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IDENTIFICATION & SIGNIFICANCE OF THE PROBLEM OR OPPORTUNITY

The purpose of the proposed effort is to develop algo-
rithms for the automated design optimization of physical systems
(models) governed by partial differential equations (PDE's).
The types of systems motivating the present effort are repre-
sented by the following two problems.

First Problem: electrode design optimization for lasers and

switches, in 2D and 3D.

Second Problem: airfoil (2D) and wing (3D) design optimization.

The more immediate motivation is prompted by our previous
work on the ELF codes (Refs. 1-5). These are user-interactive
codes which calculate the electric field strength and related
variables (e.g. energy deposition) in the cavity of lasers,
pulsed power switches, and other electric field devices, using
highly accurate boundary fitted coordinates and solution
adaptive grid generation. These design tools allow the designer
to perturb the device operating parameters and electrode shapes,
producing 2D and 3D, steady or time-dependent solutions. The
shapes are parameterized by a flexible family of blended super-
ellipses, modified by blends with elementary circular arc elec-
trodes and C' perturbations used for local field shaping. The
ELF codes were developed over a five-year period, with principal
funding from AFWL and AFOSR. They incorporate many of the
adaptive grid algorithms developed under previous AFOSR funding
(contract F49620-84-C-0079) and in fact have served as a test
bed for these algorithms (Refs. 6-9). (See also list of publi-
cations of the proposed P.I.) The SDI Power Consortium centered
at Auburn University has recently acquired the latest version of
these codes, extended to include interior dielectrics, and is
acting as a beta test site prior to full commercialization.

Six commercial sales of an earlier version already have been
completed.)

The second problem, airfoil and wing design optimization,
will be attempted in Phase II of this proposed work for only the
low Reynolds number flow airfoil design in the cruise regime.
The subject of low Re airfoils is enjoying a resurgence of
interest from a range of possible applications, as witnessed by
the recent conference proceedings edited by Mueller (Ref. lo).

The ELF codes are highly valuable design tools, but still
require the intelligent user to obtain solutions for a variety
of problem parameters, and to compare and interpret results from-
many calculations, in order to arrive at a design. It is diffi - r
cult and time-consuming for the designer to systematically
perform such a study, and we suspect that the designs so arrived
at, while significantly improved over those obtained by tradi-
tional methods (and certainly more reliably analyzed), are still
far from optimum. We propose to develop and test algorithms for
automated design optimization using these codes.

The human user will still be the "designer" in the sense Code~s
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of choosing the general configuration and desired operating
characteristics of the device. But once the configuration and
objective were determined, the algorithms will optimize the
design within the configuration limits. (We are not proposing
an "expert system" to aid in this initial configuration study,
during Phase I, but we perhaps will propose development of a

simple expert system in the latter part of Phase III.)

The automation of the design optimization process is
extremely important for any codes like these. While ELF is a
powerful design tool for the laser designer, experience shows
that the power of its analysis capabilities is difficult to
exploit fully because of human limitations. While a human being
can effectively optimize in one design parameter about an
initial design point, he rather quickly saturates as the number
of design parameters increases. For design optimization in an
n-dimensional design parameter space with n 1 30 (say 20
electrode geometry parameters and 10 more for laser physical
characteristics), the designer is lost.

This situation is not unique to electrode design, of

course, but applies to most fields of high technology, where
powerful computational tools for analysis have been developed,
but the optimization aspects of the analysis/design loop remain
primitive or limited. In the area of transonic airfoil design,
a solution constrained problem exists when a limit is placed on
the local maximum Mach number; this problem has been
successfully attacked by elementary parameter search techniques,
but is feasible only for 5 or 6 parameters at most; Ref. 11.
(The situation is aggravated for any highly integrated design;
the most extreme example of which is the National Aerospace
Plane.)

The automation of the search is, first of all, very
demanding on the numerical techniques used. Each search point
requires the solution of a 2D or 3D, possibly time-dependent,
nonlinear PDE, preceded by the grid generation problem.
Obviously, computational speed is required, yet speed must be
sacrificed for robustness if these two desiderata are mutually
exclusive. This consideration bears on the selection both of
algorithms and of numerical tuning parameters for them, e.g.
relaxation parameters, continuation methods, etc. Automatic
truncation error convergence testing is also highly desirable,
though perhaps not entirely necessary. These objectives suggest
a multigrid approach for the solution methods.

Assuming for the moment that all these requirements can
be met, we still have a difficult non-classical problem in
nonlinearly constrained optimization which we describe as "solu-
tion constrained optimization". In a classical constrained
optimization problem, we maximize some user-defined payoff
function subject to linear or nonlinear constraints on the
independent variables of the problem (such as the packaging
constraints in the present problem class). But in our case, the
optimization problem involves constraints on the solution or
functionals of the solution itself, as well as constraints on
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the independent variables.

For example, we solve the analysis problem using the ELF
codes by solving, in completely general non-orthogonal boundary
fitted coordinates, for the potential 4 from the nonlinear
elliptic equation,

Y (r Y 4) = O

where r is the conductivity, usually a nonlinear function of the
electric field strength E = ;V 4: and other external parameters
such as external ionization source strength (possibly itself a
function of time), position, gas mixture, etc. The design
optimization problem is then stated as follows. Subject to the
(usual, classical) packaging constraints of geometry, we wish to
vary the parameters of the electrode shape and ionization source
in order to match some desired, user-specified solution func-
tional such as energy deposition

D(x ,y,z) = w(x,y,z)zE(x,y,z)2

subject to a constraint on another solution functional, e.g.

maximum of E(x,y,z) < ELIM

where ELIM is some specified limiting maximum electric field
strength to avoid streamer formation (i.e. spark breakdown).
Whereas the classical constrained optimization problem involves
optimizing some functional of the dependent variable 4(xyz)
while constraininci the independent variables (x,y,z), the
present problem irvolves optimizing some functional of 4(x,y,z)
while constraining yEc another functional of I(x,y,z), as well
as (x,y,z).

This type of problem is little known in mathematical
papers and books on optimization, but is in fact prototypical of
many engineering design optimization problems. (Some previous
studies related to this problem are reviewed below). Fortu-
nately, it has been addressed rigorously and the field has been
recently summarized by E. Polak (Ref. 12) of the Univ. of
California at Berkeley, who has also developed a software imple-
mentation of his algorithms called DELIGHT. We consider this
work to be of signal importance for the future of all engineer-
ing design optimization. Prof. Polak will be the principal
Consultant on this proposed work.
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PHASE I TECHNICAL OBJECTIVES AND TASKS

The Phase I proposal itemized the following seven tasks.

Task 1.

Installation of the DELIGHT optimization system and
algorithms onto the Ecodynamics computer system and general
familiarization.

Task 2.

Development of a stripped-down 2D version of ELF (ELFO)
with the removal of many algorithmic options (e.g. solvers,
grid generators, initial condition generators, etc.) and
physical options (transients, externally applied circuits,
nonlinear conductivities, internal dielectrics, etc.).

Task 3.

Development of algorithms and codes for the simplified
ELFO code for the evaluation of partial derivatives of
solution functionals with respect to design parameters by
secant evaluations about a baseline case; this work includes
examination of the scaling problem to avoid swamping of
secant accuracy by round-off error and incomplete iteration
error.

Task 4.

Incorporation of the above simplified ELFO with secant
evaluations into DELIGHT to create DELIGHT.ELFO.

Task 5.

Exercise of the DELIGHT.ELFO system to evaluate accuracy
and efficiency; refinement of algorithms; likely publication
of new optimum electrode shapes for vacuum operation with
realistic packaging constraints.

Task 6.

Formulation of the approach for more computationally
intensive problems (nonlinear conductivities, transient and
3D cases, airfoils) including preliminary study of incor-
porating a multigrid search algorithm (with increasing
resolution as the optimal condition is approached), and
computer time projections for pre-determined levels of
accuracy with considerations of increased computational power
(Cray-2 and/or 16 processor Sequent).

Task 7.
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Overall detailed plans for implementation in Phase II;

preparation of final report and Phase II proposal.

PHASE I PROGRESS

The progress in the Phase I effort was very painful and
irregular. Some of the early tasks were never accomplished
but were superceded; in the end, the results of the Phase I
study substantially exceeded the proposal, both in the
difficulty of the specific problems solved and in the
generality of the approach developed. After a difficult
period at the bottom of the learning curve, the Phase I study
clearly demonstrated the capability for optimizing realistic
nonlinear problems, and developed the methodology for a
general approach which does not require subroutinizing the
PDE codes.

Significant software problems were encountered with the
transfer of technology from the Consultant to Ecodynamics.
During the initial trip by the Principal Investigator and the
Senior Scientist to the Consultant's offices at Berkeley, the
PI and SS benefitted greatly from essentially tutorial
sessions with the Consultant. These discussions made it
clear that our originally proposed task of converting
DELIGHT.MIMO to our electric field problems was ill
conceived. We did obtain a code utilizing the intended
algorithms, in the hope of using that as a-template for
developing our own.

The first task was to convert this code to our computer
systems at Ecodynamics and to interface it with our new
Fortran codes. The candidates were a Sun using UNIX, an Acer
(80386/7) using UNIX, or a MicroVAX using VMS. The code was
written in C, and we did not have a C compiler on the
MicroVAX. The machine of choice, by virtue of its dedicated
use and speed, seemed to be the Acer. The programmer
assigned the task of code conversion was quite familiar with
Fortran, expert in data base systems, and conversant with
UNIX and C. However, difficulty was experienced from the
beginning.

Although some parts of the code yielded quickly, others
became more and more convoluted. The SUN was invoked, and an
expert consultant in C was brought in. It became clear that
the C coding used in the driver was very non-standard and
esoteric. The original code involved some 2000 lines of C
code, and about 350 lines of Fortran interface. The Fortran
interface could be used for elementary problems with simple
algebraic expressions for the objective and constraint
functions, but the "function" structure in non-standard C
(involving extensive use of pointers) could not be extended
to our goal of using a separate PDE code to evaluate
objective and constraint functions. The method used was
excellent for the original application of the Consultant, but
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was orthogonal to our intended use with the ELF PLE code.

Arriving at this conclusion was made more difficult
because of our lack of real expertise with C, the non-
standard C practices used, and LPI C compiler errors on our
system. There were problems with pointers, global variables,
passing procedure names from Fortran to C, and getting the
Fortran set-up to mesh with the C method. In a desperation
effort, the programmer resorted to an attempt to convert all
the code to C, with the intention of then re-writing the
entire code in a more standard C structure and later
converting it all to Fortran; this was finally judged
impractical.

This frustrating experience used up a major portion of
the Phase I time and budget; with some difficulty, the
decision was made to drop the approach entirely, and a new
approach was undertaken.

Retaining only the core C code for the quadratic
minimization routines, the Consultant wrote a new
optimization code and sample driver using the language of
MATLAB. This was transferred to the Senior Scientist, who
again had some difficulty getting it to run on the SUN, due
to a significant change (really a reversal) in MATLAB syntax
between the Consultant's MATLAB and our (older) version.
Using MATLAB and a lingua franca to completely and
unambiguously specify the algorithm, the Senior Scientist
then translated this to a FORTRAN 77 code. We then had a
model problem and code running on the SUN, and successfully
converted it to the Acer.

We then proceeded to exercise the model code, and to
pare it down to an even simpler problem with an obvious
geometric interpretation. Various enhancements were made to
the code, including use of iterative convergence criteria (on
both the objective function and the parameter variation)
instead of a fixed number of iterations, user-interactive
problem specification, modularization and generalization of
objective and constraint function evaluations, etc. These
developments proceeded smoothly, with some errors due to the
case-sensitivity option of the Fortran 77, necessitated by
the use of mixed Fortran 77 and C code (for the quadratic
minimization modules), C being inherently case sensitive.
Also, the code development was difficult because the use of
mixed C and Fortran code modules disabled the debugger in the
LPI compilers.

In December 1988, progress was at last encouraging. We
succeeded in learning about the actual performance of the
algorithm on model problems. However, as the code
development continued, adding simple but useful extensions
(such as evaluating and outputting the number of gradient
evaluations, extending modularity in anticipation of
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numerical gradient evaluations, etc.) we reached a point
where the entire code broke down, for no evident reason.
From the beginning, we suspected a compiler error, but were
unable to pin it down. We dropped back to an earlier
version, built up the enhancements from a slightly different
path and different code structure, and again made good
progress until a certain level of code size or complexity was
reached, at which point the entire code again broke down.
The type of errors seemed to indicate segmentation problems,
with innocuous operations (e.g. PRINT statements in the main
program) destroying entirely local variables in subprograms.
A third attempt was made to build up from a slightly
different code architecture, and again the code broke down at
a point close to the target.

Due to budgetary constraints and other time commitments
for the Ecodynamics personnel involved, the work was
abandoned for some time. However, during the conversion to
the Acer UNIX machine of a related code (the ELF electric
field codes previously developed by the PI and intended to be
used as the prototypical PDE problem in this optimization
work) a small but strange problem was observed. Most of the
conversion was straightforward, but a single minor option
(involving a first order correction to E-field due to applied
external magnetic fields) would not work, and produced a
random behavior reminiscent of our earlier optimization
difficulties. The programmer was able to isolate the error
in a simple model code. The LPI Fortran 77 was not retaining
purely local variables (i.e., not in argument lists or COMMON
blocks) in subprograms, unless they were contained in a DATA
statement. We then found a compiler option in LPI Fortran 77
(the -saveall option) which corrects the error.

It turns out that this treatment of local (stack)
variables as dynamic, rather than static, is part of the ANSI
Fortran 77 standard. We treat this as a compiler error, and
are of the opinion that it is a prime example of the harm
caused by unstable language standards. It is not the
standard on the SUN Berkely 4.2 UNIX F77. It of course is
not the standard in Fortran 66 or any of its predecessors.
It saved only a little storage, which is a concern curiously
out of date. (It would have made more sense as the standard
20 years ago for small memory computers, but makes no sense
now.) It is the standard in C and possibly other languages.
Its capacity for harm in scientific programming is enormous.
In the present case, it very nearly defeated the entire
effort.

Once this compiler error was discovered and corrected,
we made a last ditch effort on the project. We had proposed
to develop a stripped down version of the 2D ELF codes, to be
set up in a subroutine, which would be called by the
optimization code. We then intended to pursue a slow and
orderly progression of the problem difficulty. Shortly
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before the initial meetings with the principal Consultant,
the Principal Investigator and Senior Scientist met with the
Consultant on electrode physics, W. M. Moeny. This team
defined candidate optimality and constraint conditions for
the electrode problems (see below).

However, the work done in chasing non-standard C-
constructions, interfacing with Fortran, computer system
conversions, and both C and Fortran 77 compiler errors had
caused much more of our budget to be spent on programming
support, and had used up most of the time and money on the
project, with only a model geometric problem resulting. It
clearly was not feasible to build a stripped down and
subroutinized ELF code, and pursue the orderly development.
We decided instead to tackle, at the eleventh hour, a more
difficult problem which originally we had proposed addressing
only in the Phase II effort, namely shape optimization of
realistic electrode families including strong nonlinearities.

The (forced) utilization of mixed Fortran 77 and C.codes
had provided us with the capability of C to execute other
processes. We configured our Fortran 77 optimization code
modules which evaluated objective and constraint functions
and gradients to write the search parameters to a file, then
call a C subprogram, which in turn executed an ELF code. The
ELF code read the parameters from the file, generated the
boundary fitted coordinate system, obtained the solution to
the PDE's, etc. The ELF code was also modified to evaluate
numerically the objective and constraints functions, and
write these to another file. Execution then proceeded back
to the C code module, back to optimization, which then read
the objective and constraint function values resulting from
the last set of parameters. A flag was set by the
optimization code at the beginning of each iteration in the
file which is later written by the ELF code; if the ELF code
did not successfully terminate and overwrite this flag, the
optimization code then terminated.

The optimization code had to be converted to evaluate
the gradients numerically, rather than analytically. This
was done initially on the geometric model problems. The
development went quite smoothly, and the results were quite
good. However, we did learn what we might have anticipated;
that the numerical noise asso,.iated with the gradient
evaluation is not a problem early in the search (where in
fact it often converges slightly faster than the analytical
evaluation) but does lead to erratic and expensive wandering
when the solution is approached and the convergence
tolerances have been too casually set to unnecessarily low
values.

At the same time that the numerical gradient evaluation
was being developed, the programmer on the project converted
the full 2D ELF codes from their original interactive design
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to run under batch (obviously necessary for the optimization
code to drive the ELF code without human intervention). This
was accomplished using FORNAME, an Ecodynamics proprietary
Fortran portable version of NAMELIST. (NAMELIST is not
available on all Fortran compilers, e.g. Cray compilers, and
is not covered in ANSI standards.) FORNAME reads input data
from a user-written file which includes extensive
documentation and which can be edited by any screen editor at
hand. FORNAME was used to set up the base case parameters
and the many other problem parameters which were not part of
the optimization search, e.g. the nonlinear conductivity
model, PDE solution algorithm options, options for cartesian
or axisymmetric or radial geometries, etc. (The optimization
search parameters are written by the optimization code not to
a FORNAME file, but to a standard data file.) Some
experience with the physical problem is required in this
selection of a base case, as with the selection and
definition of optimality criteria and constraint conditions.

PHASE I RESULTS: CANDIDATES FOR OPTIMALITY CRITERIA FOR THE
ELF CODES

The following are candidates for optimality criteria for
design optimization studies using the ELF electric field
codes. These criteria are for the long range problems, and
include not only the variable conductivity problem initially
investigated in Phase I, but also interior- dielectrics,
singular problems, etc. The list is not exhaustive; indeed,
the power of the proposed optimization methods is that the
optimiality criteria and constraints can be tailored to the
specific scientific or engineering application at hand.

1. The optimization codes can be benchmarked by searching
for the solution for the Rogowski electrodes. This problem
haf an analytic solution based on potential theory, generated
by two straight electrodes, one infinite in extent (ground
plane) and the other semi-infinite (in the left half-plane).
The Rogowski electrode surface is that equipotential line
which gives an enhancement factor EF = 1, where

EF = JElmax / nominal IEI

M Igrad Olmax / (Oanode - Ocathode) / gap

It may be formulated as an optimization problem where
the cost function to be minimized is the value of the
conformal variable normal to the electrode surface in the
conformal system subject to the constraint of not exceeding
EF = 1. This is a non-classical constrained optimization
formulation since the constraint is on a functional of the
solution.

The cost function may be evaluated analytically without

any numerical solutions of PDE's required. (A Newton-Raphson
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numerical solution for the analytical inverse may be
required, but it is still economical.) This problem may be
built up to incude numerical solution of PDE's on the
conformal grid, and then to grid generation and non-conformal
far-field boundary shapes and boundary conditions, to study
the interaction of these truncation errors and modeling
errors with the optimiza-tion search by reference to the
analytical problem.

2. Minimize jEmaxf with exceeding a specified packaging
(circumscribed box) volume. This is the most common present
use of the ELF codes, with applications to a wide range of
laser and switch problems. It can be demanding of the human
designer, but a reasonably satisfactory quasi-optimization
can usually be achieved. For a specified package (not just
package volume, but all package dimensions) this is a
classical con-strained optimization problem since the
constraint is on the dependent variables.

3. Minimize packaging volume (circumscribed rectangle). or
actual electrode volume (and therefore weight) without
exceeding a specified JEJmax. This is the second most common
application of ELF, with applications to a wide range of
laser and switch problems, and is becoming more common. It
is much more de-manding of the human designer, and is not a
classical con-strained optimization problem since the
constraint is on a functional of the solution. this is an
excellent candidate for a significant practical application
of the Phase I effort.

4. Same as #3 but with constraints not on volume but on
dimensions (L, H, or L/H). This formulation has applications
to an [Army] project for a Compact Light Weight Repetitive
Pulsed Power (Laser) System.

5. Field Shaping Problems. Along a user-specified line in
the space of the laser/switch cavity, match a target
distribution of a specified solution variable. The possible
variable distri-butions to be matched are JEl, electron
number density ne, conductivity _, and Power Output = JE =
E**2. Applications are to UV or E-Beam sustained High Energy
Lasers.

6. Complications such as time-dependence and moveable
electrodes would introduce weighting into the optimality
criteria, and would be expensive. These are not foreseen in
our Phase II study using ELF, but are feasible for Phase III
applications.

7. Complications such as interior dielectrics, externally
applied magnetic fields, tensor conductivity, more geometric
parameters, etc. will complicate the solutions and likely
affect the conditioning, but are not expected to alter the
optimality crit.eria. These will be considered in Phase II.
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8. Other optimality criteria such as local electron
avalanching are too tenuous to consider at the present time,
but are also feasible for Phase III applications.

PHASE I RESULTS: ELECTRODE DESIGNS

The optimization search is of course demanding on the
robustness of PDE algorithms, both for grid generation and
hosted equation solutions. Such PDE codes are more robust
for fine grid resolutions (grid generation failures can occur
when boundary features are not adequately resolved) but these
of course are much more expensive. For demonstration
purposes, we considered only problems with smoothly varying
solutions, and discretized these in a modest llxll grid.
More accurately resolved problems, say in a 101xl01 grid,
will of course require at least a factor of 100 increase in
computer time (more if non-optimal PDE methods are used).
However, the robustness is more challenged at coarse
resolution, and we consider these feasibility demonstrations
to be very convincing.

The physical problems and the ELF codes are described in
detail in the reprint included as Appendix A. (The ELF codes
have more recently been extended to include interior
dielectrics including surface charge and surface
conductivity, and time-dependent space charge.) The
principal features of the three optimization problems are
generally described as follows.

Problem 1. Rogowski family of electrodes (2 free
parameters), linear PDE (vacuum solution), 3 constraints.
The field equation solved is just Laplace's equation in
cartesian coordinates for potential, tranformed to non-
orthogonal boundary fitted coordinates. (See reprint in
Appendix A for details. For this problem, the generation of
the boundary fitted coordinate system is more difficult than
the solution of the PDE on it.)

The objective is to minimize the packaging volume
(circumscribed rectangle) of the upper electrode, subject to
two geometry contraints on the electrode shape parameters
(classical constraints) and one on a functional of the
electric field (non-classical solution constrained
optimization); namely, that the enhancement factor == ratio
of maximum (over the cavity volume) of the electric field
strength to the nominal electric field strength (applied
potential difference divided by electrode gap) not exceed a
user-specified value, in this case, 1.35. That is, the field
enhancement due to electrode shapes should not exceed 35%.

The physical constraints on the geometric electrode

parameters were such that the constraints were active at
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solution, i.e. the minimum occured on a constraint boundary.
With the convergecne tolerances set to 0.003, this
search required 13 function evaluations and 4 gradient
evaluations.

Problem 2. Same as problem 1, but with the geometric
electrode constraint modified so that the constraints were
not active at the solution, i.e. the solution was the same as
the unconstrained problem.

This search required 14 function evaluations and 5
gradient evaluations.

Problem 3. Same as problem 2, but with the nonlinear
conductivity turned on. The elliptic PDE being solved is now
a nonlinear Poisson equation with nonlinear conductivity This
involves an external source of ionization from an electron
beam gun, involving exponential spatial decay of the source
term, a table look up of Boltzman equation solutions for. the
particular gas mixture used, and implicit solution at every
point in the PDE grid of an ODE for electron number density,
nonlinearly coupled to the PDE field equation through
dependence on the local (grid point location) value of the
electric field = grad (potential).

This search required 16 function evaluations and 6
gradient evaluations. Sample plots of the solution are shown
below.

Problem 4. Linear problem in radial coordinates (with y-->r)
and the electrodes defined by blended super-ellipses further
blended with an elementary electrode. (See reprint in
Appendix A for details.) This problem involved 7 free
parameters and 13 constraints.

The objective and constraints were interchanged compared
to the earlier problems. The constraints involved a minimum
useable volume of the lasing cavity and a maximum electrode
volume, and the objective is to design the end of the
electrodes (via blended super-ellipses further blended with
elementary electrodes) so as to minimize the E-field
enhancement factor. That is, the desire of the designer is
still vaguely a small enhancement factor, but in Problems 1
to 3 this was a constraint; here it is the objective itself.

A sample design is shown below. This was run in a
background mode with very tight convergence criteria (0.001
for the objective and all constraints) in order to
conclusively demonstrate the convergence of the search. The
search converged in 13 iterations, and required 159 function
evaluations (each an ELF execution) and 13 gradient
evaluations. Each gradient evaluation required perturbations
in each of 7 parameters, i.e. 13x7 = 91 ELF executions. Thus
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for both function and gradient evaluations, 250 ELF
executions were required. Note, however, the strong effect
of the convergence criteria interacting with the numerical
noise, especially sensitive near the solution. 103 of the
total 159 function evaluations occured in the last (13th)
iteration. At the 12th iteration, all convergence criteria
had been met except one, which had converged to 0.001036
instead of the required 0.001000. This trivial and arbitrary
difference in the convergence cut-off increased the work from
140 ELF executions to 250.

During the entire 13 iteration solution path, 22
constraint violations were encountered. None were active at
the solution; however, it is clear that the PDE code must be
configured to be robust enough to give a reasonable answer
(although not necessarily accurate) even when the constraints
are violated. Several of the constraints are very close (to
within the optimization algorithm's tolerance) to being
active at the solution. It would make sense to then re-run
the design optimization with these parameters set exactly to
the constraint borders, correspondly reducing the number of
solution parameters and constraints.

The initial base case involved identical electrode
profiles for the upper and lower electrodes. However, the
solution is not symmetric because of the radial geometry, the
lower electrode being at a smaller radius.- Because of this
radial configuration, the maximum IEI occurs on the lower
electrode, and only the parameters for the lower electrode
were varied in the optimizaiton search.

The design improvement accomplished by this optimization
search may be noted from the following. An elementary
electrode (straight section with circular tip) with the same
packaging constraints shows an E-field enhancement factor of
39%. The initial base case design (using a simple elliptic
tip) has a 28% enhancement. The final design has reduced
this to 15%. It is anticipated that further improvements are
possible with more general formulation of the electrode shape
parameters and constraints formulation.

Further details on results will be presented at the
Workshop on Shape optimization organized by the principal
Consultant, Prof. Polak, at University of California-Berkeley
on 22-24 May 1989.

PHASE II EXTENSIONS

The likelihood of success of the Phase II work is
clearly indicated by the results of the Phase I feasibility
study presented above.

In the Phase II proposal, further development,
verification, and application of the design optimization
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methods proven feasible in the Phase I study is proposed.
The further algorithmic development proposed includes use of
multigrid methods to refine the PDE solution accuracy as the
optimization search converges, use of non-structured
(multiquadric) derivative methods combined with Domain
Decomposition techniques and generalized to n-dimensions to
evaluate gradients utilizing previous search points, possibly
application of affine transformations to speed convergence,
and use of more general curve and surface representation via
Bezier curves for compatibility with user specification of
base case designs via CAD/CAM. Verification and applications
will be to shape optimization in laser electrode design and
in airfoil design, and control system optimization in
superalloy solidification.
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Figure 1. Electrode problem #1. 2 parameters,
3 constraints, nonlinear.
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SgAMPLE FOR:NAME CASE FILE

-e st inc aL.ow *rovices a samo.e ci a FCRNP.ME case

'ie s-t :. o r:_:n tihe EL= zl;ctr;c fald 1n-aSi- s ,Cd-s in a
Zatch inde. Th~ s F7h:1.3 ;RNAE I is a_:_ ad from the main
program, and cefines the averslI physi-al parameters of the

sroblem. pararae FFN. rE file is called from the geometry
rutie t,- scciT.,. the elactrcde geometry parameters, ar.d a
t-.d ZC5NIE ile ia ca1led r _m the nonlinear conductivity
routine wiich moais the Partic4lar lasing gas and external

:cas o.- ionization, e.g. an electrcn beam gun. The FORNAME
use can a ._-ofigured to comzine al three of these files into
cre, which is more ccrvenment fcr a single run; we anticipate
that a single file set-up ,ill be used for the NUSC problems.
Hcwe-ver, there is scme advantaae to separating the different
tunctioral ities in the ELF coces, especially for automated
_p4timiZaticn, runs. Lor e:amp-e. a particular optimization
search would lilkely onl,, change the ceometric parameters in the
sacond .. ..N...E case fila. 7:-a comoleta set of files constitutes
th entire docuetation _eoe. to run tne code, including
c mment cards.

r- -a tC t_-. u a =CRNAME file, and it
is rnot re-crmmendad for us=- hi i te code is still. in &-: early
de\'lc-Pmental stage. Howe-.er, once the coda input is stable and
t- FR.-JAME file is bult, it is .e--,r easy to modify copies to
produce new -ases, and it is particularly conducive to :ocumen-
tation of runs. Significantly, the FORNAME file may be opened
and edited with ANY text editor with which the user :s familiar.
Thus, the user-friendly environment is not dependent on any
particular hardware or software system, unlike mouse-driven menu
systems.
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File ELF OPTI.F.NM
!This is the ELF Forname data file, case OPT-1-Base, 28 JAN 1989.
'The purpose of this run is to establish a base case for'I
optimization.
!Set up by Paul Sery, Ecodynamics, Inc. (505) 262-0440.

ENTER A RUN TITLE (,MAXIMUM 32 1 CHARACTER):
title = OPT-1-Base

ENTER MCYL, NLIN:
MCYL =0 FOR CARTESIAN, =1 FOR RADIAL, -2 FOR AXISYMMETRIC
NLIN =0 FOR CONSTANT CONDUCTIVITY SIGMA,

~=1 FOR VARIABLE CONDUCTIVITY SIGMA.
~(PRE-SET VALUES WERE 0, 1)

mcyl = 0
nlin - 1

ENTER NFSIG:
NFSIG DETERMINES VARIABLE CONDUCTIVITY ROUTINE;

~=0 GIVES GLOW DISCHARGE MODEL, FSIG0,
~=1 GIVES THEOPHANIS ET AL. MODEL, FSIG1,
~=2 GIVES XENON FLASHLAMP MODEL, FSIG2, ETC.
~(PRE-SET VALUE WAS 0)

nfsig = 0

ENTER NELEC:
S NELEC DETERMINES ELECTRODE GEOMETRY ROUTINE;

-0 GIVES BLENDED SUPER-ELLIPSES, ELEC0,
-1= GIVES SKEWED BOX, ELECI,
-2 GIVES ROGOWSKI FAMILY, ELEC2,
-3 GIVES CONCENTRIC ELLIPSES, ELEC3, ETC.

'=4 GIVES FIRST MVD GEOMETRY, ELEC4, ETC.
~(PRE-SET VALUE WAS 0)

nelec = 2

tN TER NSFLG:
' NSFLG.GT.0 ALLOWS USER ENTRY OF SURFACE PARAMETERS.

(PRE-SET VALUE WAS 0)
nsflg = 1.

'ENTER NSOLVR, NSOLVRG:
SETS SOLUTION METHOD FOR PHI, GRID:

[ - 0 FOR HOPSCOTCH SOR, = I FOR POINT SOR, 2 FOR GEM.
~(PRE-SET VALUES WERE 0, 0)

nsolvr - 0
nsolvrg - 0

ENTER NGFLG, NP2:
NGFLG.GT.0 ALLOWS USER ENTRY OF GRID GENERATION PARAMETERS,

NP2 SETS GRID SOLVER, =0 FOR HOMOGENEOUS, -1 FOR GRAPE,

[ = 2 FOR MODIFIED THOMAS, -3 FOR EXTENDED THOMAS.
' (PRE-SET VALUES WERE 0, 0)

ngflg = 0
np2 = 0

SENTER 1,1ADAPT, NADAPTF, EMAXAD:
NADAPT.GT.0 ADAPTS BOUNDARY POINTS TO SOLUTION IN
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I4

* NADAPT ! GRIDS, STOPPED EARLY IF EMAX CONVERGES TO
* EMAXAD.
* FOR NADAPTF = 1, ADAPTS TO COMBINATION OF

MAXIMUM E-VAL AND CURVATURE,
= 2, SIGMAS,
= 3, ENERGY DEPOSITION,
= 4, PRE-ADAPTS TO BSGEBD,

RE-SETTING NADAPT TO 0.
nadant = 0
nadaptf 1
emaxad = 1

ENTER NTIML = NO. TIME STEPS,
NTIML = 0 FOR STEADY-STATE ONLY)

(PRE-SET VALUE WAS 0)
ntiml = 0

ENTER TIML, CWTIM, NTIMBC, NSPACEQ
TIML = TIME LIMIT [SECONDS],

* CWTIM = 0 FOR IMPLICIT, =1 FOR EXPLICIT,=1/2 FOR TRAPEZOIDAL,
NTIMBC = 0 FOR FIXED BOUNDARY VALUES AND SHAPE,

= 1 FOR TIME DEPENDENT BOUNDARY VALUES AND FIXED SHAPE,
= 2 FOR " " " " AND SHAPE.

(REQUIRES GRID RE-GENERATION AT EVERY TIME'STEP.
* NSPACEQ = I TURNS ON CALCULATION OF SPACE CHARGE EFFECT.

(PRE-SET VALUES WERE 3.OE-5, 0.0, 0, 0 )
*** NOTE *** these values are used only if NTIML >- 0 (see above).

timl = 3.E-5
cwtim = 0.
ntimbc = 0
nspaceq - 0

1 ENTER NEXCIR; PLEASE:
NEXCIR - 1 TO TURN ON EXTERNAL CIRCUIT EQUATION SOLUTION

(PRE-SET VALUE WAS 0)
*** NOTE * these values are used only if NTIML >= 0 (see above).

nexcir = 0

FOR EXTERNAL CIRCUIT EQUATION, ENTER:
INITIAL PHI [VOLTS), RESISTANCE (OHMS],
CAPACITANCE (FARADS] =
EXPHII, EXRES, EXCAP; PLEASE:

(PRE-SET VALUES WERE 1000.0, 1000.0, 0.0001)
exphii = 1000.
expres - 1000.
excap - .0001

ENTER PHIANO, PHICATH CVOLTS]
(THESE ARE SCALING FACTORS GENERALLY, AND FOR THE NOMINAL,
ELECTRODE CONFIGURATIONS, ARE ACTUAL ANODE/CATHODE VALUES.
. (PRE-SET VALUES WERE 1000.0, 0.0)

phiano 1 1000.
phicath = 0.

ENTER NDIEL; PLEASE:
NDIEL = 0 FOR NO INTERIOR DIELECTRIC,
NDIEL = +1 FOR AN INTERIOR DIELECTRIC ON RIGHT (OR ABOVE),

-1 LEFT (OR BELOW).
(PRE-SET VALUE WAS 0)

ndiel - 0
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FOR INTERIOR DIELECTRIC, ENTER:
* RELATIVE PERMITTIVITY RPERM
*(RPERM <= 0 TO REMOVE DIELECTRIC MATERIAL BUT TO JUST USE
*THE INTERIOR DIELECTRIC BOUNDARY AS A GRID CONTROL SURFACE).
* SURFACE RESISTANCE SURSIG [OHMS/METER]
* (NOTE SURSIG=0 IS NOT MEANINGFUL IF NLIN=1)
* SURFACE CHARGE * FREE SPACE PERMITTIVITY = SURCHG
* IDEL,JDEL = I OR J VALUE OF INTERFACE
- (ONE & ONLY ONE .NE. 0, AND AT LEAST 2 IN FROM BOUNDARY)

(C < 0 SELECTS AUTOMATIC DETERMINATION OF IDEL,JDEL)
* (PRE-SET VALUES WERE RPERM, SURSIG, SURCHG, IDEL, JDEL -

*3.5, 0.0, 0.0, -1, 0)
rperm = 3.5
sursig = 0.
surchg = 0.
idel = -1
jdel = 0

I ENTER FILE SUFFIX TO SAVE GRID
' AND ELECTRODE PARAMETERS ON OUTPUT FILE, PLEASE
* ( e.g. enter 31 to SAVE to file FOR031.DAT)
* ( enter 0 to not SAVE)

iclfilr = 31

WRITE TO OUTPUT FILES,
* ( e.g. enter 32 to SAVE to file FOR031.DAT)
S( enter 0 to not SAVE)
idfilr = 32

End of File
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INTERACTIVE ELECTRIC FIELD CALCULATIONS FOR LASERS'

by

Patrick J. Roache
2

W. M. Moeny
3

and

Stanly Steinberg4

Abstract specified a priori. The geometry and conductivity

calculations are modularized so that they may be

The goal of the computational effort described readily modified by the user.
herein is to develop computer codes for rapidly and
accurately modeling the electric fields in the Automatic grid generation is performed interac-
cavity of lasers and switches. The designer is able tively using elliptic generating equation techniques.
to interactively perturb the laser operating para- As an option, a solution adaptive grid generation
meters and/or electrode geometry, and quickly ob- technique is used to adapt the grid to the solution
tain new solutions. The codes use automatic (either in the steady state solution, or within an
generation of solution-adaptive boundary-fitted intra-time-step iteration for a time-dependent
coordinate systems, and solve two- and three- problem) so as to increase the resolution of the
dimensional problems in both steady-state and time- maximum electric field strength (always an impor-
dependent modes, tant design parameter) and the accuracy.

Introduction and Overview The code accounts for externally controlled or
self-sustained glow discharges or other plasmas,

The design of electrodes for lasers and switches such as arcs, by modifying the nonlinear conducti-
is well-defined only for unrealistically idealized vity. Various empirical formulatipns for (steady)
conditions. The frequently used Rogowski electrode electrical conductivity have been evaluated using
shapes are "optimal" only in the sense of producing the code. While somewhat useful, this approach has
an enhancement factor of unity, i.e., the electric now been abandoned. A more fundamental approach
field strength is no where greater than the nominal has been adopted, that of solving for the conducti-
value. More importantly, the solution is based on vity by time integration of the ordinary differen-
vacuum conditions and is not a complete specifica- tial equations for electron number density equation
tion, i.e., the Rogowski shape is not closed, and at each mesh point in the 2D or 3D grid, coupled
must be completed by some (usually arbitrary) nonlinearly to the local E-field. The electron
closure such as blending with a radius, etc. The drift velocities, etc., are obtained by table look-
same is true of the Chang electrodes, up of Boltzmann code solutions performed beforehand

(i.e., noninteractively) for the particular gas
The computer codes described herein address the mixture used. Code applications have included

realistic electrode design problem, including non- pulsed electric C02 lasers and a xenon flashlamp.
vacuum operation and complete electrode specifica- For xenon flashlamp calculations and for streamer
tion with "packaging" constraints of overall size. calculations, the temperature is also solved at
Using efficient finite difference methods in each node point by time integration of an energy
boundary-fitted coordinates, the ELF (ELectric equation. Calculations have shown some insight into
Field) code makes it practical to desii' the elec- streamer formation in plasma discharges, the un-
trode geometry and laser operating parameters steady development of a self-sustained glow dis-
during user-interactive sessions on a VAX computer. charge, and lensing effects due to nonuniformities
A single code is used for all 2-0 calculations, in external ionization sources.
both steady state and time dependent. Options are
available for either the planar, axisymmetric, or For many cases studied, we find the electric
radial electrode geometries. Boundary conditions field solutions to differ significantly from vacuum
and boundary shapes may be time dependent; in par- calculations, indicating that the commonly used
ticular, an external circuit equation is provided Rogowski solutions and Chang solutions for the
so that electrode potential may be calculated as electrode shapes are far from optimal for important
part of the solution, dependent on the integrated classes of problems. The true optimal geometry is,
current through the cavity, rather than being in fact, a strong function of the laser physics and

of the operating conditions whenever significant
'Work supported partially by the U.S. Air Force physics are involved in the conductivity. Also,
Weapons Laboratory, the U.S. Air Force Office of different lasers may have different optimality cri-
Scientific Research, and the U.S. Army Research teria; e.g., an electron-beam laser may be designed
Office. to give nearly uniform energy deposition in the

cavity, whereas a self-sustained C02 laser may be2 Ecodynamics Research Associates, nc., 9. 0. Box designed to minimize the local extrema of the elec-
8172, Albuquerque, New Mexico 87119. tric field strength, subject to external packaging

geometry constraints, so as to minimize arcing and3Tetra Corporation, 1325 San Mateo S.E.. maximize the operating voltage,

Albuquerque, New Mexico 87108.
Three-dimensional calculations are done in a4Ecodynamics Research Associates, Inc., P. 0. Box separate code and are used only to design the roll-

8172, Albuquerque, New Mexico 87198. Also, off of the electrodes in the third dimension so as
Professor, Department of Mathematics and Statis- not to produce a locally high electric field due to
tics, University of New Mexico, Albuquerque, 3-0 effects.
New Mexico 87106.

mholK 0 Amu ena fut.,e. of AWOMlisa 26d
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GEOMETRY DESCRIPTION BOUNDARY-FITTED COORDINATE GENERATION

We generally assume a "smart user" who can The solution for the potential o in the laser
modify our Fortran subroutine to define his own cavity is obtained by solving the nonlinear ellip-
family of electrode geometries. However, we also tic equation
have built two such routines which appear to have
a wide range of applicability. 7 • 070 = 0 (4)

The first geometry subroutine is based on the where the conductivity a is in general a non-
common Rogowski electrode family, defined by the linear function of the electric field strength
parametric equations in a E where E = 7a. We need accurate solutions in

nonrectangular geometries and, in particular,

x/g = Q + e cosw (la) we need to accurately solve the E-field on the
boundaries. It is sometimes possible to obtain
such solutions using a Cartesian coordinate sys-

y/g = * + e sin*. lb) tem with partial cells near the irregular boun-
daries. HowLver, it is well-known that such a

The inter-electrode gap is proportional to g, and treatment often leads to numerical instabilities
= constant lines (orthogonal to '-lines) are and/or numerical inaccuracies. We have chosen

used for the far-field computational boundary. the approach of using a numerically generated
The parameter value o = 1/2 on the upper electrode boundary-fitted coordinate system, following
and * = 0 on the lowergives the most familiar "opti- Thompson, et al. [Refs. 1 and 2]
mal" Rogowski shape, which asymptotically approaches
a vertical line and gives a unity enhancement of In the boundary-fitted coordinate system,
the E-field; that is, with Enominal = electrode the physical domain (x,y) is transformed to a
voltage/gap width, the enhancement factor = Emax/ regular, rectangular coordinate system in coor-
Enominal = EF = 1. The upper and lower shapes dinates (&,n). In order to ensure that no
and sizes are defined independently. This sub- coordinate lines cross in the transformed (C,n)
-outine produces a fairly realistic, though not plane, the coordinate transformation is generated
a "completed" family of electrodes. Since a sim- by the solution of a coupled pair of nonlinear
ple closed-form vacuum solution exists, this elliptic equations fov x and y given by
routine has been valuable in code validation
[Refs. 12,27] and in testing for the effect of ax - 2ax + + J2 (Px + Qx ) = 0 (5a)
the computational far-field boundary. E nn & n

The second geometry routine is based on blended ay EC 2BY n + YYnn +  j2(py n + Qyn) = O (5b)

super-ellipses. The super-ellipse is defined (in
the first quadrant) by the equation where

(x/x )p + (y/yl)p= (2) a S X2 + y2  (5c)

where xI and Yl are the dimensions of the circum- = x &xn + y Yn (5d)

scribed rectangle of the inner electrode surface.
For p = 2, a simple ellipse is obtained. For y = x2 + y2 (5e)
p > 2, the surface is smooth and tangent to the
circumscribed rectangle at the end points. As = x y x y
p * -, 'he super-ellipse approaches the circum- E n V
scribeo rectangle. Each electrode inner surface
is then obtained as a linear blend of two super- (J is the Jacobian of the transformation.)
ellipses of powers PL and PR with the same semi-
major and -minor axes x, and yI. They are blended
by a factor wL; in polar coordinates (r,e) at the These equations are solved for x(&,n) and
same 8, the r s are blended as y(&,n), with the boundary values on x and y

being specified by the boundary shape and the
r - wL • r L + (-w L ) • r R  (3) desired mesh density at the boundaries. Second-

order accurate finite difference equations are
This blended super-ellipse surface can be shifted, used throughout. P and Q are functions chosen
so that the initial section is a straight line, to control the grid at interior points (see
and can be further blended with an elementary below).

electrode formed by a straight section and a
radius. The inner surface can be further modi- Note that all calculations, including the
fied by a blended perturbation, which may be calculation for the generation of the coor-
used for E-field shaping (e.g. to accomplish dinates, are performed in the (E,n) plane
pre-ionization). The perturbation is a shifted rather than the physical (x,y) plane. Thompson,
sinewave, raised to a power pp. As pp becomes et al. [Ref. 1] use a point SOR iteration scheme
large, the perturbation approaches a rectangle, to solve the coordinate system transformation,
but is smooth and blends to the basic shape with but this proves to be somewhat inefficient for

continuous first derivatives for finite pp, high mesh resolution.

avoiding sharp corners. The back side or outer
surface is formed by a simple radius and a The approach used in the current work is
straight section. to solve the system of coordinate equations

using semidirect nonlinear solution techniques
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previously developed for fluid dynamics appli- boundary in these cases (e.g., see Coleman, Ref.
cations by a present author (Roache). This 15). However, for most cases of interest in
system is well suited to the semidirect method laser electrode and switch design, concave elec-
because the two nonlinear equations for x(rn) trodes are not of interest and this simple approach
and y(&,n) couple only at interior points. (This actually packs more lines in the quasi-normal
contrasts to the boundary coupling of the Navier- direction just where needed, in the region of
Stokes equations, which slows convergence. (See, highest (convex) curvature where the E-field is
e.g., Refs. 3 thru 5.) The equations are first highest. The method also has the advantage of
linearized about some initial guess for the solu- being easier to converge than nonhomogeneous cases.
tion. The linear equations so generated are Furthermore, when the nonlinear equations are
generally variable coefficient, nonseparable, converged to a solution, the solution is always a
linear elliptic equations. These are solved valid grid, i.e., there are no crossings of coor-
using the GEM code, which is based on marching dinate lines (presuming that the boundary specifi-
methods for linear equations [Refs. 5 thru 10]. cation is consistent) whereas injudicious use of
These methods are the only practical ones (outside P and Q can scramble the grid.
of brute force direct Gaussian elimination) for
solving such nonseparable elliptic equations The second code option is to directly control
directly rather than iteratively. A sequence of the spacing and angle of the coordinates for the
linear solutions is then used in a quasi-Picard first line off the electrode surface, using the
iteration to solve the nonlinearity. If the algorithms of Steger and Sorenson [Refs. 16 and
geometry gives an unfavorable cell aspect ratio 171. For example, the user may specify the angle
for the marching method, point or hopscotch SOR to give normal coordinates at the surface and a
iterative algorithms are used as the linear solver, small initial spacing. (In fluid dynamics cal-
For most cases studied, the GEM code, using some culations, the spacing can be specified to resolve
key double precision calculations for the VAX estimated boundary layer thickness.) The algori-
computers [Ref. 11] are more robust and much thm also allows for the specification of certain
faster, especially for high resolution across tuning parameters which control the extent of the
the cavity. surface control out into the interior region.

Note that it is not true, as might be naively
The speed of convergence of these nonlinear expected, that it is always advantageous to have

equations for the coordinate systems depends orthogonal coordinates, as demonstrated by Coleman
somewhat on the accuracy of the initial guess. [Ref. 15]. However, it Is usually advantageous
For a mild problem in which the electrode shapes to have coordinates orthogonal at least at the
are a slight distortion from rectangular, an boundary (if the conditions of the geometry at
adequate initial guess is obtained by simple the adjacent bounding surfaces do not preclude
linear interpolation between boundary values of this locally). The form of the control functions
x and y in the (cn) plane. In these cases, the in this algorithm involves spatial exponentials,
coordinate system transformation is solved typi- and we have-found a difficult sensitivity to the
cally in less than 10 nonlinear quasi-Picard initial condition and the user-input parameters.
iterations. For more severe problems, adeqL te Although we have generated some good grids with
initial guesses are difficult to achieve. (tor this algorithm, the option is not recommended
example, even for a simple U-shaped cavity, linear generally because it often fails to converge in
interpolation gives a folded coordinate system the semidirect nonlinear solution procedure. (Note,
with a negative Jacobian.) For these cases, it however, that the GRAPE code [Ref. 17) based on
is necessary to use nonlinear continuation methods, this algorithm is widely circulated and extensively
One technique, due to Maliska [Ref. 29], is to used, and Sorenson has published a variety of im-
build up the coefficients in Equation (5) from pressive grid generation solutions for split-flap
the linear decoupled case of a = B = 1, y = O. airfoils, etc.)
This technique is quite simple to implement for
typical electrode geometries; for further details, The third code option is to generate the non-
see Ref. 12. A more recently developed method of homogeneous P and Q terms from the surface shape,
geometric boundary continuation appears to be following Thomas and Middlecoff [Refs. 18,19].
more robust and requires less decision-making The source terms are chosen to have the form
from the user. The continuation process is
automated, and requires only that the final P = (E,n)(& 2 + E2) (6a)
electrode shapes be such that the quadrilateral
formed by the end points of the electrodes have Q ( (,n)(n + n2) (6b)
positive volume. See Ref. 30 for details. x y

INTERIOR MESH CONTROL BY NONHOMOGENEOUS TERMS The shape of the adjoining boundaries and the
surface itselfgive an (approximate) evaluation

Three different approaches are used for the for the T and 0 terms on the boundaries, which
evaluation of the nonhomogeneous terms P and Q are then one dimensionally interpolated in logi-
in the grid-generating equations. The simplest cal space (1 in n and ' in E) into the interior.
and, in many cases, satisfactory approach is to We have followed this approach, with some slight
simply set P = Q = 0 everywhere. This produces differences in the detailed implementation.
the method first used by Winslow [Ref. 14) in Thomas evaluates the surface P and Q terms from
one of the early grid generation papers, ori- elemental vector relations in the surface, assum-
ginally described and used only for triangular ing (locally) that normal grid derivatives are
mesh problems. It is well-known that this primi- zero. (See also the discussion of Thomas'
tive approach gives a poor mesh for some geome- approach by Thompson in Ref. 20.) We prefer to
tries, particularly when concave surfaces are evaluate the surface F and directly from the
present, since the interior mesh lines avoid the grid generation equations. For the surface at
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1 =, the second derivatives such as xn, are adaptive strategy. A first solution is obtained
not set equal to zero, but are interpolated in in a grid whose boundary point distribution is
from the - = 0 and = 1 boundaries. The tangen- set only by local arc lenoth and curvature consi-
tial derivative terms are evaluated from the derations. (For example, the boundary grid points
specified boundary distributions (see below). For may be equidistributed in arc length, or may be
the cross-derivatives, temporary data set of the concentrated more near regions of high local
x and y coordinates is set up near each boundary, surface curvature.) Next, a second grid is con-
by interpolation from the adjacent bounding sur- structed so as to concentrate more grid lines near
faces. (The interpolated grid points are not large E-field and gradients of E. (This involves
actually used except for the numerical evaluation an interpolation problem, since the old E-solution
of x n and y. in the surface P and Q. For exam- and the new interpolated solution do not have the
ple, if the iurface under consideration is highly same domain of definition.) The process can be
concave, the four interpolated points in the repeated and converges to a final grid rapidly.
quasi-normal direction will likely produce a
local crossing of grid lines, i.e., an invalid In our earlier work [Refs. 27,28] we adapted
coordinate system. But we use these points only only on the maximum E-field value on the electrode
locally and as a convenience in evaluating the surfaces. For long and nearly uniform electrodes,
cross-derivatives in the grid generation equations this algorithm does a poor job, packing too many
and not as the final grid.) This approach allows points in a nearly uniform region, at the expense
us to obtain a smooth and consistent evaluation of regions with more solution structure. The
of P and Q terms, with less restrictive assump- presently used adaptation function is more compli-
tions about the behavior near boundaries. For cated, allowing for a good deal of fine-tuning and
most cases, the resulting grid is expected to be experimentation. Along any of the boundaries, the
close to that of the original Thomas and Middlecoff user can specily three adaptation parameters
method. Like the original, the idea extends pf, pp, and Pe which then pack surface points
readily to 3-D bounding surfaces as well, and it according to the equation for the surface packing
likewise produces P and Q terms which do not vary factor
so radically locally, contrasted to the Steger-
Sorenson algorithm. Consequently, the grid solu- = + -En +('-)E (7)
tion converges better in semidirect iterations, Spf Tf Ie n e
although with less local control of the grid

parameters. where EN is the local normalized E-field = E/Emax,

With either the second (Steger-Sorenson) or and Ec depends on the gradient of E. Following
a recommendation of Eiseman (personal communica-third (Thomas and Middlecoff) algorithm for the tion) we evaluate Ec not just as but as the

P and Q terms, a first grid is established using complete solution curvature
P = Q = 0, and the nonlinear iterations are
started from this solution. E3

The matrix structure used for the grid solu- (l+02)32
tion procedure also allows the user to specify

grid position precisely at interior boundaries. The grid point surface distribution is then
(The GEM solution method will fail, so hopscotch obtained by equidistribution in the weighted arc
SOR is used.) This may be used to fit the grid length s where
to the boundaries of interior dielectrics or
resistive electrodes, for example. However, the
result will generally be a grid which is not s(s) = 1o0 Spf ds (9)
smooth, resulting in locally high truncation error.
Either the second or third option on the P and Q For pf = 0, we have Spf = 1, and the nodes are
terms can be used to obtain some degree of grid equidistributed in arc length with no solution
smoothness through the interior boundary, but adaptation. From the viewpoint of resolution
there are convergence difficulties. It is not of Emax, we would adapt only on E itself. From
known if these difficulties are fundamental or the viewpoint of truncation error, we would
are due simply to coding errors, but at the pre- adapt only on Ec; however, this procedure is
sent time this option is not operational. unstable if the grid iteration is continued,

and even for one grid adaptation the procedure

SOLUTION-ADAPTIVE GRID GENERATION is too sensitive. Likewise for large values of

The accuracy of calculations in general Pp.

boundary-fitted grids can be enhanced if the grid
can somehow be adapted to the solution. There are SOLUTION OF THE STEADY POTENTIAL EQUATION IN
a variety of approaches to this problem; see, for BOUNDARY-FITTED COORDINATES
example, the papers in Refs. 13, 21 and 22.
However, none of these address the problem of The transformed nonlinear potential equation
adapting the boundary distribution of grid points, is now to be solved in the (E,n) plane. However,
but instead concentrate on the problem of adapta- the form of the equation changes drastically,
tion at interior points. In electrode calcula- because the coordinate transformation used is
tions, we find the boundary distribution to be nonconformal. In particular, cross derivatives
more critical. (See also Holst and Brown, Ref. 31, of the form )2$/aEan are generated where none
for inviscid transonic airfoil calculations using existed in the physical plane. This introduces
boundary adaptation.) no inaccuracy in the solution (unless the grid

is highly skewed) but does require that the
Higher accuracy and finer resolution of the solution method used to solve the equations be

maximum E-field value is obtained by a solution- able to treat a general 9-point operator. The
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marching methods for elliotic equations are coefficient, and r is the recombination coeffi-
capable of handling this generality, although at cient. The source S decays exponentially in
some penalty in computer time compared to the space and may be ramped on/off in time.
5-point operator.

This Equation (12) is nonlinearly coupled to
As expected, the convergence is sensitive to the elliptic solution for the E-field, but only

the nature of the nonlinearity in conductivity locally; i.e., the number-density equation in-
i. We originally used a simple update in a volves no spatial derivatives. The time-
quasi-Picard iteration, which is adequate for integration routine has options for fully
fairly strong nonlinearities, typically giving explicit differencing (fastest, first-order
convergence in 10 to 15 iterations. However, accurate), trapezoidal weighting (second-order
calculations for highly nonlinear conductivity formal accuracy, more accurate for slowly
models (e.g., xenon flashlamp calculations) varying solutions), or fully implicit differenc-
require underrelaxation and may require as many ing (more robust, first-order accurate). The
as 40 iterations. initial solution at time zero is always obtained

by the fully implicit method, so as to assure
STEADY-STATE EMPIRICAL MODELS FOR CONDUCTIVITY self-consistent initial conditions. This initial

solution is usually the most difficult to obtain
In our original work, the steady state ioni- because of the inadequacy of the initial lineari-

zation S of an external electron-beam gun was zation. The adaptive+ grid procedure can be used
modeled empirically, following Ref. 23, by the within an intra-time-step iteration.
following equation.

Time dependency is also allowed in the boun-

S - exp(-yx) atan Y-+a atan y-a (10) dary shape and the boundary values. In the
x x simplest cases, these can be specified as

where y = E/2V. The electron beam has a vol- arbitrary functions of time in the user-supplied
wage V and a width 2a located at x = 0 between (or modified) subprogram for the geometry des-
y = -a and y w +a. From the satme reference, cription. A more useful option allows the user
yh no-alneyrcoaducromithe ae refervenceto specify external circuit characteristics;
the nonlinear conductivity a is given by then the code integrates these, along with the

E C E .5 ° ' , C = O(1) (11) internally calculated current in the laser cavity,
to provide the potential boundary conditions for

In all, four different models for the the transient start-up calculation. The capabi-

conductivity were originally developed for lity of moving the boundary shape has been

the electron-beam lasers; they are of varying utilized in initial studies of streamer formation.

accuracy and are sensitive to the geometry of A more elaborate conductivity model was used
the laser electrodes. Although some of these for transient-calculations of a xenon flashlamp.
were useful (particularly that of Ref. 23 It involves a highly nonlinear coupling with the
above) for steady problems, the approach has temperature field, also solved by integration of
generally been found to be of inadequate a time-dependent energy equation, with simple
accuracy and has been abandoned in favor of a empirical relations for electron drift velocity.
more fundamental approach.

We have more recently developed the self- e + ( e 2 13na2

sustained or externally-sustained glow dis- - tne r N e
charge kinetics model described below, which
is generally applicable to all geometries (and where ne is the equilibrium electron number
applies as well to the three-dimensional prob- density, and
lem), and has the further generality of being
a time-dependent model. n 2

TIME-DEPENDENT SOLUTIONS N (13b)

Time-dependent solutions are obtained for C1  (qVl/kT
the problem of a transient buildup of the Q - T2 .5 e"  (13c)
nonlinear conductivity. (We have not addressed
the much more difficult problem associated with CnT/100O-9/2 (13d)
true electromagnetic transients with a charac- r 2ne
teristic time related to the speed of light.)
The time-dependent conductivity is solved by log t = C3 log(E/N) + C4  (13e)
temporal integration of the number-density
equation. In our most frequently used model, V Cs(E/N) (13f)
this equation is d 5f

dn e  dT = IIE- C6T2} (13g)

set) + mtne - a e - rne i v

where ne and ni are the electron and ion a = Q ne Vd/E (13h)
number densities, S is the (possibly time

dependent) source, e.g., from an electron- where V1. q, k, and C are various constants.
beam gun or ultraviolet source, at is the Note Vha r ad C a e o t co n

Townsend coefficient, Oa is the attachment Note that radiation losses have not been

5

-39-



accounted for above, so that the equations do THREE-DIMENSIONAL CALCULATION METHODS
not have an accurate steady state form.
(Steady state operation of such a device is Three-dimensional calculations are done in a
not of interest.) separate code, and are used only to design the

rolloff of the electrodes in the third dimension
Between the main program modules which use so as not to produce locally high electric field

i, and the user-modifiable subprogram modules due to 3D effects. Accuracy is again achieved by
which model a, is an important subprogram using nonorthogonal boundary-fitted coordinates,
module which scales a. Scaling is critical, in which the electrode boundaries always lie
especially on the short word length VAX compu- along coordinate lines. This greatly increases
ter, both at the high and low ends. Scaling the accuracy, but also increases the complexity
on the high end is accomplished by normalizing of the formulation, especially in 3D. The com-

over the region of computation, noting that plexity of the transformed problem is impressive,
the solution of the potential Equation (4) is due to the generation of cross-derivative terms
irvariant to a spatially constant factor. We and variable coefficients which come from the
evaluate ascale = max o, store aij = oij/ascale transformation process.
and replace Equation (4) by

We have used computer Symbolic Manipulation to
• = 0 (14) address the problem of this complexity. Details

of the approach are given in Refs. 24 and 25.
which has the same 0 solutions as Equation (4).
Then ascale is used to reconstitute oij = Briefly, the approach uses the computer Symbo-
Iscale • a-. where needed, for calculations lic Manipulation code MACSYMA to perform mathe-
of currentlaensity = Ea and energy deposi- matical operations of a logical nature. These
tion = aE2 . Scaling on the low end to avoid are not floating point calculations, but rather
indeterminancies in the matrix equation for operations, such as the chain rule differentiation,
Equation (14) is accomplished by limiting substitution and grouping of algebraic terms, etc.
the minimum scaled - to 10-. The t-solution
is affected little by thus limiting a three We have used the VAX computer-based Symbolic
order-of-magnitude range in o, and singular Manipulation code VAXIMA to analytically perform
behavior is averted as the vacuum condition the coordinate transformation of the hosted equa-
of a = 0 is approached; vacuum solutions are tions, to substitute the finite difference
obtained with Oij = 1 everywhere and ascale equations, to gather the coefficients together,
0., and to write the FORTRAN code for the finite

difference stencil. The matrices defining the
The code allows for interactive user input stencil are then passed to a "canned" solver (the

of all the parameters of the conductivity spatial marching methods in two dimensions or
model; e.g., one may vary the magnitude or hopscotch SOR methods in three dimensions) and
time-dependent ramping on/off for the exter- the solution is obtained without the user writing
nal source of ionization, or alter the source FORTRAN code. The same procedure is followed for
offset, initial temperature, etc., as well as the generation of the three-dimensional grid using
the electrode geometry parameters described the elliptic grid generation techniques.
above.

The complexity of the resulting equations for
DATA PROCESSING both the potential equation and the coordinate

transformation equations themselves preclude their
Our philosophy is strongly inclined toward complete description in this paper. Note that the

user interaction. The methods used are fast simple constant coefficient Poisson equation in
enough so that the coarse-grid solutions roll three dimensions, which results in a constant
out with little user patience required. (For coefficient 7-point operator when differenced in
example, for a 16x16 mesh, grid generation Cartesian coordinates, transforms to a generally
typically takes less than 10 CPU seconds on nonconstant coefficient, 19-point operator, in
the VAX 780 with hardware floating point the general nonorthogonal three-dimensional coor-
arithmetic, and the potential solution typi- dinates. However, using the expanded (nonconser-
cally requires less than 20 seconds using the vation) form of the variable coefficient Poisson
glow discharge models for conductivity.) The equation, we can make use of symmetry and anti-
one exception is the preparation of detailed symmetry properties of the operator to reduce the
contour plots of the solution functionals. stencil to 10 unique coefficient arrays. Advantage
At the instructions of the user, tlese data is taken of the virtual memory capabilities of the
are output to permanent files for Dostprocess- VAX computer family to store and manipulate these
ing. However, interactive raster olots of the large arrays.
grid can be obtained, and the code prompts the
user for tabulations of potential, E-field, THREE-DIMENSIONAL CODE VALIDATION
conductivity, energy deposition, and when
calculated) the electron number density and The potential for errors in either the problem
temperature. The code also calculites and formulation or the encoding procedure always exist
displays the maximum E-fleld, the ttal current in complex codes, such as three-dimensional
through the cavity, and maximum conouctivity, boundary-fitted codes. The need for validation
and allows raster plots of E along the Jpoer was emphasized in the present work because
and lower electrodes. Convergence history Symbolic Manipulation was used; the resulting
data, of purely numerical interest, are also "psychological distance" from the work made it
displayed for both the grid generation procedure less likely to be satisfied with the superficial
and the potential solution procedure. plausibility exercises based on intuitive ideas of

acceptable levels of absolute errors.
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We validated the codes by choosing a continuum equation, interactive solutions are practical
solution for the class of problems treated by the only in relatively coarse grids, for example, a
code, and monitoring the convergence to this con- 53 or an 113 grid. These are obtained in only a
tinuum solution by systematic truncation error few minutes on a VAX 780 computer running inter-
convergence testing over a sequence of grid sizes. actively.
This procedure, though well-known in theory, is
seldom followed in practice, especially for REPRESENTATIVE CALCULATIONS
elliptic equations. Representative calculations for a variety of

The selected form of the solution was chosen 20 and 3D problems are shown in the figures.
to ensure that all the derivative terms in the Brief preliminary results have been previously
operator are exercised and that there is nonzero presented in Refs. 26 thru 28.
truncation error for finite mesh spacing even
without the transformation of coordinates. Similar Figures I thru 7 show the results of calcula-
procedures were followed for both the potential tions in a 16x16 grid for a planar geometry based
equation code and the grid generation code, the on the Rogowski electrode family with ol = -0.3,
latter being more difficult to validate because 2 = +0.7. (1 = 0 gives a lower electrode con-
of the need for a nonlinear solution. A range of sisting of a straight line, and $1 = -P2 gives a
stretching parameters and continuum equation symmetric reflection. '2 1 1/2 is the "optimal"
coefficients were examined in a grid successfully Rogowski upper electrode, which asymptotically
halved three times from 53 to 33 . Details are approaches a vertical line. '2 = I gives the
found in Ref. 24. The near constancy of the maxi- singular limit of a slit upper electrode.)
mum truncation error divided by the mesh spacing
squared indicates that the coding is correct and Figure 1 is for a vacuum calculation in a non-
that the solution is actually second-order adapted grid, with the boundary distribution of
accurate. grid points set by equidistribution of arc length.

The enhancement factor EF _ Emax/Enominal has a
Symbolic Manipulation was also used to evaluate value EF = 1.25 for this case. However, the sharp

the formulation of the transformed zero-gradient peak in the numerical solution of surface E-field
boundary conditions, which are used on symmetry vs. arc length s, indicates inadequate resolution
boundaries and as far-field boundaries on the non- of the peak at the upper electrode. This plot,
electrode computational surfaces, and the contour plot of the E-field, indicate an

adequately resolved solution on the lower electrode.
THREE-DIMENSIONAL CODE PERFORMANCE - The (fictitious) total current (calculated with an

arbitrary scaling factor of a = 1) is calculated
The grid generation procedure is straight- primarily for the information on truncation error.

forward for simple three-dimensional shapes for Since no (fictitious) current flows through either
which an initial guess of the coordinate system, the left boundary (symmetry) or the far-field
based on linear interpolation in each of the three boundary (On = 0), the continuum solution must
coordinate directions, is adequate. In this case, give a balance between the current in and out at
adequacy requires a nonnegative Jacobian of the the two electrode surfaces. The numerical solu-
transformation. However, for slightly more tion, which is not conservative [Ref. 32] does not
difficult electrode shapes, the linear interpola- satisfy this condition exactly. The deviation in
tion results in a "tangled" mesh with negative this case is 0.9%. (A large value of the devia-
Jacoblans. In these cases, it will be necessary tion, perhaps greater than 10%, is an indication
to use the continuation methods described earlier of inadequate grid refinement.)
in 2D in order to obtain a reasonable solution. upw

Figure 2 repeats the case of Figure 1, but
Also, the present codes do not address the more with a solution-adaptive grid. The calculated EF

difficult problem of generation of the grid on the is now decreased slightly from 1.25 to 1.22. The
nonplanar surfaces of the three-dimensional prob- peak is also better resolved. Note that the
lem. For a general surface, these surface grids current deviation is now increased to 1.3%, prob-
are presently defined by the user in a subroutine ably indicatingan overall increase in the trunca-
which describes the three-dimensional geometry of tion error, although this is considered preferable
the laser cavity. The code has an option for because of the increased resolution of Emax.
generating the 3D surface grid by simple scaling Figure 3 is for an even more strongly adapted grid,
of the 20 grid at constant z-planes. This is in which the deviation has incrPased to a margin-
practical only for relatively simple three- ally acceptable level of 4%, and the calculated
dimensional cavity shapes; for the 3D rolloff EF is reduced to 1.19.
calculations discussed here, this approach is
entirely adequate. Figure 4 is a non-vacuum steady-state calcula-

tion for the same electrode, using the flow
Once an adequate three-dimensional grid has discharge model for conductivity, and the same

been generated, the solution of the nonlinear non-adapted grid as Figure I. The nonlinear
potential equation in the interior is no more conductivity has increased the calculated EF of
difficult than in the two-dimensional case, except Figure I from 1.25 to 1.59. Neither of these
for the necessarily larger computer times involved, solutions accurately resolve the peak, but the
The marching methods do not work well in 3D (Refs. comparison is believed to at least qualitatively
5 and 6), so a hopscotch SOR method is currently indicate the large effect of the nonlinear con-
used. ductivity, even at this operating voltage of IKV.

Both for the more difficult grid generation Figure 5 shows the effect of higher voltage on
problem and for the solution of the potential a steady-satate calculation. Using the same
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electrodes, grid, and nonlinear conductivity model Figure 11 shows the same electrode as Fig-

as Figure 4, the operating voltage is incre3sed ure 9, with a blended perturbation added to the

from I to 3 KV/cm. For a vacuum calculation, tne lower electrode. The perturbation is 5' in ampli-

operating voltage level simply scales the entire tude, and extends from 2.5 cm to 3.5 cm, with a

E-field solution, with no effect on the enhance- perturbation shape factor Pp = 2.0. The gross

ment factor EF. In the present case, the effect effect on the contour plots of the E-field is

of nonlinear conductivity is such that the celcu- shown, but of course the details near the pertur-

lated EF increases significantly, from 1.59 to bation would require high resolution on the same

2.07. Again, these results should only be inter- scale as the perturbation.

preted qualitatively, pending a high resolution
solution. Figure 12 simply gives an example of one set

of 3D surfaces which we have used for full 3D

Figures 6 and 7 present the early transient calculations. The 3D ELF code is not nearly as

calculations for the same electrodes, conductivity highly developed as the 2D code in its options

model, and operating voltage of 1 KV/cm as and user interface, and the grid is not adaptive

Figure 4. The self-consistent initial condition in the third direction. However, transient as

at time = 0 (usually the most difficult solution well as steady state calculations may be performed.

in the time-dependent calculations) is shown
in Figure 6. The calculated EF = 1.38, and in- FUTURE WORK

creases to 2.31 at time = 0.5 usec in Figure 7.
This is indeed a large effect of nonlinear time- In the near future, we intend to change the

dependent conductivity compared to EF = 1.25 for 3D solver used from the hopscotch SOR method to a

the vacuum calculation in the same grid, although multigrid technique. Other plans for future work

these results can be interpreted only qualitatively include improved solution for nonlinear conducti-

without systematic grid refinement studies. vity using a Monte Carlo solution, charge-
separation effects near the electrodes, use of

Figure 8 is a vacuum calculation for a simple a fourth-order accurate deferred correction solu-

Rogowski electrode with pI = 0, .- = 0.7. ('t tion to both improve accuracy and to automate the

may also be interpreted as the uoper half uf a truncation-error convergence testing, modeling of

symmetric electroae pair.) The purpose here is resistive electrodes, and automation of the design

to present an ovprlay of the fixed (non-adapted) process.

grid (shown by dc..ed lines) and an adapted grid,
showing how the grid is more densely clustered The automation of the design process would

where the E-field needs higher resolution, involve nonlinearly constrained optimization of
the inverse design problem. That is, the user

Figure 9 demonstrates the use of the gecietry would specify families of design parameters and

subroutine based on blended super-ellipses. The design goals (e.g., the normalized energy deposi-

upper electrode formed by a simple ellipse on the tion distribution in the laser cavity and/or the

inner surface of thickness 1.0 cm; the entire maximum E-field) and the code would design the

electrode is "packaged" in a box of dimensions electrode shape, subject to packaging restraints,

4.5 cm x 1.5 cm. The lower electrode is formed etc.

by a blend between p = 2 (left) and p = 15 (right)
super-ellipses, with a left weighting factor The actual production of the designed elec-

wL = 0.7. The inner surface thickness is 1.0 cm, troaes is accomplished by numerically controlled

and the "package" is dimension 5.0 cm x 2.0 cm. (NC) machining. Presently, the coordinates are

The irregularity in the last contour line of the passed to the NC by microcomputer, requiring

E-field indicates loss of accuracy near the far- 0(105) coordinates to achieve fidelity. We are

field computational boundary, due to the highly attempting to build the geometry algorithm into

stretched grid in this region. This is not con- the interpolation basis of the ,'C software, so

sidered significant, since we are not interested that only 0(102) geometry parareters need be

in the solution in this region. The calculated passed, perhaps by configuring the Vax computer

enhancement factor EF is only 1.02 for this as a terminal.

electrode, which is not optimized. For more
stringent "packaging" constraints, we would ex- Finally, we are presently examining the feasi-

pect EF to be higher, and the optimization problem bility of applying these techniques to the full
would become progressively sharper. However, the Maxwell equations with variable properties,
indication is that this electrode family is considering true electromagnetic transients with
preferable, from practical considerations, to the a characteristic time related to the speed of light.
Rogowski and Chang electrodes. ACKNOWLEDGEMENT: Alan Lampson of Tetra Corp. was

responsible for the glow discharge modeling.
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Figure 1. Planar geometry, linear field equation
(vacuum case), fixed grid. Rogowskl electrode
family with jiii -0.3, o,2 a+0.7. 0 anode = 1000 v,o cathode - 0. 16x46 mesh. Total (fictitious)current v2560 (owl), deviation -0.9%. NominalE = 1000 volts/cm, E max ,1253 volts/cm, EF-1.25.
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]GLOW DISCHARGE POTENTIAL 'GLOW DISCHARGE, 3 KV POTENTIAL

GLOW DISCHARGE E-FIELD jGLOW DISCHARGE, 3 KV E-FIELD

GLOW DISCHARGE ENERGY DEPO, -GLOW DISCHARGE., 3 KV ENERGY DEPO.

Figure 4. Same conditions as Fig. 1, with Figure 5. Same conditions as Figure 4, with

nonlinear field equation (glow discharge model). ;) anode 3KV. total current = 17.0, deviation

o anode J KV, total current - 2.9, deviation = 2.4', EF 2.0-,.
0 .6%, EF =1.59.
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uJNSTIEfr =LW, TIME 0 PCTET4L UNSTEADY, =LW, TIME - 1/2 MU SEC.POTENTIL

UNSTEROY, GLOW, TIME 0 E-7IEU UNSTEADYt, GLOW, TIMEC 1/2 MU SEC. E-FILO

UNSTEFOt, SLOW, 71ME 0 ENECRGY OC?'. UNSTENG!, GLOW, TIME -1/2 MlU SEDCRY DEPO.

Figure 6. Same conditions as Fig. 4, transient Figure 7. Same conditions as Fig. 6, transient
calculation at time a0. Total current - 0.009, calculation at time a 0.5 pa sec. Total current
deviation a 0.8%, EF a 1.38. 1.39, deviation - 0.4%, EF - 2.31.
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AaAPTED E-9IEW.

x

Figure 8. Same contitlons as Fig. 1, with Figure 9. Same conditions as Fig. 1, with
Rogowskl electrode family with 01 = 0, 02 =0.7. electrodes based on blended super-ellipses
Total (fictitious) current - 3660 (a=i), EF -1.02.
devation = 0.9%. EF - 1.23.
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Figure 10. Same conditions as Fig. 1. with
electrodes based on elementary electrode shapes
consisting of straight lines plus radii. EF-1.19.

Figure 11. Same conditions as Fig. 9, with
Figure 12. Example of 30 surfaces for electric electrodes based on blended super-ellipses plus
field calculations, a smooth perturbation on the lower electrode.
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