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1 EQUATIONS OF MOTION
A simple one dimensional model, which may be thought of as simulating a
torsional Kolsky bar test on a thin walled tube, has been studied extensively
by both numerical and analytic techniques. For a body in simple shear

X = X + u(Yt), y = Y, z = Z, (1)

the nondimensional equations of thermoviscoplasticity may be written as

Momentum: vt = s/p,

Energy: 9t = k09Y + si,

Elasticity: st = Y(vY - p), (2)

Flow Law: s = I

Work hardening: ic, = M(Kc, 0)sjp.

where v is the velocity, 0 is the temperature, s is the shear stress, r is the
work hardening parameter, p is the plastic strain rate, and sgn indicates the
algebraic sign of its argument.

Nondimensionalization follows the same scheme as used by [1], except
that a dynamic value so = Ko(bio)m is used for the characteristic stress
rather than the static value ic0. Here j0 is the imposed nominal strain rate
(the velocity difference across the slab divided by the thickness) and rK0 is
the initial yield strength. The flow stress has been chosen to depend mul-
tiplicatively on functions of the temperature, the plastic strain rate, and a
work hardening parameter, so that at its most general the material model
includes work hardening and rate hardening, opposed by thermal softening.
This combination, as is well known, can lead to strain softening, which in
turn offers the opportunity for localization. Elasticity, inertia, and heat con-
duction all modulate the response in ways that are becoming increasingly
clear. Of these three modulating effects, heat conduction appears to be the
most important in that it is thermal conductivity that regularizes the gov-
erning equations and that ultimately limits the intensity of the localization
and prevents formation of a singularity. No explicit failure criterion has been
included in the model.

Only insulated boundaries with constant prescribed velocity are consid-
ered. That is, 01(±l,t) = 0 and v(±l,t) = ±1. The initial strain rate is
assumed to be close to unity everywhere, and the initial stress is assumed to
be constant. To trigger a shear band, only perturbations in the initial tem-
perature will be considered, 0(y, 0) = 0o(y ) , where 00 is small. Mechanical
perturbations can also initiate a shear band, but for brevity we will omit
them here; see [2].
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Figure 1: Stress response for a rel- Figure 2: Velocity gradient for the
atively low applied nominal strain same nominal strain rate.
rate, 'j0 = 50/s.

2 FINITE ELEMENT SOLUTIONS

Finite element calculations, [3] and [4] are able to follow the development

of the band through successive stages of formation, including early unstable
growth, followed somewhat later by rapid localization and loss of stress car-
rying capacity, and culminating in a highly localized, late stage morphology.
In the earlier calculations elasticity and work hardening were ignored, and
linear thermal softening was assumed; the material parameters used were for
a moderately high strength steel. Typical results from these calculations are
shown in Figures 1 and 2. Note the slowly varying (post localization) late
stage which is completely independent of the details of the initial conditions.
Instead, it is determined solely by the functional form of the flow law, the
various nondimensional parameters, the boundary conditions, and the ap-
plied nominal strain rate, jo, with larger values of the latter corresponding
to more intense localization.

These calculations, which treat the spatially discretized equations as a
system of stiff ordinary differential equations for the temporal evolution of
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the nodal values of v, ,s, t, appear to be highly robust and to resolve the
spatial and temporal features of the solution with complete fidelity. In many
instances it is possible to exceed the Courant condition (based on the elastic
wave speed) by several orders of magnitude so that, even though the required
grid refinement may be on the order of 1/10000 of the spatial range or less,
the computational time is often only a few minutes.

3 APPROXIMATE SOLUTIONS

Mathematical analysis yields several types of specialized solutions that illu-
minate the various regions of the overall numerical solution. Homogeneous
solutions that vary in time, but not in space, reveal whether or not strain
softening occurs for the particular constitutive equation in use. While these
solutions usually can not be written down explicitly, the system of partial
differential equations degenerates to a low order system of ordinary differen-
tial equations which can be solved numerically. For example, with 0r, = 0,
(2.2) and (2.5) may be combined to give an ODE with solution K = k(O),
and then (2.4) may be written jP = F(s,0). Finally, with v, = 1, (2.2) and
(2.3) may be combined and reduced to the ODE

1ds 1 -F(s, 8)1 d0 1 sF(s,0) with s(0) = 1. (3)

Inspection of this reduced system reveals that since the nondimensional elas-
tic modulus p = p/so is generally rather large (in the range of 50 to 100)
elasticity contributes only a boundary layer that modulates the stress as it
decays to a characteristic function of temperature only, F(s, 0) = 1, or revert-
ing to (2.4), s = k(O)g(0). This represents essentially rigid-plastic response.
In inhomogeneous problems elasticity plays the same minor role up to the
time of intense localization, and so will be ignored for the time being. More-
over, since the stress remains essentially constant in y prior to localization
except at very high applied strain rates (e.g., j, > 104/S, in the cases dis-
cussed here) it is sufficient to consider the quasi-static approximation in order
to estimate the time to intense localization. Thus, for analytical purposes
equations (2) may be replaced by the following simpler set

• y = 0,

Ot = k8,. + sv, (4)
s = sgn(v,)sCg(O)1vvm

xt = M(K,0)sv,.
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Small perturbations about the homogeneous solution yield a system of lin-
ear partial differential equations, which may be inspected for stability of the
underlying homogeneous solution. The difficulty here is that the perturba-
tion equations have time varying coefficients since the underlying motion is
unsteady. An explicit solution does not seem possible in general, but for the
special case of a rigid-perfectly plastic material with power law rate hard-
ening and linear thermal softening, an exact solution may be written down
for a temperature perturbation, see Wright and Walter (1987). For example,
the strain rate is given by

vY = 1 + (fa/m) exp(at/m)(b - 1), (5)

where Vkt = kkyy , ips, = 0 at the boundaries, co0 = 0o with f1 t0 dy = 1, and
the subscript 0 denotes initial conditions.

From such a solution a criterion for absolute stability of the homogeneous
solution can be obtained, as well as the early growth rates for the field vari-
ables. Clearly, stability depends on the competition between the exponential
factor and the diffusion factor. By inspection of (5) with 0 expressed by
its Fourier components, it may be seen that for this solution to decay in
time, a certain combination of material parameters, which we will call the
"shear band susceptibility", must be less than the nondimensional thermal
conductivity times ir squared, XSB =_ a/m < kr 2. In dimensional terms this
is

XSB - pKcm < oH k7r2  (6)
Pcrn ; c yH 2 ' 6

where & is the negative of the initial slope of g(O), oco is the strength parame-
ter, "o is the nominal strain rate, H is the half thickness in the slab, c is the
heat capacity, and b is the characteristic time of the viscoplastic response.

If the homogeneous solution is not initially stable, then it is essentially
the susceptibility that determines the initial growth rate. Of course, the long
time behavior of the linearized system is meaningless when the underlying
homogeneous flow is not stable. At present the perturbation equations that
occur in the more general cases with work hardening can only be treated by
special approximate techniques, but a different perturbation technique yields
further insights when work hardening is absent.

By transforming variables, it is possible to find an approximate solution
that for many cases appears to track the full finite element solution with
great accuracy until immediately before intense localization occurs. Full
4etails will be given by I2] but a sketch of the method as applied Wu a rigid-
perfectly plastic material follows. Let H(8) = fe g1/" d0 and let a new time
scale T(t) be defined by dT/dt = (1+m)/t. Now the energy equation may be
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written as

kdt Heol-.(7
HT=I+k-(gH - V-

Upon dropping the last term on the right hand side, an approximate solution
may be obtained in the form

H =T + , s-1/" = j g-1 /" dy , dt/dT = -( + )/ ,  (8)

in which Ct = k and Co = H(eo). Equation (8.1) gives an implicit rela-
tionship among 6, t, T and y; equation (8.2) gives s as a function of both
time scales and follows from use of (4.3) in the relation Jfo vr dy,= 1; (8.3) is
an ODE from which the dependence on i may be recovered.

This solution compares extremely well with the full finite element so-
lution until the time of intense localization, [21, and is far easier to com-
pute. Figure 3 shows the stress, temperature and strain rate in the cen-
ter of the band as calculated from (8) for the same initial perturbation as
used by [3]. Ilqrthermore, from consideration of the simple defect structure

oy) = c cos iry, it can easily be shown from (8) that the same shear band
susceptibility mentioned previously is the most important physical quantity
in determining the time or nominal strain from instability to intense local-
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ization, [2]. The critical strain, -y,, in this case obeys the inequality

1 2
7> 1 In (9)Xsn XsB

Heat conduction, which is primarily responsible for the inequality in (9), can
have a substantial delaying effect on localization, especially at lower nominal
strain rates. In fact, it is probably more accurate to say that localization
occurs at a critical temperature, rather than at a critical strain. Heat con-
duction delays localization by reducing the temperature in the center of the
band at a given nominal strain and spreading the thermal energy to the
surrounding cooler material.

At higher rates inertial effects, which are not included in the parametric
solution outlined here, become important and can also have a delaying effect
on localization, [3]. A simple analysis and explanation for this effect is not
yet available.

From the definition of H, expanded by use of Laplace's method, it also
can be shown that to within a simple linear scaling, all rigid-perfectly plastic
materials with fairly general thermal softening are equivalent to one that soft-
ens exponentially with temperature, [2], at least with respect to the critical
localization strain for small perturbations. When there is only a temperature
perturbation, it turns out that the critical strain may be estimated by solving
(8.3), which now reads

dt mC[J dy l+ (10)dT [a 1 ---// '(0

where f/= 1 -gl/m = T+O,(y, t) and , satisfies a diffusion equation as in (8).
The constant C = 1 + O(m) may be calculatcd from knowledge of the actual
softening function. For softening functions with the same initial slope -a, C
is exactly 1 for exponential softening, less than 1 for more rapid softening,
and greater than 1 for weaker softening, but in no case does it depend on
the softening behavior at large temperatures. This correspondence makes it
vividly clear that the critical strain to localization for small perturbations
is dominated by the thermal softening behavior near ambient temperature,
and not by the behavior at large temperatures. In addition, more extensive
finite element computations, to be reported by [4], indicate that the terms
associated with C in the solution of (10) provide a correction of the proper
sign and magnitude to the value of -f, as given by (9).
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Figure 4: Velocity gradient for elas- Figure 5: Velocity gradient for full
tic perfectly-plastic case with jo = material model (copper data) at
750/s. io = 330/s.

4 POST LOCALIZATION BEHAVIOR

In contrast to the results above, the late stage behavior within a shear band,
after intense localization has occurred, must depend on high temperature re-
sponse, but even then extreme temperatures do not necessarily occur. In the
rigid-perfectly plastic case or if the work hardening saturates, the late stage
morphology appears to be well represented by a rapidly shearing boundary
layer in the center of the band and an exterior region where there is little
or no further plastic work, and where temperature changes occur mainly by
heat conduction from the actively shearing region. The solution in the core
of the band is well represented by a steady solution, [2], which can be found
from a simple quadrature, [5].

When work hardening and/or elasticity are restored, the full model is
required once again. Numerical studies of (2) show that the localization and
late stage response may become much more complex. Two notable effects
will be reported in detail by [4] and are noted briefly here.

First of all with elasticity (but not work hardening) included, there can
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be a considerable amount of elastic energy stored in the material outside the
location at which the shear band will form. When intense localization occurs,
this stored energy is released as the stress collapses in the band. In a narrow
slab communication with the boundaries is rapid, and the net result is that
the strain rate and velocity initially overshoot the values they would have at-
tained in the rigid case followed by rapidly decaying oscillations, in which the
stress and temperature also participate, before settling on the final late stage
morphology as in Figure 4. The period of oscillation is longer (by a factor
of about 10 in cases run to date) than that for an elastic wave communicat-
ing with the boundary, so these waves are clearly not simple damped elastic
waves. Rather, they appear to be a consequence of the competing harden-
ing and softening effects included in the model although they are, of course,
elastically driven in the sense just outlined. The intensity of the overshoot
and the severity of the oscillations seem to increase rapidly with increasing
nominal strain rate. Both the initial overshoot and the oscillations are sup-
pressed by an artificially high elastic modulus presumably because then there
is less stored energy for a given stress level. Indeed, the (effectively) rigid
cases illustated in the first two figures were obtained by using a value for
equal to 100 times the physical value.

On the other hand, if work hardening continues throughout band for-
mation, there may be repeated localizations on the same band whether or
not elasticity is included. The first localization appears in the center of the
original perturbation, but as the strain rate shoots up, so does the local rate
of hardening. As K increases the effect of thermal softening is overcome, and
the strain rate at the slab center falls so that the peak rate occurs slightly to
the sides. When these secondary peaks have experienced enough hardening
in turn, the maximum strain rate returns to the center. Then the whole pro-
cess can repeat as in Figure 5 where the material parameters used were for
annealled copper. This gives the stress response a choppy, or irregularly os-
cillating appearance after the first localization, and can delay complete stress
collapse to strains much larger than that at which the first localization oc-
curs. It is also of interest to observe the very different time and length scales
on which the localization occurs in Figure 4 and 5. The material model is
the same in the two cases; only the parameter values are different.

5 SUMMARY

From a variety of analytical techniques it has been found that shear band
formation is a multistep process, that instability and intense localization are
not coincident in time, that a fully formed shear band often behaves like a
boundary layer with a well defined, calculable, spatial distribution, and that a
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theoretical "shear band susceptibility" can be identified and calculated from
macroscopic laboratory measurements. The susceptibility, which appears
naturally in simplified analyses, appears to be the key quantity in assessing
stability, early growth rate, and time to intense localization. Elasticity has
little effect until intense localization occurs, and then it may add rather
elaborate structure to the late stage morphology. Work hardening, which is
known to be stabilizing before localization, has a partially stabilizing effect
after localization where it also adds structure to the late stage morphology.
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