
UNCLASSIFIED / 4114#

OIDA PAPER P-2142

00
c'J

STRATEGIC DEFENSE SYSTEM
DISTRIBUTED OPERATING SYSTEM R&D

REVIEW AND RECOMMENDATIONS

Karen D. Gordon
Cathy J. Linn

DTIC
April 1989 ELECTE

MAY 17 198911

Prepared for
Strategic Defense Initiative Organization

DITUT0STATM'
Appro,,d fom pulic me.,q

1189 5 17 000
*INSTITUTE FOR DEFENSE ANALYSES

1801 N. Beauregard Street, Alexandria, Virginia 22311.1772

UNCLASSIFIED l .. , . m Mum

DEFINITIONS
IDA publishes the following documents to report the results of Its wort

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody result; of major projects which (a) have a direct bearing on decisions
affecting maim, programs, or (b) address Issues of significant concern to the Executive
Branch. the Congress and/or the public, or (c) address issues that have significant economic
Implications. IDA Reports are reviewed by outside panels of experts to ensure their hih
quality ann relevnce to the problems studied, and they are released by the President of IDA.

Papers
Papers normally address relatively restricted technical or policy issues. They communicate
the results of special analyses, interim reports or phases of a task, ad hoc or quick reaction
work. Papers are reviewed to ensure that they meet standards similar to those expected of
refereed papers in professional Journals.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts to recmd
substantive work done in quick reaction studies and major interactive technical support
activities; to make salable preliminary and tentative results of analyses or of working
group end paned activlties; to forward Information that is essentially unanalyzed and uneval-
uated: or to make a record of conferences, meetings, ot briefings, or of data developed in
the course of an investigation. Review of Documents Is suited to their rontent and Intended
use.

The results of IDA work are also conveyed by briefings and Informal memoranda to sponsors
and others designated by the sponsors, when appropriate.

The work reported In this document was conducted ander contract INDA 903 84 C 0031 for
the Department of Defense. The publication of this IDA document dons not Indicate endorse-
ment by the Department of Defense, nor should the contenti be construed as reflecting the
official position of that agency.

This paper has baen reviewed by IDA to mesur tIt it meets high standards of thoroughness.

objectlyffy, and sound analytical methodology and that the conclusions stem from the
methodology.

[Approv d for public relese, unllmited distrlbutnfa. Unclassified.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DCLASIFIATIO/DONGRAINGSCHEULEApproved for public release, unlimited
2b DECLASSIFICATION/DOWNGRADING SCHEDULE distribution.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Paper P-2142

6a NAME OF PERFORMING ORGANIZATIO1 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses [IDA OUSDA, DIMO

6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311

Sl NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (Mfapplicable)

SDIO SDIO MDA 9%3 84 C 0031

Sc ADDRESS (City, State, and Zip Code) 10 SOURCE OF FUNDING NUMBERS
Room 1E149 PROGRAM PROJECT TASK WORK UNIT
The Pentagon ELEMENT NO. NO. NO. ACCESSION NO.
Washington, DC 20301-7100 T-R2-597.2

11 TITLE (Include Security Clasiflcation)

Strategic Defense System Distributed Operating System R&D: Review and Recommendations (U)
12 PERSONAL AUTHOR(S)

Karen D. Gordon, Cathy J. Linn
a TYPEOF REPORT M3b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

FnlFOTO1989 April 78
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Distributed operating systems; real-time computing; reliability; fault

tolerance; security; Alpha Distributed Operating System; Cronus
Distributed Operating System (Continued)

19 ABSTRACT (Continue on reverse If necessary and identify by block number)

The Strategic Defense System (SDS) imposes a set of requirements on distributed operating systems that
is not met by state-of-the-art systems. In this paper, the key requirements are identified as being real-time
support, reliability/fault tolerance, and security. The extent to which these requirements are being
addressed by current distributed operating system research is discussed. The three distributed operating
system projects that are currently receiving SDIO funds-Alpha, Cronus, and Mach-are reviewed. A
fourth project, the V distributed system project of Stanford University, is also highlighted, because of its
unique potential for meeting certain SDS needs. Recommendations on the directions in which the SDIO
should pursue each of these projects are made. (Continued)

120 DISTRIBUTIOP'iA VALALITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

@ UNCLASSIFIED/UNLIMITED -] SAME AS RPT. 0 DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include area code) 22c OFFICE SYMBOL

Dr. Cathy Jo Linn (703) 824-5520 IDA/CSED

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

AU other editions are obsolete UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

18. SUBJECT TERMS (Continued) 4

Mach Distributed Operating System; V Distributed Operating System; Amoeba Distributed Operating
System; Clouds Distributed Operating System; Heterogeneous Computer Systems (HCS).

19. ABSTRACT (Continued)

The Office of Naval Research (ONR) Real-Time Computing Initiative, which is addressing some issues
critical to the development of the SDS, is described. It is recommended that the SDIO seek to
coordinate with the ONR in this effort.

The appendix to this paper provides detailed descriptions of the Alpha, Cronus, Mach, and V
distributed operating system projects, as well as of three other projects noted in the body of the paper:
Amoeba, Clouds, and the Heterogeneous Computer Systems (HCS) Project.

Acoession For

NTIS GP.AaI
DTI~C TAB

Distribution/ 0
Availability Codes

;Avail anLd/or
Dist Special

DD FORM 1473,84 MAR 33 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

Al other editions are obsolete UNCLASSIFIED

UNCLASSIFIED

IDA PAPER P-2142

STRATEGIC DEFENSE SYSTEM
DISTRIBUTED OPERATING SYSTEM R&D

REVIEW AND RECOMMENDATIONS

Karen D. Gordon
Cathy J. Linn

April 1989

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-R2.597.2

UNCLASSIFIED

UNCLASSIFiED

Preface

This document, IDA Paper P-2142, was prepared for the Strategic Defense Initiative
Organization (SDIO) in response to a request to review its distributed operating system
research and development (R&D) program.

The Strategic Defense System (SDS) imposes a set of requirements on distributed
operating systems that is not met by state-of-the-art systems. In this paper, the key require-
ments are identified as being real-time support, reliability/fault tolerance, and security. The
extent to which these requirements are being addressed by current distributed operdting system
research is discussed.

The three distributed operating system projects that are currently receiving SDIO funds -
Alpha, Cronus, and Mach - are reviewed. A fourth project, the V distributed system project
of Stanford University, is also highlighted, because of its unique potential for meeting certain
SDS needs. Recommendations on the directions in which the SDIO should pursue each of
these projects are made.

The Office of Naval Research (ONR) Real-Time Computing Initiative, which is address-
ing some issues critical to the development of the SDS, is described. It is recommended that
the SDIO seek to coordinate with the ONR in this effort.

The appendix to this paper provides detailed descriptions of the Alpha, Cronus, Mach,
and V distributed operating system projects, as well as of three other projects noted in the
body of the paper: Amoeba, Clouds, and the Heterogeneous Computer Systems (HCS) Pro-
ject.

It should be pointed out that this document was prepared in two parts, the body of the
paper and the appendix, to facilitate its distribution. In particular, it is envisioned that the
appendix, which offers uncritical overviews of the distributed operating system projects, will
have a wider distribution than the body of the paper, which may be judged to contain some
sensitive material.

V
UNCLASSIFIED

UNCLASSIFIED

Acknowledgments

The investigation reported herein was undertaken at the initiative of LTC Jon Rindt of
the SDIO. He and Lt Col Chuck Lillie recognize the critical role that distributed operating
systems will play in the SDS, as well as the significant challenge that the SDS poses for distri-
buted operating system researchers and developers. The authors thank both of them for their
support of this effort.

The authors gratefully acknowledge the cooperation and assistance received from the
sponsors, principal investigators, and staff of the operating system projects reviewed in this
paper. The following individuals provided excellent overviews of, and insight into, their
respective projects, in the form of briefings, literature, informal discussions, and reviews of
this document:
* Alpha: Doug Jensen, Concurrent Computer Corporation; Duane Northcutt and Ray

Clark, Carnegie Mellon University; Dick Metzger and Tom Lawrence, Rome Air
Development Center

* Clouds: Rich LeBlanc, Partha Dasgupta, and Ray Chen, Georgia Institute of Technol-
ogy

* Cronus: Steve Vinter and Rick Schantz, BBN Laboratories; Dick Metzger, Tom
Lawrence, Rome Air Development Center

* Mach: Rick Rashid, Carnegie Mellon University
* ONR Real-Time Computing Initiative: Andre van Tilborg, Office of Naval Research

* V: David Cheriton, Stanford University

The authors also gratefully acknowledge the support received from Anand Tripathi of
the University of Minnesota. He prepared the initial draft of the Amoeba summary and care-
fully reviewed the other project summaries.

Finally, the authors thank the IDA/CSED reviewers of this document for their many
helpful suggestions. Terry Mayfield, in particular, provided an exceptionally thorough and
thoughtful review.

vii
UNCLASSIFIED

UNCLASSIFIED

Table of Contents

1. Introduction .. 1

2. SDS Distributed Operating System Requirements .. 2

2.1. Real-Tme Computing .. 2

2.2. Reliability and Fault Tolerance ... 4

2.3. Security .. 5

3. Review of Specific Distributed Operating System Projects 9

3.1. A lpha ... 9

3.2. Cronus ... 11

3.3. Mach .. 12

3.4. V ... 13

4. ONR Real-Tune Computing Initiative .. 14

5. Recommendations .. 15

References .. 17

Appendix ... 21

A lpha ... 23

Amoeba ... 27

C louds .. 31

Cronus ... 35

Heterogeneous Computer Systems (HCS) Project .. 41

M ach .. 45

V ... 51

ix

UNCLASSIFIED

UNCLASSIFIED

1. INRODUCTION

The Strategic Defense Initiative Organization (SDIO) recognizes the significant role that
distributed operating systems will play in the Strategic Defense System (SDS). It is currently
supporting three major distributed operating system projects: Alpha, Cronus, and Mach.
Alpha is being developed at Carnegie Mellon University, under the leadership of Doug Jen-
sen.1 The niche that it claims for itself is real-time computing. Cronus is being developed at
BBN Laboratories. 2 Its niche is the integration of computer systems that are heterogeneous
with respect to hardware, as well as software. In effect, Cronus is a "meta-" operating system.
It resides on top of native operating systems such as UNIX3 or VMS 4 , essentially providing a
layer (or layers) of coherence and uniformity between distributed applications and the underly-
ing centralized operating systems. Mach is also being developed at Carnegie Mellon Univer-
sity, under the leadership of Rick Rashid. As a UNIX-compatible operating system, its niche
is the extension of UNIX functionality to advanced architectures and environments, such as
those encompassing multiprocessors, large memories, and high-performance networks.

The SDIO supports these distributed operating system projects by funding Work Package
Directives (WPDs) that are executed by other Department of Defense services and agencies.
The services and agencies, in effect, serve as the sponsors of the projects. Both Alpha and
Cronus are sponsored by the Air Force through its Rome Air Development Center (RADC),
and Mach is sponsored by the Defense Advanced Projects Research Agency (DARPA). In
each case, the sponsoring organization is dedicated to the project, maintains a strong relation-
ship with the principal investigator(s), and has played a major role in the development of the
system.

Each of the three projects was conceived independently of the SDS and its require-
ments. While all the projects have since been cast, to varying degrees, in SDS terms, their
basic goals remain unchanged. The SDIO is concerned about how well those goals respond to
SDS requirements, and how well the projects are doing in achieving the goals.

To obtain an independent assessment of its distributed operating system research and
development (R&D) program, the SDIO requested the Institute for Defense Analyses (IDA)
to critically review its three distributed operating system projects - Alpha, Cronus, and Mach
- and furthermore to make recommendations on future SDS distributed operating system
R&D. The review and recommendations were to be made in light of SDS requirements and
also in light of other R&D in the field of distributed operating systems. This paper represents
IDA's formal response to that SDIO request. 5

Section 2 of this paper identifies the requirements of distributed operating systems for
the SDS. Section 3 reviews the three SDIO-funded distributed operating system projects, as
well as the V distributed system project, which is put forward in this paper as holding unique
potential for contributing to SDS development. Section 4 describes the Office of Naval
Research (ONR) Real-Time Computing Initiative, which is another effort deemed to hold
promise in meeting some of the most challenging SDS requirements. Finally, Section 5
presents our recommendations on the directions in which the SDIO should pursue distributed
operating system R&D.

The appendix to this paper provides detailed descriptions of the four distributed operat-
ing systems (i.e., Alpha, Cronus, Mach, and V) that are the primary subjects of the paper. It

1 Jensen is no longer at Carnegie Mellon University; he is now at Concurrent Computer Corporation.

However, he continues to direct the Alpha project.
2 The Cronus project does not have a single long-term project leader, or Principal Investigator, in the

sense that most university-based research efforts do.
3 UNIX is a registered trademark of AT&T Bell Laboratories.
4 VMS is a trademark of Digital Equipment Corporation.
S Recommendations have already been provided informally, through the delivery of drafts of this paper

to the SDIO SDS Phase One Program Office and through participation in the Phase One Engineering Team
(POET) Software Engineering and Operating Systems Panel.

1
UNCLASSIFIED

UNCLASSIFIED

also provides descriptions of the Amoeba, Clouds, and Heterogeneous Computer Systems
(HCS) projects. The latter three projects are covered for comparison purposes. Besides
being among the most prominent ongoing distributed operating system efforts, each is referred
to in the body of the paper as being a competitor, in certain aspects, of one of the four key
projects. (In particular, Amoeba, like V, emphasizes performance and minimization of the
kernel; Clouds, like Alpha, utilizes the object/thread programming model; and HCS, like
Cronus, seeks to integrate systems that are heterogeneous with respect to both hardware and
software.)

2. SDS DISTRIBUTED OPERATING SYSTEM REQUIREMENTS

The SDS and other large, complex, mission-critical, real-time systems demand that the
scope of distributed operating system research be broadened beyond the interactive computing
environment, which has been the focus of much of the research up to this point in time.
These systems pose requirerr entf that challenge the state of the art in distributed operating
system technology in three key areas: (1) real-time computing, (2) reliability and fault toler-
ance, and (3) security.

Before proceeding with a discussion of the challenges and requirements in each of these
areas, let us stress that the SDS is not envisioned as a monolithic system under the the control
of a single, universal distributed operating system that must meet the most stringent require-
ments in each of these three areas at once. At the highest level, it is seen as at least two sys-
tems: (1) the SDS development and maintenance system and (2) the deployed SDS system. 4
In turn, the SDS development and maintenance system will consist of interconnected hetero-
geneous networks of heterogeneous systems. The individual systems will include both unipro-
cessor and multiprocessor configurations, some of which may run system-unique operating
systems. The deployed SDS system will also consist of interconnected networks of
uniprocessor/multiprocessor systems; however, the degree of heterogeneity will be controlled.
These two systems - the SDS development and maintenance system and the deployed SDS
system - place very different demands on distributed operating systems, in particular, on the
real-time, reliability/fault tolerance, and security aspects of the systems.

It is not certain how far the boundaries of individual distributed operating systems can or
should extend in the SDS. However, it can be presumed, given the state of the art, that the
boundaries will extend far enough to encompass the computing resources of a local area net-
work or of a space-based platform. Our review is based on this presumption.

2.1. Real-Time Computing

As noted above, current distributed operating system research is focused on interactive
computing. Common goals are to minimize average delay (e.g., response time) or to maximize
average throughput. "Fairness" is also important. In short, interactive computing systems are
designed to be responsive to their human users.

Real-time computing systems, on the other hand, must be responsive to the total
environment in which they exist. This environment may consist of a larger system (e.g., auto-
mobile, aircraft, factory floor, nuclear power plant, etc.), which may in turn be intimately
linked to its physical environment (e.g., temperature, humidity, road conditions, air tur-
bulence, threats, etc.). The total environment in which a real-time computing system is
embedded imposes timing constraints on the system. The timing constraints are often in the
form of the hard deadlines that if not met can lead to catastrophic failures. Such timing con-
straints distinguish real-time systems from other systems.

Recently, the proliferation of real-time computing systems has heightened interest in
real-time computing [Stankovic 881. The problem is that today's real-time systems are built
through ad hoc techniques and at inordinate expense. As systems become ever larger and
more complex, a more disciplined approach becomes essential. In his article, Stankovic
encourages the community of researchers, developers, and funding agencies to work together
in developing a scientific foundation for real-time computing. The ONR Real-Time

2
UNCLASSIFIED

UNCLASSIFIED

Computing Initiative, which is discussed in Section 4 of this paper, has been launched with
the objective of building such a scientific foundation.

Research Challenges

The basic challenge for distributed operating system researchers, then, is to move
beyond interactive applications to real-time applications, especially large, complex ones. In
other words, the challenge is to contribute to the laying of a scientific foundation for real-time
computing, by providing a real-time distributed operating system upon which real-time applica-
tions can be built.

Traditionally, real-time computing has been associated with speed. While speed remains
a pressing issue, the real-time systems research community has expanded the scope of real-
time computing to encompass the notion of "predictability." There are two aspects to this
notion: one dealing with correctness, and the other with methods of assurance. First, in regard
to correctness, timeliness is elevated to a first-order system concern; it is considered to be a
mandatory aspect of correctness, along with functional or logical correctness. A system that
produces correct outputs, but fails to meet timing constraints, is not correct. Second, in
regard to methods of assurance, the goal is to eli-'inate the need for exhaustive testing. The
idea is to develop "constructive" methodologies, namely, ones that yield predictable results.
Assurance is obtained through a priori proofs about systems constructed via the methodology,
rather than through exhaustive testing of a completed system. Rate-monotonic scheduling, for
example, serves as the basis for several new scheduling algorithms [Lehoczky 87] [Sha 87]
[Sha 881 which (under specified conditions) guarantee that all deadlines will be met.

Specific issues for real-time distributed operating systems include the following:
" Fast response: Proponents of predictability tend to dismiss fast response as implying

nothing more than raw speed, which can be obtained through hardware technology.
However, fast response entails more than processor speed; it demands an effective
operating system design. Claiming that fast response is insignificant is like claiming that
"fast" algorithms are insignificant. The difference is that schemes for quantifying the
performance of algorithms in processor-speed-independent terms have been devised.
These schemes are based on the number of "steps" per inp t and allow us to classify
algorithms in the familiar 0-notation (e.g., O(ln n), O(n), O(n), etc.). Unfortunately, it
is not so easy to characterize the performance of operating systems with a single metric
(or even a few metrics) in this way, but this does not obviate the need for performance-
conscious system design.

• Consistent management of all system resources: Real-time support must extend beyond
single processors, both to multiprocessing and distributed processing architectures, and
to other shared logical and physical resources. Priority inversion, in which a lower prior-
ity task blocks a higher priority task, must be minimized and accounted for.

* Accommodation of aperiodic tasks: Real-time support must extend to aperiodic tasks, as
well as to periodic ones.

* Accommodation of widely varying time scales: Real-time support must provide for the
integrated management of tasks whose time scales vary from microseconds or less (e.g.,
sensor input processing) to minutes or more (e.g., global planning and resource manage-
ment).

• Robuistness: Real-time support must provide for stability under transient overload. It
must ensure that the least "important" tasks are the ones that miss their deadlnes (or
otherwise suffer) first.

* Fault tolerance: Real-time support cannot assume a failure-free environment. It must
enable system operation and performance to degrade gracefully as components fail.

3
UNCLASSIFIED

UNCLASSIFIED

SDS Requirements
Real-time response is a fundamental requirement of distributed operating systems for the

deployed SDS. "Functional" or "logical" correctness of a result without timeliness of the
result serves no purpose; in fact, the system that produces the result is "incorrect" if it does
not meet timing constraints. Furthermore, as a system of incomparable size and complexity,
the SDS simply cannot rely on current ad hoc development techniques; ft epitomizes the need
for a more disciplined approach to achieving real-time computing.

In contrast to the deployed SDS, the SDS development and maintenance system does
not call for real-time response as a mandatory requirement. It is not safety-critical in the same
sense as the deployed SDS; hence, its performance requirements are not as stringent as those
of the deployed SDS.

2.2. Reliability and Fault Tolerance
System reliability can be increased in two basic ways: (1) fault avoidance, i.e., increasing

the reliability of components and applying conservative design practices and (2) fault toler-
ance, i.e., employing redundancy to achieve tolerance to the component failures that cannot
ever be totally eliminated. The focus here is on fault tolerance, because it is the area in which
the operating system, as the system resource manager and controller, has a role to play.

At the highest level, fault tolerance can be viewed as addressing two distinct but inter-
related concerns: data integrity and processing integrity. Data integrity, in this context, deals
with ensuring that data can survive component failures - that data is not lost, corrupted, or
made inconsistent. Processing integrity deals with ensuring correct and continuous proceasing
in the face of component failures.

The importance of each of these aspects of fault tolerance is environment, or applica-
tion, dependent. Data integrity is crucial for long-lived data. Consequently, data integrity is
closely linked to database system technology, and has been much explored in that domain; in
fact, many of the mechanisms (e.g., data replication, atomic transactions) utilized by distri-
buted operating systems originated in the context of database systems. Processing integrity, on
the other hand, is most crucial for real-time safety-critical operations.

Current distributed operating system research, with its emphasis on interactive comput-
ing, has been focused on data integrity. Mechanisms such as data replication, atomic transac-
tions [Gray 79], and nested transactions [Moss 811 continue to be explored in great depth
[BBN 88a] [BBN 88b] [Dasgupta 88] [Liskov 88] [Specter and Swedlow 88] [Tripathi 88]. 0

On the other hand, processing integrity, in the form of continuous (or non-stop) process-
ing, is not perceived as being critical in the interactive computing environment, and it has not
received much attention from the distributed operating system research community. There is,
however, a substantial body of research devoted to this aspect of fault tolerance, stemming
from the requirements of aerospace applications, telephone switching systems, industrial pro-
cess control applications, and on-line transaction processing services [Nelson and Carroll 87]
[Rennels 84] [Serlin 84]. Hardware redundancy is the basis of fault tolerance in these applica-
tions.

Research Challenges
The standard models for achieving fault tolerance are simply too costly, in terms of S

money and/or time, to be used routinely. Triple-modular redundancy, for example, demands
extraordinary hardware replication; atomic transactions pay significant performance penalties
in terms of both delay and availability.

Therefore, the challenge for distributed operating system researchers is three-fold: first,
to develop more cost-effective and performance-effective mechanisms for achieving fault toler-
ance; second, recognizing that the implementation of fault tolerance will always incur some
cost and/or performance penalties, to develop tailorable mechanisms that can achieve varying
levels of fault tolerance for varying costs (in terms of money as well as performance); and,

4
UNCLASSIFIED

UNCLASSIFIED

third, to capitalize on, as well as improve upon, the results that have been achieved in the
domain of fault-tolerant computer architectures. Architecture mechanisms (e.g., sparing,
backup, triple-modular redundancy) and distributed operating system mechanisms (e.g., data
replication, atomic transactions, nested transactions) must be made to work together, yielding
a unified approach to fault tolerance.

SDS Requirements
In terms of reliability and fault tolerance requirements, the SDS development and

maintenance system is no different from any other development and maintenance system.
That is, as a system expected to hold long-lived data, it has an inherent requirement for data
integrity. In regard to processing integrity, the SDS development and maintenance system
does not have extraordinary requirements. Thus, the massive hardware redundancy often
employed in real-time safety-critical systems to detect processing faults and to ensure continu-
ous operation is not demanded. The SDS development and maintenance system can tolerate
temporary interrupts or delays in processing capability without suffering unduly adverse conse-

• quences.

To consider the reliability and fault tolerance requirements of the deployed SDS, let us
focus on two aspects: (1) ground-based command and control and (2) space-based operations.
The ground-based command and control functions place high demands on both data integrity
and processing integrity; correctness and continuity of both data and processing is vital. The
ground-based components will undoubtedly employ sufficient redundancy to ensure that the

* integrity demands are met. Space-based platforms, on the other hand, cannot afford the
redundancy that is required to achieve ultrahigh levels of data and processing integrity. They
have to be very judicious in applying redundancy, which can lead to either underutilized
resources or excessively large time delays in a distributed system such as the SDS. 6 Their goal
is to "optimally" apply all available resources in performing their mission. Hence, the space-
based platforms demand tailorable fault tolerance support, which allows tradeoffs to be made
between fault tolerance and performance.

Beyond fault tolerance lies the concept of graceful degradation. The SDS must not only
incorporate fault tolerance mechanisms, it must also be designed to degrade gracefully. The
redundancy employed to achieve (some degree of) fault tolerance can only go so far; it can
protect against single points of failure or limited occurrences of multiple failures. But in a
hostile environment such as that in which the SDS will exist, failures will eventually exceed

* the capacity of the system (through its built-in redundancy) to withstand them. When this
happens, the system cannot collapse; it must degrade gracefully. That is, it must continue to
operate, albeit in degraded states. Moreover, the degradation should be in some sense com-
mensurate with the extent of damage to the system. The SDS must be designed with graceful
degradation in mind. The highest levels of design, such as the overall system architecture and
the battle management strategy, are especially crucial in this regard. The operating system,

* through its dynamic management of resources, provides support for graceful degradation.

2.3. Security
Security can be viewed as encompassing three aspects: (1) confidentiality, (2) integrity,

and (3) availability. The first aspect, confidentiality, is the focus of this subsection. It should
be emphasized that . focusing on confidentiality, we are not implying that the other aspects
of security (integrity and availability) are any less important. We are simply reflecting the fact
that confidentiality is better understood. While many issues remain, the confidentiality aspect
is sufficiently developed so that it can be productively investigated in the context of distributed

6 It was these considerations that led, in part, to the current SDS concept of a decentralized architecture
with implicit coordination among components of the architecture. The decentralized architecture avoids the
need for absolute data consistency on a global scale. The absolute consistency (on the global scale) is trad-
ed for enhanced timeliness and availability of data (on the local scale).

5
UNCLASSIFIED

UNCLASSIFIED 0

operating systems. The integrity7 and availability aspects, on the other hand, fall outside the
scope of distributed operating system research, at least at this time. They remain to be inves-
tigated and further developed by the security research community.

To elaborate on the security challenge for distributed operating system researchers, let us
first review current security practices, and then discuss security as defined in the National
Computer Security Center (NCSC) Trusted Computer Systems Evaluation Criteria (TCSEC)
(commonly referred to as the "Orange Book") [TCSEC 85], the authoritative Department of
Defense reference on computer system security. It should be noted that the TCSEC primarily
addresses confidentiality.

Prevailing Practice
The purpose of distributed operating systems is to facilitate the logical unification of phy-

sicady interconnected computing resources. Unification of resources entails both the enabling
and the constraining of resource sharing, for both physical resources and information
resources. Distributed operating systems must manage and control resource sharing, just as
centralized systems must. They must protect potential "sharers" from one another.

In distributed systems, resource sharing is implemented primarily through interprocess
communication. Subjects (e.g., user processes) and objects (or, in some cases, object
managers) are bound to private address spaces, whose integrity is ensured through virtual
memory concepts and mechanisms. Subjects access objects through interprocess communica-
tion. Distributed operating systems provide security, or protection, by constraining interpro-
cess communication.

Interprocess communication is constrained by maintaining and utilizing information on
which subjects can perform which operations on which objects. This information is main-
tained in the form of capabilities or access control lists. Capability systems associate security
information with subjects (invokers), whereas access control list systems associate the infor-
mation with objects or object managers (invokees). For example, in an access control list sys-
tem, each file has associated with it a list of authorized users (and uses). In a capability sys-
tem, each subject has a "capability" for each object it may access. A capability serves as a
globally unique object name and as a "ticket" for access. In its role as a ticket, the capability
confers the access rights specified in the capability upon each subject possessing the capabil-
ity.

TCSEC
The TCSEC discusses access control policy, as well as measures for achieving accounta-

bility and assurance with respect to the implementation of the policy. It distinguishes two
types of access control: mandatory access control (MAC) and discretionary access control
(DAC). Prevailing distributed operating system protection practices are more closely related
to DAC than to MAC.

In DAC, access to an object is controlled, at the discretion of the owner of the object,
solely on the basis of user identity. That is, access is restricted based on the identity of the
user making the access, or on whose behalf the access is being made. Thus, the fundamental
requirement of distributed operating system kernels is to provide secure user authentication.
Then, either the kernel or servers can implement DAC. Kernel implementation offers unifor- 0
mity; server implementation offers flexibility.

7 It should be noted that (data) integrity, in the context of security, has to do with the protection of data
against alteration by unauthorized users. In other words, the threat to data integrity that is of primary con-
cern in the security context is unauthorized users, whereas in the previous section the primary threat to data
integrity was component failures. It should be further noted that discretionary access control addresses data
integrity to some extent, by, for example, restricting the set of subjects having write access to a given object.

6
UNCLASSIFIED

UNCLASSIFIED

Access control lists are the security mechanism envisioned by the TCSEC. They provide
a straightforward implementation of DAC. Traditional capability systems fail to provide DAC
(as defined in the TCSEC) for several reasons [Branstad 88] [Gligor 87] [TIS 88]. The funda-
mental problems are that (1) access is controlled by ticket (i.e., capability) possession rather

*9 than user identity, (2) a ticket can be passed' on to other subjects by any holder of the ticket,
and (3) an object does not maintain records of which subjects have been granted access to it.
However, traditional capability systems can be enhanced or modified to comply with TCSEC
requirements [Branstad 88] [Gligor 87] [TIS 88].

In MAC, subjects are granted access on the basis of both user identity and clearance for
access to information of specified "sensitivity levels." Subjects and objects are labeled with
sensitivity levels, and access control conforms to a specified security model. MAC is designed
to reflect traditional manual security practices, in which people are assigned clearance levels
(e.g., unclassified, confidential, secret, top secret) and documents are assigned corresponding
sensitivity levels. It is also designed to provide mandatory control of information flow, rather
than just access. A system "containing information with different sensitivities that simultane-
ously permits access by users with different security clearances and needs-to-know, but
prevents users from obtaining access to information for which they lack authorization" is
referred to as a multilevel-secure system [TCSEC 85, p. 114].

Research Challenges
Providing MAC, DAC, and associated accountability and assurance measures as defined

in the TCSEC is a challenge, even in centralized systems. Few systems that meet the most
stringent requirements of the TCSEC (namely, Al certification) have been built. Moreover,
the TCSEC was written with centralized systems in mind; applying its concepts and require-
ments to other systems is a difficult task. An interpretation for networks, known as the
Trusted Network Interpretation (TNI) or "Red Book", has been prepared [TNI 87]. A
Trusted Database System Interpretation (TDI) is also being developed.

Distributed systems are indeed a challenge for TCSEC interpretation. They complicate
the provision of security in the following ways:
" Decentralized control: Distributed systems attempt to provide a level of resource

unification commensurate with that of centralized systems. But they carefully avoid cen-
tralized control. So, instead of having one mediator for access control, distributed
operating systems have multiple mediators, one in each kernel. The coordination of
these mediators is the challenge here.

* Untrusted kernels: In some network environments, for example ones in which personal
computers predominate, it may not be possible or desirable to rely on the trustworthi-
ness of kernels. Malicious users could tamper with kernels. Security mechanisms that
enable untrusted kernels to participate in trusted distributed systems are the challenge in
this case [Tanenbaum and van Renesse 85].

* Network communication: Communication over an underlying network introduces secu-
rity threats that must be taken into account. These include peeking, impostoring, mes-
sage tampering, and replays. Encryption, coupled with other mechanisms such as tran-
saction numbering, can be used to counter these threats [Cheriton 88a].
Despite these complications, all is not gloomy with respect to security. Many distributed

operating systems have design features that actually facilitate the implementation of security.
Among these are the following:

* Minimal kernel: Many distributed operating systems are designed according to the
minimal kernel philosophy, which espouses minimization of code that runs in kernel
mode. A minimal kernel typically provides processes and interprocess communication;
application-level servers then provide higher-level system objects and services (most not-
ably, a file system). The minimal kernel serves as the focal point for implementation of
security and is, in fact, required by the TCSEC.

7
UNCLASSIFIED

UNCLASSIFIED

" Interprocess communication: Distributed operating systems tend to be communication-
centric. Resource sharing is accomplished via interprocess communication. By manag-
ing and controlling interprocess communication, distributed operating systems can pro-
vide secure sharing of the resources under its control. Thus, interprocess communica-
tion further focuses security concerns.

" Global user identification: In supporting network transparency, distributed operating sys-
tems implement global user identification schemes. Since user identification is funda-
mental to access control, having global schemes facilitates its implementation.

" Global object naming: Distributed operating systems also implement global (uniform)
object naming schemes. Such schemes serve as a basis for implementation of both dis-
cretionary and mandatory access control.
As in the case of reliability and fault tolerance, the ultimate challenge in regard to secu-

rity is to provide varying levels for varying costs. For example, it may be desirable for trusted
nodes (kernels) to interoperate with untrusted nodes. Likewise, it may be desirable for
trusted and untrusted servers to interoperate. Or, different applications may require different
levels of assurance of security, which can manifest themselves as, for example, different pro-
tection algorithms or different methods of program verification. The goal is to be able to
make tradeoffs between level of security and cost in terms of money or performance.

SDS Requirements
Given the state of the art in the security area, it is not clear how far the TCSEC con-

cepts and requirements can or should extend in the SDS. Clearly, traditional protection in
the form of DAC is essential. But, while multilevel-secure distributed operating systems
(which implement MAC) are often postulated and would offer certain advantages, they are not
deemed to be essential. Alternatives to multilevel-secure operation do exist. The alternatives
generally rely on one of two measures (or a combination of both):
" Restricting the user population (through the system-high mode of operation).
* Physically isolating information of different security levels.

In system-high mode, all data or objects in a system are treated as if they were classified
at the highest level allowed in the system. Only subjects cleared to the system-high security
level can access (e.g., read or write) any of the objects in the system. For example, in a Top
Secret system-high facility, objects of Unclassified, Confidential, Secret, or Top Secret
classification can be stored, but only Top-Secret-cleared subjects can access any of the data.8

Authentication and access control can be implemented by physical measures (e.g., guarded
vaults) or by automated measures (in accordance with the Orange Book [TCSEC 85]).

System-high operation seems to be a reasonable mode of operation for the deployed
SDS. That is, its chief drawback, the restriction of the user population, does not seem to be
too stiff a penalty to pay for security. It has, in fact, been suggested as the preferred approach
in [SPARTA 88], largely because of concerns that the implementation of multilevel security
could impose significant (possibly intolerable) performance penalties on real-time response.

While multilevel-secure distributed operating systems may not have a role to play in the
deployed SDS, with its emphasis on real-time response, they do appear to be more promising
and more desirable in the SDS development and maintenance environment. In this environ-
ment, data of all security levels will exist, and the number of personnel involved will be large.
Global system-high operation is undesirable and probably infeasible. Penalties would be
incurred in one of two ways. Either there would have to be an inordinately large number of

8 In a typical multilevel-secure system, Confidential subjects could read from Unclassified and
Confidential objects and write to objects of Confidential or higher classification; Secret subjects could read
from Unclassified, Confidential, and Secret objects and write to objects of Secret or higher classification;
etc. In other words, subjects could read objects of equal or lower sensitivity and write objects of equal or
greater sensitivity; "read-up" and "write-down" operations would be disallowed.

8
UNCLASSIFIED

UNCLASSIFIED

(high) personnel clearances; or some qualified personnel would end up being denied access,
and their expertise would be lost.

Since global system-high operation is undesirable for the SDS development and mainte-
nance environment, it is necessary to resort to the other security measure, some degree of
physical isolation of information of different security levels. For example, there could be a
Secret system and a Top Secret system, each operated in (local) system-high mode. Isolation
occurs in the sense that information of a given security level is physically isolated from systems
to which users of lower clearance levels have access; i.e., the Top Secret information con-
tained in the Top Secret system cannot be accessed by Secret (or Confidential or Unclassified)
subjects. This solution sacrifices unification of resources. For example, the same Secret data
might appear in both systems. Maintaining consistency in such a case would be at best
cumbersome. If the systems were run in dedicated mode, wherein a system is dedicated to
containing information of a single security level, then users, or subjects, must access multiple
systems, which is also undesirable. For example, if the Secret data did not exist in both sys-
tems, then a Top Secret subject would be forced to access both systems.

Other alternatives for the SDS development and maintenance system, which focus on
providing unification of specific resources include the following: (1) separate systems for
different security levels (run in either local system-high mode or dedicated mode), intercon-
nected with multilevel-secure communication networks, which provide for unification of com-
munication resources [Abrams and Podell 87]; and (2) multilevel-secure data management (for
example, via the integrity lock approach [Denning 84] [Graubart 84], which utilizes crypto-
graphic checksums), which provides for unification of data.

Finally, it should be noted that there will need to be a link between the SDS develop-
ment and maintenance system and the deployed SDS. The link will provide the means for
modifying software in the deployed SDS. The security of the link is vital. This issue has been
proposed for further investigation by RADC [RADC 881.

3. REVIEW OF SPECIFIC DISTRIBUTED OPERATING SYSTEM PROJECTS

This section critically reviews the three SDIO-funded distributed operating system pro-
jects: Alpha, Cronus, and Mach. In addition, the V distributed system project of Stanford
University, which is sponsored in part by DARPA, is reviewed, because of its well-established
position in the distributed operating systems field and its potential for meeting SDS require-
ments.

The reader is referred to the Appendix for detailed descriptions of the four distributed
operating system projects reviewed herein. Therein, each description addresses project goals,
technical approach, and current status. Additionally, each description provides an extensive
list of references.

3.1. Alpha

Target Domain

Of all the distributed operating system efforts, Alpha is the one whose stated goals most
closely match the requirements of the deployed SDS. Alpha's target domain is distributed,
real-time Battle Management/Command, Control, and Communication (BM/C3) systems.
Therefore, in SDS terms, its target domain is the deployed SDS, as opposed to the SDS
development and maintenance system.

In claiming distributed, real-time BM/C3 systems as its target domain, Alpha is implicitly
assuming responsibility for addressing real-time, reliability/fault tolerance, and security issues.
Its uniqueness lies in the real-time area; it is devoted to time-driven resource management.
Innovations in the other areas are not apparent. In regard to reliability and fault tolerance,
mechanisms based on replication and atomic transactions are being pursued in the context of
Ph.D. thesis research, but results have not been reported. In regard to security, Alpha utilizes

9
UNCLASSIFIED

UNCLASSIFIED

capabilities in the traditional way for both naming and protection. The general design of the
Alpha kernel (i.e., the basic abstractions of object, thread, and object invocation9) was
adopted from the Clouds distributed operating system of the Georgia Institute of Technol-
ogy. 10 Utilizing the same general design, the projects emphasize different research topics.
Emphasis in the Alpha project is on real-time computing, whereas emphasis in the Clouds
project is on reliability and fault tolerance.

Status

Alpha is in an early stage of development. Work has concentrated on the kernel; system
services have not been implemented, and programming support is minimal. In regard to the
kernel, time-driven resource management has been limited to uniprocessor scheduling. Relia-
bity and fault tolerance, which are viewed as being vital aspects of the Alpha kernel, is still
in the process of being designed and implemented. Security work has been limited to
capability-based protection.

Concerns

The concept of time-driven resource management was formulated by Doug Jensen, Doug
Locke, and Hide Tokuda [Jensen 85] [Locke 86] in the context of Carnegie Mellon
University's Archons Project (which dates back to 1979 and of which Alpha is the operating
system effort). In time-driven resource management, both the time constraints and the rela-
tive importance of each computation (in this case, thread) are specified, by a time-value func-
tion. Time-value functions, in conjunction with best-effort scheduling, are notable in that they
offer a means to deal with (1) aperiodic tasks, (2) transient overload (which is bound to occur
under stress conditions, when it is actually most important for the system to perform its mis-
sion), and (3) soft deadlines.

While time-driven resource management is an intuitively appealing approach to real-time
resource management, its general viability and its applicability to the SDS remain unproven.
Time-driven resource management is computationally expensive. Satisfactory techniques for
the assignment of importance values to tasks have not been formulated. Further research is
needed to convincingly demonstrate the applicability of time-driven resource management to
SDS problem domains.

Although the Alpha distributed operating system is sometimes presented (in Alpha
briefings) as being uniquely suitable for the investigation and implementation of time-driven
resource management, it is in fact not so. Time-driven resource management is also being
investigated in the context of Mach [Tokuda 87].

As previously noted, time-value functionis and best-effort scheduling offer means of deal-
ing with aperiodic tasks and transient overloads, both of which must be handled in the
deployed SDS. However, other approaches do exist, and are being pursued in earnest in the
context of the ONR Real-Tune Computing Initiative, which is described in Section 4. Some,
for example, are based on fixed-priority, rate-monotonic scheduling. They incorporate exten-
sions for both aperiodic tasks and transient overloads. Furthermore, they address the syn-
chronization of shared resources and the resulting potential for priority inversion.

The goals of the Alpha project are indeed well articulated, and, furthermore, align with
many of the goals of the SDS. However, in the view of the distributed operating system
research community, the accomplishments of the project are more modest. Publications are
limited; at the same time, much system development remains to be done, despite the number
of years that have been spent in the problem domain.

9 Descriptions of these abstractions are provided in the Appendix.
10 A description of the Clouds project is provided in the Appendix.

10
UNCLASSIFIED

UNCLASSIFIED

3.2. Cronus

Target Domain

The intent of the Cronus project is to support interactive users in building and running
large-scale applications in a distributed computing environment marked by heterogeneity - of
architectures, operating systems, and other software. With respect to the SDS, RADC and
BBN have cited the SDS development and maintenance system as the target domain of
Cronus. Cronus is not suited for real-time systems such as the deployed SDS.

In regard to reliability and fault tolerance, Cronus addresses data integrity via replication
and atomic transactions. Notably, the Cronus project has recently moved toward providing
some flexibility/tailorability in its support of replication. This enables application developers
to trade consistency for availability.

In regard to security, Cronus utilizes access control lists to provide discretionary protec-
tion. Additionally, multilevel security was addressed in a related project, as discussed below
under Concerns.

Status

The Cronus project has proven its concept of integrating heterogeneous computer sys-
tems by imposing a layer of standardization (in the form of the Cronus distributed operating
system) on top of (heterogeneous) native operating systems. The Cronus system is a mature
system.

Concerns

The Cronus system has not been widely applied in the general community (i.e., outside
of RADC, BBN, and MITRE). Its effectiveness in supporting distributed application develop-
ment remains to be convincingly demonstrated.

Since the initiation of the Cronus project in 1981, much progress has been made in the
area of integrating heterogeneous computer systems. Among the most promising approaches
that have been developed are the following: 1) evolving International Organization for Stan-
dardization (ISO) Open Systems Interconnection (OSI) standards, which are addressing distri-
buted application development, and represent international standards for distributed applica-
tion development; 2) Heterogeneous Computer Systems (HCS) Project of the University of
Washington, 11 which is relying on emulation and accommodation of multiple standards rather
than resorting to new standards; and 3) existing data communication protocols, which offer
limited functionality (in the form of remote login, file transfer, and electronic mail), but which
are (almost) universally implemented and may suffice in the short term. Each of these
approaches enjoys a broader base of interest and support than the Cronus approach.

In a sense, portable distributed operating systems (that provide their own native kernels)
are also competitors of Cronus. They enable diverse hardware architectures to be integrated
into distributed systems. Some (e.g., Amoeba, Clouds, V) have felt compelled to emulate the
UNIX programming interface, to varying degrees, so they can host the abundant supply of
UNIX-based software and be appealing to large numbers of programmers. Native-kernel dis-
tributed operating systems can emulate other operating system programming interfaces as well.
They can provide a higher degree of resource unification than Cronus, which must rely on
underlying centralized operating systems for some of its functionality. All of the native-kernel
distributed operating systems covered in this paper (i.e., Alpha, Amoeba, Clouds, Mach, and
V) have portability as a goal, in that they strive to minimize machine dependence of the
operating system design and code.

1 A description of the HCS Project is provided in the Appendix.

11
UNCLASSIFIED

UNCLASSIFIED

Now, let us move on to security considerations. In a Cronus-related RADC/BBN pro-
ject, the Secure Distributed Operating System (SDOS) Project, the question of how to incor-
porate multilevel security into Cronus was investigated. The following conclusion was reached
[Casey 87, p.191: "Thus, the host operating system(s) on top of which SDOS [i.e., secure
Cronus] is implemented must have a minimum of a B2 rating, and ratings of B3 or Al are
more desirable." GEMSOS, a product of Gemini Computers, Inc., of Carmel, California, was
recommended as the multilevel-secure operating system upon which to base SDOS.

This recommendation (GEMSOS or other B3 or Al operating systems as the native
operating systems) seems antithetical to Cronus's chief purpose of integrating computer sys-
tems with heterogeneous operating systems. To achieve multilevel security, a restricted base of
multilevel-secure native operating systems must be installed; heterogeneity, Cronus's overriding
reason for being, is sacrificed in the pursuit of multilevel security. The implication is that the
utility of Cronus in a multilevel-secure, heterogeneous computing environment (such as the
SDS development and maintenance system) is limited.

3.3. Mach

Target Domain

Mach represents DARPA's effort at establishing an operating system standard for distri-
buted computing environments. It capitalizes on UNIX's de facto standard status by having
UNIX binary compatibility as a basic tenet. It extends UNIX functionality to advanced com-
puting architectures and environments, namely, those encompassing multiprocessors, large
memories, and high-performance networks.

Due in part to its UNIX heritage, the primary target domain for Mach is interactive com-
puting. However, DARPA continues to expand its vision of Mach's role. Real-Time Mach,
for example, is in preliminary stages of development. (That is, initial work has been reported
in the literature [Tokuda 87], and Mach briefings often cite the effort.) Thus, in SDS terms,
Mach's primary target domain is the SDS development and maintenance system; however, it
may develop into a candidate for the deployed SDS, too.

In regard to reliability and fault tolerance, the Mach project and two related Mach-based
DARPA projects (i.e., Camelot and Avalon) address data integrity, but not processing
integrity. Camelot is a distributed transaction facility built on top of Mach. Avalon is built
on top of Mach and Camelot; it provides language support.

In regard to security, the Mach kernel utilizes capability-like ports for naming and (dis-
cretionary) protection. A related DARPA effort, Trusted Mach, is aimed at achieving mul-
tilevel security (in particular, the Orange Book B3 level of protection). Another effort,
Strongbox, is exploring the concept of "self-securing" programs, which can run securely on
distributed operating systems that provide only minimal security features. Strongbox is built
on top of Mach and the transaction facility Camelot.

Status

Mach has a solid technical foundation, due in part to its evolution from RIG 12 and
Accent [Rashid 87], earlier projects of Rick Rashid, its principal investigator. Moreover, it
has achieved a broad base of interest and support, due not only to its technical foundation,
but also to its UNIX compatibility and strong backing from DARPA. Mach is serving as a
platform for several interesting distributed system research efforts, many of which are aimed at
the SDS requirements of real-time computing, reliability/fault tolerance, and security. These
include Real-Time Mach, Camelot, Avalon, Strongbox, and Trusted Mach. 13

12 RIG is an acronym for Rochester's Intelligent Gateway (and the preferred designation of the project).
13 The reader is referred to the Appendix for descriptions of these projects.

12
UNCLASSIFIED

UNCLASSIFIED

Because of its solid technical foundation and broad base of interest and support, Mach
represents a valuable resource to the SDS, especially as an operating system for the SDS
development and maintenance environment, and possibly as an operating system for ground-
based components of the deployed SDS.

Concerns
On the negative side, Mach has not yet achieved independence from UNIX. Mach was

produced by modifying and enhancing UNIX, with ideas and experience gained from the RIG
and Accent efforts. (Its critics claim that it simply "brings UNIX into the twentieth century,"
for example, through its advanced virtual memory concepts.) Although a kernelized version of
Mach, in which UNIX functionality and code (specifically, the file system and input/output) is
removed from the kernel, has been planned for some time, it has not yet been implemented
and delivered.

3.4. V

Target Domain
The V kernel was designed for the real-time computing environment. However, it also

strives to support interactive computing, as well as large-scale distributed parallel-programmed
applications [Cheriton 88b]. Thus, in SDS terms, its primary target domain is the deployed
SDS, and its secondary target domain is the SDS development and maintenance system.

In regard to real-time computing, the V project focuses on the traditional aspect,
namely, fast response. The V kernel incorporates features typical of current (centralized)
real-time operating systems, such as strict priority-based scheduling, accurate time services,
and memory-resident programs. In addition, it extends real-time support into the distributed
system domain through interprocess communication features such as datagrams, prioritized
message transmission and delivery, and conditional message delivery (in which the message is
delivered only if the receiver is awaiting a message when the message arrives).

In regard to reliability/fault tolerance and security, the V project adheres to the minimal
kernel principle. The V project maintains that simplicity of design is crucial to the develop-
ment of correct (i.e., trusted) software. The goal is for the kernel to provide the minimal
mechanisms necessary for servers to be able to implement their own desired levels of
reliability/fault tolerance and security. Some of these mechanisms are incorporated into the
Versatile Message Transaction Protocol (VMTP) [Cheriton 88a], the protocol underlying V
interprocess communication. Reliability and fault tolerance mechanisms include multicast
communication, which enables, for example, communication with multiple providers of the
same service or efficient updating of replicates. Security mechanisms include "entity
domains" 14 and encryption, which can provide the isolation between security levels required
for mandatory protection and the secure authentication of subjects required for discretionary
security.

Status
The V project has a solid record of ideas and accomplishments in the form of numerous

publications and a mature system. The V kernel is the preeminent minimal kernel. Its only
competitor is the kernel of the Amoeba distributed operating system, 15 which is a joint effort
between the Centre for Mathematics and Computer Science and the Vrije University, both
located in Amsterdam, the Netherlands.

14 In VMTP, direct communication can occur only on an intra-domain basis. The idea is that to imple-

ment mandatory security, there would be one domain per security level. Entities can belong to more than
one domain, so trusted servers could communicate with users of different domains.

's A description of the Amoeba project is provided in the Appendix.

13
UNCLASSIFIED

UNCLASSIIED

The V kernel is widely recognized in the data communications community, as well as in
the distributed operating system community, for its high performance, especially its high-
performance interprocess communication [van Renesse 88].

As a mature, high-performance, (traditional) real-time minimal kernel, the V kernel
represents a promising base upon which to build a real-time distributed operating system suit-
able for the deployed SDS.

Concerns

The V distributed system is sometimes viewed as ignoring security and
reliability/fault tolerance issues. This perception stems from the V emphasis on minimiing
the kernel. However, VMTP has facilities that can support both security and
reliability/fault tolerance. The problem is that these approaches to security and
reliability/fault tolerance have not been fully developed or implemented. This would involve
work above the kernel, assuming that the underlying kernel mechanisms are sufficient. Full
development and implementation of the approaches would serve to test (i.e., prove or
disprove) the sufficiency of the kernel mechanisms.

4. ONR REAL-TIME COMPUTING INIIATIVE

Since real-time computing is the most pressing SDS distributed operating system research
issue, it is important to examine real-time computing as an issue in itself, i.e., to look beyond
mainstream distributed operating system research and into the research of the real-time sys-
tems community. The point is to identify research relevant to the SDS, as well as to identify
means of gaining leverage from it. It is in this vein that the Office of Naval Research (ONR)
Real-Time Computing Initiative is addressed here.

In FY 89, the ONR, under the leadership of Andre van Tilborg, is beginning the five-
year Foundations of Real-Time Computing Research Initiative [ONR 88]. The objective is to
establish a scientific foundation for distributed real-time system development, to remedy the
current situation in which ad hoc practices prevail. The Initiative is capitalizing on previous
ONR-sponsored work. Emphasis is in two areas: (1) specification and verification of real-time
systems and (2) real-time scheduling theory. Already, the Initiative is capturing the interests
of the real-time systems community and promises to be the focal point of real-time research
and development over the next few years.

The Initiative is focusing on the uniprocessor environment initially. Then, in later years,
real-time computing in multiprocessor and distributed processing environments will be
addressed.

For the sake of contrast to the Alpha approach to real-time computing, let us elaborate
upon the approach taken by the Software Engineering Institute and Carnegie Mellon Univer-
sity, in the work that they are doing under ONR sponsorship. The work is based on fixed-
priority, rate-monotonic scheduling [Liu and Layland 73], with extensions to address some of
problems that are encountered in applying this type of scheduling in practice. Extensions
include the following:

• Deferrable server algorithm [Lehoczky 87] [Sha 87], for dealing with aperiodic tasks.
Basically, this algorithm preserves some processing bandwidth for aperiodic tasks, while
ensuring that periodic tasks meet their deadlines.

• Period transformation method [Sha 87], for dealing with transient overload. The prob-
lem is that rate-monotonic scheduling gives the highest priority to the tasks with the shor-
test periods. In the case of overload, the lowest priority tasks, i.e., the tasks with the
longest periods, will miss their deadlines first. But the tasks with the longest periods
may actually be the most "important." The period transformation method allows long-
period tasks to have artificially high priorities, by having them emulate multiple short-
period tasks.

14
UNCLASSIFIED

UNCLASSIFIED

0 Priority inheritance protocols [Sha 881, which deal with synchronization and attempt to
avoid priority inversion. The basic idea is to have a task that is blocking other tasks exe-
cute at the highest priority of the blocked tasks.

5. RECOMMENDATIONS
This section makes recommendations on the directions in which the SDIO should pur-

sue the three distributed operating system projects, Alpha, Cronus, and Mach, that are
currently receiving SDIO funding. Then, recognizing that these projects may not meet SDS
distributed operating system requirements, especially the real-time requirements, this section
goes on to make recommendations aimed at gaining leverage from two other efforts: the V
distributed system project and the ONR Real-Time Computing Initiative.

Organized according to project, the recommendations are as follows:

Alpha

The Alpha project is noteworthy for its emphasis on the concept of time-driven resource
management. But the noteworthiness stems more from the appeal of the concept than from
achievements of the Alpha kernel.

* Recommendation 1: Therefore, the SDIO should concentrate on further investigating the
concept of time-driven resource management and not on further developing the Alpha ker-
nel. Alpha should be viewed only as a vehicle (not the only vehicle16) for exploring
time-driven resource management.

* Recommendation 2: The Alpha researchers have assumed that the SDS problem domain
is an ideal domain for the application of time-driven resource management. In order to
assess the validity of this assumption, a prototypical SDS problem should be defined and
cast in the time-driven resource management framework. The goals should include the
following: (1) examining some of the fundamental assumptions underlying the time-
driven resource management approach, such as the assumptions that periodicity and
priorities are "artifacts" of out-dated methodologies for real-time system development;
(2) measuring the overhead incurred by time-driven resource management; and (3)
demonstrating how importance values can be assigned to tasks in a rigorous way.

Cronus

The Cronus project has demonstrated the feasibility of integrating heterogeneous com-
puter systems by imposing a layer of standardization (i.e., the Cronus distributed operating
system) on top of native operating systems. It is now time for Cronus to evolve out of the
general research domain. The Cronus distributed operating system should be viewed as a
"product." As a product, it is still subject to enhancement, but it is not deemed to be a
promising base for innovative research, especially in the mission-critical, real-time domain.
Furthermore, while feasibility of the Cronus approach has indeed been established, utility of
the approach has not been. Since the time when the project was initiated, other approaches
to integrating heterogeneous systems have been developed.

* Recommendation 3: Therefore, further work should be undertaken only in the context of
a specific plan for utilizing Cronus in SDS work.

• Recommendation 4: The National Test Bed (NTB) represents a potential domain for the
application of Cronus. RADC and BBN have suggested that the appropriate role for
Cronus to play in the SDS would be that of a distributed operating system for develop-
ment and maintenance activities, such as those of the National Test Bed; and, according
to RADC, Martin-Marietta has expressed interest in utilizing Cronus in the NTB. There-
fore, the possibility of utilizing Cronus in the NTB should be pursued, by encouraging

16 As noted in Section 3, Mach project plans include further investigation of time-driven resource
management.

15
UNCLASSIFIED

UNCLASSIFIED

interaction between the principals, not by continuing general Cronus development.

Mach
Due to its solid technical foundation, its broad base of interest and support, and its

strong backing from DARPA, the Mach project represents a valuable resource to the SDIO.
It is both a useful platform for research and a promising candidate to serve as a distributed
operating system in the SDS development and maintenance system.
* Recommendation 5: Therefore, the SDIO should continue to assist DARPA in supporting

the Mach project. In doing so, it should pursue the actions noted in the following
recommendations.

* Recommendation 6: In order for Mach to establish its independence from UNIX and to
become an even more effective research platform, it is important for the kernelized ver-
sion of Mach to be completed. Thus, the completion of the kernelized version should be
given high priority.

* Recommendation 7: Since the payoff of having a multilevel-secure distributed operating
system, especially for the SDS development and maintenance system, would be high, the
Trusted Mach research effort (on incorporating multilevel security into Mach) should be
given high priority.

V
The V kernel is a mature, high-performance, (traditional) real-time minimal kernel; it

represents a promising base upon which to conduct research and to build a real-time distri-
buted operating system suitable for the deployed SDS. Moreover, the V distributed system
project has a demonstrated record of research contributions.
* Recommendation 8: Therefore, the V kernel itself, as well as the expertise of its develop-

ers, should be taken advantage of, to the extent possible, in the development of the SDS.
* Recommendation 9: The V kernel should be considered as a distributed operating system

base upon which to explore priority-based real-time scheduling policies, such as those
being pursued in the ONR Real-Time Computing Initiative.

* Recommendation 10: The possibility of encouraging the full development of V approaches
to security and reliability/fault tolerance should be explored.

ONR Real-Mme Computing Initiative
As the focal point of real-time computing research, the ONR Real-Time Computing Ini-

tiative offers promise in overcoming some of the critical real-time issues faced by the SDIO.
* Recommendation 11: Therefore, the SDIO should take advantage of the ONR Real-

Time Computing Initiative. At the least, its results should be followed and utilized as
appropriate.

* Recommendation 12: The possibility of the SDIO providing leverage to the ONR research,
especially in accelerating research in the directions of multiprocessors and distributed sys-
tents, should be investigated.

* Recommendation 13: The possibility of defining prototypical SDS real-time system prob-
lems and offering them as applications to be addressed by ONR research should be investi-
gated.

16
UNCLASSIFIED

UNCLASSIFIED

References

[Abrams and Podell 87]
Abrams, Marshall D. and Harold J. Podeil, Tutorial: Computer and Network Security,
IEEE Computer Society Press, Washington, D.C., 1987.

[BBN 88a]
BBN Laboratories Incorporated, Cronus Tutorial Documents, Release 1.2, January
15,1988.

[BBN 881]
BBN Laboratories Incorporated, "Release Notice: Cronus Release 1.2," January
15,1988.

[Branstad 88]
Branstad, Martha, Homayoon Tajalli, and Frank L. Mayer, "Security Issues of the
Trusted Mach System," Proceedings of the Fourth Aerospace Computer Security Applica-
dons Conference, December 1988.

[Casey 871
Casey, Thomas A., Jr., Doug Weber, and Stephen T. Vinter, "The Secure Distributed
Operating System Project: Final Report," Report No. 6678, BBN Laboratories Incor-
porated, October 1987.

[Cheriton 88a]
Cheriton, David R., "VMTP: Versatile Message Transaction Protocol," RFC 1045, SRI
Network Information Center, February 1988.

[Cheriton 88b]
Cheriton, David R., "The V Distributed System," Communicatiom of the ACM 31, 3
(March 1988), 314-333.

[Dasgupta 881
Dasgupta, Partha, Richard J. LeBlanc, and William F. Appelbe, "The Clouds Distri-
buted Operating System: Functional Description, Implementation Details and Related
Work," Proceedings of The 8th International Conference on Distributed Computing Sys-
tems, June 1988, 2-9.

[Denning 841
Denning, Dorothy E., "Cryptographic Checksums for Multilevel Database Security,"
Proceedings of the IEEE Symposium on Security and Privacy, 1984, 52-61.

[Gligor 87]
Gligor, Virgil D., et al., "Traditional Capability-Based Systems: An Analysis of their
Ability to Meet the Trusted Computer Security Evaluation Criteria," IDA Paper P-1935,
Institute for Defense Analyses, February 1987.

[Graubart 84]
Graubart, Richard D., "The Integrity Lock Approach to Secure Database Manage-
ment," MTR 9161, The MITRE Corporation, February 1984.

[Gray 79]
Gray, James N., "Notes on Database Operating Systems," Operating Systems: An
Advanced Course, Springer-Verlag, 1979, 393-481.

[Jensen 85]
Jensen, E. Douglas, Locke, C. Douglass, and Hideyuki Tokuda, "A Time-Driven
Scheduling Model for Real-Time Operating Systems," Proceedings of IEEE Real-Time

17
UNCLASSIFIED

UNCLASSIFIED

Systems Symposium, December 1985, 112-122.

[Lehoczky 87]
Lehoczky, John P, Lui Sha, and Jay K. Strosnider, "Enhanced Aperiodic Responsive-
ness in Hard Real-Time Environments," Proceedings of 8th IEEE Real-Time Systems 0
Symposium, December 1987.

[Liskov 881
Liskov, Barbara, "Distributed Programming in Argus," Communications of the ACM 31,
3 (March 1988), 300-312.

[Liu and Layland 73]
Liu, C.L. and James W. Layland, "Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment," Journal of the ACM 20, 1 (January 1973), 46-61.

[Locke 86]
Locke, C. Douglass, Best-Effort Decision Making for Real-Time Scheduling, Ph.D.
Dissertation, Carnegie Mellon University, 1986.

[Moss 81]
Moss, J.E.B., Nested Transactions: An Approach to Reliable Distributed Computing,
Ph.D. Dissertation, Massachusetts Institute of Technology, 1981. (Also MIT Press, Cam-
bridge, Massachusetts, 1985.)

[Nelson and Carroll 87]
Nelson, Victor P. and Bill D. Carroll, editors, Tutorial: Fault-Tolerant Computing,
IEEE Computer Society Press, Washington, D.C., 1987.

[ONR 88]
Office of Naval Research, Kickoff Workshop, Foundations of Real-Time Computing
Research Initiative, November 1988.

[RADC 88]
Rome Air Development Center, Briefing to Phase One Engineering Team (POET) S
Software Engineering and. Operating Systems Panel, 23-24 August 1988.

[Rashid 87]
Rashid, Richard F., "From RIG to Accent to Mach: The Evolution of a Network
Operating System," Computer Science Department, Carnegie Mellon University, 28
August 1987.

[Rennels 84]
Rennels, David A., "Fault-Tolerant Computing - Concepts and Examples," IEEE Tran-
sactions on Computers C-33, 12 (December 1984), 1116-1129.

[Serlin 84]
Serlin, Omri, "Fault-Tolerant Systems in Commercial Applications," IEEE Computer
17, 8 (August 1984), 19-30.

[Sha 87]
Sha, Lui, John P. Lehoczky, and Ragunathan Rajkumar, "Task Scheduling In Distri-
buted Real-Time Systems," Proceedings of IEEE Industrial Electronics Conference, 1987.

[Sha 88]
Sha, Lui, Ragunathan Rajkumar, and John P. Lehoczky, "Priority Inheritance Protocols:
An Approach to Real-Time Synchronization," Departments of CS, ECE, and Statistics,
Carnegie Mellon University, 23 May 1988.

[Spector and Swedlow 88]
Spector, Alfred Z. and Kathryn R. Swedlow, editors, Guide to the Camelot Distributed
Transaction Facility: Release 1, Computer Science Department, Mach/Camelot,
Carnegie-Mellon University, Draft of February 4, 1988.

[Stankovic 88]
Stankovic, John A., "Misconceptions About Real-Time Computing: A Serious Problem

18 SUNCLASSIFIED

UNCLASSIFIED

for Next-Generation Systems," IEEE Computer 21, 10 (October 1988), 10-19.

[SPARTA 881
SPARTA, Inc, Teledyne Brown Engineering, and The Analytical Sciences Corporation,
"Task Order 14 BM/C3 Technology (Multi-Grain) Final Report," 14 October 1988.

[Tanenbaum and van Renesse 86]
Tanenbaum, Andrew S. and Robbert van Renesse, "Distributed Operating Systems,"
ACM Computing Surveys 17, 4 (December 1985), 419-470.

[TCSEC 85]
"Department of Defense Trusted Computer System Evaluation Criteria," National Com-
puter Security Center, DoD 5200.28-STD, December 1985.

[TIS 881
Trusted Information Systems, Inc., "Trusted Mach Presentation," EUicott City, Mary-
land, 7 December 1988.

[ml 87]
"Trusted Network Interpretation of the TCSEC," National Computer Security Center,
NCSC-TG-005, Version-i, July 1987.

[Tokuda 87]
Tokuda, Hideyuki, James W. Wendorf, and Huay-Yong Wang, "Implementation of a
Time-Driven Scheduler for Real-Time Operating Systems," Proceedings of 8th IEEE
Real-Time Systems Symposium, December 1987, 271-279.

[Tripathi 88]
Tripathi, Anand, "An Overview of the Nexus Distributed Operating System Design,"
Technical Report TR 88-4, Computer Science Department, University of Minnesota,
January 1988.

[van Renesse 88]
van Renesse, Robbert, Hans van Staveren, and Andrew S. Tanenbaum, "Performance
of the World's Fastest Distributed Operating System," ACM SIGOPS Operating Systems
Review 22, 4 (October 1988), 25-34.

19
UNCLASSIFIED

UNCLASSIFED

Appendix

Distributed Operating System Projects

This appendix provides descriptions of the following distributed operating system pro-
jects: Alpha, Amoeba, Clouds, Cronus, Heterogeneous Computer Systems (HCS), Mach,
and V. The description of each project (1) identifies the goals of the project, (2) gives
highlights of the project's technical approach, (3) indicates the current status of the project,
and (4) provides a list of references on the project.

It should be noted that the descriptions have been prepared as summaries of the refer-
enced literature and, in some cases, of project briefings.17 As summaries of this material, the
descriptions reflect the viewpoints of the project leaders. That is, the descriptions tend to
cast the projects in the most favorable terms. Moreover, the descriptions tend to emphasize
the same points and features that are emphasized by the project leaders. In short, the descrip-
tions provide (uncritical) overviews of the projects. Critical reviews of the projects are offered
in Section 3 of the paper.

17 During the course of this investigation, the Alpha, Cronus, Mach, and V project leaders gave in-depth

briefings on their respective projects to IDA.

21
UNCLASSIFIED

UNCLASSIFIED

Alpha

1. Goals

The Alpha project began in 1985, as part of the Archons Project at Carnegie Mellon
University (CMU). Since that time, however, the principal investigator, Doug Jensen, has left
CMU and joined Concurrent Computer Corporation. It is anticipated that chief responsibility
for the project will follow him from CMU to Concurrent Computer Corporation. The primary
sponsor of the Alpha project is the Rome Air Development Center (RADC).

Alpha is an operating system kernel for distributed real-time Battle
Management/Command, Control, and Communication (BM/C3) systems. Its goals may be
elaborated as follows:

* First, consider the "distributed" aspect. Alpha is aimed at a particular class of distri-
buted systems, namely, mission-oriented distributed systems. In a mission-oriented distri-
buted system, system components are physically dispersed, but must be logically
integrated into a single system dedicated to the mission. Regarding the degree of physi-
cal dispersal, the emphasis in Alpha is on intraplatform, as opposed to interplatform,
activities. Alpha's "mission" is the platform's mission.

" Second, consider the "real-time" aspect. Alpha is aimed at a particular class of real-
time systems, those dominated by dynamic, stochastic, aperiodic activities with critical
time constraints such as deadlines. In the Alpha literature, real-time BM/C3 systems are
identified as being the prototypical systems of this class. Real-time BM/C3 systems may
be contrasted to the more traditional real-time systems (represented by low level, closed
loop, sampled data applications, such as sensor-actuator feedback control), which are
characterized by static, periodic activities.

* Robustness is an inherent requirement of real-time BM/C3 systems, and, as such, is a
fundamental goal of Alpha.

* Alpha adopts adaptability as another basic goal. This goal is motivated by the complex
and evolutionary nature of BM/C3 systems.

2. Approach

Alpha achieves adaptability through (1) the basic abstractions that define the kernel
interface and that extend to the kernel itself, and (2) its strict adherence to the principle of
policy/mechanism separation.

The kernel provides mechanisms, but does not impose policy. Moreover, the kernel
attempts to provide the "right" (i.e., necessary and sufficient) mechanisms for the target
domain (i.e., distributed real-time BM/C3). These mechanisms include ones (such as atomic
transaction support) that are typically left out of "minimal" kernels. The Alpha philosophy is
to push more mechanisms down into the kernel to ensure consistency and efficiency and to
avoid the costs of recurring implementations.

Basic Abstractions:

* Object: In Alpha, objects are instances of abstract data types. They are passive entities.
They are assumed to be of medium to large granularity (i.e., larger than integers). The
object abstraction extends to all system services and resources.

" Operation Invocation: Objects are accessed via (and only via) operation invocations.
The target of the invocation is specified by a capability.

23
UNCLASSIFIED

UNCLASSIFIED

0 Thread: The thread is the active entity in Alpha. It is a logical computation, and the unit
of concurrency and scheduling. It corresponds to the process in conventional systems.
Threads move through objects, independently of the physical locations of the objects,
via operation invocations. The thread provides the execution conte .t for an operation
on an object. Upon operation invocation, the target object is mapped into the context
(i.e., virtual address space) of the invoking thread. Thus, the operation is executed
according to all the execution attributes (e.g., time requirements, importance, reliability
requirements) of the thread.

Interprocess Communication

Alpha uses the Remote Procedure Call (RPC) model of interprocess communication.
Operations on objects are invoked via RPCs.

Naming and Protection

Alpha provides object access control, as well as object addressing, through kernel-
protected capabilities. In Alpha, a capability consists of a globally unique identifier, a list of
operation rights, and a per-operation set of usage restrictions (e.g., no-copy, no-transfer, etc.).
No provisions are made for the revocation of capabilities.

Resource Management

Resource management in Alpha is based on three key concepts. First and foremost,
Alpha is optimized for the exceptional cases rather than the normal (i.e., most frequent)
cases. This novel approach to optimization is motivated by the assumption that exceptional
cases will inevitably occur under stress, which is exactly when it is most important fur the sys-
tem to perform its mission. The effect of this optimization approach is that Alpha sometimes
pays the price of high overhead in "normal" cases, so that better performance can be
achieved in exceptional cases.

Second, Alpha implements time-driven resource management. That is, application-
specified time constraints are explicitly taken into account in resolving resource contention -
for all physical and logical resources (e.g., processors, memory, locks, etc.). In Alpha, time
constraints are expressed in terms of "time-value functions," which specify the value to the
system of completing an activity as a function of the completion time of the activity. For
example, hard deadlines are represented as step functions, whose values go to zero after the
deadline.

It should be noted that the first two concepts are closely coupled. Specifically, time-
driven resource management is the most important means by which Alpha optimizes for
exceptional cases. Alpha's time-driven resource management anticipates that processor (or,
more generally, resource) overloads will occur, and ensures that the overloads can be handled
gracefully, according to application-specified policies (time-value functions).

Third, Alpha is a decentralized operating system kernel, and yet achieves global resource
management. It does so through the application of the same resource management policies at
each node (i.e., through the implementation of the kernel at each node) and through the asso-
ciation of operation invocations with threads. Each operation, whether local or remote, is
executed in the context of its invoking thread. Thus, in resolving resource contentions involv-
ing the operation, the time constraints and other attributes of the invoking computational
activity (i.e., thread) can be taken into account.

Reliability and Fault Tolerance

Alpha provides reliability and fault tolerance through atomic transactions and object
replication. In keeping with the principle of policy/mechanism separation, the Alpha kernel
implements the three properties of atomic transactions - atomicity, serializability, and per-
manence - as separable properties. Clients of the kernel can base their policies on various

24
UNCLASSIFIED

UNCLASSIFIED

combinations of these properties, rather than being bound to the traditional atomic transac-
tion policy, which bundles all three properties together.

Programming Support

Programming support is minimal. It consists of a preprocessor for the C programming
language. The preprocessor provides some primitive extensions (in the form of new key-
words) to C that support the programming interface (i.e., abstractions) offered by the Alpha
kernel.

3. Accomplishments and itatus
* The current version (Release 1) of the Alpha kernel is being developed at CMU directly

on Sun workstation hardware.

* Alpha Release 0.5 (a pre-release) has been demonstrated by General Dynamics, in
cooperation with CMU, on a BMI/C3 application, in particular, coastal air defense.

* One of the major thrusts of the Alpha project over the next few years will be to engage
in more cooperative relationships with industry, to facilitate technology transition and
evaluation.

* Currently, time-driven resource is applied only to processor scheduling.

* Reliability and fault tolerance are the subjects of ongoing Ph.D. thesis research at CMU.
Much work remains to be done, especially on replication mechanisms.

* System services (above the kernel level) have not been developed.

* TCSEC security has not been addressed.

4. References

[Jensen 85]
Jensen, E. Douglas, C. Douglass Locke, and Hideyuki Tokuda, "A Time-Driven
Scheduling Model for Real-Time Operating Systems," Proceedings of IEEE Real-Time
Systems Symposium, December 1985, 112-122.

[Locke 86]
Locke, C. Douglass, Best-Effort Decision Making for Real-Time Scheduling, Ph.D.
Dissertation, Carnegie Mellon University, 1986.

[Northcutt 87]
Northcutt, J. Duane, Mechanisms for Reliable Distributed Real-Time Operating Systems:
The Alpha Kernel, Ph.D. Thesis, published as Perspectives in Computing 16, W. Rhein-
boldt and D. Siewiorek, editors, Academic Press, Inc., 1987.

25
UNCLASSIFIED

UNCLASSIFIED

Amoeba

1. Goals

The Amoeba distributed operating system project has been active since 1984. It is
jointly directed by Sape Mullender and Andrew Tanenbaum at the Centre for Mathematics
and Computer Science and the Vrije University, both in Amsterdam, the Netherlands.

Amoeba is an object-oriented, capability-based, distributed operating system that sup-
ports the flexible sharing of computing power in a cluster of heterogeneous processors, such as
Motorola 68010, Intel 8086, NS32016, PDP11/44, and VAX 750's, which are connected by a 10
Mbit/sec star-shaped network. Its goals may be enumerated as follows:

* The Amoeba project adheres to the minimal kernel philosophy.

* The Amoeba project strives for high performance.

* A secondary goal of the Amoeba project is to provide a UNIX-compatible programming
environment to its users.

2. Amoeba Approach

The basic computation model adopted in Amoeba is based on object-oriented design
concepts. An object is an instance of some abstract data type with some well-defined inter-
face operations that are invoked using the remote procedure call (RPC) mechanism. Each
object is assigned a capability that is used for locating the object in the network and also for
protection. The remote procedure calls on objects are supported by the Amoeba kernel.
Some of the typical system supported objects in Amoeba are directories, files, disk blocks,
processes, bank accounts, devices etc.

Architecture

The Amoeba architecture consists of four major components:

* User workstations: One such workstation exists per user. These are used by the users for
performing editing tasks and other tasks requiring interactive response.

* Pool Processors: This is a pool of processors that can be dynamically allocated to
different tasks as needed. A task is allocated one or more free processors from this pool
if it has some CPU-intensive job; these processors are returned to the pool once that
activity is complete.

* Server Processors: These are dedicated processors that support the traditional operating
system services in the network. These include services for booting, file system, direc-
tories, secondary storage blocks, databases, etc. The server processors perform these
specialized functions.

* Gateway: All the three components described above are connected by a local area net-
work. Gateways are used to interconnect different, geographically distributed, local area
networks.

Each processor in Amoeba runs the same kernel, which basically supports message
communication and some other basic services. The approach here was to keep the kernel
minimal and to move most of the operating system functions to the application level. One
advantage seen in this approach was the flexibility for experimentation with different system
primitives at that level.

27
UNCLASSIFIED

UNCLASSIFIED

Interprocess Communication

Interprocess communication in Amoeba is primarily based on the client-server paradigm
of computing. To obtain certain service from a server object, a client invokes one of its inter-
face operations using the remote procedure call mechanism. The client is blocked until a
response message is received or the timeout period expires. Up to 32K bytes of message can
be transferred in the RPC communication.

The message communication supported by the kernel is reliable in the sense that it
involves packetization and assembling of messages, detection of lost or duplicate packets,
retransmission packets, and processing of acknowledgements. Messages are unbuffered; if a
message arrives and no process is waiting for it, then the message is discarded.

In addition to the blocking communication, based on the remote procedure call model,
provisions are made for handling emergency messages. This allows the processing of a request
at a server to be forced to terminate before its normal completion.

Naming and Protection

Naming and protection in Amoeba is based on the use of sparse capabilities. Each
objects is assigned a capability which is 128 bits long. Objects are accessed in the network
using this capability; the location of an object is transparent to its clients.

A capability consists of four fields:

* 48-bits service port address of the server managing the object,

" 24-bits object-id assigned to the object by its server,

• 8-bits access rights vector indicating which operations a holder of this capability is per-
mitted to invoke on the object, and

• 48-bits random number that is used for encryption.

The access rights field and the random number field together are encrypted using the 48-bit
random number field as the encryption key. Such an encrypted capability is then given to the
clients. The server managing the object stores the random number field in its local object
table. When a client's request is to be processed, it decrypts the encrypted part of the capabil-
ity that is presented by a client with its request. If the decrypted random number field
matches the number stored in the table, the capability is considered valid. Then only the
access rights field is checked to see if the requested operation is permitted.

The scheme used in Amoeba has the advantage that the access through a capability can
be revoked by simply changing the random number field in the table. That would wn'ke the
capabilities based on the old number invalid.

Capabilities for objects, along with the ASCII string names for objects, are stored and
managed by the directory servers in the system.

Resource Management

Resource management in Amoeba is done at several different levels: management of
activities on a processor, management of pool of processors, and management of servers.

Each Amoeba machine runs a resource management process that controls that machine.
For the efficiency reasons it executes as a part of the kernel. This process supports functions
to read or write segments in the memory of its machine and to create processes. The resource
management process also facilitates sharing of code and data segments among multiple con-
current processes on its machine. Thus it is possible to implement a file server using say mul-
tiple processes that share disk cache and program code to perform [/0 operations. When a
request for some file operation is received by the file server, one of such processes, which is
free, is assigned to service the request.

The pool of processors is managed by the process server, which maintains the allocation
status of the processors in the pool. Allocation of free processors is made by the process

28
UNCLASSIFIED

UNCLASSIFIED

server. If a particular machine in the pool is multiprogrammed, it manages each virtual pro-
cessor at that machine as a separate entity.

Reliability and Fault Tolerance
Apart from supporting reliable message communication at the kernel level, the integra-

tion of reliability mechanisms in the Amoeba design is minimal. The view taken there is that
in most cases users are not willing to pay the high overheads involved in making the system
highly fault-tolerant.

A boot service is included in Amoeba with which servers in the system can register. This
boot service periodically polls each currently active registered server. If no response is
received from some server, it assumes it to be dead and requests the process server to create a
new copy of it to run on one of the available pool processors.

Typically, a client would retry a request if the timeout condition arises. Meanwhile, if a
new server is up, the client's kernel would know this and direct the request to the new server.
This scheme provides only minimal amount of fault tolerance and would not function
correctly under many different failure conditions.

File System
Access to files is provided by a server that runs above the Amoeba kernel. It supports

file system functions that are functionally equivalent to the UNIX system call interface.
Another file service supported in Amoeba is called FUSS (Free University Storage System)
that allows maintaining multiple versions for files and uses an optimistic concurrency control
scheme. This facility is used for implementing updates to file as indivisible atomic actions.

Programming Environment
During the course of this project a strong need was felt to provide a UNIX-compatible

programming environment in Amoeba. To achieve this, two server processes are provided: a
UNIX file server and a UNIX process server.

As mentioned above, the UNIX file server along with an associated library provides an
interface that is very similar to the UNIX (V7) file system. Programs using this library can
create and open files, and perform read, write and seek operations. Directory operations such
as linking and unlinking files, and mounting and unmounting devices are also provided. Many
UNIX programs can be re-linked to the special library and run on Amoeba without any
modifications.

For a user running on an Amoeba machine and requiring access to a file on some UNIX
machine, a special server is run on the UNIX machines. This server looks like an Amoeba
server to the user; it makes capabilities for UNIX files and makes these files accessible to the
Amoeba users possessing such a capability.

The UNIX process server supports standard UNIX functions such as fork, exec, wait, sig-
nal, kill, and exit. Using these two servers many of the standard programs in UNIX have been
re-linked to run on Amoeba. This provides Amoeba users with UNIX environment of shell,
various editors, C compiler, and some small number of utilities such as cat, grep, and sort.

3. Accomplishments and Status
* The Amoeba system currently includes five different types of CPUs: Motorola 68010,

NS32016, Intel 8088, VAX and PDP-11. Almost all of the system services have been
implemented and tested. A substantial number of UNIX utilities have been made avail-
able in the Amoeba environment. Also, it has been made possible to access UNIX files
from Amoeba machines.

* In addition to the system level support to make the system UNIX-compatible, a number
of parallel algorithms have been written and tested on Amoeba. These include parallel
traveling salesman and parallel alpha-beta search. Also, support for parallel and

29
UNCLASSIFIED

UNCLASSIFIED

distributed compilations has been developed on Amoeba.
0 Current research on this project is related to connecting Amoeba machines belonging to

different clusters using long-haul networks.

4. References
[Mullender 87]

Mullender, Sape J., ed., The Amoeba distributed operating system: Selected papers 1984-
1987, CWI Tract 41, Amsterdam, Netherlands: Centre for Mathematics and Computer
Science, 1987.

[Mullender and Tanenbaum 85]
"A Distributed File Service Based on Optimistic Concurrency Control," Proceedings of
the 10th Symposium on Operating Systems Principles, December 1985, 51-62.

[Mullender and Tanenbaum 86]
Mullender, Sape J. and Andrew S. Tanenbaum, "The Design of a Capability-Based Dis-
tributed Operating System," The Computer Journal 29, 4 (March 1986), 289-300.

[Mullender and van Renesse 84]
Mullender, Sape J. and Robbert van Renesse, "A Secure High-Speed Transaction Proto-
col," Proceedings of the Cambridge EUUG Conference, September 1984.

[Mullender and Vitanyi 85]
Mullender, Sape J. and Paul M.B. Vitanyi, "Distributed Match-Making for Processes in
Computer Networks," Proceedings 4th ACM Principles of Distributed Computing, August
1985.

[Tanenbaum 84]
Tanenbaum, Andrew S., Robbert van Renesse, and Sape J. Mullender, "Capability-
Based Protection in Distributed Operating Systems," Proceedings of Symposium
Certficering van Software, Ultrecht, Netherlands, November 1984.

[Tanenbaum 861
Tanenbaum, Andrew S., Sape J. Mullender, and Robbert van Renesse, "Using Sparse
Capabilities in a Distributed Operating System," Proceedings of the 6th International
Conference on Distributed Computing Systems, May 1986, 558-563.

[Tanenbaum and van Renesse 85]
Tanenbaum, Andrew S. and Robbert van Renesse, "Distributed Operating Systems,"
ACM Computing Surveys 17, 4 (December 1985), 419-470.

[Tanenbaum and van Renesse 87]
"Reliability Issues in Distributed Operating Systems," Proceedings of the 6th Symposium
on the Reliability of Distributed Software and Database Systems, March 1987, 3-11.

30
UNCLASSIFIED

UNCLASSIFIED

Clouds

1. Goals

The Clouds project was initiated at the Georgia Institute of Technology in 1979. Since
then, it has received major funding from NSF, NASA, and RADC. Currently, the Clouds
project exists as part of a larger NSF-sponsored project called DARE (for Distributed Appli-
cation Research Environment).

Clouds is a distributed operating system for a cluster of general purpose computers inter-
connected by a medium to high speed local area network. Its goals may be elaborated as fol-
lows:
* Reliability and fault tolerance: In the beginning, the primary design goal of the Clouds

distributed operating system was the support of reliable, fault-tolerant distributed com-
puting. While reliability/fault tolerance remains as a major goal, the emphasis has
shifted, as explained in the next paragraph.

* Object/thread model: The object/thread programming model was originally conceived as
a means to an end, the end being reliable and fault tolerant distributed computing.
However, it has become an end in itself; the support and exploitation of this advanced
programming paradigm is now the overriding theme of the Clouds research. Research
topics include operating system support for objects, replication and consistency manage-
ment using objects in a distributed environment, and programming
language/methodology/tools support for programming distributed applications using
objects.

2. Approach
The Clouds distributed operating system is undergoing a major redesign, from version 1

(v.1) to version 2 (v.2). Clouds v.1 had a monolithic kernel, whereas Clouds v.2 is being
designed according to the minimal kernel philosophy. In Clouds v.2, the object/thread model
remains as the programming paradigm, and the support of reliable, fault-tolerant distributed
computing remains as a major goal. However, the approach to reliability and fault tolerance
is undergoing a major evolution.

Architecture

In keeping with the minimal kernel philosophy, the Clouds v.2 distributed operating sys-
tem consists of the following components:

" Clouds kernel: The Clouds v.2 kernel is referred to as "Ra." The Ra kernel provides the
management of segments and virtual spaces needed for persistent objects, along with the
location-independent demand paging needed for executing object operations.

• Clouds system services: Clouds system services provide support such as user object
management, naming, synchronization, and atomicity. They also provide conventional
operating system functions such as device drivers, buffer management, communication
protocols, and all I/O related services. These services will be implemented above the Ra
kernel by system-provided objects.

31
UNCLASSIFIED

UNCLASSIFIED

Basic Abstractions

Clouds adopts the object/thread model. The object serves as an abstraction of storage,
and the thread as an abstraction of computation. Object invocations serve as the integrating
mechanism. These abstractions are summarized below:

* Object: In Clouds, an object is an instance of an abstract data type. It is a passive
entity, in particular, a persistent virtual address space. It is used to encapsulate all data,
programs, devices, and resources.

* Object Invocation: Objects are accessed via (and only via) object invocations, to opera-
tions defined on the objects.

* Thread: The thread is the active entity in Clouds, the unit of computation and con-
currency that is used to execute the code in objects. Threads traverse objects, indepen-
dently of machine boundaries, via object invocations. Threads are implemented as light-
weight processes. A thread that spans machine boundaries is implemented by several
processes, one per machine.

Interprocess Communication

Clouds provides two modes of interprocess communication, both based on object invo-
cation. In particular, objects can be invoked using either one of two mechanisms: remote
procedure call (RPC) or distributed shared memory (DSM). Using RPC, the thread migrates
to the home site of the object and executes there; using DSM, the invoked object is demand
paged to the site of the invoking thread. The mechanisms have orthogonal advantages and
can be chosen for optimum performance.

Naming and Protection

Clouds utilizes capabilities for object naming. Each Clouds object is named and
accessed by its capability, which is globally unique and location-independent.

At this point in time, protection is not a goal of the Clouds project. Therefore,
although capabilities could be utilized for protection as well as for naming, they currently are
not being utilized for this purpose.

Storage Management

In Clouds, emphasis is placed on the object as an abstraction of storage. The object is
viewed as unifying the concepts of file space (long-lived storage) and memory space (volatile
storage, but essential for computation), by providing a persistent virtual address space. Since
objects provide permanent storage, the need for a traditional file system is eliminated; the file
system is replaced by object memory. Object memory is stored on disk and demand paged.
The demand paging happens with storage on the local machine, if the invocation uses RPC.
The demand paging occurs over the network if the invocation uses DSM.

Resource Management

The Ra kernel manages the low-level scheduling of threads, demand paging, and segment
and memory allocation. All other resource management tasks are done at the higher level
through system objects. Currently, the system objects under implementation will do object
management, task management, naming, and partition management. More will be imple-
mented as the system evolves. One of the points of the Ra approach is to be flexible and
avoid being locked into any particular resource management scheme.

Reliability and Fault Tolerance

Clouds v.1 supports absolute consistency (i.e., traditional atomic transactions), and
allows customized synchronization and recovery for applications that cannot tolerate the per-
formance penalties incurred by absolute consistency semantics. Clouds v.2, on the other
hand, is being designed to offer a range of consistency-preserving mechanisms, from "best

32
UNCLASSIFIED

UNCLASSIFIED

effort" to absolute consistency.
The consistency preserving mechanisms are based on attaching consistency labels to the

operations declared in the objects. The labels allow the operations to update the objects with
(1) transaction-like semantics, for preserving inter-object consistency of data, (2) locally
atomic semantics for preserving the consistency of data locally within one object, or (3) best-
effort semantics like the way processes in conventional systems update memory and files.

Programming Support
The Clouds project provides programming support in the form of a programming

language referred to as Aeolus. Aeolus is viewed as the first generation language for Clouds.
It currently supports the features of Clouds v.1, but is being expanded to support Ra and
Clouds v.2. Furthermore, it does not support features such as inheritance and subclassing,
although such support is currently under consideration.

Aeolus is most like Modula-2 and Ada in its syntactic style and the kinds of features it
supports. A central feature of the language is the ability to declare several kinds of objects,
ranging from single-instance library objects (like standard modules and packages in Modula-2
and Ada), through abstract data types with multiple instances managed by the Aeolus runtime
support (like clusters in Clu), to persistent Clouds objects with instances managed by the
Clouds kernel. This range of alternatives allows a programmer to choose the level of func-
tionality (and associated management overhead) appropriate for each object used in an appli-
cation. Supporting such a choice is a recurrent theme in the design of Clouds.

User Interfaces

In [GIT 86], the Clouds researchers suggest the need for Clouds-UNIX interoperability,
of two distinct flavors. First, Clouds services should be made available to UNIX users and
programs, through a Clouds library on UNIX, in a way that would enable a cluster of Clouds
machines to serve as a back-end distributed system to UNIX workstations. Second, esta-
blished UNIX services (e.g., mail, text processing, etc.) should be made available to Clouds
users, through a "UNIX gateway."

In [Dasgupta 88], the Clouds researchers suggest an X-windows interface to Clouds as
well.

3. Clouds Accomplishments and Status

Clouds v.1, the monolithic kernel version, became operational in 1987. It is imple-
mented on VAX-11/750s, interconnected by a 10-megabit Ethernet.

* Clouds v.2, the minimal kernel version, is being implemented on SUN 3 workstations,
also interconnected by Ethernet. More specifically, the implementation of the Ra kernel
is complete, and the implementations of system services are underway.

* The Clouds v.2 Ra kernel is implemented in C++.
* Ongoing Ph.D. Thesis research is addressing the following topics: (1) the Clouds v.2

approach to reliability and fault tolerance; (2) distributed shared memory techniques,
including protocols for providing coherence for concurrent DSM invocations, perfor-
mance studies of DSM vs. RPC, and defining support for faster local and remote object
invocation under RPC and DSM; and (3) object location techniques, in particular, sup-
port for location independent object invocation in a large network where objects
migrate, utilizing multicasting and statistical techniques based on past data.

* Other research is addressing the following topics: (1) better techniques for providing
low-level system services in a multithreaded operating system; and (2) fault tolerance
using replicated data and computation.

33
UNCLASSIFIED

UNCLASSIFIED

4. References

(Bernabeu Auban]
Bernabeu Auban, Jose M., et al., "The Architecture of Ra: A Kernel for Clouds,"
School of Information and Computer Science, Georgia Institute of Technology.

[Dasgupta 88]
Dasgupta, Partha, Richard J. LeBlanc, and William F. Appelbe, "The Clouds Distri-
buted Operating System: Functional Description, Implementation Details and Related
Work," Proceedings of The &h International Conference on Distributed Computing Sys-
tems, June 1988, 2-9.

[Gr86]0
The School of Information and Computer Science, Georgia Institute of Technology,
"Effective Distributed Computing: A Reliable Object-Based Environment for Computer
Science Research," A Proposal to the National Science Foundation's Co-ordinated
Experimental Research Program, September 15, 1986.

[Pitts and Dasgupta 88]
Pitts, David V. and Partha Dasgupta, "Object Memory and Storage Management in the
Clouds Kernel," Proceedings of The 8th International Conference on Distributed Comput-
ing Systems, June 1988, 10-17.

34
UNCLASSIFIED

UNCLASSIFIED

Cronus

1. Goals

Cronus has been under development at BBN Laboratories since 1981. It is sponsored by
the Rome Air Development Center (RADC),

Cronus is a distributed operating system for interconnecting heterogeneous computer sys-
tems. Typically, the computer systems fall under a common administrative domain, and are
interconnected by one or more high-speed local area networks. The computer systems may
also be interconnected by wide area networks, via an internet (such as the DARPA Internet).
Each set of computer systems is called a "cluster." The initial focus of Cronus has been on
intracluster communication and cooperation; however, more recently, consideration has been
given to intercluster aspects. The goals of Cronus may be elaborated as follows:

* The ultimate goal of Cronus is to integrate heterogeneous computer systems into an
effective general-purpose distributed computing environment for the development and
execution of large-scale applications.

* Heterogeneity is the key concept. The hallmark of Cronus is its support of heterogeneity
- of both hardware and software resources. The motivation for this emphasis is three-
fold: (1) to allow applications and users to take advantage of the unique functionality
offered by various hardware and software resources, (2) to allow existing software to con-
tinue to be used, and (3) to allow- familiar computing environments to continue to be
used.
In particular, Cronus is designed to interoperate with, rather than to replace or totally
encapsulate, constituent (i.e, native) operating systems.

* In addition to heterogeneity, the Cronus project places major emphasis on providing
comprehensive support for large-scale distributed application development.

2. Approach

The Cronus approach is to introduce layers of software - the Cronus distributed operat-
ing system - on top of constituent operating systems (or, in some cases, on bare hardware).
The Cronus distributed operating system is based on the object model; each system resource
is a typed object, and is accessed through operations defined by the type. The object model
provides an extensible architecture, in that application developers can cast application-specific
resources in terms of new object types, which can be defined as subtypes of existing types.

The Cronus distributed operating system supports heterogeneity by serving as a by-
passable layer of abstraction between application programs and constituent operating systems.
Through this approach, application programs gain access to a coherent, uniform (object-
oriented) system interface, regardless of computer system base; however, they also retain con-
ventional access to constituent operating system resources and services.

Architecture

The Cronus distributed operating system consists of the following components:

* Cronus kernel: The Cronus kernel supports the Cronus object model. Namely, it impe-
ments the basic abstractions of object, operation invocation, and (Cronus) process, as
defined below. It must be installed and run on each host participating in the Cronus dis-
tributed system. Typically, it is implemented as an application process of the constituent
operating system.

35
UNCLASSIFIED

UNCLASSIFIED

* Cronus system services: Cronus system services provide the traditional operating system
services, plus additional services specifically designed for the support of distributed appli-
cation development. Each system service is implemented by one or more manager
processes (i.e., servers), which run above the Cronus kernel as Cronus processes.
Current system services include an authentication service, a catalog service, a
configuration service, a file service, and a type definition service.
The distributed computing architecture supported by Cronus includes the following com-

ponents as well:
* Application services: An application service is one or more processes developed by

application programmers to manage the resources that make up applications. An appli-
cation is typically composed of several services responsible for several different object
types.

* Clients: Clients are processes that use services. While any service may act as a client to
another service, most clients are processes that interact directly with users, such as user
commands, utilities, and application-specific graphical user interfaces.

Basic Abstractions
Since Cronus is based on the object model, the basic abstractions are objects and opera-

tion invocations. To implement the object model, the Crouus kernel introduces the process as
a kernel-supported object type. Thus, the basic abstractions of Cronus are the following:

* Object: In Cronus, an object is an instance of an abstract data type, where a type can be
defined as a subtype of a parent type, and hierarchical inheritance is supported. Objects
are passive entities.

* Operation Invocation: Objects are accessed via (and only via) operation invocations.
(This abstraction is inherent in the object abstraction.)

* Process: Processes are the active entities in Cronus. They are used to implement object
managers, as well as application programs that execute on Cronus. An object manager
is the entity that is responsible for manipulating all of the objects of one or more given
types on a given host using the operations defined by the types. The Cronus system
managers are simply Cronus-provided object managers, for Cronus-defined object types.
The Cronus process abstraction corresponds to the process abstraction found in conven-
tional operating systems, and is typically implemented as a constituent operating system
process that executes in user space.

Interprocess Communication

Cronus interprocess communication (IPC) is designed to support operation invocations
from clients to object managers, where the invocations can be synchronous or asynchronous,
and can have one or many targets. It is implemented as a series of layers.

At the lowest layers, collectively referred to as the network layer, are standard data com-
munication protocols, which are typically implemented by the constituent operating systems.
Currently, Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Internet
Protocol (IP), and Ethernet are utilized. However, other protocols could be substituted easily.

Above the network layer is the layer designated as the IPC layer. This layer implements
three communication primitives: Invoke, Send, and Receive. In a typical scenario, Invoke
would be used by a client process to invoke an operation on an object. Using Invoke, the
client references the object by name (not location, thereby ensuring host-independent,
network-transparent access to objects), and this causes a message to be sent to the process
serving as object manager of the target object. The object manager would retrieve the mes-
sage from its message queue via the Receive primitive, perform the requested operation, and
then send a reply to the client via the Send primitive. The operation would actually be per-
formed by a lightweight process (or task, in Cronus terminology) created by the object
manager; thus, operations can be performed concurrently. Finally, the client would receive

36
UNCLASSIFIED

UNCLASSIFIED

the reply via the Receive primitive. The separation of the client's Invoke from the subsequent
Receive allows for asynchrony and concurrency. It should be noted that the Send is simply an
optimization of the Invoke. It allows a message to be sent directly to a process, instead of to
the process manager.

Above the IPC layer is a layer designated as the message encodement layer. This layer is
responsible for encoding and decoding messages, using canonical (system-independent) data
representations. Cronus defines canonical data representations for many common data types
and structures. It also offers extensibility by supporting the creation of new canonical types
from existing ones.

At the highest layer is a protocol designated as the Operation Protocol. This layer
defines a set of standards for interpreting messages between clients and managers, and sup-
ports a synchronous remote-procedure-call-like (RPC-like) programming interface for opera-
tion invocation.

Naming

Cronus has a two-level naming system. At the high level is a hierarchical symbolic name
space. At the low level is the flat name space of Unique Identifiers (ULDs). A UID is a 96-
bit object identifier, which is guaranteed to be unique over all objects over all time within a
cluster; sixteen bits of the UID specify the object's type, and the remaining bits establish
uniqueness. The Cronus catalog, which is implemented as a distributed entity by the catalog
managers, provides the mapping between symbolic names and ULDs.

Protection

In Cronus, protection is achieved through access control lists. The access control list
for an object specifies which users or groups of users have which access rights to the object.
Privileges associated with access control lists can be defined separately for each object type.
These privileges are specified by the application developer, allowing access controls to be cus-
tomized for each type. Authentication (of the identity of a user) is implemented by an
authentication manager, which subjects a user to a password-based authentication procedure
upon login.

Resource Management

In Cronus, global resource management is approached according to the principle of
policy/mechanism separation. That is, Cronus provides mechanisms, and the mechanisms
enable object managers to cooperatively enforce object-type-specific policies. The mechan-
isms include: (1) the ability of object managers to query the status of their peer object
managers, one of which must be installed at each host where objects of the given type exist,
(2) the ability of object managers to redirect requests to peer object managers, and (3) the
ability of applications to indicate preferred hosts. These mechanisms support high-level
resource management; low-level resource management is performed by the constituent operat-
ing systems. These mechanisms have been used in several services to implement specific
management policies, such as dynamic load balancing during Cronus file creation.

Reliability and Fault Tolerance

Cronus supports object migration and object replication. With respect to replication,
the Cronus project has recently adopted the philosophy of application-specific replication
management. Namely, Cronus has progressed from an inflexible weakly consistent replication
strategy to a flexible "version voting" replication strategy. In the weakly consistent replication
strategy, updates were propagated on a best-efforts basis, and object managers would periodi-
cally (e.g., upon their host coming back up after being down) utilize Cronus-provided mechan-
isms to bring their copies up to date. In the version voting replication strategy, version vec-
tors (one for each replicated object, giving host location and version number pairs) are used
to keep track of copies and consistency, and read and write quorums can be set to provide the

37
UNCLASSIFIED

UNCLASSIFIED

application-desired balance between availability and consistency.
Cronus delivers replication support to application developers through its object manager

programming support tools. When specifying a new object type, the application developer
defines a replication policy by selecting a Cronus-supported replication strategy and then speci-
fying values for the parameters of the selected strategy. Currently, only one replication stra-
tegy, version voting, is available, but it is envisioned that more will be developed, as
demanded by applications. Based on the object type definition, Cronus automatically gen-
erates the code that implements the specified replication policy.

Cronus can also dynamically locate objects on invocation, ensuring that clients will
always be able to access a copy of an object (providing one is available).

Atomic transaction support is being investigated in the context of distributed database
management systems, as a part of the Cronus Distributed Database Management System Pro-
ject.

Programming Support
The fundamental assumption underlying Cronus programming support is that large-scale

applications will be developed in accordance with the object model, just as the Cronus distri-
buted operating system itself is. Under this assumption, the key to application development is
the definition of new object types to represent application-specific resources and the develop-
ment of new object managers to embody the newly defined object types. Therefore, Cronus
programming support focuses on automating the process of developing new object managers.
In particular, Cronus seeks to relieve the application developer's coding burden through the
use of a non-procedural program development specification language. Cronus takes non-
procedural specifications of a new object type, and automatically generates code for skeletal
object managers (including multitasking for concurrent operation processing, message parsing
and validation, access control checks, operation dispatching, data conversion between canoni-
cal and system-specific data representations, and stable storage management), as well as for
RPC client stubs. The code generation process relies upon the Cronus libraries; the skeletal
object managers incorporate procedure calls to Cronus library routines for many functions
(e.g., data conversion between the canonical and system-specific representations of common
data types). The application developer completes the object manager by providing routines
that implement the operations defined by the new object type.

Cronus programming support also includes (1) extensive subroutine libraries, including
interprocess communication routines, data conversion routines, and RPC interfaces to Cronus
objects; (2) a set of user commands; (3) a set of operator commands; (4) operations inherited
by all objects, for access control, monitoring and control, debugging, and replication and
migration support; (5) a program to be used in conjunction with a local debugger, to assist in
object manager debugging; (6) source management control software; and (7) a bug tracking
facility.

3. Accomplishments and Status
* The original Cronus cluster has been operational, at BBN, since 1984. Recently, addi-

tional clusters have been established at RADC, MrIRE Bedford, Carnegie-Mellon
University, Honeywell Minneapolis, BBN San Diego, and NOSC. Intercluster communi-
cation is supported via the DARPA Internet.

" Cronus has achieved high portability. It is written in the C programming language.
Machine-dependent code is confined to a few modules. Cronus has been ported to a
new machine in as little as two man-weeks.

* Programming support was initially focused on C, but it is now being extended to Com-
mon Lisp and Ada. Application components have also been written in FORTRAN.

* Cronus implementations exist for the following systems: DEC VAX with VMS, Ultrix,
and BSD Unix; SUN 2 and Sun 3 with Sun UNIX; MASSCOMP with RT UNIX;

38
UNCLASSIFIED

UNCLASSIFIED

Symbolics Lisp Machine with Genera; and IBM PC/AT with SCO Xenix. Cronus imple-
mentations are planned for multiprocessor architectures.

* Distributed applications that have been devlped on Cronus include a navy target track-
ing application, a distributed simulation of SDI boost phase, and numerous office auto-
mation applications.

* Multilevel security was investigated in a research project, the Secure Distributed Operat-
ing System (SDOS) Project. Among the conclusions of the project was the following
[Casey 87, p.19]: "Thus, the host operating system(s) on top of which SDOS [i.e., secure
Cronus] is implemented must have a minimum of a B2 rating, and ratings of B3 or Al
are more desirable." GEMSOS, a product of Gemini Computers, Inc., of Carmel, Cali-
fornia, was selected as the best candidate for serving as a multilevel secure constituent
operating system.

0 Distributed databases are being addressed in an on-going research project, the Cronus
Distributed DBMS Project.

* The Cronus developers and sponsors have suggested that the appropriate role for Cronus
to play in the SDS would be that of a distributed operating system for development and
maintenance activities, such as those of the National Test Bed.

4. References
[BBN 88a]

BBN Laboratories Incorporated, Cronus Operator's Reference Manual, Release 1.2, Janu-
ary 15, 1988.

[BBN 88b]
BBN Laboratories Incorporated, Cronus Programmer's Reference Manual, Release 1.2,
January 15, 1988.

[BBN 88c]
BBN Laboratories Incorporated, Cronus Tutorial Documents, Release 1.2, January
15,1988.

[BBN 88d]
BBN Laboratories Incorporated, Cronus User's Reference Manual, Release 1.2, January
15, 1988.

[BBN 88e
BBN Laboratories Incorporated, "Release Notice: Cronus Release 1.2," January
15,1988.

[Berets 85]
Berets, James C., Ronald A. Mucci, and Richard E. Schantz, "Cronus: A Testbed for
Developing Distributed Systems," IEEE Military Communications Conference, October
1985, 409-417.

[Berets and Sands 87]
Berets, James C. and Richard M. Sands, "Introduction to Cronus: A Distributed
Operating System," Draft Paper, BBN Laboratories Incorporated, January 1987.

[Casey 87]
Casey, Thomas A., Jr., Doug Weber, and Stephen T. Vinter, "The Secure Distributed
Operating System Project: Final Report," Report No. 6678, BBN Laboratories Incor-
porated, October 1987.

[Dean 87]
Dean, Michael A., Richard M. Sands, and Richard E. Schantz, "Canonical Data
Representation in the Cronus Distributed Operating System," Proceedings of the IEEE
Infocom '87, March 1987, 814-819.

39
UNCLASSIFIED

UNCLASSIFIED

[Dean 88]
Dean, Mike, "Cronus, A Distributed Operating System: Ada Integration Investigation,"
Cronus Project Technical Report No. 7, Report No. 6797, BBN Laboratories Incor-
porated, April 1988.

[Gurwitz 86]
Gurwitz, Robert, Michael A. Dean, and Richard E. Schantz, "Programming Support in
the Cronus Distributed Operating System," Proceedings of the 6th International Confer-
ence on Distributed Computing Systems, May 1986, 486-493.

[Schantz 85]
Schantz, R., et al., "CRONUS, A Distributed Operating System: Phase 1 Final
Report," Report No. 5885, BBN Laboratories Incorporated, January 1985.

[Schantz 86a]
Schantz, R., et al., "CRONUS, A Distributed Operating System: Cronus DOS Imple-
mentation, Final Report," Report No. 6183, BBN Laboratories Incorporated, March
1986.

[Schantz 86b]
Schantz, Richard E., Robert H. Thomas, and Girome Bono, "The Architecture of the
Cronus Distributed Operating System," Proceedings of the 6th International Conference
on Distributed Computing Systems, May 1986, 250-259.

[Vinter 87]
Vimter, Stephen T., et al., "The Cronus Distributed DBMS Project: Functional Descrip-
tion," Report No. 6660, BBN Laboratories Incorporated, October 1987.

40
UNCLASSIFIED

UNCILASSIFIED

Heterogeneous Computer Systems (HCS) Project

1. Goals
0 The HCS Project was initiated at the University of Washington in 1985. It has received

major support from the National Science Foundation.
To avoid misleading the reader, let us begin this discussion by acknowledging that the

Heterogeneous Computer Systems (HCS) Project is not building a distributed operating sys-
tem. Instead, it is investigating an approach to the integration of heterogeneous computer sys-
tems that can, to some extent, be viewed as a competitor to the distributed operating system

0 approach (especially as exemplified by Cronus). Stated succinctly, the goal of the HCS pro-
ject is to facilitate the loose integration of heterogeneous ccrnputer systems. This goal may be
elaborated by considering its three facets:
* Heterogeneous computer systems: As its name implies, the project is directed toward the

aspect of heterogeneity. Heterogeneity - of hardware, as well as software - is viewed as
being both inevitable and desirable, especially in environments, such as research labs,

0 where new systems are acquired precisely because of their unique functionality and capa-
bilities.

* Loose integration: The HCS project aims for (in their words) "loose integration," which
is meant to offer more distributed computing support than network services such as
remote login and file transfer, but less than true distributed operating systems. Resource

0 sharing is supported, but not always made network-transparent.
* Facilitate: The last facet of the goal is that the HCS project is seeking to significantly

ease the process of incorporating new systems into an existing HCS environment.

2. Approach

The HCS approach represents a distinct departure from the prevailing wisdom that the
way to deal with heterogeneity is to introduce standardization. It is based on emulation and
accommodation. Instead of defining new standards that must be implemented by all systems,
the HCS project strives to build software that accommodates multiple standards and can emu-
late a wide range of existing facilities. Below, we present an overview of the HCS architec-
ture, and then illustrate the HCS techniques of emulation and accommodation by considering
how the techniques are applied to the implementation of remote procedure call (RPC).

Architecture
The HCS architecture is organized as a lower layer of underlying facilities and an upper

layer of fundamental network services. The underlying facilities are RPC and naming. The
network services are remote computation, mail, and filing. The highlights of the underlying
facilities and network services are concisely captured in the following summaries, which are
extracted from [Notkin 88, p. 259]:
• The HCS RPC (HRPC) facility utilizes a modular design that, by appropriate selection

of implementations at run time, can be made to emulate a wide variety of existing RPC
facilities. Thus, the central core of HCS - those systems on which the HRPC facility
has been implemented - can easily be adapted to communicate with a new system type.

* The HCS name service (HNS) creates a global name space that accesses names and data
from existing name services. By using data in existing name services, rather than reregis-
tering data into an entirely new name service, existing clients can work with their name

41
UNCLASSIFIED

UNCLASSIFIED

services without change, and new clients of HNS need not make changes when a new
underlying name service is introduced.

" The HCS remote computation service provides a generic mechanism by which services
can be executed remotely. Each remote service includes a description of its required
inputs and outputs, the steps needed to process the information, and the steps required
to create an environment in which to execute the service. These descriptions are pro-
cessed by interpreters that are responsible for passing information between nodes and
for performing any necessary translation of file names, options, etc.

* The HCS mail service (HMS) attempts to improve the quality of most existing mail ser-
vices while integrating services that are based on diverse models. The mail service is
structured like the Xerox Grapevine mail service [Birrell 82], but also integrates mail sys-
tems such as UNIX's sendnwil [Alman 83]. Abstract mail retrieval and submission
interfaces are defined and implemented in multiple ways, facilitating the integration of
new mail systems.

" The HCS filing service is represented by two distinct efforts: The first approach defines a
centralized filing service that stores files in multiple representations (based on those used
in the HRPC facility). The second approach is based on that of the naming facility,
where existing local file systems are used to store data, and neither the files themselves
nor information about them (such as the file type) need be reregistered.

Remote Procedure Call
The HCS project factors RPC into five components, with clean interfaces among the

components. The components are: (1) compile-time support, (2) bind-time protocol (e.g.,
SUN RPC, Xerox Courier), (3) (call-time) transport protocol (e.g., UDP, TCP, Xerox XNS),
(4) (call-time) control protocol (e.g., SUN RPC, Xerox Courier), and (5) (call-time) data
representation (e.g., SUN XDR, Xerox Courier).

An HRPC client or server and its associated stub, which are generated at compile time,
are designed to accommodate multiple bind-time and call-time protocols. The choice of
which bind-time and call-time protocols to actually use in a particular scenario is made at bind
time. Thus, an HRPC server can communicate with unmodified native RPC clients through
emulation, by choosing the bind-time and call-time protocols utilized by the native RPC of the
clients; similarly, an IIRPC client can communicate with native RPC servers through emula-
tion.

3. Accomplishments and Status
* As stated at the beginning of this summary, the HCS project is not building a system.

Rather, it is developing and demonstrating, as well as utilizing, approaches to the
integration of heterogeneous computer systems. To a large extent, it is seeking to intro-
duce order into what has been an inconvenient, expensive, time-consuming, and ad hoc
process.

" According to the authors of [Notkin 88], the HCS approaches are proving to be effective
in meeting the demands of the University of Washington's Department of Computer Sci-
ence, which has over fifteen significantly different hardware/software systems.

4. References
[Alman 83]

Allman, E., "Sendmail - An Internetwork Mail Router," UNIX Programmer's Manual
4.2BSD, 2C, August 1983.

[Birrell 82]
Birrell, A.D., et al., "Grapevine: An Exercise in Distributed Computing," Communica-
ions of the ACM 25, 4 (April 1982), 260-274.

42
UNCLASSIFIED

UNCLASSIFIED

[Black 85]
Black, Andrew P., et al., "An Approach to Accommodating Heterogeneity," Tech.
Rep. 85-10-04, Department of Computer Science, University of Washington, Seattle,
October 1985.

[Notkin 88]
Notkin, David, et al., "Interconnecting Heterogeneous Computer Systems," Communi-

cations of the ACM 31, 3 (March 1988), 258-273.

43
UNCLASSIFIED

UNCLASSIFIED

Mach

1. Goals
The Mach project was initiated at Carnegie Mellon University (CMU) in 1984 as the

operating system effort of DARPA's Strategic Computing Initiative (SCI). Mach was
envisioned as an operating system that would (1) provide a uniform (UNIX-compatible)
software base across the architectures existing at the time, as well as the new advanced archi-
tectures being developed as part of the SCI, and (2) support the interconnection of these
architectures into distributed computing environments. Its goals may be elaborated as follows:
0 Mach was designed to extend UNIX functionality to multiprocessor architectures, rang-

ing from (1) uniform access, shared memory multiprocessors (ULMA, for Uniform
Memory Architecture) (e.g., Encore Multimax, Sequent Balance), to (2) differential
access, shared memory multiprocessors (NUMA, for non-UMA) (e.g., BBN Butterfly,
IBM RP3), to (3) multicomputer architectures (NORMA, for No Remote Memory
Access Architecture) (e.g., hypercube).

0 Mach was designed to extend UNIX functionality to large memory architectures.
* Mach was designed to extend UNIX functionality to distributed computing environ-

ments, in which diverse architectures (i.e., uniprocessors, multiprocessors) intercon-
nected by high speed networks support distributed applications.

0 To take advantage of the vast supply of UNIX-based software, Mach was designed to
0 offer (and continues to offer) UNIX compatibility (specifically, binary compatibility with

4.3 BSD).

2. Approach
Although Mach offers UNIX compatibility, it is not intended to be bound to UNIX.

The current, evolved vision is for the Mach distributed operating system to be based on a
minimal kernel upon which multiple operating system environments can be built. At this
point, the kernelization is not complete, and some UNIX functionality is still embedded in
Mach kernel code. When the kernelization is complete, it will be possible to emulate operat-
ing system environments other than UNIX 4.3 BSD on top of the Mach kernel.

Architecture
The goal is for the Mach distributed operating system to evolve as two layers:

* A small, extensible kernel layer, namely, the Mach kernel.
* An operating system environment layer built on top of the kernel layer. The operating

system environment layer is to be realized by user-state tasks. The user-state tasks that
run on top of the Mach kernel could be designed to emulate UNIX, as well as other
established and/or interesting operating system environments.

Basic Abstractions
The Mach kernel is based upon five inter-related abstractions:

* Task: unit of resource allocation - includes a virtual address space and a set of port
rights (capabilities).

• Thread: unit of computation - a lightweight process - maintains processor state (e.g.,
hardware registers) necessary for independent execution. It should be noted that a

45
UNCLASSIFIED

UNCLASSIFIED

UNIX process corresponds to a task with a single thread of control.
" Port: a simplex communication channel, implemented as a kernel-protected message

queue.
" Message: typed collection of data objects.
" Memory object: secondary storage object that is mapped into a task's virtual memory.

Interprocess Communication

Mach interprocess communication (IPC) is based on the port and message abstractions.
Ports are the reference objects in Mach, and, as such, are viewed as playing the same role as
capabilities in an object-oriented system. Objects such as tasks, threads, and memory objects
are represented as ports, and operations on these objects are performed by sending messages
to the ports that represent them. Only tasks with send rights to a port can send messages to it,
and only the (single) task with receive rights to a port can receive messages from it.

Messages can be sent and received synchronously (as in Remote Procedure Calls (RPCs))
or asynchronously. They can contain capabilities. In fact, the only way for a task to acquire
a capability is to receive it in a message.

In Mach, the kernel itself implements local IPC only. However, a user-state task, called
the network message server, transparently extends IPC into a network environment. This task
maintains mappings of local "proxy" ports to global "network" ports. It forwards messages
using network protocols of its choice.

Naming and Protection
As noted in the IPC section, the Mach kernel uses capabilities, in the form of ports, for

naming and protection on a single system.
The network message servers extend the protection to the network environment, by

implementing mechanisms to protect both the messages sent over the network to network
ports and the network port capabilities.

Security - Trusted Mach

The Trusted Mach project is a DARPA-sponsored research effort of Trusted Informa-
tion Systems, Inc. The goal is to build a version of Mach - Trusted Mach - that meets the B3
level of protection as specified in the National Computer Security Center (NCSC) Trusted
Computer System Evaluation Criteria (TCSEC), the so-called "Orange Book" (TCSEC 85].

The project adopts the idea of "incremental reference monitors." At the lowest level is
the Trusted Mach Kernel. At the intermediate level is the reference monitor composed of the
kernel and a trusted name server. At the highest level is the reference monitor composed of
the kernel, a trusted name server, and other trusted servers. Thus far, work has concentrated
on the kernel level of a single machine. Mach's ports are serving as the protected objects in
Trusted Mach; its tasks (through their threads, which are the active entities) are serving as the
subjects. Extensions are being developed to meet the TCSEC requirements for both discre-
tionary and mandatory protection.

At this time, the Trusted Mach project is utilizing a Spring 1988 version of Mach. Since
this version is not kernelized, the effort cannot yield a trusted operating system. The unker-
nelized version of Mach is serving as a platform for research into multilevel security, not as a
base upon which to build a trusted system. The development of a trusted version is tied to
the completion of Mach kernelization.

Security - Strongbox

Strongbox is built on top of Camelot and Mach. It is based upon the new concept of
"self-securing" programs, i.e., programs that can run securely on distributed operating systems
(such as Mach) that provide only minimal security facilities.

46
UNCLASSIFIED

UNCLASSIFIED

Two key algorithms implemented by Strongbox are zero knowledge authentication and
fingerprinting.

It should be noted that Strongbox is (currently) concerned with the security issues that
arise from protecting the privacy of data and ensuring the integrity of data from alteration;
security issues of denial of service, covert channel analysis, and traffic analysis of message pat-
terns have not been considered, although they could be.

Storage Management
Mach places major emphasis on virtual memory management, especially in the areas of

portability, advanced functionality, and memory/communication integration. In regard to por-
tability, Mach virtual memory management assumes minimal hardware support, and is care-
fully constructed to isolate machine-dependent code into a single module. Notably, it
achieves improved performance, even while it minimizes hardware dependencies.

In regard to advanced functionality, Mach suppotts large, sparse virtual address spaces;
memory mapped files; shared libraries; copy-on-write virtual copy operations; copy-on-write
and read/write memory sharing between tasks, through inheritance (which is specified on a
per-page basis as shared, copy, or none) of memory regions from a parent task to a child task;
and user-provided memory objects and pagers.

In regard to memory/communication integration, the Mach project emphasizes the com-
plementary roles that memory and communication can play. Namely, Mach uses memory
mapping techniques (i.e., copy-on-write sharing) to accomplish communication; an entire
address space may be sent in a single message with no actual data copy operations performed.
In the other direction, Mach implements virtual memory through its IPC facilities; in particu-
lar, it maps process addresses onto memory objects, which are represented by ports and
accessed via messages. This is what enables user-provided memory objects.

Resource Management - Real-Time Mach
Real-Time Mach provides an integrated time-driven scheduler, with support for both

periodic and aperiodic threads. Rate monotonic scheduling policies are used for periodic
threads. Value function scheduling policies (derived from Locke's thesis, as was Alpha's) are
used for aperiodic threads. Real-Time Mach uses piecewise linear approximations to continu-
ous value functions for efficiency. For a collection of periodic and aperiodic threads, the

* periodic threads are scheduled first, and then the aperiodic on a best effort basis.

Real-Time Mach implements policy/mechanism separation. Currently, seven scheduling
policies are implemented. Different applications or experiments can utilize different policies.

Tools and a test bed have been developed to support Real-Time Mach. They allow
workloads to be specified, and schedules to be constructed, examined, simulated, and moni-
tored.

Currently, Real-Time Mach has been applied only in a uniprocessor environment and
only to CPU scheduling. Plans call for it to be applied in a multiprocessor environment and
to other resource types (e.g., memory, 110). Also, impacts of interactions (requiring syn-
chronization) among threads remain to be considered.

Reliability and Fault Tolerance - Camelot and Avalon

Camelot is a distributed transaction processing facility built on top of Mach. As such, it
addresses the requirements of reliability and fault-tolerance. Its basic abstraction is the tran-
saction. A transaction is a collection of operations that exhibits three properties: atomicity,
permanence, and serializability.

Avalon is built on top of Camelot and Mach. It is implemented as a preprocessor for
C++. It provides language support for reliable distributed systems based on atomic transac-
tions.

47
UNCLASSIFIED

UNCLASSIFIED

Progranunlng Support

An interface specificatien language, MIG (Mach Interface Generator), has been
developed for Mach. MIG generates C or Common Lisp RPC stubs.

3. Accomplishments and Status

" Mach has achieved high portability. It typically takes less than three man-months to port
Mach to a new hardware base.

" Mach's performance has been measured and compared to that of other operating sys-
tems. Initial indications are that its performance is generally competitive with other
UNIX implementations such as SunOS, and markedly better in some cases (fork opera-
tion, large compilation). Its multiprocessor performance has also been measured and
shown to be competitive with, for example, other Sequent and Encore operating sys-
tems. A key to Mach's performance gains is its implementation of virtual memory and
its integration of virtual memory and communication.

* Mach Release 3, the kernelized version, is scheduled to be implemented by the end the'
summer and released by the end of the year.

* Mach has been widely distributed (to 200 institutions, 2/3 of which are corporations, 1/3
universities).

" Mach is serving as a platform for other distributed system research projects, such as
Real-Time Mach, Camelot, Avalon, Strongbox, and Trusted Mach.

4. References

[Accetta 86]
Accetta, Mike, et al., "Mach: A New Kernel Foundation for UNIX Development,"
Computer Science Department, Carnegie Mellon University, Draft Paper, 1 May 1986.

[Baron 88]
Baron, Robert V., MACH Kernel Interface Manual, Computer Science Department, Car-
negie Mellon University, Draft Paper, 15 February 1988.

[Cooper and Draves 87]
"C Threads," Computer Science Department, Carnegie Mellon University, Draft Paper,
2 March 1987.

[Draves 88]
Draves, Richard R., Michael B. Jones, and Mary R. Thompson, "MIG - The MACH
Interface Generator," Computer Science Department, Carnegie Mellon University, Draft
Paper, 26 February 1988.

[Jensen 85]
Jensen, E. Douglas, C. Douglass Locke, and Hideyuki Tokuda, "A Time-Driven
Scheduling Model for Real-Time Operating Systems," Proceedings of IEEE Real-Time
Systems Symposium, December 1985, 112-122.

[Jones and Rashid 86]
"Mach and Matchmaker: Kernel and Language Support for Object-Oriented Distributed
Systems," Proceedings of the 1st Annual ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA), September 1986. 0

Lehoczky 86]
Lehoczky, John P., Hide Tokuda, Lui Sha, and Dennis Cornhill, "ART: An Advanced
Real-Time Technology Project," Computer Science Department, Carnegie Mellon
University, Draft Paper, November 28.1986.

[Locke 86] 0
Locke, C. Douglass, Best-Effort Decision Making for Real-Time Scheduling, Ph.D.
Dissertation, Carnegie Mellon University, 1986.

48
UNCLASSIFIED

UNCLASSIFIED

[Rashid 87a]
Rashid, Richard F., "From RIG to Accent to Mach: The Evolution of a Network
Operating System," Computer Science Department, Carnegie Mellon University, 28
August 1987.

[Rashid 87b]
Rashid, Richard, et al., "Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures," Proceedings of the ACM Conference on
Architectural Support for Programming Languages and Operating Systems, October 1987.

[Sansom 86]
Sansom, Robert D., Daniel P. Julin, and Richard F. Rashid, "Extending a Capability
Based System into a Network Environment," Technical Report CMU-CS-86-115, Com-
puter Science Department, Carnegie Mellon University, 24 April 1986.

[Spector and Swedlow 881
Spector, Alfred Z. and Kathryn R. Swedlow, editors, Guide to the Camelot Distributed
Transaction Facility: Release 1, Computer Science Department, Mach/Camelot, Carnegie
Mellon University, Draft of February 4, 1988.

[TCSEC 85]
"Department of Defense Trusted Computer System Evaluation Criteria," National Com-
puter Security Center, DoD 5200.28-STD, December 1985.

[Tevanian 87]
Tevanian, Avadis, Jr., Architecture-Independent Virtual Memory Management for Parallel
and Distributed Environments: The Mach Approach, Ph.D. Thesis, Technical Report
CMU-CS-88-106, Comruter Science Department, Carnegie Mellon University, December
1987.

[IS 88]
Trusted Information Systems, Inc., "Trusted Mach Presentation," Ellicott City, Mary-
land, 7 December 1988.

[Tokuda 87]
Tokuda, Hideyuki, James W. Wendorf, and Huay-Yong Wang, "Implementation of a
Time-Driven Scheduler for Real-Time Operating Systems," IEEE 8th Real-Time Systems
Symposium, December 1987.

[Tokuda 881
Tokuda, Hideyuki, Makoto Kotera, and Clifford W. Mercer, "A Real-Tune Monitor for
a Distributed Real-Time Operating System," ACM SIGOPS/SIGPLAN Workshop on
Distributed/Parallel Debugging.

[Tokuda and Kotera 88]
Tokuda, Hideyuki, and Makoto Kotera, "Scheduler 1-2-3: An Interactive Schedulability
Analyzer for Real-Time Systems," Computer Science Department, Carnegie Mellon
University, February 15, 1988.

[Yee 88]
Yee, Bennet S., J.D. Tygar, Alfred Z. Spector, "Strongbox: A Self-Securing Protection
System for Distributed Programs," Technical Report CMU-CS-87-184, Computer Science
Department, Carnegie Mellon University, 4 January 1988.

[Young 87]
Young, Michael, et al., "The Duality of Memory and Communication in the Implemen-
tation of a Multiprocessor Operating System," Proceedings of the 11th Symposium on
Operating Systems Principles, November 1987.

* 49
UNCLASSIFIED

UNCLASSIFIED

V

1. Goals
The V distributed system project is a research project of David Cheriton at Stanford

University. Its primary sponsor is DARPA, although several other organizations also provide
some support.

V is a distributed operating system designed for a cluster of workstations interconnected
by a high-performance network. It has been running at Stanford University since 1982. It
currently runs on SUN and MicroVAX workstations, which are interconnected by a 10-
megabit Ethernet. Its goals can be elaborated as follows:

" The V project strives for minimization of the kernel.

" The V project strives for high performance, in particular, high-performance interprocess
communication.

* Originally, the target application domain for V was timesharing. It was envisioned that
* V would transform a cluster of workstations into a distributed system that would offer

users the same resource and information sharing capabilities traditionally provided by a
centralized timesharing system. This goal has been achieved. However, V's target appli-
cation domain has been expanded to encompass both batch and real-time control appli-
cations, and therefore is essentially unrestricted.

2. Approach

The V distributed operating system consists of the following components:

* V kernel: The design of the V kernel is based on two key concepts. The first is that a
kernel should be "minimal." Namely, it should implement an interconnection mechan-
ism between applications and system services, but not the system services themselves.
Thus, interprocess communication (IPC) lies at the core of the V kernel. The second
key concept is that the kernel must satisfy the following "integrity constraint": the kernel
cannot depend upon the correctness of anything outside of itself for its own correctness.
If the kernel fails, then it must be either the kernel's fault or the hardware's fault. This
integrity constraint limits the minimization (of the kernel) that can be achieved.
Currently, the V kernel includes the following servers in addition to the IPC facility: a
communication server (which implements the management component of IPC), a time
server, a process server, a memory management server, and a device server. However,
the design is periodically re-examined to determine whether further reduction of the ker-
nel is possible.

" V system servers: These servers provide the traditional operating system services. They
are implemented above the kernel, at the user process level, as multiprocess programs
(based on lightweight processes). They are accessed through the V IPC mechanism.
Current servers include a file server, a printer server, a display server, a pipe server, an
Internet server, and a team server (which manages the execution of programs). Servers
under development include a log server for optical disk storage and a time synchroniza-
tion server.

51
UNCLASSIFIED

UNCLASSIFIED

Basic Abstractions

In the V literature, the V kernel is described as a "software backplane." Just as a
hardware backplane provides slots, power, and communication, the V kernel provides address
spaces, lightweight processes, and interprocess communication (in the form of message tran-
sactions). Thus, the basic abstractions of the V kernel are the following:

* Address space: The V kernel separates the conventional process abstraction into two
components. The first component is the address space, which holds programs (and
open files).

* Lightweight process: The second component of the process abstraction is the lightweight
process, which is the locus of control within an executing program. Multiple lightweight
processes may exist within an address space, and are referred to as a "team" of
processes.

* Message transaction: Processes communicate via message transactions. In the basic
scenario, a client sends a request message to a server, and then blocks (awaiting a
response message). The server receives the request message, performs the requested ser-
vice, and then replies to the client with a response message.

Problem-Oriented Shared Memory
The design of the V distributed operating system, and especially the V IPC facility, has

been motivated by, and can also be justified by, the following line of reasoning:
* In order to transform a collection of autonomous computer systems into a distributed

system, a distributed operating system must maintain "shared state" across the systems.
* The most appropriate abstraction for handling shared state is the shared memory para-

digm, in which fetch and store operations apply and fetch operations predominate.

* To reduce network traffic and improve performance in the shared memory paradigm, a
cache can be implemented at each node. But then the problem becomes maintaining
the consistency of the data.

* It is recognized that many distributed system functions do not require absolute con-
sistency. Therefore, "problem-,riented shared memory" is proposed as the paradigm
upon which many distributed applications should be built. In problem-oriented shared
memory, consistency requirements are relaxed, based on application-specific knowledge.

* The support of problem-oriented shared memory should be the driving force behind the
design of a distributed operating system's IPC facility.

Interprocess Communication

V IPC is message-based. It has two distinguishing features. First, it is optimized for
request-response behavior. Typically, a server runs as a dedicated process or team of
processes. A client requests a service by sending a message to the server, and then waiting for
the response. The request-response transaction (which is sometimes referred to as Remote
Procedure Call (RPC) in the V literature) is considered fundamental in V. It directly imple-
ments the predominant fetch operation (typified by file read); namely, a client sends a request
for data and receives the data in the server's corresponding response.

Second, V IPC supports multicast, both as a multi-destination delivery mechanism and
as a binding (or logical addressing) mechanism. Multicast is considered fundamental to the
implementation of problem-oriented shared memory, and has proved invaluable in the imple-
mentation of the V distributed operating system itself.

A transport level protocol, known as the Versatile Message Transaction Pi ctocol
(VMTP), has been developed to support V IPC. In addition to request-response and multirast 0
transactions, VMTP also supports datagrams, forwarding, and streaming. In regard to stream-
ing, it should be noted that VMTP, unlike other transport protocols, strives first for low delay,
and then attempts to build high throughput capabilities (e.g., streaming) on top of the low

52
UNCLASSIFIED

UNCLASSIFIED

delay foundation.

Storage Management
In V, an address space consists of ranges of addresses, called regions. The memory

management system 1) binds regions to portions of open files (UIO objects), 2) manages phy-
sical memory as a cache for data from the open files, and 3) maintains the consistency of the
cached data. The transfer of pages into the cache, as well as the mapping, is done on
demand.

Uniform 1/0 (UIO) Interface
The V project has developed a uniform 1/0 interface called the UIO interface as its

system-level 1/0 interface (as opposed to its application-level 1/0 interface, which is imple-
mented by the run-time libraries). The UIO interface is based on an abstraction known as the
UIO object, which corresponds to an open file in conventional systems. The UIO interface
provides some support for record 110, locking, atomic transactions, and replication. It
further supports the notion of optional and exceptional (escape-mode) functionality.

Naming and Protection

V has a three-level naming system. At the highest level are character-string names,
which are used for permanent objects such as files. At the next level are object identifiers,
which are used for transient objects such as open files. At the lowest level are entity
identifiers, which identify transport-level endpoints (such as processes or groups of processes).

Regarding protection, each process is encapsulated in an address space, and can com-
municate with other processes only via IPC.

Resource Management
In regard to processor scheduling, the kernel provides simple priority-based scheduling.

That is, the kernel allocates the processor to the highest priority process. Above the kernel,
the team server implements a higher level of scheduling. The team server can, for example,
manipulate priorities to effect time-slicing.

Real-Time Support
V provides the following mechanisms, which offer some degree of support for real-time

applications: datagram message transactions, prioritized message transmission and delivery,
conditional message delivery (i.e., delivery only if the receiver is awaiting a message when the
message arrives), priority-based scheduling, accurate time services, and memory-resident pro-
grams.

Reliability and Fault Tolerance
As previously mentioned, the UIO interface provides some support for replication and

atomic transactions.

Programming Support Environment
The V distributed operating system offers programming support in the form of various

run-time libraries. The libraries implement conventional programming interfaces such as Pas-
cal 1/0 and C stdio. V also offers a set of system commands.

3. Accomplishments and Status

0 V is being extended to run on shared memory multiprocessor machines. Targets include
the DEC Firefly multiprocessor workstation and VMP, a shared memory multiprocessor
machine designed and built at Stanford.

53
UNCLASSIFIED

UNCLASSIFIED

Through its successful operation over a period of several years, V has proved the con-
cept of building a distributed system on top of a minimal kernel.

* V has achieved high-performance communication, and in turn high-performance distri-
buted applications. Through its performance and it., emphasis on protocols, V has made
an impact in the data communication field, as well as in the distributed operating sys-
tems field. Efforts are underway to promulgate some of its protocols, most notably
VMTP, through the DoD data communication protocol standards process.

* V is serving as a base for continued research in distributed systems, as evidenced by the
numerous publications listed below.

4. References

[Cheriton 84]
Cheriton, David R., "The V Kernel: A Software Base for Distributed Systems," IEEE
Software, (April 1984), 19-42.

[Cheriton 86a]
Cheriton, David R., "Problem-oriented Shared Memory: A Decentralized Approach to
Distributed System Design," Proceedings of The 6th International Conference on Distri-
buted Computing Systems, May 1986, 190-197.

[Cheriton 86b]
Cheriton, David R., "VMTP: A Transport Protocol for the Next Generation of Com-
munication Systems," Proceedings of SIGCOMM 86, August 1986, 406-415.

[Cheriton 97a]
Cheriton, David R., "UIO: A Uniform 1/0 System Interface," ACM Transactions on
Computer Systems 5, 1 (February 1987), 12-46.

[Cheriton 87b]
Cheriton, David R., "Effective Use of Large RAM Diskless Workstations with the V
Virtual Memory System," Computer Science Department, Stanford University, February
16, 1987.

[Cheriton 88a]
Cheriton, David R., "VMTP: Versatile Message Transaction Protocol," RFC 1045, SRI
Network Information Center, February 1988.

[Cheriton 88b]
Cheriton, David R., "The V Distributed System," Communications of the ACM 31, 3
(March 1988), 314-333.

[Cheriton 88c]
Cheriton, David R., "Exploiting Recursion to Simplify RPC Communication Architec-
tures," Computer Science Department, Stanford University, Draft Paper, March 21,
1988.

[Cheriton and Mann 88]
Cheriton, David R. and Timothy P. Mann, "Decentralizing a Global Naming Service for
Improved Performance and Fault Tolerance," to appear in ACM Transactions on Com-
puter Systems, (1988).

[Cheriton and Roy 85]
Cheriton, David R. and Paul J. Roy, "Performance of the V Storage Server: A Prelim-
inary Report," Proceedings of the ACM Conference on Computer Science, March 1985.

[Cheriton and Zwaenepoel 85]
Cheriton, David R. and Willy Zwaenepoel, "Distributed Process Groups in the V Ker-
nel," ACM Transactions on Computer Systems 3, 2 (May 1985), 77-107.

[Finlayson and Cheriton 87]
Finlayson, Ross S. and David R. Cheriton, "Log Files: An Extended File Service

54
UNCLASSIFIED

UNCLASSIFIED

Exploiting Write-Once Storage," Proceedings of the 11th Symposium on Operating System
Principles, November 1987, 139-148.

[Kanakia and Cheriton 871
Kanakia, Hemant (Electrical Engineering Department) and David R. Cheriton (Com-
puter Science Department), "The VMP Network Adapter Board (NAB): High-
Performance Network Communication for Multiprocessors," Stanford University,
December 14, 1987.

[Tanenbaum and van Renesse 85]
Tanenbaum, Andrew S. and Robbert van Renesse, "Distributed Operating Systems,"
Computing Surveys 17, 4 (December 1985), 419-470.

[Theimer 853
Theimer, Marvin M., Keith A. Lantz, and David R. Cheriton, "Preemptable Remote
Execution Facilities for the V-System," Proceedings of the 10th Symposium on Operating
System Principles, December 1985.

SS

U L 55
UNCLASSIFIED

UNCLASSIFIED

Distribution List for IDA Paper P-2142

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Lt Col Chuck Lillie 6
SDIO
Room 1E149
The Pentagon
Washington, DC 20301-7100

LTC Jon Rindt 2
SDIO
Room 1E149
The Pentagon
Washington, DC 20301-7100

Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dr. Ashok Agrawala
* Department of Computer Science

University of Maryland
College Park, MD 20742

Dr. Jon Agre
Science Center
Rockwell International Corporation
Mail Stop A24
1049 Camino Dos Rios
Thousand Oaks, CA 91360

Lt Col Charles Anderson
RADC/CO
Griffiss AFB, NY 13440

CDR Rick Barbour
Space & Naval Warfare Systems Command
SPAWAR 324

0 Washington, DC 20363-5100

Ms. Donna Barker
MS 202
Teledyne Brown
300 Sparkman Dr.
Huntsville, AL 35807

Distribution List-1
UNCLASSIFIED

UNCLASSIFIED

NAME AND ADDRESS NUMBER OF COPIES

Maj Brian Boesch 1
DARPA
Information Science and Technology Office
1400 Wilson Boulevard
Arlington, VA 22209

Dr. James M. Boyle
Mathmatics & Computer Science Division
Argonne National Laboratory
Building 221 Room C-219
9700 South Cass Avenue
Argonne, IL 60439-4844

Dr. Jim Browne
Deparment of Computer Sciences
Taylor Hall 2.124
University of Texas
Austin, TX 78712-1188

Mr. Ray Chen
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

Dr. David R. Cheriton
Computer Science Department
Bldg. 460, Room 422
Stanford University
Stanford, CA 94305-6110

Mr. Ray Clark
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. Partha Dasgupta
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

Dr. Larry Dowdy
Computer Science Department
Vanderbilt University
P.O. Box 1679, Station B
Nashville, TN 37235

Distribution List-2
UNCLASSIFIED

UNCLASSIFIED

NAME AND ADDRESS NUMBER OF COPIES

Michael J. Duffy
GE
Manager, Software Engineering
Ground Systems Department
1787 Sentry Parkway West
Blue Bell, PA 19422

Mr. Phil Hwang
NSWC - White Oak
Code U-33
Silver Spring, MD 20903-5000

Mr. E. Douglas Jensen
Concurrent Computer Corporation
1 Technology Way
Westford, MA 01886

Mr. Tom Lawrence
RADC/COTD
Air Force Systems Command
Griffis AFB, NY 13441-5700

Dr. Richard J. LeBlanc, Jr.
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

Dr. John Lehoczky
Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. Doug Locke
IBM Corporation
Rout 17C
Owego, NY 13827

Dr. Richard Metzger
RADC/COTD
Air Force Systems Command
Griffis AFB, NY 13441-5700

Col John Morrison
National Test Bed JPO
Colorado Springs, CO 80912-5000

Distribution List-3
UNCLASSIFIED

UNCLASSIFIED

NAME AND ADDRESS NUMBER OF COPIES

Dr. Isaac R. Nassi
Vice President of Research
Encore Computer Corporation
257 Cedar Hill Street
Marlborough, MA 01752-3004

Dr. J. Duane Northcutt
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Ms. Tricia Oberndorf
Naval Air Development Center
Code 7031
Warminster, PA 18974-5000

Lt Col Thomas J. Oldenburg
ESD/XTS
Hanscom AFB, MA 01731-5000

Dr. Bernard H. Paiewonsky
Deputy for Advanced Technology
SAF/AQH
Room 4D977
Pentagon
Washington, DC 20330-1000

Maj Mark Pullen
DARPA
Information Science and Technology Office
1400 Wilson Boulevara
Arlington, VA 22209

Dr. Richard F. Rashid
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. John Salasin
GTE
1700 Research Blvd.
Rockville, MD 20850

Distribution List-4
UNCLASSIFIED

UNCLASSIFIED

NAME AND ADDRESS NUMBER OF COPIES

Mr. Jim Sanderson 1
Los Alamos National Lab
Post Office Box 1663
MS K488
Los Alamos, NM 87545s

Dr. Richard E. Schantz
BBN Laboratories Incorporated
10 Moulton Street
Cambridge, MA 02238

Mr. Carl Schmiedekamp
Naval Air Development Center
Code 7033
Warminster, PA 18974-5000

Dr. Lui Sha
Department of Computer Science and
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. Steve Squires
DARPA
Information Science and Technology Office
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Doyle Thomas
USA SDC
DASD-H-SB
P.O. Box 1500
Huntsville, AL 35807

Dr. Hide Tokuda
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. Anand Tripathi
Computer Science Department
136 Lind Hall
University of Minnesota
Minneapolis, MN 55455

Distribution List-5
UNCLASSIFIED

UNCLASSIFIED

NAME AND ADDRESS NUMBER OF COPIES

Dr. Satish Tripathi 1
Department of Computer Science
University of Maryland
College Park, MD 20742

Dr. Andre van Tilborg
Computer Science Division, Code 1133
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000

Dr. Stephen T. Vinter
BBN Laboratories Incorporated
10 Moulton Street
Cambridge, MA 02238

Dr. Richard J. Waddell
POET Office
1225 Jefferson Davis Hwy.
Arlington, VA 22202

Dr. Cindy Williams
MITRE Corporation
MS T140
Burlington Road
Bedford, MA 01730

CSED Review Panel

Dr. Dan Alpert, Director
Program in Science, Technology & Society
University of Illinois
Room 201
912-1/2 West Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm
TRW
Defense Systems Group
MS R2-1094
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Distribution List-6
UNCLASSIFIED

UNCLASSIFIED

NAME AND ADDRESS NUMBER OF COPIES

Dr. C.E. Hutchinson, Dean 1
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano 1
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto 1
Mainstay
302 Mill St.
Occoquan, VA 22125

Dr. John M. Palms, Vice President 1
Academic Affairs & Professor of Physics
Emory University
Atlanta, GA 30322

Mr. Oliver Selfridge 1
45 Percy Road
Lexington, MA 02173

Mr. Keith Uncapher 1
University of Southern California
Olin Hall
330A University Park
Los Angeles, CA 90089-1454

IDA

General W.Y. Smith, HQ 1
Mr. Philip L. Major, HQ 1
Dr. Robert E. Roberts, HQ 1
Ms. Anne Douville, CSED 1
Dr. John F. Kramer, CSED 1
Mr. Terry Mayfield, CSED 4
Dr. Karen Gordon, CSED 30
Dr. Cathy Jo Linn, CSED 20
Dr. Cy Ardoin, CSED 1
Mr. Jim Baldo, CSED 1
Mr. Bill Brykczynski, CSED 1
Mr. Howard Cohen, CSED 1

Distribution List-7
UNCLASSIFIED

UNCLASSIFIED

NAME AND ADDRESS NUMBER OF COPIES

Mr. Steve Edwards, CSED 1
Dr. Dennis Fife, CSED 1
Mr. Michael Kappel, CSED 1
Dr. Joe Linn, CSED 1
Dr. Reg Meeson, CSED 1 0
Dr. Jim Pennell, CSED 1
Mr. Kevin Rappoport, CSED 1
Dr. Eric Roskos, CSED 1
Mr. David Wheeler, CSED 1
Dr. Bob Winner, CSED 1
Ms. Katydean Price, CSED 2
IDA Control & Distribution Vault 3

Distribution List-8

UNCLASSIFIED

0

