
oNAVAL POSTGRADUATE SCHOOL
Monterey, CaliforniaN

4 I

CASE TECHNOLOGY AND THE SYSTEMS DEVELOPMENT
LIFE CYCLE: A PROPOSED INTEGRATION OF

CASE TOOLS WITH DoD STD-2167A

by

GARY THOMAS BATT

March 1989

Thesis Advisor: Barry A. Frew

Approved for public release; distribution unlimited.DTIC

~) MAY 1 1"" " Oa H
. ,, i 0,41

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

UNCLASSIFIED I

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION iDOWNGRADING SCHEDULE Approved for public release; distribution
unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School Code 37 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUDr)INC SPONSORINu Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

CASE TECHNOLOGY AND THE SYSTEMS DEVELOPMENT LIFE CYCLE: A PROPOSED INTEGRATION OF
CASE TOOLS WITH DoD STD-2167A
12. PERSONAL AUTHOR(S)

Batt, Gary Thomas
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Master's Thesis FROM TO 1989, March 74

16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official
position of the Department of Defense or the U.S. Government.
17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Computer Aided Software Engineering; Systems Development
Life Cycle; DoD STD-2167A

19 STRACT (Continue on reverse if necessary and identify by block number)

The use of Computer Aided Software Engineering (CASE) tools has been marketed as a
remedy for the software development crisis by automating analysis, design, and coding. The
Systems Development Life Cycle (SDLC) has been employed in an attempt to ease the
development backlog by applying structured methods to the development of software systems.
This study reviews CASE tool components and the future of CASE integrated toolkits, compares
an SDLC with the Defense System Software Development standard - DoD STD-2167A, and proposes
a means for integrating CASE tools into the DoD STD-2167A system development life cycle.

l

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
KI UNCLASSIFIED'UNL MITED C SAME AS RPT C DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIB.E INDIVIDUAL 22b. TELEPHONE (Include Area Code) ac OFFICE SYMBOL

Prof. Barry A. Frew (408) 646-2924 Code 54Fw

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete * u.S. Ovornmlnt Ibrlnti f il: 111111111-409-24.

UNCLASSIFIED

Approved for public release; distribution unlimited.

CASE Technology and the Systems Development Life Cycle:
A proposed integration of CASE tools with DoD STD-2167A

by

Gary Thomas Batt
Lieutenant, Supply Corps, United States Navy
B.B.A., University of Massachusetts, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Author: _aat
, - Gary Thomas Batt

Approved by: zd -
Fr Thesis Advisor

S James E. S rhan; Second Reader

David R. Whipple, Chalman
Department of Administr ve Sciences

Xn e a l e -T . a r h a l A
Dean of Information S 1 1ciences

ii

ABSTRACT

The use of Computer Aided Software Engineering (CASE)

tools has been marketed as a remedy for the software

development crisis by automating analysis, design, and

coding. The Systems Development Life Cycle (SDLCl has been

employed in an attempt to ease the development backlog by

applying structured methods to the development of software

systems. This study reviews CASE tool components and the

future of CASE integrated toolkits, compares an SDLC with the

Defense System Software Development standard - DoD STD-2167A,

and proposes a means for integrating CASE tools into the DoD

STD-2167A system development life cycle.

Accession For

NTIS GRA&I

DIIC TAB 0
Unaamoinced 0(iitlf ication

8. ~ Diitribution/
Availability Codes

tYvll. and/or
!Dist Spoi1

iii

TABLE 01' CONTENTS

I. INTRODUCTION 1-- - - - - - - - - -- - - - - - - - -

A. BACKGROUND---1I

1. Software Development Crisis-------------------- 1

2. Systems Development Life Cycle----------------- 3

3. Software Engineering---------------------------- 5

4. Systems Engineering----------------------------- 6

B. RESEARCH FOCUS-------------------------------------- 6

C. THESIS ORGANIZATION--------------------------------- 8

II. CASE and I-CASE-- 9

A. CASE TOOLS--- 9

1. Definitions------------------------------------- 9

2. Components of CASE Toolkits-------------------- 11

3. Common CASE Features--------------------------- 11

B. I-CASE TOOLS-- 13

C. CASE LIFE CYCLE------------------------------------- 14

D. THE FUTURE OF CASE---------------------------------- 17

1. Reverse Engineering---------------------------- 17

2. Expert Systems---------------------------------- 20

3. Quality and Productivity----------------------- 21

E. CASE TOOL SELECTION-------------------------------- 24

F. SUMM4ARY--- 25

III. DEFENSE SYSTEM SOFTWARE DEVELOPMENT/DoD STD-2167A 26

A. BACKGROUND-- 26

iv

B. DEFINITIONS ------------------------------------- 27

C. WHEN TO APPLY DoD STD-2167A --------------------- 28

D. SOFTWARE DEVELOPMENT PROCESS -------------------- 29

E. COMPARISON OF DoD STD-2167A TO THE CLASSIC SDLC - 32

1. Analysis and Design ------------------------- 32

2. Coding, Integration and Testing ------------- 34

3. Installation and Operations ----------------- 36

F. SUMMARY --- 37

IV. DoD STD-2167A UTILIZING CASE ------------------------ 38

A. PROBLEMS WITH SDLC DEVELOPMENT ------------------ 38

B. SYSTEM LIFE CYCLE ------------------------------- 39

C. DEVELOPMENT USING CASE AND DoD STD-2167A -------- 42

1. DoD STD-2167A using CASE with IRDS ---------- 43

2. DoD STD-2167A using CASE without IRDS ------- 52

D. SUMMARY --- 55

V. CONCLUSIONS -- 57

A. DoD STD-2167A AND CASE -------------------------- 57

B. AUTOMATED TAILORING OF DoD STD-2167A ------------ 59

C. AREAS FOR FURTHER RESEARCH ---------------------- 60

1. Test of Proposed DoD STD-2167A -------------- 60

2. British Aerospace Australia ----------------- 60

3. Productivity Measures ----------------------- 60

4. Expectations for CASE ----------------------- 61

LIST OF REFERENCES -------------------------------------- 63

INITIAL DISTRIBUTION LIST ------------------------------- 65

v

LIST OF FIGURES

1-1. Classic Water-fall System Development Life 4

2-1. The CASE Software Development Life Cycle 15

2-2. Prototyping ----------------------------------- 16

2-3. Reverse Engineering Life Cycle ------------------ 19

3-1. DoD STD-2167A System Development Life Cycle 30

3-2. Classic Water-fall System Development Life 31

4-1. Proposed DoD STD-2167A Life Cycle Using CASE 44

vi

ACiOOWLNDXZ NT

I wish to dedicate this thesis to my wife, Patricia.

Without her assistance in improving my writing skills, her

support in my pursuit of education, and the requirement

placed on her to provide a single parent home during my last

quarter, this document would not exist. I hope that I am

able to provide her with equal support while she pursues her

goals in the legal profession.

vii

I. INTRODUCTION

Software development methodologies have been touted as a

means of decreasing a large backlog in software development.

Computer Aided Software Engineering (CASE) tools have been

marketed by their developers as the means to shorten

development times, thereby allowing more time to reduce the

backlog. These two concepts are not mutually exclusive, but

mutually dependent. This thesis will explain how CASE tools

can be effectively integrated into the development cycle.

The combined effect of CASE tools and sound development

principles should enable accelerated software development and

lead to easing what has been referred to as a "Software

Development Crisis." An in-depth discussion of CASE tools is

provided in Chapter II.

A. BACKGROUND

1. Software Development Crisis

Data processing systems are often viewed by users as

a chaotic mess of redundant data that cannot provide

required information in a timely manner [Ref. l:p. 5].

Additionally, application developers commonly have backlogs

of several years. Maintenance for operational systems is

being estimated to take 50 to 80 percent of analyst and

programmer time [Ref. 2].

The extent of the problem really is best expressed in

three pertinent statements:

1. .. .25 percent of the draft age population will be
required to maintain DoD software by the year 2000.
[Ref. 3]

2. .. .the national demand for software is rising by at
least 12 percent per year, while the supply of people
who produce software is increasing about four percent
per year and the productivity of those software
producers is increasing at about four percent per year;
this leaves a cumulative four percent gap. [Ref. 4:p.
31]

3. Not much progress has been made in the past 20 years in
getting rid of three- to five-year backlogs of projects
and for new applications and major enhancements to
existing ones. [Ref. 5:p. 38]

Unfortunately researchers don't know whether the

problem with software development is due to existing systems

having been poorly developed and therefore requiring more

maintenance time, or whether users are demanding applications

faster than developers can produce them. What is known is

that software engineering techniques can decrease the

software backlog.

CASE has been dec-ared by some to be the silver

bullet that will save the software industry. Few agree that

it is a cure-all for the problem, but in James Martin's

words, "I-CASE 1 is THE most important change in professional

computing practice in three decades " [Ref. 3] How CASE

and I-CASE technology will affect the development of

1 I-CASE is a hybrid version of CASE, Integrated-CASE.

I-CASE combines multiple CASE tools into a single
architecture. Further discussion of this is presented in
Chapter II.

2

computing systems, particularly by those systems constrained

by DoD STD-2167A, is the focus of this thesis.

2. Systems Development Life Cycle

Traditional development of computer systems follows a

waterfall sequence known as the Systems Development Life

Cycle (SDLC), as presented in Figure 1-1. Depending on the

author referred to, there are between five and eight major

phases to the SDLC. This thesis will refer to a seven phase

life cycle:

1. Investigation phase
Initial investigation
Feasibility study

2. Analysis and General Design phase
Existing system review
New system requirements
New system design
Implementation and installation planning

3. Detailed Design phase
Technical design
Test specification and planning
Programming and Testing

4. Implementation phase
User training
System testing

5. Installation phase
File conversion
System installation

6. Review phase
Development recap
Post-implementation review

7. Maintenance phase [Ref. 6:p. 467].

The Department of Defense (DoD) has created a

standard SDLC that is embodied in DoD STD-2167A. It

encompasses all phases of the life cycle in a unique format

3

Problem
Definition

Feasibility
Study

Software
Requirements

Analysis

Software

Des ign

Detailed

Design

Implementation

Maintenance

Figure 1-1. Classic Water-fall System Development Life

4

that requires an average of 200 words of documentation for

each line of code produced [Ref. 7].

All current CASE tools fit into at least one phase of

the SDLC, but most tools are designed to serve in the UPPER-

CASE 2 arena. CASE tools that cover the entire life cycle

are still a dream of designers, but by the mid to late

1990's, they should be a reality [Ref. 7].

3. Software Engineering

Software engineering has been defined as

... a set of three key elements - methods, tools and
procedures - that enable the manager to control the process
of software development and provide the practitioner with a
foundation for building high-quality software in a
productive manner. [Ref. 8:p. 19]

Although there are various graphics based techniques

such as Data Flow Diagrams (DFD), entity-relationship models,

and system structure charts that have enabled analysts and

users to better communicate, exclusively using these tools

does not constitute software engineering. Software

engineering must embody all three elements - methods, tools,

and procedures. To be successfully used in a software

development organization, a sound methodology must be in

place prior to introduction of CASE. [Ref. 9:pp. 17-20]

Software engineering principles allow developers and

managers to create systems that fulfill user specifications.

Its major drawback is that with large inventories of systems

2 CASE tools designed to assist in the Investigation,

Analysis and general design and Detailed design phases are
being referred to as UPPER-CASE tools in trade publications.

5

to be maintained and new specifications to be programmed,

software engineering doesn't answer the question, "Is the

product specification correct for fulfilling our

organizational goals at this time?" [Ref. 10]

4. Systems Engineering

Systems engineering encompasses all parts of software

engineering plus methodologies for developing standardized

system architectures. It embodies the trend toward end user

computing and will allow information resource management

ensuring that the specification fulfills the business

requirement. [Ref. 10]

The trend in the use of CASE tools is to rectify the

problems existing with software engineering by doing front

end information strategic planning and business area analysis

[Ref. 3]. CASE producers are beginning to recognize the need

for automated code generation and expert knowledge of the

corporate data structure by the CASE product [Ref. Il].

These changes propel CASE from Computer Aided Software

Engineering to Computer Automated Systems Engineering.

B. RESZARCH FOCUS

CASE techniques offer a unique opportunity to decrease

the backlog of applications development. They also present

an opportunity to increase the quality of systems being

developed through consistent use of a standard methodology

throughout the life of the software.

6

The Department of the Navy has awarded an Umbrella

Contract with Information Engineering Systems Corporation

(IESC) for their CASE toolkit USER:Expert SystemsTM and

associated technical support. Many Navy and Marine Corps

organizations are beginning to experiment with the toolkit to

engineer their organizational structure and operations.

[Ref. 12:p. 3]

The IESC toolkit addresses the concepts that James Martin

refers to as information strategic planning and business area

analysis. Information strategy planning is a top down look

by senior management into the use of information by the

enterprise. It builds an organizational model, identifies

the information needs to support the strategic plans of the

business, and establishes a framework for prioritizing the

systems that are to be built for the organization.

Business area analysis is the next lower level of

abstraction for the enterprise. Each business identified in

information strategy planning is decomposed. Data and

processes within the business are identified. A detailed

model of each business that supports the overall enterprise

is constructed.

Where the IESC toolkit leaves off after constructing the

business model, this research continues. Specifically the

thesis will answer the following questions:

1. Where within the detailed life cycle of DoD STD-2167A
does CASE fit?

7

2. Do CASE tools need to be modified to fit within the
construct of DoD STD-2167A or should the standard be
changed to reflect the ever changing world of computer
systems development?

C. THZSIS ORGIANZTON

Chapter II presents an overview of CASE. A generalized

model of the CASE life cycle is identified and compared to

the prototype paradigm. A synopsis of the major

characteristics of both CASE and I-CASE are offered along

with summaries of what major contributors to the CASE

industry perceive as the future of the tools.

In Chapter III, development and applicability to DoD STD-

2167A are summarized. The life cycle standard for DoD STD-

2167A is exhibited and compared to the classic waterfall life

cycle of Figure 1-1.

Chapter IV introduces an effective scenario on how to use

CASE for systems being developed under the guidance of DoD

STD-2167A. A new model for the CASE systems development life

cycle under DoD guidance is proposed.

Chapter V summarizes the contents of this work, addresses

some of the drawbacks uncovered by implementing CASE, and

proposes areas for further research regarding CASE and DoD

STD-2167A.

8

I. CASE and I-CASE

This chapter provides an overview of the current Computer

Aided Software Engineering (CASE) tools available, their

principle operational features and components. Key

definitions used within the CASE market and the CASE life

cycle are presented. The chapter compares Integrated CASE

(I-CASE) with current CASE technology and presents expert

opinions on the future of CASE toolkit development. The

chapter ends by offering a source for making CASE tool

selection.

A. CASE TOOLS

CASE tools have been available in various forms to the

professional software developer since the first compilers

were introduced. CASE tools also include project management

software, editors, prototype generators, version control

coordinators, code re-engineering packages and other

development programs too numerous to name here. Because of

the wide range of tools being used to support systems

development, the term CASE can be applied to any tool that

helps users (of the tool) to develop programs.

1. Definitionz

Some useful definitions of CASE terminology follow on

the next page:

9

1. Application generator. These tools take design
specifications and generate compilable code, usually in
COBOL. Most application generator tools are used for
building data base applications.

2. Data Flow Diagram (DFD). A graphic representation of
the different data items in a system and their movement
from process to process. DFDs depict the system from
the data point of view. DFDs do not represent the
control flow of a process.

3. Entity-relationship diagram (ERD). A diagram depicting
objects and data elements, and the relationship between
them. ERD are used to model the information and data in
an organization.

4. Fourth Generation Language (4GL). A high level computer
language which provides data base access facilities.
4GLs are easier to use than traditional languages such
as COBOL and FORTRAN.

5. Leveling. The process of successively partitioning DFD
parent processes into child processes in order to
construct a hierarchically structured system.

6. Module. A collection of program functions that contains
a set of routines with well-defined inputs and outputs.

7. Reverse Engineering. The methodology of taking an
existing software system and decomposing the system into
data elements and processes. The process is equivalent
to taking apart a clock to find out what's inside and
how it works.

8. Structure chart. A graphic tool that depicts the
partitioning of a system into modules, showing the
hierarchy and organization of those modules.

9. User interface. The end-user communicates with the
application program through the user interface. User
interfaces allow end-users to perform operations and
view results.

10. Warnier-Orr diagrams. A data structure and file format
showing the hierarchical structuring of substructures
within a larger structure in an outline style.
[Ref. 13:pp. 275-280]

10

2. Components of CASE Toolkits

All CASE toolkits contain a user shell that provides

the user with a menu driven interface to the tools within the

CASE software package. The following seven tools are

frequently found in the various CASE toolkits, but no single

toolkit on the market today has all seven:

1. Window, screen, report, graph and other output
formatting editors.

2. Program flow editors including DFD's, traditional flow
charts, and ERDs.

3. Schema design and data aictionary managers to build and
maintain the CASE Data Dictionary.

4. Code management systems for version control and code
maintenance.

5. Program development tools including 4GLs, prototyping
tools, and application generators.

6. Bug reporting and tracking to allow automated program

maintenance.

7. Network management tools. [Ref. 14 :p. 40]

3. Common CASE Features

a. Data Dictionary

The single most important part of any CASE tool

is its Data Dictionary. It unfortunately is also the part of

the toolkit that frequently makes integration of toolkits

impossible.

The Data Dictionary contains names and

descriptions of the processes, data items, variables, access

control lists for the dictionary and various other passive

information [Ref. l:p. 23]. The dictionary allows the system

11

designer to create, modify and delete various DFDs (or other

graphical representations of the process) and data elements.

It also should allow cross-referencing to objects defined in

other systems designed using the same CASE tool.

CASE tools using Data Dictionaries are limited in

their ability to integrate with other tools due to the Data

Dictionary having no "understanding" of the system design.

Data Encyclopedias have this capability and will be presented

within the I-CASE subheading.

b. Visual/Graphic Representation

Whether the CASE tool uses DFDs, ERDs or System

Structure Charts, it should combine graphical representation

of the process with the textual representation in the Data

Dictionary. Various levels of the abstraction for the

process are retained. The visual display of the process is

key to assisting users and analysts in specifying complete

functional requirements.

c. Automated Consistency Checking

Throughout levels of the process, CASE tools

ensure that naming conventions remain constant. Leveling is

automatically performed and errors of omission are

highlighted for rectification.

d. Multi-user Access

With most systems development processes, the

project is incapable of being completed by one person. To

assist in this, CASE tools provide tracking of those who have

12

access to a project and provides mechanisms to ccntrol access

to all data elements and objects. Multi-user access will

also allow designers of separate projects to re-use data

definitions and functional modules that have been previously

designed and stored in the Data Dictionary.

B. I-CASE TOOLS

I-CASE toolkits incorporate all of the best features of

many CASE tools into a single package that is intended to

cover the entire SDLC. Today's I-CASE tools do not approach

the 100 or more functions that must be accomplished in the

development of software systems, but many do perform 20 to 30

of them [Ref. 7].

The heart of an I-CASE toolkit is its Data Encyclopedia.

Differing from a Data Dictionary, the Data Encyclopedia

stores the meaning as well as the content of the entries.

The encyclopedia accumulates knowledge about how and why a

process is performed. Rules regarding how processes are to

be linked, structures are to generated from DFDs, and data

elements are to be referred to are stored during the

development of the Data Encyclopedia. Rule processing is

then used to achieve accuracy, integrity, validity and

completeness of plans. The encyclopedia should grow over

time to encompass the entire body of knowledge about the

business processes of the organization. [Ref. l:pp. 23-24]

An integral part of the I-CASE toolkit is automatic code

generation from the knowledge maintained in the encyclopedia.

13

Its primary purpose is to create structured program modules

fulfilling the functional requirements maintained in the

encyclopedia. The code generation module probably would not

be able to create optimal programs for an intended target

machine, but code optimizers exist that are designed for

specific hardware and software configurations.

C. CASZ LIM CYCLE

CASE proponents expound upon the need for an evolutionary

life cycle, similar to the paradigm used for prototyping.

The major difference between a CASE evolutionary life cycle,

Figure 2-1, and a prototyping life cycle, Figure 2-2, is that

CASE development will not create software until the design is

engineered to meet user specifications.

CASE life cycle relies on the continued expansion of the

Data Dictionary. Each software development phase will allow

the designer to draw information from the Data Dictionary

thereby reducing inconsistency. As the Data Dictionary

increases its knowledge base, each software development

project will be able to extract previously defined

information thereby reducing development time and creating

consistency across all software products.

Prototyping initially creates software for the user and

continues to modify it until it meets the user

specifications. Since most prototyping is done with less

efficient programming languages and models only specific

portions of the requirement, the software application is

14

> IANALYZE

IMPROVE DES IGN

TEST GENERATE

Figure 2-1. The CASE Software Development Life Cycle [Ref. 1]

15

Requirements
gathering

"Quick
design"

A Build
Prototype

Evaluate
and refine
requirements

A Engineer
product

Figure 2-2. Prototyping (Ref. 8:p. 231

16

usually re-coded and installed using third-generation

languages. The prototype software product is considered a

throw-away and the effort used to develop it becomes a formal

requirements definition used to code, test, and implement as

with any SDLC project.

Components of the prototype life cycle fit within the

CASE life cycle. Specific prototyping tools, such as report

generators and screen formatters, are considered to be CASE

tools. The use of prototype tools in the CASE life cycle is

discussed as part of the Design activity of Chapter IV.

D. THE FUTURE OF CASE

... the technological base on which one builds is always
advancing. As soon as one freezes a design, it becomes
obsolete The challenge and the mission are to find real
solutions to real problems on actual schedules with
available resources. [Ref. 15:p. 9]

Some CASE tools are in their infancy and other tools are

more mature, but none today reaches what James Martin would

call an I-CASE toolkit. The solutions to problems stated in

the opening chapter will not come by passively waiting for I-

CASE, but by following Fred Brooks' advice and solving

today's problems with the toolkits that are currently

available. What specific CASE tools will be available in the

future is unknown, but experts' opinions of what is expected

will be presented in the following pages.

1. Reverse Engineering

A significant investment in software systems already

exists and is draining almost 80 percent of analyst and

17

programmer time to maintain it. Estimates of 77 billion

lines of COBOL code in IBM production systems alone lead one

to believe that the job of data manipulation is already being

performed and that new applications development is not really

required. So why is there a fuss over CASE to engineer new

systems from scratch?

The CASE life cycle depicted in Figure 2-3 shows how

reverse engineering fits. By starting at the operational

level with an existing application, analysts identify end

users, terminals, computers, record instances, and programs

in execution that are required to enable the software to

operate. This information is passed along to Database

Administrators (DBA) and programmers at the implementation

level to catalog the source-level descriptions of files,

databases, and programs. Design objects identified include:

records, sets, reports, screens, programs, and statements.

The repository of information regarding the application is

then passed to Data Analysts and Systems Analysts at the

specifications level to extract the underlying data model

required to operate the business. Objects identified include

entities, relationships, processes, and procedures. At the

highest level, the requirements level, Business Analysts

identify the critical success factors, goals, requirements

and organizations that the application has been satisfying.

[Ref. 16:pp. 49-56]

18

Level Reverse Forward
Engineering Engineering

Requirements Business Analyst

Data Analyst
Specifications

Systems: Analyst

V

Programmer
Implementation un

DBA

\\4/

Operation Applications Applications

Figure 2-3. Reverse Engineering Life Cycle [Ref. 16:p. 50]

19

After all design objects have been identified, the

application is re-engineered downward through the cycle

taking advantage of a single corporate data encyclopedia.

All new applications become existing applications as soon as

they are put into operation. Enhancements to systems are

always validated against the business requirements. Re-

engineering existing software reflects the continuity of

applications and allows for revisions to constantly reflect

the current business architecture.

By targeting maintenance (both error correction and

enhancement) of operational systems, next generation CASE

tools open the possibility of reverse engineering the

processes that currently exist. Although it would be

preferable to have reverse engineering automated, human

intervention will be required to fill in the holes.

Unfortunately, existing applications do not document the

goals for which the program was designed, where all of the

manipulated data is targeted to be deposited (and why), and

who is responsible for the maintenance of the accurate inflow

and outflow of information.

2. Zxpert Systems

Within one year, expert systems built into the

systems development and maintenance environment of available

CASE tools should be able to identify all of the significant

data in a business unit. This will include what each data

element and structure means, what it depends on and what

20

depends on it, where the physical data is currently located,

and who is authorized to use, modify, create, and delete that

data. The tool will be programmed to understand the

functions and text of all current modules of code. It will

continuously optimize its own performance without human

intervention. [Ref. 11]

An expert system within the CASE tool will support

the transition to new application development becoming

nothing more than a special form of maintenance. Each time a

developer invokes the CASE tool to start a new project, the

expert system will associate the data elements and processes

to existing systems within its encyclopedia. Employing an

interactive dialogue between the developer and the expert

system, development becomes nothing more than modification of

existing modules of code and manipulation of previously

defined data elements. [Ref. 11]

The ability of a CASE toolkit to do this will hinge

on a strong management commitment to develop a corporate data

encyclopedia. The CASE toolkit must also be integrated as

previously described in the paragraphs on I-CASE.

3. Quality and Productivity

Software quality and productivity in systems

development are two of the hardest entities to define. What

is a quality software product? Is it an application that has

zero bugs when it is implemented or an application that meets

all of the users' specifications? The latter definition

21

intuitively is more acceptable, but it is not necessarily

correct. That definition loses its usefulness if the user

specifications do not fulfill the business' strategic goals.

Therefore, the application may give the results requested by

the user, but it has tied up development time and money on a

project that will not serve to enable the enterprise to

achieve strategic advantage.

To paraphrase Vaughan Merlyn, CASE is about breaking

down the communications barriers between users and designers

[Ref. 10]. Through the use of graphics interfaces, CASE

tools allow users and designers to "see" the structure of an

application from the top down. By approaching systems

development from the total organization perspective and using

integrated tools driven by a data encyclopedia, all

applications are developed within a framework of how they fit

into the overall business strategy.

So where do quality and productivity fit into the

future of CASE? The traditional view of the

quality/productivity relationship has been an inverse

relationship. It has been assumed that as quality increased,

the costs of achieving that quality increased - fewer errors

in a program could only be achieved by increased time to de-

bug the software and an increased probability that the

application would not be completed in time. It was also

assumed that as programmers sought to increase the number of

lines of code produced, an increase in the number of errors

22

would be introduced and the quality of the documentation

decreased. The reality of the relationship is that as

quality increases, productivity usually follows. An example

of this comes from Japan.

Transistor radios were laughed at by the world's markets in
the 1960's. Today, thanks to a concerted effort by
Japanese management, the quality of all electronics far
outstrips the remainder of the world's suppliers. Japan's
electronics industry simultaneously experiences the highest
productivity in the world. [Ref. 10]

By introducing an engineering approach to systems

development, as is required by the utilization of CASE,

quality becomes designed into the application. An engineered

product relies on correctness, consistency, completeness, and

coherence. These factors will reveal all levels of the

structure and improve the quality of the system architecture.

The approach will also reduce the introduction of defects

during design, improving the quality of execution of the

application.

Productivity gains associated with the introduction

of CASE should be measured against current systems

development statistics. Currently 25 percent of major

systems are cancelled before implementation, three to ten

years are required to develop major systems, and maintenance

costs are approaching 80 percent of major systems' overall

budgets. In a full CASE environment, which is not expected

until 1995, less than 10 percent of major systems will be

cancelled, one to two years will be required to develop major

systems and maintenance costs will be reduced by 75 to 90

23

percent below the current 80 percent figure. [Ref. 7, Ref.

17]

Other significant measures are important for raising

the awareness of how CASE can positively affect systems

development productivity in the future. In developing a 1000

Line of Code (LOC) product, today's development schedule

would call for one month. That same product could be

produced in one day under I-CASE, a 20:1 improvement. Cost

savings for the application show a similar 20:1 improvement

with today's development cost at $5000 and I-CASE development

cost of $250. However, the improvement ratios are reduced

below 5:1 in development time and costs for a 10,000,000 LOC

product due to multi-member development teams and the

inherent communications costs. [Ref. 7]

Z. CASE TOOL SELECTION

The proper methodology for selecting a CASE tool today

has been documented in several articles, one of the best

being "A Guide to Selecting CASE Tools" by Michael Gibson

which appeared in the July 1, 1988 issue of DATAMATION. The

fact that over 100 vendors offer CASE products makes the

selection process extremely difficult. What is optimal for

one organization is not always optimal for another. The

toolkit selected must be dynamic enough to support the

complete spectrum of the SDLC and also be able to be

integrated with other CASE tools, Data Base Management

Systems, and hardware configurations. A design tool that

24

leaves the developer with DFDs and a Data Dictionary that

must be manually converted to COBOL picture statements and

executable code is barely better than doing the whole job

manually [Ref. 3].

F. SUumGaY

In the relatively short life of CASE tools, they have

displayed promise for alleviating the software crisis. From

their humble beginnings as a graphical representation of the

familiar Yourdon/DeMarco structured analysis and design

methodology or Warnier-Orr diagrams, CASE tools have

developed to the point of being interactive complete life

cycle support tools. With the rapid integration of expert

systems into CASE tools, the probability that they will truly

automate systems development exists. Computer Automated

Systems Engineering is on the visible horizon.

25

III. DEFENSE SYSTEM SOFTWARE DEVELOPMENT/DoD STD-2167k

This chapter provides an overview of DoD STD-2167A,

Defense System Software Development, summarizes key

definitions used by the standard, and describes its

applicability to DoD software projects. The chapter compares

the individual phases of DoD STD-2167A with the phases of

SDLC, as introduced in Chapter one.

A. BACKGROUND

DoD STD-2167A is the first major revision to DoD STD-2167

and superceded it as of 1 April 1987. The requirement was

developed in conjunction with DoD STD-2168, Software Quality

Program, to ensure that standards were maintained in the

development of software systems. Both standards establish a

well defined and easily understood software development and

acquisition process. The standards were intended to

supercede all existing DoD standards, reducing confusion and

eliminating conflicts.

DoD STD-2167A, a simplified version of its predecessor,

allows more latitude in the development process. The revised

standard reduced the number of Data Item Descriptions (DIDs)

from 24 to 19. (The Definitions section of this chapter

provides more information regarding DIDs).

3 The contents of this chapter, unless otherwise
indicated, were drawn from [Ref. 17].

26

DoD STD-2167A allows tailoring by eliminating non-

applicable requirements and permits the developer to practice

their own software development methodology. The standard is

compatible with modern methods of software development, and

it supports rapid prototyping if the Software Development

Plan (SDP) is tailored and specifies that methodology. DoD

STD-2167A is intended to focus visibility on the software

development and acquisition process throughout the life cycle

by formal requirements reviews and audits at the completion

of all milestones. The standard should be applied throughout

the life cycle and should provide cost benefits throughout.

B. DIFINITIONS

The following definitions will enable the reader to

better understand the contents of this chapter:

1. Computer Software Component (CSC). A distinct part of
the software product. It can be equated with one
program of a complete software system ie., the check
printing program of a payroll system.

2. Computer Software Configuration Item (CSCI). The
complete software system.

3. Computer Software Unit (CSU). A single module of the
CSC that can be tested for functional accuracy.

4. Data Item Descriptions (DIDs). DIDs describe the set of
documents for recording information required by the
standard.

5. Developmental Configuration. The software and
associated documentation that defines the evolving
configuration during development. The Developmental
Configuration consists of a Software Design Document and
source code listings.

6. Product Baseline. The software as designed, tested and
implemented prior to installation.

27

7. Software Development Plan (SDP). A single document
outlining the steps for conducting the activities
required by the standard.

For a complete listing of the definitions applicable to DoD

STD-2167A the reader is referred to Chapter three of the

standard.

C. WHEN TO APPLY DoD STD-2167A

This military standard is approved for use by all

Departments and Agencies of the Department of Defense. Its

intended use is for the acquisition, development or support

of software systems. Either a commercial enterprise under

contract to the government or a government agency that

performs software development can be substituted for the term

"contractor" where the standard specifies. This standard is

planned to be used in conjunction with MIL-STD-499,

Engineering Management, for total system development.

DoD STD-2167A is required for use in all mission-critical

systems development projects. Mission-critical projects

include:

1. Intelligence activities

2. Command and control of military forces

3. Cryptologic systems relating to national security

4. Equipment or software forming an integral part of a
weapons system.

Use of DoD STD-2167A is not required, although it is

encouraged, on other systems development projects unless it

28

is specified in the contract. DoD STD-2167A does not apply

to the development of hardware systems.

D. SOFTWARZ DKVZLOPMENT PROCZSS

The contractor will implement a process for managing the

development of deliverable software. The process will

include the following activities, which may be overlapped or

applied iteratively:

1. Systems Requirements Analysis/Design

2. Software Requirements Analysis

3. Preliminary Design

4. Detailed Design

5. Coding and CSU Testing

6. CSC Integration and Testing

7. CSCI Testing

8. System Integration and Testing

9. Testing and Evaluation

10. Production and Deployment

Figure 3-1 illustrates the standard software

development waterfall as specified by DoD STD-2167A. (For

clarity, Figure 1-1 has been repeated as Figure 3-2 on the

following page and the hardware development processes edited

from the DoD STD-2167A life cycle). The figure specifies the

points where formal reviews and audits are to be completed.

All reviews and audits specified are detailed in DoD STD-

1521, Technical Reviews and Audits for Systems, Equipments,

and Computer Software. Definitions for baselines can be

29

L) C)

M o,

9M a C-1

-W V

OM 4-

us *4us

.61 an CL. C=- V

C.3 w X3
-- C3 C

M 3M CSa 1 , 1

CAM 0=4)1
ts C6 b.-Waa__C ar anC2 1.I 0 4 -

=a 4Pw w 0

0-9) as MC

LM 0 do
tj C=

47 o 0) - * .2 a

I...

a-) =4 -9M an 9= 9M *M 0= 9M -M
t * a0a4 a 4= C3 =V 0.4 9"

Cn Cn 44 a"

Figure ~ ~ -3-1 Do ST-17 Syte -eeomn Lf yl

30

4-)-4-

Q-44)

Figur 3-2 Clasic aterfallSystm DeelopEntLf

31t

found in DoD STD-480, Configuration Control - Engineering

Changes, Deviations, and Waivers.

Z. COMPARISON OF DoD STD-2167A TO Til CLASSIC SDLC

DoD STD-2167A relies on all of the principles that have

made SDLC a successful methodology for developing software

systems. Both methods require that a step-by-step procedure

be followed. The methods require formal reviews at

completion of various steps and integrated testing prior to

deployment of operational systems. DoD STD-2167A requires

the completion of many more formal documents than does the

SDLC approach.

1. Analysis and Design

Prior to any actual development of systems, heavy

emphasis is placed up-front on gathering complete user

functional requirements. While the SDLC Investigation phase

involves conducting an initial investigation of the problem

area and feasibility study of the proposed solution, DoD STD-

2167A requires that in the System Requirements

Analysis/Design phase five DIDs be completed.

The Systems Specifications, System Design Document,

Preliminary Software Requirements Specifications, Preliminary

Interface Requirements Specification, and Software

Development Plans DIDs are to be completed prior to the

System Design Review. Within the DIDs cost/benefit analysis,

quality control, testing criteria, delivery timetables,

software requirements, interface requirements and software

32

engineering methodologies are documented. Upon acceptance of

these DIDs at a System Design review, a Functional Baseline

is established. From this point on, any changes to the

specifications or development plans must be approved through

formal configuration management procedures.

The resultant single document of the SDLC

Investigative phase is a cost/benefit analysis that will be

reviewed formally by management. This phase usually involves

one week to one month of analysis and is a check-point for

determining whether to continue with the project. [Ref. 19:p.

47]

In the second phase of DoD STD-2167A, Preliminary

Software and Interface Requirements are finalized.

Additional analysis in these areas completes the software

specifications. The specifications are reviewed formally

against the system specifications and in accordance with the

Software Development Plan at a Software Specification Review.

When accepted, software development commences with

specifications that are signed-off as having met the user

requirements. This specification is considered the Allocated

Baseline.

After a commitment to continue an SDLC project, the

second phase, Analysis and general design, compares closely

to DoD STD-2167A in that the new system specifications are

finalized. This only occurs after a complete review of the

existing system. DoD STD-2167A does not require review of

33

existing systems, although most analysts will do so

informally. SDLC also completes implementation and

installation planning during this phase, steps that were

required as part of the SDP by DoD STD-2167A.

In the second phase of SDLC, an overall new system

design is documented. Technical designs are postponed until

the third phase. DoD STD-2167A phase three, Preliminary

Design, is a single stage that accomplishes the equivalent of

the general software design. Preliminary Software Design,

Software Test Plan, and Preliminary Interface Design DIDs are

completed. At the completion of this phase, the Preliminary

Design Review is accomplished and the Development

Configuration is established.

Detailed design occurs in the fourth phase of DoD

STD-2167A and the third phase of SDLC. Technical software

design is completed, interface details are documented, and

testing plans are formalized at this point. DoD STD-2167A

completes this phase with a Configuration Design Review which

formalizes and approves the detailed design as documented in

the Software Design Document, Software Test Description, and

Interface Design Document DIDs. SDLC includes programming

and testing in this phase, which will be covered in the next

section of this chapter.

2. Coding, Integration and Testing

SDLC integrates coding and testing into the third

phase of the software life cycle. Although the SDLC does not

34

formalize how coding and testing should be done, it usually

folljws closely to the methods utilized by DoD STD-2167A.

The DoD standard is divided into three phases in this area,

Coding and CSU Testing, CSC Integration and Testing, and CSCI

Testing.

Within Coding and CSU Testing, the development team

usually takes individual program modules and begins

programming them from the lowest level modules -- a bottom-up

approach. When programs of individual modules are completed,

they are tested for programming errors and corrected.

When the modules of a CSC are completed, they are

integrated and tested in the CSC Integration and Testing

Phase. At the completion of this phase, a Test Readiness

Review is conducted to review Source Code Listing(s), Source

Code, and Software Test Description DIDs. The Test Readiness

Review is intended to confirm that the modules are adequately

prepared and documented in accordance with the system

specifications prior to conducting CSCI Testing. Completion

of CSCI testing requires that Updated Source Code, Software

Test Report, Operation and Support Document(s), Version

Description Documents, and Software product Specification

DIDs be completed prior to beginning the next phase.

The fourth phase of SDLC, Implementation, is really

not an implementation phase. During this phase the users are

trained to use the software system and the system is tested.

DoD STD-2167A phase System Integration and Testing performs

35

only the testing functions. At this stage both life cycle

methodologies require that testing be accomplished on

hardware that is equal to the production hardware. Equality

of the testing hardware is determined by the contracting

agency for DoD STD-2167A contracts and by the user for SDLC

projects. Additionally, DoD STD-2167A software must be

independently tested by an activity not associated with the

developer to ensure that the software meets the

specifications. In most cases, Functional and Physical

Configuration Audits are conducted after this phase, although

they are scheduled to be completed after CSCI testing. A

Functional Design Review is conducted to establish the

Product Baseline.

3. Installation and Operations

The Installation phase of SDLC requires that all

existing system files be converted to the new software and

the software be installed in the production environment.

The Review phase involves a complete evaluation of the

development and a post-implementation review. DoD STD-2167A

conducts these steps in the Testing and Evaluation phase, but

may or may not have installed the software at sites that will

be operating the software system. Evaluation of the software

development occurs prior to deployment of the product.

The final phase of DoD STD-2167A is Production and

Deployment. In this phase the software is installed in the

production environment and users are trained to use the

36

system. SDLC's final phase is maintenance of the software

product. DoD STD-2167A does not consider maintenance as part

of the Life Cycle and that problem is addressed in Chapter

IV.

F. SUMMARY

DoD STD-2167A relies on a proven structured development

life cycle technique. It compares readily to the classic

waterfall life cycle which has been used extensively in

developing both large and small software products. The

waterfall life cycle has inherent problems that will be

discussed and addressed in the next chapter. The next

chapter also proposes a combination of CASE toolkit methods,

DoD STD-2167A requirements, and Information Engineering

approaches that should aid in easing the software development

crisis.

37

IV. DoD STD-2167A UTILIZING CASE

DoD STD-2167A allows developers to utilize whatever

software methodology that is productive for them as long as

it is documented in the Software Development Plan. The

opening sections of this chapter provide a discussion of the

problems inherent in SDLC methodologies and differences

between a development cycle and system life. A proposal of

how CASE tools can be integrated into the development cycle

for software being developed under the requirements of DoD

STD-2167A follows.

A. PROBLEMS WITH SDLC DZVELOPMENT

The first problem with SDLC methodologies is that they do

not promote interaction between the developers and users

after the analysis phase. Both SDLC and DoD STD-2167A

require that formal reviews be conducted at the completion of

the phases, but these reviews are usually conducted by

management, not the users. [Ref. 14:pp. 4-7]

The second problem with waterfall development life cycles

is they tend to use a bottom-up approach to implementation.

The system is not completed until all modules are

operational. DoD STD-2167A exemplifies this in the following

development approach: (1) CSU coding takes place, (2) CSUs

are tested, (3) CSC testing takes place, (4) CSCI integration

and testing take place. Each module is sequentially added to

38

an operational module attempting to test module interfaces

and requiring debugging at each module interface. By

employing a top-down approach of first coding and testing

interface modules with dummy modules performing the

operations of CSUs, the need for interface debugging would be

significantly reduced. Furthermore, the systems could be

incrementally installed with the modules that are

operational. [Ref. 19:pp. 47-56]

The third problem with waterfall development life cycles

is that there is a tendency to follow a sequential path [Ref.

19:p. 48]. Although DoD STD-2167A states that the contractor

may follow whatever methodology it wishes, if it is properly

documented, the completion of DIDs and their acceptance at

formal reviews precludes the developer from proceeding to the

next phase.

B. SYSTZM LIIM CYCLE

Proponents of life cycle development methodologies place

major emphasis on the process to be followed in developing

systems and software. The requirement to follow a procedure,

a development life cycle, to ensure continuity between steps

in a development project is the goal of SDLC. However,

software systems should be considered under the criteria of

both "how" the system is developed and "how long" the system

(system life) is supposed to fulfill its requirements. An

analogy will be used to explain the difference between

development cycle and system life.

39

Automobile manufacturers develop modes of transportation.

The engineers in charge of a project take a general concept,

the drivers requirement to get from place to place, and using

previously designed and newly designed parts, assemble them

into an automobile. The engineers second objective is to

meet the peripheral requirements of users: seating capacity,

leg room, acceleration, braking distance, etc. The engineers

will continue to use previously designed parts to create the

automobile and develop new parts only if required. The

automobile is prototyped and tested thoroughly prior to mass

assembly. This is a shortened version of the development

cycle of the automobile.

The user decides on which automobile to purchase based on

his requirements at the time. As the user's needs change and

parts wear out, the automobile is modified and corrected. If

the tires go bald, they are replaced with new tires. If the

user purchases a boat, a trailer-hitch is installed. When

the automobile can no longer provide adequate seating

capacity for the owner (two seat sports car with a new baby

in the family) or its frame rusts out, the automobile is

replaced. Although the automobile is no longer serviceable

to the user, miscellaneous parts of the automobile may be.

The old tires, headlights, radio and other salvageable parts

can be sold for use by another automobile. This is a

shortened version of the life of an automobile.

40

This analogy applies readily to software development.

When developing a software product, the engineer should be

able to use previously designed parts, software modules, and

data elements to fulfill the basic requirements of the user.

The software engineer continues to add parts until the

peripheral requirements are met and should only design and

build new parts if they don't already exist. After

thoroughly testing the assembled modules, the prototype, the

software should be placed into production.

The term prototype should be redefined more in line with

other engineering disciplines. A more suitable software

engineering definition might be: a completely working model

that meets user requirements and undergoes testing prior to

being placed in a production situation. As the term is

currently used, a prototype is more of a skeleton meeting

basic user requirements that will be refined, added to, and

built upon by more thorough analysis and design. Current

prototyping is design and modification through trial and

error, not development and testing.

The users' requirements will most likely change during

the product's life. These changes could be faster processing

requirements, new information needs, or reformatting. If the

changes are replacements for wornout modules, they should be

replaced with new modules. If the changes go beyond the

original specifications of the software or the changes can't

make the software perform user requirements, the software has

41

fulfilled its useful life and a new software system should be

designed.

Software life should be similar to automobile life. Just

as an owner of an automobile would check the specifications

prior to adding a trailer-hitch in order to pull a ten ton

yacht, the user of a software product (and the designer who

will create the modification) should check the specifications

of the software prior to adding upgrades. If a problem can

be corrected with new parts and the basic system requirements

are still being met (the "chassis" is sound), it will be

corrected. If the software no longer meets the user's basic

requirements, the usable parts will be salvaged for use by

other software products and a new software product developed

to replace it.

C. DEVZLOPMENT USING CASE AND DoD STD-2167A

The requirements of DoD STD-2167A are an excellent place

to begin creating a standard methodology for software

developers to follow. The rigors imposed by the standard

force developers to completely trace system requirements

through development and testing. By utilizing CASE tools, as

described in Chapter II, in the development process, many

functions that are required by the standard could be

automatically handled. Two scenarios of how CASE could be

utilized under DoD STD-2167A are described on the following

pages.

42

1. DoD STD-2167A using CASE with IRDS

Sharon Stanley describes in [Ref. 12] how Naval

Supply Systems Command (NAVSUP) and Naval Sea Systems Command

(NAVSEA) have utilized CASE tools to develop corporate Data

Dictionaries using Information Engineering methodologies.

The NAVSUP process of developing the Information Resource

Dictionary System (IRDS)4 , as the corporate Data Dictionary

is now known, continued to evolve with strategic policy

documentation completed and business area analysis still in

process until the departure of the Data Administrator at the

end of January 1989. No formal plans to utilize the IRDS in

software applications development now exists.

Figure 4-1 proposes how CASE tools with Data

Encyclopedias fit into the structured development cycle of

DoD STD-2167A. It also completes the cycle of how software

life should be accounted for by DoD STD-2167A.

Given an environment with a partially or completely

developed IRDS, software application development should be

easier. Since CASE tools rely heavily on having a Data

Encyclopedia, the IRDS becomes an integral part of the

development environment. To avoid redundant storage of file,

program, record, module, and element descriptions, many of

the definitions in the IRDS will be used in the project Data

Encyclopedia. The system designer will have to ensure that

4 Ref. 20 provides a detailed description of IRDS and
NAVSUP's development of their IRDS.

43

Development Cycle Software
Life

SRR

IRDS/

Data Encyclopedia

Study
SSR

4 TRR

Analysis

FQR

I I

Implementation

SPR - System Requirements Review
SSR - Software Specifications Review
TRR - Test Readiness Review
FQR - Final Qualifications Review

Figure 4-1. Proposed DoD STD-2167A Life Cycle Using CASE

44

selection of the CASE tools to be used will have import and

export facilities to the IRDS. It must be emphasized that a

major benefit of using CASE tools is the production of

documentation by the tool. To this extent, when selecting

CASE tools for use with DoD STD-2167A, several CASE products,

including NASTEC's CASE 2000/DESIGNAID and Index Technology's

EXCELERATOR, produce documentation for DIDs in DoD STD-2167A

format.

a. Study Activity

The first activity in development of a system,

the Study activity, is to get an understanding of what the

users need. Using a CASE development tool that documents

processes in the Data Encyclopedia in a Structured English

format, the analyst and user should assess the system

requirements, the policy as to what the system is to

accomplish, and the deficiencies inherent in the current way

of doing business. Using these elements, the analyst should

compare similar processes and user requirements in the IRDS

to find out if a system exists that can fulfill the goals.

The Study activity is a direct replacement for

the System Requirements Analysis/Design Phase of DoD STD-

2167A and will produce a System Development Plan. The SDP

will outline the methodology to be used and contain an

initial cost-benefit report. The SDP should be reviewed at a

System Requirements Review between developers, users and

management.

45

b. Analysis Activity

The Analysis activity in creating a software

system should rely on a detailed investigation of what users

need to fulfill their business requirements. Using a CASE

diagramming tool, the Analysis activity will rely on as its

starting point the organizations goals and constraints as

well as the SDP established in the Study activity as the

starting point. The analyst and users will develop a

complete logical model detailing an environmental and a

behavioral model. The environmental model details how the

system interacts with the other systems and with users. The

behavioral model specifies in complete detail what the system

does. [Ref. 19:pp. 82-87]

Behavioral model development should utilize

processes, data definitions, and relationships that were

previously defined in the IRDS or the development should

create processes, data definitions, and relationships that

were not previously documented. In either case, during

creation of the behavioral model, the model will be validated

against business policy.

Using the logical model and the SDP, the analyst

should develop new physical models for the user t- review.

The various new physical models will be evaluated at a System

Specification Review. The users and management will choose

between the options presented. Software Requirements

46

Specification and Interface Requirements Specification for

the chosen model will be accepted as the Allocated Baseline.

During this part of Analysis, the Design activity

will be overlapped because user, management, and operational

constraints will be introduced that will limit design

choices. The benefit of using a CASE tool will be that the

design constraints originated during Analysis will be carried

forward consistently into the next activity.

c. Design Activity

Using the Software Requirements Specification,

Interface Requirements Specifications, and the process model

stored in the CASE Data Encyclopedia, the design team should

decompose the process model into a structure chart of the

modules. The modules should be compared to modules stored in

the IRDS to take advantage of previous development efforts.

With prototype tools that format screens and

generate reports, the designers and users will design user-

system interfaces. The data elements that are displayed

within the prototype forms will be derived from data elements

stored in the IRDS. If not there, the IRDS must be updated

or the data element verified for accurate usage. Prototyping

tools that generate code should be avoided because the code

is specific to the application, is not modularized, and

frequently cannot be used in other applications without

significant modification.

47

Using CASE test generation tools, a set of test

scenarios should be designed. The test cases should stress

the system to ensure that it meets all performance criteria.

The cases should test all individual modules and all man-

machine or system-to-system interfaces. The test cases are

integrated into a coordinated testing plan that is stored in

the Data Encyclopedia as the Software Test Description for

use during the Code and Test and the Implementation

activities. The test cases should also be reviewed for

accuracy and completeness at a Test Readiness Review.

Acceptance of the testing program for the software design

signals the end of the iterative Analysis and Design

activities. At this point all software and interface

requirements must be met or deferred to new development

effort.

The Design activity may require further input by

users, management, and operations. It is important that all

data gleaned during design that is rightly attributed to the

Analysis activity be documented in the Data Encyclopedia,

exported to the IRDS, and updated in the System Requirement

and Interface Requirement Specifications.

d. Code and Test Activity

The developers initial responsibility in the Code

and Test activity is to determine the order in which to code

modules. Using a top-down approach, coding should start with

interface modules, as discussed in Chapter three. The

48

highest level modules will be coded and tested as CSUs. They

are then linked and go through integrated testing with lower

level modules as call and return dummy CSUs attached to the

upper level modules. Individual lower level CSUs will be

coded and tested for each internal action on the input data

ensuring the accuracy of the output data (white box testing).

When a CSU has completed testing, it is added to the upper

level structure as a black box replacing the dummy CSU. The

coding should be done with CASE application generators, and

all testing should utilize the previously developed test

cases. Completed modules should be exported to the IRDS.

When a skeleton system is complete, integrated

testing should be started. An informal user review at this

junction will enable designers to ensure that the interface

requirements have been met.

Modules are to be coded, tested, and added to the

skeleton system as completed. When the complete software

system is coded and has been tested thoroughly by the

developers, it should be tested on the actual destination

hardware in stead of similar hardware as DoD STD-2167A

requires. If possible, further testing of what is called the

prototype system should be accomplished by an independent

organization.

The DoD STD-2167A DIDs completed by this activity

will be the Source Code, Source Code Listing, Operation and

Support Documents, Version Description Documents, and

49

Software Product Specification. User training should start

when the completed system is given to the independent testing

organization.

e. Implementation Activity

The Implementation activity requires data

conversion from the old to the new system. Also, this

activity requires more user training. During this activity,

the user and developer should review the development

documents against the Software Development Plan and create a

Lessons Learned Document for storage in the Data

Encyclopedia. All elements in the Data Encyclopedia should

be reviewed and exported to the IRDS.

The final step in this activity will be to

conduct a Final Qualification Review. This review will act

as the formal acceptance of the prototype software system.

The acceptance of the software ends the development cycle.

When placed into operation, the software is no longer

considered the prototype, but the production model, and its

life cycle begins.

f. Operation

After implementation, DoD STD-2167A currently

considers the system complete. This perception is one of the

major drawbacks to the standard when considering that the

maintenance or Operation activity of a software product's

life is taking up to 80 percent of analysts' energies.

5o

DoD STD-2167A must address the Operation

activity. Since maintenance encompasses both error

correction and software upgrades, detected errors are to be

corrected. On the other hand, enhancements and changes in

user requirements must be cycled back through the Analysis

activity for verification that the system can be modified

with the constraints previously built-in.

Changes to the software system must be cycled

through the complete series of steps to ensure that

documentation is up to date. The IRDS will be enhanced as

business policies change, and the software system will

reflect those changes as long as the changes are implemented

by going through the complete cycle. This is basically the

concept of reverse engineering as examined in Chapter two.

The software will continue to serve a useful life

as long as changes can be made that allow it to function

under the requirements stated in the System Requirements

Document. As soon as the software can no longer be modified

under the imposed constraints or those constraints change,

the cycle must begin again at the Study activity. Due to the

continued expansion of the IRDS, subsequent development

activities will be able to utilize an increasing library of

software modules and data definitions. With the IRDS library

available, the Study activity should become similar to the

development of a new automobile - use old modules and data

51

definitions where applicable, create new modules where

needed, and assemble them into a new product.

2. DoD STD-2167A using CASE without IRDS

NAVSUP's experience developing and using an IRDS

suggests that initial use of CASE tools for software

development may be more successful without an IRDS. The

development of the NAVSUP IRDS has yet to contribute any

results to the overall operation in terms of operational

efficiency, cost savings, or increased software development

productivity. Therefore, over the three year period that

strategic planning and business policies have been

documented, IRDS development has been done with a constantly

decreasing budget [Ref. 20:p. 50].

In an organization without an IRDS, the activities

followed in developing software systems are no different than

those described for organizations with an IRDS. The

difference is in the initial approach to selection of

software projects and the use of the CASE data encyclopedia

as the backbone of the IRDS.

a. Study Activity

The first activity in development of a software

system is the Study activity. Without the benefit of an

IRDS, the organization must begin by utilizing a CASE tool to

initiate an Information Engineering approach to development

of the corporate IRDS.

52

Using the Data Encyclopedia as the first

iteration of an IRDS, the organization should document the

corporate strategy and develop a skeleton of its various

business policies. The analyst and management should select

a business activity that will be positively impacted by the

development of a new software system [Ref. 17]. The business

activity selected will be further studied and a single

software application chosen as a research project for

utilizing this development methodology. The analyst will

create an SDP with initial cost-benefit documents for the

project. The SDP should be reviewed at a System Requirements

Review between developers, users and management.

The success of the first project is at least as

important as the design benefits achieved by utilizing the

methodology. Its success will enable the halo effect to

encircle future projects.

The developers should choose a project that has a

high probability of success and the project should be able to

produce a useful software product in a short period of time -

six to nine months. Senior management should support the

project from its inception. The end users of the project

must have a stake in its successful outcome and must work

closely with the developers to avoid failure.

As an example of how not to approach a project,

NAVSEA's use of USER:Expert SystemTM CASE toolkit for

developing a corporate Data Dictionary was a failure in 1987

53

mainly because the project produced no useful end user

information and had little senior management support. As a

result, NAVSEA has yet to attempt another venture into the

use of CASE tools.

b. Analysis Activity

The Analysis activity will involve a detailed

investigation of what the users need to fulfill the business

requirements established in the Study activity. Using a

CASE diagramming tool, the analyst and users will develop a

complete logical model detailing the environmental model and

the behavioral model. The development of the behavioral

model will record data definitions, processes, and

relationships in the Data Encyclopedia which will become the

IRDS at a later date.

Using the logical model and the SDP, the analyst

should develop new physical models for the user to review.

The users and management will then choose between the options

presented. Tcftware Requirements Specification and Interface

Requirements Specification for the chosen model will be

accepted as the Allocated Baseline at a System Specifications

Review.

c. Further Activities

The activities that follow the Analysis activity

in the development cycle will proceed exactly as described in

sections (c) through (f) of DOD BTD-2167A using CASX with

IRDS. However, each time the IRDS is mentioned the term Data

54

Encyclopedia could be substituted. Subsequent development

projects will add to the Data Encyclopedia or utilize

previously stored Data Encyclopedia information. The

continued utilization of a single Data Encyclopedia system

will allow the organization to develop an integrated IRDS.

D. SUDMARY

DoD STD-2167A can be tailored to meet the methodology of

the software developers. By using CASE tools with DoD STD-

2167A, the software development cycle can be impacted. CASE

tools that produce DIDs readily fit into the standard.

Use of CASE tools with DoD STD-2167A enables

organizations to utilize the elements of an IRDS and verify

the contents of the IRDS. If an organization does not have

an IRDS in place, using CASE tools in the development of

their software systems can help them to develop an IRDS.

Flaws in DoD STD-2167A that hinder user-developer

interface are negated by the use of CASE tools throughout the

development cycle because users and designers are in constant

contact analyzing the system and reviewing the way it is

designed. Problems with the bottom-up design and

implementation are addressed by CASE tools that automatically

create structure charts from design diagrams. This allows

the designer to choose a top-down coding and implementation

scheme. Problems with sequentially following a pattern are

reduced by ensuring that all development efforts conform to

55

data contained in the Data Encyclopedia and are verified

against Software and Interface Requirements Specifications.

The life of software products is addressed by introducing

CASE tools to DoD STD-2167A. Data maintained in the Data

Encyclopedia becomes the nucleus to control software during

the Operation activity.

56

V. CONCLUSIONS

A. DoD STD-2167A AND CASE

This thesis has covered the background of DoD STD-2167A,

the Systems Development Life Cycle, and Computer Aided

Software Engineering tools. A tailored version of DoD STD-

2167A has been proposed in Chapter IV that will allow the

successful integration of CASE tools into the methodology.

DoD STD-2167A and SDLC rely on following a structured

procedure to develop software systems. The use of waterfall

development techniques depend on following structured

analysis, structured design, and a step-by-step approach to

bottom-up development, testing, and implementation.

The proposed tailoring of DoD STD-2167A favors the top-

down approach to development and implementation endorsed by

Ed Yourdon [Ref. 19:pp 42-64]. Top-down development will

allow all interface modules to be developed and tested first.

It also will provide for implementation to be done on an

incremental basis, because the skeleton system can be

installed before all opera-ional modules are completed by

using dummy modules in the place of operational modules.

Integrated testing is accomplished using the skeleton system

interfaces to outside systems. As the lower level modules

are completed they will replace the dummies without having to

go through another integrated testing procedure.

57

DoD STD-2167A and SDLC are both considered successful

approaches to software development, yet there remains a large

backlog in unfinished software development projects. Success

of the waterfall methods is largely measured by empirical

studies of user satisfaction and a backlog that is increasing

at a slower rate than the increase in demand for new

software.

DoD STD-2167A is encumbered by the requirement to

completely document the traceability of software modules to

the software development requirements. The documentation

involved includes the completion of Data Item Descriptions

that are examined and audited at formal developer/management

reviews. CASE tools that automatically generate the

documentation in the required format should produce

development time shrinkages.

CASE tools are touted to increase productivity through

consistent application of a single methodology throughout the

development cycle of software products. They will achieve

greater improvements in productivity and quality once CASE

tools are integrated and designers rely on a single Data

Encyclopedia for all development efforts. The Data

Encyclopedia will either become the basis for organization

wide Information Resource Directory Systems (IRDS) or will be

able to draw from the IRDS to ensure consistent application

development that reflects the corporate strategy and business

policies.

58

The proposed tailoring of DoD STD-2167A in Chapter IV to

incorporate CASE tools is consistent with the intent of the

standard to modify it to make use of modern productivity

tools. An operational activity has been added to the

proposed standard to allow modification of completed

applications, but requiring that the modifications be

consistent with the business policies and system requirements

that are stored in the IRDS.

B. AUTOMATZD TAILORING OF DoD STD-2167A

The Joint Logistics Commanders Joint Policy Coordinating

Group on Computer Resource Management has entered into a

licensing agreement with Logicon, Inc. to develop an

automated means to tailor DoD STD-2167A. TailorTM is

available free of charge to authorized DoD users.

Tailor'sTM main strength is that it allows users to

tailor DoD STD-2167A by proceeding through a series of menu

driven questions designed to consistently apply the nearly

250 requirements. Its secondary strength is that it reduces

the time required to tailor DoD STD-2167A from two weeks when

done manually to two hours when done with the software.

Tailor's TM major weakness is that it specifically addresses

only the functional paragraphs of the standard and does not

guide the user on how or where to apply productivity

improvement tools such as prototype generators and CASE

tools.

59

C. AREAS FOR FURTHER RESEARCH

1. Test of Proposed DOD STD-2167A

The proposed tailoring of DoD STD-2167A to include

CASE tools could significantly impact organizations that

develop software under the constraints of the standard. When

CASE tools become true I-CASE toolkits, the Data Encyclopedia

will become one of the major information depositories of the

organization.

Fleet Numerical Oceanagraphics Center, Monterey

California (FNOC) has been investigating a specific tailoring

of DoD STD-2167A to their organizational needs. Further

research on how the proposed tailoring of DOD STD-2167A to

include CASE tools would be applicable to FNOC is encouraged.

2. British Aerospace Australia

CASE tools are currently being utilized on a real-

time system development for the Royal Australian Navy. The

project is contracted to British Aerospace Australia, and the

contract stipulated that the development follow DoD STD-

2167. John Viskic of British Aerospace will be conducting

post-project analysis of productivity improvements on

completion in August 1989. The results of the analysis could

be made available to assist in further research on how CASE

should be utilized under the constraints of DoD STD-2167A.

3. Productivity Measures

It has been contended that CASE tools will incrcase

the productivity in software development and quality of

60

software products. A significant problem is that measures of

productivity and quality are used by very few corporations

[Ref. 7]. A significant number of metrics have been proposed

to capture the productivity and quality information, but the

historical data base of previous development efforts on which

to make comparisons does not exist.

The initial means by which measurement of CASE

productivity improvements will have to be made is against

estimates of the project development effort, ie., "Was the

project completed on time? Were there fewer errors than

estimated?". When a project is started using CASE tools, it

will be imperative that the developers maintain project

measures in the Data Encyclopedia as part of a project data

base. The only means by which comparisons on productivity

and quality improvements can be made is to ensure that during

development all projects maintain a project data base.

Further research is required in the areas of

productivity improvement and quality improvement by

developments using CASE. Measurement standards need to be

applied to test cases for development efforts using and not

using CASE.

4. Expectations for CASE

The initial impetus of this research effort was to

explore what end-users should expect from applications

developed using CASE tools. The problems encountered by the

author included:

61

1. Most organizations contacted, if using CASE, were using
it on an experimental basis.

2. CASE tools are very expensive to purchase and considered
luxury items.

3. CASE technology is changing rapidly and organizations
don't went to be purchasing a product that will be
antiquated before they have recovered their investment.

4. CASE tools are not integrated to a large enough extent
to allow the transportability of software design
information through the entire life cycle.

As CASE tools become more prevalent in software

development, further research is required to answer how CASE

will effect the products delivered to the end-user. The end-

user should be able to understand whether using CASE will

produce a higher quality software product, whether the

product will be delivered in a timely manner, and most

important whether the product will solve his business needs

and contribute to the corporate strategy.

62

LIST OF RFZRENCES

1. Martin, James, "CASE & I-CASE," High-Productivity
Software, Inc., Marblehead, Massachusetts, 1988.

2. Mosley, Daniel, "CASE Tools: The Future of Applications
Development," ShowCASE Conference III, The Center for the
Study of Date Processing and The School of Technology and
Information Management, Washington University in St.
Louis, Missouri, St. Louis, Missouri, 19-21 September
1988.

3. Martin, James, "The Future of CASE Technology," ShowCASE
Conference III, The Center for the Study of Data
Processing and The School of Technology and Information
Management, Washington University in St. Louis, Missouri,
St. Louis, Missouri, 19-21 September 1988.

4. Boehm, Barry and Standish, Thomas, "Software Technology
in the 1990's: Using an Evolutionary Paradigm," IEEE
Computer, Vol. 16, No. 11, November 1983.

5. Sprague, Ralph and McNurlin, Barbara, Information
Systems Management in Practice, Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

6. Necco, Charles, Gordon, Carl, and Tsai, Nancy, "Systems
Analysis and Design: Current Practices," MIS QUARTERLY,
Vol. 11, No. 4, December 1987.

7. Jones, Capers, "The Cost and Value of CASE," ShowCASE
Conference III, The Center for the Study of Data
Processing and The School of Technology and Information
Management, Washington University in St. Louis, Missouri,
St. Louis, Missouri, 19-21 September 1988.

8. Pressman, Roger, Software Engineering, A Practioner's
Approach, McGraw-Hill Book Company, New York, New York,
1987.

9. Wallace, Steve, "Methodology: CASE's Critical
Cornerstone," Business Software Review, Vol. 7, No. 4,
April 1988.

63

10. Merlyn, Vaughan, "The Impact of CASE on Quality,"
ShowCASE Conference III, The Center for the Study of Data
Processing and The School of Technology and Information
Management, Washington University in St. Louis, Missouri,
St. Louis, Missouri, 19-21 September 1988.

11. Gane, Chris, "The Impact of Expert Systems Technology on
CASE Products," ShowCASE Conference III, The Center for
the Study of Data Processing and The School of Technology
and Information Management, Washington University in St.
Louis, Missouri, St. Louis, Missouri, 19-21 September
1988.

12. Stanley, Sharon, Information Engineering in the
Department of Defense: Two Case Studies, Master's Thesis,
Naval Postgraduate School, Monterey, California,
September 1988.

13. Fisher, Alan, CASE, using Software Development Tools,
John Wiley & Sons, Inc., New York, New York, 1988.

14. Hanner, Mark, "CASE TOOLS Productivity for the Masses,"
DEC Professional, Vol. 7, No. 12, December 1988.

15. Brooks, Frederick, The Mythical Man Month, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1975.

16. Bachman, Charlie, "A CASE for Reverse Engineering,"
DATAMATION, Vol. 34, No. 13, July 1, 1988.

17. Shultz, Scott, "CASE as a Strategic Weapon," ShowCASE
Conference III, The Center for the Study of Data
Processing and The School of Technology and Information
Management, Washington University in St. Louis, Missouri,
St. Louis, Missouri, 19-21 September 1988.

18. Department of Defense Military Standard DoD STD-2167A,
DEFENSE SYSTEM SOFTWARE DEVELOPMENT, 4 June 1985.

19. Yourdon, Edward, Managing the System Life Cycle, Prentice
Hall, Englewood Cliffs, New Jersey, 1988.

20. Barber, Mark and Richey, Paul, NAVSUP DA:Planning and
Implementation, Master's Thesis, Naval Postgraduate
School, Monterey, California, March 1989.

64

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6154

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Computer Technology Curricular Office, Code 37 1
Naval Postgraduate School
Monterey, California 93943-5000

4. Department of Administative Sciences 1
Naval Postgraduate School
Professor Barry A. Frew, 54Fw
Monterey, California 93943-5000

5. Department of Administative Sciences 1
Naval Postgraduate School
Professor James E. Suchan, 54Sa
Monterey, California 93943-5000

6. Fleet Numerical Oceanagraphic Center, Code 008 1
Monterey, California 93940

7. Naval Data Automation Command 1
Washington Navy Yard
Attn: LT Gary Batt
Washington, D.C. 20374-1662

65

