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Abstract. Various methods for treating nonhomogeneous Dirichlet boundary con-
ditions for the p-version of the finite element method are presented. These
methods are theoretically and comrutationally analyzed. Numerical experimen-
tations are given. They clearly illustrate the importance of the right treat-

ment of the nonhomogeneous Dirichlet boundary conditions.
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1. Introduction.

The classical finite element method approximates the solution of the
problem by piecewise polynomials (usually of degree p = 1,2). Accuracy is

then achieved by decreasing the elements size h, which is why this method is

often called the h-version. The h-version has been thoroughly investigated
both theoretically and computationally and many codes based on this approach
are avallable,

In recent years, attention has been focused on two new finite element
developments, the p-version when the mesh Is fixed with accuracy being
achieved by increasing the degree p of the elements either uniformly or
selectively, and the h-~p-version which increases the degree of elements and
modifies the mesh simultaneously. The first theoretical papers addressing
these new versions appeared in 1981 ([1] and [2]) and discussed basic approxi-
mation and convergence results for these methods. (See also [3], [4) for the
state of art of these methods.) These methods are related to the spectral
methods which are now used in computational fluid mechanics (see eg. [5]).

In structural mechanics the equations to be sclved are of elliptic type

and the input data are piecewise analytic. This piecewise analyticity has

profound impact on the regularity of the solution. The solutﬁon is piecewise
analytic with singular behavior in a priori known areas-such as ne;gpborhoods
of corners, see [6]. It can be shown ([7], [8]) that for this tx;e of probpiem
the p-version has a rate of convergence (in the energy norm) which is twice
that of the h-version (with respect to the number of the degrees of freedom)
when a quasiuniform mesh is used. The h-p-version then leads tc =an exponen-
tial rate of convergence. For more, see [9], [10].

Thg P and h-p versions have been implemented in the commercial code

PROBE (Noetic Technology, Inc., St. Louis) which is used ir the industries.




The program STRIPE (Aeronautical Research Institute, Sweden) is also based on
the p and h-p version.

In [11]), [12], [13), we discussed a class of theoretical questionsc
related to the implementation of essential boundary conditions in the frame-
work of the p and h-p versions. The main aspect is to approximate the
nonhomogeneous boundary conditions so that they will be in the trace spaces of
the finite element subspaces. This approximation can be made in various ways.
We introduce in this paper a one parametric family of approximations based on

the expansion in Jacobi polynomials which naturally lead to the employment'of

the theory of weighted Sobolev spaces. We analyze this family theoretically
and perform various comparative numerical studies.

Section 2 of the paper introduces the weighted spaces, and interpolation
results between families of these spaces. It also contains a family of pro-
Jection operators based on Jacobi polynomials which are analyzed both theore-
tically and computationally in section 3. These results are applied to the
p-version of the finite element for solving problems with nonhomogeneous

Dirichlet boundary data in two dimensions. The results of numerical experi-

ments are also presented in this section.




2. The function spaces.

2.1. Notation.
Let 0 ¢ R2 be a polygonal domain with straight or curved sides. We

M
assume that 8 =T = U T, where ri. {f =1,2,..., M 1is an analytic simple
i=1

arc connecting the vertices and A (Ao = AM)' By ri we denote

A1 i
the interior angle of Ai’ 0 < Wy < 2n. The
1

notation scheme is shown in Figure 2.1. Further we denote I = (-1,1) ¢ R".

. - (A, UA) and by w

i i-1 i i

Figure 2.1. Scheme of the domain and the notation.

2.2. The spaces.

We will consider the usual Sobolev spaces LZ(Q) = HO(Q). Hk(Q). ﬁk(Q).

I
H ()

I-IHk respectively. We will also consider the spaces with k fractional.
(Q)

k > 0 1integer. The norm and seminorm will be denoted by |- and

The definition then is the usual one based on the K-method, see eg. [14],

[15].




On I we will consider a family of weighted spaces. For s 2 0 an

integer and u,v real we define the norm || by
(u,v)
+1
S 2
(z.1a) ful® - I [(1-%°) “Eiﬁﬂ + (157 Plax.
(,v) -1

For 0 < s = [s] +{s} where [s] 1is an integer and 0 < {s} < 1 we define

{2.1b)
1 1
2 2 La-x2)M2u(8) (- (1-y%) 2,8 ()12
flall = Ju| + Ts5{s) —dxdy
ws(u,v) W, v) 191 Ix-yl
s
where u(S) = 9—3. For s =0 we use p =v and
axS
1
“uH20 = J (1-x2) 2ax
Wi, v) 1

(instead ZI(I—XZ)-"uzdx)

Let further Cw, respectively Cg, denote the set of functions with all
derivatives on 1 = [-1,1], respectively functions with all derivatives and
compact support in I.

We define now ws(u,v) and ﬁs(p,v) as the completion of the set

{u e C”I)uj < o}, resp. of the set C:. The spaces ws(u,v) are

Wy, v)

Hilbert spaces. W (0,0) is the usual Sobolev space with fractional deriva-
tives, i.e., HS(O,O) = H°(I). We will consider in the sequel various spaces
and their equivalency. The equivalency will be denoted by =. The weighted
spaces Ws(u.v) have been studied in a general context in [14]. Let us

mention now scmec of their properties which will be used later.

Theorem 2.1.

(a) Let {s} # 1/2. Then all spaces Wlu,v) with -= < v < 2s +




are equivalent. If in addition u+2s = 1+2k, k =0,...,[s]l -1, then

these spaces are equal to Hs(u.p+25).

(b) If v 2 u+2s then ws(u.u+25) = ﬁs(u.p+25).
(¢) If s =0 then ﬁo(u,v) = HD(u.v) for any -o < vV < ..

For the proof, see Theorem 3.2.6 and Remark 6-3.2.6 of [14]. fal
Let (Hl'HZ)G 5 be the interpolated space by the K-method. For more

see [14], [15]. Then it is well known that for 0 < {s} < 1, s 2 O,

[s)l+{s} _ ,,Is] _,Is]+1
(2.2a) H = (H ,H )(s).Z'
and for (s} = 1/2
alsl+{s} _ ,sls] elsl+1
(2.2b) H = (H ,H ){s},2'

By H® we denoted the standard Sobolev spaces H(R) or H°(I). We have

then
H[s]+{s}(1) - W[S]+{S}(0,O).
respectively
ﬁ[s]+(s}(1) - ﬁ[S]+{S}(O,O)
In the case {s} = 1/2 the interpolated norm ﬁ[51+1/2(1) has the form
"uug[s]q/z N ["”"z[s]u/z*"(1"‘2)-1/2 (S)"LZ(I)]‘
This norm is usually denoted by Hégz(l). We will consider only the interpo-

lated norms in this paper. Hence glsl+172

H[s]+1/2

(0,0) not equivalent with
(1).

In the sequel we will write (-,-) instead of (-,+)

6 6,2

It is possible to interpolate between the spaces Ns’(ui,vi). i=1,2,




and ﬁs‘(ui.vi), i = 1,2.

20, s, s

Theorem 2.2. let s, 20, s v, 2 ui*»ZSi. i =12, 0<06 <1,

1 2 1 2" i
and
a) (ul-vl)s2 = (uz—vz)sl,
b) s = (l-e)sl-+esz, s * an integer,
c) v = (1—8)v1-+9v2,
_ TR o))
d) Y = 1 1_22 (in the case that s, = 0 and s.. > U, one
s s s 1 2
1 2
u~v  u.-v
sets gy, = v, and uses — = 2 2).
1 1 s s
2
Then
1 2 =
(2.3) (WHup ), W2a,0,0) 0 = Wik).
For the proof, see Theorem 3.4.2 of [14]). o

We will now apply Theorems 2.1 and 2.2 in special cases we will be inter=-

ested in later. Consider ﬁs‘(pi,vi), i =1,2, with

s, =0, s,=r, r21 an integer

u1 = vl =v, 0O0<vp<i1

Then by Theorem 2.1
00 0,~ -
W (ul,vl) = W (ul.vl)
Wr(MQ.vz) = Ur(uz.vz) = Ur(uz.vz)

where




Further we have

and for 0 < 6 <1, 6r # an integer

s = (1-9)51+952 = Or

v = (1-0)0, + 6w, = 2;+[(1-e)§1+eﬂzl = s+

2

For (;):1/2 and p+2s sv+s =v # 1+2k, k=0,...,[s]-1 we have
ﬁs(u.v) = Us(u.u+2s)

0. - - - -
(W (Ryavy), Ur(uz,vz))e

o0, - - or,- -
(W (“l’vl)' wr(uz,vz))e

@ w, v, ¥ (v-r.v)),

and so

B

(W(v,v), ﬁr(v-r,v))e

for v £v =6r+v.

Assume now that 0 < v <1, v=1/2, r=1, and 6 v. Then we have

;=e,;=o and hence
@Pw, v, &l(v-1.»))v = w(0,2v) = ¥ (0,0) = B(1).

We see that by interpolating the weighted Sobolev spaces ﬁs‘(pi,vi), i=

1,2, we can obtain the standard fractional Sobolev spaces.




2.3. Polynomial bases on 1.

Let us create (eg. by Gramm Schmidt procedure) the orthogonal polynomiai
basis in the space Uo(a.a). Denote this set of polynomials by {Pn(x;a)}

where n 1is the degree of the polynomial.

Theorem 2.3. Let a« < 1. Then Pn(x;a) are the Jacobi polynomials with the
index B = -a, 1l.e., Pn(x;a) = Pn(x;-B.-B) where Pn(x;-B.—B) is the
standard Jacobi polynomial.

The theorem follows immediately from the basis properties of Jacobi poly-

nomials, see eg. [1b], [17]. o

We will list the major properties of the Jacobi polynomials

_ (_\D V= o4y [(-a+n+1)
(2. 4a) Pn(—l.a) = (-1) Pn(l.a) = (-1) T (=as1)
1
(2.4b) J (1-x2)_aPn(x;a)Pm(x;a)dx =0 for n=m,
-1
1 -2a+1r2
_.2\ -« Coyy2.o 2 (-a+n+1) _ a2
(2.4c) J (1-x7) (Pn(x.a)) dX = ST S T (20 T) An(a)
-1
(2.4d) P/ (x;a) = 3(-20+n+1)P__, (x;a-1)
(2. 4e) (1-x2)P;(x;a) -2(-a*1)xP;l(X;a) +n(-2a+n+1)Pn(x;aJ =0
or
((1-x2)'“*lpé(x;a))'-+n(-2a+n+1)(1-x2)‘“Pn(x;a) = 0.

We will also define the orthonormal Jacobi polynomials ;n(x;a)
(2.5a) P (x;@) = P_(x;a)A (@)
n n n

and get




(2.5b) P (+1;a) = (-DP (-1,a) = d_(a)n @ (17/2)
n n n

where dn(a), n=20,1,2,... 1is bounded from above and below by constants

depending only on a.

So far we assumed that a < 1. Let us address now the case a = 1.

Obviously a polynomial P(x) belongs to W(1,1) only when P(x1) = 0.

Theorem 2.4. Let « = 1. Then the orthogonal polyncmial basis (Pn(x;l)} in

W(1,1) 1is given by

_ n-1 )
(2.86) Pn(x.l) = == Pn_l(t,O)dt, nz?2
-1
and (2.4b), (2.4¢c) hold for n 2 2.

Proof. Pn(t;O) is the Legendre polynomial. Because of the orthogonality of

Legendre polynomials Pn(:l;l) =0, n22. Obviously Pn(x;l) belongs to

w°(1,1). We have to show that

1

J (l—xz)-lP (x; 1P (x;1)dx
n m

-1

0]

"
o

for nm21, n=#m For «a we have from (2, 4e)

~((1-x2)P’ (%;0))" —
n

Falx0) = w18
and hence
= 1 e 25, .
Pn(x.I) = 2n(1 b )Pn—l(x’O)'

Therefore

1 1 .

2 “1 2 I3
(1-x7) "P_(x;1)P (x;1)dx = C(m,n) (1-x7)P’. . (x;0)P’ _(x;0)dx
n m n-1 m-1
-1 -1




1
2 . -
Cl(m,n)J (1-x )Pn_z(x, I)Pm_
-1

L}

2(X;-l)dx

0,

when using (2.4b,d) for m = n, n,m 2 2. It is easy to check that (2.4c)

holds for a =1 and n 2 2. @]

Using now (2.4c) and (2.4d) we see that the system (Pn(x;a)} is an

orthogonal base in Hl(a—l.a) for a <1 and of Ql(a-l,a) for a = 1.

2.4. The approximation properties of the polynomials on 1I.

Let P(x;a), a« <1, be the set of the orthonormal polynomials in
wo(a.a). Assuming u € wo(a,a), a £ 1, we can write

(2.7) u(x) = :E:ckPk(x;a)
k=0

and the series (2.7) converges in Wo(a,a).

Let us define

P
a -— ‘ .
(2.8) ?pu = :E:ckPk(x,a)
=0
and
(-]
L A S a .
(2.9) Q= u-2% chPk(x,a).
p+1
We have
Al . - -1 ’ .
"Pk(x'a)"wo(a-l,a—l) = Ak (a)"Pk(x’a)“wo(a-l,a—l)

-1 1 5 o
A (a)A _ (a-1)5(-2a+k+1) (P, _, (X @ l)nwo(a-l.a-l)

10




-— —1 - 1_ - -
= Ak (a)Ak\a 1)5( 2a+k+1) = Bk(a) k
with

0 < Cl(a) < Bk(a) < Cz(a) < w

so that

Pp(xia) = P, (x;¢-1)kD, («)
where Dk(a) is bounded from above and below by the constant dependent only
on «.
Assume now that u € wz(a-l,a) then u’ € wo(a-l,a-l). For u given by

(2.7) we have now

(2.10) u’ = :E:ckkaPk_l(x;a—l)
k=0
and hence
-]
(2.11a) c, (@) u)® < :E:cz(k2+1) < . () ful® .
1 1 k 2 1
Wila-1,a) k=0 Wila-1,a)

Similarly for any integer r 20 and u € wr(a-r,a) given by (2.7) we have

ow
:E:ci(k2r+1) < C (e, )l
k=0

(2.11b) cl(cx.r)llull2
(a-r, )

A

(a-r,a).

(2.11b) leads immediately to

Theorem 2.5. Let r,s be integers and r 2s 20, u e Hr(a-r.a), a £ 1.

Then

1o%ul < Cla,r,s)p TS )y o
P ws(a-s.a) wr(a-r,a).

So far we have assumed u e Nr(a-r,a), s £ r and we have

11




?:u € Us(a-s.a). Let us now consider the case when u € ﬁr(a—r,a). Then

obviously in general ?:u ¢ ﬁl(a-l,a).

Lemma 2.6. lLet n > 0 an integer, o« < 1, and

[n/2]
(2.12a) wi“r]l(x) = Z (2k~1)132k(x;a)
=0
[(n-1)/2]
(2. 12b) wé“l(x) = :E: (2k+1)§2k*1(x;a).
k=0

[al

Then wi (x) have following properties:

a) w[a](x] is an even function and wg n(x) is an odd function;

b) w[a](x) i =1,2 is a polynomial of degree n;

) (2.132) e (an 2 g yltly co @™ B2y e
@) (2.138) a (@n3ET < i)y s dy(n'32)T,
"W (e-r, )

The above statements follow immediately from the basic properties of Jacobi

polynomials.

Let us now define

2 w[a] x)
%, = % _lz a %l g i.p
pu pu 5 ((?pu)(l)*( 1) (?pu)( 1))w al )
i=1 i,p

and

2
1]
oq a 1 o i,1
3% 'ZZ (P20 (1+ (-1 PR (1) —.
Then obviously (@:u)(tl) = (?;au)(tl) =0 and ?;u. %;au € W (a-r,a), r

12




0,1. Further, let Q‘;u=

Theorem 2.7. let 0 <a <1, r=0,1, s an integer, s 2r, a > 1-s.
(2.14) IIQ“UII° < C(a.r.s)p_(s.r)null° .
P Hr(a-r,a) Us(a-s.a)
Proof. Because of the definition of ﬁs(a-s,a) it is sufficient to prove
(2.14) for u € c:. let s21, 1>a>1-s
o
u= :E:ckPk(x;a)
k=0
and
u(+1) = 0.
Hence
«©
@ + o .
(2.15) (a0 s :E: le, 1P, (21;0)
k=p+1
[..] [ ]
<c Z lcklk-a+(1/2) <c Z Ic:k|ksk—cx-~»(1/2)—s
k=p+1 k=p+1
[+ ]
1/2
2 - -
<c Z lcklzk's} D oa+1-s
=p+1
< Clul, mories,
ws(a-s.a)

u-?au and Q°au = u
p P

-$°%.
p

Therefore, using Theorem 2.5 and Lemma 2.6 we get

o
u&puu < noguu
Wr(a-r,a) {a-r, a)
-a+l-s 1 (372)+r
+ Cliull —a+(5/2)P
(a-s, «) P a+{5/2
13




< cp STy

ﬁs(a-s.a).

Hence, with r = 1,

+1

[(1-x2)'(“'1’[(6“u)'12-(1-x2)‘“(o“u)2]dx scp 5y
) P P W (a-s, a)

and (ﬁgu)(:l) = 0. Using Theorem 330 of [19] we get for « > O

+1 +1
J (1-x2)"1*“’(6:u)2dx sc (1-x2)"“")[(égu)'12dx
-1 =i

which shows that also

~(s-1)
ol s ci§lul s Cp lull,
P (a1, Pl (a-1,041) @ (a-s, a)

and (2.14) is proven for r =1, s 2 1.

Next let u € Ho(a.u) N C;, a < 1. Then

P P
LE% (£ € Y le [P (211 € €Y etk = (172) < gy p !
P k k k 0
5 =0 Wila, a)
and hence
-a+l1 1 372
18l < 1%l +Cul (p*t — p°’%1 < Cilul
P e P wW(aa Wo(a, a) pe*(572) (e, a)

Because ?:u € fll(o.a) for a =1 the theorem also holds for a = 1 when
§1 = ?1
p p’

Theorem 2.7, together with Theorems 2.1 and 2.2, leads to a series of

importapt approximation results. As we have seen earlier

Bl p) = (ﬁO(a.a).&’(a-r.a))e

14




where

~

s = 6r, s # integer, {s} = 1/2

g =a-6r

~

;+25=;=s+a= 142k, k=0,...,[s]-1
v <.

Hence by Theorem 2.7 we get for 0 < 91 <1, 91 # 1/2, s 2 1, an integer,

a<1, a>1-s, (r=1)

(2.16) 18, . . s cp ST gy,
Py Y, v ) W (a-s,a)
6" 6
where
H, = a-86
91 1
v = q+06
91 1

and (2.16) holds (only) under the assumption that 6,6 # 1/2, s 2 1 an

1

integer.
Let us remark that we can replace on the left hand side of (2.16) the

norm of ﬁei(a-el,a+91) by the norm of the space ﬁel(a-el,a). Let now O <

8 <1, 8= 1/2

Sg = [se] +0.

If {s] 21 then we can use the interpolation on the right hand side and get

~(s -91)
s Cp flall s

°o 0
W (a se.a)

18%ul
P 391 (-0, )

where we have excluded the case

15




a*Se=1*2k. k=0""l[se]-1'

If [s] = 0 then first by simultaneous interpclation on both sides of (2.14)

we prove that

(¢4
187l S Cjlull
P wal(a—e,.a) He’(a-e1.a)

and then using (2.16) for s = 1 by interpolating on the right hand side we

get

L s cp Oy
W (a-8y,a) W (a-8,a)

provided that 6 28, and 6,6, # 1/2. We have

1 1

Theorem 2.8. lLet 0<a <1, 0<s, £1, s, > Sy» 5y * [Si] +1/2, a, +s, =

1 2

142k, k =0,...,[s,]1-1. Then
(2.17) 8% s cp{S2S)yy :
P 81 (a-sy, ) 2(a~s,, )

In addition we can replace the spaces ﬁs’(a—si.a) by ﬁsi(a-si,a+si) in

(2.17) and also ﬁs‘(a-sl,a) by W1(8,7) where B < «-s,, ¥ S a and

ﬁsz(a-sz,a) by ﬁsz(ﬁ,;) with E 2 a-52 and 7 2 a. O
(Because of direct use of (2.14) we do not exclude the case of Sy being
integers).
Select now « = Sy O<a<1 a=tr2. Then we get from (2.17)

(2. 18a) 1% = 1%l < cp Sz -

P "{*(0,0) P f%1) v2(a-s5, a)
Select now sy < a, S, * 172 in (2.17):
(2.18b) 18%ul < &%y = &%

P S P "$51(0,0) P {51 (g-sy, a)

16




”(52‘51 " I

< Cp
w2 (a—sz,a)

For s1 > & we obviously cannot use the argument above. In (2.18) we

excluded the cases s, * [s] +1/2 and a+s, # 1+2k, k = 1....,[si] -1.

In the next section we will be especially interested in approximation in

the space ﬁl/Z(I) which was excluded from our consideration. Hence we will

consider ﬁ(1/2)+c(1) and get from (2.18a) the following.
Theorem 2.8. Let % 2€e>0, a-= ;*c, s > a. Then
[4
(2.19) "Qau",(1/2)+c < Cp-(s-(I/Z)-C)" I
P g (1) ¥ (a-s, «)
for a+s ® 1+2k, k=0,...,[s]-1. a]
On the left hand side of (2.18), we can replace ﬁ(l/Z)*c(I) by Hégz(l)

and on the right hand side ﬁs(a-s.a) by ﬁs(ﬁ.V). B2a-s, v 2 a

Remark 2.1. Using Theorem 2.9 we have lost pc in the estimate of the error

. 1/ .
in H002(I). This case can be studied separately. For example in [11] we

have shown that for s > 1/2

Lo < Cp—(s—(l/Z))(10 1/2"u"

Hyp (1) 0.0)

M5°1/ZUI

So far we have addressed the approximation properties of &:. Let us now

analyze Q;a. We have

2 [a) (a]

. v (x) ¢ (x)
pox, _ 3%, lz ((P20) (1) + (- 1141 (9% (1)) | L1 )
PT TP 2 P BOITTEMOITE

i=1 Yi.p Yi1

By (2.15), we have for s > -a+1 as before

-a+l-s

I(?:u)(tl)l < Cp lhall |

B (a-s,a)

17




Remembering that (?;au-§;u)(tl) = 0 using Theorem 2.1 and also Theorem

330 of [19] we get for a > O

°Q (+ 2 oa o
- > -9
1P fu- 20l ci (P u- #ou)

Wila-1,a) 1

Wila-1,a+1)

= C“§°au-—¢au)n
P p ﬁl(a-l.a)

Hence by interpolation we get for s2 > Sy 0 < s1 <1,

"§°au_ chllo < Cp-a*1'52[ 1+p¢°(5/2)p(3/2)"‘81]“u“ .
P P S (s, a) 2 a-s2, @)
s cp STy
W2(a-s5, @)
provided -a+1 s sy and as before a+s, * 1+2k, k = 0,....[52] -1.
Let us summarize our results in
Theorem 2.10. Let 0 < a <1, S5 20, s;ta s 1+2k, k=0,...,[s]-1,
i=1,2. Then
1
1} for S, > Sy, 5, * [si]-*z
(2.20a) 1%l s cp STV yp :
P ¥1(a-5y, ) 2(a-s2, @)
If in addition -a+1 < s1 then
(2.20b) 19> %y _ s cp™(527S )y :
PP (-5, ) W2(a-s5, a)

2) For 0<B<asi, s, > B, B=» 1/2

-(s5-8)
(2.20c) 19%ul) < Cp SRy .
PR °2(a-ss, @)

If in addition -a+1 < B8 < s then

2'
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10 p (s27R)

(2.204)

HB(I)

It was essential in (2.20c) (2.20d) that B <

studied separately. Let us mention first

flall
w2 (a—sz.u)

«. The case a < B8 has to be

Lemma 2.11. Let u be a polynomial of degree p and O < a« < B. Then
2(B-a)
lull < Cp flull .
(1) B (1)
For the proof, see eg. Lemma 2.4 of [18) or [1].
Now we can prove
Theorem 2.12. let O <a<B S, B * 172, B < S, S, * [s ]+ 5 Spta®
1+2k, k = O,...,[szl- 1. Then
(2.21a) 1%l p (SeTB)t (Bl -
P8 #°2(8-s5, 8)
If in addition 1-B £ a < 52 then
(2.21b) 1% o s cp (SR IBa) .
P 8B WS2(g-s,, B)
Proof. Using (2.20c) we get
a5 cp STy
P g% w2 (a-s2, u)
1B s Ty
(1) W52(g-s5.8)
and hence
180u-&ur =Py sty
P ™) PP ¥52(g-s5,8)

Using Lemma 2.11 we get

18




2(B~a)-(sz-a)
18% - Pl < Cp ul,
PP B W2(g-s2,B)

and hence
18%ul < cp (S RIlBrady
P B #2(g-s,, 8)
where we wrote on the left hand side ﬁB(I) instead of HB(I) because B =
1/2, &gu e (1) and é:u—égu is a polynomial vanishing at x = *1. The

second part of the theorem follows easily, too. o]

Remark 2.2. Using Theorem 2.12, we see that for a > 1/2, s 2 (1/2) +2¢,

€ > 0, we have

18%0 ,,, = Clelp 3T E gy

HOO Hs(a-s,a)

and the same estimate holds also for Q;a.

In the next section we will especially be interested in the approximation

in the space Hl/z which case was excluded from our consideration. We

00’
addressed this case only via the approximation in ﬁ(1/2)+€

(1).
It is well known that {Pk(x;l/Z)} are Tchebyshev polynomials which can

be written in the form

Pk(x;l/z) = cos(k arc cos x)

Pk(x;1/2) Vfg cos (k arc cos x).

We have shown in [11] that if

= chPk(x; 1/2)
k=0

c
it

then

20




[ 4]

(2.22) hui® = :Z:Ic 1%+ 1c 12,
Hl/z(l) k 0
k=0
The space Hégz(l) then has a norm which is equivalent to
1

2,~1 2

(2.23) "ullzl/2 = J (1-x7) Iy dx*-ﬂuﬂzl/z 4
H._ “(1) H7(1)

00 -1

1/
This norm is equivalent to II-IIol/2 Obviously %;/Zu and ?; 2u €
W

(0,1)
B2 1f we 8D, k> 122,
In [11], we have proven various properties of ?;1/2 for :xample
° -(k-(1/
182172y < cp” 17210 (1061 20y 1y k> 1/2.
P w2 51
00 ‘
Let us remark that in general
1/ °l/
18172y and 18712y
p HI/Z(I) P Hl/z(l)
00 (0]0}

(and analogously in other cases) are not necessarily monotonic non-increasing

functions of p. Of course, if we define ?;/2 as the projection onto the

set of polynomials of degree < p in the norm (2.23), then the monotonicity
would be guaranteed. If we neglect the first term in (2.23) and define ?;/2
as a projection in this norm, then we get a monotone sequence but now

?;/2 ¢ 1/2

HOO .

2.5. Numerical experimentation.

In the next section we will analyze the error of the finite element
method for two dimensional elliptic problems. This analysis leads naturally

to the measure of the error on I 1in the norm |+ 1/2 , respectively
H (1)
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fie

Hence we will be interested here in the computational analysis of

172
HOO (1)
the error in the one-dimensional case, in the norm || 1/2 More precise~
H (1)
3
ly, we will analyze nuw-?puwu 1/2 where
H (1)
[ ]

u (x) = S = :E:kak(x;O). 0 < w<«< 1.

w «f-—_-—7§
1-2wx+x k=0

We choose the functions uw(x) since they are characteristic for applica-

tions. In practice, in the finite element method, the singularity is almost

always located at an end point of I. If w—1 then uw(x) becomes singu-

lar at x = -1. Hence the parameter w characterizes the smoothness of u,

when the nonsmooth behavior occurs at an end point of 1.

Let
a
flu =% u |
o W pw Hl/z(I)
r (w) =
p 172
"uw-Tp uw" 1/2
H™(1)
where || is given by (2.22). Obviously r:(w) 2 1 and rg(w)

HY2(1)

expresses the quality of the performance of ?; in |-} Figure 2.2

H2(n)
shows r:(w) for w=0.8, 0.95 and 0.98 and for the (extreme) cases
a«a = 0,1. Table 2.1 gives the values rg(O.Q) and r;(O.S). The values of

r;(O.QS) and r;(0.98) are close together.
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K
a =
w=0.95 ( o o0
|5l w=0.98 G,cr”
) \c’ a=0
e o,°"’w=0 90
]
'.4 D':"a = 041?/
1 / |ws O9(2(_6,9fx—>r-“"““
_ # Zx'x':;o/ S as
3 13 ! X Vi &’ U.)=095
(oI =% l' X’ /d 4
[ / II o] /A/
I ¢ Ix O/ /6 OA _O
1.2 H—AA oo T=a=0 __ |
i JF o w=0.98
:‘l* rad
i j)/ s o w=09
1.1 -0 o w=0.95
] o’ ¢ w=0.98
/§/ ——a:=0
1.0 i
o) 8 16 24 32

_p_..

Figure 2.2. Comparison of the performance of ?g and ?;.

Table 2.1.

The values r;(O.Q), a=20,1

p r°(0.9) ri(0.9)
p p
1 1.0000 1.0000
2 1.0113 1.1611
3 1.0804 1.2741
4 1.1067 1.2450
5 1.1516 1.3218
10 1.2602 1.3281
15 1.3192 1.3854
20 1.3882 1.3720
25 1.4078 1.4038
30 1. 4663 1.3908
35 1.4676 1.4130
40 1.5207 1.4018
50 1.5622 1. 4089
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We see that rg(a) decreases (in cur range) as a— 1 while r;(a)

increases. For p large (with respect to Té;) the projection ?; performs

better than ?2, but for practical p (p < 15, say), ?g seems to be

1

preferable to ?p. As we will see In the next section a similar effect is

present in the context of the finite element method.
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3. The Finite Element Method

3.1. The model problem.
Let N be the domain as given in Section 2.1. Let M = {1,...,M} and

D ¢ M. Denote now = U Fi and I =r-r°. Ve will call FD, respect-
ied

1
ively FN the Dirichlet, respectively the Neumann boundary. Let H = H (Q)
and HO = {ue€ Hlu=0 on FD} and B(u,v) be a continuous symmetric

bilinear form on HxH. We will assume that for all u € HO we have

B(u,u) 2 ﬂlutlf{. y > 0.

Further, let F be a continuous linear functional on H and g € HI/Z(F ),

g[i] = gl € Hk(r ), 1e€eD k> 1/2.
I‘i i

Our model problem is now

(Find u, € H such that

_ D
U, =8 on r
(3.1) ;
and

~?(uo,v) = F(v), VY ve HO

Our model problem has a unique solution.

3.2. The p-version of the finjite element method.

- q _
let Q= U Qi, where Qi’ i=1,...,9 are open curved quadrilaterals
i=1
or triangles called elements of the partition of . The vertices of Qi are
called the nodes of the partition. We will assume that the nodes which are
located on the boundary I' of 11 coincide with the vertices Aj of Q as

shown in Figure 3.1.
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Figure 3.1. The scheme of the partitioned domain.

By S = (-1,1)2 and T = {€,n|-1 < €50, 0<7n< (E+1)V3; 0 <€ < 1,
0 <7< (1-€)¥3} (see Figure 3.2) we denote the standard square and standard
triangle respectively. Further, let P;(T) be the set of all polynomials of
degree < p on T and Pi(S) the minimal set of polynomials on S consist-
ing of all polynomials of degree < p and polynomials which are of deg:-ee
£ p on one side and are zero on the three others. For details see eg. [20].

The set Pi(S) is the set of serendipity elements and in [21] is denoted by

Q;.
7
B T B
’ 3 2 n
B2
V
3 - Vv
k (0,0) £
4 ‘{// AL«Dlj) 6;‘
Bs | B Bs | B
et e e -]

Figure 3.2. The scheme of S and T
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Assume now that the mappings FJ 1= (xiJ] = xiJ](E.n). i =1,2), J-=

1,...,q are smooth one-to-one mappings of S on ﬁJ if Qj is a (curved)

quadrilateral and T on ﬁj if QJ is a (curved) triangle. We can now

speak about vertices and sides of 1, in the obvious sense.

J
We will assume the following about the partition of Q and the mappings

i) The intersection 61

vertex of ni and Q, or is the single entire side of Q1 and QJ‘
v

n ﬁJ is either empty or is the single common

r =— =
ii) If i Q1 n QJ is the common side of Qi and QJ, P e rij' P
P = B R BER
Fl( 1) FJ(PJ)‘ Pi € BkBk*l' PJ € B£B£+1, (BJ is the vertex of S or T),
then d(Pi‘Bk) = d(PJ.B£+1) where we denoted by d(Pi’Bk) the Fuclidean dis-

tance between P1 and Bk'

L
We also will identify the side T with I = (-1,1) and the map Fi =

1
L ] -
FJ = FiJ of I onto riJ' Realizing that the sides of T and S have
* -
length =2 the relation between F,, F F is obvious.

i i’ "1
- 1 -1 1 .
Let now Pp(Q) {ueH (Q)Iu(l’-‘1 (xl,xz)) € PP(T) if Qi is a (curved)

triangle, u(FZl(xl,xz)) € Pi(S) if Q, is a (curved) quadrilateral}. If

i
u € Pp(Q) then u(F;I(xl.xz)) is a polynomial of degree p on every side of
T, respectively S. We will identify the sides of T, respectively S,

with I = {(-1,1) 1in the obvious way.

Assume now that a mapping ﬁp is given which maps Hk(I). k > 1/2, onto
Pp(I). (i.e., the set of polynomials of degree p on I), with (ﬁpu)(:l) =
u(z1) and ﬁpu =u for ue Pp(I). We note that for k > 1/2,

H(1) <>C(I) and hence u(21) is well defined.

The p-version of the finite element method for solving problem (3.1)

consists of finding up € PP(Q) such that
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(3.2a) B{u ,v) = F(v) YVveP () hH,

P P 0
(3.2b) u = *Li]g[” on [, ieD,
where

(11 (1) . [11,.*-1
ﬁp g l(x) = riip(g (F, " (x)))

and Fi is the mapping of I on ri induced by the mapping Fi'

The following theorem gives an error estimate for the p-version.

Theorem 3.1. Let the solution u, of the problem (3.1) have the form

0
. M T
(3.3a) u, = ul*z Z (1] [i]
J: i=1

(3.3b) u, € B, k> 1,

(1) [1]

(11 _ o A1 [1]

(3.3c) “j rJ |log rJI J (rJ)OJ (o J)
where (rJ,GJ) are the polar coordinates with the origin at Aj a31+1] 2
a[i] > 0, 7[i] 2 0, x{i](r ) isa C° cut-off function and 0[1] isa C”
J J J J J
function in ej. Then
(3.4) lhu

~(k-1) -u s (i]
-u_ll sC[p fu, |l +p "llog pl Zlc. |
° Pyl UE@ e
J
+Z“g[i]_§[i]8[1]“ )
P So2r,)
ied

(i]
J 1]

(1]

where u = min(2a[il). s = 7J where u = 2a C 1is a constant indepen-

i,4 J

dent of uy and p bu! dependent on k, p, s and on the partition of Q.

Proof. The proof of (3.4) 1is essentially the same as of Theorem 4.1 in [11].
D
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Let us mention that

“8[11__§L118[11“

[1)* (1]*
=g kg
ul’2(r ) P n’2(1)

00 i 00
where g[il'(E) = gli](F;(E)), € € I, because by the assumption Fi(i) is
smooth.
Theorem 3.1 shows that the error of the finite element solution depends
on two terms. The first two terms in (3.4) represent the error of the best
approximation without the effect of imposing the Dirichlet boundary condition.

(1]

In the case when D =¢ or g = 0 only these terms are present in (3.4).
The last term shows the effect of the approximation of the Dirichlet condition
in the dependence on the projection ip' We will call this term the con-
straint term. We defined in Section 2.4 the projections ?: and §;a for

the set of functions u which satisfy the condition u(*1) = 0. 1In order to

choose R = ?a we define
P P

%" = G+ 8% -a )
P P

* *» -

where u (£) = u(Fi(E)), £€el, and u 1is the linear interpolant (in §£)

- . _® ol
of u so that (u -u )(#1) = 0. The mapping *p is defined similarly.
_For a simplification of the notation we will write often %; and ;;a
instead of %% and X°“

p p

We can now directly combine Theorems 2.9, 2.10, 2.12, and Theorem 3.1 to

get the error estimate for the p-version of the finite element method when

using *; & ?: or *;a = ;;a . For example, let 1 2 a > 1/2, s > «, ﬁ;a =

9;“. Then the constraint term has the estimate

Hog (T,) W (a-s,a)
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IR J =3 1™
where gh] and g[ll were defined above. We assume that s # [s]+1/2

and a+s = 1+2k, k=0,...,[s]-1. We obviously "lost" a power pc in
(3.5) in comparison with the optimal estimate.
We have assumed that « > 1/2. If a < 1/2 then we have to apply

Theorem 2.12 and get on the right hand side of (3.5) the term

-(s~(1/72)-e)+((1/2)-a), [1]* -[i]*
P g -8

ﬁ((1/2)+e-s.(1/2)*c).

3.3. Numerical experiments.

Let us consider the case of an L-shaped domain shown in Figure 3.1. We

will partition this domain into three squares as indicated also in Figure 3.3.
du du

A, RgﬁﬁiﬁAs I‘SJ/Ea A,

&
on ™
Iy T,
~_ 9u
A r h an
5
w__ fo /A
an
Te Tg
—u
du FOR NEUMANN

Ag f r, A, an PROBLEM
u I

on i ]

Figure 3.3. The L-shaped domain.

Let us consider the model problem

(3.6a) Au = 0,

(3.6b) u=g on F1 and Iy (i.e., 1,8 € D),
du

(3.6¢) =—~—=h on I', 251<7.
én i
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We will assume that g and h are such that the exact solution Uy is

(3.7) u, = rA sin A8

where (r,8) are the polar coordinates with the origin at the vertex A1
(see Figure 3.1). Note that u, = 0 on ri. This problem will be called the
Dirichlet problem. In addition we will consider the Neumann problem when

D = {1}. The problem now is formulated in the form (3.1) with

2
B(u,v)=J Zg:—g%—dx
Q i i

i=1

F(v) = J hvdx { € #~D.

Ty

The constraint term is not present in the Neumann problem. It is present on
ra in the case of the Dirichlet problem

We will now use the projection ﬁ;u which is advantageous in practice
(although in some cases some assumptions in our theorems are violated).

The Neumann problem has no constraint term and hence the error for the
Dirichlet problem has to be larger. The difference indicates the influence
of the constraint term {(and of ﬁ;a) on the accuracy of the solution. In

Tables 3.1 - 3.5 we show the relative error Ju.-u | 1 /luol 1 for

° Pyla H' (Q)
various a« and A,

We see that in the case A = 1.6 and A = 0.6 the ratio of the error of
the Neumann problem and the Dirichlet problem is a reasonable one for all «
and nearly independent of p. In [7] we have proven that in this case, when
3[8] € Hl(ra). the rate for the Neumann and Dirichlet problem is the optimal

1 .
one when ?; (or i;l) was used. We cannot theoretically explain why the
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error decreases with a—0 for a < 1/2. Very likely it relates to the used

range p £ 8 and analogous effects we have seen in Figure 2.2.

In the case A = 0.15 when 3[8] € Hl(rg) we see the divergence when

§°1 is used, as expected, but once more we cannot explain why ?;1/4 gives

p
best results. We see that ?;0 performs slightly worse than %;1/4

still better than 4’;1/2).

{but

In the case A = 0.05, the use of %;0 leads to the divergence.

A natural question arises. What a should be used in practice? The
experiment suggests the choices a < 1/2. « = 1/2 should be preferred for
theoretical reasons but « = 0 usually gives the best results in our experi-
ments (these and others) and never gives a bad result. We note that for A =
0.05, the p-version gives unacceptable results even for the Neumann problem
and hence the h-p version has to be used.

If the h-p version (or p-version with strongly refined meshes) is
used, then the difference between various projection operators is not too
important. We will illustrate one such choice of operator when Dirichlet con-

ditions are imposed on the entire boundary. The solution is u = rl/a sin 6/3

(case A) and u = r2/3 cos 28/3 (case B). The projection ?;1 is used.

Figure 3.4 (case A) and 3.5 (case B) show the relative error for different p
and the meshes which are strongly refined. They have n layers and for n =
1, the mesh shown in Figure 3.2. Theoretically (see [9], [10]), the h-p

PN

version converges exponentially as e and hence Figures 3.4 and 3.5 are

plotted in the log x N1/3 scale. We see also in case A that the h-p

o]

version with n = p converges in fact as e
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Figure 3.4. The error of the p and h-p versions for u=r sin 6/3.
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Figure 3.5. The error of the p and h-p version for u=r cos 26/3.
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Table 3.1. Relative error for A = 1.8
p §,°O §,°1/4 §°1/2 §°3/4 §,°1 NBC
P p P p p
1| 2.6001 E-1 | 2.6001 E-2 | 2.6001 E-1 | 2.6001 E-1 | 2.6001 E-1 | 2.5761 E-1
2] 3.6361 E-2 | 3.6297 E-2 | 3.6232 E-2 | 3.6171 E-2 | 3.6127 E-2 | 3.1326 E-2
3] 3.0482 E-2 | 3.0422 E-2 | 3.0367 E-2 | 3.0331 E-2 | 3.0340 E-2 | 2.3647 E-2
4| 1.5320 E-2 1.5361 E-2 1.5426 E-2 1.5529 E-2 | 1.5698 E-2 1.2535 E-2
S| 8.2123 E-3 | 8.2512 E-3 | 8.3240 E-3 | 8.4285 E-3 | 8.5922 E-3 | 7.1002 E-3
6 4.8521 E-3 | 4.8886 E-3 | 4.9435 E-3 | 5.0260 E-3 | 5.1533 E-3 | 4.2937 E-3
7 3.0814 E-3 | 3.1174 E-3 | 3.1571 E-3 | 3.2182 E-3 | 3.3137 E-3 | 2.7834 E-3
8| 2.0821 E-3 | 2.1029 E-3 | 2.1338 E-3 | 2.1809 E-3 | 2.2546 E-3 1.8983 E-3
Table 3.2. Relative error for A = 0.6
p §,°O §,°1/4 §,°1/2 §,°3/4 ij,f’l NBC
p p P p p

1| 3.0707 E-1 | 3.0707 E-1 | 3.0707 E-1 | 3.0707 E-1 | 3.0707 E-1 2.6397 E~1
2| 2.1588 E-1 | 2.1671 E-1 | 2.1795 E-1 | 2.2008 E-1 | 2.2436 E-1 1.7145 E-1
3| 2.1377 E-1 | 2.1513 E-1 | 2.1720 E-1 | 2.2267 E-1 | 2.2781 E-1 1.5878 E-1
4/ 1.5851 E-1 1.5991 E-1 1.8203 E-1 1.6563 E-1 1.7289 E-1 1.2827 E-1
5( 1.2400 E-1 1.2528 E-1 1.2726 E-1 1.3065 E-1 1.3763 E-1 1.0516 E-1
6| 1.0116 E-1 1.0233 E-1 1.0414 E-1 1.0725 E-1 1.1378 E-1 | 8.7787 E~-2
7| 8.5071 E-2 | 8.6129 E-2 | 8.7780 E-2 | 9.0682 E-2 | S.6911 E~-2 | 7.4923 E-2
8| 7.3162 E-2 | 7.4134 E-2 | 7.5652 E-2 | 7.8361 E-2 | 8.4305 E-2 | 6.5076 E-2
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Table 3.3. Relative error for A = 0.3333
p §00 §01/4 §o1/2 §03/4 §°1 NBC
p p p P p
1| 7.1888 E-1 | 7.1888 E-1 [ 7.1888 E-1 | 7.1888 £-1 | 7.1888 E-1 5.7124 E-1
2| 5.8300 E-1 | 5.8538 E-1 5.9181 E-1 | 6.1187 E-1 7.0125 E-1 4.7273 E-1
3| 5.8462 E-1 5.8263 E-1 6.1026 E-1 6.5728 E-1 8.3462 E-1 4.5779 E-1
4) 4.9854 E-1 5.1145 E-1 5.3728 E-1 | 6.0323 E-1 8.3153 E-1 4.1310 E-1
S| 4.4324 E-1 | 4.5536 E-1 4.8347 E-1 5.5783 E-1 8.1688 E-1 3.6981 E-1
6| 3.9661 E-1 | 4.0957 E-1 4.4009 E-1 | 5.2086 E-1 | 8.0127 E-~1 3.3549 E-1
7| 3.6438 E-1 | 3.7673 E-1 | 4.0747 E-1 | 4.9119 E-1 | 7.8886 E-1 3.3078 E-1
8| 3.3501 E-1 | 3.4756 E-1 3.7924 E-1 | 4.6803 E-1 | 7.8025 E-1 2.8517 E-1
Table 3. Relative error for A = 0.15
p ¢00 §°1/4 §ol/2 ;,03/4 ﬁ,ol NBC
P P p P p

1{ 1.0123 E-O 1.0123 E-O 1.0123 E-O 1.0123 E-O 1.0123 E-0 | 8.5288 E-1
2( 8.1644 E-1 9.1240 E-1 S8.0754 E-1 | 9.0775 E-1 1.0672 E-O0 | 7.8644 E-!
3| 89.0381 E-1 8.0073 E-1 8.0034 E-1 8.2422 E-1 1.3136 E-O0 | 7.7035 E-1
4] 8.4599 E-1 8.4380 E-1 8.4864 E-1 8.9877 E-1 1.48698 E-0 | 7.3360 E-1
5| 8.1341 E-1 8.1065 E-1 8.1748 E-1 8.8487 E-1 1.5893 E-0 | 7.0683 E-1
6| 7.7966 E-1 | 7.7722 E-1 | 7.8714 E-1 8.7191 E-1 1.6836 E-0 | 6.7778 E-1
7! 7.5917 E-1 | 7.5626 E-1 7.8744 E-1 8.6455 E-1 1.7626 E-0 | 6.5296 E-1
8| 7.3550 E-1 | 7.3276 E-1 | 7.48B08 E-1 8.5618 E-1 1.8308 E-O | 6.3138 E-1

35




Table 3.5. Relative error for A
P §;0 NBC
1{ 1.0306 E-O0 | 9.6485 E-1
2] 1.0851 E-O0 | 9.4059 E-1
3| 1.2706 E-O0 | 9.3285 E-1
4| 1.4422 E-0 | 9.2138 E-1
5| 1.5993 E-O0 | 9.0854 E-1
6| 1.7407 E-0 | 8.9681 E-1
7| 1.8707 E-O | 8.8591 E-1
8] 1.9920 E-O0 | 8.7630 E-1
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