VLSI circuit. The principle transistor building blocks are the ndifl, pdifl. and
polvsilicon materials. The ndiff material is negativelv doped silicon that is rich in
electrons and superimposing this material with polvsilicon is interpreted by MAGIC as
a nMOS transistor. A pMOS transistor is created by overlaying the polysilicon with a
positively doped silicon or pdiff material. The technology that embraces both nMOS and
pMOS technologies is called Complementary MOS (CMOS). MAGIC allows imple-
mentation of both nMOS and scaleable CMOS (SCMOS). SCMOS is CMOS technol-
ogyv that can scale the physical dimensions of the completed design prior to chip
fabrication. CMOS was selected to produce NPS CORNSS because of its almost zero
static power dissipation, its rise and fall transition times are of the same order, and

transmission gates can be cascaded in CMOS but not in nMOS.
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Figure 3. MAGIC Mlaterials Palette

MAGIC layout is based on the Mead-Conway styvle of design which simplifies
design rules and circuit structures. These simplified design rules are possible because only
designs whose edges are vertical or horizontal are allowed. This design restriction sac-
rifices some chip density, but it is compensated for by reducing design time. An exam-
ination of a CMOS inverter, from the functional schematic to the MAGIC graphical
lavout represented in Figure 4 on page 15, will illustrate the basic fundamentals required
in building a CMOS circuit.

The CMOS inverter is composed of an nMOS transistor and a pMOS transistor.
These transistors are often referred to a N-switch and P-switch, respectively, because
that 1s their basic function in a digital circuit application. A ‘0" closes a P-switch and a
‘1" closes the N-switch. In the CMOS inverter the P-switch is located on top and con-
nected directly to Vdd. When a ‘0" is applied to the gate of the P- switch then the switch
closes and Vdd is switched to the output. The 0 is also applied to the N-switch at the

same time and the N-switch is turned off. When a 1" is on the input of the N- switch

14




INFUT

CJTPUT

INFUT

L
|

1
Grounc

Figure 4.

the switch 1s closed and ground is passed to the output.

MAGIC Layout of a CMOS Inverter

The P-switch with a '1” on the

input is turned off. In the MAGIC design of the inverter the interactive editor interprets

the ndiff or pdiff over-laid on the polvsilicon as a nMOS or pMOS transistor. respec-

tivelv. An alternative to painting ndiff or pdiff material over polysilicon is to use the

nfet or pfet paint from the palette to create the appropriate transistor. Besides the two

transistors in the inverter, Figure 4 shows the metall runs of Vdd and ground. The Vdd

is physically connected to the pdiff material with a contact called pdiffcontact or pdc.

Converselv the ground conncction to the n-diff matenal is called ndiffcontact or ndec.

When the MAGIC design is readied for fabrication, and a CIF file is generated. the

MAGIC program will cut a connection square in the mask to allow for the phyvsical




joining of the materials. The other two contacts that are associated with the inverter
located on the Vdd and ground metall runs are the substrate contacts. Theyv are used to
maintain proper substrate voltages and to prevent latch-up. The Nncontact or nnc is
to provide Vdd to the n-well around the p-transistors, and Ppcontact or ppc provides
ground to the p-well around the nMOS transistors.

Latch-up is a CMOS circuit parasitic feature that results in the shorting of Vdd
and ground lines together because of the inclusion of both nMOS and pMOS. In the
inverter example listed latch-up could occur during the transition of the input waveform.
There is a remote possibility that both the pMOS and nMOS transistors are conducting
at the same time channeling the Vdd directly to ground. Although this could occur for
only a fraction of second it can damage the circuit over an extended period of time. Al-
though fabrication processes have virtually eliminated latch-up problems the following
design rules from Weste [Ref. 15, p. 59] further reduce the possibility of latch-up occur-
ring.

e Every well must have a substrate contact of the appropriate type.

e Lvery substrate contact should be connected by metal directly to a supply pad
(1.e.. no diffusion or polysilicon underpasses in the supply rails).

® Place substrate contacts as close as possible to the source connection of transis-
tors connected to the supply rails (i.e.. Vss n-devices, Vdd p-devices). A very
conservative rule would place one substrate contact for every supply connection.

® Place a substrate contact per 5-10 logic transistors.

® Lav out n- and p-transistors with packing of n-devices towards Vss and packing
of p-devices towards Vdd. Avoid convoluted structures that intertwine n- and
p-devices in checkerboard stvles.

In the construction of a MAGIC cell the assembly of the materials, contacts,
and routing must meet physical topographical rules. As an example of a simple size rule
1s that Metall width must be at least 3 units wide. The entire set of topological lavout
rules are checked by the design-rule checking algorithm and will be discussed in a latter
section.

Additional knowledge of silicon semiconductor technology is required, when
designing a VLSI circuit, to determine the timing and switching characteristics, various
capacitance parasitics, power requirements and physical size of the actual devices. Based
on the size of the device, for example, the length and width of the transistor, MAGIC
includes the resistance and capacitances associated with that component in the extracted

output. The actual mask in CIF format that is transferred to the foundry dees not in-
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clude these capacitances and internal resistances. These capacitances and resistances are
not included because they will be realized in the manufacturing process. will be realized
in the manufacturing process. These lumped capacitances and resistances allow for re-
alistic simulation of the MAGIC design.

An example of the level of silicon semiconductor technology that is required can
be shown by examining the is the previously mentioned inverter. The gain, beta, of a

transistor is computed by:

-4 %]

where u is the effective surface mobility of the electrons in the channel, ¢ is the
permittivity of the gate insulator, T, 1s the thickness of the gate insulator, W is the
width of the channel, and L is the length of the channel [Ref. 15,p. 40]. The %ﬁ- is also
called the processing gain of the material. Because the processing gain of n-diff material
is twice that of p-diff material, u,=2u,, the gain of a similar size nMOS transistor is
twice that of a pMOS transistor. Therefore, the width of the pdiff channel must be twice
that of the ndiff channel to provide for the same theoretical gain. The rise and fall time
for the inverter is also dependent on gain and will also be matched if the ratio of width
of the pdiff material is twice the width of the ndiff material, Wp=2Wn. Figure 4 on
page 135 illustrates that ratio of widths between the pdiff and ndiff materials. The details
of determining associated capacitances, power consumption, distributed
resistance capacitance effects and various other silicon technology concerns are pre-
sented in Weste [Ref. 15] and should not be a concern for the beginning digital VLSI
designer.

Once the basic descriptions for the P-switch and the N-switch are understood.
these switches can be combined in a variety of different configurations to produce nu-
merous sequential and combinational logic circuit designs. If the circuit design can be
realized in a Karnaugh map, then these switches along with a complementary switch or
pass gate can be combined to realize that circuit within MAGIC.

2. MAGIC Layout Features
a. Invoking Commands
As previously addressed, there are nine MAGIC tutorials in the users man-
ual [Ref. 3] to acquaint the new user with the capabilities of MAGIC. Commands can

be invoked in MAGIC in three different wayvs: mouse, macro and command lines. The
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box and cursor are the principle focal points on the graphics display to manipulate items.
The cursor is used to select an item and is in the form of a cross hair. The box is usuallyv
defined by the mouse’s left and right buttons setting the left lower and upper right cor-
ners of the box respectively. After the box is made it can be relocated to anyv position
by moving the cursor to the position desired and pressing the right mouse button. The
center button on the mouse is used to “paint” the box the color taht the cursor is
touching. To “paint” is to lay materials, as defined in the palette illustrated in Figure 3
on page 14, into an area bounded by the box.

A macro is another way to control the graphics display and uses previously
defined single keystroke commands. An example of a macro is typing the letter "a”,
which will select an item that is enclosed in the box. Macros can also be user defined
to perform repetitive commands.

The third method of invoking MAGIC commands is through the command
line. The command line is entered by starting the command with “.” or " and then
proceeding with the command. An example of this tvpe of command is “:quit” which
exits the MAGIC editor.

b. Basic Magic Tools

There are three basic tools that can be utilized in the MAGIC lavout editor;
box, wiring and netlist. The desired tool can be selected by pressing the space bar at the
“>" prompt on the editor screen. Because of its utility, the tool that the MAGIC editor
defaults to is the box tool.

The box tool is by far the most useful tool within MAGIC to lavout leaf
cells. Using the box and cursor positions as defined by the mouse. leaf cells can be
“painted” from the transistor level to the most complicated of circuits. The inverter in
Figure 4 on page 15 was “painted” while in the box tool utilitv. This “paint” feature and
the ability to label various nodes enable the designer to construct a leaf cell. Within the
box tool utility a leaf cell can be copied, reoriented. moved, labeled, and modified based
on which commands are invoked. The power of this utility is evidenced by the fact that
all NPS CORNSS leaf cells were laid out in this box utilitv. This utility is also useful in
the hierarchical assembly of larger circuit designs by using the “:getcell” command. This
allows several cells to viewed and manipulated on the graphics terminal in order to
produce a much larger cell.

The wiring tool provides an alternative method for manipulation “paint”
and is used for wiring, plowing and defining arrays. The wiring capability is just what

its name implies. It provides a way to select the wire to be connected with the left mouse
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button and that wire will be extended to the cursor position when the right mouse but-
ton is pressed. The wiring tool also allows cells to copied in the “x” and "v” directions
into an array of identical cells. This provides an easier way to duplicate leaf cells than
was available in the box tool. The plow feature is interesting because it is used to stretch
or compact cells. If it is used to compact cells it will vield the smallest possible
topographical area for the cell within the design-rule limitations.

The third and final tool utility is the netlist tool. This tool makes use of
MAGIC’s automatic routing feature to make connections betweer previously defined
leaf cells. A limitation of this router is that it only works between cells and not between
pieces of a layout and a cell. Power and ground lines have to run to the initial cells by
hand because the automatic router can not handle these cases. This automatic routing
feature is useful when making a large number of interconnections between cells. If this
feature is 1o be taken advantage of, all connections must abut the edge of the cells. A
netlist is 2 menu driven file that describes the set of connections to make between cells.
Once the netlist file has been completed the cells are automatically routed by invoking
the command ":route”. This tool is useful because it will route to avoid obstacles in the
routing path and take the most direct path possible.

3. MAGIC External Interfaces
a. Circuit Extraction

The MAGIC extractor can be used on a single cell or a hierarchical design
of many leaf cells. It converts the design lavout into transistor sizes and shapes. It also
recognizes nodal resistances and capacitance within the lavout and includes those values
in the .ext file. The extractor is relativelv fast because if it is extracting a high level hi-
erarchical design it needs only to extract those cells that have been modified and not the
entire hierarchical design.

Once this design is extracted bv issuing the command “.ext”, the ext2sim
program is used to convert this file into a .sim file. This .sim file is then used as the data
file for the sim2ntk program and that .ntk file is then used as an input for MOSSIM 11.

b. Caltech Intermediate Form (CIF)| Calma Stream Format

CIF and Calma are standard layout description languages used to transfer
mask-level lavouts between organizations and design tools. CIF is the best known layv-
out language in the academic community and Calma holds that distinction for the in-
dustrial community. Magic can produce either form of these output files.

CIF is invoked by issuing the ".cif” command when selecting the cell. At
NPS, the CIF file is primarily used as an interface between MAGIC and the Hewlett
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Packard 7586B plotter for output of hard copy of the MAGIC lavout. CIF is also used
to transport the MAGIC file to MOSIS for fabrication.
4. Design-Rule Checking

One of the most important features of MAGIC is the ability to incrementally
check for design-rule violations during the lavout phase of the design. Each of the tech-
nologies available in MAGIC has their own design-rules that reside in the technology
file, and are primarily used when setting up the MAGIC file for fabrication. During the
design layout MAGIC checks for design rule violations and, if any occur, it will display
little white dots in the vicinity of the error. Because the editor checks for the design-rule
violations incrementally when the layout is complete there is no reason to recheck the
entire design. The design-rule checking feature is applicable to single cell lavouts as well
as larger hierarchical design lavouts.

a. Single Cell Layouts

When laying out a leaf cell in MAGIC there are three basic sets of rules that
the design-rule checker uses; width, spacing, and overlap [Ref. 3,pp. 255-262]). Know-
ledge of these rules is paramount in order to efficiently layout materials. These lavout
materials are listed as tile types and their abbreviations are listed in Table 5 on page
21. The design-rules for CMOS technology are summarized in Table 6 on page 21 and
Table 7 on page 21. The width rule requires that any material or tile tvpes contained
in Table 5 on page 21 must meet or exceed the width specified in Table 6 on page 21
in both the "x” and "yv” directions. The unit of measurement is a lambda unit and that
can be converted to microns if the fabrication technology is known. NPS CORNSS used
3 micron technology for every 1.5 lambda units. For example, if a minimum width of 2
lambda units was used, that fabricated width would be 4 microns.

The spacing rules in Table 7 on page 21 are a little more complicated. The
actual spacing between materials is computed by the Manhattan distance. If the points
are aligned either vertically or horizontally, then the spacing is between adjacent points.
For objects not horizontally or vertically aligned, the distance is the length of the longest
side of the right triangle forming the diagonal between the points. Figure 5 on page 22
illustrates the Manhattan distance and how it is measured. The final column in Table 7
on page 21 indicates whether touching is “ok” or “illegal”. If “touching_ok” is indicated
then the materials must be either immediately adjacent or separated by the distance
stated. If "touching_illegal” is indicated then that eliminates the provisions of materials
to be immediately adjacent. “Touching_illegal” also checks the different lavers or planes
and will report those violations.
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Table 5. ABBREVIATIONS FOR SETS OF TILE TYPES
#define allDif diff.dme.be.efet.dfet.dcap
#define allPolyv polv.pmc.be.efet.dfet.dcap
z=define tran efet.dfet
=define contact pmc.dmc
z=define allMetal metal.pmec.dmc.glass
=define allpdTypes s.diff.polyv.dmec.pmc.bc.dfet.dcap.efet

Table 6. DESIGN-RULE WIDTH REQUIREMENTS (IN LAMBDA UNITS)

width allDif 2 | Diffusion width must be at least 2

width dme 3 | Metal-diff contact width must be at least 4
width allPolv 2 | Polysilicon width must be ar least 2

width pmc 4 | Metal-poly contact width must be ar least 4
width bc 2 | Buried contact width must be at least 2
width eft 2| FErhancement FET width must be at least 2
width dfet 2 | Depletion FET width must be at least 2
width dcap 2 | Depletion capacitor width must be at least 2
width allMetal 3| Metal width must be at least 3




Table 7. DESIGN-RULE WIDTH REQUIREMENTS (IN LAMBDA UNITS)
spacing allDif allDif 3 | touching_ok

spacing allPoly allPoly 2 | touching_ok

spacing tran contact 1 | touching_illegal

spacing efet dfet,dcap 3 | touching_illegal

spacing allMetal allMetal 3 | touching_ok

spacing bc efet 3 | touching_illegal

The overlap rule requires that certain kinds of overlays between materials
be prohibited. Transistors can not overlap transistors of the same type. If dmc and pmc
materials are touching they must completely overlap each other. These overlap rules are
required for proper generation of the CIF generation and circuit extraction.

b. Hierarchical Layout Rules

There are three overall rules that govern the design-rule checker when it
applies to a hierarchical lavout, and each of these three rules must be satisfied inde-
pendentlv. A hierarchical layout is built from smaller cells and NPS CORNSS is an
example of a hierarchical lavout. Figure 6 on page 23 shows the cells involved in the
higher level design of NPS CORNSS8. These leaf cells were combined by a CFL program
and this combination process will be addressed in a later section. Figure 6 on page 23
shows that “regcell” is the "parent” for the five “children” below. “Regcell”is duplicated
in the "X” direction and stored in the parent cell "regbank”. The “children”, “regbank”
and “comadd” are then combined into the parent “chip”. This “parent” “child” relation-
ship must be understood to examine how design-rule techniques are applied to hierar-
chical lavouts.

The first design-rule when considering hierarchical lavouts is that the
“paint” in each cell must obey all design-rules by it self. The second rule involves the
interface between cells. This interface could create a design-rule error because abutting
connections could violate the design-rules. These errors will show up in the parent cell
at the interface between the two cells. The third error is that each array must be error
free by itself. If the adjoining cells interact to produce a design-rule error the violation

will be presented in the parent cell.
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Figure 6. NPS CORNSS Hierarchical Structure

With MAGIC design-rule features the chip designer can concentrate on the
chip design vice the myriad of design-rule details. 1f a design-rule error is discovered a
simple command “:drc why” will explain the difficulty.
5. MAGIC Layout of NPS CORNSS
NPS CORNSS was designed as a hierarchical lavout of several small cells as il-
lustrated in Figure 6. The cells are a combination of leaf cells from MAGIC’s library
of cells. For example, "CR_dat” leaf cell is a "D” flip flop and a multiplexer from the
library. These two cells were assembled, modified and routed so that they would prop-
erly interface with the cells adjoining, both horizontally and vertically. This procedure
was followed for the remaining subcells in the final chip assemblv. The use of librarv
cells not only saved design time but also ensured that those cells would function properly
because they had already been exhaustivelv tested before inclusion into the library.
As each leaf cell was completed that cell was functionally verified by using the

MOSSIM 11 and SPICE simulators. Once all the cells were laid out and functionally
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tested they were assembled into the completed chip with a CFL program. This allowed
for quick turnaround between the modification of a subcell and the assembly of a com-
pleted hierarchical chip lavout. The ability to construct a leaf cell and test it during the
incremental design process resulted in a final chip assembly that had only a few routing

and alignment errors between cells.

C. SIMULATION
1. Preparation for Simulation

Once the MAGIC file has been checked for mask lavout errors using the
design-rule feature in MAGIC, the file can be extracted for each cell in the hierarchical
design. The files that are produced in MAGIC and the paths to different simulation
routines are illustrated in Figure 7 on page 25. This extracted file contains the nodes
of the circuit and also includes total capacitance to ground, and a lumped resistance
calculation for each node. It further defines the lavout of transistors by tvpe and size.
The sim2ntk program sets up the file to be simulated, identifies the input pins and sets
the strength assigned to the transistors, either CMOS or nMOS. The commands re-
quired to convert the NPS CORNXSS lavout design contained in the “CR_chip.mag” file,
to the "CR_chip.ntk” file that is used in the MOSSIM II simulator, are included in
Figure 8 on page 26.

2. Background

MOSSIM II is a logic simulator based on switch-level logic that models the
MOS digital circuit as a network of nodes connected by transistor switches. Because of
this logic level modeling. MOSSIM II can handle large VLSI designs with long input
sequence vectors. The MOSSIM II program is written in Mainsail programing language
and using the network description language (NDL) the user can fully describe a network
to the simulator. If a design can be fully described in this manner, it does not have to
be laid out in MAGIC to be simulated. This feature was not used in the development
of NPS CORNSS and will not be discussed.

The MOSSIM II user’s manual [Ref. 8] provides all the details required to use
MOSSIM II. The actual commands that are involved in controlling the MOSSIM I
program will be detailed in Chapter 4 along with the development of the MOS2DAS
translator. An overview of MOSSIM Il functional capabilities will be discussed in this

section along with the applications that applied to the testing of NPS CORNSS.
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Figure 7. MAGIC to Simulation File Conversion Process

3. Overview of Capabilities

MOSSIM 11 capabilities can be examined by separating the source program into
two different sections, initialization and drive. Figure 9 on page 27 is the MOSSIM 11
program that was used to simulate NPS CORN3SS and will be used to illustrate the basic
structure of a MOSSIM II program. In the initialize area the file to be simulated is rcad,
and the clocking scheme. vector and watch assignments are defined. In Figure 9 on page
27 the file read 1s "CR_chip.ntk” and the clock is three phases, ‘010", with a node name
of “clk”. The vectors defined are “ins” for the 16 parallel input nodes, “control” for the
control lines, “select” to select a serial data input, “misc” to set up the serial parallel and
output control lines. and finallv “outs” to define the five output pins. The watch com-
mand identifies vectors and nodes of interest that need to be observed. The vectors
“outs” and “ins” and the node “clk” are “watched” in this program. Once the initialize
section is complete, the simulator is ready to start handling binary assignments to the
inputs.

The drive section of a MOSSIM II simulation program sets or forces the binaryv
values to the desired inputs and also sets the number of cvcles for the simulator to run.
A cycle is the completion of the one clock cvcle. The output values for the watch de-

fined nodes are observed after each cvcle or phase as specified. In this case the watch




Figure 8. MAGIC ”“.mag” File to ”.ntk” file Commands

command ” *” indicates that the outputs will be observed after every clock phase, or
three phases per cvcle. The program in Figure 9 on page 27 forces the parallel inputs to
the desired values and the values are then loaded into the respective register at the
trailing edge of the clock pulse. To prevent erroneous data at the output during this
register set up process, the output lines are disabled. Once all the registers are loaded.
the outputs are enabled and the vector “outs” contains the BCD representation of the
number of matches. The remaining program ripples an error bit into each bit of the data
register to venifv proper operation of the correlator. The output line reports the cycle
number and the nodes of interest. An “X” state is an undefined state and will occur at
a watched node if that part of the network has not been initialized or the node voltage
lies between the logic thresholds.

Additional features of the MOSSIM II simulator can be obtamed by setting
“switches” to turn on or off. Four of these switch positions are helpful in run time

testing of the circuits. These run time switches are summarized below [Ref. 8,p. 18]:

® Ternary--provides a rigorous test to discover possible timing errors. If a design
simulates successfullv in the ternary mode the circuit will function correctly for
those input sequences regardless of the actual switching and communications de-
lavs of the circuit. This switch must have a two phase, non-overlapping clocking
scheme as the design clock, and will fail for clock generators and edge triggered flip
flops. This switch can also determine race conditions within a circuit.

® Restore--checks for and reports unrestored CMOS logic levels.

¢ Explain--the simulator makes an attempt to diagnose the reason for the "x” state.
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>read CR_chip.ntk
Bl
1386 nodes, 2939 transistors, 0O blocks
3
>initialize
>clock clk:010
>vector ins inl in2 in3 in4 in5 in6 in7 inB8 in9 inl0
inll inl2 inl3 inl4 inl5 inlé6
>vector control dcon rcon xcon tstcon
Yvector select sref sdat sxnor
>vector misc spcon outcon
»vector outs out5 out4 out3d out2 outl
>watch /* outs
>watch /* ins clk
>
>comment load reference data
>force ins:1111111100000000
>force control:0100
>force select:000
>force misc:10
>cycle 1
1.1 outs:00000 ins:1111111100000000 clk:0
1.2| outs:00000 ins:1111111100000000 clk:1
1.3} outs:00000 ins:1111111100000000 clk:0
>
>comment load bit select data
>force ins:1111111111111111
>force control:0010
>cycle 1
2.1 outs:00000 ins:1111111111111111 clk:
2.2| outs:00000 ins:1111111111111111 clk:
2.3] outs:00000 ins:1111111111111111 clk:
>
>comment load signal data
>force ins:1111111111111111
>force control:1000
>force misc:11
>cycle 1
3.1| outs:XXXXX ins:1111111111111111 clk:
3.2 outs:XXXXX ins:1111111111111111 clk:

3.3] outs:01000 ins:11111113111111111 clk:
>

>comment changes mask register

>force control:0010

>force ins:0000000011111111

>cycle 1
4.1 outs:01000 ins:0000000011111111 clk:
4.2| outs:01000 ins:0000000011111111 clk:

4.3| outs:01000 ins:0000000011111111 clk:
>

OO

O+ O

[l oRe]

Figure 9. NPS CORNSS MOSSIM II Source Program




e Statistics--will print run time statistics including number of steps, CPU time re-
quired to run and other tinung details.
4. NPS CORNSS Test Vectors
The selection of test vectors to properly stimulate the circuit design is an im-
portant aspect in the simulation procedure. As mentioned previously a C program was
written to simulate 65,536 (2'°) possible test vectors. An additional program verified that
the correct values for each test vector was obtained. These programs took more than
23 hours to simulate on the VAX 11/785. While this exhaustive method provided the
maximum test coverage, a subset of these vectors was found to provide acceptable cov-
erage with far fewer test vectors.
This subset of vectors was heuristically determined and included only 63 vectors.
The first 16 vectors rippled an error through the data bits and verified a BCD output of
15 was observed at the output. The second set of 15 vectors insured that the output
would produce BCD values from 0-16. Only 15 vectors are needed because the BCD
value for 15 was determined in the first case. The next two vector sets involved changing
the reference register and the mask register. Setting the data register with all ones an
crror was rippled through the reference register bits and the output observed. The mack
register was similarly tested with 16 additional vectors. These 63 test vectors func-
tionally vahdated NPS CORNSS and provided a reasonable set of test vectors for
MOSSINM 11, and the follow on testing of the fabricated chip.

D. CFL

“Coordinate Free Lap (CFL) is a library of subroutines written in C intended to fa-
cilitate the construction of VLSI circuit lavouts.” [Ref. 16]. Once the required leaf cells
have been laid out in Magic, then the CFL algorithms provide powerful tools to dupli-
cate, align and combine these cells into the assembled chip. The CFL routines were used
twice in the development of NPS CORNSS, once to assemble the body of tae chip.
Figure 10 on page 29, and in the final assembly process to attach the pad frame and
associated routing. The description of CFL procedures, format and symbology are de-
lineated in the CFL reference manual, [Ref. 16], but discussion of the salient features of
Figure 10 on page 29 will illustrate the strengths of this program.

1. Hierarchical Assembly of Magic Leaf Cells

As previously mentioned Magic is used to generate the leaf cells that are as-

sembled with CFL to produce a composite chip. The leaf cells used by Figure 10 on

page 29 include the four register cells and an XNOR cell. Each of the register cells
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#include <stdio.h>
#include <time.h>
#include "cfl.h"

main()
SYMBOL *chip;
cflsetc("format", "magic");
cflstart("scmos");
cflsetv("grain",61);
chip = 11(gs("CR_comp"),gs("CR_dat")); line 01
chip = 11(gs("CR_ref"),chip); line 02
chip = 11(gs("CR _mask"),chip); line 03
chip = 11(gs("CR_test"),chip); line 04
ps("CR_regcell”,chip); line 05
chip = nx(gs("CR_regcell'),16); line 06
ps("CR_regbank",chip); line 07
chip = 11(gs("CR_comadd"),gs("CR_regbank")); line 08
chip = ttdy(gs("CR_left"),chip,27); line 09
chip = rr(chip,gs("CR_top")); line 10
chip = ttdy(chip,gs("CR_right"), -7); line 11
ps("CR_chip", chip);
cflstop();

}

Figure 10.  CFL Composite Chip Assembly

("CR_dat", "CR_ref”, "CR_mashk", "CR_test”) includes a "D" (lip flop. 2-1 multiplexer,
and control lines. "CR_comp” contains the XNOR circuitry.  After the initial setup
commands to link the program to the CFL library the first construction command lies
on line 01. Line numbers have been added to the program in the comments column to
refer to them 1n this discussion and are not normally part of the program. Line 01 uses
the “gs” command to get the library symbols "CR_comp” and "CR_dat” and the "1l
(lower case LL) command aligns them left border to left border with the "CR_dat” cell
on the top. This new cell is stored as “chip”. Figure 11 on page 31 illustrates the CTL
construction of the "CR_regcell” after lines 01-03 are completed and the “"ps” command

is used to put "CR_regeell” into “chip”. Line 06 duplicates the "CR _regeell” 1u times in




the "x"direction and line 07 stores that symbol as “CR_regbank”. The remaining lines
align the remainder of the leaf cells to the basic chip. The combiner and adder leaf cell.
“"CR_comadd”, was built as a large cell because the interconnection between the com-
ponents were difficult to realize in CFL. It was easier to build the cells in Magic and then
duplicate and connect them while observing the results on the Magic screen. The de-
signer must determine if the cell can be replicated more easily in Magic or by using the
CFL program.
2. CFL Advantages/Disadvantages

The obvious advantage for using CFL is that the individual leaf cell can be
modified in Magic and the CFL program can assemble the chip with that modified cell.
If a cell was modified in the Magic drawing (for example, one of the register cells). each
cell of the Magic drawing would have to be modified, or 16 modifications. This could
create errors in the design and also is much more time consuming than using CFL. Use
of CFL reduces the development time considerably and new modifications of the cell can
occur expedientlv. The disadvantage of using CFL is that the cells must be constructed
block-like for ease in alignment during assembling routines. Each interface that is as-
sociated with that leaf cell must be designed with the adjoining leaf cells in mind.
“CR_regcell” in Figure 12 on page 32 is a good example of v-ell constructed leaf cells for
use in the CFL program. The cell is “[inished” to each border. Notice how the outputs
of each cell must line up with the adjoining cells inputs. The other disadvantage of using
CFL is that of labeling external connections for the chip. If a leaf cell is built with la-
bels, those labels will be duplicated, when the leaf cell is duplicated and any attempt to
run a simulation program using those labels as inputs or outputs would not succeed
because of label duplication. A frame must be built that contains connections to the
composite chip that includes labels. In Figure 10 on page 29, "CR_left”, "CR_right”,
and "CR_top” provide those connections and associated labels.

In summary, CFL is a powerful assembly tool for leaf cells but not without a
price. The extra effort expended in designing the leaf cell to align properly with adjoining
cells, and providing leaf cells that contain labels and associated connections, could be
considerable and not worth the effort. NPS CORNS8S was a combination of both as-
sembly technologies. The combiner adder circuitry was constructed in Magic as a large
leaf cell because the individual modules were easier to connect on the Magic screen. The
individual register and XNOR leaf cells were designed in Magic but assembled intc a

16-bit register bank using CFL.
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CR__dat

CR_comp

CR_top

CR__ref

CR_mask

CR_test

~d0

149

CR_regbank

CR__comadd

ybu—yo

CR__regcell

CR__chip

Figure 11.  NPS CORNSS CFL Block Structure

E. MOSIS

1. Background

MOSIS. which 1s an acronym for MOS Implementation System, provides fab-
rications services for the production of bonded and packaged integrated circuits. Ori-
ginally it provided services to government and educational users but recently it has
expanded to the industrial sector. MOSIS, as described in the MOSIS user's manual
[Ref. 11]. is able to combine several lavout designs from different users of the same re-
quested technology onto a multi-project single silicon wafer and thus dramatically re-
duce the fabrication cost.
maskmaking. fabrication. and packaging for a complete run (currently up to between
330 and $60.000), a designer can receive packaged parts for as little as a few hundred

dollars.” [Ref. 17]. Before MOSIS can fabricate the chip. several steps are required to

prepare the final design for fabrication.
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2. Preparations Prior to Fabrication

Once the circuit design has been validated, the designer must choose a pad
frame to encase the design. There are several standard pad frames recommended by
MOSIS and available from their library of cells. The frames come in 28, 30, 64, 84, 108,
132 pin packages and they facilitate the entire packaging and bonding process. It is re-
commended that one of these standard frames be used along with the SPADS program
to generate the necessary pads and associated frame. Carleton describes the procedures
in producing the pads for NPS CORNSS8 [Ref. 18]. In all but one instance (the frame
with 84 pins), all standard frames have a substrate connection at pin #1. It is important
to rotate the design to enable this pin to be used as Vdd. The associated routing from
the basic design to the pads is done by a CFL program, whose methodology was de-
scribed earlier. When the entire chip is assembled in a MAGIC file and has been prop-
erlv validated, the file then is converted to the Caltech Intermediate Form. CIF, format.
This is done by loading the entire design on the graphics terminal and typing the com-
mand “:cif” at the prompt. This CIF file is also the form that is needed to print the file
on the NPS Hewlett Packard 7386B plotter.

Now that the CIF file is readv. an account has to be established with MOSIS
to pay for the manufacturing of the chip. “Universities that are teaching classes in VLSI
design may apply for government-sponsored use of MOSIS using the MOSIS applica-
tion form for Education.” [Ref. 11,p. 12}. NPS CORNSS was funded through this method
with an account set up by National Science Foundation (NST).

3. MOSIS Quality Control

Once an account has been established, the designer can send the CIF file to
MOSIS via the Internet, formerly known as the ARPANET. After MOSIS receives the
CIF file it will check that file for syntax errors and thereby validate the syvntax. A pro-
gram. CIF-CHECKSUM, can be run on the user system and sent to MOSIS to venfy
that the file as transmitted was complete. MOSIS does not validate the design; it only
ensures that the CIF file is in the proper syntax and no errors were made in the trans-
mission of that file.

MOSIS also monitors the quality of the fabrication foundry, the mask vendors
and the packaging facilitv. The mask vendors receive the multi-project tape for E-beam
tooling and the resulting mask must meet tight defect specifications. MOSIS installs
several designs on each of the multi-project wafers to act as process monitors. The yield
and parametric specifications for the process monitors are checked by both the vendor
and MOSIS before the wafer is accepted. Once the wafer is accepted it is sent to the
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packager for assembly into the dual in-line package, DIP. “Packagers are qualified on
the basis of bond pull tests and must follow strict static electricity control procedures in
handling user’s projects.” [Ref. 11,p. 2). When the packaging specifications are met a set
of bonded and packaged integrated circuits are returned to the user. Mosis produced
twelve NPS CORNSS custom VLSI chips in six weeks at the modest cost of S$1400.00.
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III. NPS VLSI DIGITAL TEST FACILITIES
A. BACKGROUND

As digital technology has matured and become more complex, the capability to test
these circuits have become more sophisticated. The advent of CAD tools to design cir-
cuit layouts has lead to more full custom VLSI design implementations. Each of these
custom VLSI designs requires a unique test program to functionally validate both the
design level and fabricated chip. Hnatek states that, “Testing is rapidly becoming the
largest portion of recurring costs in the VLSI device manufacturing process.” [Ref. 19,p.
22]. The NPS CORNSS design was previously validated by the MOSSIM II simulator,
fabricated by MOSIS, and will be used as an example throughout this chapter.

This chapter will examine the digital test facilities at NPS and is separated into three
sections. The first of these sections will examine the Digital Analvsis System (DAS)
model 9100 and its capabilities and limitations. The second section will detail the Device
Verification Software (DVS) model 50 functions and its interface with the DAS 9100.
The final section will discuss the set-up and testing of NPS CORNSS.

B. DIGITAL ANALYSIS SYSTEM (D AS) 9100
1. Overview

The DAS 9100 is a stand-alone, modular assembly of various configurations
that can perform selected pattern generation and data acquisition functions. This mod-
ularity is engincered into the DAS 9100 main{rame by allowing the user the ability to
install different data acquisition and pattern generation modules. The DAS 9100 Series
operator manual [Ref. 12] details the numerous different module options available as
well as providing an in-depth description of the DAS 9100 functions and capabilities.
Table 8 on page 36 reflect the modules available for the DAS 9100 and summarizes their
capabilities. Up to six of these modules can be installed in the DAS 9100 mainframe.

The DAS 9100 can be used as a logic analyzer, as a pattern generator or as a
combination of both. One of the advantages of the DAS 9100 is that its operations are
controlled bv interactive menus. The data acquisition and pattern generation modes of
operation, and their respective menus, will be discussed in this section and is only an
overview of the information contained the DAS 9100 series operator manual [Ref. 12].

The external interfaces from the DAS 9100 will also be addressed 1n this section. The
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Table 8. DIGITAL ANALYSIS SYSTEM (DAS) CAPABILITIES

MODULE TYPE # CHN\S SPEED MAX
INST

91816 Pattern Generator 16 50MHz 11

91832 Pattern Generator 32 25MHz 61

91A08 Data Acquisition 8 100MHz 40

91A32 Data Acquisition 32 25MH:z 31

GPIB Interface to 1'1
DVS30

RS232 Connects 2 DAS 1/1
units

Hardcopy Inter- Printer I1

face

Tape Drive Data Storage 10

actual connections to the device under test (DUT) and the test results will be included
in a latter section.
2. Data Acquisition
a. Modules

The maximum number of parallel data acquisition channels that can be
processed by the DAS 9100 is 104 at one time. This configuration is obtained by in-
stalling three 91A32 modules and one 91A08 module. Some discussion of each of these
modules 1s necessary to examine the capabilities of the DAS 9100.

The 91A32 can acquire 32 channels at an internal or external clock interval
ranging from 40ns to Sms or a maximum clock rate of 25Mz. Each 91A32 module in-
stalled can be run at a different clock rate and contains two clock qualifiers. These
clock qualifiers are used by the DAS 9100 to provide a condition on storing the data
acquired into memory. If both clock qualifier lines are used, and if those lines meet
preset conditions, then the data acquired is stored in memory. Each 91A32 module
controls four data acquisition pods that each contain eight probes to hook to the DUT.

The DAS 9100 can support up to four 91A08 modules and each can acquire
and store eight channels. This module, with a special clock probe, can acquire data at
a rate of 100MHz. This module can also use a internal or external clocking scheme and

each module has a clock qualifier line. The 91A08 module can also acquire and store
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glitches on all acquisition channels. A ghtch is defined as two or more transitions oc-
curring within any given clock cvcle.

The two data acquisition modules, 91A32 and 91A0S, are compatible and
can be used at the same time within the mainframe. The first of these combinations is
the AND mode and operates both modules simultaneously at the clock rate set for the
91A32. The ARMS mode allows different clock rates for the modules, with the 91A32
enabling the 91A08S trigger to produce a display similar to an oscilloscope sweep.

b. Menus

During the logic analysis function of the DAS 9100, the data acquisition
modules acquire and store digital patterns generated by the DUT. Five interactive
menus on the DAS 9100 are used to set up the clocking scheme, specifv channel as-
signments, determine trigger specifications and display the data. Each menu is detailed
in its own section of the operator’s manual [Ref. 12] but an overview is provided to il-
lustrate the logic analysis function of the DAS 9100.

The Channel Specification menu controls the display format for the incom-
ing data to be used by the Trigger Specification, State Table, and Define Mnemonics
menus. The Channel Specification menus also specifies the input voltage thresholds to
be used by the probes and the which defaults to TTL voltage levels. Each data acqui-
sition probe has a threshold switch physically located on the back of the probe that can
switch to "NORM” or "AUX". The "NORM" position lets the Channel Specification
menu choose between the TTL voltage threshold levels or a “VAR” threshold that can
be set between -2.5V to +5.0V. If the "AUX" switch is chosen on the probe then the
threshold voltage can be set to MOS voltage ranges, which can be between -10.0V 1o
+20.0V. The “NORM" or the "AUX" position switch settings can not be mixed in each
pod.

The Trigger Specification menu is used to set up data acquisition and stor-
age conditions. The menu defines the data acquisition modules to be used, determines
the clock rate, sets up clock qualifiers and word recognition patterns. Each of the
modules has its own sub-menu to control the trigger specification. The clock qualifiers
set parameters on when to store data acquisition. The word recognition feature allows
the DAS 9100 to set a trigger for each occurrence of the word in the data acquisition
process. This makes it relatively easy to find a high interest pattern or to use that trigger
to start another set of pattern sequences. Usually, both the clock qualifier and word
recognition features are set to the “don’t care”, "X", svmbol to allow storage of all data

acquired and not set the trigger on the word recognition feature.
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The sub-menu for the 91A08 does evervthing that the 91A32 does and 1t can
set the trigger on glitches. The 91A08 alwavs acquires and stores the glitches, but if the
trigger is set “on” for glitches it is easier to find where the glitches occurred. This menu
also sets up whether the ARMS or AND clocking scheme is to be employved.

The State Table menu provides access to the data acquired and reference
memories. This menu can show either the data acquired from the sub-menu acquisition,
the reference memory from the sub-menu reference, or a comparison of both reference
and acquired data. This menu is useful when comparing two files but the information
is in hex format and not waveform display so it can be tedious to compare.

The Timing Diagram menu displays the most recently acquired data in a
standard digital waveform format for both the 91A32 and the 91A08 modules. Up to
16 channels can be displaved and this menu can magnify the display, step through the’
entire memory of acquired data a “window™ at a time, place a cursor at a run time of the
pattern and read out the digital values of all channels acquired. The waveforms corre-
spond to the pod that acquired the data and names can be added to the waveform dis-
play to make it more intelligible.

The final menu associated with data acquisition is Mnemonics. This menu
can generate the set up for the state table display. Several different tables can be defined.
and then the data acquired can be presented in format of that table. This is particularly
useful if the user wants to observe several different formats of the acquired data.

The data acquisition features of the DAS 9100 are impressive but it can be
tedious to enter the specifications via the DAS 9100 kevboard. The menus make it
somewhat user {riendly, but a study of the user’s manual is required to use data acqui-
sition on even the simplest circuit. The DAS 9100 at N\PS lacks a tape recorder to save
all the sct-up data and reference waveforms. These must be initialized every time the
DAS 9100 is powered up. This is not only tedious and inconvenient, but it is an excel-
lent opportunity to make input errors. Nevertheless, the data acquisition function of the
DAS 9100 does provide the user with a valuable tool to analyze the fabricated chip.

3. DAS 9100 Pattern Generation.

The DAS 9100 generates clock and data signals to the DUT in the pattern
generation mode. Two pattern generator modules are available, 91S16 and 91S32. The
clocking rate for either module is limited to 25MHz and can either be internally or ex-
ternally generated. If all six modules are configured to 91832 pattern generation mod-
ules the DAS 9100 can provide 192 channels of patterns. This would leave no slots

available for data acquisition, so the practical limit for pattern generator modules. if only
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one DAS 9100 is used, is less. Patterns can be generated in either of two ways. The
91S16 is an algorithmic pattern generator that uses a nine program instruction set to
provide branching. looping, and other algorithmic patterns for 16 channels. Only one
91516 can be installed in the DAS 9100, but 1t can be used as a controller for the in-
stalled 91532 modules.

Each 91532 module generates 32 channels of RAM-based patterns. This feature
requires the user to input each channel sequence into RAM memory. If the 91S16 and
91832 modules are installed together, the 91516 controls the master cyvcle clock. There
are two operating modes when the two pattern generator modules are to be operated
simultaneously, sequential and follow 91S16.

In the sequential mode each module operates separately but the 91816 supplies
the clock signal. When the 91S16 algorithm reaches the end of its program 1t will recvcle
until the pattern sequence generated by the 91S32 is completed. In the follow 91816
mode the 91516 has active control of the pattern generated by the 91§32 and can algo-
rithmically control the pattern sequence.

The difficulty in using the DAS 9100 for pattern generation is the same difficulty
that was mentioned for the data acquisition feature, the tedious manner that the input
must be specified. While 16 channels can be generated by an algorithm controlled by
the 91S16 module. the 91532 pattern sequences require each channel to be individually
defined by use of the kevboard. This could be a very long process if a long pattern se-
quence was required for many channels. An interface with a tape recorder, or another
memory storage device, that could save and load these long patterns once the power was
shut down would be invaluable.

An important feature of the DAS 9100 is the ability to run a pattern sequence
test pattern and compare until the next sequence either compares or do not compare.
As an example, the initial results of the NPS CORNSS test sequence were stored in the
compare file. The test was rerun and compared with the original test until an error was
found. This enabled many test runs to be compared to each other to run a much longer
test.

4. External Interfaces

There are four external interfaces defined in the DAS 9100: General Purpose
Interface Board (GPIB), RS-232, Tape drive, and Printer. The GPIB interface allows
parallel data transmission between a host computer and the DAS 9100, which acts as the

talker and listener. The NPS test configuration is set-up so that a personal computer
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(PC) running the DVS3$0 software program can provide the inputs to the DAS 9100 and
display the data acquired from the DAS 9100 via the GPIB interface.

“The RS-232 interface allows two DAS 9100 systems to be linked together for
a master. slave transmission.” {Ref. 12,pp. 1-3]. This allows the master DAS 9100 to
control the acquisition of data and pattern generation of another DAS 9100 unit. A
printer interface is provided to produce hard copy results for latter analysis. The final
external interface capability is through a tape drive unit. This allows storage of all the
information in the DAS memory, including the set-up of all the menus. This tape drive
feature would be essential if the DAS 9100 mainframe was operated independently. This
is because of the time it could save in the set-up of menus and in the generation of long
sequences of patterns. The configuration at NPS does not have a tape recorder, but the
DVS30 personal computer supported software performs the function of the tape re-
corder, so the tape recorder is not necessary.

An additional interface option available for the DAS 9100 is a power supply to
apply voltage to the module pods and the DUT. This power supply is not installed at

NPS and a Power Designs Model 3650-S serves as the system power supply.

C. 9100 DEVICE VERIFICATION SOFTWARE
1. Background

The most difficult aspect in using the DAS 9100 mainframe as a stand-alone
svstem 1s the setting up the menus, data acquisition channels and pattern generation
sequences via the DAS 9100 kevboard. The 9100 Device Verification Software (91DVS)
allows the user to specifv the data acquisition channels and generate long sequences of
patterns through a high level language program. The 91DVS provides a user-friendly
menu driven program to functionally test the DUT and is defined in the 91DVS user’s
manual [Ref. 20]. The 91DVS requirements include DOS 3.0 or higher, S12K-byte of
memory, IBM color graphics card and a GPIB interface board supplied with the 91DVS
software. Two different software packages are provided with the 91DVS, DVS50 and
DVS25. The functions of both programs are similar, but the DVS50 is installed at \NPS
because it offers an automatic compare feature and supports the tri-state control fea-
tures.

This section will include the capabilities and limitations of the DVS50 program,
the menus required for operation, and a description of the two data files necessary to

provide input to the DVS50.
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2. DVS50 Capabilities and Limitations

The DVSS0 program can support up to three DAS 9100 mainframes and
Table 9 on page 41 lists the DAS 9100 modules that are supported by DVSS0. While
the DVS30 can support up to 192 pattern generation channels, all pattern generator
modules must reside on the same DAS 9100 mainframe. The acquisition modules may
be in any of the three DAS 9100 units but, if both the 91A08 and 91A32 modules are
used, they must not be mixed in the same DAS 9100. Additionally, if a 91A08 module
is used, one must be installed in slot six of the DAS 9100.

Table 9. DVS50 MODULE SUPPORT

MODULE TYPE SPEED
91816 Pattern Generator 50MHz
91832 Pattern Generator 25MHz
91A08 Data Acquisition 100MHz
91A32 Data Acquisition 25MHz

An additional limitation is that the clock rate for the pattern generator and the
data acquisition modules must be clocked at the same rate. The acquisition module are
clocked externally by the master clock of the 91516 or the 91532 module.

3. DVSS0 Input Programs

There are two user generated data files necessarv to set-up the DVS30 for test-
ing: test program file, “.sr¢”, and the test pattern file, “.das”. The test program file
specifies the test sequence, timing, threshold and power supply definitions. vFigure 13
on page 43 was the test program used for NPS CORNSS, and it will be examined to il-
lustrate the details of the “.sr¢” program. The kev word PROGRAM must start the
“.sr¢” program with the name of the program following this key word. The asterisk, "*”,
indicates that the remainder of the 80 column line is ignored. This is used to section the
program and to provide comments within the program to increase clarity of the pro-
gram. The next section is headed by the key word PINDEF and it identifies pin names,
pin number assignments on the fabricated chip and the DVSS50 attributes for that pin.
The following attributes are supported by DVS50:

¢ PAT--pattern generator output channel
¢ TRI--tristable pattern generator output channel

* ACQ--data acquisition channel up to 2§MHz
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e [FAST--data acquisition channel up to 100Mliz
¢ CLK--pattern generator clock output

. PS--power supply output that is further defined in the PSDEF section

As a matter of course the "ACQ" attribute is attached to as many of the input channels
as possible to monitor the input patterns. The end of each section is the kev word
END.

The TIMEDETF section sets the pattern and acquisition clock. Remember, that
in the DVSS50 the two clocks must be equal, so the program allows only the “PAT" input
and that can vary from 40ns to Sms. The THRESHOLD section sets up the threshold
voltage value. TTL is a predefined threshold voltage of + 1.5V but variable voltages can
be assigned ranging for -2v to 3v. Notice that the MOS option of -10.0V to +20.0V can
not be used in the DVS30. The PSDEF section details the values in mV and mA for
voltages and current respectively. The ground connection of the DUT must be defined
as 0 mV. Figure 13 on page 43 does not include a DATADEF section because the pat-
tern sequences are defined in the “.das” file. All ".sr¢” programs must end with BEGEN:
and ENDS to control the DAS 9100 tester.

_ The “.das” file for NPS CORNSS i1s listed in Figure 14 on page 44. The first line
1s the name of the program. The sccond and third lines are any two integers. These lines
are used n the test result program that will be discussed below. Line 4 specifies the
number of pins that DVS30 needs to generate patterns for. The pin names are then
listed in rows that correspond with the pattern sequence in the respective columns. Tor
example, the input channel PADIN will always have a pattern specified by column one
of the pattern sequence and CLO’s pattern will be located in column 24. An EOF at the
end of the program indicates the end of the pattern.

The test result file “.A01" is in the same format as the ".das” file except that only
acquisition channels are reported. The clock rates for the pattern generator and data
acquisition modules are included in lines two and three respectively. This file can be
used to compare against another file transferred from the simulator output to validate
the output vectors.

This method of designating patterns and data acquisition parameters is much
easier and quicker that using the DAS 9100 kevboard. A translator program,
MOS2DAS, was written to generate the ".das”, “.src”, and the “.sim” files from the re-
sults of the MOSSIM II simulation. This translator will be discussed in the next chap-
ter.




PROGRAM chip;

PINDEF;

VvCC : 1, PS 2;
OuUT2 : 2, ACQ;
OouT1 3, ACQ;
PADIN : 4, PAT,ACQ;
STSTOUT : 6, ACQ;
IN16 :10, PAT,ACQ;
IN15 :11, PAT,ACQ;
IN14 :12, PAT,ACQ;
IN13 :13, PAT,ACQ;
IN12 :14, PAT,ACQ;
IN11 +15, PAT,ACQ;
IN10O :16, PAT,ACQ;
IN9 +17, PAT,ACQ;
INS :18, PAT,ACQ;
IN7 :19, PAT,ACQ;
IN6 :20, PAT,ACQ;
INS :21, PAT,ACQ;
IN4 :22, PAT,ACQ;
IN3 : 23, PAT,ACQ;
IN2 :24, PAT,ACQ;
IN1 :25, PAT,ACQ;

DATACON :26, PAT,ACQ;
REFCON :27, PAT,ACQ;
MASKCON :28, PAT,ACQ;
SPCON :30, PAT;
TSTCON :31, PAT,ACQ;
GND :35, PS 1;
BMSBOUT :36, ACQ;
OUTCON  :37, PAT,ACQ;

OUTS :38, ACQ;
OUT4 :39, ACQ;
OUT3 :40, ACQ;

CLO 129, PAT,ACQ;
END;

TIMEDEF;

* Clockrate Pattern Generator.
PAT : ns 100;

END;

THRESHOLD;

* Threshold for Acquisition Module.
ACQ : TTL;

END;

PSDEF;

* Definition of Power Supply.
1l : mv 0o;

2 : mvV 5000, ma 3000;

END;

BEGIN;

ENDS

Figure 13.

NPS CORNSS8 DVS30 .SRC File
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CHIP

1

1

24

PADIN

IN16

IN15

IN14

IN13

IN12

IN11

IN10

INS

INS8

IN7

ING

IN5

IN4

IN3

IN2

IN1

DATACON

MASKCON

REFCON

TSTCON

SPCON

OUTCON

CLO
111111111000000000010100
111111111000000000010101
111111111000000000010100
111111111111111110100100
111111111111111110100101
1111111111113111110100100
1111131111000000011000100
111111111000000011000101
111111111000000011000100
111111111000000111000110
111111111000000111000111
111111111000000111000110
111111111000001111000110
111111111000001111000111
111111111000001111000110
111111111000011111000110
111111111000011111000111
111111111000011111000110

Figure 14. NPS CORNSS8 DVS50 .DAS File
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4. DVS50 Menus
Figure 15 on page 46. modified from Ref 20,p. 3-2, illustrates the svstem flow,
from verifving the configuration file. compiling the test program, to running the tests
and displaving the results. This flow is controlled by the use of menu driven screen dis-
plavs. The first menu that the user encounters is the MAIN menu contains entries into
all the of the first level menus that are listed below:
¢ HELP
¢ Compile Test Program
¢ Restore Test Program
¢ Information
¢ Enter Test Menu
¢ Update Configuration File
¢ Display Test Data

e Compare Data
® Quit

The screen cursor is controlled by the arrow Kevs and a function or menu is called by
positoning the cursor and pressing the “Enter” keyv. The Update Configuration File is to
entered first if the user needs information about the configuration or needs to modify the
current configuration due to a modification in the DAS 9100. This file mirrors the
modules that are installed in the DAS 9100, power supply connections and controller
specifications. This file is set-up to the DAS 9100 current configuration and usually does
not need not be entered.

Usually, the user will select the Compile Test Program as the first entry in the
DVS30 menu. This menu uses the ".das ” and ".sr¢” programs that were previously
discussed and compiles a DVS control file and test pattern file to set-up the DAS 9100.
This program also checks for errors in the ".das” and “.src¢” files and creates the channel
specification list which describes the connections between the pattern generation and
data acquisition pods and the DUT. Figure 16 on page 48 is the channel specification
produced for NPS CORNSS and the hook up of this specification will be discussed latter.
The Restore Test Program uses the test files that were previously compiled in the Com-
pile Test Program menu.

After a test program file has been compiled the next step is to enter the Infor-

mation menu. This menu allows the user to list or print the following: the test program,




MOSSIM Ii
OUTPAR COMPAPE FLE
TRANSLATOR 11 outpuT FILE
2
X § QUIT |—-—}-—=EXIT TO DOS
: g *DASRSRC \ I
ST PROGRAM ’ .
! 2 | | cenenamon HeL |-—!—=DVS HELP )
' n ' Te—e—t
: update configle—-—BVS CONFIG™
' file | —t—s~___DAT .
: COMPILE X -
! TEST ;
) PROGRAM i
]
| RESTORE :
: COMPILED ) ! TEST
; TEST PROGRAM = ! PROGRAM
' FILES TEST STORAGE
' ¥ PROGRAM t
l START !
: TEST '
BE— [}
: ' :
! TEST | TEST NFOR- )
1 . . ORDISPLAY
\ | compare :
) DATA '
) ]
} '
) i
] Y 1
) t
1 DISPLAY I
+ o TEST |
: RESLTS :
] 1
"__V— ——————————— ]
@-————'- DAS 9100 VLS! DUT |
o |
Figure 15. DVSS50 Processing Flow
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the test record and the compare data. The principle purpose of entering this menu is to
obtain a listing of the channel specifications created during the compilation of the test
programs.

Once the DAS probes have been connected to the DUT the Enter Test Menu
is entered and “run test” is selected. This sets-up the DAS 9100, generates the sequence
of patterns and the resulting acquired data from the DUT is uploaded to the PC. The
“run test and compare” entry in this menu will run the test and compare the acquired
data to a reference file and report differences. Also, within this menu is the “enter device
commands menu”. This sub-menu allows the user to send single commands to the de-
vices supported by the 91DVS. This function is used for debugging purposes and for
experienced users and is covered in detail in the DVS user’s manual [Ref. 20,pp. 4-4,4-8).

The final DVS50 menu, and the most interesting to the user, is the Display Test
Result. When entering this menu, the user is prompted for the names of two files,
normally the recently acquired data file and a comparison file. Figure 18 on page 51 is
an example of an observation window of the displayed file. A timing diagram of up to
24 channels for the two files is overlaid on the display screen. Function Kevs are used
to expand and compress the screen, move the observation window left of right, and move
the cursors left or right. The other useful features of this display are controlled by the
command line. Channels can be listed, deleted, and inserted from this command line.
A “scale” command sets the width of the observation window and the “time” command
sets the beginning of the displaved window to the sequence specified. A “search” func-
tion, also available from the command line, specifies a particular bit pattern for which
to search.

The primary disadvantage of this of this display is that a hard copyv of the
waveform timing diagram is unavailable, except through a print screen utilitv. This
provides adequate results for analysis and demonstration but not enough resolution for
inclusion in reports.

The 91DV'S program greatly reduces the time spent in setting up the DAS 9100,
generating pattern sequences, and displaving test results. The capabilities provided by
the 91DV'S are extensive enough for all but the most sophisticated user and it provides
an excellent indoctrination into digital signal analysis.

5. NPS CORNSS
a. Set-up
One aspect of testing that remains, regardless of whether the DAS 9100 or
DVS30 techniques are used. is the connection of the DAS 9100 modules and probes to
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*** CHANNEL SPECIFICATION LIST **x

ATTENTION : Connect the DAS-PODs to the pins of the DUT
according to the following list.
Take care - incorrect connections may cause

permanent damage to the DAS-PODs or the DUT !

ITE TR EEE LS EESESETELSEETRESSEEEE SR SRR RS RERES SRRl Rl t S A 88

* Trigger channel(s): PG-POD ACQ-POD *
* 1B-STB-1 5D7-1 *
A A A A A A A A AT AR AR AR A A A A A AR AAN KA AR AAAR A AR A A AR A ARk ATk kA hk k%
* ACQ clock channel(s): PG-POD EXTCLK-POD *
* 1B-CLK-1 7C-CLK1-1 *
****************'********************************************
NR: NAME PINNUMBER POD(S)
PG ACON ACQF other
1l VCC 31 PS2
2 0UT2 32 5D6-1
3 0uUTl 33 5D5-1
4 PADIN 34 1B7-1 5D4-1
5 PADOUT 35 5D3-1
6 STSTOUT 36 5D2-1
7 IN16 40 1B6-1 5D1-1
8 IN15 1B5-1 5D0-1
9 IN1l4 1B4-1 5C7-1

1

2

10 IN13 3 1B3-1 5Cé6-1
11 IN12 4 1B2-1 5C5-1
12 IN11 5 1B1-1 5C4-1
13 IN10 6 1B0O-1 5C3-1

14 IN9 7 1A7-1 5C2-1

15 1IN8 8 1A6-1 5Cl-1

IN7 9 1Aa5-1 5C0-1

17 IN6 10 1A4-1 5B7-1

18 1IN5 11 1A3-1 5B6-1

19 1IN4 12 1A2-1 5B5-1

20 IN3 13 1A° -1 5B4-1

21 IN2 14 1A0-1 5B3-1

22 IN1 15 2D7-1 5B2-1

23 DATACON 16 2D6-1 5Bl1-1

24 MASKCON 17 2D05-1 5B0-1

25 REFCON 18 2D4-1 5A7-1

26 SPCON 20 2D3-1

27 TSTCON 21 2D2-1 5A6-1

28 GND 25 PS1
29 BMSBOUT 26 5a5-1

30 OUTCON 27 2D1-1 5A4-1

31 OUT5 28 5a3-1

32 O0OUT4 29 5A2-1

33 OUT3 30 5a1-1

34 CLO 19 2D0-1 5A0-1

MOk ok b ok Ok ok ok b b o b ok ok ok ok b % b oF b ok ok ok b 3k >k ok % O ok % ok O F %
}—J
o

ok ok ok ok ok o b ok Sk ok b ok H b o ok Sk ok % % ok OF ok 3k b b b b % b O O ok b

Figure 16. NPS CORNSS Channel Specifications
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the pins on the DUT. Figure 16 on page 48 is the channel specification for NPS
CORNXNSS and illustrates the power supply, pattern generation, and data acquisition
DUT connections to be made.

The specified trigger channels for the pattern generator and data acquisition
must be connected together to initialize and sync the two modules. The pattern gener-
ator module 1s connected to the external clock pod to provide the clocking rate for the
DUT. To facilitate the connections of the numerous probes to the DUT, a test board,
Figure 17 on page 50, was built. Connections for the pattern generator and data ac-
quisition probes were provided to the DUT by quick release low insertion force con-
nections. Additional connections were provided for power supplies and jumpers. The
first connections to the test board are the grounds from the data acquisition pods and
power and ground from the pattern generation pod. To keep line losses at a minimum
the pattern generation probes have small amplifiers at the probe end called active pin
drivers, or podlets. While this reduces line loss, it does generate heat at the podlet. To
reduce heat build up in the podlet the power to the DUT should be left on for only the
length of the test. Additional components are installed on the test jig to improve per-
formance. The resistors eliminates possible podlet and DUT impedance mismatch.
Gold plated connector pins are installed on the board to prevent corrosion within the
podlet connector.

b. Results

The operational validation of NPS CORNS8 was accomplished with the
same reduced sct of vectors that was used for design validation in MOSSIM 11.
Figure 1S on page 51 illustrates the results of the first test of the data register.
Table 10 on page 32, test 1, sets the initial register conditions for this test. Notice that
the resulting output is correct with a three clock phase propagation delay. The cursor
marks the beginning of the correct output data. The ‘0’ is then rippled down the data
register bits to validate all the data input register bits, and the expected BCD value of
15 was observed at the outputs.

The second test sequence of vectors, where the output results should go
from 16-0 to test the combination adder circuitry, are illustrated in Figure 19 on page
53 with the initial register values in test 2 of Table 10 on page 52. Notice that the out-
put values for the 0 and 16 are the same, ‘00000"! This error occurred in all 12 fabricated
chips and indicated that the OUTS pin was always at a ‘0’ state. To determine whether
a fabrication error or a lavout error was the cause of this malfunction, the MOSSIM 11

test sequence was run again on the final layout design of the chip. The test result for the
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Table 10. NPS CORNSS INITIAL REGISTER SET-UP

REGISTER TEST 1 TEST 2

DATA REG IN URRRRRRRRTRREY! S 2ERRR0EDRRNRE!
REF REG IN It I1FI1E1ELD1DDD0)
MASK REG IN [S3080000 000NN [SERRURRRNRREREY
XNOR REG OUT OMIIIMITILINEIEY IS RNRRREIRRRENEN!
BCD OUT.DIGITAL OI111:15 10000. 16
oLT

case of 16 matches resulted in the output "X0000" vice '10000". Investigating further re-
vealed that Vdd was not connected to the final multiplexer controlling OUTS. After this
layout was corrected, the output for 16 matches was "10000" indicating that it indeed
was a layvout problem not a fabrication problem that was discovered by the DAS 9100.

The third sequence of vectors that tested the reference bank by rippling an
error down the reference bank is illustrated in Figure 20 on page 54, with the initial
register values in Table 11 on page 56 test 3 values.

The masking tests started with no matches between the data and reference
register as illustrated in test 4 of Table 11 on page 56. Figure 21 on page 55 demon-
strates the effect of rippling two zeros, '00°, through the mask register to obtain an out-
put of '00010". Additionally the odd values of masking combinations to further test the
masking feature. The partitioning of the lavout design was verified by observing the
serial output STSTOUT after activating the testcon line and also observing the MSB line
from the combiner adder.

The previous test sequences verified the various register, the xnor circuitry,
and the combiner adder for parallel operations. An additional test sequence needed to
be run to validate the serial input functions of the chip. A different test program was
written to test these features. The rewriting of the test programs brought to light a
limitation of this DAS 9100 configuration of only one 91A32 data acquisition module
and one 91832 pattern generator module installed. While it was relatively easv to gen-
erate a new “.das” and ".src” file, this changed the pod assignments to the DUT and the
original connections had to be modified. This modification was required due to the limit
on the number of data acquisition channels that could be acquired. The original input

files used all 31 data acquisition channels including the monitoring of the 16 parallel data
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Table 11. NPS CORNSS8 REFERENCE AND MASKING INITIAL REGISTER

VALUES
REGISTER Test 3 Test 4
DATA REG IN IRRERRRUERRNIREE TTHHIETInLtitl
REF REG IN OMITIITILELLTLLI 0000000000000000
MASK REG IN SRR RRRRRRERRRN N OOT111TIEL111111
XNOR REG OUT OlT111111111E011 0000000000000000
BCD OUT DIGITAL OI111/15 00010:2
olT

input pins. The new program did not need to input a pattern or monitor the parallel
input pins. Therefore, a new testing scheme had to be developed to generate patterns
for the serial inputs and to monitor these serial inputs with data acquisition channels.
While the modifications took only a short time, it would have been convenient to have
an additional 91A32 installed so that the original program could have been written to
support the testing of both parallel and serial data inputs. Figure 22 on page 57 illus-
trates the serial data results.

The test results validated the operational functionality of NPS CORNSS.
Thev also illustrated that the DAS 9100 series tester, in conjunction with the 91DVS and
DVS30 software, was capable of providing the necessary stimulus to test a full custom
VLSI chip.
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IV. MOS2DAS TRANSLATOR

A. BACKGROUND

The MOSSIM II simulation program functionally validates a circuit design by using
test sequences to stimulate input pins and by monitoring the pins of interest. The test
engineer must develop a set of vectors within this test sequence to validate the proper
operation of the design. When the design has been validated and the chip has been
manufactured, the test engincer must again establish a test program for the manufac-
tured chip. With the N\PS digital analysis system, which includes the DAS 9100
mainframe modular tester married to the DVS50 software, the test engineer inputs these
test sequences through the DVSX0) “.das”, “.sr¢”, and “.sim” input files.

An Interactive translator that converts the test vectors that were defined in the
MOSSIM I simulation program to the DVS30 input files provides three major advan-
tages. The most obvious advantage of a translator is that it saves the test engineer’s
time.  MOSSIM 11 test sequences that were previously defined would be generated
without the test engineer having to input the duplicate pattern sequences in DAS format.
For a small test program the time savings would be insignificant, but as the test vector
sequence scheme became longer and more complex, more time would be saved. The
second benefit of using the translator is that the exact duplication of the MOSSIM 1]
test pattern sequences and results are ensured. This is important because the results
of the fubricated chip should mirror the results of the MOSSIM 11 simulation. The third
advantage in using the translator 1s that the test engineer does not need to learn how to
produce the three DVS30 files. This 1s only @ minor consideration because the input files
are relatively straight forward and easy to learn.

This chapter will discuss the capabilities and limitations of the MOS2DAS translator
by examuning the MOSSIM 11 commands that are supported by the translator. Addi-
tionally, the shell program that was developed to control the file manipulation involved
in the translation will be examined. The source code for the shell program and the

Fortran source code for the NIOS2DAS translator are included in Appendix B.

B. MOS2DAS CAPABILITIES AND LIMITATIONS
1. MOSSIM II Commands
The MOS2DAS translator program generates three DVSS0 input files from the
MOSSIM I ".cpv” and “.ntk” files: the test program file, “.sr¢”, the test pattern file,

58




“.das”, and the test result file, “.sim”. The ".cpy” file is used because it includes the out-
puts from the pins of interest. Several different conventions and commands can not be
translated to the DVS30 input files because the DVS350 can not support them. When
running the MOSSIM Il program that the user wants to translate to DVSS50 format, all
MOSSIM II software switches must be set to the default values as listed below:

® ternary 0
¢ sharing 0
® static 0
* restored 0
¢ pseudo 0
* weaken 0
¢ redundant 1
¢ explain 0
® statistics 0
¢ echo 1
® case 1

Additionally, all watch commands must be modified to watch every phase. with the
“watch *” command. This allows the program to report at the transition of everv phase
and more closely approximates what the DAS 9100 system will output.

Several MOSSIM Il commands are used in the translation process. but some
are not allowed. This is because the format of all the DVS50 input files requires that the
pattern generation program must identifv every channel prior to the first clock cvcle.
Therefore. all the pins and vectors of interest must be defined prior to the first cvcle of
the MOSSIM Il program. Listed below are the MOSSIM Il commands and their
functions, as further defined in MOSSIM II user manual [Ref. 8,pp. 8-19] that are sup-
ported by the MOS2DAS translator:

¢ (CLOCRK--Defines the clocking scheme consisting of a set of clock nodes and a set
of clock phases to be applied to these nodes. A MOSSIM II limitation is that, if
more than one clock is defined, each clock must have the same number of phases
in the sequence. For example, clock node phl:0010 and clock node ph2:1000 are
compatible non-overlapping clocks and are legal. The clock node phl:010 and
clock node ph2:0010 combination is not Jegal because the sequence length is not
the same.

¢ J'ECTOR--This is used to assign one name to an ordered set of nodes. For exam-
ple in Figure 23 on page 61 the vector ins contains all the parallel input nodes from
inl-inl6. A mixture of input and output nodes are not allowed in any one vector.




¢ W ATCH--This command allows the user to identifV nodes of interest to be printed
out at cach cyvcle command. To closelv align the output of the MOSSIM 11 pro-
gram and the results obtained by the DAS series from the manufactured chip the

command “watch *" must be used to print the desired nodes after each phase of
the clock.

e SET--Sets the node to a specific binary value. Used to the generate the pattern
generation sequence on that node or vector. Similar to the FORCE command ex-
cept that the node or vector that is SET can be changed by the circuit operation
to a new value.

¢ FORCE--Sets the node to a specific binarv value. This node will always be that
value, no matter what the circuit design tries to do to that node. The UNFORCE
is not supported because the DVS30 program can not change node assignments
after the first cycle command.

¢ CYCLE--This causes the network to run for a specified number of cycles. The
translator supports up to 20 cvcles per command.

e QUIT--This command indicates that the MOSSIM ii simulation program is com-
plete.
While this may seem to be a limited number of MOSSIM 11 commands, the test pattern
generation sequence can be long and quite complex. NPS CORNSS8 was tested with
these commands and they proved to be acceptable. The remaining key words that in-
voke MOSSIM II commands are not translated and the entire line that starts with a
command that is not supported is disregarded. MOS2DAS can translate three states
allowed by the MOSSIM Il program at each node to the two states that are supported
by the DVS30 software. The MOSSIM 11 states ‘0" and ‘1" are translated to DVS30
states ‘0" and 1", respectively, and the MOSSIM I "X’ state is translated to a 0".
2. File Conversion Process
The MOS2DAS translator creates the “.das”, “.sr¢”, and “.sim” DVS30 input
files. The ".das” file is used to define the input pattern generation channels. It identifies
the input pin or input vector by searching the ".ntk” file to determine whether i1t is an
input or output pin. The first pin name after the command vector is checked and, if that
pin is an input pin. then the vector is an input vector. The input array of pin names is
developed from the vector assignment and the set and force commands. Remember, ail
input pins that are to be used in the DVS50 program must be defined prior to the first
cvcle statement. This is because at the first cycle statement the array of input pin names
is sequentially listed to the “.das” file, with one pin name in each row. Figure 24 on page
215 an example of a ".das” file. Each of the input pins is presented to the user by the
interactive translator program. The user must be able to determine whether the input

pin should be used for the translation and if the pin should also be monitored. The
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>read CR_chip.ntk
#1
1386 nodes, 2939 transistors, 0 blocks
>
>initialize
>clock clk:010
>vector ins inl in2 in3 in4 inS5 in6 in7 in8 in9
inl0 inll inl2 inl3 inl4 inlS5 inlé6

>vector control datacon maskcon refcon tstcon
>vector misc spcon outcon
>vector outs out5 out4 out3 out2 outl
>vector outl padout ststout bmsbout
>watch /* outs outl
>watch /* ins clk
>
>comment load reference data
>force ins:1111111111111111
>force control:1000
>force padin:1
>force misc:11
>cycle 1

1.1| outs:00000 outl:100 ins:1111111111111111 cik:0

1.2] outs:00000 outl:100 ins:1111111111111111 clk:1

1.3} outs:00000 outl:100 ins:1111111111111111 clk:0

Figure 23. NPS CORNSS8 MOSSIM II Simulation Program

monitoring of the input pin will enable the user to display the input pattern during the
display of the test results.

Once the pin names have been defined, the values assigned to each input pin
name are determined by examining the force or set command for the vector or input pin
defined. These values are also stored in an array of input values and, when the cvcle
command is reccognized. the input pattern array is listed to the ".das” file as one row.
The only remaining value to define in the “.das” file is the clock. The clock pins are
handled by the DVS50 program as just another set of input pins. For each cvcle of the
network the translator produces the same number of input patterns as there are phases
in the clock. For example, if there is a three phase clock, the ".das” file produces three
rows of binary data for each cvcle of the network. The pin names assigned to the
clocking scheme are added to the input pin list directed to the ".das” file and the clock

phase value is appended to the row of input values.
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CHIP

1

1

24
PADIN
IN16
IN15
IN14
IN13
IN12
IN1l1
IN1O
INS

IN8

IN7

ING

IN5

IN4

IN3

IN2

IN1
DATACON
MASKCON
REFCON
TSTCON
SPCON
OUTCON
CLO
111111111111111111000110
111111111311111111000111
11111111111111311100C110

Figure 24. MOS2DAS ~.das” File

The remaining inputs to the ".das” file are the first four lines of the input file.
The first row of the file is the program name and that is obtained from the interactive
translator program. The second and third row of the ".das” file are any two integers.
The fourth row is the number of pins in the input array in the “.das” file.

The ".sim” file is used to compare the output of the MOSSIM II simulator with
the output from the DAS 9100 test system, “.A01”. The pin names defined in the ".sim”
file. as noted in the example of Figure 25 on page 64, are derived from the data acqui-
sitic 1 assignments requested in the interactive translator program. Each of these pins
in the ".sr¢” program that have the attribute of "ACQ" assigned will be listed to the

“.sim” file. When the pin names have been identified, the translator will search both the




input pin values using the set and force key words and the output line of the simulator.
Each line of output will list a row of binary values to the ".sim” file. Except for lines two
and three, the first four lines are similar to the “.das” file. Lines two and three in the
“.sim” file are timing data that was obtained from the ".src” file.

One difficulty with producing a ".sim” file is that the MOSSIM II and DAS 9100
svstem sample the output data at different times. DAS 9100 samples the data at the
leading edge of the pattern generator clock, and MOSSIM Il samples the data after a
phase is complete. This sometimes results in a one phase delay for the output to be
observed by the DAS 9100. Figure 26 on page 65 illustrates the sampling differences
between the two programs and demonstrates the need to implement a one phase delay
of the MOSSIM II output to align the data. NPS CORNSS is an example of this output
misalignment. To properly align the two output files the MOS2DAS translator is able
to install a one phase delay in reporting the MOSSIM Il output. During the interactive
program the user will be asked if a phase delay is required, with the default value of a
delav inserted. 11, on comparison of the outputs, it is determined that a phase delay is
not required, then the user will run the MOS2DAS translator again asking for no delay.

While the MOSSIM Il program will identifv syntax violations the MOS2DAS
translation program will verifv operational limitations imposed by the DAS 9100 module
set up. The current configuration allows 31 input pins and the ability to acquire data
on 31 pins of interest. This is because one channel from the data acquisition module is
connected to a channel on the pattern generation module to facilitate synchronous tim-
ing between the two modules. The MOS2DAS translator will check the requested input,
“PAT". and output ."ACQ". pin names prior to listing the pin names to the files and

-ifv that the maximum number of input and output pins have not been exceeded. If
the input or output pin count exceeds the limit, the user is prompted with an error
message from the translator. This feature of the MOS2DAS program is easily modified
when the module configuration of the DAS 9100 tester changes.

As mentioned earlier, the “.src¢” test program file supplies the DVS50 program
with the pin assignments, assigns an attribute to each pin identified, sets up the defi-
nition of clock rates, determines the voltage threshold value for the circuit, and indicates
the specifications for the power supply. This “.sr¢” input file, Figure 27 on page 66. is
generated by an interactive part of the MOS2DAS translator program. The program
lists all the pins defined in the MOSSIM II simulation program and asks the user to pick
an attribute and list the actual pin number on the fabricated chip. The output pins that

were 1dentified in the MOSSIM 11 program will automatically be assigned the attribute
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CHIP
100
100
31
OuT?2
OuT1
PADIN
PADOUT
STSTOUT
IN16
IN15
IN14
IN13
IN12
IN11
IN1O
INO
IN8
IN7
ING6
INS
IN4
IN3
IN2
IN1
DATACON
REFCON
MASKCON
TSTCON
BMSBOUT
OUTCON
OUT5S
OUT4
ouUT3
CLO
001101311113131113331131311310001100
0111011111111111111111100101101
0111011111111111111111100101100

Figure 25. MOS2DAS ”.sim” File

of "ACQ", if monitoring is desired, and the input pins will be assigned "PAT" with an
option of also assigning the attribute of "“ACQ" to these pins. It is wise to monitor cach
pattern generator input line to display the pattern being generated. The power supply
pins are not included in the MOSSIM II program and the user will be prompted to
provide the names. pin assignment and supply voltages. Ajl other inputs required {rom

the user are requested for interactively with the valid options provided. When the “.sr¢”
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DAS SAMPLE MOSSIM SAMPLE

-~
~. P

~ i P dd
DAS 9100
CLOCK — E ||

MOSSIM
CLOCK

INPUT |

OUTPUT /

PRI IS N S

SAMPLED
OuTPUT

DAS 0 0 0 0 1 1 1 1 1
Mossm 0 o O 1t 1110

Figure 26. DAS 9100 and MOSSIM Sampling Differences

and ".das” input files are compiled by the DVS30 program a channel specification listing
will be generated to define the connections between the DAS 9100 and the DUT. The
DVS50 has the ability to control tri-state channels but that capability is not supported
by the MOS2DAS translator. [For further information on the tri-state function of the

DVS30 consult the Y1DVS user manual [Ref. 20.pp. 7-1,7- 4.

C. OPERATIONAL SHELL

A UNIX C-Shell program. "MOS2DAS", was written to control the interactive [ile
manipulation required by the translator. This executable file, along with the “mostral”
Fortran program. is located in the UW_TOOLS directory and is executable by anyv user
that has access to the MOSSIM 11 simulator. This UNIX C-Shell program. Figure 28
on page 63, uses several UNIX utilities to manipulate the files: awk, grep, and diff. The
user invokes the MOS2DAS translator by typing the following command at the UNINX

prompt: mos2das < .ntk> < .cpv>.

jo
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PROGRAM chip;

PINDEF;

vCC 1,
ouT?2 2,
QUT1 3,
PADIN 4,
PADOUT : 5,
STSTOUT : 6,
IN16 :10,
IN15 :11,
IN14 :12,
IN13 :13,
IN12 : 14,
IN11 : 15,
IN1O : 16,
INS :17,
INS :18,
IN7 : 19,
ING6 : 20,
INS : 21,
IN4 122,
IN3 : 23,
IN2 : 24,
IN1 125,

DATACON :26,
REFCON :27,
MASKCON :28,
SPCON :30,
TSTCON :31,

GND :3

BMSBOUT :36,
OUTCON :37,

QUTS : 38,
oUT4 : 39,
QuT3 :40,
CLO : 29,
END;
TIMEDEF;

* Clockrate Pattern Generator.
PAT : ns 100;

PS 2;
ACQ;
ACQ;
PAT,ACQ;
ACQ;
ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT ’ ACQ H
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT,ACQ;
PAT;
PAT,ACQ;
PS 1;
ACQ;
PAT,ACQ;
ACQ;
ACQ;
ACQ;
PAT,ACQ;

2 : mvy 5000, mA 3000;

END;

THRESHOLD;

* Threshold for
ACQ : TTL;

END;

PSDEF;

* Definition of
1l :mv 0,

END;

BEGIN;

ENDS$S

Power Supply.

Acquisition Module.

Figure 27.

MOS2DAS “.sr¢” File
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4 this is the beginning of all C Shell programs

4 this checks if there are two auguments

if( S#argv '= 2)then
echo "usage: ntk2das <file.ntk> <file.cpy>"
exit

endif

set ntkfile=$1
echo S$ntkfile:r
echo $ntkfile:r.cpy
#check to see if the input file is a valid ntk file
if(! —e $ntkfile ) then
set ntkfile=$1l.ntk

if( ! —e $ntkfile)then

echo "cannot find the file $1 or $1l.ntk"
exit

endif

endif

#check to see if the input file is a valid mos copy file

set mosfile=$2
if(! -e Smosfile ) then
set mosfile=$1.cpy
if( ! —e Smosfile)then
echo "cannot find the file $1 or $1.cpy"
exit
endif
endif

4 convert the files to be used for the translator
egrep _i $ntkfile | awk '{print $2 }' > ntkin.dat
egrep s $ntkfile >poutl

egrep _ $ntkfile >pout2

diff pout2 poutl > pout2

egrep '> s' pout2 | awk '{print $4}' > ntkout.dat
mostral

cp mos.das $ntkfile:r.das

cp mos.src $ntkfile:r.src

cp mos.cmp $ntkfile:r.sim

rm mos.das mos.src mos.sim

rm poutl pout2 ntkin.dat ntkout.dat

Figure 28. MOS2DAS C-Shell Operating Program

The C-shell program then checks to insure that these files are valid files in the di-

rectory and then renames the ."ntk” file to “transin.dat” for input to the "mostral”
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translator. These utilities search the “.ntk” file that has been defined by the user and set

up a file of input pin names and a file of output pin names. These file names are

“ntkin.dat” and “ntkout.dat” respectively and are used by the “mostral” Fortran program

as input files. Now that the input files have been specified for the “mostral” translator

that executable program is called. The "mostral” program lists the ".das”,

“.src”, and

“sim” files into the temporary files “mos.das”, “mos.src”, and "mos.sim” respectively.

These files are then copied to the original file name with the new file extension of “.das”,

“sr¢”, and”.sim”.

complete.
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V. CONCLUSIONS

A. SUMMARY

This thesis validated the engineering methodology to produce a full custom, fully
tested, VLSI chip from an original design using Naval Postgraduate School assets.
During this validation process several elements of the design and testing phases were
noteworthv.

The first, and most important, element is the relationship between the design engi-
neer and the test engineer. These functions, while at NPS, are often performed by the
same individual, but, in the testing of NPS CORNSS, the circuit design engineer and the
testing engineer were not the same individual. This separation of responsibilities more
closely duplicates industry’s design and implementation of a full custom chip. When the
responsibilities for producing a functional chip are shared. these kev individuals must
be involved from the initial design phase through the testing phase. Operating parame-
ters and specifications must be defined for both the circuit design engineer and the test
engincer. NPS CORNSS was a completed functional design with only an overview of
the functions and capabilities provided. This made the testing strategy for the design
difficult and could have lead to the development of invalid test routines.

Two MOSSIM II test routines were developed for NPS CORNSS at the functional
design validation level. One test vector sequence produced 2'¢ 16-bit vectors, to dupli-
cate all possible input values, and the second test sequence produce a greatly reduced
subset of those vectors. Neither of these tests identified any problem with the circuit
design. When the fabricated chip was tested with the DAS 9100, an error in an output
pin was discovered. This reduced set of vectors was again run on the final design that
was sent to fabrication. The error that appeared in the fabricated chip was duplicated in
the circuit design simulation. This could onlv occur if some modification of NPS
CORNXNSS has been done after the "final” testing. It is obvious that final testing must
be accomplished after the final design is complete and just prior to sending the design
mask to fabrication.

The concept of partitioning the design to allow for additional observability within
the circuit also proved useful. When the error was identified during the testing of the
fabricated chip. the fault was isolated to the final adder section. This was done by ob-

serving the outputs of the test register and the most significant bit from the combiner.
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This was useful in the subsequent localizing of the error in the circuit design. While it
1s important to increase the observability of a VLSI chip, the primary limitation that is
now associated with chip development is the limited number of pins in the fabrication
package. When a srandard frame package is used for fabrication, it is incumbent on the

circuit designer and test engineer to utilize any extra pins to improve observability.

The advantage of using MOSIS to produce a limited number of chips for a new

circuit design is also obvious. Being able to produce a small number of VLSI chips to
verify the design and fabrication process greatly reduces the financial and schedule risk
of large scale production.” For a small expense, $1400, and a modest six week fabrication
schedule, twelve prototype VLSI chips were produced. The error that was discovered
during the testing of these fabricated chips would have been very costly if this had been
a large full scale production.

The engincering methodology for the design and production of a full custom VLSI
chip i1s well defined and adequate, but it requires knowledge of a CAD tool, MAGIC.
the MOSSIM Il simulator and the interface between the two major components. The
flexibility that is gained by using the MAGIC lavout editor and various simulator mod-
els 1s over shadowed by a silicon compilation syvstem that controls the entire design and
testing process.

The DAS 9100 series tester as a stand-alone system is a capable and reliable digital
analvsis tool. A broad-based knowledge of the capabilities and testing procedures are
required before even the simplest test is performed. Another limitation of this svstem
revolves around the kevboard entries that are required to set up the syvstem and to store
pattern sequences. This Iimitation would be somewhat overcome if the tape recorder
option was purchased to store this data so that the user would not have to reenter it
after every power down of the equipment. However, when the DAS 9100 series tester
1s married to the 91DVS, and the DVS30 program the svstem is user friendly and easy
to use for even the most inexperienced test engineer. This digital analysis package is
capable of generating comprehensive test pattern vectors and displaving the results for
analysis or comparison. The development of a translator, MOS2DAS, to convert
MOSSIM I test vectors to the two programs needed by the DVS50 makes the test en-

gineer job more efficient.

B. RECOMNMENDATIONS
The current configuration of the DAS 9100 supports up to 32 data acquisition

channels and 48 channels for pattern generation. This adequatelv tests a 40 pin VLSI
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chip. An additional 91A32 data acquisition module should be purchased ($5,480) to im-
prove the VLSI data acquisition to up to 64 pins. If the DAS 9100 is envisioned to
operate as a stand-alone tester, the addition of a tape 1ecorder module would be con-
sidered esseatial. If the DAS 9100 continues to operate with the DVSS0 software the
addition of a tape recorder is not necessary. The current power supply configuration for
the DAS 9100 only supports one set of voltages. Because there are many power supplies
at NPS that could easilv be added to the DAS 9100 system the purchase of the power
supply module is not recommended.

Additional suggested research topics or projects are providing a translator from the
GENESIL silicon compiler to DVSS0 user programs and modifving the DSV50 software
to allow the user to print a graphic display of digital waveform results. The current
method is to capture and print the screen with a utility and that provides only moderate

resolution.

C. BENEFITS

The benefits of this research were foui-fold. A verv thorough understanding and
appreciation of the methodology for producing a custom VLS! chip with the MAGIC
lavout was gained and presented to the reader. The digital test facilities at NPS were
examined. discussed, and a testing methodology was presented. Being able to follow a
MAGIC circuit design, NPS CORNSS. from design to testing of the fabricated chip was
truly gratfving.

This thesis developed two tools that are related to the NPS digital analyvsis test fa-
cilitv.  The MOS2DAS translator will allow the digital test engineer to concentrate on
the development of MOSSIM 11 test vectors. The vectors that functionallv validate the
circuit design can be translated to the DVS30 input format, saving the test engineer time
in testing the fabricated chip. Finaliy, the new user will find an introduction to the \PS

digital test facilies in the tutorial provided in Appendix A.




APPENDIN A. NPS DIGITAL TEST FACILITY TUTORIAL

A. PURPOSE

The purpose of this tutonal is to provided an examination of the digital test facilities
(DTL) at the Naval Postgraduate School (NPS). These test facilities at \NPS include a
digital analysis svstem, Tektronix DAS 9100 series tester, controlled by the device ver-
ilicavion <oftware (DVS30) installed on a personal computer (PC). While the DAS 9100
series tester cun be operated as a stand-alone tester, the NPS configuration includes the
link to the DVSS0 software, and that will be the configuration discussed in this tutorial.

Tias tutonal will provide an overview of the capabilities and limitations of the digital

test ot Addionally, it will wee the arithmetic logic unit (ALUILST) as a vehicle
o tenow e ety methodology. Upon completion of this tutonal the user will be able
tooconeos o che anput hiles for the DVSS0, set up the device under test (DUT), and
noeiener o sohthe menus provided by the DVSS0 program to compile and run u test,
Gl LTl b testoresults,

B. CAPABILITIES AND LIMITATIONS

A hret discassed i the preceding section, the DT i« composed of many units. Lach
ol these corponents provide some capabilities as well as some Jimitations. The D711 1«
compinned of tiie Tertromx DAS 9100 sertes tester, DVSS0 software on a PC host, a
poter supplvsand @ test g The heart of the svstem is the DAS 9106 vhich performs
the Tuncrens of Gt acquisition from and pattern generation to a DUT. The capabilities
ol the DAS “lon are dlenibie, based on the modules that are mstalled in the DAS
niintrianie. The current configuration can support 32 channets of data acquisition and
4N chunels of pattern generation. The installed modules also set the timing capabilities.
The current configuration can support @ timing rate from J0nS to SmS or 4 maximum
rate of 23N/ The DAS 9100 sets up the connectivity to the DUT and controls the
cocking of the svatem.

Lgually important to the DT 16 the DVS30 software, hosted on a personal com-
puter collocated with the DDAS 91000 This software is menu driven and uses the file
generation files “ard’oand the test pattern file, ".das”, to control the DAS 9100, 1f the
heart of the DT as the DDAS 9100, then the brains of the svstem is the DVS30 software.
The two components are connected with a general parpose interiace board.  The

Lnti. o of uane the DVSS0 coftware 16 the pattern generation dlock and the data




acquisition clock are tied together and can not be run at separate speeds. Additionally,
this clocking scheme takes one data acquisition channel and one pattern generation
channel, so the current system is hmited to 31 channels of data acquisition and 47
channels of pattern generation.

The power supply provides for 5 volts at 3 amperes. This restricts the current con-
figuration to TTL logic levels, but the svstem can easily be configured to handle addi-
tional power supplies if necessary. The test jig was designed and manufactured to make
connecting the module probes to the chip easier. The test jig can handle up to a 40 pin
chip, but the test jig could be expanded. In summary, the DTF offers an excellent tool
to test digital chips and the capabilities and limitations are summarized below.

e 31 DATA ACQUISITION CHANNELS

e 47 PATTERN GENERATION CHAXNNELS

e JOnS-3mS CLOCK RATE

e TTL OR ECL LOGIC LEVEL

e POWLR SUPPLY ONLY 3 VOLTS AND 3 AMPERES
e TESTJIG SUPPORTS UP TO 40 PINS

C. DVS30 INPUT FILES

The two files that are required by the DVS30 software are the “.sr¢” and the ".das”
files. The ".sr¢” file gencrates the configuration {or the DAS 9100 and the “.das” file
contains a description of the test sequence pattern to be generated. The arithmetic logic
unit model 18T, ALUIST. will be used to demonstrate the functions of cach of these files.
The ALUIST performs 16 binary operations on two 4-bit words. Figure 29 on page 74
was assembled from a TTL Landbook [Ref. 21) and the addition of two d-bit words will
be the operation implemented.

The “.sr¢” file gencerates the configuration to the DAS 9100 and the “.das” file gen-
erates the pattern to the DAS 9100. A third file that can be used by the DVSS0 program
is the ".sim” file that can be used to compare the test results. These files must be created
prior to entering the DVS30 test menu. This can be done in three wavs, as outhined in
Figure 30 on page 75. The first was is to generate the files on an editor the user is fa-
miliar with and copy that file from a floppy disk to the working directory, c: dvstest chip.
The second method of producing a file 1s to create it on the VAX and use the \NI'T
transfer method between the VAN and the PC. The third method is to access the edioor

after being in the working directory. The two editors that are available to that working




Connection Diagram Pin Designations
INPUTS aureyts
- DESIGNATION | PIN NOS. FUNCTION
Vie A1 81 A2 B2 Al 8} G Chg P AW £
J , l ' l ' , ' I l A3 A2. A1 A0 | 19.21.23.2 WORD A INPUTS
21 il 20 19 18 1m 6 4 1
2 L LIS LI 83.82.81.80 | 18.20.22.1 WORD 8 INPUTS
FUNCTION-SELECT
$3.52.51.50 3.4.5.6 INPUTS
C. 7 INV CARRY INPUT
MODE CONTROL
M 8 INPUT
FI.F2.F1 FO [13,11.10.9 FUNCTION OUTPUTS
A=B 14 COMPARATOR OUTPUT
p s CARRY PROPAGATE
ouTPUT
1 2 ] 4 $ L} ? 1 9 1 11t 12
| ! ' I l I Crva 16 INV.CARRY QUTPUT
80 A0 S3 S2 St S0 C, M FO FI F2 GNO CARRY GENERATE
~ G
INPUTS ouTPUTS 7 OuTPUT
Vee 2 SUPPLY VOLTAGE
54181(J); 74181(4), (N) GND 2 GROUND
NUMBER PACKAGE COUNT CARRY METHOD
OF TYPICAL ADDITION TIMES | ARITHMETIC/ LOOK AMEAD BETWEEN
BITS LOGIC UNITS | CARRY GENERATORS ALY
1104 20 ns 1 ] NONE
518 30 ns 2 [ RIPPLE
91016 20 ns 3or4 1 FULL LOOK-AHEAD
17 t0 64 50 ns Sto 16 2105 FULL LOOK-AHEAD
‘i "I‘ "”‘ "l‘ "l“ av "I' e ACTIVE HIGH DATA
N R SELECTION :ﬂo;:-:: M = L; ARITHMETIC OPERATIONS
i1, gl <y =L
s3 s2 St S0 ] FuncTiONs Cn = H (no carry) Ca = L twnth carry)
w acap—nt -
L L L L F=A Fe=A F=APLUS
»—t—w L L L H F=A<+8 FepA+B Fe(A«BIPLUS !
LA B2 .- N A L L H t| r=he F=A+B Fe(A+BIPLUS Y
r | l L L H M| Fso F = MINUS 1(2's COMPL! | F = ZERO
" ng [11] iy (11 " 18 — — -
L H L L | F=AB F = APLUS AB F = APLUS AB PLUS
L H L H F=8 F = (A= B)PLUS AB Feia« B PLUS ABPLUS!
N 7Y T Rt TR I TR L H H t FeA (@ B8 | F=AMINUSBMINUS I F=AMINUSSB
| | | 1 | L H H H| F-aB F = AB MINUS 1 F=AaB
I ) H L L L F=A+B F e APLUS AB F= APLUS AB PLUS 1
L aant} Mot L H FauA 3B | F=APLUSB F=APLUSBPLUS !
Lo« 0208 5102 H oL H L Fu8g F = (A+ B} PLUS AB F=ia+B1PLUS AB PLUS !
h
! W L H H| F=aB F = AB MINUS 1 F=AB
. o P i S LR T IO FsAPLUS A FeAPLUSAPLUS 1
T T T H H L H| F=a+B Fe(a+B)PLUSA F=(A+B8)PLUS APLUS
e s 0 K H KL FaA+B F=iA+BI PLUS A FeiA+BIPLUS APLUS
L] L] H H Fep FeaAMNUS Y F=A
FIGURE 1
*Each b1t 13 shifted to the next more significant position.
Figure 29. ALUIS8I Specifications
directory are KEDIT and EDLIN. Whatever method is used to generate the files, thev

must be located on the working directory puior to entering the DVS30 program and they

should be removed {rom the working directory after the testing 1s complete.




c\v»
C:\>CD GRAFPLUS
C\GRAFPLUS>GRAFPLUS
1 - PRINTER
. 0 - SCREEN SET UP GRAFPLUS
N - TEXT TO BE ABLE TO
N - COLOR PRINT DISPLAY
- N - REVERSE
Y - HORIZONTAL
C:\GRAFPLUS>CD ..
cv»
C:A>CD DVSTEST\CHIP GO TO WORKING
CADVSTEST\CHIP> DIRECTORY
IF FILES LOCATED ON A DRIVE:
copy e:fllenm #
IF FILES ARE ON VAX: WHERE ARE THE
USE NFT COMMANDS DVS50 INPUT FILES?
IF NEED TO MAKE FILES:
KEDIT FILENM SRC
CADVSTEST\CHIP>\DVS50ADVS50 ﬁg: bvsso

Figure 30. DOS Commands and File Directory Flow

The “.sre” file that was used for testing the ALUISI chip is illustrated in Figure 31
on page 77, This file will 1denufy the program name. pin names, pin number assign-
ments, attribute assignments to the pins. clocking rates. power supply requirements, and
required logic level. Theillustrated file is straight forward, but some comments are in
order to clarifv some of the options. The attributes thut can be assigned to the pin. for
this example. are either the "PAT", "ACQ". or "PS". The "PAT" auuribute identifies that
the pin will be an input pin and a pattern channel is reserved by that name. The "ACQ~
attribute delineates a data acquisition channel. [t is important to monitor. acquire,
pattern generation channels to observe these channels on the displaved results. The "PS”
attribute 1ndicates that the pin 18 a power supply that will be defined latter in the

“PSDIF" section.  The other sections are self explanatory except for noting that the

ti




power supply parameters must be given in mullivolts and milhamps. The ground must
be defined as 0 mV tor this section to be complete.

The ".das” file defines the test sequence pattern to be generated on the input pins.
Figure 32 on page 78 illustrates the “.das” file that generated the patterns sequence for
the ALUISI chip. The first line identifies the name of the chip and the next two lines
can be any two integers. The fourth line indicates the number of input pins, and that
is followed by each row containing a pin name. Each pin name corresponds to a pattern
column that appears after the last pin name. For example, the first pin name is “B3” and
the binary value in column one of the test sequence is assigned to that pin name. The
last pin name will correspond to the last column in the test vector sequence. Values for
the test sequences were developed to test several combinations of input values and to
force the various combinations of output results.

The ".sim” file in Figure 33 on page 79 is similar to the ".das” file but it contains all
the pin names that had the attribute of "ACQ" in the “.sr¢” file. The onlyv difference is
lines two and three which indicate the clocking rate of the circuit. The intention of this
file is to prepare the expected results prior to the test and then compare the actual results
to the calculated “.sim” file. This can be done during the display test feature of the
DVS30. Once these files have been written the DVS30 menu driven program will be en-

tered to test the chip.

D. TEST PROGRAM COMPILATION

The DVS30 1s a menu driven interactive program that uses “.das” and ".sr¢” files to
generate test patterns and control the DAS 9100 tester. The command to enter the
DVS30 program 1s: "dvs30 dvs307, illustrated in Figure 30 on page 73. The first menu
that is encountered is the Main Menu and is illustrated in Figure 34 on page S§1. To
select a menu in this main menu move the cursor with the arrow kevs and use <enter>.
The Help menu will assist the new user in a brief summaryv of each menu item. The
Update Configuration File controls the configuration, but the DVS30 is set up for the
current configuration and this menu need not be entered.

The first menu usually entered is the Compile Test Program menu. After selection
of this entry the program will prompt the user for the “.sr¢” and “.das” files of the pro-
gram to be run. The program will then compile these files and generate the DAS 9100
configuration and create a channel specification file. If the “.sr¢” and “.das” files have
becen previously compiled and the test programs saved, then the test program can be re-

stored by the Restore Test Program menu.




PROGRAM ALU181;
* test of the aritumetic logic unit 74xx181

PINDEF;

* pin description

BO : 1, PAT, ACQ;
AO : 2, PAT, ACQ;
S3 3, PAT, ACQ;
S2 4, PAT, ACQ;
S1 : 5, PAT, ACQ;
SO : 6, PAT, ACQ;
CIN : 7, PAT, ACQ;
M 8, PAT, ACQ;
FO : 9, ACQ;

Fl : 10, ACQ;

F2 : 11, ACQ;

F3 : 13, ACQ;

AEQB : 14, ACQ;

P :-15, ACQ;

CouT : 16, ACQ;

G : 17, ACQ;

B3 : 18, PAT, ACQ;
A3 : 19, PAT, ACQ;
B2 : 20, PAT, ACQ;
A2 : 21, PAT, ACQ;
Bl : 22, PAT, ACQ;
Al : 23, PAT, ACQ;
GND : 12, PS 1;

VDD : 24, PS 2;

END;

TIMEDEF ;

* Pattern Generator Clock Rate.
PAT : ns 200;

END;

THRESHOLD;

* Threshold for Acquisition Modules.
ACQ : TTL;

END;

PSDEF;

* Definition of Power Supply.
1 :mv 0;

2 : mv 5000, mA 3000;

END;

BEGIN;

ENDS$

Figure 31. ALUI1S81 ".sr¢” File
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ALU181

1

1

14

B3

B2

Bl

BO

A3

A2

Al

A0

CIN

M

S3

S2

S1

SO
00000000101001
00010001101001
00100010101001
01000100101001
10001000101001
10010111101001
11001100101001
10011001101001
11111111101001

Figure 22.  ALUI8I “.das” File

E. DUTSETUP

Once the ".sim” and “.das” input test files have been compiled the information menu.
Figure 34 on page §1. is entered to determine the channel specification definitions. [t
is recommended that the Printing item be selected first by pressing enter when the cursor
1s at that position. This will toggle the printing from disabled to enabled. Then sclect
the channel specification entry, and the results will be printed. If nothing happens.
check to sce if the printer cable is connected to the PC that is the host to DVS30. The
channei specification list gives the trigger, clock. pattern and data acquisition con-

nections to the DUT. With the ALUIST channel specification. Figure 33 on page 83,
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ALU181

1

1

19

B3

B2

Bl

BO

A3

A2

Al

AQ

CIN

M

S3

S2

S1

S0

CouT

F3

F2

F1

FO
0000000010100110000
0001000110100110010
0010001010100110100
0100010010100111000
1000100010100100000
1001011110100100000
1100110010100101000
1001100110100100010
1111111110100101110

Figure 33. ALUIS1 “.sim” File

the lavout of the test jig. Figure 37 on page 85, and the module lavout, Figure 3S on
page §6. the user can connect the modules to the DUT.

Certain procedures need to be followed to ensure that damage is not done to the
DUT or the DAS9100. Power will remain off during the entire set up procedure. The
following steps are recommended for connecting the DUT, but thev need not be ac-
complished in the order stated:

o #HHEEENSURE THAT THE POWER SUPPLY IS OFF##nss

¢ (Connect the grounds for the modules;




« two pomona hook clips for data acquisition

= two wires, black and green, from the pattern generator

= one pomona hook clip from the external clock

Connect power for the pattern generator module, red wire to +5V

Install the two 12 pin resistor pads and install them next to the 40 pin easy out,
with the wire connected to pin 12, gnd, and pin 24, Vdd.

Connect power and ground to the chip.

« Connect a red wire from + 5V to row D, pin 24 of the test jig.

» Connect the capacitor between rows E and F of pin 24.

» The ground is connected with a small black jumper from row A to B on pin 12.
Hook up the trigger.

« Pattern generator 1B STB-1, probe 8, is connected to Acquisition channel
SD7-1.

« Use the jumper pin connections and ensure the reference side of the pattern
generator connected to ground.

Hook up External Clock.

« Clk! {black wire). 7C-CLK1, to pattern generator, 1B-CLK4 jumper pin con-
nections

» connect anyv ground to the reference side of the pattern generation probe.

Install the ALUI1ST chip in the 40 pin connector. Ensure pins I and 24 are closest
to the power supply connections.

Connect the pattern generator probes to rows C and D of the appropriate pin

Connect the data acquisition probes to A.B and E.F of the appropriate pins. En-
sure that the reference line is to the outside of the test jig.

F. RUNNING THE TEST

Once the DUT is hooked up. turn the power on the DAS 9100 series tester. Then

enter the Enter Test Menu illustrated in Figure 36 on page 84. Once in the Test menu

select Run Test and then turn on the power supply when prompted by the program.

The DVS30 program will download the channel specifications and the test pattern se-
quences to the DAS 9100. The DAS 9100 will then run the test on the DUT, ALUISI,
and then upload the acquired data to the DVS50 program. When this data transfer is

complete, the DVS50 program will prompt the user to turn the power supply power off.

This is necessary because the podlets, the small circuit boards at the end of the pattern

generation probes, gencrate heat.
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i1 Help
Compile Test Froaram
nestore Test Frogram
Save Test Frogram
Information
Enter Test Menu
Update Contiguration File
Displav Test Data
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Figure 34. DVSS0 Main Menu
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Once the power supply is turned off, return to the Main menu and then enter the
Display Test Menu illustrated in Figure 36 on page 84. The program prompts for the
“.A01" and the ".sim” files. The ".A01” file contains the results of the test run by the
DAS 9100. The “.sim” file is developed by the user that includes the expected circuit
results. If no “.sim” file has been produced, then press the space bar and <enter> to
indicated no additional file is to be compared.

The waveform in Figure 39 on page 87 is the display from the two 4-bit word ad-
dition test of the ALU181. This display can contain 24 pin names and corresponding
waveforms. The display window can be expanded, compressed, or moved to a different
time in the test sequence. Figure 40 on page 88§ lists the additional commands available
to modifv this screen. The only way to print out the displayv is to invoke the print screen
utility after the GRAFPLUS program has been installed. This installation must take
place before entering the DVSS0 Main menu. The commands for installing the
GRAFPLUS utility are located in Figure 30 on page 75. Examination of the displaved

test results should indicate that the ALUI81 performed as designed.

G. CONCLUSIONS

" The combination of the DAS 9100 and the DVS50 program offer the user a powerful
digital analysis tool. A chip with up to 40 pins with TTL logic can be tested by gencr-
ating test sequence patterns and acquiring data on 31 channels. The ALUIS| demon-
strated the tesung methodology and verified the steps necessarv to conduct a test.
Further information about the DVS3S0 program and the DAS 9100 series tester can be
obtained from the 91DVS User’'s Manual [Ref. 20] and the DAS 9100 Operator’s Man-
ual [Refl 12].




ATTENTION

Connect the DAS-PODs to the pins of the DUT
according to the following list.

Take care - incorrect connections may cause
permanent damage to the DAS-PODs or the DUT !

IR RS EEEEEESEEESERESEEREL S E LSS ST RS R ESEEE RS R ERE R EEEESEEE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*

Trigger

channel(s): PG—-POD

1B-STB-1

ACQ-POD

*
*
*
5D7-1 *
*
*
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*

ACQ clock channel(s): PG-POD EXTCLK-POD *
*

1B-CLK-1 7C—CLK1-1 *

*
*********************'k****‘k**‘k**'k*******}******************
*

NR: NAME PINNUMBER POD(S) *
*

PG ACON ACQF other *

1 BO 1 1B7-1 5D6-1 *
2 A0 2 1B6-1 5D5-1 *
3 S3 3. 1B5-1 5D4-1 *
4 S2 4 1B4-1 5D3-1 *
5 81 5 1B3-1 5D2-1 *
6 SO 6 1B2-1 5D1-1 *
7 CIN 7 1B1-1 5D0-1 *
g8 8 1BO-1 5C7-1 *
9 [ 9 5C6-1 *
10 F1 10 5C5-1 *
11 F2 11 5C4-1 *
12 F3 13 5C3-1 *
13 AEQB 14 5C2-1 *
14 P 15 5C1i-1 *
15 COuT 16 5C0-1 *
16 G 17 5B7-1 *
17 B3 18 1A7-1 5B6-1 *
18 A3 19 1A6-1 5B5-1 *
19 B2 20 1A5-1 5B4-1 *
20 A2 21 1A4-1 5B3-1 *
21 Bl 22 1A3-1 5B2-1 *
22 Al 23 1A2-1 5Bl1-1 *
23 GND 12 PS1 *
24 VDD 24 PS2 *
*

RS SRR ESEEEEEEESERESESSELESRERSEEEEEEREEEEEREEREEERE LRI DR EEI

Figure 35.

ALUI181 Channel Specifications
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Figure 36. DVS50 Test Menu
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Figure 38. Physical Location of the Modules
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APPENDIX B. MOSTRANS TRANSLATION PROGRAM

This Appendix contains the "MOS2DAS" shell program that controls the file con-
version process for the “mostral” Fortran program that translates the MOSSIM I
program to DVS30 input programs. The “MOS2DAS" program requires the ".ntk” and
“.cpy” files as input files and checks to see if they are valid files. The shell program then
converts the “.ntk” file into an input and output pin list, NTKIN.DAT and
NTKOUT.DAT. These files and the “.cpy” file renamed "CHECK" are used as input
files for the "mostral” Fortran translator program.

The “mostral” program will read the "CHECK"” program one line at a time and look
for the kev MOSSIM Il commands. This program also generates an interactive session
with the user to define the desired pins, pin numbers, power supply definitions, and
timing requirements. The translator will then examine the "CHECK" file and converts
it to the "MOS.DAS”, "MOS.SRC", and "MOS.SIM” DVS30 input files.

The shell program then renames the translator files to the correct extensions to the

“.nik” file name. The final action of the shell program is to erase all working files.

A. TRANSLATOR SHELL PROGRAM

# this is the beginning of all C Shell programs

# this checks if there are two auguments

if( $#argv != 2)then
echo "usage: ntk2das <file.ntk> <file.cpy>"
exit

endif

set ntkfile=$§1
jicheck to see if the input file is a valid ntk file
if(! -e $ntkfile ) then
set ntkfile=$1.ntk
if( ! -e $ntkfile)then
echo "cannot find the file $1 or $1.ntk"
exit
endif
endif

ficheck to see if the input file is a valid mos copy file
set mosfile=§2
if(! -e $mosfile ) then

set mosfile=$2. cpy
if( ! -e Smosfile)then
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echo "cannot find the file $2 or $2.cpy"
exit
endif

endif

f# convert the files to be used for the translator
egrep i Sntkfile awk '[print $2 ]' > NTKIN.DAT
egrep s $ntkfile >poutl

egrep _ $ntkfile >pout2

diff pout2 poutl > pout3

egrep '> s' pout3 awk '[print $4]' > NTKOUT.DAT
cp Smosfile CHECK

mostral

cp MOS.DAS $ntkfile:r.das

cp MOS. SRC $ntkfile:r.src

cp MOS.CMP $ntkfile:r.sim

rm MOS.CMP MOS. SRC MOS.DAS CHECK

rm poutl pout2 pout3 NTKIN.DA" NTKOUT. DAT
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B. TRANSLATOR SOURCE PROGRAM

CCCCCCeeceeeceececcececececececcrececeeeeeeeeeeeeecceccceeecececceceeceeceeeeeecccecccecce

CcC

PROGRAM MOSTRANS
INPUTS: NTKIN.DAT  INPUT PINS
NTKOUT. DAT OUTPUT PINS
CHECK MOSSIM II .CPY FILE
OUTPUTS: MOS. DAS
MOS. SIM
MOS. SRC
PURPOSE: TRANSLATE THE MOSSIM II .CPY FILE, CHECK, AND

TWO NTK FILES INTO THE THREE DVS50 FILES

LIMITATIONS:
MAX NUMBER OF DATA ACQUISITION CHANNELS
MAX NUMBER OF PATTERN GENERATION CHANNELS
MAX NUMBER OF REPETITIVE CYCLES
MAX NUMBER OF POWER SUPPLIES
MAX PIN NAME LENGTH

dekdkdr TO CHANGE THE MAX NUMBER OF DATA ACQUISTION CHANNELS

CHANGE MAXACQ IN SUBROUTINE SRC
Fdededey TO CHANGE THE MAX NUMBER OF PATTERN GENERATION
CHANNELS CHANGE MAXPAT IN SUBROUTINE SRC

31
47
20

9
10

CCCCCCCCCCCCCCCCCCeeeeeeeeeeeeceeeeeececeeccececececeeeceereeeeececeeecececeece

CCCCCCCCCccceceeeeccaeecceeeeeeceeeeceeeeceecceeceeeeeeccecececceeecceeccceceeece

ccC
CC
CcC
cC
cC
CcC
cC
cC
CcC
cC
cC
cC

ARRAY DESCRIPTION
NTKINPIN(40) INPUT PIN NAMES FROM .NTK FILE
NTKOUTPIN(40) OUTPUT PIN NAMES FROM .NTK FILE
MOSINVEC(20) INPUT VECTOR NAMES FROM MOSSIM FILE
MOSOUTVEC(20) OUTPUT VECTOR NAMES FROM MOSSIM FILE
VPOSIN(20) POINTER TO ENTRY INTO MOSINVEC
VPOSTRT(20) POINTER TO ENTRY INTO MOSOUTVEC
DASINPIN(40) INPUT PIN NAMES TO .DAS
DASCUTPIN(40) OUTPUT PIN NAMES TO .DAS
CHECK(8) HOLDS MOSSIM KEY WORDS
ALINE(80) HOLDS COMPLETE LINE FROM MOSSIM FILE

CC
CC
CC
CC
CC
CC
CC
CC
CcC
CC
cC
CC

CCCCCCLeecceeecceeceeeecceeeececeeeeeceeececceeececeeeecceececeeecceeececcecce

INTEGER I,FSTCHAR,LASTCHAR,IVNUMIN,IVNUMOUT, IVPOSIN, IVPOSOUT
INTEGER VPOSIN(20),VPOSTRT(20),CLKSZ,FSTCYCLE ,CYCLENM,FINCNT

INTEGER NTKIN,NTKOUT, IVWATCH,WPOSTRT(40)

INTEGER VPOSTOP(20),IWAT,WPOSTOP(40),SIMCNT,DASCNT,FSTDEL

INTEGER CLKCNT,DASINCNT
CHARACTER*80 SIMLINE,DASLINE,COMLINE,BLANKS80

CHARACTER*24 WORD,BLANK24,TEMPW,CLOCKNM(10),CLOCKVA(10)
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5

C
60
70

80

90

100

C

CHARACTER*24 CLKNUM,TCLKVAL

CHARACTER*40 DASIN,.PDASIN,DASOUT

CHARACTER*10 INPUT,TENBLNK,WATPIN(80)

CHARACTER*1 OWATVAL(40),DWATVAL(40)

CHARACTER*10 MOSINVEC(20),MOSOUTVEC(20),VWATCH(40)

CHARACTER*10 NTKINPIN(40) ,NTKOUTPIN(40),DASINPIN(40),DASCUTTIN(40) .
CHARACTER*10 SIMNM(40),DASNM(40)

CHARACTER*2 CYCVAL(20)

CHARACTER*1 VCOMLINE(80),WATVAL(40),DELAY

CHARACTER*1 ALINE(80),BLANK :
DATA CYCVAL/'1','2','3','4','s','6¢','7','8"','9","10","11","12",
*'13','14',"15','16","17","18"','19"',"'20"/
DATA BLANK24/' '/
DATA BLANK/' '/

DATA BLANK80/' '/

OPEN(UNIT=10,ERR=950,STATUS='0LD' ,FILE='CHECK')
OPEN(UNIT=11,ERR=950,STATUS='0LD' ,FILE='NTKIN. DAT')
OPEN(UNIT=12,ERR=950,STATUS='0LD' ,FILE='NTKOUT. DAT")
OPEN(UNIT=13,ERR=951,STATUS='NEW' ,FILE="MOS. DAS")
OPEN(UNIT=14,ERR=951,STATUS='NEW' ,FILE="MNS.CMP')
OPEN(UNIT=15,ERR=951,STATUS='NEW' ,FILE="'MOS. SRC')

WORD=BLANK24

INT=0

FSTCYCLE=0

PINLONG=0

NMDEL=0

DO 5 I=1,40 .
DASINPIN(I)=TENBLNK
NTKINPIN(I)=TENBLANK
NTKOUTPIN(I)=TENBLNK

CONTINUE

IVNUMIN=0

IVPOSIN=0

TVNUMOUT=0

IVPOSOUT=0

FSTDEL=0

IWAT=0

OPEN AND READ THE NTK FILES THAT HAVE THE INPUT AND OUTPUT PINS

READ(11,60,END=70)(NTKINPIN(I),I=1,40)

FORMAT(A10)

NTKIN=I

CLOSE(11,ERR=%50)

READ(12,80,END=90)(NTKOUTPIN(I),I=1,40)

FORMAT(A10)

NTKOUT=I

CLOSE(12,ERR=950)

FSTCHAR=0 -
INT=INT+1
LASTCHAR=0

READS IN A LINE FROM THE MOSFILE TO CONVERT




110
cC

CcC
400

410

420

425

460

465

cC
500

READ(10,110,END=950)ALINE

FORMAT(80A1)

LOOKS FOR KEY MOSSIM II COMMANDS

CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
IF(WORD. EQ. '>VECTOR'. OR. WORD. EQ. '>vector')GOTO 40C
IF(WORD. EQ. '>FORCE'. OR. WORD. EQ. '>force')GOTO 600
IF(WORD. EQ. '>WATCH'.OR. WORD. EQ. '>watch')GOTO 500
IF(WORD. EQ. '>CLOCK'.OR. WORD.EQ. '>clock')GOTO 700
IF(WORD. EQ. '>CYCLE'. OR. WORD. EQ. '>cycle')GOTO 750
IF(WORD. EQ. '>QUIT' .OR. WORD.EQ. '>quit')GOTO 999
GOTO 100

VECTOR HANDLING AREA

TEMPW=BLANK24

CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
TEMPW=WORD

CALL TO GET NEXT PIN NAME

CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
CHECK TO SEE IF PIN WAS INPUT OR OUTPUT PIN
AND THAT WILL DETERMINE WHICH VECTOR TO FILL

DO 410 I=1,40
IF(WORD .EQ. NTKINPIN(I))GO TO 420
IF(WORD .EQ. NTKOUTPIN(I))GO TO 460
CONTINUE
PRINT *,'ERROR IN PIN FILE'
GOTO 950

IVNUMIN=IVNUMIN+1
MOSINVEC( IVNUMIN)=TEMPW
IVPOSIN=IVPOSIN+1
VPOSIN(IVNUMIN)=IVPOSIN
DASINPIN(IVPOSIN)=WORD
CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
IF(WORD .NE. 'NOWCRD')THEN
IVPOSIN=IVPOSIN+1
GOTO 425
ENDIF
GOTC 100
IVNUMOUT=IVNUMOUT+1
MOSOUTVEC( IVNUMOUT )=TEMPW
IVPOSQUT=IVPOSQUT+1
VPOSTRT( IVNUMOUT)=IVPOSOUT
DASOUTPIN( IVPOSOUT )=WORD
CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
IF(WORD .NE. 'NOWORD')THEN
IVPOSOUT=1VPOSOUT+1
GOTO 465
ENDIF
VPOSTOP( IVNUMOUT )=IVPOSOUT
GOTO 100

THIS AREA IS THE WATCH SECTION

CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
IF(WORD .EQ. 'NOWORD')GOTO 100
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505

510

514

515

52¢C

CcC
cC
cC
CcC
cC
600

cc

620

DO 505 I=1,IVNUMIN
IF(WORD .EQ. MOSINVEC(1))GOTO 500
DO 510 J=1,NTKIN
IF(WORD .EQ. NTKINPIN(J))GOTO 500
DO 515 I=1,IVNUMOUT
IF(WORD .EQ. MOSOUTVEC(I))THEN
IVWATCH=IVWATCH+1
IWAT=IWAT+1
VWATCH( IVWATCH)=WORD
WPOSTRT( IVWATCH)=IWAT
DO 514 J=VPOSTRT(I),VPOSTOP(I)
WATPIN(IWAT)=DASOUTPIN(J)
IWAT=IWAT+1
CONTINUE
IWAT=IWAT-1
WPOSTOP( IVWATCH)=IWAT
GOTO 500
ENDIF
CONTINUE

THIS WILL CHECK IF THE OUTPIN HAS BEEN USED IN A VECTOR TO PREVENT
DUPLICATION OF PINS

DO 516 I=1,IVPOSOUT
IF(WORD. EQ. DASOUTPIN(I))GOTO 500
CONTINUE

THIS AREA WILL CHECK TO SEE IF YOU WANT TO WATCH AN OUTPUT PIN
NOT IN A VECTOR

nn 320 J=1 NTKOUT
IF(WORD .EQ. NTKOUTPIN(J))THEN
IWAT=IWAT+1
WATPIN(IWAT)=WORD
GOTO 500
EXNDIF
CONTTNUE
GOTO 500

THIS AREA IS THE FORCE ACTION AREA
TwO THINGS CAN HAPPEN WHEN A FORCE COMMAND IS FOUND
1. THE FORCE IS ON A VECTOR OR
2. THE FORCE IS ON A SINGLE PIN
A. HAS THE PIN BEEN IDENTIFIED BEFORE
B. NEW PIN TO BE FORCED

CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
NXTWORD IS EITHER A VECTOR NAME OR A INPUT PIN NAME
CHECKING FOR VECTOR NAME
DO 620 I=1,IVNUMIN-1
IF(WORD .EQ. MOSINVEC(I))THEN
CALL NXTWORD(ALINE,FSTCHAR, LASTCHAR,WORD)
DASIN(VPOSIN(I): (VPOSIN(I+1)-1))=WORD(1: LASTCHAR-FSTCHAR+1)
GCTO 100
ENDIF
CONTINUE
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cC
cC

630

CcC

cC
ccC
700

CC
cC
750

752

1753

754

IF(WORD .EQ. MOSINVEC(IVNUMIN))THEN
CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
DASIN(VPOSIN(IVNUMIN): VPOSIN( IVNUMIN)+LASTCHAR-FSTCHAR)=

* WORD{ 1: LASTCHAR-FSTCHAR+1)

GCTO 100
ENDIF

FORCE A PIN THAT IS NOT ASSOCIATED WITH A VECTOR
CHECK TO SEE IF THAT PIN HAD BEEN IDENTIFIED IN A VECTOR STATEMENT
DO 630 I=1,IVPOSIN
IF(DASINPIN(I) .EQ. WORD)THEN
CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
DASIN(I:I) = WORD(1:1)
GOTO 100
ENDIF
CONTINUE

NEW INPUT PIN IDENTIFIED PUT INTO ARRAY AND GET ASSOCIATED VALUE
IVPOSIN=IVPOSIN+1

DASINPIN(IVPOSIN)=WORD

CALL NXTWORD(ALINE,FSTCHaR,LASTCHAR,WORD)

DASIN(IVPOSIN: IVPOSIN)=WCRD(1: 1)

GOTO 100

s CLOCK wedess

CLOCK AREA WILL ESTABLISH VALUES FOR CLOCK AND CLOCKSIZE
CALL NXTwURD(ALINE,FSTCHAR,LASTCHAR,WURD)

IF(WORD .EQ. 'NOWORD')GOTO 100

CLRCNT=CLKCNT+1

CLOCKNM{ CLKCNT)=WORD

CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
CLOCKVA(CLKCNT)=WORD

CLESZ7=T.ASTCHAR-FSTCHAR+1

GOTG 700

seveds CYCLE Weves

CYCLE AREA WILL INSERT CLOCK AND OUTPUT DAS LINE
CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WCRD)
CLKNUM=\ORD

FINCNT=IVPOSIN

DASINCNT=FINCNT+CLKCNT

PDASIN=DASIN

DO 1753 JJ=1,CLKCNT
DASINPIN(FINCNT+JJ)=CLOCKNM(JJ)

CONTINUE

THE FIRST TIME CYCLE IS CALLED INPUT PINS ARE DUMPED TO MOS.DAS
AND THE COMBINATION OF INPUT AND WATCH PINS ARE DUMPED TO MOS.CMP

IF(FSTCYCLE .EQ. O)THEN
CALL SRC(WATPIN,IWAT,DASINPIN,DASINCNT,SIMNM,SIMCNT,

*DASNM,DASCNT .DELAY)

WRITE(13,754)(DASNM(1),I=1,DASCNT)
FORMAT(A10)




WRITE(14,757)(SIMNM(I),I=1,SIMCNT)

757 FORMAT(A10)
FSTCYCLE=1
ENDIF
DO 760 I=1,20
760 IF(CLKNUM .EQ. CYCVAL(I))CYCLENM=I

DO 780 J=1,CYCLENM

DO 770 III=1,CLKSZ
FSTCHAR=0
LASTCHAR=0
c GOTO FILL AREA TO FILL NEXT LINE WITH SIM OUT DATA
500 READ(10,901,END=950)ALINE
901 FORMAT(80A1)
902 CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
C LOOK FOR OUTPUT WATCH VECTOR TO MATCH
IF(WORD .EQ. 'NOWORD')GOTO 763
DO 930 I=1,IVWATCH
IF(WORD .EQ. VWATCH(I))THEN
CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
K=1
DO 920 JJ=WPOSTRT(I),WPOSTOP(I)
WATVAL(JJ)=WORD(K: K)

K=K+1
920 CONTINUE
GOTO 902
ENDIF
930 CONTINCE
C OUTPUT FPIN FOUND IN SIMULATOR OUTPUT LINE

DO 940 JJ=1, IWAT
IF(WORD. EQ. WATPIN(JJ) ) THEN
CALL NXTWORD(ALINE ,FSTCHAR,LASTCHAR,WORD)
WATVAL(JJ)=WORD(1: 1)
GOTO 902
ENDIF
940  CONTINCE

GOTO 902
763 DO 1763 JJ=1,CLKCNT
TCLKVAL=CLOCKVA(JJ)
PDASIN(FINCNT+JJ: FINCNT+JJ)=TCLKVAL(III: III)
1763 CONTINCE
SIMLINE=BLANK80
DASLINE=BLANKS8O
c COMBINE THE INPUT PINS AND WATCH PINZ FOR COMPARE FILE
DO 766 IL=1,DASCNT
DO 765 JI=1,DASINCNT
IF(DASNM(IL) .EQ. DASINPIN(JI))DASLINE(IL: IL)=PDASIN(JI:JI)
765 CONTINUE

766 CONTINUE
DO 1767, LL=1,DASCNT
1767 IF(DASLINE(LL: LL) .NE. '1')DASLINE(LL:LL)='0'
WRITE(13,767)DASLINE .
767 FORMAT(AB0O)

DO 709 IL=1,SIMCNT
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DO 768 JI=1,IWAT
IF(DELAY .EQ. 'Y' .OR. DELAY .EQ. 'y')THEN
IF(FSTDEL .EQ. O)THEN
OWATVAL(JI)=WATVAL(JI)
ELSE
OWATVAL(JI)=DWATVAL(JI)
ENDIF
DWATVAL(JI)=WATVAL(JI)
ELSE
' OWATVAL(JI)=WATVAL(JI)
ENDIF
IF(SIMNM(IL) .EQ. WATPIN(JI))THEN
SIMLINE(IL: IL)=OWATVAL(JI)

GOTO 1769
ENDIF
768 CONTINUE
1769 DO 772 ILL=1,DASINCNT

IF(SIMNM(IL) .EQ. DASINPIN(ILL))SIMLINE(IL: IL)=
* PDASIN(ILL: ILL)

772 CONTINUE
769 CONTINUE
FSTDEL=1
DO 1171, LL=1,SIMCNT
1171 IF(SIMLINE(LL: LL) .NE. '1')SIMLINE(LL:LL)='0'
WRITE(14,771)SIMLINE
771 FORMAT(A80)
770 CONTINUE
780  CONTINUE
GOTO 100

cC THIS AREA IS WHERE THE OUTPUT VALUES ARE STORED IN THE OUTPUT
cc VARTABLES OF DASOUTPIN

950 PRINT =, 'INPUT ERROR PROCESSED'
GOTO 999
951 PRINT *,'NEWFILE ERROR'

CLOSE(13,ERR=999)

CLOSE( 14 ,ERR=999)

CLOSE(15,ERR=999)
999  STCP

END
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CCCeeLeeeeccececeeececcecececececececececccecececceeeeeeeeeeecceceeececececcecececececeececececcececececece

cC cC
cC PROGRAM: MOSTRANS cc
cC SUBROUTINE: NXTWORD cc
cC INPUTS: ALINE CHARACTER LINE OF DATA cC
CcC FSTCHAR FIRST CHARACTER POSITION OF LOOK AT CcC
CcC LASTCHAR LAST CHARACTER POSITION PRIOR TO cC
cC DELINEATOR ccC
CC OUTPUT: WORD WORD OF INTEREST ccC
ccC PURPOSE: TO LOOK AT A CHARACTER STRING AND USING THE SPACE CC
CcC AND COLON DELINEATORS PARSE THE NEXT WORD cC
cC cc

CCCCCcCcceeeeeerecececeeeeeecceceeececeeceecceeeceececeeeececeeececeeeeceecceceecceccceccec

SUBROUTINE NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
INTEGER FSTCHAR,LASTCHAR,ZEROCH
CHARACTER*1 ALINE(80),BLANK,COLON
CHARACTER*24 WORD,BLANK24
DATA BLANK/' '/,BLANK24/' '/
DATA COLON/':'/
FSTCHAR=LASTCHAR+1
ZEROCH=0
WORD=BLANK24
DO 200 I=FSTCHAR,80
IF(ALINE(I) .EQ. BLANK .OR. ALINE(I) .EQ. COLON)THEN
GOTO 200
ELSE
IF(ZEROCH .EQ. O)FSTCHAR=I
ZEROGCH=1
ENDIF
200 CONTINUE
IF(ZEROCH .EQ. O)THEN
WORD="NOWORD'
GOTO 240
ENDIF

DO 210 J=FSTCHAR,80
IFCALINE(J) .EQ. BLANK .OR. ALINE(J) .EQ. COLON)THEN
LASTCHAR=J-1

GOTO 220
ENDIF
21C CONTINUE
220 II=1

DO 230 K=FSTCHAR,LASTCHAR
WORD(II: II)=ALINE(K)

IT=I1+1
230  CONTINUE
240 END
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Cccceeeeceeeeecceeeeeceeccceeeeececeeeecceceeeececeeeeeccceececccceeccecceccccce

PROGRAM: MOSTRANS

SUBROUTINE: SRC

INPUTS: WATPIN ARRAY OF WATCH PINS
IWAT NUMBER OF WATCH PINS

DASINPIN ARRAY OF INPUT PINS
DASINCNT NUMBER OF INPUT PINS

OUTPUTS: SIMNM ARRAY OF OUTPUT PINS
SIMCNT NUMBER OF OUTPUT PINS
DASNM ARRAY OF PATTERN PINS
DASCNT NUMBER OF PATTERN PINS
DELAY ONE PHASE DELAY
PURPOSE: INTERACTIVE PROGRAM THAT WILL LIST THE INPUT AND

WATCH PINS AND THE USER WILL PICK THE ONES THAT

Cc<C
cc
cc

CcC

SHOULD BE TRANSLATED. A DELAY CAN ALIGN THE ".SIM" CC

AND ". AO01" DVSS50 FILES.

cC
cC

CCCCeeeeeeceeeececececececececeeeeeeeeececececececcceecececececcecececeeceeeeeccecececccecee

10
cC
Ccc
cc
cC
CcC
ccC
CcC

201

SUBROUTINE SRC(WATPIN,IWAT,DASINPIN,DASINCNT,SIMNM,SIMCNT,
*DASNM, DASCNT ,DELAY)

INTEGER I,IWAT,SRCPIN(40),DASINCNT,SIMCNT,SRCCNT,DASCNT

INTEGER PSCNT,PSAMP(10),PSVOLT(10),TIMEVAL ,MAXPAT ,MAXACQ

CHARACTER*10 WATPIN(5),SIMNM(40),DASINPIN(5),SRCNM(40)

CHARACTER*10 DASNM(40),TENBLNK, PSNAME , CHIPNM

CHARACTER*3 ATTA(40)

CHARACTER*4 ATTB(40)

CHARACTER*1 APUN(40),PATMON,ACQMON,DELAY

DATA TENBINK/' iy

MAXPAT=47
MAXACQ=31

DASCNT=0

SRCCNT=0

SIMCNT=0

DO 10, I=1,40

DASNM( I)=TENBLNK

SIMN( 1)=TENBLNK

SRCNM( I)=TENBLNK

ATTA(I)=' !

ATTB(I)=' !

APUN(I)=' '

CONTINUE

THIS STARTS THE DATA ACQUISITION SECTION

THE USER WILL BE GIVEN THE MOSSIM II WATCH PINS

AND HE WILL DECIDE WHETHER TO USE THE PIN AND GIVE THE
PIN NUMBER

SRCNM ARRAY HOLDS PINS FOR THE .SRC FILE
SIMNM ARRAY HOLDS PINS FOR THE .SIM FILE
SRCCNT, SIMCNT COUNTS NUMBER OF PINS IN EACH ARRAY

WRITE(6,201)
FORMAT( 1X, '"WHAT IS THE NAME OF YOUR FILE?',/,
#1X,"EX. CHIP ***NO EXTENSION REQUIRED )
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READ(5,208)CHIPNM

208  FORMAT(A10)
WRITE(15,209)CHIPNM

209  FORMAT('PROGRAM',1X,A10,/,'*"',/,'*',/,"PINDEF;',/,'*")
WRITE(6,11)

11 FORMAT( 1X, 'THERE ARE A MAXIMUM OF 31 DATA ACQUISITION, (MONITOR),'
* /,' AND 31 PATTERN GENERATION CHANNELS FOR THIS DAS 9100 AND'
*,/," DVS50 SOFTWARE CONFIGURATION')

DO 50, I=1,IWAT

WRITE(6,15)WATPIN(I)

15 FORMAT(1X,'DO YOU WANT TO MONITOR ',A10,'?")
READ(5,18)ACQMON

18 FORMAT(A1)

IF(ACQMON .EQ. 'N' .OR. ACQMON .EQ. 'n')GOTO 50
SRCCNT=SRCCNT+1

SIMCNT=SIMCNT+1

IF(SIMCNT .GE. 32)GOTO 401

SRCNM( SRCCNT)=WATPIN(I)

SIMNM( SIMCNT)=WATPIN(I)

ATTA(SRCCNT)="'ACQ'

APUN(SRCCNT)="; '
WRITE(6,20)

20 FORMAT(1X,'WHAT IS THE PIN NUMBER? ')
READ(5,30) SRCPIN( SRCCNT)

30 FORMAT(I2)

50 CONTINUE

cC THIS AREA WILL INPUT THE PATTERN PINS
cC AND WILL ASK THE USER IF THE PIN IS TO BE INCLUDED
cC AND IF MONITORING IS DESIRED

DO 100, I=1,DASINGNT
WRITE(6,60)DASINPIN(I)

60 FORMAT(1X, 'DO YOU WANT A PATTERN ON PIN ',A10,'?")
READ(5,65)PATMON
65 FORMAT(A1)

IF(PATMON .EQ. 'N' .OR. PATMON .EQ. 'n')GOTO 100
SRCCNT=SRCCNT+1

DASCNT=DASCNT+1

IF(DASCNT .GE. 32)GOTO 403

SRCNM( SRCCNT)=DASINPIN(I)
DASNM(DASCNT)=DASINPIN(I)

ATTA(SRCCNT)="PAT'

WRITE(6,70)

70 FORMAT(1X, 'WHAT IS THE PIN NUMBER? ')
READ(S5,75)SRCPIN(SRCCNT)

75 FORMAT(I2)
WRITE(6,80)

80 FORMAT(1X, 'DO YOU ALSO WANT TO MONITOR THIS PIN? ')
READ(5,85)ACQMON

85 FORMAT(A1)

IF(ACQMON .EQ. 'N' .OR. ACQMON .EQ. 'n')THEN
APUN(SRCCNT)="; '
GOTO 100
ELSE
SIMCNT=SIMCNT+1
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IF(SIMCNT .GE. 32)GOTO 401
SIMNM( SIMCNT)=DASINPIN(I)
APUN(SRCCNT)=","'
ATTB(SRCCNT)="AcCQ; '

ENDIF

100  CONTINUE

cc THIS IS THE POWER SUPPLY SECTION
PSCNT=0
105 WRITE(6,110)
110  FORMAT(1X,'THE USER WILL DEFINE THE POWER SUPPLY PARAMETERS',/,1X,
*'IN THIS SECTION. WHAT IS A PIN NAME FOR THE POWER SUPPLY?',/,
*' EX. VDD OR GND ***TYPE DONE FOR PIN NAME WHEN FINISHED ',/)

READ( 5,115)PSNAME
115 FORMAT(A10)
IF(PSNAME .EQ. 'DONE' .OR. PSNAME .EQ. ‘'done')GOTO 200
PSCNT=PSCNT+1
SRCCNT=SRCCNT+1
SRCNM( SRCCNT)=PSNAME
WRITE(6,70)
READ(5,120)SRCPIN(SRCCNT)
120 FORMAT(I2)
ATTA(SRCCNT)='PS '
IF(PSCNT .EQ. 1)APUN(SRCCNT)='1'
IF(PSCNT .EQ. 2)APUN(SRCCNT)='2'
IF(PSCNT .EQ. 3)APUN(SRCCNT)='3'
IF(PSCNT .EQ. 4)APUN(SRCCNT)='4'
IF(PSCNT .EQ. 5)APUN(SRCCNT)='5'
IF(PSCNT .EQ. 6)APUN(SRCCNT)='6"
IF(PSCNT .EQ. 7)APUN(SRCCNT)='7'
IF(PSCNT .EQ. 8)APUN(SRCCNT)='8'
IF(PSCNT .EQ. 9)APUN(SRCCNT)='9'
ATTB(SRCCNT)="; !
WRITE(6,125)
125  FORMAT(1X,'WHAT VOLTAGE, IN mV, IS ON THIS PIN?',/,1X,
*'EX 5000 *%<NOTE GND MUST HAVE 0 ")
READ(5,130)PSVOLT(PSCNT)
130  FORMAT(IS5)
WRITE(6,135)
135  FORMAT(1X, 'WHAT AMPERAGE, IN mA, IS ON THIS PIN?',/,1X,
*'EX 3000 #*%*NOTE GND MUST HAVE 0 ')
READ(5,140)PSAMP( PSCNT)
140  FORMAT(IS)
GOTO 105
200 WRITE(15,210)(SRCNM(I),SRCPIN(I),ATTA(I),APUN(I),
*ATTB(I),I=1,SRCCNT)
210 FORMAT(A10,':',I12,',',2x,A3,A1,A4)
cC THIS SECTION WILL INPUT THE TIMING REQUIREMENTS
WRITE(15,220)
220  FORMAT('END; ',/,'*',/,'TIMEDEF;',/,'*',/
* ' CLOCKRATE PATTERN GENERATOR.',/,'*')
WRITE(6,225)
225  FORMAT(1X,'WHAT CLOCKING RATE, IN nS, DO YOU WANT FOR THE'
* ' CIRCUIT?',/,' FROM 40nS TO 5000nS EX. 100 ')
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READ(5,230)TIMEVAL
230  FORMAT(I4)

WRITE(13,231)CHIPNM, TIMEVAL,TIMEVAL,DASCNT
231  FORMAT(Al0,/,14,/,14,/,I3)

WRITE(14,232)CHIPNM,TIMEVAL,TIMEVAL,SIMCNT
232  ¥YORMAT(Al0,/,14,/,14,/,13)

WRITE(15,235)TIMEVAL
235  FORMAT('PAT : ns ',I4,';')
WRITE(15,240)

240  FORMAT('END; ',/,'*',/,'THRESHOLD;',/,'*',/,
*:* THRESHOLD FOR ACQUISITION MODULE.',/,'*',/,'ACQ : TTL;',/,
*"END; ')
WRITE(15,202)
202  FORMAT('*',/,'PSDEF',/,'#*',/,'* DEFINITION OF THE'
* 'POWER SUPPLY.',/)
WRITE(15,205)(I,PSVOLT(1),PSAMP(I),I=1,PSCNT)
205  FORMAT(I1,' : mV ',I5,"', mA ',I5,";")
WRITE(15,206)
206 FORMAT('END;',/,'*‘f ,
stwt g tw /U BEGIN; T, /, "ENDS ')
WRITE(6,410)
410  FORMAT(1X,'DO YOU WANT A ONE PHASE DELAY IN THE OUTPUT TO'
*/,' ALIGN THE OUTPUT FILES FOR MOSSIM AND DAS 9100? °Y,N
READ(5,415)DELAY
415 TFORMAT(A1l)
GOTO 500
401  WRITE(6,402)
402  FORMAT(1X,' *¥%**ERROR**¥** YOU HAVE EXCEEDED THE NUMBER',
*' OF PINS TO MONITCR',/,' YOU MUST RUN THE TRANSLATOR AGAIN.')
GOTO 500
403  WRITE(6,404)
404  FORMAT( 1X, '#***ERROR* % YOU HAVE EXCEEDED THE NUMBER',
%' OF PINS FOR PATTERN',/,' GENERATION. YOU MUST RUN THE',
%' TRANSLATOR AGAIN.')

)

500 EXD




APPENDIX C. VECTOR GENERATION PROGRAMS
A. VECTOR SHELL PROGRAM

#

#This program will take vectors in vectors.out

fiand input them to the MOSSIM II program crm

ffand then compare the results the MOSSIM II

fiprogram with a comvec.out and put the differences in
fta file called difres.out

i
echo
echo "start time of the program was ''>difres.out

date>ﬁ9ifres.out

echo

m -f”wossim.nst mossim. bst

echo

echo "Disregard the below comments from Mossim."

echo xge patient. "

echo

mossim << +

sour crm

yes

sour vectors.out

q

+

edit gﬁ_result.cpy<resmod.cmd>/dev/nu11

echo

echo "Only differences in the files are listed below.3" >> difres.out

echo -n "If there are no differences your files are matched.'" >> difres.out

1nn

echo "

diff -b CR_result.cpy comvec. out >> difres.out
echo "end time is ''>>difres.out
date>>difres. out

else
echo
exit
echo
endif

1ARA

"N
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B. VECTOR GENERATION C SOURCE CODE

/*This program will generate the number of 16-bit vectors that
is requested by the user. These vectors are written to the
vectors.out file. This program also computes the values for
the output vector from the 16-bit correlator, NPS CORNSS.
These output vectors are located in the comvec.oout file. */

#include<stdio. h>
j#finclude<math. h>

float i;

float t2;

int j,k,1;

unsigned int mask=1,vec,nout;
int temp[ 16] ,cout[5];

int tl,rtime;

main()

{
FILE *fpl, *fopen();
FILE *fp2, *fopen();
fpl=fopen(" vectors. out
fp2=fopen('comvec. out", " w');

mn n l')

printf(''How large do you want the vector. n'");
scanf("%6d" ,&t1);

/* sscanf(argv[l]," 5%d",&t1);*/
fprintf(fpl,' " force control 1000 n'"");
fprintf(fpl, " force select: 000 n");
fprintf(fpl,"force misc: 11 n");

for(i=0; i<tl; i++){
vec=i;
for(j=0; j<=15; j++){
if(vec&mask)temp[ j]=1;
else temp[ j}=0;
vec=yvec>>1];

}

fprintf(fpl,"force ins:");

for(k=15; k>=1; k--){
fprintf(£fpl,"%d", temp[k]);

]
fprintf(£fpl, "%d n" »temp[ 0] );
fprintf(fpl,"cycle n");

/* computes the compare vectors and outputs to comvec.out*/
rtime=20;
for(i=0; i<tl; i++){
vec=i;
rtime=rtime+1;
nout=0;
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for(j=0; j<=15; j++){
if(vec&mask) {temp[ j]=1;
nout=nout+l; }
else temp| j] =0,
vec=vec>>];

}

for(1=0; 1<=4; 1++) {
if(nout&mask)cout{ 1]=1;
else cout[1]=0;
nout=nout>>1;

}

if(rtime<=99)
fprintf(£p2," %d",rtime);
else
fprintf(£fp2,"%d",rtime);
fprintf(fp2,".3 outs:");
for(1=4;1>=0;1--)§
fprintf(£p2,"%d",cout[ 1] );

fprintf(fp2," ins:'");
for(k=15; k>=1; k--){
fprintf(£p2,"%d",temp[ k] );

}
fprintf(£fp2,"%d n'',temp[ 0] );
}

rewind(fpl);
rewind( fp2);
fclose(fpl);
fclose(fp2);
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