
* Copyl 8 of 38 copies

IDA PAPER P-1869

WIS-Ada FOUNDATION TECHNOLOGY PROGRAM

PRELIMINARY
PROTOTYPE SPECIFICATION

* John Salasin
Murray Berkowitz

Mike Bloom
Bill Brykczynski

Joseph Hrycyszyn
* Vance Mall

* July 1985 ELECTE
1AY 17 1989

Prepared for
WIS Joint Program Management Office

*D

Ar~pr1~dtor public ~e.Coo"

a INSTITUTE I-OR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, VA 22311

IDA Log No. HO 85-30272

DEFINITIONS
IDA publishes the following docuent to report the results of its work.

Reports
Repuot are the most aufthotve and most carefully considered products IDA publishes.
They nennoaly embody results of major projects which (a) ha" a direct bearing on decisions
affecting major programs, or (b) address Issues of significant concern to the Executive
Brnch. the Congress and/or the public, or (c) address issues that hav significant economic
implication. IDA Reports an reviewed by outside panels of experts to ensure their high
quality and relevance to the problems studied, and they are released by the President of IDA.

Papers
Papers normally address relatively restricted technical or policy Issues. They communicate

the resls of special analyses, Interim reports or phases of a task, ad hoc or quick reaction
w:.,k. Papers are reviewed to ensu that they mest standards similar to those expected of
refereed papers In profesaional journals.

Documents
1IA Documents an used for the convenience of the sponsors or the analysts to record
sub andive work done in quick reaction studies and major interactive technical support
activities; to mke available preliminary and tentative results of analyses or of working
group and panel activtes; to forward Inomton that Is essentially unnalyzed and uneval-
uated or to make a record a conferences, meetings, or briefings, or of data developed in
the coure of an Investigation. Review of Documents is suited to their content and intended
use.

The results of IDA work are also conveyed by briefings and informal memoranda to sponsors
and others designated by the sponsors, when appropriate.

The work reported in this document was conducted under contract MOA 903 84 C 0031 for
the Dopafrment of Defensa. The publication of this IDA document does not Indicate endorse-
ment by the Department of Defense, nor should the contents be construed as reflecting the
officiul Position of that agency.

This paper has been reviewed by IDA to assure that It meets high standards of thoroughness,
objectivity, and sound analytical methodology and that the conclusions stem from the
methodology.

AppMd for public release: distribution unlimited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release, unlimnited2b DECLASSIFICATION/DOWNGRADING SCHEDULE Aproe
distribution.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Paper P-1869

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses IDA OUSDA, DIMO

6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311

a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (appcable)90384C0

WIS Joint Program Management Office WJPMO I DA_903_84_C_0031
Sc ADDRESS (City, State, and Zip Code) 10 SOURCE OF FUNDING NUMBERS

WIS JPMO/DXP PROGRAM I PROJECT TASK WORK UNIT
Room 51119, The Pentagon ELEMENT NOI NO. NO. ACCESSION NO.
Washington, D.C. 20330-6600 T-W5-206

11 TITLE (Include Security Classification)

WIS-Ada Foundation Technology Program. Preliminary Prototype Specification (U)
12 PERSONAL AUTHOR(S)

John Salasin, Murray Berkowitz, Michael I. Bloom, Bill R. Brykczynski, Joseph Hrycyszyn, Vance Mall

13a TYPE OF REPORT U 1b TIME COVERED 1i4 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final FROM TO1985 July' 2
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse f necessary and identify by block number)
FIELD GROUP SUB-GROUP Ada programming language; prototyping; foundation technology; World

Wide Military Command and Control System (WWMCCS) Information
System (WIS); (Continued)

19 ABSTRACT (Continue on reverse if neceuary and identify by block number)

The purpose of IDA Document P-1869, WIS-Ada Foundation Technology Program. Preliminary Prototype
Specification, is to describe the general requirements for developing prototypes which will produce
software components. These software components will perform demonstrations of the functionality
required by the World Wide Military Command and Control System (WWMCCS) Information System
(WIS), that is, (1) use the Ada programming language to provide portability, reliability, and
maintainability; and (2) maintain consistency with current and "in process" software standards.
Foundation areas in which prototypes will be developed include command languages, software design, text
processing, database management systems, graphics, and network protocols.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

M UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS Unclassified
S22a NANO OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include area code) t 22 OFFICE SYM130L

i Mr. Bill R. Brykczynski (703) 824-55151 IDA/CSED

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

AU other editions are obsolete UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

18 SUBJECT TERMS (Continued)

portability; reliability; maintainability; command languages; software design; text processing; database
management systems; graphics; network protocols.

LAcces-3ion For
NT3 3PAkI

Or i nutio v/

;vt,', 11%'liy rhdcoS

LIt. 1z ic tal

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

Al other editions are obsolete UNCLASSIFIED

IDA PAPER P-1869

WIS-Ada FOUNDATION TECHNOLOGY PROGRAM
PRELIMINARY

PROTOTYPE SPECIFICATION

John Salasin
Murray Berkowitz

Mike Bloom
Bill Brykczynski

Joseph Hrycyszyn
Vance Mall

July 1985

0

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-4-206

Acknowledgments

The authors are indebted to the consultants for their
invaluable contributions to this paper. A list of the consul-
tants appears in Appendix A of this document.

0v

TABLE OF CONTENTS

1.0N R D C I N.o o o o o . .

2.0 GENERAL REQUIREMENTS FOR WIS PROTOTYPE PROJECT.oo........4

2.1 Development Methodology... o. *..... *o. .4

02.2 Design Approach..-o................05
2.2.1 Software Engineeringo... o..... ... o... o5

2.2.2 Program Design Language (PDL) o.......... oooo.........5

2.*3 Language/Implementation.o.. o5

3.0 PROTOTYPE PROJECTS. ... ooo..o..o.oo. o. o o_

3 .1. Command Languageoooo o o 6

3.1.1 Emulation of CAIS Form Terminal by a CAIS

*3.1.2 Command Sting Parser/Interpreter.o..... _7

3.1.3 Standard Command Language Implementation
(Using the Command String Parser).o.....

3.1.4 CAIS Form Terminal Version of Standard
Command Language.....o.. o o .. . o. .8

3.1.5 Definition of Form and Menu Tool for
Bitmap, Page, and Form Terminal............... 8

3.1.6 Manual of Good Interface Style.o.................
3.1.7 Tools for Uniform, Consistent User Interfaces........... _9

3.2 Software Design, Description, and Analysis Tools.. ... o...... 9
3o2.1 Advanced Ada PDL.00 0.10

3.2o3 Graphics Support for Design...........o.o....... 10

3.2.5 Status and Plans.. o11

3.3.1 Automatic Generation of Text Editors/Formatters12
3.3.2 User Interfaces for Text Processing 12
3.3.3 Integrated Packages of Writer's Workbench Tools 13
3.3.4 Status and Plans13

3.4.1 Indexed File Access Package o..15
3.4.2 Workstation Relation Database Pac kage................ 15
3.4.3 Database Application Tools....'............ .1
3.4.4 Ada-DBMS Interface (Ada/Structured Query Language (SQL)).16
3.4.5 Status and Plans * *16
3.5 Operating System. 17

3.5.1 WIS Operating System (WOS) Kernel..................... 18
3.5.2 Program Execution Support Module 19
3.5.3 File Manageme'nt 20
3.5.3.1 File Access........ 20

* Vii

TABLE OF CONTENTS (Continued)

3.5.3.2 File Locking *...... o.20

3.5.3.3 Backup and Recovery......... 21

3.5.4 Authentication Server 22

3.5.4.1 Security Model 22
3.5.4.2 Authentication 22
3.5.4.3 Key Distribution and Encrypted Communication 23
3.5.4.4 Security Logging 23
3.5.5 Time Syncronization Agent 23
3.5.6 Inter-Process Communication 24

3.5.7 Alias Processes26
3.5.8 Transaction Manager...... 27
3.5.9 Printer Server..*..........28
3.5.10 1/0 Drivers 29

3.6 Planning and Optimization Tools........................... 30
3.6.1 Generic Linear Programming Package 31
3.6.2 Generic Mixed Integer Linear Programming Package 32
3.6.3 Generic Non-Linear Programming Package33 S
3.6.4 Generic Sequencing, Scheduling, and Assignment(SSA) Package_ o. . o 34

3.6.5 Status of Plans * 35
3.7 Graphics *...... . 35
3.7. i Visual Objects #.o... ... %........ :: : 36

3.7.1.1 Subtask - Visual Objects Definition........... 36
3.7.1.2 Visual Representation.................... 36

3.7.1.3 Visual Objects Coordination 37
3.7.1.4 Application Interface 37
3.7.1.5 Application Database Interface 37
3.7.1.6 Image Generation Package Interface 37
3.7.2 Window Manager 38

3.7.3 Image Generation38
3.7.4 CGI *.........*........... 39

3.7.5 Graphics and Input Command Processing 39
3.7.6 Status ... 39

3.8 Network Protocols 39
3.8.1 Common Ada Implementation of Open System Interconnection

(OSI) and DoD Transport and Internet Protocols 40
3.8.1.1 Terminology 40
3.8.1.2 Objectives of the Project 40
3.8.1.3 Status of the Project %............... 41
3.8.2 Automatic Generation of Ada Protocol Softwarefor WIS 41

3.8.2.1 Introduction ... 41

3.8.2.2 Objectives of the Project 42
3.8.2.3 Status of tba Project 43
3.8.3 Multi-Variable Objective Functions as a Basis

for Network Routing in WIS 43
3.8.3.1 Introduction 43

3.8.3.2 Objectives of the Project 44

, viii S

TABLE OF CONTENTS (Continued)

3.8.3.3 Approaches to Problem 45
3.8.3.4 Status of the Project 46
3.8.4 Status and Plans 46

Appendix A List of Consultants 47

Appendix B List of Terms and Abbreviations 55

ix

1.0 INTRODUCTION

Several projects are planned to prototype foundation
technologies for the World Wide Military Command and Control
System (WWMCCS) Information System (WIS) using the Ada programming
language. The purpose for developing these prototypes is to
produce software components that perform the following:

a. Demonstrate the functionality required by WIS.

b. Use the Ada programming language to provide maximum
possible portability, reliability, and maintainability
consistent with efficient operation.

c. Maintain consistency with current and "in-process"
software standards.

Foundation areas in which prototypes will be developed
include the following:

a. Command language(s)

b. Software design and analysis tools

c. Text processing

d. Database tools

e. Operating systems

f. Planning and optimization tools

g. Graphics

h. Network protocols

This report describes general requirements for prototype
projects and outlines potential efforts in each of the eight
foundation areas.

2.0 GENERAL REQUIREMENTS FOR WIS PROTOTYPE PROJECTS

The design and development of Ada software prototypes will
satisfy each of the following general requirements in the areas of
software development methodology, design approach,
language!implementation features, and administrative reporting.

2.1 Development Methodology

A rapid prototyping approach to software development is
encouraged. Each effort should plan and produce a sequence of
prototype executable Ada modules demonstrating increasing

functionality and capability. Ada will be used as a Program

Design Language (PDL).

2.2 Design Approach

2.2.1 Software Engineering

Projects will employ software engineering techniques that
perform the following tasks:

a. Maximize the reuse of existing design and/or code
(available components should be identified).

b. Assure a high degree of modularity consistent with
requirements for modifiability and maintainability.

c. Minimize, identify, and segregate all hardware,
environment, and interface dependent functions.

d. Regulate programming style (including design style,
presentation style, and the style of applying the
language).

2.2.2 Program Design Language (PDL)

An Ada PDL will be used as an integral part of the design and
development process. The development methodology will be based on
incremental refinement and functional expansion of this PDL. It
is anticipated that most efforts will use the WIS Standard
PDL.

2.2.3 Security

Components will, where required, be designed to meet the
National Security Agency's (NSA) Security Center's Guidelines for
B3 Classification. While several foundation technologies (e.g.
planning and optimization tools) may not require the incorporation
of security guidelines in their design, others (e.g., operating
system prototypes) must be constructed in accordance with these
guidelines.

2.3 Language/Implementation

All software will be constructed to ensure the following:

a. Proper language considerations with respect to

reusability:

(1) Coherent encapsulation of logically related
entities and computational resources within
packages

(2) Maximum use of generic program units to factor outcommon algorithms

2

(3) Minimum use of implementation-dependent features of
the Ada programming language

b. Appropriate use of the Ada tasking model for expressing

concurrent activities

2.4 Reporting

These prototype efforts are planned to avoid onerous and
expensive reporting. Reporting of administrative and technical
matters shall be via electronic mail (e.g., ARPANET). It is
anticipated that much of the interim review and testing of code
will make use of electronic mail capabilities.

Upon completion of each project, a technical report, in
addition to Ada code, will be delivered to discuss the following
issues:

a. Problems encountered with the Ada language in
implementing the project

b. Problems encountered with the design methodology
utilized

c. What code was re-used from another source (e.g.,
in-house, the Ada repository, etc.)

d. What code has high potential for re-use in other
projects

e. Descriptions of all software including filenames, number
of statements, lines and comments in each compilation
unit

f. Experiences gained in the implementation environment
(e.g., what tools were available and used in the
environment, what problems were encountered with the
environment during implementation, etc.)

g. Lessons learned during the scope of the project

It is anticipated that development efforts will be
"instrumented" to provide data on productivity, the distribution
of effort across the development life cycle, etc.

3.0 PROTOTYPE PROJECTS

3.1 Command Language

The command language must provide a communication interface
between a computer system and all its users. It must enable every
user to solve problems on the appropriate semantic level. In the
WIS, there will invariably be users of all levels of expertise who

3

must communicate with the system and with each other. Their work
will be facilitated by a common, uniform, consistent interface.

The preliminary prototypes formulated by the task force will
provide multiple options for program control and allow the user to
perform the following:

a. Manipulate the environment.

b. Control his session and data.

c. Manage processes and resources.

d. Package primitive commands.

The prototypes will allow for the development of uniform,
consistent interfaces across all application areas in WIS. The
use of the Common APSE (Ada Programming Support Environment)
Interface Set (CAIS) as a virtual operating system model ensures
the hardware independence of input/output (I/0) equipment. The
functionalities of the command language capabilities will be
partitioned into packages to facilitate maintenance.

3.1.1 Emulation of CAIS Form Terminal by a CAIS Page Terminal

The facilities available in a CAIS form terminal can be
effectively emulated by a page terminal in host software. This
package will provide a low-level forms capability upon which a
more sophisticated forms package for data entry and command
operations can be built. The Naval Ocean Systems Center (NOSC)
tools, ANSI VIRTUAL TERMINAL and FORMGENERATORSYSTEM, can serve
as a basis for this task. A critical problem here is the
determination of how to handle form terminal screen editing keys
that only have a "local" meaning on a form terminal, i.e., they
are never transmitted to the host.

3.1.2. Command String Parser/Interpreter

This prototype will be built on CAIS page terminal
capabilities and could use the CAIS Node Management facilities to
describe the command language. It would be greatly simplified by
the ave'lability of the Ada Command Language Interpreter as
developed by GTE, Phoenix. Some of the capabilities provided by
this prototype are as follows:

a. Facility to build, maintain, analyze, and document
command languages

b. Uniform keyboard interface for a page terminal that
supports editing the input line, spelling correction,
name completion, help, and explanation

4

c. Uniform keyboard interface for a scroll terminal that
supports limited line editing, spelling correction, name
completion, help and explanation

d. Interpreter that invokes underlying functional
capabilities (either system or application level)

e. Interpreter that invokes underlying functional
capabilities (either system or application level)

f. Response library that maintains documentation about

error responses (both messages and "signal conditions")

This task will provide a user-friendly development
environment and will increase productivity.

3.1.3 Standard Command Language Implementation (Using the
Command String Parser)

There are two command language standards that appear viable:
the Conference on Data System Language (CODASYL) Common Operating
System Command Language (COSCL) and the American National

0 Standards Institute (ANSI) Operating System Command and Response
Language (OSCRL). OSCRL is scheduled for completion in 1987
although committee members feel that work will be done much before
then. COSCL is not a standard but rather a recommendation of
CODASYL. It is published and is about to be enhanced with a menu-
and form-based video versions. We need to determine which of
these verions to recommend to WIS and then have an implementation
built using the CAIS capabilities and the command string
interpreter defined by task 2. This work is proposed by the WIS
Foundation Technology Task Force group on Operating Systems.

The product will enhance a user's effectiveness in

communicating with the system and with others about the system.

3.1.4 CAIS Form Terminal Version of Standard Command Language

Moving a command language from a page/scroll terminal to a
form-based environment takes significant effort. The CODASYL

* COSCL committee is doing this for VIDEO COSCL. ANSI may follow
suit for OSCRL. The NOSC tool, VIDEO, could be useful for this
task. The size of this task will depend on the command language
chosen and whether the responsible committee for the language has
generated an appropriate VIDEO version of the language.

* 3.1.5 Definition of Form and Menu Tool for Bitmap, Page, and
Form Terminal

This tool would be capable of generating a uniform
editor-style user interface. All data in the system would be
editable through forms. Users would access objects, edit them, or
perform operations on them. This is the style of interface seen

5

in SMALLTALK*, STAR*, Macintosh*, and other advanced systems.
Multiple windows and associated processes would be supported.
Various graphic attributes, several types of graphical output
(i.e., graphs, lines, video images, and text), scrolling,
inter-window communication, and a variety of input devices would
be controlled. A CAIS-like definition of a bitmap terminal would
be generated. While different capabilities would be supported for
various classes of terminals, the system would be capable of doing
a reasonable job of interpreting a form for any terminal class. A
key feature of this package would be that it would know about the
data types and operators that are accessible to the user. Typical
forms packages, like form terminal, deal only with alphabetic,
numeric, and alphanumeric data and editing operations for these
kinds of data.

3.1.6 Manual of Good Interface Style

Based on an analysis of the command language taxonomy and
issues, the Manual of Good Interface Style will produce a set of
guidelines to ensure that human factors engineering will be
optimized in a WIS application software interfaces.

3.1.7 Tools for Uniform, Consistent User Interfaces

Using the manual described in paragraph 3.3.6 as a basis, the
interfaces to new or off-the-shelf products will be designed in
such a way that they will be WIS identifiable, and easy to learn
and use

3.1.8 Status

The preliminary specifications are undergoing analysis and
reformulations. Two additional iterations are expected before
final specifications are ready in the September 1985/December 1985
time frame.

3.2 Software Design, Description, and Analysis Tools

Careful attention to design is essential to the achievement
of the important WIS goals of software reliability, efficiency,
maintainability, and portability. Automated support can
contribute to a substantial improvement in the design process.
Many promising concepts for design automation remain unexploited.
Prototypes and projects in this area will examine and demonstrate
some of those concepts.

*SMALLTALK is a registered trademark of the Xerox Corporation.
*STAR is a registered trademark of the Xerox Corporation.
*Macintosh is a registered trademark of the Apple Computer, Inc.

6

Prototypes and projects are currently planned in the

following areas:

a. Advanced Ada PDL

b. Ada PDL tools

c. Graphics support for design

d. Software metrics

3.2.1 Advanced Ada PDL

The objective of this project is to develop an advanced Ada
PDL and basic supporting tool set for use in developing WIS
software. This advanced PDL will be based on the current WIS Ada
PDL Standard and will be extended by means of an annotation
language such as ANNA. This will provide the basis for effective
and rigorous testing, analysis and verification capabilities, and
promote the reusability of PDL design elements.

The chief products of the project will be a PDL reference
manual that succinctly and rigorously describes the syntax and
semantics of the advanced PDL, an instruction manual describing
its use, and a small number of tools including a PDL parser.

3.2.2 Ada PDL Tools

The objective of this project is to provide automated tools
for the transformation, dynamic and static analysis, management,
and documentation of designs expressed using an Ada PDL. Though
primarily intended for use with the Ada PDL being developed as
part of the "Advanced PDL" project, these tools will be
sufficiently flexible to permit their use with other Ada PDL's.

The project will use the advanced WIS Ada PDL in the
development of the tools. Where feasible, the techniques
developed in the other projects will also be applied.

3.2.3 Graphics Support for Design

Software system design descriptions, especially descriptions
of architectural designs, frequently have a graphical component.
For example, control interactions in both sequential and parallel
systems are commonly described by some variant of a flow chart.
Other graphical descriptions that are of direct utility in
software system design are structure diagrams, data flow diagrams,
communication networks and hierarcial graphs. With the notable
exception of the Tell software development support system, little
support has been provided to software designers in the area
graphics-based, man-machine interaction.

The intent of this project is to bring sophisticated graphics
systems to bear on the problem of design description development,

7

modification and display. The product is to be a graphics-based
software design workstation that provides to software designers
the same level and nature of support that circuit designers enjoy
through the availability of computer-aided design (CAD) systems.

3.2.4 Software Metrics

The objective of this project is to provide tools to allow
for meaningful measurement of the quality of software design and
code. Measurement can bring much needed visibility to the
software product which is essential for effective project
management and control. Metrics provide the opportunity to assess
a software system's basic quality before investing in
implementation. They can help to point out deficiencies within a
design as well as to compare the quality of alternative designs.
By providing specific, quantitative information, metrics can serve
as valuable aids to making fundamental technical and managerial
decisions.

This project involves the identification of metrics to assess
the quality of a software design and implementation. This project
also involves the development of tools to collect and analyze the
various measures and to present the data in a form which is useful
to the personnel associated with a software project. Finally, the
project includes a demonstration of the resulting metrics
capabilities on a pilot basis.

3.2.5 Status and Plans

We expect to complete detailed specifications and statements

of work in each of the above areas by September 1985.

In addition, we are 'investigating a number of other areas and
we expect to be able to define prototypes or projects in several
of them. Those areas include reusability, documentation, test and
analysis, verification, and object-managment systems.

3.3 Text Processing

The goals and objectives for the Text Processing Systems Task
Force are to develop a complete Ada-based "document management"
system with capabilities for, but not limited to, word processing,
providing output with multiple type fonts, user-oriented "help"
messages tailored to the operations being performed, and user
expertise. In general, critical design issues include the
following:

a. Provision for compatability with multiple subsystems
that may or may not have been completely
defined/developed

b. The ability to use a variety of I/0 devices

8

c. The capability of using textual syntax/semantics to
provide assistance in document preparation

d. The ability to provide user-oriented "help" based on
analyses of operations being performed (for example,
code being executed) and user history/expertise

Prototypes currently under consideration include the
following:

a. Automatic generation of text-based systems

b. User interfaces for text processing

c. Integrated packages of writer's workbench tools

Emphasis will be in the direction of "what you see is what

you get" (WYSIWYG) systems which permit multiple views with
electronic documents and reasonable quality paper documents
receiving the first specifications. All specifications will be
extensible. These systems should assume and plan for advanced I/O
technologies, should be I/0 device independent, and should use
virtual I/0 devices.

3.3.1 Automatic Generation of Text Editors/Formatters

This project involves the design and implementation of
prototype systems for automatically generating text editors and
formatters across a variety of computers, input devices, and
hard/soft copy output devices. One approach is to use a compiler
writing model, such as grammars with action routines written in
Ada or attribute grammars, for describing an editor/formatter, and
to develop appropriate processors to generate systems from these
descriptions. This syntax-directed structure editor should handle
objects such as standard text, directories, mailboxes, core images
(debuggers), and window managers. It should be able to take
advantage of the graphics capabilities of the larger system of
which the editor is a part. The system should have a common front
end and set of editing functions, with specialized features for
specific objects and applications. Its syntax-directed user
interface should contain help facility, menus, grammar completion,

and be extensible.

3.3.2 User Interfaces for Text Processing

The aim is to specify Ada packages for common document
preparation tasks and I/0 interfaces. Examples are basic string
handlers, window managers, line and page break modules, command
language interpreter interfaces, and database interfaces. The
initial *efforts will center on military joint message forms and
Ada programs. These interfaces should be syntax-directed and
contain help facilities, menu&, and be able to perform grammar
completion as well as be extensible.

9

3.3.3 Integrated Packages of Writer's Workbench Tools

The aim is to specify Ada packages for common tools necessary
for a text processing system to provide to a writer. This
writer's workbench includes tools for spelling error

detection/correction, style analysis, indexing, bibliography
database, on-line dictionaries, and glossaries.

3.3.4 Status and Plans

These issues are being looked at with the goal of a first
draft of specifications to be available sometime in the
August/September 1985 timeframe and version 1.0 prototypes
available in late first quarter/early second quarter fiscal year
(FY) 86. These functional specifications would be in a form
similar to a short user manual. They would be in enough detail not
only for someone to build a subsystem in Ada packages but also for
the task force to evaluate the results. Already, the need for two
grammars, with associated action routines and/or attributes, has
been identified. One grammar would be for objects and the other
for the command language. The specification method and means for
connecting these two grammars are still the subject of research.

3.4 Database Tools

The goals and objectives for the Database Task Force are the
definition of a standard, portable Ada-commercial off-the-shelf
(COTS) database management system (DBMS) interface and development
of an Ada-DBMS. The Ada-DBMS provides for the following
capabilities:

a. Database definition, including the provision of multiple
views (i.e., relational, network, hierarchic) of the

same database

b. Efficient retrieval and update of individual objects or
groups of logically related database objects

c. Authorization control to the field or attribute level,
capable of expansion to provide multi-level security
control (e.g., prohibiting a query that is authorized to
access aggregated data at a given classification from
generating secondary accesses to data objects at a
higher security classification)

d. Multiple interfaces, including programming and query
languages, screen-oriented command language/displays,
bulk load/unload facilities, report writer and
application generator

e. Multiple user access with backup and recovery

f. Database administration and control

10

Critical design issues include the following:

a. Support of fully distributed access, including partial
or full replication of objects

b. The ability to incorporate "database machines" or "back
end database processor" technology for retrieval
operations

c. Expert system interfaces

d. Verifiable security protection (ability to operate in a
multi-level security environment)

e. Efficient processing of multiple views/schema

f. Hardware independence and portability to include
optimization of retrieval strategies

Thirteen potential database management system
tools/components to aid in the creation and tailoring of support
for a range of high-level systems were initially considered for
prototyping. These included the following:

a. An indexed file access package

b. A concurrency control package

c. A workstation relational database system package

d. A multi-user relational database system package

e. A relational database design tool kit

f. A view definition facility

g. A view query and update facility

h. An authorization package

i. A database query optimizer/compiler

j. A distributed database access package

k. Distributed database protocol management

1. Database operational tools

m. Database application tools

Based on a set of criteria which emphasized independence,
general understanding of functionality and implementation method,
and immediate usefulness, three components have been identified as
candidates for early implementation: Indexed File Access Package,

11

Workstation Relational Database System, and Database Application
Tools. It appears desirable to develop these components in
parallel.

3.4.1 Indexed File Access Package

This project involves the design and implementation of an
indexed file access package in Ada to provide a flexible and
standardized data storage interface for database components as
well as programs not requiring the power of a database system.
The motivation for early prototyping of this component is to
provide a de facto standard for structured files. Without a
standard, a great variety of mappings from data processing and
database records to external storage will be developed and used
within specific projects. An implementation is needed to support
any parallel paper standardization guideline.

An indexed file access package should provide access to
records of variable length. The records can include fields of
variable length. The records should be accessed by one or more
symbolic keys, by either random or sequential access. This
requires multiple indexes which should provide a symmetric
interface, although one index may be chosen as a clustered index
to provide more efficient sequential access through that index
without any effect on functionality. Any index may be specified
as unique to require that all records have unique values.
Optional retrieval by record identifier and retrieval of lists of
record identifiers, corresponding to records with a particular
index value, is needed to facilitate efficient implementation of
boolean queries referencing multiple fields. When used in a
controlled manner, the record identifier can be used to improve
the efficiency of inter-record references in databases. The
architecture should permit a high degree of concurrent access in a
manner which reduces non-inherent deadlocks. This package would
be useful not only for databases but also for ordinary application
programs.

3.4.2 Workstation Relation Database System Package

The aim is the specification of a workstation relational
database system package in Ada that implements a fully relational,
single user database system. Workstations are a vital component of
modern software development. The simple, single user environment
simplifies many implementation issues. The generous amounts of
memory available on modern workstations permits adequate
performance to be attained with simple algorithms.

A relational database system package would provide a direct
usable application within this framework. A version for a
workstation would depend on the file component to provide a fully
relational single site database system. It should provide
transaction management facilities, including rollback on abort,
logging, and recovery mechanisms.

12

3.4.3 Database Application Tools

The aim is the specification of database application tools,
such as report writers and screen-oriented interactive query,

* update facilities to provide user-friendly interfaces, and permit
rapid exploitation of database technology by non-programmers.
Experience on current commercial microcomputer systems has
demonstrated that databases, with spreadsheets and word
processing, have provided direct non-programming access to
computing. A powerful and flexible report writer package would

0 substitute report specification for much application programming.
An interactive ad hoc query/update interface would provide
sophisticated users with powerful access to the database. An
interactive application generator would facilitate rapid
prototyping of screen oriented query and update applications.

* Object-oriented Ada design permits considerable flexibility
in implementation and use of the system. For example, natural
language query interfaces and expert systems can be built on top
of this system. Components of the system may be placed on their
dedicated machines to take advantage of database machine (DBM)
technology.

3.4.4 Ada-DBMS. Interface (Ada/Structured Query Language (SQL))

The objective of this effort is the development of a standard
for utilizing COTS DBMS's from Ada programs. The availability of
such a standard would simplify and streamline system development

* efforts as well as improve the transportability and
maintainability of the systems thereby developed. The Ada Data
Definition Standard comprises two standards, the Ada Database
Standard and the Ada Data Manipulation Standard. The Ada Data
Definition Standard is the first part of the Ada Database
Standard. Given a requirement to process data, the Ada Data
Definition Standard will provide guidelines and direction for
using Ada data types and structures to represent that data. The
primary motivation will be to structure data using Ada records,
with components that may be arrays, arrays of records, etc.

The Ada Data Manipulation Standard is the second part of the
Ada Database Standard effort. Given data structured as by the Ada
Data Definition Standard, there are certain operations that will
be required upon that data. This effort will define those
mperations and will specify their desired point of implementation
within a system (e.g., universal package, application domain
package, individual application program, etc.).

3.4.5 Status and Plans

These issues are being investigated with the goal of a first
draft of the specifications to be available in the

* August/September 1985 timeframe and version 1.0 prototype of the
Indexed File Access Package available in late first quarter or
early second quarter FY 86.

13

An Ada programming language access to the draft proposed
American National Standard (dpANS) Database Language SQL has been
defined. Called Ada/SQL, it is compilable, native Ada. In
addition, the format of the Data Definition Language (DDL) has
been defined and partially implemented. This, too, is compilable,
native Ada, which can be "with'ed" by the users' Ada application
program. This method of defining a DDL gives the advantage of
additional automated type-checking, performed by the compiler. A
set of programs has been defined that takes as input the DDL, and
produces as output all of the underlying packages needed to
implement this interface for a particular instance of the DDL.
These programs are completely portable, and render negligible the
time needed to define the interface in terms of the DDL.

A test data generation program is being developed in
parallel. This program will take as input the DDL defined by the
user and create meaningful test data for the database. The test
data so generated may be as large as several gigabytes. Test and
evaluation of the Ada/SQL implementation is being conducted. The
Unit Status and Reporting (UNITREP) database build module is being
redesigned and rewritten to replace the previous IDM-500 Database
Machine interface code with Ada/SQ.

3.5 Operating System

The set of Ada prototypes being specified by the WIS
Operating System Task Force will provide a highly reliable and
portable operating system. This system will adhere to the CAIS
standard "node" model, include discretionary and mandatory access
control at the B3 level, and consider uni-processors,
multi-processors, and multi-computer systems. While the WIS
environment is a collection of local area networks (LAN's),
connected by one or more wide area networks (WAN's), prototypes
will concentrate on a LAN. However, the design and implementation
will not preclude, nor make difficult, interactions with other
LAN's of WIS. WIS is a demanding environment that must have the
following attributes:

a. Fault tolerance

b. Survivability

c. Multi-level security at the B3 level

d. Poitability of applications and system software across a
wide variety of machine sizes and types

e. Single- and multi-thread machines

f. Multiple priorities

g. Realtime processing

14

h. Fully integrated databases

Twelve prototype projects are currently being specified.
These include the following:

a. Kernel

b. Program Execution Support Module

c. File Manager

d. Authentication Server

e. Time Synchronization Agent

f. Transaction Manager

g. Inter-Process Communication (IPC) Support

h. Alias Processes for Access to Remote LAN's

i. Print Server

j. I/0 Drivers

k. Multi-Window System

1. Logging and Auditing

Brief descriptions of the first ten prototypes are presented

in this summary.

3.5.1 WIS Operating System (WOS) Kernel

The WOS kernel is a distributed kernel that implements an
abstraction of memory, processing and communication suitable for
implementing CAIS-like process nodes as well as external file and
structural nodes. The kernel is designed to provide minimal
facilities required to meet security, fault tolerance, performance
and CAIS compatibility requirements. Facilities that need not be
implemented in the kernel are implemented in server nodes that
execute outside the kernel as well as by runtime procedures that
execute in the address space of the invoker. For instance, the
CAIS function STANDARD ERROR may be just a simple routine linked
directly with the invoker, returning a value stored in the address
space of the invoker. Other functions, such as SPAWN PROCESS, use
kernel facilities to create a process node (address space) and
allocate the needed resources with the required protections and
security control.

The following illustrates the layering of CAIS routines on
the kernel implementation with a service module.

15

Ada Application Program I File Server Program

CAIS runtime routines I

WOS Kernel

machine 1 I I machine 2 I I machine k

SI. I I
local network

The kernel logically extends across all the machines in a WOS
cluster, although in reality, a copy of the kernel (or some
version) executes on each machine in the cluster. The basic
kernel interface is augmented by CAIS runtime routines to provide
CAIS process node, structural node, and file node operations. In
the case of file nodes, there are one or more file server programs
that actually implement files. The file server programs may
execute on the same or different machines (or both) with
transparent access to local and remote file nodes provided by the
kernel facilities plus the CAIS runtime routines. In general, the
kernel is viewed as an protected runtime library that implements
routines and data structures that cannot, for security, fault
tolerance or performance reasons, be implemented in the CAIS
runtime packages. These packages execute addressable to
applications.

3.5.2 Program Execution Support Module

This prototype will provide a set of Ada packages that
supports program execution for the WIS environment. The main
interfaces of interest for the Program Execution module are the
compiler, linker and loader outputs, the command language (CL),
the kernel, and the storage management packages. It is assumed
that the CL is sophisticated and that it can support invoking
typical functions. Typical functions include compiling, linking,
loading, and executing programs, as well as creating, deleting and
manipulating files and libraries, etc. The kernel is assumed to
support the compiling, linking and loading aspects of program
execution. Note that the complier, linker and loader outputs
together with the kernel support defines the contents of the
virtual address space, e.g., where the data is. Data includes
code, external symbols, global variables, heap, stack, etc. It
also resolves questions of what parts, if any, of the operating
system are in the virtual space and where. The kernel and storage
management modules support the idea that all resources are
"objects" so that the Program Execution module can issue "GET

16

OBJECT" calls for acquiring resources such as main memory and
files

The Program Execution Support Module will address the
following issues

a. Distributed resource management

b. Distributed scheduling

c. Deadlock avoidance, detection, and resolution

d. Support of the required attributes of a WIS environment (in
the context of program execution)

3.5.3 File Management

The file management server will provide an efficient,
reliable file system supporting file locking, page-level locking,
replication and recovery and atomic update. Each file is a
sequence of fixed-size "blocks" or pages whose size is known. For
efficiency reasons, the blocks should be one kilobyte or larger
with four kilobytes looking very attractive. The blocks
associated with a file represent the data most recently committed
to that file.

3.5.3.1 File Access

To access a file, a file is "opened." The open file
represents a "version" of the file blocks. Two options are
available. The open file may represent the data blocks as they
were (those committed) at the time the file was opened except for
any modifications made using this open file. In particular,
changes (even if committed) made via other open files are not
apparent in this open file. The alternative mode is one in which
changes to file pages appear in the open file once committed by
others in addition to any changes made to this open file. These
two modes are perceptually equivalent under appropriate locking
assumptions. An open file is the unit of atomic update/abort
provided by the file system, as part of the close operation. File
closing also releases all locks. The file system also implements
a Save Point operation that effectively provides a commit without
losing access to the file, as with the close operation.

3.5.3.2 File Locking

Lock management provides locking of files as well as blocks
within files. The lock management for a file resides in the file
manager implementing the file. Consequently, there is not a
"floating" global lock manager. Co-locating locks with the file
managers also allows us to combine lock operations with read
operations, thereby reducing communication costs when operations
are remote.

17

Lock modes include shared-read and exclusive-write. A lock is
associated with a particular transaction identifier and user
account. For example, a write to a locked block fails unless
the writing task specifies the same transaction identifier as
recorded for the lock plus has the same user account as the
creator of the lock. The transaction association (versus a
process/task association) allows multiple tasks involved in a
transaction. The account association is for protection between
users.

It is necessary for file managers to have a reasonable degree
of autonomy. A file manager is committing resources to a
transaction in the form of open files and their associated open
files. For this autonomy, it is necessary for a file manager to
reclaim these resources under certain situations. This means that
the file manager must be able to effectively abort the open file,
releasing locks and undoing any changes resulting from this open
file. This undo facility is clearly required or else file aborts
of this nature would leave the file in an inconsistent state.

3.5.3.3 Backup and Recovery

The file managers must, for autonomy again, provide for
backup and recovery independent of application programs (e.g., a
DBMS). The file managers must perform journaling to support
atomic transactions on files. Shadow paging for atomic update is
unacceptable in database files because of the negative influence
on disk contiguity. Therefore, old pages must be logged when
updated and restored from the log if the file is aborted.

3.5.3.4 File Replication

A file may be defined to be replicated. The file replication
is for survivability and performance. Therefore, this is
specifying physically dispersed replication as opposed to disk
mirroring or closely coupled replication on the same machine.

An application program must be able to specify/suggest the
sites at which the files should be replicated so as to co-locate
related data, e.g., relations that commonly are joined. There is
some issue as to what the file system does when the suggested
replication locations cannot be used. It may be simplest to
return an error so the application program can pick an
alternative or specify "don't care".

W hen a replicated file is accessed for reading, the
operating system provides access to the replica with the least
cost to access. The operating system may take into account
communication speeds, processor load and other factors.

18

3.5.4 Authentication Server

The authentication server provides authentication, key
distribution, and some aspect of naming. We first describe the
security model in brief.

3.5.4.1 Security Model

WIS must implement a multi-level secure system corresponding
to at leave the B (mandatory protection) level, ideally B3 with
feasibility of going to Al with the appropriate verification
tools

The system has a designated trusted computing base (TCB).
One avenue in attempting to make the system verifably secure is to
make the TCB as small, well-defined and well-structured as
possible. Clearly, the kernel is part of the TCB. It provides
normal processes that execute at different security levels and
ensures that there is not interaction between processes at
different security levels. Actually, the kernel operations may
also allow for "read up," higher clearance levels reading from
lower levels. However, we do not provide write-up so as to
simplify the integrity problems with the system. The kernel also
supports reclassifier processes that may move data between
security levels. In particular, reclassifiers are used to
implement controlled "write-down." Each reclassifier process is
also part of the TCB since misbehavior of a reclassifier
consititutes a security violation.

Thus, the kernel enforces multi-level security for entities
with known security levels. It provides also the creating of new
processes with security levels inherited from their creators.
However, it is the authentication server that assigns a security
level to a new entity. Clearly, the authentication server is also
part of the TCB. The authentication server performs several
services, including authentication, key distribution and security
logging

3.5.4.2 Authentication

The authentication server maintains a collection of accounts
which are created by the security officer at a particular
clearance level. A user must authenticate himself with the
authentication server before making any non-trivial use of WIS.
This entails communicating account name and password (or key) to
the authentication server. The communication itself might be
encrypted using the password as a key. The authentication server
then decrypts the message and checks the correctness of the
password. One rather inefficient but secure approach is for it to
attempt to decrypt it with every account password and check
correctness in this fashion. This would avoid sending the account
name in the clear.

19

Assuming the authentication request was valid, the
authentication server communicates with the kernel executing the
requesting process and requests that the kernel change this
process to the specified account and security level. This relies
on secure, unforgeable communication between the authentication
server and each copy of the kernel. In particular, there must be
absolute safeguards against an impostor authentication server.
The authentication server logs all such authentication requests,
whether successful or not.

3.5.4.3 Key Distribution and Encrypted Communication

The authentication maintains a secret secure key associated
with each account. This is used primarily for secure
communication with the authentication server. To communicate with
other service modules securely, the authenticaton server provides
"conversation keys." This minimizes the use of the principle
keys. Compromise of a conversation key is less critical than a
compromise of the principle account key.

3.5.4.4 Security Logging

The authentication server should provide a logging facility
that records all security-sensitive events. These actions include
those taken by itself such as each authentication request and its
result. It also includes actions the kernel takes, such as
creation of reclassifier processes, messages from the
authentications server and any attempts at security breaches.

3.5.5 Time Synchronization Agent

T he notion of which event "happened before" another one is
usually based on physical time. In a distributed system this
would implicitly assume that some universal time can be defined
and observed identically from various locations. This is
impossible. Practically, one may approximate some universal time
with a given accuracy, and use this approximated universal time to
develop a relative ordering of events, either a partial ordering
or a total ordering - whatever is required.

Consider that a logical clock can be described as a function
F which assigns a number to any action initiated localiy. Such
logical clocks can be implemented by a simple counter. Now
consider a distributed system where each producer process owns a
logical clock. The problem then is to guarantee that the system of
clocks satisfies a condition Z so that a particular ordering may
be built on the set of actions initiated by the producers. In
general the ordering is not unique and may not be equivalent to a
chronological ordering. The objective of the Time Synchronization
Agent is to obtain a unique physical time frame within the system
so that consistent schedules may be derived from a total
chronological ordering of actions occuring in the system.

20

When multiple physical clocks are involved (as is true in a
distributed system), it is not enough that the clocks run at
approximately the same rate. They must be kept synchronized. It
is possible to synchronize the local clocks of various processors
in a distributed environment. However, an accuracy is limited
roughly by the sum of errors which accumulate because of different
clock rates in each computer, and errors arising from the
uncertainty about the time for communication between machines.
The clocks must be synchronized so that the relative drifting of
any two clocks is kept smaller that a predictable amount.

3.5.6 Inter-Process Communication

A @@i[pipel is a synchronized file that allows one or more
readers and writers to transfer data, using the pipe as a bounded
buffer. A familiar implementation of pipes is the UNIX* operating
system

The pipe facility provides symmetric inter-task communication
in the I/0 model of communication. The program or task that
writes its output to a file can be connected by means of a pipe to
the input of another program or task that reads from a file. A
series of two or more tasks interconnected by pipes to run
concurrently is commonly called a @@i[pipeline]. Such a task
pipeline executes in parallel in a similar manner to the pipeline
structure used in a hardware processor. Each "stage" of the
pipeline processes its input data and passing the resulting output
to the next stage in parallel with the execution of the other
pipeline stages.

The pipe facility complements the asymmetric inter-task
communication provided by the Ada rendezvous mechanism. With the
rendezvous mechanism, one task is a client who invokes entries;
the other task must be a server who passively waits for an accept
or select statement to complete. In plumbing terminology, the
client has a male sex connection while the server has a female sex
connector. In this analogy, a pipe provides a connector with two
female ends, allowing two tasks with male ends (clients doing
entries) to be plugged together. In addition, a pipe provides
some amount of buffering to allow greater concurrency between the
two communication tasks.

While there are other options for the design of such a "sex
matching" inter-task facility, we choose to implement this
facility in the file model, using the CAIS-specified "queue files"
as the program interface for applications. A queue file in CAIS
represents a sequence of information that is accessed in a

*UNIX is a registered trademark of the Bell Laboratories.

21

first-in, first-out manner. There are three kinds of CAIS queue
files: solo, copy and mimic. The solo queue file corresponds to
the UNIX pipe. It is empty when created initially and then
operates like a standard queue. All writes append to the end of
the file and all reads are destructive reads of the beginning of
the fil . A copy queue file operates like a solo queue file
except that its initial contents are copied from another specified
file. A mimic queue file is similar to the copy queue file except
that writes to the mimic queue file are also appended to the file
from which the queue file received its contents. Refer to the
CAIS Specification Manual for further details of the creation of
queue files and operations on queue files.

We propose that queued files be implemented by a concurrent
Ada program that runs in one or more dedicated process nodes
within each WIS cluster. In fact, there are performance
advantages to having a queued file server or pipe server on every
WIS node that uses queued files. In particular, it is more
efficient for two tasks or programs running on the same machine to
communicate by a queued file implemented on that same machine,
rather than transmitting the data across the network. Furthermore,
it is advantageous to have the queued file implementation on the
same machine as at least one of the clients of the queued file, in
the case where the clients (the reader and the writer) are running
on different machines. This reduces the communication from two
network transfers to one. However, remote clients can access a
queued file implementation so having a local implementation of
queued files can be viewed strictly as an optimization.

A simplified implementation of queued files or pipes is
possible if we assume that the reader and the writer of the queued
file is fixed at the time the queued file is created. Under this
assumption, either the reader or the writer can include in its
runtime support (within its address space), code for "reversing
sex" to match the other clients plus some buffering. We reject
this implementation, despite its performance advantages, because
it does not allow one to change the reader or writer and
significantly complicates the runtime code in each client. Note
that this does not preclude simple "bounded buffer" facilities for
tasks sharing data in the queued file model within one address
space.

We propose that all three types of queued file be implemented
by an Ada concurrent program structured much like the file
server. It could be included in the file server program although
it is appealing to have this facility available without having the
entire file system code resident. In the simplest case, the
queued file server consists of a simple task that provides entries
for creating, deleting, opening, reading, writing, closing and
querying queued files. The data in each queued file is simply
stored in virtual memory. For greater potential parallelism,
there could be one task per queue file, allowing the use of the

22

select mechanism to synchronize readers and writers, similar to
that shown in paragraph 9.12 of the Language Reference Manual
(LRM)

Copy queued files simply required an initialization of
contents from a given file and are otherwise implemented the same
as solo queued files. Mimic queued files require that writes to
the queued files also result in writes to the original file,
another small extension on solo queued files.

This Ada program is expected to be fairly modest in size and
might most reasonably be combined with the file system/storage
management programming effort.

3.5.7 Alias Processes

E ach cluster has one or more gateway machines that connect
the cluster to WAN's and, therefore, to other clusters. Unlike
conventional datagram gateways that simply provide packet routing
(and little else), cluster gateways are required to take an active
part in insulating the cluster from outside considerations. These
considerations include differences in communication protocols and
characteristics, security and reliability assumptions. The
gateway really does have to function as a "gate" that can close
selectively, not just a mindless pipe to the outside.

For efficiency, within a cluster, network communication is
optimized for local network characteristics or logical local
networks. A logical local network is one or more physical local
networks connected by badges such that the existence of multiple
physical network is more or less transparent to the hosts
connected to the network. For communication outside the cluster,
the gateway implements a local alias task that represents the
remote task with which communication is to take place. Similarly,
communication coming into, a local network is handled as
originating from an alias task in the gateway. This basic model
as several benefits. First, communication with tasks outside of
the cluster appears the same as communication with a local task
because of the local alias task. Additionally, there is no need
to compromise local communication with a local task because of the
local alias task. Thus, there is no need to compromise local
communication to make wide-area communication possible.
Consequently, local cluster communication is very efficient.

Second, inter-cluster communication cannot occur without the
gateways agreeing to create the requisite alias tasks. Because
the creation of alias tasks can be handled at a fairly high level,
this provides a reasonable security control over inter-cluster
communication.

Finally, because the gateway is explicitly involved in
translating between local communication and wide-area
communication, it can serve to isolate the local network from

23

outsider failures and errors as well as contain local cluster
failures

A cluster gateway is structured as a half-gateway in the
sense that it translates from the local network protocol to an
inter-network protocol (in the truest sense of the term). That
is, the inter-network protocol is primarily used between networks
as opposed to covering a collection of networks. On the local
network side, the gateway appears as a server that provides access
to extra-cluster facilities. On the inter-network side, the
gateway appears similarly with the addition of explicit data
transfer primitives and a more general data packets interface.

The gateway server registers as a service in a cluster the
same as other services, running on top of a standard kernel. The
kernel must allow the gateway server to receive packets addressed
to alias tasks as well as sent to any groups to which alias tasks
belong. In addition, the kernel must allow the gateway server to
send out inter-kernel packets to local tasks. Basically, the
gateway server implements the inter-kernel protocol for local
alias tasks, receiving packets addressed to them, taking the
appropriate action, and then responding

When a Send packet is received for an alias process, the
gateway server checks whether this is a retransmission. If not,
the gateway server transmits the packet on to the remote cluster
and task associated with this local alias. The remote gateway, on
receiving the Send packet, translates it to the appropriate local
task, translates the sender task-id into a local-to-this-gateway
task-id and forwards the packet on to the local task as though it
was a local Send. Retransmissions are filtered out if the
connection between cluster gateways is reliable. In any case, the
rate of retransmission across wide-area links can be modified by
the gateways to match the performance characteristics, independent
of timeout values and retransmissions on the local network
cluster.

The cluster gateways could make good use of an internet
multi-cast facility, as is being currently proposed.

The contractor should develop a specific design based on this
general outline with attention to security, fault tolerance and
general survivability. Ideally, the inter-cluster directory
should make use of distributed integrated database technology
developed as part of the rest of WIS.

3.5.8 Transaction Manager

The transaction manager service interacts with the kernel and
file manager to provide fault tolerance. It requires a
distributed file server that supports file locking and
replication, and will include facilities to support fault
tolerance, concurrency control, recovery and checkpointing.

24

A transaction is an atomic unit of execution. It is a
sequence of operations which are either completely executed
(commit) or not executed at all (abort). It has the properties of
atomicity, durability, seralizability, and isolation. The notion
of transaction is therefore related to the problems of fault
tolerance and concurrency control. The goals of transaction
management are the efficient. reliable and concurrent execution of
transactions. These goals are strongly interrelated; therefore,
some tradeoffs are needed to design and implement the system.

The base technique for implementing transaction in the
presence of failures is based on the use of logs. A log contains
information for undoing and redoing all operations which are
executed by the transactions. These logs should be kept in stable
storage. The write ahead protocol and the careful replacement
strategy should be used to record a log and to update stable
storage, in that sequence.

To improve the degree of recoverability and to increase the
degree of concurrency, the concept of nested transaction has been
proposed as a generalization of the basic transaction. Several
nested-transaction models have been proposed in the literature.
The ideas of nested transactions has also migrated into the design
of Network Operation SysLma (NOS) and distributed programming
languages. This concept will be prototyped for use in the WIS
storage management server.

3.5.9 Printer Server

The printer server is basically just an output service. Data
is written to the printer server, just like a file. However, the
printer server also has a separate class of operations to query
its state and modify its operation

In this vein, there are three aspects to the printer server:
the data output, print job queuing query and modification, and
printing parameter control and query.

The printer output is handled using standard Ada file writing
with access to the printer file established using the same
interface as specified for ordinary disk files, and hopefully
similar to that in CAIS. The printer file is actually a virtual
printer which is then spooled for the printer.

To output to a printer, the program opens a file using a
printer server name. This open file is just a ordinary disk file
created by the printer server. When the file is closed, the file
is queued to be printed, and presumably deleted once printed.

a particular printer server may have several printers plus
print jobs arriving at times faster than they can be printed.
Therefore, as a standard, the print jobs are queued until a
printer is available. A large printer server would have its own
file system, presumably using standard file system software.

25

Operations are required for querying the print queue, changing the
priority of print jobs, -deleting a job from a print queue,
aborting a print job and restarting or backing up a print job (to
handle the case of the printer jamming, for instance).

A set of operations need to be provided to control how jobs
are actually printed. These include operations for changing
printer characteristics, changing fonts and paper, and other
aspects of the printing

3.5.10 1/0 Drivers

There is a requirement for a common interface to all I/0
devices, with the device "name" or "address" as part of the call.
The use of parameters and their sequences shall be as uniform as
possible among the various devices and drivers. The device name
will be mapped to a real device in the common interface module. A
device "address" may be symbolic and may be similarly mapped. In
general, this mapping will be transparent, and the user need not
know much, if anything, about the device to which the mapping is
made. Furthermore, the mapping may be used to redirect the user's
I/0 transparently.

Each driver should, to the maximum extent possible, depend
only on the device and not on the host system.

Drivers shall be written for all devices to be used anywhere
in WIS, and to work with each machine used in WIS which connects
to any of these devices. To the greatest extent possible, code
for the drivers shall be common between devices; different code
sequences should be written only when required. Drivers should be
written initially for those devices currently in use or projected

to be in use in WIS.

Following is a list of devices likely to be used somewhere in
WIS

a. IBM 3330, 3340, 3340, 3350, 3380 disks, all common
varieties of 8", 5" and 3.5" floppy disks, and commonly
available small hard disks

b. Tape drives at 1600 bpi and 6250 bpi for all widely used
computer systems (IBM, DEC*, Honeywell, Sperry, etc.)

c. New IBM cassette drives, card punch, card reader, and
communications lines at all the usual speeds (e.g., 300,
1200, 2400, 4800, 9800, 19200, etc.)

c. Ethernet interface, standard ASCII terminals, bitmapped
high resolution terminals, and grapilics displays.

*DEC is a registered trademark of the Digital Equipment

Corporation.

26

The I/0 system shall provide a mechanism whereby one device
may be substituted for by another, provided that the functionality
is equivalent in a manner invisible to higher levels (except
perhaps for performance). Such substitution shall even be
possible across a LAN or a WAN.

To the maximum extent possible, interfaces for similar
devices should be similar and standardized. For example, a
"standard terminal interface" should be the front end to all
terminals. All text-type terminals should support the same
minimum set of commands, with more advanced terminals supporting
additional features, defined as optional in the interface.
Likewise, the disk interface should at the highest level provide a
standard set of commands. At a still higher level, it should be
possible to treat most or all devices as a serial bit or byte
stream. Justification should be provided in each case as to why
interfaces between devices of the same "type" or of different
types are not the same. And where there are layers, with

commonality above a certain point and differences below it, the
location of that point should be justified.

3.6 Planning and Optimization Tools

I n response to the Joint Chiefs of Staff Statement of
Operational Requirements for the Joint Operations Planning and
Employment System (JOPES), it has been determined that a decision
support system is required. This system is named the WIS Smart
Advisor for Planning and Execution of Decisions (WISSAPED). The
WISSAPED will consist of three components: a Model-Based
Management System (MBMS), a Dialog Generation amd Management
System (DGMS), and a Database Management System (DBMS). The
initial effort has concentrated on the definition of the MBMS and
description of a hierarchy of modules which can be threaded
together to form models.

T here are a large variety of problem formulations that may
arise as a result of the planning process. Examination of the
problem formulations resulted in placing the necessary models into
six classes

a. Linear systems

b. Non-linear systems

c. Networks and graphs

d. List processing

e. Time series

f. Stochastic

27

Each of the model classes were further subdivided to identify

the hierarchy of tools required

a. Fundamental data structures

b. Primitive operations

c. Analysis tools

d. Solvers

e. Simulators

f. Optimizers

To a significant extent, each succeeding level uses the tools
in preceding level

The initial efforts of the Planning and Optimization Task
Force have been concentrated on the following efforts:

a. Formalize the structure of the WISSAPED.

b. Define and describe the hierarchy of tools.

c. Elaborate on one of the six model classes, e.g., linear
system models

d. Develop specifications for tools which are necessary for
producing "optimized" solutions for four of the more
common classes of planning problems.

3.6.1 Generic Linear Programming Package

This prototype project is for the development of a generic
Ada software package to solve problems of the Linear Programming

class. The problem formulation is to:

minimize f(X)-K
subject to AX-B and X > 0,

where C is a row vector and X
and B are column vectors
C=(cl, c2,...,cn),

T

X-(xl, x2,...,xn),

T

B=(bl, b2,...,bm),
T

28

A is an mxn matrix

Iall a12 alni
1a21 a22...... a2nl

A = I I
I.I
laml am2 amn, I

ci, bj and akl are real-valued,
and X > 0 means all xi are non-negative real-valued.

The generic package P will consist of several specialized
subpackages Fi, each of which is tailored for specified ranges of
n and m and joint characteristics of C,B, and A (A might have a
tree structure, etc.). An upper limit for m of at le-ast millions
and for n of at least hundreds of thousands is required for sparse
A. An upper limit for n of at least 400 is required for at least
some applicable types of dense A. High quality (though not
necessarily of production-quality) Pi should be included for A,B,C

relationships that commonly occur in military contexts, especially
logistics. "Quality" refers to maintaining accuracy while
operating at high speed and efficiency in modern machines. It
also refers to the reliability and precision of all Pi outputs.

Outputs: Output will include error, estimates; sensitivity
indices; and, where appropriate, diagnostic information pointing
out especially troublesome spots in the Pi run and/or in the

problem formulation for the Pi that ran it. Warning of
computational disasters due to ill-conditioned problems will
always be provided for the user as so-r as .

Inputs: Inputs include n, m, A, B, C; accuracy bounds (if
known) on the sets of bi, cj, and akl parameters; a menu-guided

characterization of A and the A,B,C relations sufficient for
automatic selection of a good Pi to run the problem; and output
and stopping conditions on the run.

M ethods: The method employed by each Pi (e.g., simplex,
revised simplex, dual-simplex, Karmarkar, etc.) will be indicated.

Its characteristic capabilities will be available before run time
in both naive user and professional analyst terminologies. A

succinct description of the method will also be available as a

brief complement to the method's full documentation.

The generic P will easily be, able to accommodate any
additional Pi that might be added later.

3.6.2 Generic Mixed Integer Linear Programming Package

The purpose of this prototype project is to solve the mixed

integer linear programming (MIP) problem which is formulated as

follows

29

Minimize (cx + dy)
x > 0

y>O

subject to Cx + Dy < b,
x integer,

where C and D are matrices and c, d, b, x and y are vectors of
appropriate dimensions. By taking d and D to be null, this
problem specializes to the "pure integer" linear program. The MIP
package will be extensible to include a multi-attribute objective
function by replacing the scalar cx + dy in (MIP) by Ex + Gy,
where E and G are matrices of appropriate dimension.

Scope: The prototype tool will consist of several
specialized subtools, each of which is tailored for specified
ranges on the numbers of variables and constraints as well as
specified relational characteristics among the MIP parameters c,
d, C, D, and b. An upper limit of at least 800,00 variables and
200,000 constraints will be required

3.6.3 Generic Non-Linear Programming Package

This prototype project will develop a generic software

package in Ada to solve problems of the form:

minimize F(x),

x a member of R" 0

Ix I
subject to 1<= <Ax > < u,

I CMX I

where F(x) (the objective function) is a smooth non-inear
function, A is a constant matrix, and c(x) is a vector of smooth
non-linear constraint functions. An equality constraint
corresponds to setting li-ui. The special case when F is linear
and c is not present is the usual linear programming problem. Note
that simple bounds and linear constraints are presented separately
from nonlinear constraints.

Scope: The prototype package will be capable of handling
three major size-classes of problems: small-scale problems having
about five or fewer unknowns and constraints; intermediate-scale
problems having from about five to a hundred variables; and
large-scale problems having more than a hundred and perhaps even
thousands of variables and contraints. This classification is not
entirely rigid, but it reflects at least roughly not only size but
the basic differences in approach that accompany different-size
problems.

30

Outputs: Outputs include the solution and sensitivity
information as requested; run analysis results such as matrix
factorization statistics, iteration logs, exit conditions at
various program stages, error estimates and the effects of various
errors on solution precision; and a brief run summary.

Inputs: Inputs include the necessary problem parameters.

3.6.4 Generic Sequencing, Scheduling, and Assignment
(SSA) Packaq

This prototype project will develop a generic software
package in Ada to find optimum or quasi-optimum sequences,
schedules, or quadratic assignments for standard deterministic and
stochastic combinational problems

The standard deterministic sequencing and scheduling (DSS)
problems include the traveling salesman and other routing
problems; one-dimensional, bin-packaging problems, open-shop,
flow-shop, and job-shop scheduling problems; and various critical
path and transportation problems. Stochastic sequencing and
scheduling is, for the most part, still too immature for inclusion

* in a prototype package.

The prototype package will include quadratic assignment
problems (QAP) of the general Koopmans-Beckman type. The QAP are
combinational optimization problems of the following form:

given a finite set N=§I, 2, , nt and two (n X n) matrices

A = (a) and B - (b)
ikl

with real entries. The matrix A is called a distance matrix; B
is called a connection matrix. The problem is to find a
permutation of the set N such that the sum

S U M M A T I ON S U1 M A T I ON a bf f
i MEMBER OF N j member of N ij (i) ()

becomes minimal

Subprograms for handling knapsack problems (KP) of any
dimension are candidates for inclusion in the prototype
package. A general KP is to maximize the value:

31

n
Maximize SUMMATION c x

i-1 i i

n
s ubject to SUMMATION a x < b,

i-1 i i

0 <- x <- u an integer.
i i

Scope: Most prospective military application-s of an SSA
package would involve large numbers of variables. Some packing
algorithms have handled up to 10,000 items, some routing programs
up to 500 cities, some DSS algorithms execute in times
proportional to a low degree polynomial in the number of problem
variables, etc. But small changes in a problem's formulation can
lead to huge changes in its complexity. Thus while we can specify
that our prototype's programs should handle the largest size
problems that are feasible for modern computers and that these
programs have at least some military applications, little more
than this can be said at present.

T he prototype should have a rich set of interactive
capabilities. This will allow the use of multiple criteria and
the selection of robust schedules that tolerate differences
between models and their real-world counterparts sufficiently well
as to have practical value.

T he prototype should aim to knit together a significant
number of DSS, QAP, and KP subprograms in an extendable and easily
maintainable way. These programs might not involve annealing
methods, and should not be organized as standard integer programs
These standard integer programs are to be established in a
separate prototype tool

3.6.5 Status and Plans

W e expect to complete detailed specifications and statements
of work in each of the above areas by September 1985.

As additional efforts, we will prepare detailed
specifications and statements of work to develop Ada software for
the models which will reside in the MBMS.

3.7 Graphi

A high-level conceptual model of a graphics support system
for WIS applications has been developed by the graphics task
force. The model is a pipeline showing the control of information
and con'rol between one or more application programs and the
graphics display and input hardware. The model illustrates
specific components of the graphics support system which are being

32

specified by the task force. The primary components are visual
objects (in particular, their definition and manipulation), window
management, and image generation system.

An object-oriented approach is adopted in which the
application program deals with high-level "visual objects", such
as menus and icons, rather than just primitives as points and
lines.

3.7.1 Visual Objects

The visual objects will deal with the specification and
coordination of encapsulated graphical entities. These visual
objects provide a higher level of support to the applications
developer than a subroutine library consisting of graphics
primitives and control over viewing transformations. Visual
objects can provide an organized tool kit of objects with a
powerful set of properties and behaviors.

T he visual objects prototype consists of several

identifiable functions and interfaces whose descriptions follow.

3.7.1.1 Subtask - Visual Objects Definitin

The application program interface to the graphics toolset is
based on an object-oriented approach to user interface design and
implementation.

The goal of this function is to provide the framework for
defining and manipulating visual objects. This involves
classifying visual objects, describing their behavior and visual
aspects, and indicating the relationships between them. This will
be accomplished through the development of an object definition
language

Visual objects fall into two categories: those commonly used
by application programmers in developing user interfaces (e.g.,
frames, menus and icons), and those used in specific application
domains (e.g., markers representing military units). This

function provides for the identification and definition of these
visual objects using the framework described above.

3.7.1.2 Visual Representation

0 bjects may be represented visually in a number of ways, such
as shaded images or wireframes. This function provides the link
between the abstract concept of a visual object and its visual
representation

In this function the forms, mechanisms, and the techniques
for storing, retrieving, and defining visual representations, such
as in a symbol library or database will be designated.

33

3.7.1.3 Visual Objects Coordination

A mechanism for coordinating the behavior of visual objects
is necessary. This may be accomplished using one or more higher
level objects which are responsible for distributing messages to
the visual objects from other system components, such as an
application program or the window manager. An object display list
manager is an example of a higher level coordinator.

A command processor will be specified to exert some control
over the behavior of visual objects. Such a command processor
might be associated with an application or one of the other
graphics modules, such as the input switcher. This function will
specify how the coordination of visual objects should be
distributed and shared.

3.7.1.4 Application Interface

T he application interface describes the common support
capabilities provided by the visual objects. This defines the
protocol between the application developer and the object-oriented
Ada packages that applies to every object.

In addition to the set of commands of an object that are
invoked directly by the user, there is also a set that is accessed
indirectly through higher level objects responsible for
distributing the messages to them. These higher level objects
coordinate the display and behavior of the visual objects. They
rely on support from the common protocol that each visual object
must define.

3.7.1.5 Application Database Interface

The visual objects may need to respond to changes in the
application database. Certain items in the database represent the
state of the application. The user must be able to continuously
monitor this state. When one of the state items changes, the
visual object must be informed so it can change its image on the
screen. These changes might include the color, size, position, or
orientation of the object.

In order to support dynamic responses to database changes,
there must be an interface between the application database and
the visual objects. This interface lies between the graphics task
group and the database task group. In the graphics task group we
will specify the functions supported by this interface. The
database task group will evaluate the task of defining the
detailed syntax and semantics of the interface.

3.7.1.6 Image Generation Package Interface

The purpose of this subtask is to define the generic
functionality of the image generation packages used by the visual
objects. It is anticipated that several image generation packages

34

will be used in the graphics system. These packages include the
Programmer's Hierarchical Interactive Graphics Standard (PHIGS),
the Graphics Kernel System (GKS), and Computer Graphics Interface
(CGI). Since the objects may be dealing with several different
image generation packages, there is a need to define a minimal
functionality for these packages. This functionality can be
divided into two parts, output and input.

On the output side, there may be features of the image
generation package that may be required by all or a large range of
visual objects. These 'features include geometric primitives,
transformations, and visibility control. It is not the intention
of this project to define the syntax and semantics of these
features, but to ensure that they are presented. On the input
side, there must be some way of converting the input information
coming from the image generation package into messages for the
visual objects.

3.7.2 Window Manager

The objective of this task is to define a window management
facility and its interface to the rest of the support system.
The window manager will be consistent with other graphics support
components and be appropriately bound to the kernel operating
environment.

The window manager manages the screen real estate of the
display devices and provides the device and application
independent interface to the display surfaces. The window manager
responds to commands from the application program to create, site,
and position windows, and may also notify programs of changes to
the window world. It provides the image generation packages with
"virtual screens" for generating graphics output, and also
provides clipping services and input demultiplexing. Since there
is a single window manager view provided to all applications and
image generation packages, performance and non-blocking behavior
are critical.

3.7.3 Image Generation

This task group is primarily responsible for the content and
requirements of image generation packages using existing or soon
to be graphics standards.

An objective is to create a PHIGS binding to Ada with the
purpose of analyzing the compatibility between the PHIGS semantic
and the Ada semantic. Such a binding should be usable as a means
of expressing the functionality by the visual objects group in
terms of PHIGS functionality. Any incompatibilities should be
raised as issues requiring further resolution.

This task will also specify the interfaces for the PHIGS
input facilities and specify the requirements of PHIGS in relation
to its demands on the other tools of the system. Such tools

35

include CGI-level graphics functionality and window manager
support

3.7.4 CGI

An objective of this group is to analyze the functionality of
the CGI within the context of the WIS graphics conceptual model.
Particular concerns are its input facilities and support of faster
operations. Interfaces to other graphics components, such as the
Image Generation Package (IGP), the window manager, the window
clipper, and the input switcher, need to be defined. Issues to be
resolved include the role of CGI in a windowing environment and
its relationship to the IGP (e.g.,PHIGS). For example, should
the window manager interface directly with the CGI, or indirectly
via a minimal IGP? Should visual objects be able to directly
invoke the CGI? Should the window clipper be above the CGI, or

below if

A second objective of the group is to create a CGI binding to
Ada

3.7.5 Graphics and Input Command Processing

This task is to specify the handling of input events from the
keyboard, mice, or other devices. This is usually controlled by a

centralized module called the Input Command Processor (ICP). The
ICP imposes a consistent style of interaction and assists
application programs in specifying their user interfaces.

A central issue to be resolved and specified is the interface
between the graphics support modules and the command processor

modules. With the visual object model, who controls the behavior
of visual objects: the objects themselves or an external ICP?
Other issues concern the use of a Command Processor (CP) in
handling window manager commands, the nature of the input

switcher, and the use of one or more listener windows for multiple

input devices.

3.7.6 Status

The preliminary specifications are being analyzed and

reformulated. Two additional iterations are anticipated before

final specifications are ready which is due in the July 1985 and
October 1985 timeframe

3.8 Network Protocols

The performance of WIS operational functions requires the

ability of WIS users to transfer a variety of types of information
to both local and remote users and systems. Within a site, access
to WIS capabilites, both the functions and data, will be
accomplished using a LAN architecture. Access to the other sites
and remote WIS systems and data will be accomplished using WIS

36

intercomputer networking capabilities through the Defense Data
Network (DDN).

The requirements for network services necessitate tools to integrate the
communications design for WIS. To support the distributed processing concept,
any number of components (hardware and software) from different sources must be
able to communicate among themselves through the use of predetermined
protocols. The WIS will be built upon the current Department of Defense (DoD)
protocols. However, activity in the international standardization community
indicates that at some time in the future International Standard Organization
(ISO) protocols may be used for the network communication functions. As the
services required within the WIS are expanded the need for new applications and
lower levels of protocols and services will grow. Based upon the experience of
the ARPANET, methods which can reduce the complexity and resources needed for
new protocol specification and implementation will be necessary. The use of
the DDN as the long haul backbone for WIS raises the questions of how inter-LAN
communications routing will be accomplished when additional factors beyond
shortest distance must be accommodated.

The Task Force for Network Protocols has been established to investigate
and identify those technical issues which will require prototyping to
understand and. implement solutions to networking problems. The prototype
projects initially identified by the Task Force are those which it believes
will yield both near and far term payoff for the WIS Joint Program Management
Office (JPMO).

3.8.1 Common Ada Implementation of Open System Interconnection

(OSI) and DoD Transport and Internet Protocols

3.8.1.1 Terminology

In this project description, TCP/IP refers to the combination of the DOD
transmission control protocol and internet protocol. TP-4/CLIP refers to the
combination of the ISO transport protocol (class 4) and the ISO connectionless

* internet protocol (CLIP),currently being defined as a subprotocol of the
network layer. For brevity, TCP/IP and TP-4/CLIP are often referred to simply
as "the DoD" and "the ISO" protocols, respectively.

3.8.1.2 Objectives of the Project

*This project has several related general and specific objectives. The
general objectives are as follows:

a. To provide technical input to the decision-making process regarding
adoption of the ISO protocols by DoD.

b. To provide a tested, technical approach for making the transition to
the use of the ISO protocols by DoD which will help reduce the risk
and cost of such a move.

c. To contribute to the technical capability of DoD networks to
interwork with ISO networks.

37

Given that a common design appears feasible, the specific objectives are
as follows :

a. To investigate design issues associated with. the following *
requirements:

(1) A common Ada interface is required for implementations of the
DoD and ISO protocols, which would enable higher level software
to use either of the protocols in as flexible a manner as
possible, thereby paving the way for a low-cost, low-risk
transition to the use of the ISO protocols.

(2) A common Ada software organization is required for the DoD and
ISO protocols, making full use of Ada's packaging capabilities.
The extent to which this is practically possible will provide a
measure of the confidence which can be placed in the commonality
of function of the two protocols.

(3) It is expected that the Ada packages emerging from the
satisfaction of this objective will be useful for the
implementation of gateways between DoD and ISO networks. The
investigation will contrast the common organizational approach
with that of providing only a common user interface to
otherwise completely independent Ada implementations of the two
protocols.

(4) It should be possible to use the packages in the common design
in a transport level gateway between DoD and ISO networks.

b. To provide high-level designs reflecting the results of the above
analysis.

c. To provide implementations and demonstrations of the designs.

3.8.1.3 Status of the Project •

The Task Force for Network Protocols is actively engaged in the
preparation of the final specification of this project. The final
specification will be completed by 15 July 1985.

3.8.2 Automatic Generation of Ada Protocol Software for WIS 0

3.8.2.1 Introduction

The WIS will require new communications protocols over its life cycle.
Traditionally, protocol software has required an extended period of time for
development. The processes of formal specification, and implementation have.
been accomplished with techniques which necessitate mapping from one conceptual
framework to another. Considerable effort has been expended to verify that the
protocol requirements have been accurately mapped into the software solution
space.

The Ada software methodology offers the protocol designer a powerful *
approach to overcome the requirements conversion problem and to achieve

38

extended period of time for development. The processes of formal
specification, and implementation have been accomplished with
techniquer which ne'essitate manping from one conceptual framework
to another. Considerable effort has been expended to verify that
the protocol requirements have been accurately mapped into the
software solution space.

The Ada software methodology offers the protocol designer a
powerful approach to overcome the requirements conversion problem
and to achieve modularity, uniformity, completeness, and
confirmability. Building upon the facilities inherent in Ada the
automated generation of protocol software directly from the
functional specification will result in a considerable savings.

Some limited success with automated production of protocol
software from formal protocol specifications has been achieved so
far and the field offers the prospect of a high level of success
by the 1990's.

The successes with automatic generation to date have been
achieved when protocol specification is done with state machine or
equivalent methods, such as petri nets. Both language and
graphical forms have been used for the specifications. Automatic
code generation may be performed by translating individual state
machine specifications into program fragments (usually
subprograms) in languages such as Pascal or C. However these
subprograms do not by themselves implement the protocols. Human
intervention is required to devise a control framework appropriate
for a particular hardware and operating system environment and to
integrate the automatically generated procedures into this
framework. Further human intervention is required to validate the
results.

3.8.2.2 Objectives of the Project

This project will take an initial step towards the automatic
generation of Ada protocol software for WIS. The initial step is
in two parts:

a. Implementation of a prototype code generator for Ada
code fragments following work already done in the
protocol field for other languages

b. Analysis of the feasibility of developing more automatic
methods which not only produce code fragments but also
provide means of integrating them into an appropriate
control framework for an implementation

The ultimate objective for the 1990's is to produce Ada
protocol software from a combination of protocol specifications
and additional system design information, such that only minimal
hand tailoring of the resulting Ada programs will be required.

39

Two major streams of research activity world-wide affect this
project: formal techniques for protocols and embedded systems
design. Tachniques from both of these areas will be needed to
solve the general problem.

a. Formal techniques for protocols: This activity
includes formal specifications for communication
protocols and their translation into implementations.

b. Embedded systems design: This activity includes
operational software design methods and rapid
prototyping methods for event-driven, realtime embedded
systems.

This project will specifically address the following:

a. What specification technique should be used for the
protocols? Techniques in current use include, both
separately and in combination, narrative text, timing
diagrams, coupled state machines, petri nets, temporal
logic and special languages.

b. What techniques should be used to determine the
implementation framework (the logical organization of
the implementation), based on the nature of the
protocols to be implemented? Currently there are no
automatic techniques available for doing this; it is a
matter for human design judgement.

c. How and at what stage of the process should the
internal protocols be specified? Because these are

protocols between modules of an implementation, some
decisions must be made about the implementation
framework first.

d. How can the protocol specifications be used to generate
Ada implementation code?

e. How can the code fragments generated from the protocol
specifications be integrated into a particular
implementation framework?

f. How can the results be validated?

3.8.2.3 Status of the Project

The Task Force for Network Protocols is actively engaged in
the preparation of the specification for this project. The final
specification will be complete by 15 July 1985.

3.8.3 Multi-Varible Objective Functions as a Basis for
Network Routing in WIS

3.8.3.1 Introduction

40

WIS is composed of a moderate number (less than 50) of
_A., s. The LAN's will servie a heterugeneous mix of terminals
and hosts. The DDN will be used as the long haul backbone. WIS
inter-operability is required with other networks, domestic and
foreign, commercial and military. WIS requirements that are
unique and/or stringent include multi-level security, priority,
reliability, reconfigurability, and distributed databases.
Applications to be serviced include teleconferencing, Telnet,
file/data transfer, wide band voice and data, narrow band voice,
video, and facsimile.

The DDN is based on a datagram service similar to, if not
identical with, the current Defense Advanced Research Projects
Agency (DARPA) set of protocols. The nature of the WIS LAN
protocols is not clear at this time; however, all WIS LAN's will
be connected via multiple gateways to the DDN. The LAN-to-DDN
gateways will be responsible for routing, other network services,
and providing additional services required by applications of WIS
that are not currently provided by standard internet protocols.

The DDN will provide connections between all gateways,
routing procedures in the WIS gateways and DDN gateways will
determine the "best" communications paths. The criteria used by
DDN will be its own, e.g. shortest hop or minimum delay. However,
these criteria are those which have been developed for networks
with a limited number of decision varibles governing the choice of
a "best" communications routing. The more complex nature of the
WIS, compared to the WWMCCS or ARPANET, dictates that the "best"
communications routing be selected based upon an integrated
consideration of all criteria. Some of these new criteria are
priority, survivability in a dynamic environment, and reliability
for multiple classes of service.

The final objective of this project is the production of
prototype communications routing algorithms which will encorporate
multiple decision variables. Since the WIS and DDN gateways will
have to share the routing responsibilities, it is anticipated that
the results of this project will become a foundation for improved
WIS and DDN communications routing.

3.8.3.2 Objectives of the Project

Several aspects of inter-LAN communications need to be
addressed before an inter-LAN mechanism can be implemented.
First, a good routing protocol must be developed. Second, the
gateway must be designed for high performance. The routing
protocol itself comprises two components: an algorithm for
computing the routes based on some cost function, and the protocol
which uses this route information to perform the inter-LAN
communications. We envision a multi-year effort on all parts of
inter-LAN communications which will result in an Ada
implementation of these mechanisms. Efforts should be undertaken
in the areas of algorithms, routing, and implementation.

41

The objective of the work with algorithms is to develop
efficient routing algorithms that will provide "good" routes
within WIS under varying traffic loads and topological changes.
For the purpose of this study, we assume that WIS consists of n
LAN's. Each LAN is connected to DDN through at least two
gateways. Each gateway is connected to DDN by one or more links.
All connections from a LAN to DDN are to different parts of DDN.
Simplified assumptions regarding the workload will be made.

a. A simple problem will be investigated initially where
the routing algorithm is concerned with optimizing a
single objective function, say ND[1I, with no
constraints. This problem has been studied previously,
and several approaches have appeared in the literature.

b. A problem where the routing algorithm is concerned with
optimizing an objective function that contains two or
more terms weighted together. An example is
a[I]*ND[1I+a[2]*ND[2]. This problem has no constraints.

c. This problem'contains a single objective function which
may be a weighted sum of several performance measures,
and one or more constraints on the remaining performance
measures. An example of this problem is

minimize ND[1]

subject to NR[2] > r.

d. This problem contains no objective function but merely
requires a set of routes such that a set of constraints
are satisfied.

e. This problem asks for a set of routes that optimize
several objective functions.

Work in the routing area will be concerned with routing for

systems with non-convex objective functions and many classes of
traffic. Priorities would be included at this time as they appear
to introduce non-convexity. The most promising approach or
approaches identified during the earlier phase of study would be
considered at this time. The result of this phase of study will
be the routing algorithm to be used in WIS.

Regarding implementation, the algorithms developed during the
first phases of study would be implemented in Ada and evaluated on
a testbed system.

3.8.3.3 Approaches to Problem

There appear to be two approaches to solving the above
problems decentralized (distributed) and centralized. In the
first case, all gateways take part in executing the algorithm.

42

Moreover, each gateway uses a portion of all the information
required to execute the algorithm. A centralized algorithm
requires that all necessary information be collected at one
processor. The algorithm is then executed at that processor using
this information. The centralized approach can also be
implemented whereby all information is collected at all gateways
and each gateway executes the same algorithm. This second approach
is currently used by ARPANET. There are several issues involving
each of these approaches that require study.

The decentralized approach produces algorithms that require
several iterations before the optimal routes are produced. There
is a question regarding how many steps are necessary for
convergence. There is also a question regarding the length of
time necessary to perform a single step. The answers to both of
these questions will determine how well decentralized algorithms
can handle changes in workload and in topology.

3.8.3.4 Status of the Project

The Task Force for Network Protocols is actively engaged in
the preparation of the specification of this project. The final
specification will be completed by 15 July 1985.

3.8.4 Status and Plans

We expect to complete detailed specification and statements
of work in each of the above network protocol areas by September
1985.

43

43

APPENDIX A

LIST OF CONSULTANTS

A-i

Appendix A contains a list of consultants who have contributed to
this document.

SOFTWARE DESIGN DESCRIPTION AND ANALYSIS TOOLS TASK FORCE

IDA Task Interface: Bob Knapper

Task Force Leader:

Leon Stucki
724 West Hi-Crest Dr.
Auburn, WA 98001
(206) 939-7552
Istucki@@eclb

Chair Emeritus:

William E. Riddle
Software Design and Analysis, Inc.
1670 Bear Mountain Dr.
Boulder, CO 80303
(303) 499-4782
riddle@@usc-eclb

Task Force Members:

Betsy Bailey - Software Metrics
400 N. Cherry St.
Falls Church, VA 22046
(703) 241-3949
bbaily@@eclb

Lee Osterweil - Feedback Analysis
Chair, Computer Science Department
University of Colorado
Boulder, CO 80309
(303) 492-8787
ida%boulder.csnet@csnet-relay

Christine Youngblut - PDL
Computer Technology Associates
17021 Sioux Lane
Gaithersburg, MD 20878
(301) 948-1989
cyoungblut@@eclb

Grady Booch
835 S. Moore St.
Lakiwood, CO 80226
(303) 986-2405
gbooch@@eclb

A-3

TEXT PROCESSING

IDA Task Interface: Murray Berkowitz

Task Force Leader:

Alan C. Shaw
University of Washington
Department of Computer Science
Seattle, WA 98195
(206) 543-9298
shaw@@washington

Task Force Members:

Christopher W. Fraser
Computer Science Department
University of Arizona
Tucson, AZ 85721
cwf@@arizona.csnet@csnet-relay

Ned Irons
Slater Towers, Ltd.
586 Longs Peak Road
Longs Peak Route
Estes Park, CO 80517
(303) 586-5933

Other Portential Members:

Ben Schneiderman (University of Maryland)

COMMAND LANGUAGE

IDA Task Interface: Joesph Hrycyszyn

Task Force Leader:

Dr. Thomas S. Kaczmarek

USC/ISI
4676 Admiralty Way
Marina del Ray, CA 90292
(213) 822-1511, ext. 271
kaczmarek@@isif

A-4

Task Force Members:

Philip J. Hayes
Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA 15213
(412) 578-2631
phil.hayes@@cmu-cs-a

Robert J. K. Jacob
Naval Research Laboratory
Code 7590
Washington, D.C. 20375

(202) 767-3365

jacob@@nrl-css

Jon A. Meads
User Interaction Computer Graphics
Software and Computer Systems
2516 NE 19th Street
Portland, OR 97212
jmeads@@eclb

Ken R. Holmes
M/A-COM LINKABIT, Inc.

3033 Science Park Rd.
San Diego, CA 92121
(619) 457-2340

DATABASE TOOLS

IDA Task Interface: Murray Berkowitz

Task Force Leader:

Gio Wiederhold
Computer Science Department
Stanford University
Palo Alto, CA 94305
(415) 497-0785
wiederhold@@sumex-aim

Task Force Members:

Arthur M. Keller
Stanford University
Computer Science Department
Palo Alto, CA 94305

(415) 497-3227
ark@@su-ai

A-5

David L. Spooner
Department of Mathematical Science
Rensselaer Polytechnic Institute
Troy, NY 12181
(518) 266-6890
spooner%rpi.csnet@@csnet-relay

OPERATING SYSTEMS

IDA Task Interfaces: Clyde Roby and John Salasin

Task Force Leader:

John (Jack) Stankovic
University of Massachusetts
Electrical and Computer Engineering Department
Amherst, MA 01003
(413) 545-0720
stankovic%umass-ece.csnet@@csnet-relay

Task Force Members:

Ming T. Liu
Department of Computer and Information Science
The Ohio State University

2036 Neil Avenue Mall
Columbus, OH 43210
(614) 422-1837
liu@ohio-state.csnet@@csnet-relay

David Cheriton
Computer Science Department
Stanford University A
Stanford, CA 94305
(414) 497-1054
cheriton@@pescadero

Alan J. Smith
Department of Electrical Engineering and Computer Science
531 Evans Hail
University of California
Berkeley, CA 94720
(415) 642-5290
smith@@ucb-vax
Home office:
7026 Norfold Rd.
Berkeley, CA 94705
(415) 549-3190

PLANNING AND OPTIMIZATION AIDS

IDA Task Force Interface: Mike Bloom

A-6

Task Force Leader:

Dr. Alexander Levis
Laboratory for Information and Decision Sciences (LIDS)
Massachusetts Institute of Technology
Cambridge, MA 02139
(617) 253-7262
levis@@mit-multics

Chair Emeritus:

Harold Sorenson
Chief Scientist
United States Air Force
HQ USAF/CCN
The Pentagon
Washington, D.C. 20330-5040
(202) 697-7842
sdcc6!is8l@@ucsd
Home office:
5500 Teak Court
Alexandria, VA 22309

Task Force Members:

Dr. Vivek S. Samant
2117 Brigantine Ct.
Encinitas, CA 92024
(619) 436-7317
vsamant@@eclb

Professor Stephen J. Kahne
Department of Electrical Engineering
Polytechnic Institute of New York
Brooklyn, NY 11201
(212) 330-0362 (home)
skahne@@eclb

William Kilmer
Department of Electrical and Computer Engineering
University of Massachusetts
Amherst, MA 01003
(413) 545-0672 (office)
(413) 545-2442 (messages)

40 bkilmer@@eclb

Andrew P. Sage
First American Professor of Information Technolgy
George Mason University
4400 University Drive
Fairfax, VA 22030
asage@@eclb

A-7

GRAPHICS

IDA Task Interface: Joe Hrycyszyn

Task Force Leader:

James Foley
Computer Graphics Consultants, Inc.
510 H Street, S.W.
Washington, D.C. 20024
(202) 554-8021
jfoley@@eclb
(Jim Templeman and Patti Denbrook are working with J. Foley.)

Task Force Members:

Dr. Mark Weiser
Computer Sciences Department
Room 4315
University of Maryland
College Park, Maryland 20742

(301) 454-7817
mark@@maryland

Dr. Mark Green
Department of Computer Science
University of Albert-
Edmonton, Alberta, Canada 26G2HI

Brad Myers
2085 Islington Av.
Suite 610
Eston, Ontario, Canada M9P3R1

(416) 978-6986 (office)
(416) 244-4083 (home)
bmyers@@eclb

Kathleen A. Gilroy
Software Productivity Solutations, Inc.
P.O. Box 361697
Melbourne, FL 32936
(305) 254-4268
kgilroy@@eclb

Dr. Richard Puk
Puk Consulting Services
7644 Cortina Ct.
Carlsbad, CA 92008
(619) 753-9027
rpuk@@eclb

A-8

Jeffrey E. Simon
M/A-COM LINKABIT, Inc.
3033 Science Park Rd.
San Diego, CA 92121
(619) 457-2340 (office)
(619) 755-6253 (home)
jsimon@@eclb

NETWORK PROTOCOLS

IDA Task Interface: Mike Bloom

Task Force Members:

Robert Boorstyn
Polytechnic Institute of New York
333 Jay St.
New York, NY 11201
(212) 643-4485
boorstyn@@isi

0
Ray Buhr
Department of Computer and Systems Engineering
Carleton University
Ottawa, Ontario, Canada KIS5B6
(613) 231-2645
buhrcarleton.cdn%ubc.csnet@@csnet-relay

Don Towsley
Department of Electrical and Computer Engineering
University of Massachusetts
Amherst, MA 01003
(413) 545-0766
towsley%umass-ece.csnet@@csnet-relay

Dennis MacKinnon

15 Pansy Av.
Ottawa, Ontario, Canada KIS2W5
(613) 234-1003

A-9

APrEZNDIX B

LIST OF TERMS AND ACRONYMS

B-i

Appendix B contains a list of the terms and abbreviations contained
within this document.

ANSI American National Standards Institute

APSE Ada Programming Support Environment

CAD Computer-Aided Design

CAIS Common Ada Programming Support Environment (APSE)
Interface Set

CGI Computer Graphics Interface

CL Command Language

CLIP Connectionless Internet Protocol

CODASYL Conference on Data System Languages

COSCL Common Operating System Command Language

COTS Commercial Off-the-Shelf

CP Command Processor

DARPA Defense Advanced Research Projects Agency

DBM Database Machine

DBMS Database Management System

DDL Data Definition Language

DDN Defense Data Network

DEC Digital Equipment COrporation

DoD Department of Defense

DSS Deterministic Sequencing and Scheduling

DGMS Dialog Generation and Management System

dpANS Draft Proposal American National Standard

FY Fiscal Year

GKS Graphics Kernel System

B-3

ICP Input Command Processor

IGP Image Generation Package

IP Internet Protocol

IPC Inter-Process Communication

ISO International Standards Organization

JOPES Joint Operations Planning and Employment System

JPMO Joint Program Management Office

KP Knapsack Problem

LAN Local Area Network

LRM Language Reference Manual

MBMS Model-Based Management System

MIP Mixed Integer Linear Programming

NOS Network Operation System

NOSC Naval Ocean Systems Center

NSA National Security Agency

OSCRL Operating System Command and Response Language

OSI Open System Interconnection

PDL Program Design Language

PHIGS The Programmer's Hierarchical Interactive Graphics
Standard

QAP Quadratic Assignment Problem

SQL Structured Query Language

SSA Sequencing, Scheduling, and Assignment

TCB Trusted Computing Base

TCP Transmission Control Protocol

TP Transport Protocol

UNITREP Unit Status and Reporting

WAN Wide Area Network

8-4

WIS WWMCCS Information System

WISSAPED WIS Smart Advisor for Planning and Execution of Deci-
sions

WOS WIS Operating System

WWMCCS World Wide Military Command and Control System

WYSIWYG What You See Is What You Get

B-5

UNCLASSIFIED

Distribtion List for IDA Paper P-1869

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

CPT Stephen Myatt 5
WIS JPMO/DXP
Room 5B19, The Pentagon
Washington, D.C. 20330-6600

Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Mr. Bill Allen
311 Park Place Blvd.
Suite 360
Clearwater, FL 34619

Ms. Linn Roller 1
General Dynamics
P.O. Box 748
M-2 748
Ft. Worth, TX 76101

Dr. John Salasin 2
GTE
1700 Research Blvd.
Rockville, MD 20850

Mr Eugen Vasilescu
35 Chestnut St.
Malverne, Long Island, NY 11565

CSED Review. Panel

Dr. Dan Alpert, Director
Program in Science, Technology & Society
University of Illinois
Room 201
912-1/2 West Illinois Street
Urbana, Illinois 61801

Distribution List-1
UNCLASSIFIED

UNCLASSIFIED

NAME AND ADDRESS NUMBER OF COPIES

Dr. Barry W. Boehm I
TRW

Defense Systems Group
MS R2-1094
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto
Mainstay
302 Mill St.
Occoquan, VA 22125

Dr. John M. Palms, Vice President
Academic Affairs & Professor of Physics
Emory University
Atlanta, GA 30322

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

Mr. Keith Uncapher
University of Southern California
Olin Hall
330A University Park
Los Angeles, CA 90089-1454

IDA

General W.Y. Smith, HQ

Distribution List-2
UNCLASSIFIED

UNCLASSIFIED

NAME AND ADDRESS NUMBER OF COPIES

Mr. Philip Major, HQ 1
Dr. Robert E. Roberts, HQ 1
Mr. Michael I. Bloom, CSED 1
Mr. Bill R. Brykczynski, CSED 5
Ms. Anne Douville, CSED 1
Dr. John F. Kramer, CSED 1
Mr. Terry Mayfield, CSED 1
Ms. Katydean Price, CSED 2
IDA Control & Distribution Vault 3

Distribution List-3
UNCL; ASSIrFIE-D

