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A LIFTING-SURFACE PROGRAM OF CONTRAROTATING PROPELLERS

Benjamin Y.-H. Chen and Arthur M. Reed
David Taylor Research Center
Bethesda, Maryland 20084-5000

ABSTRACT moderately loaded, wake adapted single propellers to
the forward and aft propellers individually so that

A new lifting-surface computer program for a set the force and induced flow field could be determined.
of CR propellers has been developed based on a modi- The variations of inflow velocity (time-average) in
fied version of the MIT lifting-surface design program the axial and tangential directions and the streamline
with hub effects. This program automatically computes contraction in the slipstream of the forward propeller
the velocities induced by one propeller on the other, were treated approximately to account for the mutual
In addition, the hub portion of the program is interactions between the two propellers.
modified to account for the velocities induced by one
propeller on the hub of the opposite propeller. Data
from LDV measurements of induced velocities have been
used to adjust the shape and distribution of the wakes
shed from the two propellers. A comparison between
the conventional and the new methods for the design
of a set contrarotating propellers for a surface ship
is also given.

I. INTRODUCTION

Over the past several years, the application of
contrarotating (CR) propellers on surface ships has
been reemphasized because of interest in utilizing
lighter and more efficient electrical propulsion sys-
tems. This interest has been heightened by the
potential of CR propellers to achieve increased
propulsive efficiency and increased cavitation incep- FIG. 1. A CR PROPELLER SET
tion speeds. A CR propeller set is shown in Fig. 1.

Four decades ago most research on CR propellers Following Morgan's work, two computer programs
was experimental, and design techniques were were developed. Caster and LaFone (6) developed a CR
empirical. Since that tlime, analysis techniques have lifting-line program based on the lifting-line program
developed so that today there are a number of sophis- for single szrew propellers. This program incorpor-
ticated lifting-line and lifting-surface techniques ated field point velocity computations to determine
available for use in design. One of the earliest the interaction velocities between the two proximate
design techniques for CR propellers was developed by propellers in an iterative procedure. Nelson (7)
Lerbs (2). Lerb's method was further refined into a developed lifting-line as well as lifting-surface
usable design technique by Morgan (3). Both Lerbs programs. He showed a successful design for CR pro-
and Morgan relied on classical circulation pellers on torpedoes using the circulation distribution
theory (4,5) for single propellers as the basis of with finite values at the root. Both Caster's and
their methods. To determine the forces and induced Nelson's lifting life programs use the same approach,
flow field, they applied lifting-line theory for but differ somewhat in the options that are available

to the user and the techniques by which the details
are carried out.

All notations in this report are in accordance with Cox (8) chose the Caster and LaFone computer code
the International Towing Tank Conference (ITTC) as the basts of his method, but with several
Standard Symbols (I). revisions as follows: 1 - Cox used the induced axial



velocities in the propeller planes to determine the which include the self-induced velocity and the
mass flow rate for each propeller, and allowed that induced velocity from the other blade row. Fig. 2
the diameter of the downstream propeller to be speci- shows the velocity diagram for a CR propeller set.
4ied directly, regardless of the mass flow rate. The details of the traditional design procedure and

Caster's program used an approximacion due to Lerbs to the new design procedure will be described in this

determine the appropriate diameter for the aft section.
propeller; 2 - Both programs use FPV-7 to calculate
the velocities induced by one propeller on the other.
However, Cox treated these velocities at radii smaller
than the diameter of the forward propeller hub. Thus UF UAFZ

his program could readily deal with tapered hubs, .L-;uF
which Caster's program could not. dL4F TF

Another, more recent, lifting-line computer d-- d-------
program for the design of CR propellers was developed
by Reed (9). It was also based on the Caster and
Lafone method, and it incorporated many of rhe V,(r)(1- W)

improvements due to Cox. In addition, th program I

incorporated improved methods for computing the
velocities induced by one propeller on the other.
These new methods have decreased the time required for 1F(r) w r

the induced velocity calculations by more than r dr

90 percent, substantially reducing the time required
for the total lifting-line design.

In the preliminary design stage, lifting-line Forward propeller (right-handed)
theory is a very useful tool. The dependence of
forces and efficiency on such parameters as angular
velocity diameter, blade outline, blade numbers, and
circulation distribution can be determined economi- u'A
cally through parametric calculations. Since CR UAdL,

propeller design involves a large number of design u A

parameters and the calculation of mutual interactions UF.,A dr

between two propellers, an economical lifting-line dL...
tool is particularly important for CR propeller design. d A
Lifting-line theory alone, however, can neither deter- dr ,Idr

mine the final meanline distribution and radial pitch V.(r)(1-WA)
variation accurately nor can it predict interactions V (r
between two adjacent propellers satisfactorily. For Vr) 13

the final design stage, lifting-surface theory must
be employed in order to incorporate three-dimensional ar r 1 dOA
flow field effects. The traditional design procedure, r dr

described in detail in section II, employs a single
propeller lifting-surface program to determine blade Aft propeller (left-harded)
final pitch and camber for each blade row separately.
In this traditional procedure, the interaction
velocities between the propellers are those from the FIG. 2 VELOCITY DIAGRAM OF A CR PROPELLER SET
lifting-line model, not the lifting-surface model.
Also, this procedure will not allow zero net
circulation at the hub for the two propellers. I. Traditional Design Procedure

lore recently, a customized lifting-surface A flow chart for the traditional design procedure
computer program for the detailed design of the for a CR propeller set is shown in Figs. 3 and 4. In
individual propellers of a CR set has been developed Fig. 3, the lifting-line program is used to design the
to strengthen the traditional design procedure. This forward propeller using the inflow from wake measure-
design tool automatically computes the velocities ments. Without considering the effect of the aft
induced by one propeller on the other. Additionally, propeller, the results of the lifting-line program are
it accounts for the hub of each propeller in the the characteristics of the forward propeller. Mean-
design of the set (a factor which is of greater while, the field point velocities induced by the
importance for CR propellers than for single forward propeller on the aft propeller are computed by
rotation propellers), and allows finite circulation the internal field point velocity program. The
at the hub of each propeller (the net circulation for diameter of the aft propeller is determined based on
the two propellers at the hub should be zero). The mass flow conservation, and the characteristics of the
shape and distribution of the wakes shed from the two aft propeller are obtained through lifting-line calcu-
propellers, which is particularly important for the lations using the combination of the induced velocities
aft propeller, is adjusted using data from Laser from the forward propeller and the wake measured at
Doppler Velocimetry (LDV) measurements of induced the aft propeller position. Once the aft propeller
velocities around a pair of CR propellers. lifting-line calculation is complete, the field point
A sample calculation shows the comparisons between velocities induced by the aft propeller on the forward
the conventional and the new method on a CR propeller propeller are computed and incorporated into the wake
design for a surface ship. for the forward propeller. The Lifting-line design is

Iterated through the above procedure a second time to
II. 4ETHODOLCY account for the interaction effects between both

propellers.
As stated before, one of the major tasks in CR

propeller design Is to obtain the induced velocities,

2



2. New Design Procedure
The CR lifting-surface program is based on the

20.:G. C' T0,ST O.R: A MIT lifting- .urface computer p~ogram, PB..,-1l (10)
- which includes huo image effects. PBD-I determines

the propeller blade shape for a prescribed circulation
,3. %E0 C., distribuL.in and a given hub geometry. The vortex

N[ __ lattice approach is used to represent the blades and
their wakes. The hub is represented by a distribution
of vortices which ends at the hub apex. By taking

BLEEOM FOAVWAMROP account of the hub effect, PBD-11 allows non-zero
circulation at the hub of a propeller, a factor which

E PONT CULON I  seems to be more significant for CR propellers than
for single rotation propellers. Additionally, its
wake model is more realistic.

A vortex/source lattice iethod has been employed
AODD;NTC AFT PROP in the present field point velccity computation

scheme (Kerwin (11)). The discr:tized version of a
LnNG LtECOOE CR propeller is comprised of a blade, its wake and the

hub. Following Greeley and Kerwin (12), the wake is
CONVERGE' composed of a transition wake and an ultimate wake.

The vortex sheet tends to contract and roll up in the
[g5WM OFT PPOP transition wake. A single helical tip vortex and a

hub vortex forms the ultimate wake.
PELD POTCAL ULATION The details of the vortex/source lattice method

AFT - FRWARD) are described as follows. The line source strength,
NOUCEO VFL OF AFT PROP qn due to thin wing theory and the spanwise vortex
*00 NTO FORWARO P0O, st1engths, m(s) ,due to the normal boundary condi-

N O tion constitute the primary singularities. The first
index, n, stands for chordwise position and the second
index, m, spanwise position. Based on the conservation

EN.O of vorticity, the secondary singularities include the
chordwise vortices, rnm(c), the transition wake
trailing vortices, rnm(tw), the ultimate tip vortex,

FIG. 3 FLOW CHARI uF C7 LIFTING-LINE PROGRAM rn(tL and the hub vortex, Fj (h), where J is the

Jth panel. A special treatment, shown in Greeley and
Kerwin (12) and in Kerwin and Lee (13), is required
for the chordwise vortices originating from the outer
end of the tip panel.

BLADE GEOMETRY • INFLOW E AOVANCE COSFF Induced velocities due to the blade, its vortex•BLADE CIRICULATtO% , WAKE PARAMETERS

FPV INPUT FROM L L wake and the hub can be found by summing the product
of the singularity strengths with the corresponding

_E velocity influence functions, 
1
nm and nmq

. 
Velocity

influence functions are defined as vector velocities
which a line vortex and source of unit strength induce
at the field point. These influence function veloci-
ties are computed for lattice elements with the
indices n and m.

5LADEGSOMOFPROR According to Kerwin (11), the induced velocity
due to the spanwise vortices and sources is

N M

Vs " E E rnm(S) .H (1)

FIG. 4 FLOW CHART OF CONVENTIONAL CR n-l m1l

LIFTING-SURFACE PROGRAM and

N M

As shown in Fig. 4, the results of the lifting- Vq - i qHn , (2)

line calculations provide information (principally 
n-I m1

circulation, hydrodynamic pitch distribution, and where N and N are the number of panels over the chord
induced velocities between blade rows) to the single and span, respectively.
propeller liffing-surface program which determines The induced velocity due to the chordwise
the f~nal blade pitch and camber. Two questions are vortices and the separated sheet at the tip i3
raiseu by using the above design procedure. First,
the onset flows of the lifting-surface procedures are

covered over from te lifting-line procedure. In N-1 M
induce by on V -,c)

other words, the field point velocities induced by one c nm (C)n

propeller on the other are based on the preliminary n-i m-l

blade characteristics through lifting-line design.
Second, the slipstream contraction of a CR set should
be different From that of a single propeller. To N N-n+l

improve upon the above procedure, a new design 1 nn (3)
-ethodology, deicrlbed in this report, has been devel- n-I Zi.

opel.

3



where the symbol I in the second summation represents well known phenomenon from the evidence of theore-
the individual chordwise vortex elements due to the tical analysis as well as experimental measurements.
outer end of the n'th spanwise vortex. It is very difficult to accurately predict the tra-

The induced velocity due to the transition wake jectory of single streamlines analytically due to the
is effects of nonlinear and three-dimensional character-

istics of the flow. This is especially because the
M+l Nw(m)-l ( vortex sheets tend to roll up in the slipstream. Up

Vtw - E rnm(tw n' , (4) to this point, the streamline contraction of a CR set
2-1 n-1 has seldomly been included in the design or analysis

of CR propellers. Nagle and McMahon (14) measured the
where Nw(m) stands for the number of points describing flow velocity in the vicinity of a set of CR research
the path of the trailing vortex shed from the inner propellers (propellers 4866 and 4867) using Laser
end of rN,(S The inner radius of the transition Doppler Velocimetry (LDV). The propeller set, designed
wake should be exactly the same as the hub geometry, to operate in uniform flow, was tested in the DTRC
The collection point of the separated tip vortex con- 24-in, water tunnel. Axial, radial, and tangential
tributes the (M+l)st transition wake element, induced velocity measurements were obtained forward of

The induced velocity due to the ultimate tip the two propellers, between the propeller set, and
vortex is downstream of the aft propeller, with the propellers

operating at the design condition.
Nu- rv-t - rnt . , (.5)

V I rt4'

where Nu represents the number of points which form * 0 BIA OjcuL.ArON • WAKE PAAAMETSS
the piecewise linear approximation to the helical SMEUg h, .FPINPTFOMLS
ultimate wake. The first point of the helical ulti- LIFTINGSURFACE COOE
nate wake agrees with the last point in the tip
element of the transition wake. N

Finally, according to Wang (10), the induced
velocity due to the hub vortex is

NT NT 
SE GEM OF ,0n0P

Vh . r (YHr()F
h  - jl , (6) FIELD PINT C ULT ONi-1 J -1 (ONE PROP - THE OTHER ip"OP)

where 'j, is the velocity induced at the ith control J STOREO THE OT OE
point by the jth panel. NT - NR * NH is the total num-
ber of panels. Each panel consists of two helical
vortex elements and two vortex ring elements. NH is
the number of helical vortices on the hub between two
blades. NR - NNl + NN + NN2 is the number of vortex FIG. 5 FLOW CHART OF NEW CR LIFTING-
rings, where NNI is the number of vortex rings between SURFACE PROGRAM
the blade leading edge and the blade trailing edge, and
NN2 is the number of vortex rings between the blade The position of the trailing vortex wake geometry
trailing edge and the hub apex. The total induced is traced by searching for the zero crossing point of
velocity due to blade and wake and hub vortices is the tangential velocity (i.e., Vt-0) versus radius.

Despite the large number of data points which were
SV s + Vq +c +Vtw + + . (7) collected, there are not enough data points to deter-

mine the complete slipstream. Data were obtained at
A flow chart for the new CR lifting-surface pro- two different locations downstream of the aft propel-

gram is shown in Fig. 5. The input includes the blade ler. These include experiments 17 through 21. From
characteristics (such as blade and hub geometry, and the data collected in these experiments, one slipstream
circulation from the results of lifting-line calcula- behind each propeller was derived. It has been plotted
tions), inflow information, wake parameters, and in Fig. 6. The contraction angles of the forward and
locations at which field point velocities induced by aft propellers are 15' and 34, respectively. It is
one propeller are obtained, the field point velocities believed that the contraction angle of the aft
on the other propeller are automatically calculated, propeller is larger than that of the forward propeller
These field point velocities, which result from two because the induced velocity effect of the forward
sources (one from blade and wake vortices and the other propeller on the aft propeller is more significant than
from the hub vortex), will be treated as additional the effect of the aft propeller on the forward pro-
inset flows when the other propeller is achieved, the peller.
program will automatically compute the field point
velocities induced on the first propeller. The first III. SAMPLE CALCULATION FOR A CR PROPELLER DESIGN
propeller will be redesigned using the new onset flow.
This iterative procedure is followed until the field A CR propeller set, with a 7 blade forward pro-
point velocities induced by one propeller on the other peller (D - 16.5 feet) and 5 blade aft propeller (D -
show no significant change. 15.826 feet), has been designed for a surface ship.

The propellers were designed for a speed of 20 knots
3. Slipstream Contraction with thl rotational speeds for both propellers at 65

As flow passes through a propeller, the stream- rpm. The traditional design procedure was used for
lines must contract because the propeller imparts an this design. In this section, a comparison between
axial acceleration to the flow passing through the the traditional design procedure (TDP) and the new
propeller. The contraction of the slipstream is a design procedure (NDP) is given.

4
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(This figure is based on Nagle and McMahon (14))

For the forward propeller design, Fig. 7 shows The variation of the radial velocity, urA F' induced

the radial distribution of the axial velocity, by the aft propeller at the forward propefler reference

UaA,F, induced by the aft propeller at the forward line is shown in Fig. 8. The magnitude of the radial

propeller reference line. The magnitude of uaA,F velocity from the TDP is equal to zero, while that of

from TDP (lifting-line model) is smaller than that NDP is small and oriented outward. This indicates

from NDP (the lifting-surface model) because NDP that the amount of wake contraction for the forward

includes the thickness, rake and skew effects. This propeller will be reduced due to the effect of the

indicates that the torque of NDP will be larger than aft propeller. Fig. 9 shows that the tangential

that of TDP. However, the magnitude of uaA, Fis very velocity, utA F,induced by the aft propeller at the

small because the wake induced by the aft propeller forward propeller reference line is zero because the

does not significantly affect the forward propeller, wake of the aft propeller can not affect the forward
propeller.

1i 11~ 1

0.61

S0.41
NDP

S0.2__ ____ __ _ _

> 0

0.1

I

-0.

FIG. 7 COMPARISON OF RADIAL, DISTRIBUTION OF AXIAL VELOCITY INDUCED

BY AFT PROPELLER ON FORWARD PROPELLER
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Since the differences in the induced velocities propeller more than that of the aft propeller affects
predicted by TDP and NDP are very small for the for- the forward propeller. As Fig. 14 shows, the radial
ward propeller, the pitch and the camber distributions velocity, u.F i. induced by the forward propeller at
should be similar. The radial distribution of the the aft propeter reference line has zero value for
pitch-diameter ratio, PD, is affected by both the TDP because the lifting-line model does not account
inflow, the propeller induced velocities, and by the for the radial induced velocity. The NDP has an
rotational sneed. Because of the identical rotational inward value which will increase the wake contraction
speeds and 1:.ow, the induced velocities dominate the of the aft propeller. The variation of the tangential
differences in the pitch-diameter ratio, shown in velocity, utF A, induced by the forward propeller at
Fig. 10, between the propellers designed using TDP the aft propeller reference line is shown in Fig. 15.
and NDP. The magnitude of P/D from NDP is larger The magnitude of the tangential velocity from NDP is
than that from TDP because AF ,from NDP is larger. higher near the tip and lower near the hub.
To maintain the same thrust, the camber ratio, fM/c, The pitch-diameter ratios from the designs
of NDP should be smaller than that of TDP except near developed with TDP and NDP demonstrate differences
the hub. This is because NDP includes hub image near the hub but not the tip, as shown in Fig. lb.
effects (see Fig. II). The thrust coefficient, KT, It is apparent that the higher pitch from NDP near
the torque coefficient, K, and the open water effi- the hub is caused by the higher uaF Aand the lower
ciency, ro, are given as a function of drag utF A from NDP than from TDP. On tqe contrary, the
coefficient, CD, in Fig. 12. no from NDP is smaller smafl differences in the pitch near the tip are due
than that of TDP because the torque of NDP is larger to increases in both ua FA and utF A when computed
than that of TDP. by KDP. Fig. 17 shows the radial distribution of

As for the aft propeller design, Fig. 13 shows the camber, fM/c. It can be seen that the magnitude
the axial velocity, uaF,A,induced by the forward pro- of camber from NDP is lower than that from TDP,
peller at the aft propeller reference line. The expecially near the tip. The reverse camber near
magnitude of uaSA from TDP is smaller than that from the tip may be caused by the sharp decrease of the
NDP near both the hub and the tip because NDP includes chord distribution near that region. Fig. 18 shows
the thickness, rake and skewo effects. Thus, it is KT, KQ, and no versus C0. The value of n from NDP
exoected that NDP should have higher torque than TDP. is smaller than that from TDP because the thrust
The magnitude of uaF Ais higher than usA ,Fbecause from NDP increases but the torque increases even
the wake of the forward propeller affects the aft more.
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