
In
In Research Product 88-36

04

MCS 2 Database Embedded Training (ET):
Procedural Findings for Command

and Control Systems

OTIC
P,,, 0 D il89 8

November 1988 .

Manned Systems Group
Systems Research Laboratory

U.S. Army Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited

IJ5
I IlllullU~ mmllllnllln~~lnnunJe ••

BLANK PAGES
IN THIS
DOCUMENT
WERE NOT
FILMED

U.S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction

of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON JON W. BLADES
Technical Director COL, IN

Commanding

Technical review by

Randall M. Chambers
Dorothy L. Finley
Marshall A. Narva

NOTICES

FINAL DISPOSITION: This Research Product may be destroyed when it is no longer needed.
Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: This Research Product is not to be construed as an official Department of the Army
document, unless so designated by other authorized documents.

UNCLASSIFIED
SECURITY CLASSIFICATION OF 1,41S PAGE

Form Aoproved

REPORT DOCUMENTATION PAGE o.0704.Ot88

Ia. .EPORT SECURITY CL ASSIFICAION 7b. ATRIC71vE MAPKINGS

Uncassif ied I .

2a. SECURITY CLASSIFICATION AUTHORIT't 3. OISTR8IUTION /AVAILAILI Y CP REFPORT

Zb. OECLASSIFICATIONIOOWNGRAOING 5:HEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ARI Research Product 88-36

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Applied Science Associates, 1 (If applicable)

Inc. -- Army Research Institute (PERI-SM)
6c. ADORESS (Cy, State, and ZIP Code) 7b. AOORESS (Cry, Scate. and ZIP Code)

P.O. Box 1072 5001 Eisenhower Avenue
Butler, PA 16003 Alexandria, VA 22333-5600

8a. NAME OF FUNOINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOE.1NTIF;CATION NUMBER
ORGANIZATIN U.S. Army Research (if applicable)

Insticute for the Behavioral OPM-85-19 W.O. 219-026, 219-045, 319-031,
and Social Sciences PERI-ZA 419-004
Sc. AOORESS (City; Stare, and ZIP Code) I. SOURCE OF FUNOING NUMBERS

PROGRAM PROJECT TASK ~ WORK UNIT

5001 Eisenhower Avenue ELEMENT NO. NO. NO. ACC.SION NO.

Alexandria, VA 22333-5600 62717 A790 142 1520
11. TITLE (Include Security Clalsificaton)

MCS 2 Database Embedded Training (ET): Procedural Findings for Command and Control Systems

12. PERSONALAUTHOR(S)Ditzian, Jan L. (Applied Science Associates, Inc.), and Witus, Gary (Vector

Research, Inc.)
I3a. TYPE OF REPORT 13b. TIME COVERED 14. OrTE OF REPORT (Year, Monc, Day) IS. PAGE COUN1T

Final I .POM 84/11 TO87/12 1988, November 96
16. SUPPLEMENTARY NOTATION

The Contracting Officer's Representative is Dorothy Finley.

17. COSA DE -=:A 18. SUBJECT TERMS (Continue on reverse if necessary ano identify by block numcer)

FIELD GROUP SUB-GROUP Embedded training T Computer-based training.,
i iTraining system development. (CBT)

Maneuver Control System 2 (MCS 2) Training requirements 1. 0
19. ABSTRACT (Continue o reverse if necessary and idenrify by block number)

- Embedded Training (ET), as an integral part of weapon system design, offers what ap-

pears to be a unique and cost-effective training capability. ET was developed for the

MCS 2 system to help validate a set f embedded training development procedures being
undertaken in a concurrent program, "Sysrem-sDesign Concepts to Support Embedded Training
(ET)." MCS 2 is a battlefield management system under development by the-A/my Development

and Employment Agency (ADEA). This effort resulted in the generation of computeTr-aided

instruction (CAI) courseware, but did not succeed in implementing interactive ET, in

which the trainee uses the operating software under controlled conditions. The causativt\
factors for this are documented as lessons to be integrated into the concurrent program.

Z0. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

2 UNCLASS1FIEO/1JNLIMITED 0 SAME AS RPT, C OTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INOIVIOUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

Dorothy L. Finley (404) 791-4472 I

00 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIEDi

Research Product 88-36

MCS 2 Database Embedded Training (ET):
Procedural Findings for Command

and Control Systems

Jan L. Ditzian
Applied Science Associates, Inc.

Gary Witus
Vector Research, Inc.

Manned Systems Group
John F. Hayes, Chief

Systems Research Laboratory
Robin L. Keesee, Director

U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue, Alexandria, Virginia 22333-5600

Office, Deputy Chief of Staff for Personnel
Department of the Army

November 1988

Army Project Number Human Performance
20162717A790 Effectiveness

and Simulation

Approved for public release; distribution is unlimited.

iii

FOREWORD

This report describes embedded training developed for the Maneuver Con-
trol System 2 (MCS 2), a command and control system that gives commanders
information about the status of their units and enemy operations. The train-
ing focuses on database operations at the upper echelon level of the system,
which deals with the organization of data inputs from lower echelons and the
presentation of the results to commanders. The MCS 2 database training system
is presented. The system supports six lessons that instruct soldiers in the
operation of the MCS 2 database- The training is computer-based training
(CBT) that uses computer-aided instruction (CAI) as the only mode of presen-
tation. In addition, the MCS 2 database authoring system is presented, which
provides a means to create and execute CAI courseware on any computer running
under the UNIX operating system. The authoring system, which consists of an
interactive, menu-driven courseware authoring program, an authoring language,
and utility software, provides a simple language and structure for nonprogram-
mers to use to generate and edit courseware. Appendixes are included that
present the authoring system source code, instructions for creating new train-
ing and modifying the training package, and templates of authoring code imple-
mentation for selected screen presentations.

EDGAR M. J6OHN ON
Technical Director

Accession For
NTI GPA&I

DTTC T AB 0

Jv _ c.. .. t r

1 v

* ,-. ,. y d 3

v. -.

v

MCS 2 DATABASE EMBEDDED TRAINING (ET): PROCEDURAL FINDINGS FOR COMMAND
AND CONTROL SYSTEMS

CONTENTS

Page

INTRODUCTION 1

Background.
Purpose 2
Scope 2
Organization. 3
Schedule. 3

MCS2 DATABASE TRAINING. 7

Content of MCS 2 Database Training Course. 7
MCS 2 Hardware and Software Background 8
Training Capabilities and Features 9

MCS 2DATABASE AUTHORING SYSTEM 13

Overview 13
Language Definition 13
Instructions 14
Expressions. 18
Tokens 25
Operating Guide. 26

FINDINGS AND RECOMMENDATIONS 31

Limitations of ET In MCS 2. *.*................................31
General Implications for ET in Army Systems.31
ET Interfaces to Operational MCS 2 System Software 35

REFERENCE 41

APPENDIX A. AUTHORING SYSTEM SOURCE CODE A-1

B. CREATION AND MODIFICATION OF CAI COURSEWARE B-1

C. TEMPLATES OF AUTHORING CODE IMPLEMENTATION FOR

SELECTED SCREEN PRESENTATIONS. C-1

LIST OF TABLES

Table 1. Input and output instructions. 15

2. Logic and computation instructions.16

vii

CONTENTS (Continued)

Page

Table 3. Framing instructions 19

4. Timing instructions 20

5. Student profile instructions 21

6. Examples of expressions 22

7. Operators in expressions 23

8. Functional requirements and instructions 38

LIST OF FIGURES

Figure 1. Initial ET contractors' internal schedule 4

2. Resulting ET contractors' internal schedule (lower half) . . . 6

viii

MCS 2 DATABASE EMBEDDED TRAINING (ET):
PROCEDURAL FINDINGS FOR COMMAND AND CONTROL SYSTEMS

INTRODUCTION

Background

MCS 2

Maneuver Control System 2 (MCS2) is a project of the Army
Development and Employment Agency (ADEA). MCS 2 is a computer-based
Command and Control tool that improves decision making by tactical unit
commanders under battle conditions. MCS 2 consists of a network of
computers'organized into nodes via local area networks (LANs), and
netted together via packet switches. In the future, digital radios
will be added to free the system from wire constraints. The operating
software is the Distributed Command and Control System (DCCS), running
under the UNIX operating system. DCCS integrates and provides the
soldier-computer interface for a number of programs designed for
specific purposes, such as: word processing, spreadsheet, database,
electronic mail, videographics, and other functions.

MCS 2 is comprised of two component levels, an upper echelon and a
lower echelon system. At the present time, the upper echelon system
uses Hewlett-Packard (HP) computers1 , coupled with graphics

presentation and recording hardware and printers. The lower echelon
system is comprised of GRID computers. The lower echelon system is
designed to allow lower echelon units to input their data to MCS 2.
The upper echelon system organizes these data inputs and presents the

results to commanders.

MCS 2 gives commanders information about the status of their units
and enemy operations. These data are presented in a format that is
intended to make the information easy to use for battlefield decisions.
The database function is the primary tool for this purpose. The other
tools mentioned above are included to clarify presentations, improve
battlefield communications, and assist in other aspects of tactical
decision making.

Embedded Training for MCS 2 Database Operators

ADEA requested that the Army Research Institute for the Behavioral
and Social Sciences (ARI) help in implementing embedded training (ET)

ICertain brands of computers and software are named in this report in
the interest of completeness of description of system components.
This does not imply endorsement by the Army or the Army Research

L Institute.

1

in the upper echelon subsystem MCS 2 software and hardware system. ARI has

an ongoing program to define ET development and design guidelines to be
applied to new Army systems and selected MCS 2 as one of the exemplar
systems in which to test and verify the operation of ET development
procedures.

L-

Purpose

Project

The project was intended to accomplish several goals:

Goal 1. Develop an authoring system for MCS 2 to present
training on the computers used for MCS 2.

Goal 2. Develop training for MCS 2 operators to enable
training at field sites for untrained operators
(acquisition training) and for trained operators who
have not used the system for a long while (sustainment
training).

Goal 3. Ascertain what lessons the Army should derive from
this program with respect to future applications of
ET.

Report

This report serves two purposes. One, it discusses the overall
project, its course, and its products. Two, it serves as a guideline
for ADEA to use for operating and modifying the products.

Scope

At the outset of this project, a meeting of ADEA, ARI, and the

project contractors established that the focus of training for this
project would be database operations in MCS 2. The primary recipient
of the training is to be the upper echelon MCS 2 operator.

Initially, the target hardware and software for this demonstration
was to be a Wicat computer system, using Ann Arbor data terminals,
running under the UNIX System V operating system. During the project
this target was changed to the HP hardware noted above, running the HP
version of UNIX System V. The DCCS underwent growth and changes during
the program; the project responded to these changes as far as possible.

2

The training was to include both computer-aided instruction (CAI)
and interactive ET. CAI is the presentation of information by the

computer, accompanied by elicitation of trainee responses, feedback,
suitable branching through the courseware, and recording of student
performance. Interactive ET means that the trainee exercises the
actual software to receive a realistic training experience.

Organization

In the remaind of this paper:

The section entitled, MCS 2 DATABASE TRAINING, describes the
embedded training that was created. It starts with an in-depth
discussion of the hardware and software of MCS 2, and then
discusses features and content of the training, and presents a
description of the authoring system.

The section entitled, MCS 2 DATABASE AUTHORING SYSTEM, presents
findings and recommendations for future ET efforts in MCS 2,
and for general efforts in ET on an Army-wide basis.

Appendixes are included that present the authoring system source
code, instructions for creating new training and modifying the training
package, and templates of authored training code that can be used to
simplify the job of training creation.

Schedule

As noted earlier, a number of changes occurred in the MCS 2
program while this training development program was under way.
Figure 1 shows the initial schedule established in April 1986.

These steps were followed until September 1986, when the first
coordination between MCS 2 and the authoring system developers was to
take place. The planned delivery of a new version of MCS 2 software to
ADEA at Fort Lewis was to be complete in November 1986. This did not
occur on schedule, and the expectation of delay began to manifest
itself in September. This incident in the MCS 2 program has a strong
affect on the training development program as well. It interfered with
the training development team's access to the new software, to the
MCS 2 hardware, and to the MCS 2 software developers who were fully
occupied in getting MCS 2 working as quickly as possible. Accordingly,
the training development program was halted until assurance could be
given that access to information, software, and hardware would be
available.

3

LI

U V

0

4-

0 1-0

U-U

Ic A

u. f E

IL c I

4-

The program was restarted in March 1987. The change altered those
schedule items below the dotted line, and the resulting schedule for
these items is shown in Figure 2. The courseware was installed and
demonstrated in August 1987. Comments and improvements were offered by
the Army. These were incorporated into the final delivery in September
1987.

5

I.-4
U

I-
2o m
U4

0

1.0-

0 0

U *~fl-4
ow

14

Ud L:

_______ _____

MCS 2 DATABASE TRAINING

The training system that resulted from this effort is computer-
based training (CBT) using CAI as its only mode of training
presentation. CAI implies presentation of training material from a
database of training text. CAI may or may not include features such as
branching, analysis of student understanding of the material, storage
of results, feedback of various sorts, and so forth. This is to be
contrasted with interactive ET, which involves the use of actual
operational software during the training presentation. In this case,
the trainee would use the operational software under control of a main
CBT program.

First, the hardware and software background for the system is
presented. In the next two sections the capabilities and features of
the training course are presented and the specific content of the
MCS 2 database training course are discussed.

Content of MCS 2 Database Training Course

The database training course consists of six lessons that instruct
a soldier in the operation of the MCS 2 database. The lessons start
with an introduction to the operation of the training package itself,
so there is no need for extensive briefing of the trainee prior to
beginning the CBT. As long as the trainee can sign on to the training
package, or is signed on by someone else, the selection of lessons and
progress through the course is entirely menu driven. All interaction
consists of the selection of a specified key press, initiated at the
cursor at the bottom of the screen.

The first lesson is a short tutorial on how to use the training
package. The trainee is given practice on interrupting training to
enable him to move within the lesson or to leave the lesson.

The second lesson presents concepts to acquaint the trainee with
the use of the MCS 2 terminal and the selection of choices from MCS 2
menus. A brief section on the use of the printer is included here.
This latter section gives the user enough understanding of the printer
to use it during training, as well as during actual database
operations. The student is given an opportunity to use the printer to
print out information from the training package.

The third lesson presents the overall concept of MCS 2; why it
exists and its operational mission in the tactical environment. It
teaches the trainee how computer nodes interact to make up the MCS 2
network, and how communications among nodes allow the relational

7

database to do its work. The trainee also learns the relationship
between upper and lower echelon nodes, and the important concept of
proponency for data input. This lesson briefly presents the
alternative methods for retrieving information, including Situation
Reports (SITREPs) and the User Definable Reporting System (UDRS). When
a user has completed this lesson he should have an appreciation of when
to select a SITREP or UDRS report, and when to utilizer the database
query function to directly answer questions.

The fourth lesson acquaints the trainee with how data are stored
and retrieved by the MCS 2 database system. This information is
important because a full understanding of the underlying concepts will
allow the user to develop or learn more sophisticated techniques of
interaction with the system as time goes on.

The fifth lesson teaches how to retrieve specific data from the
database. It guides the trainee through the use of the MCS 2 menus,
and teaches how to fill in database fields, and how to initiate simple,
multiple, and complex database searches.

The sixth lesson teaches how to alter database content and
structure. It teaches how to change a record, and how to add or delete
one. The former activity is mostly used at upper echelon nodes to put
in unit commanders' assessments of their unit capabilities. Record
additions and deletions are not frequent activities at upper echelon
nodes, except shortly after the creation of a database for
administrative purposes, such as correcting errors in the initial
database structure.

When a trainee has completed the training he should be able to
select the datatase function, query it for information after being
given specific direction about what he is looking for, and input
changes to specified fields of specified records.

MCS 2 Hardware and Software Background

The authoring language and training package prepared for upper
echelon MCS 2 database training is designed to operate under the UNIX
System V operating system. At the time of installation the hardware
consisted of HP 310 and 320 computers, equipped with 22 and 40 mbyte
hard disks, respectively. Each computer has a HP Thinkjet printer
connected to it.

The training software was originally developed on, and should work
with, the Wicat hardware and the associated UNIX operating system that
made up the earlier version of MCS 2. Some of the training material
content is not appropriate for the Wicat system, but this is restricted
to the interactions with the printer and to the location of a few keys
on the terminal keyboard. Since the authoring language was designed to
be highly transportable, it should work with most hardware running
UNIX.

8

Training Capabilities and Features

The training capabilities and features incorporated into the
training delivered to ADEA are presented in this section. These
features were devised in response to specific needs established during
the development of the Database Training Course and in discussions with
ADEA.

Trainee Input

The CBT created in this effort partly compensates for the lack of
interactive ET by simulating some of the interactions that the trainee
would have with the operational MCS 2 software. This interaction is
limited by constraints of software portability and straightforwardness.
For example, the trainee can press the alphanumeric keys when there is
a menu from which to make a selection, but the trainee cannot press the
line delete or f2 keys, since the codes for these keys are unique to
the terminals used.

There are a number of presentation and response restrictions that
occurred because of the inability to generate interactive ET, forcing
reliance on CAI. The CAI was built entirely within the UNIX operating
system language. While the software that was created and modified for
MCS 2 was able to generate highlighting with reverse video, allowed
full screen editing with restricted input fields, and responded to all
the keys on the terminals, these effects cannot easily be achieved with
the UNIX language alone. The custom software used special techniques
to accomplish these ends, and these features could not be incorporated
into our CAI approach. The reasons for the inability to achieve
interactive ET will be discussed later.

To the extent possible, actual MCS screens are presented on the
display. Some of these are modified slightly to allow room to present
instructions or instructional material along with the MCS 2 screen
display. It is not possible to simulate highlighting features such as
reverse video or blink. Furthermore, the trainee cannot perform full
screen entry or editing of data. That is, all student entries occur at
the bottom of the screen. The trainee cannot fill in fields in the
middle of the screen. However, where this is relevant to the procedure
being taught, the trainee is taken to this point with menu selections,
as he would see in MCS 2, and the entry is then simulated by the CAI.
The trainee then resumes menu selection to continue the procedure.

9

Control Over Training Direction and Progress

The trainee can select among the six lessons at sign-on and after
completing or exiting a lesson. In this way, a trainee could take
Lesson 1, which teaches how to use the training, followed by Lessons 2,
3, and 4, which teach MCS 2 concepts, or the trainee could follow
Lesson 1 with Lessons 5 and 6, which cover operational procedures.
This allows the trainee to spend a short amount of time becoming
acquainted with the aspects of MCS 2 that are most relevant to his
particular responsibilities and training needs (e.g., staff officer vs.
operator responsibilities, acquisition vs. refresher training).

The trainee can interrupt a lesson at most frames, except for
those involving simulations of the MCS 2 software. At an interruption,
the trainee is given the choice of returning to the lesson where he
left it, returning to the beginning of the current lesson segment,
jumping forward or back to a new lesson segment, printing the last
displayed screen on the printer, or leaving the lesson.

When the trainee signs on again the lesson begins at the segment
from which he left the last time.

In addition to the above control, at every instructional frame the
trainee may elect to go back a frame. This process may be continued,
frame by frame, but stops at quizzes and simulated interactions. In
this way, the trainee may go back to check recent material, or may
leave for a short time and go back a few frames for reorientation.

Questions and Feedback

Periodically the trainee is asked questions about the preceding
material. Quizzes are short, from one to five questions. If the
answer is correct, the program progresses to the next question or
proceeds with the lesson. If the answer is not correct, the program
gives feedback relevant to the particular wrong answer choice. It then
branches back to the question. At this time, the question is scored as
wrong, for the trainee record. The trainee must eventually make the
correct answer choice to progress further through the lesson. He is
returned to the question after each incorrect answer choice. The
correct answer choice usually contains brief feedback that summarizes
why it is the correct choice and how it differs from the incorrect
alternatives.

At the end of each quiz, the trainee is told his performance score
(number of questions answered and number correct) up to this time in
the lesson. At the end of the lesson or if he interrupts and signs
off, he is told his cumulative performance for this session in the
lesson.

10

Trainee Records

A record of trainee performance is saved, under the name entered
by the trainee at the beginning of the lesson [studentname]. If a
trainee signs on a second time, the first set of records for the lesson
is saved under a default file with the name [studentname].old. The
data saved are: number of questions attempted in this session, number
of questions answered correctly the first time they were encountered.
Trainee records are accessible from the first menu by means of special
commands that are not documented on this menu. The records may be
printed out or deleted by means of these commands. The records are
intended for training managers.

Portability

As noted earlier, and as discussed in the section on the software,
portability among UNIX computer systems was an important consideration.
Accordingly, the training generated herein is also as portable as
possible. The file structure and files can be transferred to other
UNIX systems, and can be located wherever desired at any location.
What is required is that the trainee be able to get to the proper place
in the file structure. The configuration manager for the system should
determine this place and implement any software changes. The software
coding required is quite simple for persons familiar with UNIX.
Depending on the ultimate decision, two alternative implementations are
possible:

1. The trainee goes to the subdirectory containing the file
"oot," and type "sh oot" to begin training.

2. The file "oot" is relocated where the trainee can access it
with the above command, and "oot" is altered so it sends
the program to the place where the training software files
and training data files are located. These files must
remain in the relationship to each other that they had when
installed. This relationship is documented in the section
entitled, MCS 2 DATABASE AUTHORING SYSTEM.

Another aspect of portability concerns the key codes. No codes
are included that are unique to a certain type or brand of terminal.
Therefore, the training should run on all UNIX-based systems.

In addition, the specific procedures taught will not differ
greatly between the HP and Wicat versions of MCS 2. Therefore, this
training should be suitable for both versions, with perhaps minor
changes for the Wicat version. This means that Wicat systems may be
used for training, with the assumption that transfer of training to HP
systems will be high.

1i

MCS 2 DATABASE AUTHORING SYSTEM

Overview

The authoring system provides a means to create and execute CAI
courseware on any computer running under the UNIX operating system.
The courseware is transportable among different computers running under
the UNIX operating system. The authoring system provides a simple
language and structure for nonprogrammers to use to generate and edit
courseware.

The authoring system consists of an interactive, menu-driven
courseware authoring program, an authoring language, and utility soft-
ware. Courses can be created and edited either by using the interac-
tive system, or by using the UNIX command language and utilities. A
course consists of a set of frames and displays. Frames contain
instructions written in the authoring language to conduct input and
output (I/O), to perform logical and arithmetic computations, to time
events, to store student records, and to control branching to subse-
quent frames. Displays are screen images displayed by instructions
within frames.

Language Definition

The authoring language is used to write the source frames. A
source frame is a sequence of instructions. The authoring procedure
includes translation of the source frames into executable frames. At
runtime, the translated instructions with a frame are executed in
sequence (branching and looping occurs between frames). An instruction
is a series of tokens and expressions separated by blank spaces and
terminated with a "newline" (i.e., a carriage return keystoke). There
are 17 different types of instructions. The syntax of a type of
instruction specifies the tokens, types of tokens, and types of
expressions that can be used at different positions in the instruction.
A token is a string of characters that does not contain embedded blank
spaces. There are five types of tokens: reserved words, variable
names, file names, text, and numbers. An expression is a character
string that contains embedded blank spaces. There are four types of
expressions: text, assignment, conditional, and regular.

The next three sections describe instructions, expressions, and
tokens, respectively. Along with the text are a series of tables, to
be used for reference when actually programming CAI. Following this is

13

a section called Operating Guide, which offers some practical advice on
- how to program new material or modify MCS 2 CAI.

*Instructions

The instructions are organized into five categories: (1) input
and output; (2) logic and computation; (3) timing; (4) framing; and (5)
student record keeping. Each type of instruction is described
separately in the following paragraphs. Tables 1 through 5 contain an
explanation of each function, an example, and the syntax definition.
The syntax is defined by a generic form of the instruction that has the
reserved words in their proper place, and placeholders for the author's
tokens and expressions. The placeholders are angle brackets containing
a description of the valid type of expression or token.

Input and Output

The author can create text displays and read user input for
CAI-type interactions. Table 1 contains Input and Output Instructions.
Separate instructions are provided for student I/O in MCS 2 appli-
cations interactions. The DISPLAY instruction displays text and the
values currently assigned to variables. The DISPLAYFILE instruction
displays the contents of a prepared file. The use of display files is
strongly encouraged for more rapid system response. The PRINTFILE
instruction is used to print a file on the line printer. The READ
instruction reads a sequence of characters terminated by a return from
the keyboard. The CLEARSCREEN instruction erases the screen.

Logic and Computation

The authoring language provides the means to assign values to
variables. Table 2 contains the instructions for logic and computation
operations. The ASSIGN instruction performs string and arithmetic
operations, then assigns the result to the specified variable. Two
instructions of the "if... then... else..." form are provided. The IF
instruction tests arithmetic relations. The IFMATCH instruction tests
for regular expressions in strings. If the condition evaluates to be
true, then the set of instructions following the word THEN are
executed. If the condition evaluates to be false, then the
instructions following the word ELSE are executed. The logic and
assignment instructions are used to assign frame names to the
$NEXTFRAME variable. The IF and IFMATCH instructions provide the means
for branching between frames.

I~.
1 14

(1r
°

Table 1

Input and Output Instructions

CLEARSCREEN

Function: To erase the screen.

Example: CLEARSCREEN

Syntax: CLEARSCREEN

DISPLAY

Function: To print text and the contents of variables on the same
line on the screen.

Example: DISPLAY Hello, $studentname, welcome to $coursename

Syntax: DISPLAY <text expression>

DISPLAYFILE

Function: To display the contents of a prepared display file.

Example: DISPLAYFILE helpmenu

Syntax: DISPLAYFILE <filename>

READ

Function: To input values for one or more variables at the current
cursor position.

Example: READ $firstname $lastname

Syntax: READ <variable> ... <variable>

PRINTFILE

Function: To print the contents of a file on the line printer.

Example: PRINTFILE instructionmenu

Syntax: PRINTFILE <filename>

15

Table 2

Logic and Computation Instructions

ASSIGN

Function: To assign a value to a variable.

Examples: ASSIGN $timesdone + 1 TO $timesdone

ASSIGN doghorseratgoat TO $animals

ASSIGN frame4 TO $NEXTFRAME

ASSIGN $NEXTFRAME TO $1astframe

Syntax: ASSIGN <assignment expression> TO <variable>

IF

Function: To test whether or not an arithmetic expression is true

and, if it is true, to execute one sequence of

instructions.

Example: IF $testratio > $lastscore / 5 THEN

ASSIGN frame3 to $NEXTFRAME
DISPLAYFILE quizintro

ELSE
ASSIGN frame4 to $NEXTFRAME
ENDIF

Syntaxl: IF <condition expression> THEN

<instruction>

<instruction>
ELSE

<instruction>

<instruction>
ENDIF

Syntax 2: IF <condition expression> THEN <instruction>

Notes: Any instructions except IF and IFKATCH instructions can be

used in an IF instruction. When there is only one

instruction in the consequence, then the entire IF

instruction can be put on one line, as shown in syntax 2.

16

Table 2

Logic and Computation Instructions (Continued)

IFMATCH

Function: To test whether or not a regular expression is contained
in character string and, if it is true, to execute a
sequence of instructions. Also to test if a regular
expression is contained in input and output buffers.

Example: IFMATCH dog IN $animals THEN
ASSIGN frame3 to $NEXTFRAME
DISPLAYFILE quizintro

ELSE
ASSIGN frame4 to $NEXTFRAME

ENDIF

Syntax 1: IF1ATCH <regular expression> IN <text, variable> THEN
<instruction>

<instruction>
ELSE

<instruction>

<instruction>
ENDIF

Syntax 2: IFMATCH <regular expression> IN
<text, variable> THEN <instruction>

Notes: Any instructions except IF and IFMATCH instructions can be

used in an IFMATCH instruction. When there is only one
instruction in the consequence, then the entire IFMATCH
instruction can be put on one line, as shown in syntax 2.

17

Framing

The authoring system provides facilities for packaging
instructions as macros, commenting courseware, terminating the course,
and executing UNIX shell commands. Table 3 contains the instructions
for framing operations.

Timing

The authoring system provides facilities to time students and to
have timed suspensions of course execution. The READCLOCK instruction
reads the current time; it is used to determine elapsed time. The
PAUSE instruction is used to suspend execution for a specified number
of seconds. Table 4 contains the instructions for timing operations.

Student Profile

The authoring system provides facilities to maintain student
records. Table 5 contains the list of instructions for student profile
operations. Separate student records are maintained for different
courses. A student record can have any number of attributes, and the
attributes can have any character or numeric value. Records for new
students are created with the NEWSTU instruction. The instructions
WRITESTU and READSTU are used to write to and read from student
records. Attributes are created simply by writing to them; they do not
have to be explicitly declared.

Expressions

An expression is a string of characters that may contain blank
spaces and conforms to an expression syntax. There are four types of
expressions: text expressions, assignment expressions, condition
expressions, and regular expressions. Examples of expressions are
presented in Table 6. Table 7 shows all operators used in expressions.
The following discussion mentions these operators.

Text Expressions

Text expressions are used in the DISPLAY and SEND instructions.
The DISPLAY instruction causes the text expression to be displayed on
the screen. The contents of variables are displayed instead of the
names of the variables, however.

18

Table 3

Framing Instructions

COMMENT

Function: To designate an internal comment in the frame.

Example: COMMENT This line is for internal course documentation.

Syntax: COMMENT <text expression>

STOPCOURSE

Function: To terminate execution of the course.

Example: STOPCOURSE

Syntax: STOPCOURSE

MACRO

Function: To execute a frame in place without branching.

Example: MACRO promptframe

Syntax: MACRO <frame file name>

SHELL

Function: To execute UNIX shell commands.

Example: SHELL cat stupro/*/*

Syntax: SHELL <UNIX command line>

19

Table 4

Timing Instructions

READCLOCK

Function: To read the current time (in seconds since midnight) into

the variable.

Example: READCLOCK $currenttime

Syntax: READCLOCK <variable>

PAUSE

Function: To suspend execution for a specified number of seconds.

Example: PAUSE $delaytime

PAUSE 30

Syntax: PAUSE <number or variable>

20

Table 5

Student Profile Instructions

NEWSTU

Function: To create a record for a student if no record for the
student currently exists; if a record already exists, no

action is taken.

Example: NEWSTU $studentid

Syntax: NEWSTU <variable>

WRITESTU

Function: To update the value of an attribute in the student's
profile.

Example: WRITESTU $studentname ATTRIBUTE score VALUE 95

Syntax: WRITESTU <filename or variable> ATTRIBUTE <filename or
variable> VALUE <text, number, or variable>

READSTU

Function: To read the current value of an attribute of the
student's profile.

Example: READSTU $studentname ATTRIBUTE score VALUE $lastscore

Syntax: READSTU <filename or variable> ATTRIBUTE <filename or

variable> VALUE <variable>

21

Table 6

Examples of Expressions

TEXT EXPRESSIONS:

Hello, welcome to the database course, $studentname

Have you used the MCS2 database before?

ASSIGtENT EXPRESSIONS:

$elapsedtime

95

surveyframe

(95 + $age) * 10

CONDITION EXPRESSIONS:

$score > 15 - $lastscore

$answer = red

REGULAR EXPRESSIONS:

red

[Rr]ed

IBDE

*BDE

22

Table 7

Operators in Expressions

+ assignment operator meaning addition

- assignment operator meaning subtraction

/ assignment operator meaning integer division

* assignment operator meaning multiplication

(assignment operator to establish precedence

) assignment operator to establish precedence

Z assignment operator meaning remainder

& assignment operator meaning logical and

assignment operator meaning logical or

< relational operator meaning less than

> relational operator meaning greater than

= relational operator meaning equal to

relational operator meaning not equal to

>= relational operator meaning greater than or equal to

<= relational operator meaning less than or equal to

regular expression symbol denoting any character

regular expression symbol denoting the beginning of a
line

$ regular expression symbol denoting the end of a line
* regular expression symbol denoting any sequence of

characters
regular expression symbol denoting the beginning of a
character class
regular expression symbol denoting the beginning of a
negated character class

] regular expression symbol denoting the end of a
character class

< regular expression symbol denoting the beginning of a
word

> regular expression symbol denoting the end of a word

23

A text expression is simply a string of characters. It can
contain variable names. The variable names must be delimited by blank
spaces. Any characters including multiple blank spaces can be used.
Several characters must be used with caution, in particular the dollar
sign and the backslash. The first character of a variable name is a
dollar sign. If a dollar sign is encountered, it will normally be
interpreted as the first character of a variable name. To display a
literal dollar sign, the dollar sign must be preceded by a backslash.
A backslash is normally considered to be an instruction to display the
following character literally, i.e., not to interpret it. To display a
backslash, the backslash must be preceded by a backslash.

Assignment Expression

An assignment expression is a sequence of one or more tokens
(character strings, described on Page 24) that can be evaluated to
yield a text, numeric, or file name token value. Assignment
expressions are used in the ASSIGN and IF instructions. Assignment
expressions are evaluated and either assigned to a variable or used in
a comparison.

An assignment expression that consists of a single text, numeric,
or file name token is evaluated to be the token itself. An assignment
expression that consists of a single variable is evaluated to be the
content of the variable. Multiple token assignment expressions are
algebraic expressions used to perform arithmetic computations. An
assignment expression may be enclosed in parentheses with the normal
algebraic meaning. Multiple token assignment expressions have the
general form of an assignment expression delimited by a blank space
followed by an assignment operator delimited by a blank space followed
by an assignment expression. The assignment operators are +, -, *, /,

(,), &,1, and%.

Conditional Expressions

A conditional expression is an expression that evaluates to be
true or false. It is an arithmetic comparison between two assignment
expressions. Conditional expressions are used in IF instructions. A
conditional expression consists of an assignment expression delimited
by a blank space followed by a relational operator delimited by a blank
space followed by an assignment expression. The relational operators
are -, !-, >, >-, <, and <-.

Regular Expressions

Regular expressions are used in the IFMATCH instruction. A
regular expression defines a pattern of characters to search for in
text. Regular expressions are used throughout the UNIX system and are

24

described fully in the UNIX documentation of "grep" (which stands for
"get regular expression"). Regular expressions are delimited by single
quotes. The simplest regular expression is a character string; it
defines a unique pattern. Regular expressions recognize the period as
a variable standing for any single character, and the asterisk as a
variable standing for any string of characters. Square brackets
enclosing characters will match any one of the enclosed characters.
Regular expressions are a powerful language for pattern matching and
are beyond the scope of this report to describe in detail. The regular
expression operators are . , , 1], [, <, and >.

Tokens

A token is a character string which does not contain embedded
blanks. The five types of tokens (reserved words, variable names, file
names, text, and numbers) are described in the following paragraphs.

Reserved Words

Reserved words are tokens with special meaning to the authoring
system. There are three classes of reserved words. One class of
reserved words are the keywords used to define and parse the
instruction syntax. They are the words in all capital letters in the
syntax definitions. A second class of reserved words are the special
operators used in assignment expressions, conditional expressions, and
regular expressions. These operators are summarized in Table 7. The
third class of reserved words are the special variables and file names,
frame 1, ESCFRAME, and $NEXTFRAME.

Variable Names

Variable names are words used as pointers to other information.
Values are assigned to variables, and the variables hold the values
assigned to them. They can be used in expressions. Variables can be
assigned a value in one frame, then referred to in another frame. The
values of variables are lost when the course is terminated (unless they
were written to the student records).

Variable names always begin with a dollar sign character ($).
After the dollar sign, only alphabetic characters (a - z, A - Z),
numeric characters (0 - 9), and the underscore character () should
be used. The first character after the dollar sign must be a letter.
The name must be no more than 14 characters in length. Only one
variable is a reserved word: $NEXTFRAME. Each frame must either
assign a value to $NEXTFRAME or else execute STOPCOURSE.

25

File Names

File names are words that are the names of files. They begin with
an alphabetic character (a - z, A - Z). File names contain alphabetic
characters, numeric characters (0 - 9), and the underscore character
(_). File names are no more than 14 characters in length. There are
two reserved word file names: frame 1 and ESCFRAME.

The courseware author will use file names in two cases.
$NEXTFRAME is always assigned a file name (the name of the file
containing the next frame to execute). The instructions to read from
and write to the student profile use file names.

Text and Numbers

Text tokens are strings consisting of alphanumeric characters and
punctuation marks. A number is a token consisting of only numeric
characters (0 - 9). Integers of any size can be represented, but
decimals are not allowed.

Operating Guide

The Operating Guide describes the procedures to use the authoring
system. The first section describes how to install the authoring
system. The second describes how to author courses using the interac-
tive, menu-driven interface. The third describes how to author courses
using UNIX commands. The fourth describes how to run a course, and the
fifth describes how to examine student records. Appendix B contains
some guidance specific to MCS 2 for adding to or modifying the CAI
courseware.

Installing the System

To install the system on a new host computer the system adminis-
trator must first decide where in the directory structure the courses
and authoring system will reside. On the MCS 2 system, this is in
"/asa/." Two subdirectories, "uset" and "cbtcbt," must then be created
using the "mkdir" command. The "uset" directory contains utility
routines needed to translate and run the courseware. The files in the
"uset" directory must be copied over to the new system. The "cbtcbt"
directory contains the interactive, menu-driven interface. It is
written in the authoring language, and is run with the authoring system
utilities as any other course. Subdirectories "disp," "frame," and
"exef" must be created under the "cbtcbt" directory.

26

Authoring Using the Menu-Driven Interface

The menu-driven interface is an interactive system that allows
users to create and edit courses while requiring little knowledge of
the UNIX command syntax and directory organization. It also contains
on-line help explanations of the authoring language and instruction
syntax.

To run the system, the user must first be in the "cbtcbt"
directory. Execution is begun by issuing the command "sh ../fdrive."
The user will be presented with a brief overview description of the
authoring system, and a menu from which he can select a language
tutorial, author courseware, or exit the system.

If the user selects the language tutorial, he is presented with
two frames of description of the language organization, and then a
summary of the instructions. He can then select any instruction for a
more detailed description or return to the main menu.

If the user elects to author a course, he is first presented with
a menu from which he can elect to: (1) display a list of existing
courses; (2) select a course to edit or create a new course; (3) delete
a course; (4) begin to edit a course; or (5) return to the main menu.
When a new course is created, the appropriate subdirectories are
created automatically. When the user elects to edit a course, he is
presented with a menu from which he can elect to: (i) list existing
instruction frames or display screens; (2) edit a new or existing
instruction frame or display screen; (3) delete a specified instruction
frame or display screen; or (4) return to the previous menu. When the
user edits a display screen or instruction frame, the UNIX visual
editor, vi, is automatically invoked. When new frames or displays are
created, they are automatically placed in the appropriate directory.
After an instruction frame is created or edited, its translation into
an executable shell script is automatically created and placed in the
appropriate directory.

Authoring a Course Using UNIX Command

The courseware author does not have to use the menu-driven system.
He may choose to use the UNIX commands and utilities directly. This
section describes the basic information needed to create a course.

The author must first create a course directory parallel with the
"uset" directory (i.e., under "asa/" in the MCS 2 implementation). The
name of this directory is the name of the course. The author must then
create the following subdirectories: "disp," "frame," "exef," and
"stupro." The author must place his display screens in files in the

27

"disp" directory and his instruction frames in the "frame" directory.
The names of these files are the names by which the displays and frames
are referred to in the instruction frames. These files can be created
using the visual editor, vi. The subdirectories "exef" and "stupro"
are left empty. When the instruction frames are translated into
executable shell script, the translations are automatically placed in
the "exef" subdirectory. The "stupro" directory is used by the course
to hold student records. In the database course implementation for
MCS 2, the "stupro" directory should contain a subdirectory,
oldstudent, as described in Appendix B.

To translate the frames into executable shell scripts, the user
must first be in the "frame" directory of his course. The instruction
"sh ../../ftran <file name>" will translate the designated frame. The
instruction "sh ../../ftran <file name 1> ... <file name n>" will
translate the list of frames. The instruction "sh ../../ftran *" will
translate all frames in the directory. Each frame must be translated
before it can be used in a course. Changes made to a frame will be
operative only after the frame has been retranslated.

An alternative authoring approach is presented in Appendix B.
This approach involves using the templates to be found in Appendix C,
or by copying and modifying actual MCS 2 authoring code.

Running a Course

To run a course, the student must be In the course directory.
Then to begin the course, issue the instruction "sh ../uset/fdrive."
In the MCS 2 database implementation there is a controlling script that
is involved by entering "sh oot." If this script is in effect, then a
lesson is selected by following the menu instructions.

Examining Student Profiles

One way to examine student profiles is to operate from the UNIX
system. To examine student records, the user must first change to the
"stupro" directory of the appropriate course. The user can list the
student subdirectories by using the "Ils" command. To delete a
student's records, the user must first enter the subdirectory ("cd
<student id>"), delete all attribute files in the directory ("rm *"),
return to the "stupro" directory ("cd .. "), then remove the student's
subdirectory ("RM <student id>"). The user can obtain a list of
attributes by listing the files in any student's subdirectory using the
"Is" command. The user can display all of the attribute values of a
specific student using the command "cat /<student name>/*." The user
can display the values of a specified attribute for all students using
the command "cat /*/<attribute name>." The user can display the value
of a specific attribute of a specific student using the command "cat
/<student id>/<aLtribute name>."

28

Alternatively, student files can be accessed from the "oot"
script. If the 'loot" script is running, then there are commands
available to print student profiles and to erase these files. These
commands are not documented on the menu. They are discussed in
Appendix C. Entering +1 to +6 will print the student files for each
lesson. Entering -1 to -6 will erase these files.

29

FINDINGS AND RECOMMENDATIONS

This effort was undertaken as a validation of a general set of
procedures to develop ET in Army systems. The development of these
procedures is a concurrent ARI program entitled, "System Design
Concepts to Support Embedded Training (ET)." One long-range goal of
this effort was to document problems with implementing ET in MCS 2 and
in other Army systems. The following subsections discuss problems and
present recommendations for these target areas.

Limitations of ET in MCS 2

The following are physical characteristics that limit the utility
and usability of ET in MCS 2. These will be dealt with individually in
this section. The order of presentation reflects the relative
magnitude of importance that the system developers assign to each
limitation, with the first being the most important limitation.

Disk Storage. Upper echelon MCS 2 operates with HP 320 computers
acting as database hosts to HP 310 computers connected to them via
LAN software and hardware. The HP 320 computers have heavy demands on
their disk storage units. This demand precludes the creation of a
training database resident on the computer hard disk.

Security. Interactive ET would have required a duplicate database
because trainees cannot be allowed to alter the actual database. This
is one reason for the large disk storage requirement for interactive
ET.

Response Time. There are two factors that contribute to the slow
(5 seconds) response time to a trainee input. One of these is that the
shell script which runs the training is not as quick a processing
language as other techniques. The second is that the HP 320 computers
are hosts for up to four HP 310 computers in a LAN, as well as being
involved in communications with other computers via a packet switch.
One alternative is to load the training package directly onto an HP 310
computer, and to use it there.

General Implications for ET in Army Systems

This section addresses the future practical development of ET in
the Army as part of the training package for a system. It represents a

31

compendium of "lessons learned" during this effort that can be
generalized to other Army procurements of ET. The recommendations are
stated as positively as can be, but, as with most lessons, more is
learned from mistakes than from doing things right. These lessons are
not to be viewed as negative statements about any individual, agency,
or company. Instead, they are simply the authors' perception of how
the Army ought to pursue ET in the future, based on the particular set
of experiences that pertained during this effort.

Integrate ET Into Hardware and Software from Concept Development

ET development and system development should be integrated into
one acquisition program. Functional requirements, hardware suite
configuration, and software architecture should take into consideration
the total system, including the ET component.

Integration means including considerations for ET in the design
tradeoffs for the system. In this program the UNIX system was modified
by the operational software developers to reduce the amount of disk
space it occupied. At one point it appeared that the resulting
operating system would not support the authoring and presentation
language. At another point, it appeared that training would have to be
loaded from floppy disks for each session. This would have created a
problem in terms of the amount of time and effort it would take to
begin training. Finally, the disk storage problem that is discussed
several times in this report should be considered in terms of its
effect on ET speed and security of the real database during training
interactions.

Ensure Adequate Hardware Capacity to Accommodate ET

Most operational systems are designed only with the capacity to
handle the programs and data of normal operation. It is difficult to
justify the purchase of excess capacity. Yet ET implementation
requires system capacity in excess of that required for regular
operations. This capacity must be acquired and dedicated to ET (not
reallocated to operational system needs).

As noted above in the limitations section, there was inadequate
free disk capacity in the MCS 2 system to accommodate the extra
database that would be required to implement full interactive ET. The
extra database is required to maintain security of the actual MCS 2
database. In addition, the ET code takes up space as well. The only
way to have foreseen and planned for these contingencies was to have
included ET in system planning.

Develop Close Working Relationships Among Training, Software, and
Hardware Developers

As a system concept matures into actual hardware and software, it
undergoes many changes. The ET developer must stay abreast of all

32

changes to evaluate their impact on both ET implementation and content

of training. The only practical way to do this is to maintain close

relationships among all the players on the development team.

Changes usually go through a cycle of contemplation and proposal,
followed by consideration of impact, followed by implementation of some
modification of the original proposal. Close coordination is needed
among the ET courseware developer, the ET implementer, and the system
developer. The ET developers should be apprised of all changes as they
are contemplated, in order to make inputs to the tradeoff process and
to make adjustments in the training product.

This lesson has implications for the ET developer as well as the
prime system developers. To be able to take advantage of this
informational input, the ET development program must have schedule,
resource, and approach flexibility to adapt to changes in the design
and schedule of the operational system.

A second part of this coordination involves the exchange of source
code and software documentation for operational software between the
system developers and the ET developers. Additionally, documentation,
especially at an early stage of development, can rarely stand alone.
The ET developers need access to the operational system software
developers themselves, in order to gain a timely and complete
understanding of both the content of the software and its implications
for further software development.

Ensure Sufficient Development of Authoring and Presentation Tools Prior
to Designing Training

In order to meet deadlines, it is tempting to begin development of
course materials as soon as objectives and courseware outlines have
developed. This is fine, as long as the authoring and presentation
tools or language have been well developed. In the present effort, the
time schedule required the simultaneous development of both authoring
and training content, followed by a rapid integration process. The
result is that not all features of the authoring language are exploiteL
to the fullest extent.

The proper mode of development is to fully establish the authoring
product, and to demonstrate this product with simple training content.
This permits an initial evaluation of the authoring and presentation
tools independent of the training content.

Ensure Sufficient Schedule Flexibility and Resources

Sufficient time and dollar resources must be available for the ET
program and the contingencies of changes in system design and schedule.

33

Cost estimation for the design and implementation of ET for command and
control systems will become easier and more accurate when more
historical data are available.

Authoring System vs. Courseware

There are at least two approaches to implementing that ET which
has courseware in addition to a noninteractive stimulus presentation
(as is found in "raid" tapes, for example). Each presents different
organizational and technical issues. This section presents a
discussion, rather than a recommendation, because it is not yet well
understood when which of the two approaches is the preferred approach.
If, however, fielding of the training system concurrent with the end
item equipment is a requirement, then the first approach must be used.

Both approaches involve using an authoring system. This is the
approach taken in this program. The courseware developers are
insulated from the operational system by the authoring system. This
approach frees them from detailed involvement in the system
development, but insulates them from an appreciation of the limitations
and capabilities of the authoring system.

If the development of the authoring and operational system are
performed in parallel, then coordination requirements are extensive and
resource intensive.

There is a technological risk involved in development of a general
purpose authoring system that can "fool" the operational software into
operating as if it had received regular operator inputs. The risk is
that it will be very difficult to succeed in fooling the operating
software. Some of this difficulty stems from the volatility of the
operating software. Only close coordination can ensure that the
training system tracks the operational system. It is necessary both to
"fool" the operating system, yet leave the ET program in control. With
an unsophisticated authoring system this can require extensive
programming effort on the part of the training courseware creators.

An alternative approach is to develop software code to implement
the courseware as part of the post-deployment software support.
Because this software development is specific and can be performed by
personnel with the knowledge and authority to change the operational
software, it is possible that the technological risks will be lessened.
On the other hand, this approach engenders several consequences:

1. ET will lag initial system test and fielding by a great
deal of time.

2. Hardware will be committed to ET but will lie unused during
initial system development. These resources are open to
"raiding" by the system developers. In addition, changes
in requirements by ET cannot be reflected in the overall

34

operational system development cycle, because they may not
be realized until the ET development is under way,
beginning at post-deployment time.

3. There will be no opportunity to exchange ET requirements
with system requirements in tradeoffs, because the system

will be frozen before work progresses on ET. This may
result in the inability to implement some courseware.

ET Interfaces to Operational MCS 2 System Software

If ET courseware is to employ operational software, then some form
of interface between the ET system and the operational system is
needed.

Interactive ET would have been a valuable addition to the
training, if it could have been realized. The following discussion
points out the benefits of interactive ET. As we have described in
other places in this report, interactivL ET means that the actual
equipment and software are exercised.

There are seven principles that define excellent interactive ET.
These are presented here with information to help relate them to MCS 2
database training.

1. Operational input data are generated. In this case, the
operational input signals are the proper screens to be
displayed to the user, along with the correct data from the
training database.

2. These data operate through the operational equipment to
generate normal displays. In this case, the normal
displays are the screens with the data in them.

3. Data are presented to realistically depict what would occur
in an operational exercise of the system in real events,
including errors. This would be actual data from a
realistic database, with some data to be corrected.

4. Operators and maintainers perform their normal tasks in
response to simulated mission inputs. In the case of MCS 2
this means that the operators use the system with the same
keystrokes as if it were actually operating.

5. Assesses and records operator performance and reacts to
that performance as the real threat would, while providing
realistic feedback as the actual system would. This means
actual system responses to keystroke inputs.

35

6. Measures performance and records that measurement for
individual feedback after a session and semi-permanent
records for assessments over time.

7. Permits instruction on job-related tasks in addition to the
strictly operational tasks. For MCS 2 this would include
setup and teardown tasks.

These principles are theoretical, some of them are rather
demanding of resources, and others can only be striven for, not
achieved completely.

Depending on the strategy for computer-based instruction,
different types of interfaces can be used. From the perspective of
software engineering, there are three alternative approaches to
interface the ET and operational systems:

1. Training courseware separate from the operational software
simulating the user interactions of the operational
software, but without use of any of the operational
software. This amounts to CAI which emulates the operating
software.

2. Training courseware separate from the operational software,
but capable of invoking software transported from the
operational system to simulate limited controlled
interaction. This amounts to CAI which invokes a special
copy of the operating software.

3. Training courseware fully integrated with the operational
system such that the courseware can run the operational
software and control interactions between the student and
the operational software.

The alternatives have different costs, strengths, and limitations.
They differ in terms of the capabilities they provide for practice,
demonstration, and evaluation. The alternatives are listed in order of
increasing cost, complexity, coordination requirements, and capability
for controlled interaction. In selecting an alternative, one must
balance the capabilities required to satisfy the training requirements
with the cost and coordination requirements for implementing the
training program. Coordination is required between the developers and
documenters of the operational system on the one hand, and the training
courseware and authoring system developers and implementers on the
other hand. All three options require that the actual operation and
user interactions are correctly and completely documented for the
courseware development.

The first alternative simply requires that the I/0 screen designs,
protocols, controls, device parameters settings, and environmental
variable settings be thoroughly and correctly documented. The burden

36

is then put upon the courseware to simulate those portions of the

operational interactions necessary for instruction, practice, and
evaluation.

The second alternative requires that the software programs within
the operational system be well documented relative to their role and
contribution flow of user activities, that the I/O for each program be
compartmentalized, that data requirements and environmental variables
settingand expectations be well defined, and that data and control
passed between programs be well documented. This approach enables the
courseware to run the component programs of the operational system
independently to simulate real interaction.

A third option to authoring systems or courseware approaches
requires that training routines be provided to enable the training

software to insert itself between the user and the operational
software. The principles on Pages 35 and 36 state the general
functional requirements for controlled interaction with the MCS 2
operational system. This statement was prepared based on how training

could interact with MCS 2 database operations. The functional
requirements are general in the sense that they may need to be modified
to suit the particular needs of a training program and to suit the
constraints of the operational hardware and software. Additional
instructions may be needed for a particular application. Specifying
the functional requirements from these general requirements requires
the participation of the courseware developers, the operational
software developers, and the authoring system developers. After the
functional requirements are specified, interface softwareL specifications and code are produced by the authoring system developers
working with the developers of the operational hardware and software.

For purposes of clarity of exposition, the functional requirements
are organized into 15 distinct instructions and are presented in Table
8. The packaging of the functions could be tailored to the needs of a
particular application. The instructions define capabilities to invoke
the operational software, to send data to it, and to receive data from
it. They define capabilities to store and restore operating system
environments and terminal states. They define capabilities to search
and store I/0 streams and to synchronize timing between the courseware
and the operational software. They define capabilities to accept input
streams from a terminal and present output streams on a terminal. In
short, the training system would be inserted between the operating
software and the user. All the users' interactions with the system

could be monitored or restricted.

L
1.

371.

Table 8

Functional Requirements and Instructions

APPEND (buffer 1> <buffer 2>

This function appends the contents of the first buffer to the
contents of the second buffer. The function is useful for keeping a
sequential record of student inputs and system outputs for later
testing.

CLEAR <buffer>

This function empties the named buffer.

INPUT <device> <mode> <buffer>

This function takes input from the specified device operating in
the specified mode, and appends the input to the named buffer. The
implementation of this function is highly system specific. In
particular, the modes must correspond to the modes used in the
operational software.

PRESENT <device> <mode> <buffer>

This function presents the content of the named buffer on the
named device in the specified device mode. The implementation of this
function is highly system specific. In particular, the modes must
correspond to the modes used in the operational software.

RECEIVE <device> <mode> <buffer>

This function is used immediately after a SEND instruction.
Output from the operational software to the specified device in the
specified mode is redirected to the specified buffer.

RESTORE DEVICE STATE <device> <buffer>

This function restores the state of the terminal device using the
contents of the named buffer. The device state must previously have
been stored in the buffer. The state of a terminal includes both the
data presented on the screen and, for smart terminals, the internal
memory state (e.g., protected screen regions).

38

Table 8

Functional Requirements and Instructions (Continued)

RESTORE ENVIRONhENT <buffer>

This function restores the operating system environmental
parameter to the values previously stored in the named buffer. The
RESTORE ENVIRONM4ENT and STOREENVIRONMENT instructions are used to
avoid conflicts between the setting used by the courseware and by the
operational software.

SEARCH <buffer> <pattern> THEN <instructions>

This function searches the named buffer for the specified pattern
and, if a match is found, executes the following instructions. The
syntax for specifying the pattern must address the issues of represent-
ing nonprinting characters such as control characters and escape
sequences since they will be in both input and output streams. Conse-
quently the standard UNIX regular expression syntax is not applicable
unless extended. Care must be exercised in the pattern matcher since
different terminal types will generate and receive different escape
sequences to perform the same functions, hence it will be necessary to
reference the TERMCAP tables. Different pattern syntaxes will be
needed for buffers containing character data and graphics data.

SCREEN <device> <mode> <data>

This function sends the data to the specified device in the
specified mode. A syntax for the data must allow control characters
and escape sequences for screen control to be sent to terminals in text
mode. The syntax for the data must allow graphics data to be sent to
devices in graphics mode.

SEND <device> <mode> <data>

The function of SEND is to pipe data from the course to the
operational software. The device refers to the normal source of input
being emulated by the course. The mode specification may or may not be
relevant, depending on the device. The data refers to the information
to transmit. The type of data depends on the device, e.g., a terminal
will send characters but a graphics input device will send graphics
control codes. The form of the data specification must support non-
printing keyboard characters (control codes and escape sequences) in a
standard way, independent of the actual terminal type. The data must
be interpreted appropriately through TERMCAP entries and system envir-
onmental variables before being sent over the pipe. The data should be
able to be contained in a buffer, or explicitly entered with the
instruction.

39

Table 8

Functional Requirements and Instructions (Continued)

SETUP <batch file name>

The function of SETUP is to invoke the operational software as a
subordinate process with variable settings and device assignments as
specified in the batch file. Different batch files would be needed to
invoke the operational software with different parameter settings.
This instruction would also establish the bidirectional pipe interfaces
between the course and the operational software. The specifics of
setting up the bidirectional pipes depend on the I/O modes of the
operational software.

STOREDEVICESTATE <device> <buffer>

This function reads and stores the state of the terminal device in
the named buffer. The specifics of this instruction depend on the
hardware and the use of the hardware. For some hardware, it may not be
possible to read the device state. In this case it would be necessary
to record the data stream that created the device state. The device
state includes both the data displayed on the screen and, for smart
devices, the data in internal device memory.

STOREENVIRONMENT <buffer>

This function stores the current setting of the operating system
environmental parameters so that they can be restored at a later time.

TERMINATE <batch file name>

This function performs a "natural" termination of the operational
software running as a subordinate task. It also closes the
bidirectional pipes opened by SETUP for communication.

WAITFOR <device> <mode> <pattern>

This function is used after data is sent to the operational
software to pause the course while the operation software executes.
The wait ends when the specified pattern appears in the output stream
to the specified device in the specified mode. The specifics of this
function are highly dependent on the hardware and software of the
operational system.

40

REFERENCES

Ditzian, J. L., Vitus, G., & Rainaldi, V. Upper echelon MCS 2 database em-
bedded training: Recommended coursevare and authoring system. Draft
Interim Report. Alexandria, VA: U.S. Army Research Institute for the
Behavioral and Social Sciences.

41

APPENDIX A

AUTHORING SYSTEM SOURCE CODE

"cfrmchk" Frame in Menu-Driven Authoring System

COMMENT cfrmchk frame
COMMENT invoked by courseme

COMMENT This frame simply checks if the course name chosen
COMMENT exists and if it doesn't it returns to course menu

ASSIGN frammenu TO $NEXTFRAME

SHELL if (test I -d .. /$course) then

DISPLAY
DISPLAY No course has been selected. You must choose a course prior
DISPLAY to authoring any frames.
DISPLAY Please select a course upon returning to the course level
menu.
DISPLAY
DISPLAY Press return to continue:

READ Sdum

ASSIGN courseme TO $NEXTFRAME

ELSE

ASSIGN frammenu TO $NEXTFRAME

ENDIF

A-1

"chkcours" Frame in Menu-Driven Authoring System

COMMENT chkcouis frame
COMMENT invoked by selcours

COMMENT This frame simply checks if the course name chosen
COMMENT exists and it it doesn't It calls crecours.

ASSIGN courseme TO $NEXTFRAME

SHELL if (test I -d .. /$course) then
ASSIGN crecours TO $NEXTFRAME
SHELL fi

A-2

"courseme" Frame in Menu-Driven Authoring System

COMMENT courseme frame
COMMENT invoked by cfrmchk, crecours, frame_10 frammenu, lstcrs.
COMMENT rmcrs, and zapcrs

CLEARSCREEN

DISPLAYFILE leadblnk

DISPLAY This is the menu of course authoring selections:

DISPLAY
DISPLAY 1) List existing courses
DISPLAY 2) Select course to edit or create
DISPLAY 3) Author frames of selected course
DISPLAY 4) Delete a course
DISPLAY 6) Exit - return to parent menu
DISPLAY
DISPLAY Enter choice:

READ $choice
COMMENT DISPLAY choice Is $choice

ASSIGN courseme TO $NEXTFRAME

IFMATCH '^l$' IN $choice THEN
ASSIGN lstcours TO $NEXTFRAME

ELSE IFMATCH '-2$' IN $choice THEN
ASSIGN selcours TO $NEXTFRAME

ELSE IFMATCH '^3$' IN $choice THEN
ASSIGN cfrmchk TO $NEXTFRAME

ELSE IFMATCH '^4$' IN $choice THEN
ASSIGN rmcrs TO SNEXTFRAME

ELSE IFMATCH '^5$' IN $choice THEN
ASSIGN framejl TO $NEXTFRAME

ELSE
MACRO reenter

ENDIF

A-3

"crecours" Frame in Menu-Driven Authoring System

COMMENT crecours frame
COMMENT invoked by chkcours

CLEARSCREEN

DISPLAYFILE leadbink

DISPLAY
DISPLAY Creating new course - - $course
DISPLAY
DISPLAY Note that this includes the creation of it's subordinate
DISPLAY directories consisting of the following:
DISPLAY
DISPLAY disp
DISPLAY exef
DISPLAY frame
DISPLAY stupro,
DISPLAY
DISPLAY Please wait while the course structure is being created.

SHELL mkdir ../$course
SHELL mkdir ../Scourse/buf
SHELL mkdir ../$course/disp
SHELL -mkdir . ./$course/exef
SHELL mkdir . .fScourse/trame
SHELL mkdir . ./$course/stupro

SHELL cp . ./uset/frame_1 ../Scourse/frame
SHELL cp ./uset/eseframe . ./$course/trame

ASSIGN courseme TO $NEXTPRAME

DISPLAY
DISPLAY Enter return to continue:

READ $dum

A-4

"eddisp" Frame In Menu-Driven Authoring System

COMMENT eddisp frame
COMMENT Invoked by frammenu

CLEARSCREEN

DISPLAYFILE leadblnk

DISPLAY
DISPLAY Please enter display file name to be edited:

READ $dispname

SHELL vi ./Scourse/disp/Sdispname

DISPLAY Please hit return to continue:

READ $dum

ASSIGN frammenu TO $NEXTFRAME

Jan>

A-S

nedframe" Frame In Menu-Driven Authoring System

COMMENT edfraine frame
COMMENT Invoked by framznenu
CLEARSCREEN
DISPLAYFILE leadblnk
DISPLAY
DISPLAY Please enter frame name to be edited:
READ $framename

SHELL vi ../$course/frame/$framename

DISPLAY
DISPLAY Now translating frame - - Sframename
DISPLAY

SHELL cd ./$course/frame

SHELL sh ..1.. /uset/ftran Sframename

SHELL cd ... /cbtcbt

DISPLAY
DISPLAY Please hit return to continue:
READ Sdum
ASSIGN frammenu TO SNEXTFRAME

A-6

"exitfr" Frame In Menu-Driven Authoring System

COMMENT exitrr frame
COMMENT Invoked by trame~l

DISPLAY
DISPLAY The End.
DISPLAY

STOPCOURSE

A-7

"frame~lj Frame in Menu-Driven Authoring System

COMMENT the first frame must be named 'frame-l'
COMMENT Invoked by langinst and courseme

CLEARSCREEN

DISPLAYFILE introtxt

DISPLAY Selection:

READ $key

ASSIGN frameI TO $NEXTFRAME

IFMATCH '(&All' IN $key THEN ASSIGN langtut TO SNEXTFRAME

IFMATCH 'IbB2]' IN fkey THEN ASSIGN courseme TO $NEXTFRAME

IFMATCH U[C3I' IN $key THEN ASSIGN exitfr TO SNEXTFRAME

ASSIGN nocourse TO $course

A-8

"frammenu" Frame In Menu-Driven Authoring System

COMMENT frammenu frame
COMMENT invoked by cfrmchk, eddisp, edframe, lstdisp, lstframe,
COMMENT rmdsp, and rdfrm

CLEARSCREEN

DISPLAYFILE leadblnk

DISPLAY This is the menu of frame authoring selections:

DISPLAY
DISPLAY 1) List existing frames
DISPLAY 2) List existing displays
DISPLAY 3) Edit a frame file
DISPLAY 4) Edit a display file
DISPLAY 5) Delete a frame
DISPLAY 6) Delete a display file
DISPLAY 7) Exit - return to course level menu
DISPLAY
DISPLAY Enter choice:

READ $choice
COMMENT DISPLAY choice is $cholce

IFMATCH '15' IN $choice THEN
ASSIGN Istframe TO $NEXTFRAME

ELSE IFMATCH '2$' IN $choice THEN
ASSIGN lstdisp TO SNEXTFRAME

ELSE IFMATCH '^3$' IN $choice THEN
ASSIGN edframe TO SNEXTFRAME

ELSE IFMATCH '-4$' IN $choice THEN
ASSIGN eddisp TO $NEXTFRAME

ELSE IFMATCH '-S$' IN $choice THEN
ASSIGN rmfrm TO $NEXTFRAME

ELSE IFMATCH '^6$' IN $choice THEN
ASSIGN rmdsp TO $NEXTFRAME

ELSE IFMATCH '-75' IN $choice THEN
ASSIGN courseme TO $NEXTFRAME

ELSE
MACRO reenter

ENDIF

A-9

"ianginst" Frame in Menu-Driven Authoring System

COMMENT langinst frame
COMMENT invoked by langtut

DISPLAYFILE langtxt
DISPLAY
DISPLAY Enter selection (or WX to return to the main menu):
READ $k
IFMATCH '(BAI' IN 8k THEN DISPLAYFILE lassign
IFMATCH '[bBI' IN $k THEN DISPLAYFILE iclear
IFMATCH 'IcC)' IN Sk THEN DISPLAYFILE idisp
IFMATCH 'IdDI' IN $k THEN DISPLAYFILE idisps
IFMATCH 'IeEP' IN Sk THEN

DISPLAYFILE lif 1
READ $dum,
DISPLAYFILE if2

ENDIF
IFMATCH 'jFfl' IN $k THEN DISPLAYFILE iifin
IFMATCH 'IgGi' IN Sk THEN DISPLAYFILE linac
IPMATCH I(hHI' IN 8k THEN DISPLAYFILE inew
IFMATCH '(ll' IN 8k THEN DISPLAYFILE ipaus
IFMATCH 'UJI' IN $k THEN DISPLAYFILE iprint
IFMATCH 'lkKI' IN $k THEN DISPLAYFILE iread
IFMATCH '111L1' IN $k THEN DISPLAYFILE iclock
IFMATCH '1mM)' IN $k THEN DISPLAYFILE irstu
IFMATCH 'IN)' IN $k THEN DISPLAYFILE istop
IFMATCH 'loOlP IN $k THEN DISPLAYFILE ishell
IFMATCH 'IpPI' IN $k THEN DISPLAYFILE iwstu
IFMATCH 'lxxi' IN $k THEN
ASSIGN frame-I TO 8NEXTFRAME
ELSE
DISPLAY
DISPLAY Press return to continue
READ 8k
CLEARSCREEN
ENDIF

A-i10

"langtut" Frame in Menu-Driven Authoring System

COMMENT langtut frame
COMMENT invoked by frame_1

CLEARSCREEN
ASSIGN langinst TO $NEXTFRAME
DISPLAYFILE operate
DISPLAY Press 'RETURN' to continue.
READ $key
CLEARSCREEN
DISPLAYFILE langover
DISPLAY
DISPLAY Press 'RETURN' to continue.
READ $key
CLEARSCREEN

A-i1

Olstdisp" Frame In Menu-Driv.n Authoring System

COMMENT Istdisp frame
COMMENT invoked by frammenu

CLEARSCREEN

DISPLAYFILE leadblnk

DISPLAY
DISPLAY List of existing display files:
DISPLAY

SHELL Is -1 .. /$course/disp I more

DISPLAY Please hit return to continue:

READ Sdum

ASSIGN frammenu TO SNEXTFRAME

A-12

"Istcours" Frame in Menu-Driven Authoring System

COMMENT Isteours frame
COMMENT invoked by Istcours

CLEARSCREEN

DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY List of existing courses:
DISPLAY
DISPLAY

SHELL Is -1 .. i more

DISPLAY Please hit return to continue:

READ Sdum

ASSIGN courseme TO SNEXTFRAME

A-13

"Isttrame" Frame in Menu-Driven Authoring System

COMMENT Istframe frame
COMMENT Invoked by trammenu

CLEARSCREEN

DISPLAYFILE ieadbink

DISPLAY
DISPLAY List of existing frame riles:
DISPLAY

SHELL Is -1 ../Scourse/frame tomore

DISPLAY Please hit return to continue:

READ Sdum

ASSIGN frammenu TO SNEXTFRAME

A-i14

"reenter" Frame in Menu-Driven Authoring System

COMMENT reenter macro

DISPLAY
DISPLAY
DISPLAY You entered > $cholce (which was not among the valid
DISPLAY menu selections. Please reenter a valid choice when
DISPLAY presented with the menu again.
DISPLAY
DISPLAY Please hit return to continue:

READ $dum

A-15

"rmcrs" Frame in Menu-Driven Authoring System

COMMENT rmcrs frame
COMMENT Invoked by courseme

CLEARSCREEN
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY Enter the name of the course to delete:
READ $delcrs
DISPLAY
DISPLAY Are you sure? Enter Y to continue.
READ Sanswr
ASSIGN courseme TO SNEXTFRAME
IFMATCH "[yYI$' IN Sanswr THEN ASSIGN zapcrs TO $NEXTFRAME
IFMATCH 'cbtcbt' IN Sdelcrs THEN
DISPLAY You cannot delete the authoring system course
ASSIGN courseme TO SNEXTFRAME
ENDIF
IFMATCH 'uset' IN Sdelcrs THEN
DISPLAY You cannot delete the authoring system
ASSIGN courseme TO $NEXTFRAME
ENDIF
SHELL if (test I -d ../$delcrs) then

DISPLAY The course does not exist.
ASSIGN courseme TO $NEXTFRAME

SHELL fi

A-16

"rmdsp" Frame in Menu-Driven Authoring System

COMMENT rmdsp frame
COMMENT invoked by frammenu

CLEARSCREEN
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY Enter the name of the display file to delete:
READ $dnam
SHELL rm disp/Sdnam
ASSIGN frammenu TO $NEXTFRAME

A-I7

ormfrm" Frame in Menu-Driven Authoring System

COMMENT rmfrm frame
COMMENT invoked by frammenu

CLEARSCREEN
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY Please enter then name of the frame to be deleted:
READ $fnam
SHELL rm frame/$fnam
ASSIGN frammenu TO SNEXTFRAME

A-18

"selcours" Frame in Menu-Driven Authoring System

COMMENT selcours frame
COMMENT invoked by courseme

CLEARSCREEN

DISPLAYFILE leadblnk

DISPLAY
DISPLAY Please enter the course name that you want to author.
DISPLAY Note that a course directory structure will be created
DISPLAY if the course name entered does not exist.
DISPLAY
DISPLAY Enter course name:

READ $course

IFMATCH '-S' IN $course THEN
ASSIGN selcours TO $NEXTFRAME
DISPLAY You entered a null course name.
DISPLAY Please reenter when the display is refreshed.
PAUSE 3

ELSE
ASSIGN chkcours TO SNEXTFRAME

ENDIF

A-19

"zapcrs" Frame in Menu-Driven Authoring System

COMMENT zapcrs frame
COMMENT Invoked by rmcrs

DISPLAY please wait..
SHELL mvdir ../Idelers ./oldjunk
ASSIGN courseme TO $NEXTFRAME

A-2 0

USET Routines

"ftran"

Frame Translator

for I In to
do

awk -f ../../uset/pre-fltr $i
awk -f .. /../uset/maifltr - >../exef/$i
echo
echo Translation completed for frame -- $i.
echo

done

"matchtes

This frame has no initial content.

Wmatchtest"

This frame has no initial content.

"restore"

stty echo icanon icrnl opost lixon brkint isig

"setpaths"

PATH= $PATH:.:..:/usr/tmp/vri/uset

A-21

"fdrive"

Frame Driver

NEXTFRAME~frame_1
trap '. exef/esefrarne' 2
while (true)
do

.exef/SNEXTFRAME
done

"trame-l1

COMMENT Generic framej1 frame
DISPLAY This is the generic frame_1 frame. You will want to:
DISPLAY 1) remove these display lines, and
DISPLAY 2) assign your initial frame name to NEXTFRAME.
DISPLAY

A- 22

"mai-fltr"

0 Awk filters for frames

$1 =="ELSE" lif ($2 =="IF")I
print? "eli? (test \"'expr
for 0I = 3; $1 != "THEN"; i++)

print? "%s "Ali
print? '\ -ne \"0\") then\n"

if ($2 =="IFMATCH")
print? "echo %s >../uset/matchtes\n",S
print? "eli? (test \"'grep -c %s".$3
print? " ../uset/matchtes Y\ -ne \O"

then\n"

if ($2 = "

printf "else\n"

next

$1 =="ASSIGN" (print? "%s= expr ",substr(SNF.2)
for (1 = 2; S81= *TO"; i++)

print? "%s ",$i
print? "*\n"
next

41 =="CLEAR" Iprint? "> bu?/%s",S2
next

$1 "CLEARSOREEN" I81 = "clear"
print
next

$1 =="DISPLAY" Iprint? "echo \n"
print? "echo "
print? *%s", substr($0jlength($l)+l+index($0.$l))
print? "\\c\"\n"
next

$1 =="DISPLAYFILE" 1print? "cat disp/%s\n",$2
next

$1 = "ENDIF" 181 = "fi"
print
next

A- 23

"mal_!ltr" Continued

$1 = "FREEPLAY" 1print! "LOGNAME~root , export LOGNAME\n"
'print! "MACHINE=uname -m Ised -e

\":.\(\)\1\" ;export MACHINEWn
print! "/usr/users/c3i/bin/c3iexec\n"
next

$1 O=GETDISPLAY" 1print! "cat buf/%s".82
next

$1 = "INTERACT" (print! "echo
printf $0
print!
next

S1 == "KEYPRESS" 1print! "echo
print! $0
print!
next

$1 = "MACRO" I print! ". exef/%s\n",S2
next

$1 = "NEWSTU" (print! wi! (test ! -d stupro/%s) then\nm,52
print! " mkdir stupro/%s\n",S2
print! "!i\n"
next

$1 "= PAUSE" 1$1 = "sleep"
print
next

$1 = "PRINTFILE" Iprintf "Ip disp/%s\n".$2
next

I
Si1= "READ" ($1 = "read"

for (1 =2; 1 <= NF; 1++) #strip leading $'s from
vars

Si =substr($i.2,ilength(30)-1)
print
next

$1 =="READCLOCK" (print! "sec= date '+%S"\n"
print! "min=Adate '+%M"\n"
print! "hr='date '+%H"\n"
print! "%s".substr(S2,2)
print! "= expr 3800 \W Shr + 80 \\a $min + Ssec'\n"

next

A- 24

"iafltr" Continued

Sl=="READSTU" Iprintf "%s='cat stupro/%s/%s \n".substr($6.2),82,S4
next

$1 =="SAVEO" Iprintf "cat buf/obuf >> buf/%s",82
next

$1 =="SCREEN" lprintf "echo
print! 80
printf
next

Si "SEND" Iprintf "ec-ho
printf 80
printf .
next

$1 "=STOPCOURSE" 181 "exit 1"
print
next

$1 "SHELL" ISI
print
next

$1 =="WRITESTU" (printf "echo %s >stupro/%s/%s\n",$6.$2.S4
next

Iprintl

A- 25

* cat prefilter "r~lr

Awk filters for frames

$1 OIFMATCH" iprintf "echo %S >../uset/matchtes\n",$4
print! "if (test \"'grep -c %s",$2

if (SNF t= "THEN") I
for (1 = 8; 1 <= NF; 1++)

print! "%s "Si1
printf "\nfi\n"

next

$1 =="IF" Iprintf "if (test \"expr
for (U = 2; $1 1= "THEN"; i+4-)

print! "%s ",Si
printf "A\" -ne \"0\") then\n"

if (0 < NF) I
while U <= NF) f

printf "%s ",$i

printf "\nfi\n"

next

$1 ! "COMMENT" 1printl

A-2 6

APPENDIX B

CREATION AND MODIFICATION OF CAI COURSEWARE

The training for database operations discussed was created at the
same time that the authoring software was under development. There-
fore, this training was not created using all the tools provided by the
ultimate authoring language product. However, authors of future
modules may find it easier to compose training using the menu-driven
tool found in the authoring package. To do this, the authors will have
to learn the authoring language.

Alternatively, authors may find it easier to copy some existing
logic software and then to modify it slightly to fit their needs. This
approach does not require as much knowledge of the authoring language,
because some routines can be used as is, and changes can be made while
the author carefully follows the existing command syntax. This method
is discussed below.

A third approach is to author using the menu-driven tool, but to

use the printed templates as a guide.

The following discussion uses the database training delivered with
the authoring system as a baseline. Certain techniques, such as '%ow to
allow an interruption, how to allow movement within the course, how to
deal with questions, and so forth, can be handled in a number of ways.
The methods used in the Database Training Course work, but they are not
the only way to achieve acceptable results.

Overview of Course Software Structure

The course consists of a set of lessons (Lessons 1 through 6),

each of which is a subdirectory. Each lesson subdirectory has several
subdirectories, "disp," "frame," "exef," and "stupro." These names are
identical in all lessons. The first three are of importance in
courseware development and modification.

The "disp" subdirectory consists of a set of files, one file for

each display to be presented on the screen. The "disp" frames contain
the actual displays to be shown on the screen.

The "frame" subdirectory consists of a set of files, one file for
each separate logic frame. In general, every logic frame calls for a
separate display frame. These frames contain logic written in the
authoring language.

The "exef" subdirectory contains a set of files, one file for each
logic frame. These files are simply translations of the "frame" files.
They are produced by the authoring software. It is the "exef" files
that contain the UNIX code that actually is used during the running of
the lesson.

B-1

Modification of Courseware

The current courseware can be modified by the Army to follow
changes in the operation of the MCS 2 database, or to improve the
quality of instruction following initial use and evaluation. There are
two kinds of changes that may be required, simple changes to existing
displays, and more complex changes to the training software.

Tools Required for Courseware Modification. All modifications can
be made using a few basic UNIX commands, copy (cp), move (my), remove
(rm), make directory (mkdir) and remove directory (rmdir), and a UNIX
editor such as vi. The vi editor is recommended for changes to
displays, because it allows full screen viewing of displays, which will
appear very much as they do in the course presentation. A basic knowl-
edge of UNIX is required, so that the person performing the courseware
modification can get to the subdirectories containing the frames
requiring modification. Only a few vi commands are needed to start
(i.e., i, a, x, cw, cW, dw, dW, dd, r, R, ZZ, and :q!), although
greater knowledge may speed the task. The hints in this paragraph will
require that the user obtain documentation or help on the UNIX
operating system.

During the development of this courseware, adequate familiariza-
tion was possible with a day of instruction and a week of initial under
supervision.

Changes to Displays. Some of the changes may entail only changing
the content of one or a few displays. In this case, only editing of
existing display files is necessary. These changes are easy to make,
and are relatively risk-free, because the logic is unchanged. An error
in the modification process will only cause an error in the display of
a frame, not in the logic sequence and running of the rest of the
lesson.

To make a change in a display the operator goes to the subdirec-
tory containing the lesson to be modified (e.g., lessonl), and then to
the "disp" subdirectory within the lesson subdirectory. The frame
containing the display in question is edited using the vi editor. The
person making changes should be careful to keep all displays to 80
columns or fewer, and to make all displays 22 lines long. This allows
the trainee to press the return key, causing the cursor to go to the
next line, without scrolling the display. Once the changes to a
display frame have been made, the frame is saved, and the process is
complete.

New Logic Frames. It is possible to write the logic for each new
frame that is required. However, an alternative is to use existing
frames as templates for new logic frames. If the new logic frames are
supposed to do the same thing as existing frames, with different
displays and different destinations after a keypress, then the easy way
to make an addition is to copy an existing frame of the desired type

B-2

to a new file, and then change only the addresses or pointers in this
new file.

Changes to Logic. Each logic frame stands alone, and must contain
within it the code for all key presses that are to be recognized, plus
the name of the display frame to be displayed on the screen. The
person making changes to logic must consider the following possible
changes:

1. The name of the display frame to be presented must appear
in the logic frame.

2. The name(s) of the next logic frame(s) to which the program
may go at a keypress must be specified. This includes the
backstep frame.

3. Other logic frames may be affected by the current change.
When a new logic frame is created the logic frame which
will immediately precede the new one must be changed so
that the proper keypress calls for the new frame (this is
usually a carriage return). The immediately subsequent
frame must also be changed so the backstep keypress sends
the program to the new logic frame (this is usually the "b"
key.

To make a change in logic the person making the change should go
to the desired lesson subdirectory (e.g., lessonl) and then to the
"frame" subdirectory within the lesson subdirectory.

The recommended manner of adding a logic frame is: (1) copy a
frame with similar structure to the new name, and (2) make changes to
the addresses in the logic frame. In this way, the programming
techniques developed by the original programmers will be transferred to
the new frame.

Once the new frame has been developed, it must be translated from
the authoring language into UNIX shell script. The translation is
performed from the "frame" subdirectory of the lesson, where the
operator types the command "sh ../../uset/ftran [name of the logic
frame]", (e.g., sh ../../uset/ftran frame 1). The authoring software
makes the translation and puts the resulting executable frame into the
"exef" subdirectory in the same lesson. When the courseware is run,
the actual commands come from the files in the "exef" subdirectory.

Appendix A contains several sample files and indications of how
files can be altered.

Working With the "OOT" Script. If the training package is to use
the "oot" script for initial selection, then a subdirectory must be
created within the lesson, called "oldstudent." This subdirectory must
contain four files, each of which must contain the following data:

B-3

1. File "correct," containing the value 0.

2. File "dummy," containing the word "dummy."

3. File "place," containing the character

4. File "qasked," containing the value 0.

An identical "oldstudent" subdirectory should be created within
stupro.

In addition, the "OOT" file should be modified to allow the
selection of the new lesson.

Current Topic. In the delivered training, the trainee has the
opportunity to jump back to the beginning of the topic that he is
working on. In order to do this, a new topic must be assigned as the
trainee reaches the first frame of the topic. This requires a
statement of the form: ASSIGN [filename] TO $TOPIC. Henceforth,
$TOPIC contains the name of the current topic. This must be done at
each frame where the topic changes. If the student selects a new topic
in TOPICFRAME, the code for that new frame must contain the reassign-
ment of STOPIC. This will be the case if the new frame is the first
frame of the new topic.

B-4

APPENDIX C

TEMPLATES OF AUTHORING CODE IMPLEMENTATION FOR

SELECTED SCREEN PRESENTATIONS

Template for a Frame That Displays for a Fixed Number of Seconds

CLEARSCREEN
ASSIGN Idisplay frame namel TO $DISPLAY
DISPLAYFILE $DISPLAY
ASSIGN Icurrent frame namel TO SNEXTFRAME

COMMENT Pause Ino. of secondsl
PAUSE 2
ASSIGN Inext frame namel TO $NEXTFRAME

C-1

Template for a Standard Frame

COMMENT This frame presents information until the trainee presses
COMMENT (Return>
COMMENT It also assigns a new frame address to STOPIC (the current
COMMENT topic)
CLEARSCREEN

COMMENT Keep track of the current display, so it can be printed if
COMMENT necessary.
ASSIGN Idisplay frame namel TO SDISPLAY
COMMENT Display the proper file.
DISPLAYFILE $DISPLAY

COMMENT Wait for a keypress.
READ $Keypress

COMMENT Assign the current frame to $NEXTFRAME
ASSIGN Icurrent frame namel TO $NEXTFRAME

COMMENT Assign a new frame address to $TOPIC.
ASSIGN Icurrent frame namel TO $TOPIC

COMMENT Look for a carriage return with no other input ('^$').
IFMATCH -$' IN SKeypress THEN ASSIGN (next frame namel TO $NEXTFRAME

COMMENT Go back to Iprevious frame namel
IFMATCH 'IBbI$' IN $Keypress THEN ASSIGN lprevious frame name) TO $NEXTFRAME

COMMENT "serveout" is a MACRO. It has some fixed code that is identical in
COMMENT many frames. This code allow the trainee to branch to an interrupt
COMMENT routine to select a new topic, print, quit, etc. Rather than add
COMMENT this code to every frame, MACRO serveout is invoked.
MACRO serveout

C-2

Templates for a Quiz Question With Responses

Question Root Frame

COMMENT Quiz Frame
CLEARSCREEN
ASSIGN (question display framel TO SDISPLAY

COMMENT Store the display address in case of print request.
DISPLAYFILE $DISPLAY

COMMENT The next assignment is not necessary, but it is a place to
COMMENT write the name of the current frame so the author can refer to
COMMENT it.
ASSIGN (current frame namel TO SNEXTFRAME

COMMENT Read and test student response. Choices are I through 4.
READ SKeypress

IFMATCH (II IN $Keypress THEN ASSIGN (choice 1 framel TO SNEXTFRAME
IFMATCH 121 IN SKeypress THEN ASSIGN {choice 2 framel TO SNEXTFRAME
IFMATCH (31 IN $Keypress THEN ASSIGN (choice 3 framel TO SNEXTFRAME
IFMATCH 141 IN SKeypress THEN ASSIGN (choice 4 frame) TO $NEXTFRAME

COMMENT Allow an interrupt.
MACRO serveout

C-3

Templates for a Quiz Question With Responses

Frame for a Wrong Answer
(There are usually three of these per question)

COMMENT Wrong Answer Frame
CLEARSCREEN

COMMENT Store the display address In case of print request.
ASSIGN {answer display frame) TO $DISPLAY
DISPLAYFILE SDISPLAY

COMMENT The next assignment is not necessary, but it Is a place to
COMMENT write the name of the current frame so the author can refer to
COMMENT it.
ASSIGN Icurrent frame name) TO $NEXTFRAME

COMMENT The next line shows that the trainee missed the particular item on
COMMENT this quiz one more time.
IF $wrong = 0 THEN

ASSIGN Sqmissed + I TO $qmissed
ASSIGN I TO $wrong

ENDIF

COMMENT The student must press <Return> to continue.
READ $Keypress
IFMATCH "$' IN $Keypress THEN ASSIGN Iquestion root frame) TO SNEXTFRAME

COMMENT Allow an interrupt.
MACRO serveout

C-4

Templates for a Quiz Question With Responses

Frame for a Correct Answer

COMMENT Correct Answer Frame

COMMENT Increment the number of questions asked.
ASSIGN Sqaskee + 1 TO Sqasked

COMMENT Clear the $wrong flag.
ASSIGN 0 TO Swrong

CLEARSCREEN
COMMENT Store the display address in case of print request.
ASSIGN lanswer display frame) TO SDISPLAY
DISPLAYFILE $DISPLAY

COMMENT The next assignment is not necessary, but it is a place to
COMMENT write the name of the current frame so the author can refer to
COMMENT it.
ASSIGN Icurrent frame namel TO SNEXTFRAME

COMMENT The student must press <Return> to continue.
READ SKeypress
IFMATCH '$' IN SKeypress THEN ASSIGN (next question frame) TO SNEXTFRAME

COMMENT Allow an interrupt.
MACRO serveout

C-5

Error Frame Templates

First Frame to Come Up When an Error Is Detected

COMMENT Save the name of the last frame.
ASSIGN $NEXTFRAME TO $HOLD

COMMENT Now go to the error frame.
ASSIGN errorframe TO $NEXTFRAME

Nerrorframe" Template

COMMENT Display the message to be shown on an error.
DISPLAY You pressed the wrong keys!! Look at the directions and try again.

COMMENT Return to original frame following any keyboard input.
ASSIGN SHOLD TO $NEXTFRAME
READ $Keypress

C-6

"CONTINUE" Frame Template

COMMENT This is the continue frame after a quiz.
CLEARSCREEN
COMMENT Compute number of questions correct
ASSIGN Sqasked - $qmissed TO $CORRECT
ASSIGN $CORRECT \ 100 / Sqasked TO $PCNT

COMMENT Give student feedback on performance to this point.
DISPLAY
DISPLAY
DISPLAY Lesson feedback for $student.
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY Thus far in the lesson you have correctly answered $CORRECT out of
DISPLAY $qasked questions (SPCNT%).
DISPLAY
DISPLAY When you are ready, press return to continue with the lesson.
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY Press <Return)
DISPLAY

COMMENT Reset the $CORRECT flag
ASSIGN 0 TO $CORRECT

COMMENT The student must press (Return> to continue
READ $Keypress
IFMATCH "$' IN $Keypress THEN ASSIGN cl-01-05-00 TO $NEXTFRAME

C-7

"ENDFRAME" Template

COMMENT ENDFRAME is Invoked when the student quits during the lesson.
CLEARSCREEN
ASSIGN 0 TO $leave
COMMENT Compute number correct.
ASSIGN Sqasked - Sqmissed TO $CORRECT
COMMENT Save questions asked, questions correct, and last topic in
COMMENT subdirectory Sstupro (the student's name) in directory stupro.
WRITESTU $student ATTRIBUTE qasked VALUE Sqasked
WRITESTU $student ATTRIBUTE correct VALUE $CORRECT
WRITESTU $student ATTRIBUTE place VALUE $TOPIC
COMMENT Give end of session feedback.
DISPLAY
DISPLAY
DISPLAY Feedback for $student
DISPLAY
DISPLAY
DISPLAY
DISPLAY You have chosen to discontinue the lesson. Up to this point you
DISPLAY have correctly answered $CORRECT out of Sqasked questions.
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY Press (Return> to end the lesson.
DISPLAY
READ SKeypress
IFMATCH '$' IN SKeypress THEN ASSIGN 1 TO $leave
COMMENT STOPCOURSE is an authoring language command to stop the course.
IF $1eave = I THEN
CLEARSCREEN
STOPCOURSE

ENDIF

C-8

"LASTFRAME" Template

COMMENT This frame the results of the questions in $stupro in the
COMMENT stupro directory.

COMMENT Read the clock to set the finishing time.
READCLOCK $FINISHTIME
COMMENT Compute time elapsed.
ASSIGN SFINISHTIME - SSTARTTIME TO STOTALTIME
ASSIGN STOTALTIME / 60 TO $TOTALMINUTES

COMMENT Compute number of questions correct.
ASSIGN $qasked - $qmissed TO $CORRECT
COMMENT Store values in $stupro in the stupro directory.
WRITESTU $student ATTRIBUTE qasked VALUE Sqasked
WRITESTU $student ATTRIBUTE correct VALUE $CORRECT

COMMENT Note that the student finished this lesson.
WRITESTU $student ATTRIBUTE place VALUE done

COMMENT Give end of lesson feedback.
CLEARSCREEN
DISPLAY
DISPLAY Lesson feedback for $student.
DISPLAY
DISPLAY
DISPLAY Congratulations, you have successfully completed Lesson XXX!
DISPLAY
DISPLAY
DISPLAY
DISPLAY You correctly answered $CORRECT out of Sqasked questions
DISPLAY and took $TOTALMINUTES minutes to complete the lesson.
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY Press (Return> or (I>
DISPLAY
READ $Keypress

COMMENT STOPCOURSE is an authoring language command to stop the course.
IFMATCH $' IN SKeypress THEN
CLEARSCREEN
STOPCOURSE
ENDIF

C-9

"OUTFRAME" Frame Template

COMMENT The trainee may select what he wants to do at this interruption.
CLEARSCREEN
DISPLAYFILE dOUTFRAME
READ $Keypress
ASSIGN OUTFRAME TO $NEXTFRAME

COMMENT Choice 1 is to return to where the trainee was.
IFMATCH '1l$' IN SKeypress THEN ASSIGN $HOLDFRAME TO SNEXTFRAME

COMMENT Choice 2 goes back to the beginning of this topic.
IFMATCH '121$' IN SKeypress THEN ASSIGN $TOPIC TO SNEXTFRAME

COMMENT Choice 3 goes to the TOPICFRAME frame to allow selection of a
COMMENT new topic.
IFMATCH '131$' IN $Keypress THEN ASSIGN TOPICFRAME TO $NEXTFRAME

COMMENT Choice 4 goes to ENDFRAME to end the lesson.
IFMATCH '141$' IN $Keypress THEN ASSIGN ENDFRAME TO SNEXTFRAME

COMMENT Choice 5 requests that Unix print the display.
IFMATCH '151$' IN $Keypress THEN PRINTFILE $DISPLAY

COMMENT Clear the screen following a keypress.
CLEARSCREEN

C-i0

"TOPICFRAME" Template

COMMENT The trainee may select from a menu of topics to study.
CLEARSCREEN
DISPLAYFILE dTOPICFRAME
READ $Keypress
COMMENT The Topic# references the frame which begins the topic
COMMENT selected by the trainee.
IFMATCH '111$' IN $Keypress THEN ASSIGN ci-00-01-00 TO SNEXTFRAME
IFMATCH '121$' IN $Keypress THEN ASSIGN cl-01-01-00 TO SNEXTFRAME
IFMATCH '131$' IN $Keypress THEN ASSIGN cl-01-05-00 TO SNEXTFRAME
IFMATCH '(41$' IN $Keypress THEN ASSIGN cl-01-06-00 TO SNEXTFRAME
COMMENT This choice ends the session.
IFMATCH '(eEl$' IN $Keypress THEN ASSIGN ENDFRAME TO $NEXTFRAME

c-11

"frame_l" Template

CLEARSCREEN
COMMENT Assign zero to working variables
ASSIGN 0 TO $qasked
ASSIGN 0 TO Sqmissed
ASSIGN 0 TO SSTARTTIME
ASSIGN 0 TO $FINISHTIME
ASSIGN 0 TO STOTALTIME
ASSIGN 0 TO STOTALMINUTES
ASSIGN 0 TO $CORRECT
ASSIGN 0 TO $wrong
ASSIGN 0 TO $PCNT

COMMENT Read the clock to time the student for this session.
READCLOCK SSTARTTIME
COMMENT The initial display is contained in this frame.
DISPLAY
DISPLAY
DISPLAY
DISPLAY Please enter your last name:

COMMENT $student contains the student name under which data will be
COMMENT stored in stupro.
READ $student

COMMENT Set up a stupro subdirectory with this name.
NEWSTU Sstudent
WRITESTU $student ATTRIBUTE dummy VALUE dummy

COMMENT Copy this student's prior record to oldstudent.
SI-ELL ep stupro/Sstudent/* stupro/oldstudent

COMMENT Set up a clean set of files under the student's name.
WRITESTU $student ATTRIBUTE qasked VALUE 0
WRITESTU $student ATTRIBUTE correct VALUE 0
WRITESTU $student ATTRIBUTE place VALUE "

COMMENT Copy oldstudent back to the account.
SHELL cp stupro/oldstudent/* stupro/$student

COMMENT If there is a value in the place field, then the student left
COMMENT the lesson in the middle. Start where he/she left off. This
COMMENT is the beginning of the last TOPIC that the student started.
READSTU $student ATTRIBUTE place VALUE $place
COMMENT Set $NEXTFRAME and $TOPIC to the value they had when the
COMMENT student ended the last session.
ASSIGN Splace TO $TOPIC
ASSIGN Splace TO JNEXTFRAME

C-12

"frame_l" Template Continued

COMMENT If there is a " in Splace then the student did not leave
COMMENT in a previous session. Start at the beginning.
IFMATCH "S' IN $place THEN

DISPLAY Welcome to the course.
COMMENT Set $NEXTFRAME and STOPIC to the first frame.
ASSIGN cl-00-01-00 TO $NEXTFRAME
ASSIGN cl-00-01-00 TO $TOPIC

ENDIF

COMMENT If there is a "done" in $place then this student completed the
COMMENT course once. Restart at the beginning, and keep the old data
COMMENT in a subdirectory with the student's name and the extension
COMMENT ".old".
IFMATCH 'done$' IN $place THEN
DISPLAY You have completed Lesson 1. You will restart at the beginning.
COMMENT Set SNEXTFRAME and $TOPIC to the first frame.

ASSIGN cl-00-01-00 TO SNEXTFRAME
ASSIGN cl-00-01-00 TO $TOPIC
COMMENT Keep the old data.
NEWSTU $student.old
READSTU $student ATTRIBUTE qasked VALUE temp
WRITESTU $student.old ATTRIBUTE qasked VALUE temp
READSTU $student ATTRIBUTE correct VALUE temp
WRITESTU Sstudent.old ATTRIBUTE correct VALUE temp
WRITESTU $student ATTRIBUTE qasked VALUE 0
WRITESTU $student ATTRIBUTE correct VALUE 0
WRITESTU $student ATTRIBUTE place VALUE "

ENDIF

COMMENT Clear the temporary subdirectory oldstudent.
WRITESTU oldstudent ATTRIBUTE qasked VALUE 0
WRITESTU oldstudent ATTRIBUTE place VALUE '
WRITESTU oldstudent ATTRIBUTE correct VALUE 0

COMMENT Initialize working variables from the $student subdirectory
READSTU Sstudent ATTRIBUTE qasked VALUE $qasked
READSTU $student ATTRIBUTE correct VALUE $CORRECT
ASSIGN Sqasked - $CORRECT TO $qmissed

C-13

"serveout "Frame Template

COMMENT I or I will generate an Interrupt wherever this MACRO is used.
IFMATCH '1111$- IN $Keypress THEN

ASSIGN SNEXTFRAME TO SHOLDFRAME
ASSIGN OUTFRAME TO SNEXTFRAME

ENDIF

C-i14

"OOt" Program

This script allo'.ks a menu-driven selection of activities followving
initiation of the script. It selects one of six lessons. or allows
printout of student results or erasure of the student profile
subdirectory. The script is written in Lnix command language.

x*alid input=O
: nile (te-st Svalid_input -eq 0)
do

clear
cat First choice
read use:_input

case "Suser input" in

1)
cd lessonI
sh .. uset fdrive
cd

2)

cd lesson2
sh .. uset fdrive
cd

3)

cd lesson3
sh uset fdrive
cd

4)
cd lesson4
sh .. uset fdrive
cd

5)
cd lesson5
sh .. uset fdrive
cd

6)
cd lesson6
sh ,. uset fdrive
cd C

c-i5

oct Prograrn Cont~ried

oil this pa%.e the script continues. These inputs (+1 to +6) gerierale a
printout of student profiles.

+1)
ed lessoni stupro

for file-name in
do

echo Sfilename
cat Sfilenam•

done
I , tee .. printout , more
read dummy
lp .. printout
read dummy
cd

+2)

cd lesson2 stupro

for file-name in
do

echo Sfile_name
cat Sfi!e_name

dune
I 1 tee .. printout more
read dummy
lp .. printout
read dummy
cd

+3)
cd lesson3 stupro

for filename in
do

echo Sfilename
cat Sfilename.

done
I 1 tee .,printout I more
read dummy
Ip .. , printout
read dummy
cd

C-16

"oot" Program Continued

+4)

cd lesson4 stupro

for filename in
do

echo Sfile_name
cat Sfile-name

done
I : tee .. printout : more
read dummy
Ip .. printout
read dummy
cd . .

+5)

cd lesson5 stupro

for filename in
do

echo $filename
cat Sfiie_name

done
I ' tee .. printout , more
read dummy
Ip .. printout
read dummy

cd

+6)
cd lesson6 stupro

for filename in
do

echo Sfilerzame
cat $filename

done
tee .. printout 1 more

read dummy
Ip .. ,printout
read dummy
cd.

C-17

"oot" Program Continued

The follo-xitig lines allow the training mara?.r to erase student
profiles.

-1)

echo "Do you want to remove all student records for Lesson 1?"
read confirm
if test $confirm = y
then I

cd lesson I
rm -r stupro
mkdir stupro oldstudent
cp oldstudent ' stupro o]dstudent

cd
I

fi

-2)
echo "Do .you want to remove aLl student records for Lesson 2"
read confirm
if test Sconfirm = y
then

cd lesson2
rm -r stupro
mkdir stupro oldstudent
cp oldstudent " stupro oldstudent

cd
I

fi

-3)

echo "Do you want to remove all student records for Lesson .3?"
read confirm
if test $confirm - y
then

cd lesson3
rm -r stupro•
mkdir stupro,,oldstudent
cp oldstudent " stupro, oldstudent

cd .. '
I

fi

C-18

oot" Program Continued

-4)

echo "Do you want to remove all student records fo'r Lesson 4'"
read confirm
if test Sconfirnt - y
then

cd lessor4
rm -r stupro
mkdir siupro oldstudent
cp oldstudent " stupro oldstudeni

cd

fi

-5)

echo "Do you want to remove all student records for Lesson
read confirmi
if test Sconfirm = y
then

cd lessorn5
rm -r stupro
mkdir stupro oldstudent
cp oldstudent , stupro oldstudent

cd
I

fi

-6)
echo "Do you want to remove all student records for Lesson 6?"
read confirm
if test $confirm = y
then

cd lesson6
rm -r stupro'
mkdir stupro oldstudent
cp oldstudent * stuprooldstudent

cd

fi

C-19

"oot" Program Continued

These lines allow the student to quit the program. and stop training.

Q)
valid_input-I
echo

echo
sleep 5

esac
done

c-20

