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ABSTRACT

Our work has emphasized analog optical processing for three levels of multitarget tracking:

target detection, track initiation and target tracking. New algorithms and new optical

processing architectures have resulted and initial quantitative results have been obtained for each

phase of the work. A new acousto-optic implementation of our sub-pixel target detection

algorithm was devised and tested. This involved a new algorithm and architecture that achieves

image registration, interpolation and subtraction. This technique is thus suitable for general

image registration applications also. A 2-D Hough transform optical processor is used for track

initiation. It allows accumulation of target measurements until sufficient confidence has been

established that a target track exists. It provides position and velocity estimates for each target

and predictions of the next vector location of each target. A new thresholded Hough transform

provides improved performance and reduced false alarms in noise. Very impressive results from

many multiple targets were obtained. This work is also suitable for general object feature

extraction and product inspection applications. We devised a completely new realization of the

Joint Probabilistic Data Association Algorithm for multitarget tracking and a most attractive

new acousto-optic architecture to achieve this. This also has more general use in hypothesis

testing. Finally, a new analog neural net algorithm and architecture was formulated, an optical

processor to implement it was described and initial simulations of it were obtained. This system

also has more general use in optimization problems involving multiple constraints. It employs a

new cubic energy function and can incorporate various nonlinear optical materials being

developed on other SDIO/IST ONR programs. I:
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1. INTRODUCTION

In this chapter, we provide an overview of the various aspects of our work performed in

1988, with references to our earlier SDIO/IST ONR work. The details of the various aspects of

each phase are included in separate chapters of this report.

Chapter 2 details our Hough transform (HT) track initiation work. Chapter 3 details our

new acousto-optic (AO) processor to achieve this. Chapter 4 provides the mathematical basis for

our new Joint Probabilistic Data Association (JPDA) multitarget tracker (MTT) algorithm and

highlights the new optical architecture to realize it. Chapter 5 details the formulation of our

new MTT algorithm as a cubic energy optimization problem with multiple constraints, advances

a new neural net solution, optical architecture and provides initial simulation results.

1.1 OVERVIEW SUMMARY

Our earlier work [1,2,31 provided methods to detect sub-pixel targets moving on a

structured correlated noise background that had various shifts in the background present

between frames (due to platform instability and jitter). Chapter 2 provides a new AO

architecture [4] to achieve the necessary functions. These involve 1-D correlations to estimate

the sub-pixel frame background shifts, a method to shift one frame with respect to the other and

perform the interpolation necessary to allow sub-pixel shifts to be achieved, and a technique to

achieve the amplitude subtraction of the two frames (with one frame sub-pixel shifted and

interpolated). This architecture/algorithm are very attractive since it requires only rugged 1-D

AO devices. Initial tests show the algorithm's ability to extract targets that are sub-pixel from a

strong background of correlated noise (background structure) and uncorrelated noise (due to the

sensor). This technique is useful for non-SDI applications such as image registration (to increase

SNR and for multi-sensor processing) and image differencing (for change detection) and for time-

sequential image processing in general. The use of an optical processor to achieve the

computationally-intensive function of interpolation is very new and most powerful. A
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comparison to other algorithms (showing the superior performance of our method) and extensive

data on many target and noise scenarios was performed earlier [1-3].

Once candidate target measurements/detections have been made, we must assign target

measurements to tracks. This is referred to as track initiation. It is a necessary preliminary

step in which we first verify that a target exists, before handing this information off to a tracker

(this is needed, since trackers that can initiate new tracks have enormous computational

requirements). We utilize information on allowed target trajectories to assign measurements in

separate frames to tracks. The algorithm used is a Hough transform performed on the composite

sum of multiple frames of candidate target detections. Initial results were presented earlier [2,3].

A full description [5] is now provided and more extensive data. Our earlier work had developed

distortion-invariant HT pattern recognition techniques using efficient search methods [6] and HT

projections [7], associative processor realizations of a HT [8], and generalized HT methods to

recognize curves and their parameters [9]. The algorithm we use allows target measurements to

be accumulated until a sufficient number of measurements are obtained on one trajectory to

achieve any degree of confidence desired that that trajectory is valid. New features of the

algorithm are its ability to provide position and velocity estimates for each target and estimates

of where (in vector space) the next measurement for each target is expected (these are necessary

inputs to the MTT). A new thresholded HT algorithm was introduced that provides improved

performance with significantly reduced false alarms. Extensive tests were performed on the

algorithm including dither/jitter in measurements, the presence of noise and false measurements

and many targets simultaneously present with different launch times and launch angles, etc.

The results obtained were most impressive [5] as detailed in Chapter 3.

The track initiation (Chapter 3) provides us with high confidence target tracks for which

MTT is now required. After surveying various MTT algorithms, we selected the JPDA
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algorithm (and is relative, the JPDAM algorithm, that can handle merged measurements such as

target tracks that cross in the same time slot). This algorithm was chosen since it provides the

best performance in associating measurements to targets, and it has a sound mathematical basis.

Its conventional implementation requires the generation, storage and processing of an enormous

number of feasibility matrices. We completely revised its implementation to avoid feasibility

matrices, introduced new analog validation matrices and a new and efficient technique to search

for the most feasible target/measurement pair assignments. The technique requires vector inner

product operations and is thus suitable for optical realization, since it appears that these

intensive computations can be performed to analog accuracy. A new AO optical processing

architecture was devised to achieve these operations. Chapter 4 details the algorithm [10],

expanding upon our 1988 work [3,11]. The algorithm is attractive, as it has a sound

mathematical basis. It is also of more general use in hypothesis testing problems.

We recently [12-14] introduced a new and most efficient neural net MTT algorithm and

analog optical realization for a MTT. This algorithm is more efficient than others since it only

requires a number of neurons equal to the number of measurements (rather than one neuron per

pixel in the field of view, as is typical). The algorithm and neural net are new since it utilizes a

cubic energy function and since multiple constraints are imposed on the solution. The resultant

optical architecture is also new, since it requires nonlinear elements and tensors (due to the cubic

energy function). Initial simulation results, the development of the algorithm as an optimization

problem, and a description of the required optical architecture are provided in Chapter 5.

A new concept for processing time-sequential image data was advanced in 1988 and initial

results obtained [15]. A new and most efficient recursive singular value decomposition algorithm

to produce a model of time-sequential data (a process) was devised. This algorithm requires only

simple vector inner products (that should allow analog processing accuracy); it provides a
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novelty detector (this is new, as it indicates if new image frame data is sufficiently novel); it

allows the type of novel data to be determined (i.e. is the object merely shifted or does it

contain a different aspect view of the object); it provides a novelty filter (using an algorithm

that is significantly different from others) that then allows us to estimate the rank of the process

and to determine novel image data. Preliminary results and the development of the algorithm

are provided in Chapter 6.

1.2 PLANNED 1989 RESEARCH

Our 1989 plans are affected by a reduction in our SDIO/IST grant funds by 50%. In 1989,

we plan to:

" TASK 1:
Extend the HT to 3-D to allow tracking in 3-D space from several 2-D sensor data
sets or from range data.

" TASK 2:
Quantification of our optical JPDA multitarget tracker will be conducted. This will
involve: assessment of the analog processing accuracy required; certain algorithm
improvements; tests of the full system on multitarget, data crossing targets, etc.; and
encoding of a factorized extended Kalman filter algorithm with improved stability.

" TASK 3:
Extensions of our analog optical neural net to a simpler quadratic energy formulation
and a simpler optical realization.

" TASK 4:
Our initial novelty detector and filter work on processing time-sequential image
frames will be extended to include: a novelty tracker to produce a model of the
object and the background, techniques to determine the type of novel data (i.e. shifts
or different aspects views of the objects), the role for optics, and analog accuracy
requirements.

1.3 PRESENTATIONS AND PUBLICATIONS

The 15 conference and journal paper references noted represent an extensive documentation

and description of our results. They include non-optics journals and non-optical neural net

conferences (to allow wide discrimination of our results). Papers 1, 2, 11, 13 and 15 were also

presented at various SPIE conferences. Paper 12 was presented at a neural net conference.
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Other presentations included a review of this work presented at RADC in New York, a review at

Teledyne Brown Engineering in Huntsville, a lengthy review presented to the Army SDI in

Huntsville, plus a presentation at the SDIO/ONR June 1988 conference in Washington, D.C.
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CHAPTER 2

"Optical Projection Correlations"



Optical projection correlations

David P. Casasent and Jung-Hee Song

The correlation of several I - D projections ofa 2-D image are considered for pattern recognition. A theoretical
analysis and SNR comparison to 2-D correlations are provided with successful simulated results that show
that the use of two or three 1-D correlations can identify and discriminate the 26 characters in the alphabet.
Several possible I-D optical correlators to implement projection correlations are described.

i. Introduction and measured horizontal and vertical projections, 9 and
Two-dimensional optical correlations are conven- the use of linguistic rules (not correlation techniques)

tionally used for pattern recognition. Distortion in- and subspace methods to recognize characters from
variance can be incorporated by using various smart their horizontal and vertical projections. 10 Our work
filters,- 3 white light processing,4,5 and other tech- differs in its attention to pattern recognition not image
niques. The computational complexity required to reconstruction, 9 multiclass problems rather than sin-
synthesize distortion-invariant matched spatial filters gle-class ones8s. 0 and the use of several (e.g., three)
can be large (especially when irany object classes are projections rather than only horizontal and vertical
considered and when 2-D ima,es are employed). This projections. Section II discusses several properties of
paper concerns the use of 1-D .:orrelations of projec- 1-D projection correlations and provides a theoretical
tions of 2-D images (i.e., the 2-D image is integrated at comparison to 2-D correlation results. Simulated re-
some angle to produce a 1-D projection image) for suits are presented in Sec. III, and candidate optical
pattern recognition. One-dimensional projections are processing architectures are included in Sec. IV. A
widely used to reconstruct a 2-D image by Radon discussion of this technique and the results follows in
transforms.6  By the central slice theorem,7 the 1-D Sec. V.
Fourier transform (FT) of the I -D projection along an
angle 6 of a 2-D image is a 1-D slice (at an angle II. One-Dimenslonal Projection Cowrelation Analysis
orthogonal to 0) of the 2-D FT of the 2-D image. Thus A. Relating 1-D Projection FTs to Slices of the 2-0 FT
significant information about a 2-D image exists from
its 1-D projections and their 1-D FTs. Our emphasis The 1-D projection at an angle 6 of a 2-D image
is to use only several 1-D projections and to perform function f(x,y) is written as
pattern recognition not image reconstruction. p,(r) - f f&,y(r - x cosO - y siO)dxdy, (1)

The motivation for this is that 1-D acoustooptic r i t po a y u a)d efne r
(AO) correlators are well established and more mature, where r is the projection axis. Figure 1(a) defines r
robust, faster, and less expensive than 2-D correlators and 6 and shows the operation graphically as the inte-
requiring real-time spatial light modulators. In addi- gration of the 2-D function along a set of parallel beams
tion, filter synthesis is greatly simplified if I -D data are orthogonal to the axis r (the x axis rotated by 0). The
used. Related work on the use of 1-D proiections variable r has positive and negative values, and the
includes registration of images,8 reconstruction of a angle 6 need only vary over (O,ir) to allow a full descrip-
distorted pattern by iterative processing of its known tion of the object. The 1-D FT in r of p,(r) yields

-PO _. j f(ro.e0) expl-j2rpro co,(e 0 - ,)Jrd8odr,. (2)

This result is obtained by converting the image to

The authors are with Carnegie Mellon University, Department of (ro,60) polar coordinates and producing a polar coordi-
Electrical & Computer Engineering. Center for Excellence in Opti- nate description of the 2-D FT of f(x y) with the radial
cal Data Processing, Pittsburgh, Pennsylvania 15213. frequency variable p corresponding to r in the image.

Received 12 April 1988. Since 6 is fixed, Eq. (2) describes a 1 -D slice of the 2-D
0003-6935/88/234977-08$02.00/0. Cartesian coordinate FT F(u,v) at an angle 6 as shown
* 1988 Optical Society of America. in Fig. 1(b).
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Fig. 1. Examples of (a) 1-D projection and (b) the Fourier trans-()(b

x mpl s ) I e cioaen d t Fo u r tFig. 2. Equivalence of I-D projection correlations and projections

form slice it i of the 2-D correlation pattern: (a) horizontal and vertical projec.

tions of a 2-D image; (b) horizontal and vertical projections of the
2-D correlation pattern.

B. Relating 1-D Projection Correlations to Projections of
2-D Correlations

A comparison of an input f to a reference g can be use amplitude SNR (rather than the more convention-

made by correlating the projections of f and g at the al energy SNR) as our performance measure. This

same 6. Denoting these projections by pf(r) and pg(r) choice is made, since our processor with product corre-
the 1-D correla- lation amplitude (i.e., the correlation peak value willand their 1-D FTs by P(p) and P(p), be the product of the amplitudes of the input andtion for projections at the same 0 is reference signals and not peak intensity, as one would

cr) - fPfP)PWp) exp(j2wpr)dp obtain optically without heterodyne detection). Our

= f C1,(pd) exp(j2wpr)dp output is a correlation plane, and its SNR = SNRo is
the correlation peak value divided by the standard

- ffc.,(xy)a(r - x coso - y sino)dxdy. (3) deviation in the correlation plane. Our SNRi (in the
input image plane) is thus defined as the mean square

* The first equation in (3) describes this 1-D correlation root of the signal energy per pixel divided by the stan-
as the 1-D FT of the product of the FTs of the projec- dard deviation of the input noise. *Using the signal
tions. This equals the 1-D FT of a slice (at angle 8) of energy per pixel is analogous to the SNRo definition (at
the 2-D FT C/,, of the correlation pattern cf.(xy) as the one point, the correlation peak). Averaging (via the
second equation shows. The last expression in (3) mean) is included so that results do not depend on the
states that this 1-D correlation is the I-D projection at input pixel chosen. (In our case, all signal and noise
angle 0 of the 2-D correlation function c1,(x,y). Thus data are uniformly distributed.) Thus, for an N X N
the result of a projection correlation is the same as 2-D image with noise standard deviation a, we have
integrating a projection of the 2-D correlation plane. SNRi = 1/o (since the full inputenergyoverN 2 pixelsis

S Figure 2 shows these observations pictorially. In Fig. N2 for an amplitude per pixel value of 1). The stan-
2(a), the horizontal and vertical projections of the im- dard processing gain PGE = SBWP (space-bandwidth
age are formed and correlated with reference horizon- product) = (SNRo/SNRi) 2 is an energy ratio. For our
tal and vertical projections. These two output 1-D case, the amplitude PGA ratio applies, i.e., PGA -
correlation patterns are the same as the horizontal and (PGE)1/ 2 = (SBWP)1/2, Throughout our discussion,
vertical projections of the 2-D correlation plane pat- subscripts A and E refer to amplitude or energy, re-
tern as shown schematically in Fig. 2(b). Thus 1-D spectively.
projection correlations are equivalent to projections of With these preliminaries and definitions, we now
2-D correlations. We will use the terms projection consider and detail that there is no SNR loss if 1-D
correlations and integrated 2-D correlations to de- projection correlations are performed rather than a 2-
scribe these two results. We will use this new result in D correlation. We consider the received input image
our work. For these results to be equal, a bipolar to be r(x~y) = s(x - xoy - yo) + n(xy), where s is the
correlation is necessary (i.e., we cannot intensity de- reference signal centered at input location (xoyo) and
tect the correlation output). As we will see, this is n(x,y) is additive noise. We form the horizontal and
possible optically and is most easily achieved with 1-D vertical projections of the reference and received sig-

t correlations. nals. These are described by

b C. SNR and Peak-to-Sidelobe Ratio (PSR) Comparisons s,(y) - fs(xoy)dxsY(x) - fs(xy)dy, (4a)

One might assume that some loss must occur when r, y) - fr(xv)dx.r,(x) - fr(ry)dy. (4b)
such I-D processing is used. We now address this
topic. We envision forming only selected l-D inte- We first consider the 2-D image with a space-band-
grated slices of the correlation plane rather than all width product SBWPE = N2 (and SBWPA - N), and
integrated slices of it. The number of slices employed the noise is assumed to be white, Gaussian, and of zero
will depend on the performance required and the num- mean with variance U2 . The input SNR2 - 1/a for the
ber of multiple objects simultaneously present. We 2-D case (as detailed above) and PGA = N. Thus we.

4978 APPLIED OPTICS / Vol. 27. No. 23 / 1 December 1988



expect an output SNR' = (SNR,(PG4 ) = N/a. This divide each pixel value by N, the variance is reduced
agrees with our SNR,, definition as we now show. The from Na2 by a factor of N'2 to a62IN. The factor N
correlation peak amplitude is .N, and the output (cor- (rather than N) is seen by considering the average y
relation plane) noise standard deviation is Na. To see (1/N)Zn, of one column of N noise pixels n,. Since the
why Na arises, consider the correlation plane noise n, are independent, Elyi = 0 and Varlyl = Ev 2l = (1/
variance [i.e., the contribution to the correlation plane N-')Za-' = (1/Y' )(Na'2 ) = a-/N.
due to input noise and a filter s(x,y) matched to the The prior analysis assumed a white signal (so that all
input signal]. This is a2 times the energy of the filter. N or ' pixels in it contributed equally to the correla-
Its standard deviation is a times the square root of the tion peak value). The SBWP value (used for PG), i.e.,
energy of the filter, i.e., ("' - = N; thus the correla- Nor N'-, assumes this type of signal distribution. Ina
tion plane noise standard deviation is Na and SNR,, = practical (nonwhite) signal case, there will be a differ-
N'-/Na = N/a for the 2-D case. ence in SNR,, for 1-D projection correlations vs 2-D

We now consider the 1-D projection correlation case. correlations. The difference will be a function of the
Now each projection pixel has an amplitude of N or an shape of the spectrum of the signal. The loss factor
energy N'2. There are N projection pixels with a total (by which SNR,, of the projection correlation is worse
energy N 3 or a square root energy per pixel value of than that for the 2-D correlation) is a maximum of
(.N J/N)I2- = N. (This is the SNR, numerator.) Add- N '2 . To see this, consider the case when the input
ing N noise pixels (in a projection image) produces a image has only one nonzero pixel. Here the 2-D SNR,
projection noise pixel variance N 2 or a standard devi- =(llN"2P'/a = 1/(Na), and SNR,, = I/a. The 1-D
ation AN 2 a. Thus the projection SNR, = N/N "a =  projection has SNRI = (1/NI"2 )/(Ni/2a) = 1/Na (which
NA1 2/a. Comparing this to the 2-D SNR, = 1/a, we see is the same as for the 2-D case). However, the 1-D PGA
that the projection image has a larger input SNR, (by a = N' 2 and the 1-D projection SNRo = N12/N = 1/
factor of N" 2 ) than does the 2-D image. N!V'a is a factor of NI'2 worse than for the 2-D case

Next we consider output SNR,, for the 1-D projec- (SNR,, = 1/a). As more input pixels (besides just one)
tion and the 2-D imag. cases. For the 2-D case, PG.A = become nonzero, SNR, for the 1-D projections in-
N = (SBWP) 1 

2 = SNR,,/SNR,. Thus SNR,, = creases faster than SNR, for the 2-D case (as shown
(PGA)(SNR,) = N/a (in agreement with our prior re- before, SNR, for 1-D projections is larger than for the
sults). Similarly, for the 1-D projection case, PGA = 2-D case when all input pixels are one, and in this case
N 2 and SNR,, = (PGA)(SNR,) = N'-'(NA1 -/a) = N/a. SNR,, for both cases are equal). Thus the loss factor of
Thus we have just shown that SNR,, for a 2-D correla- N" /

2 is a worst case theoretical one.
tion and one 1-D projection correlation are identical. Ros et al." have shown data (averaged over sixteen
As a result, we find 1-D amplitude projection correla- images) indicating that SNRi for projection images is
tions to be useful and suitable. We note that even if larger than SNR, for the same 2-D images. This sup-
the 1-D projection correlations are normalized (or av- ports our remark that generally the projection SNR, is
eraged), i.e., if each pixel in the projection of an N X N better than for the 2-D case. The detectability of the
pixel image is divided by N (to normalize each projec- 1-D or 2-D correlation peak is also of concern. Using
tion pixel value to unity), we obtain the same resultant the criteria that a correlation peak is detectable if its
SNR. expected value is more than 16 times its variance, it has

If more than one 1-D projection correlation is used been shown that to achieve the same detectability for
and the results combined, the resultant SNR,, may be projection correlations and 2-D correlations, we re-
increased (since the noise for each 1-D correlation is quire that SNR, for a 1-D projection need only be four
different). However, the major result appears to bean times higher than SNR, for the same 2-D pattern.
increased confidence in the resultant correlation (rath- Since SNR, for projections is larger than for the 2-D
er than an improved SNR) since each projection corre- image, projection correlations are expected to yield
lation provides us with a separate output correlation adequate and useful results.
sample to average over. It is also interesting to com- In our simulation tests (Sec. III), we will use SNR
pare the performance (SNR.) of a 1-D signal correla- and PSR as correlation plane performance and com-
tion to a 1-D projection correlation. For the 1-D signal parison measures. We define these by
case, SNRi = 1/a still, PGA = N' 2 now, and SNR,, =
Nl 2/a is less than for the 1-D projection correlation SNR - peak value (5a)
(by a factor of N1 2). (standard deviation away from the peak)

From these brief summary theoretical analyses, it is PSR = peak value

clear that projection correlations are adequate mea- average value around the peak "
sures of agreement of two 2-D images. The key step in
this analysis iq the effect of projection integration on Let us now advance various expected projection cor-
noise. This effect is now summarized. When N noise relation, 2-D correlation, and integrated 2-D correla-
realizations are summed, the resultant noise variance tion results.
is Nao2 (regardless of the mean of the noise), since the (1) We expect projection correlations and integrat-
variance is the spread expected in the noise values. ed correlations to yield equal outputs (by our correla-
However, if the average of these N signals is formed (as tion plane version of the central slice theorem).
is done in computing our signal measure), i.e., if we (2) We expect the peak value for an integrated cor-

I December 1988 / Vol. 27, No. 23 / APPLIED OPTICS 4979



relation to be larger than the peak value in a 2-D
correlation (due to integration of the sidelobes).

4 (3) We do not expect equal peak values for horizon-
tal and vertical l-D projection correlations (due to 4

integration of different sidelobe patterns for the dif-
ferent projection angles). -

(4) We expect input SNR for projection images to
be larger than for 2-D images.

(5) We expect SNR and PSR for projection correla-
tions to allow adequate peak detectability. (b)

For many patterns, the peak value for the integrated
2-D correlations will increase more than the sidelobes. 3001 300-

This occurs since most correlation functions have a -! 215 -1
circular shape, and thus more sidelobe values contrib- 2 , 8
ute to the peak than to the sidelobes when integrated. g 2001
Thus we can expect PSR for projection correlations to \
be larger than for 2-D correlations. Our data in Sec. E 100 1 100
III verify and quantify these remarks. It will also a 11
address the amount by which the cross-correlation of __ I___._
two different patterns is affected by use of projection - 0 -creain.-40 -20 0 20 40 -40 -20 0 20 ,0
correlations. horizontal pixels horizontal pixels

1l1. Test Resuts (C() (d)

Fig. 3. Comparison of a projection correlation and an integrated

A. Database 2-D correlation: (a) input character C image; (b) 2-D correlation;
(c) vertical projection correlation; and (d) vertically integrated 2-D

To test and quantify our projection correlation con- correlation.
cepts, the 26 upper-case letters in the Times font were
used. Each letter was digitized to 32 X 32 binary
pixels. Most letters occupied the central 10 X 10 in Fig. 3(b) is integrated. The measured PSR (11.9) is
pixels and had 40-75 nonzero pixels and all letters had also larger. This occurs, since in the integration of Fig.
less than 110 nonzero pixels out of the total 1024 pixels. 3(b), more sidelobes contributed to the peak than to
In our PSR measure, we calculate the sidelobe value as the sidelobes around it. In this case, the peak in the
the mean in a 11- X 11-pixel region around the correla- integrated 2-D correlation increased by a factor of 5,
tion peak. This is approximately the 3-dB width of and the average sidelobe level increased by a factor of
the correlation function, and the peak value was not -18/11 L 1.6. Because of the effect of sidelobes when
included in this sidelobe average. Since the correla- integrating the 2-D correlation, we expect different
tion function is a number of pixels wide, the average results when different projection or integration angles
sidelobe value includes a significant amount of the are used. For example, the horizontal projection cor-
peak energy, and thus PSR is a measure of the sharp- relation gave a peak height of 193 and a PSR of 13.5.
ness (detectability) of the correlation peak. We mea- The full projection correlation peak is broader (since
sured correlation plane SNR by calculating the noise sidelobes are now integrated) than the 2-D correlation
variance in the entire 64 X 64 correlation plane except peak, but its PSR (in the 10- X 10-pixel region around
for the 32- x 32-pixel region around the peak. (This the peak) is better, and thus the central portion of the
excludes all the energy in the correlation peak and its projection correlation is sharper than for the 2-D cor-
sidelobes.) relation. This result holds for any reasonable window

B. Autocorrelations size used to calculate the average sidelobe value. The
SNR is not calculated since no noise is present.

We formed the horizontal and vertical projection Next, we repeated the above tests using zero-mean
correlations and the 2-D correlation of various charac- images. The 2-D correlation pattern had nearly the
ters. Figure 3 shows the results for a binary (0,1) same peak height (it is reduced because the dc value
image of the letter C [Fig. 3(a)]. The 2-D correlation is does not contribute to the peak) and a slightly larger
shown in Fig. 3(b). The unnormalized autocorrelation PSR of 3.9. (This is expected since the average of
peak height is 43 (there are 43 nonzero pixels on this bipolar, positive and negative, sidelobes will be less
letter) and the measured PSR is 3.8. To verify our than before.) The vertical and horizontal bipolar pro-
results in Sec. II, we formed the vertical projection jection correlations are shown in Figs. 4. The integrat-
correlation (Fig. 3(c)] and the vertically integrated ed 2-D correlation results are the same as expected and
(Fig. 3(d)] 2-D correlation of Fig. 3(b). Both results are not shown. The projection correlation peak values
are nearly identical (with the difference being of the (186 and 164) were less, and the PSR values (12.9 and
order of 10-3%). The peak height (215) in the projec- 15.4) were larger than when binary images were used.
tion correlation is larger than the 2-D peak (43) since Again, with zero-mean data, projection correlations
sidelobes contribute to the peak when the 2-D pattern also gave better PSR. The shapes of the projection
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* correlations differ due to the different sidelobe pat- 300 a
terns integrated as explained earlier. 2 0.....178

For the 2-D bipolar correlation, the average value of 200 -..... 2C.
the entire image was subtracted from all image pixels
or equivalently the dc spatial frequency in the 2-D FT E -
is blocked. One can zero-mean the input or the refer- C .
ence or both and achieve the same results. The projec- 0 -

tions are formed from the zero-mean image described
above, and a bipolar correlation is performed to yield -5c 0. . . .. ...
the projection correlations shown. Noise variance is horizontal pixels vertical pixels
not affected by whether the data are of zero-mean or (b)

not. Zero-mean data will result in sharper autocorre- Fig. 4. Zero-mean projection correlations: (a) vertical projection
lation peaks (since the spectrum of the image is whit- correlation and (b) horizontal projection correlation.
ened by dc filtering). The major advantage of using
zero-mean data is that this enhances the differences
between characters and thus improves discrimination.
We briefly experimented with different bandpass fit-
ters and edge enhancement. This resulted in very
narrow correlation peaks but sidelobes with high vari-
ance and very sensitive to noise. Further work should
allow determination of the optimum cutoff frequency
to reduce cross-correlations and produce sharp peaks
with limited noise sensitivity.

As noted above, the ratio of the auto-to-cross-corre-
lation peaks will be larger, and hence discrimination 20C-

will be better with zero-mean data than with nonzero
mean images. However, one must not form the magni- joo-
tude or intensity of the output bipolar correlation, '
since we have found large negative correlation plane t
peaks with zero mean data (and these become positive 0 .
when the magnitude or intensity is formed). A bipolar 4 T F:
correlation is necessary for the integrated 2-D correla-,.,. " -

tion to equal the bipolar projection correlation. If the -100 -50 0,50,o

magnitude or intensity of the 2-D correlation is taken, vert;ca, pixejs
the integrated 2-D correlation does not equal the mag- (b) 0

nitude or intensity of the projection correlation. If we Fig. 5. Noisy projection and 2-D correlations: (a) noisy input;
could optically form a unipolar amplitude correlation (b) 2-D correlation input; and (c) horizontal projection correlation.
and then remove its mean, we would obtain the desired
bipolar correlation. However, this is not easily
achieved in 2-D. Conventional 2-D frequency plane
optical correlators can produce bipolar correlations, peak is 179.3, PSR = 11.5, and SNR = 26.2 (or 14.2dB).
but detection forms the intensity of the result. Bipo- These values are all acceptable, and the peak is easily
lar 2-D output correlations are not easily obtained detected. For comparison, we note that the peak
without heterodyne detection, and a significant in- (40.2) and PSR (3.9) of the 2-D correlation are less.
crease in the number of output detectors is required. Although the SNR is not as useful of a correlation
Conversely, AO systems can easily produce bipolar plane performance measure as is PSR or auto-to-cross-
correlations" and thus better results. Furthermore, correlation peak ratio, we note that SNR for the 2-D
the electrical bipolar optical correlation output can correlation is 100.8 (or =20 dB). The 1-D SNR of 14.2
easily be thresholded at zero volts, thus removing all dB is less than this by 5.8 dB, and this is less than the
negative values (sidelobes and noise) and yielding a N112 _ 8 (or 9-dB) worst-case loss predicted in Sec.
preferred output. II.C. We used N - 64 in this calculation, since the 64

Our final autocorrelation test included noise with lines of the correlation plane are integrated here.
standard deviation a = 0.35 present and with the full Since the projection correlation peak increases by a
image plus noise made to be zero mean. (This is what factor of -- 4 (from me40 to "-180 for projections), we
an optical system does.) Figure 5(a) shows the magni- would expect the SNR loss using projections to be no
tude of the noisy input letter C used. The bipolar more than 8/4 = 2 (or 3 dB). When results for more
noise results in the dropout of some pixels on the letter than one noise realization are averaged, the measured
and the addition of noise in the background. Figure SNR difference is expected to approach this 3-dB fac-
5(b) shows the magnitude of the 2-D bipolar output tor. We include these SNR comparisons only to note
correlation, and Fig. 5(c) shows the horizontal projec- that the measured data do yield a lower SNR loss than
tion correlation. For the horizontal projection, the the worst-case theory in Sec. II.C.
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C. Cross-Correlations and Multiple Projections
From See. III.B, we showed that autocorrelation

peaks using projection correlations are easily located
(good PSR) and easily detected (good SNR). In pat-
tern recognition, cross-correlations are also of concern.
Specifically, with multiple filters, the autocorrelation
peak for the true input must be larger than the correla-
tion output anywhere in the cross-correlation plane
with a different input. We thus tested projection W
cross-correlations and compared their performance
with 2-D cross-correlations. We chose C as our refer- 1.0
ence object and considered its cross-correlation with P. t. . o.82-'
We normalized the energy of all letters to 1 and nor- _0
malized the filter energy to 1 also. All data were of 0 .0
zero-mean. c 0.5 . auto 0.s. auto- orrl 

-
Carrel

Figure 6(a) shows the 32 X 32 input data used. With 5 . . o.
a filter of C used, the correlation output has autocorre- carre.lation and cross-correlation peaks. Figures 6(b) and f Fro coo I

(c) show the horizontal and 450 projection autocorrela- L o- a
tion and cross-correlation outputs. The horizontal
projection correlations gave a normalized autocorrela- (b) (c
tion peak height of 1.0 and a large cross-correlation Fig. 6. Projection cross-correlation results: (a) input data;
peak height of 0.95. Vertical correlation projections (b) horizontal projection correlations with a filter of C; and (c) 45"

(not shown) gave autocorrelation and cross-correlation diagonal projection correlations with a filter of C.

peak heights of 1.0 and 0.92, which are still very close.
The 450 projection correlation [Fig. 6(c)] shows better
discrimination with autocorrelation and cross-correla-
tion peak heights of 1.0 and 0.82. This difference is
sufficient to allow discrimination. Thus, by using sev-
eral projections (besides just horizontal and vertical
ones), we can achieve acceptable projection correlation
results. This is reasonable, since the projections of
two characters should be more distinguishable at some (*)
projection angles than at others. In our tests, we used
only horizontal, vertical, and 45* (diagonal) projec- 0 06
tions. When compared with 2-D correlations with a V 0.57

normalized autocorrelation peak of 1, the cross-corre- o, 0.39 ---- . 0.'-
lation peak was 0.55. Thus 2-D correlation provides E 2 s. E , ,.
more discrimination, but the use of only two or three 0 -o '.., 0.2 - ,,. ...
projection correlations yields sufficient discrimination 5 0 . ..

with a significantly simplified processor. We expect 0 .0I .

projection correlations to yield large cross-correlations 0.2

since they contain only 10 pixels. With more pixels on ".- j - J
the character, much better discrimination is expected. -),
Our present concern is to demonstrate the concept and Fig. 7. Noisy projection cross-correlation results: (a) noisy input
potential for projection correlations, and thus higher data; (b) horizontal projection correlation with a filter of C; and
resolution inputs and preferable smart filters were not (c) 45" diagonal projection correlation with a filter of C.
used.

As our next test, we used zero-mean input signal-
plus-noise test characters with noise with a - 0.45.
The inputs are shown in Fig. 7(a). The horizontal and projection correlations are used on data with noise
diagonal projection correlation results are shown in present.
Figs. 7(b) and (c). The ratio of the autocorrelation to We formed a bank of 26 sets of three l-D projection
cross-correlation peak values was 0.52/0.39 - 1.33 for filters (horizontal, vertical, and diagonal projections)
the horizontal projection correlations and 0.57/0.38 = for each of the characters and tested all 26 zero-mean
1.5 for the 45* diagonal projection correlations. These input characters with noise added against all 26 filter
ratios are larger with noise due to the integrating ef- sets. Although the use of diagonal projection filters
fect of the noise. The projection autocorrelation to improved the difference between true and false peaks,
cross-correlation peak ratio of 1.5 is comparable with perfect recognition resulted using only the horizontal
the ratio of 1.8 obtained from 2-D correlations with and vertical projection correlations. For each filter
noise present. Thus no significant loss results when pair, the largest pair of correlation peaks was measured
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and the peak values were summed. The filter set P, P2 P
(from all 26) with the largest output peak sum was A ELcr
chosen as the class of the input test object. The sys- r N
tern gave perfect 100% correct classification perfor- H
mance for all 26 characters for noise with a = 0.44. In fc0 2

general, the vertical projection correlations had more ICO1
discrimination than the horizontal projection correla- inu . mutipl 1-D filers I -D detecor array
tions. At a = 0.45, two errors resulted, and for in- ee1e N
creased noise the errors rapidly increased. We note Fig. 8. Multichannel AO space-integrating projection correlator.
that a = 0.44 is a quite significant noise level.

IV. Optical Realization
Our projection correlation algorithm requires only

1-D correlations. Thus it is easily implemented using
AO devices. Figure 8 shows a multichannel AO space AOcell
integrating correlator. The test input is fed to an AO tiller 1 0 3
cell at P, which is imaged horizontally and expanded I
vertically at P2 where N I-D reference patterns are
stored. The outputs on N detectors at P3 as a function tiller N 3
of time are the N 1-D correlations of the P, input and mpi 2-D

the N references. The filter bank at P2 can be fixed. poti ctor

One can also frequency-multiplex several 1-D filters at Fig. 9. Multichannel AO time-integrating Projection correlaton

each location in P2 and input several 1-D signals at P,
(several projections, each on a different carrier fre-
quency). As proved elsewhere," only the correlations
of input and reference signals on the same frequency
carriers will land on the detectors. In our case, this
frequency selectivity allows us to form N sets of multi-
pie correlations and to sum the results from each set of
correlations. This is the discrimination method we
used in our tests in Sec. III.

Should one desire adaptive filters, the fixed film
mask at P2 can be replaced by a multichannel AO cell.
However, a more cost-effective adaptive filter archi-
tecture is the multichannel time-integrating correlator Fig. 10. Useof multiple projections toidentify multiple objects and
of Fig. 9. In this system, each point modulator at P, resohve ambiguities when two objects have the same horizontal and
uniformly illuminates a single-channel AO cell at P2 at vertical coordinates.
different angles. P 2 is imaged horizontally onto P.1,
and P is imaged vertically onto P3 . The 2-D detector
array at P3 time integrates, and its N 1-D outputs are
the N correlations of the input test projection fed to P2  rectify the negative portion of the correlation output,
and the N 1-D reference filter functions fed to the N form only the positive portion of the bipolar correla-
point modulators at Pi. tion, and obtain improved results.

Although we were able to discriminate 26 classes of
V. Dis on object, the cross-correlation values were quite close to

We have advanced a simplified 2-D pattern recogni- the autocorrelation peak values. The use of various
tion algorithm that requires only several I-D projec- smart filters to increase the separation between classes
tion correlations. Simulations have shown that pro- would be recommended in practice when operating on
jection correlations provide sufficient SNR and PSR projection images.
to allow recognition and discrimination. We quanti- When multiple objects are present in the input, mul-
fled the performance for a 26-class character recogni- tiple correlation peaks occur. In this case, more than
tion problem and showed that perfect recognition and two projections are required. In general, we require N
discrimination was possible with a large input noise - 1 projections for N objects. The number of objects
standard deviation of 0.44. The realization of such can be estimated from the energy in the correlation
processors on multichannel AO correlators was de- plane. Figure 10 shows the use of three projection
scribed. Frequency multiplexing was noted to en- correlations to locate uniquely four objects.

hance the capability of such systems and to allow sum- In conclusion, the possibilities for projection corre-
mation of the outputs from multiple filters in one set lations appear to be quite significant and promising.
onto a single detector. Such AO correlators can also The support of this research by Teledyne Brown
achieve bipolar correlations. This is essential for pro-
jection correlations to perform well. As noted, one can Engineering is gratefully acknowledged.
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Patent continued from page 47.Y4 4,756,601 12 July 1988 (Cl. 350-130)
Three-dimensional image-viewing apparatus.

4.755,022 5 July 1988 (Cl. 350-96.33) W. SCHRODER. Assigned to Jos. Schneider Optische Werke
Zero dispersion single mode optical fiber with center core and Kreuznach GmbH & Co. KG. Filed 15 Nov. 1985 (in F. I. Germany
side core in the 1.5 1m wavelength region. 15 Nov. 1984).

An apparatus is described for centrally projecting the image of an objectM. OHASHI, N. KUWAKI, S. SEIKAI, N. UESUGI, and C. TA- formed from two images in different lines of vision. The system consists of
NAKA. Assigned to Nippon Telegraph and Telephone Corp. two field lenses located at luminous objects, such as CRTs. two objective
Filed 29 Aug. 1986 (in Japan 2 Sept. 1985). lenses, and mirrors for folding the ray paths located between the images and

Various index profiles are shown that minimize dispersion and bending the positive optical system located in front of the eyes of the viewer. Theeffects for single-mode fibers. G.LM. stereoscopic viewing apparatus allows a relatively large viewing distance andunusually large exit pupils. S.K.T.

_,7 , .............

4,756,604 12 July 1988 (Cl. 350-331 R)
, Liquid crystal device using a Fresnel collimating lens for in-

n3 proving uniformity of display contrast ratio.
F71 = __H.NAKATSUKAandM.KANAZAKI. Assigned to Hitachi, Ltd.7> \.\\~~zFiled 2 July 1987 (in Japan 4July 1987).

0' " , 12 The typical liquid crystal device's variation of optical transmission with
,2 changing incident angle causes nonuniformity in the projected image when

such a device is used for image generation, e.g., on an overhead projector. The
L o0 present invention corrects this by collimating the illumination with Fresnel

lenses. M.H.

RAOIUS 4,758,058 19 July 1988 (Cl. 350-3.71)
Holographic disk scanner having special position-indicating
holograms.
R. T. CATO, L. D. DICKSON, and R. S. FORTENBERRY.
Assigned to International Business Machines Corp. Filed 12 Jan.
1987.

4,755.038 5 July 1988 (Cl. 350-347 V) This patent describes a holographic scanner for point of sale applications.
Liquid crystal switching device using the Brewster angle. The scanner is a rotating glass disk carrying holograms for generating man
A. P. BAKER. Assigned to ITT Defense Communications. Filed scanned lines. The improvement in this patent is the addition of a amarI30 Set1hologram in between the scanning hologram to generate position-indication
30 Sept. 1986. signals. W.-H.L

This two-input, two-output device completely switches collimated. unpo-
larized input light by separating it into two orthogonally polarized beams
whose polarization is then either rotated by 901 or left unchanged by the action
of an (unspecified) liquid crystal cell. This device is identical to the unpatent. 36A
ed switch of R. E. Wagner and J. Cheng JAppl. Opt. 19, 2921 (1980)1 . except 3"
that the polarizing beam splitters are specified to be "Brewster angle polar-
izers." and are arranged in an especially compact manner. M.H.

10 40

4756,589 12 July 1988 (Cl. 350-96.15)3
Optical coupler utilizing low or zero birefringence optical
fibers and a method of making same. 38C
T. BRICHENO and V. BAKER. Assigned to STC plc. Filed 15
Jan. 1986 (in United Kingdom 12 Feb. 1985).

A coupler is made by a normal twisting and fusing process. Individual legs
are pulled to control polarization through the coupler. G.L.M.

4984 APPLIED OPTICS / Vol. 27, No. 23 I 1 December 1988



CMU/ONR Annual Report

CHAPTER 3

"Optical Track Initiator for Multitarget Tracking"



4,

Optical track initiator for multitarget tracking

David P. Casasent and James Slaski

An optical processor for multitarget track initiation is presented. It uses the Hough transform to detect -

target tracks in a fixed time independent of the number of tracks present. In new results, we describe how the

system produces target position and velocity estimates in linear time (with the number of targets). Tests of
the system are presented for multiple targets with various velocities and target detection probabilities. A new

thresholded Hough transform algorithm to reduce the effects of noise and false tracks in single data frames is

introduced and tested. The optical implementation of these Hough transform track initiation algorithms is

discussed.

I. Itroduction we present a track initiation system that makes use of
Multitarget tracking algorithms have been under optical processing to perform track initiation on a large

study and in use for a number of years for a number of number of targets in linear time. The system makes
applications, such as civilian air traffic control and use of the Hough transform to detect target trajector-
military air defense systems. More recently, emphasis ies (in a time independent of the number of targets)
has been placed on the application of multitarget along with the use of a small amount of postprocessing
tracking procedures to situations involving large num- (that is linear in the number of targets) to determine
ber of targets, such as the tracking intercontinental the target's position and velocity.
ballistic missiles. There are a number of factors which We consider the normal parametrization5 of the
make this tracking task more difficult than those that Hough transform (p,G) space where p is the normal
have traditionally been addressed. The first difficulty distance of the line from the origin and 0 is the angle
is the large number of targets which must be tracked at the normal makes with the x axis. Extensions of the
one time, approximately 3000 separate targets.' This Hough transform to other shapes besides lines have
presents a difficulty since the computational load on been discussed using generazed Hough transforms"

the tracking algorithms increases rapidly with the and processing in the Hough transform space followed
number of targets tracked, and most present systems by an inverse Hough transform.6 We consider a por-
handle a much smaller number of targets, such as the tion of the target's flight over which the trajectory is --

U.S. Navy's Aegis ship-defense system which is de- nearly a straight line. Thus a straight line Hough
signed to handle 200 targets. transform is sufficient. There has been some work 6,7.9

There is a class of tracking algorithm, such as the on the application of the Hough transform to detecting
JPDA tracker,2-4 whose computational load does not moving target tracks. This work requires one object
increase rapidly with increasing numbers of targets per region 9 or a high dimensional Hough space and an
but which unfortunately suffers from the inability to extensive search,7 and none of it considers many tracks
initiate tracks on new targets by itself. For this rea- or does it provide position and velocity information.6

son, a separate track initiator is required, but most In Sec. II, we discuss the use of the Hough transform
track initiators are based on standard tracking tech- to detect target tracks in images, and we detail the
niques which are slowed down by large computational Hough space parameters used. In Sec. III we show
loads when presented with many targets. In this work, how to obtain target position and velocity estimates.

Simulations of the performance of this track initiation
system are then presented in Sec. IV. In Sec. V, we
present a thresholded Hough transform which can be
used to reduce noise in tracking applications of the

The authors are with Carnegie Mellon University, Center for Hough transform. In Sec. VI, we develop (and verify

Excellence in Optical Data Processing, Department of Electrical & through simulations) equations for estimating the co-

Computer Engineering, Pittsburgh, Pennsylvania 15213. variance of the position and velocity measurements.
Received 28 December 1987. In Sec. VII, we present an optical architecture for
0003-6935/88/214546-0&02.00/0. performing the Hough transform and the correlations
0 1988 Optical Society of America. required by the track initiator.
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1I. Hough Transform \ ~~.'*
As a first step in track initiation, the Hough trans- o.\

form is used to locate lines in a composite image con-
taining the superposition of candidate target detec- \" ..

tions in a series of frames. The targets we will Ib)

consider, boost phase ballistic missiles, have curved 0"Z0000010010 100106,.1
trajectories which can be approximated as straight
lines over reasonable time intervals. The straightline 1 o 0 0 , 0 , 1 1 o,..2

Hough transform produces a mapping of lines in the . , ,
input image to points in a Hough parameter space. (9)

The Hough coordinates (p,O) of peaks in this parameter Fty
space give the (p,8) parameters of all lines in the input Fig. 1. Projection of track lines for velocity and position estima.
image, while the intensity of the Hough peaks indi- tion.
cates the number of input points on each line.

peak they produce will be sharper. We chose TT so
A. Hough Transform Definition that the highest velocity targets cover half of the input

The Hough transform is produced by mapping each image. This allows the Hough transform to detect
input point (x,y) into the Hough space (p,O) according targets easily while insuring that they stay within the
to field of view long enough to be detected. The images

p = x cosO + y sinfl. (1) used in simulations were 256 X 256 pixels in size with
image frames at sample times of T = 0.25 s. The

This mapping produces a sinusoid. All sinusoids for composite frame we consider covers a period of TT =
points on a line accumulate at the same point in the 5.25 s and produces 21 points/track.
Hough space. The HT can also be defined 0 as the We now consider selection of the Ap and AO used in
integral the Hough space resolution so that the HT peaks are

o 1not spread. Since the actual target tracks are curves,
H(p,#) =-j f(r)5(p - r. fd 2r, (2) we select Ap so that it exceeds the size of the linearity

error for the line. The linearity error is the perpendic-
where r is a vector to the (x,y) point in the image being ular distance of target measurements from the straight
transformed and fA is a unit vector making an angle 0 line through the endpoints of a set of trajectory points
with the x axis. The p projection lies along hz. Each 0 over Tr. This Ap value is obtained off-line from sam-
slice of the Hough transform is a projection of the input pie data from representative trajectories from given
image to a 1-D function in p. This is seen by writing sensor platforms. This technique places no con-
Eq. (2) as straints on AO, while other methods do." Based on the

linearity error in the trajectory, a Ap value of 2 was
H(P,8) = j f(xy)dy'. (3) chosen and AO was set to 10. The full range of p,

±1282 or ±180 (length of the diagonal), dictates the
where p = x cosO + y sinO and y' - -x sinO + y cosO. use of 180 Hough transform samples in p. Since we are
The HT at a single 0 value is thus simply the integral of sampling the Hough transform over ±p we need to
the input image along the direction y' given by the sample 0 over only 0-180* due to the dual line descrip-
value of 0. The fact that the Hough transform is tions possible with the normal parametrization. If
composed of a number of projections of the input im- only positive values of p were considered, it would be
age at different angles 0 is central to most optical HT necessary to sample 0 over 0-360".
implementations. III. Target Position and Velocity Estimation
B. HIT Parameter Selection We now consider the use of HT data to determine

We now consider the total time Trover which we will both the position and velocity of the target. This
collect measurements for our composite image. This information is needed to better initialize a tracking
relates to the number of points on a line or the length of filter. Consider one detected target track. We over-
a line. It is best to choose TT SO that the target tracks lay the line and the original data. We expect the target
will cover a large portion of the input image frame, points to lie within Ap of this line as shown in Fig. 1(a).
since the Hough transform performs best when this is In terms of the coordinate system (x',y') with x' aligned
true. This occurs because, if the line is short, the with the line detected by the Hough transform, we
points on the line will produce sinusoids as in Eq. (1) in write
the Hough plane, which are almost exactly the same,
and the peak that is produced will be spread out over a X ff + Sim + y . (4)
considerable length of the sinusoid. This produces a Y = -X co9 + sinu -
shape in the Hough transform which is a plateau rather This strip of the composite target image along the x'
than a peak, thus making detection difficult. If the axis with extent ±Ap in y' is shown in Fig. 1(b). We
target track is longer, the sinusoids for each of its integrate this strip in the y' direction and store this
points are more different and the Hough transform integral or projection in a 1-D memory array. The
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first line in Fig. 1 (c) shows the target samples obtained To test this algorithm we produced a set of fifty missile w
(1 and 0 indicate measurements and no measure- launches with different trajectories and launch posi-
ments) for the line with Ax' = 1 resolution. From this tions. Only six missile trajectories are present in the
array we can determine the target's position and its 256- X 256-pixel image frame we used. Twenty-one
average velocity as we now detail with reference to Fig. frames of data (0.25 s between frames) were produced
1(c). to constitute 5.25-s trajectories. Each image frame

For simplicity, we assume a constant target velocity, included a Gaussian-distributed motion jitter with a
The effect of this assumption when the targets con- standard deviation of a = 0.5 pixels. This varied the
stantly accelerate is quantified in Sec. IV. To esti- location of each of the six single pixel binary target
mate the target's position and velocity, we vary the points in each frame. Five noise pixels were added,
resolution Ax' along x' as shown in Fig. 1 (c). With our uniformly distributed within each frame. Thus each
constant velocity assumption and with no missing tar- frame is a binary image with 6 single pixel targets and 5
get detections and no noise, the final projection in Fig. noise pixels. We produced the composite of twenty-
1(c) (for the proper resolution Ax') would result in a one frames and form the Hough transform of this
sequence of ones for a target track. In practice, this image, detect lines in it, and obtain the position and
does not occur, and thus the algorithm we use involves velocity of each target by the method presented in Sec. 4
increasing Ax' until we have a sequence of adjacent III. In our data results (Figs. 2 and 3), squares denote t
projection samples P that are nonzero. The second true targets and X denotes a false target measurement.
line in Fig. 1(c) shows the P, samples obtained for Ax' = In all composite frame displays, such as Figs. 2 and 3,
2 (by simply adding each pair of sample in the Ax' = 1 only every fourth frame is included to make the com-
projection). We continue to increase Ax' until the sum posite shown clearer (although all frames are included
of adjacent nonzero P) values is 75% of the number of in processing). In the field of view for the case in Fig.

ones in the original (Ax' = 1) projection. For the 2, five of the target trajectories are nearly parallel and
example in Fig. 1, the Ax' = 1 projection has five ones the sixth one is more vertical with more closely spaced
and at Ax' = 4 we have three adjacent P, that are target samples (corresponding to a more recently
nonzero and whose sum is 4 (80% of 5). This sum is launched missile). The dashed lines in Figs. 2 and 3
obtained by correlating the P sequence with a pulse of denote target tracks selected. The tip of the arrow
width L (the track length, three here, at the given Ax' denotes the target's estimated position 2 s (8 frames)
resolution). This correlation is performed for differ- later. The target's actual position 2 s later is plotted as
ent L choices. To insure that a contiguous positive Pj a blackened square for comparison. As seen, all target
is found, P = 0 values are set to -10 when doing the tracks were found with no false tracks, and the esti-
correlation. We denote the correlation peak value by! mated position and velocity for each target are close to
(it is the number of detected targets in a range L), and the actual position and velocity. In all cases, we find
I/L is the target density (number of targets in a resolu- that the estimate of the future target position is less
tion cell Ax'). than the actual position. This occurs because the

We denote the location of the correlation peak by j targets are constantly accelerating and our estimate
(the index of the present Pj sample sequence). The assumes a constant velocity. An analysis of the accu-
reference pulse we correlate with has its index j chosen racy of the track estimates is presented in Sec. VI.
so that ] + 1 denotes its leading edge. Thus jAx' is an Figure 3 shows the same results, with the probability
estimate of the target's position. To better estimate of target detection reduced from unity to PD = 0.9.
where the target is within the last Ax', we use the target This was accomplished by using the value of a random
density 11L and the P, value for the most recent target number between 0 and 1 generated for each target
sample, and as our position estimate we use point to determine if that target point was included.

x'= Ax'l + (PJ - 0.5)L/I], (5) If the random number was above 0.9, the target point
was omitted. From the results in Fig. 3, we see that thewhere Pj(I/L) denotes the edge of the region where the estimated velocity is higher than before. This is be-

target lies and (P, - 0.5)/(I/L) denotes its center. cause the missing target points (caused by reducing
The velocity of the target is determined from the PD) make it appear that the target is moving faster

average target density I/L. This denotes how many than it actually is (since the detected track length is the
frames it takes the target to travel a distance Ax' (on same and less target measurements are detected).
the average). For example, if I/L = 5 and Ax' = 2, the Three missing data points (frames 4, 16, and 20) are
target travels two pixels in five frames and Ax'L/I = 0.4 present in the track in the top center of the figure.
pixels/frame. Dividing by T, we obtain the target's Point 0 is missing from the track left of center. The
velocity in pixels per second. Thus our velocity esti- other missing points are not apparent since they are
mate is 1 pixe present in the frames of data not plotted (target points

I, = AX, I T sorond (6) for only six of the twenty-one frames are plotted). If
an estimate of the probability of detection is available,

IV. Target Trajectory Tests for Target Position and we can compensate for Pn < I by modifying the veloci-
Velocity Estimates ty estimate to be

We now quantify the use of the HT track initiator for - = A (7)
target detection and position and velocity estimation. -= IT
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AzLmuth (PL4eLs) Fig. 4. Continuous track initiation results over 120 s in 5-s seg-
Fig. 2. Hough transform track initiation results for twenty-one ments with 5 noise pixels/frame and target detection probabiity
data frames at 0.25 s/frame with 5 noise pixels/frame and target Pp= 1.0.

detection probability PI = 1.0.

number of targets. In Fig. 4, we show the results of
applying the track initiator to 120 s of target data.

, __ _ _ _ _ _ _The dotted lines show the actual target trajectories

with the dark points denoting the target locations at 1-
8s intervals. The spacing between dark spots indicates

x 0 the velocity and aspect of the trajectory. The frame
16/ 0 rate is T = 0.25 s, and 5 noise pixels (which are not

e X4 4  X shown) were added to each frame. The Hough trans-
form track initiation was applied to the input for a 5-sd/ o interval and then repeated for subsequent 5-s intervals

, . (a total of 120/5 = 24 times). The detected targets are
L.,- shown by the arrows in the figure. The target's veloci-

0  2 0 ty and time of launch determine the number of 5-s
.J x "intervals (and hence the number of arrows expected on

> 20 x each target trajectory). We ideally expect an arrow for
,each five dark spots per trajectory. As seen, all fifteen

, eartch fdarksotserd traetory. Asseen, al ffte
• stargets which traversed the image were detected by the

track initiator at least once. Out of forty-nine total
0 P G possible detections (one for each 5 s), only four were

. .. missed and each track has at least one detection.

" x V. Thresholed Hough Transform

The data in Figs. 2-4 merit further discussion.

-150 -125 o 0 -75 -50 - 2 0 7S 100 125 1 Since we base track initiation and confirmation on the

AzLmuLh (PL xeLs) presence of a number of candidate target hits in a line,

Fig. 3. Hough transform track initiation results for twenty-one the algorithm is not significantly affected by several

data frames at 0.25 s/frame with 5 noise pixels/frame and target random observations close to the actual observations.
detection probability Pp = 0.9. Similarly, when the tracks from two targets cross, our

algorithm extracts two straight lines and is not affect-
ed by crossing targets. This occurs since it is a track

The track initiator requires a fixed amount of time initiator and not a tracker, with its outputs (target
to form the Hough transform and detect the target state estimates) fed to a multitarget tracker (see Sec. I
tracks. Thus target detection is independent of the references). When two target tracks are very closely
number of targets. The total time required to obtain spaced, this track initiator will assume one target (and
the position and velocity estimates is linear in the pass this information onto the tracker), and when the
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target is separate, it will notice the presence of two ta

tracks (and pass the new track information to the . -

tracker). Figures 2-4 (especially Fig. 4) show exam- - X KK K

ples of these cases. We now consider the effect of very - / , K

X Khigh noise levels and a modified Hough transform to 2"

improve results in this case. 1Z X K K

The Hough transform for a composite image can , K K K11 K X
yield false detections of target tracks in one frame. . K K

Such false tracks can be due to cloud edges, targets in X X X .X
one frame that fall in a line, etc. Keeping a time tag on

the frame number of each data would reduce this effect g ° K(at a considerable increase in bookkeeping). To X 7"

achieve this at a reduced computational load, we form 0 K K K .KK

the Hough transform for each image frame of potential '-' I X* K ,- X
targets. We threshold this Hough transform frame XKK
and add such successive frames. A threshold of the K K K K .. X K

Hough transform for each data frame reduces false X X

target response without increasing the processing load. K X .
This technique reduces (and effectively removes) the
contribution of straight line tracks in one frame to only 7
one unit of weight in the final Hough transform space. -1 -125 -100 -75 -50 -25 0 25 50 75 100 M 150

The Hough transform thresholding can be performed Azumuth (P.KeLs)

by various optical light modulators. Fig. 5. Hough transform track initiation results for twenty-one

We demonstrate the results of this technique in Figs. data frames at 0.25 s/frame with 20 noise pixels/frame and target

5 and 6. In Fig. 5, we show the output from the Hough detection probability Pp 1.0.

transform of a composite set of twenty-one image
frames with five targets per frame and twenty noise _ ___ ___ __"

points distributed uniformly in each frame. We see K

that all five true target tracks (shown by the solid lines) 2 K K

were detected, but that nine lines (target tracks) due to | K K K

noise were also detected (shown by the dashed lines). K K

Our projection analysis algorithm (Sec. I) to estimate K K X K ,

false tracks. The largest Ax' resolution value used was it K ,.16 pixels. [This was set by the highest velocity (7.5- X X .
pixel/frame) target expected and corresponds to target X Ko

points that are the farthest apart.] With this Ax' limit ,K ) 5
and the requirement that the projection correlation 0 > K K K K

peak value I exceed 75% of the number of ones in the K X7 K a

initial Ax' = 1 projection sequence, seven of these nine K )k K , X .
false tracks were rejected and only two were treated as o K _. X K K

confirmed 
target 

tracks. 
These 

two occur 
on the right 

K 

K 

K1

center edge of the figure and are denoted by arrows on 7 X

the ends of the dashed lines. In Fig. 6, we show results IQ. X .K X

for the same data when the threshold Hough transform
was used. In this case, the number of detected false . - 25 so 7' ,®0 125 ,SO
target tracks was reduced from nine to four and the Azlmuth (Pxels)
number of false target tracks confirmed was reduced to Fig. 6. Thresholded Hough transform track initiation results for
one. This represents a reduction in false detections of twenty-one data frames at 0.25 s/frame with 20 noise pixels/frame an
50%. target detection probability Pn - 1.0.

VI. Track Accuracy actual covariance; i.e., we assume a larger error than
To use these track state estimates as input to a actual.

tracking filter, we require an estimate of the state We first consider error effects on the target's x'
covariance. In this section, we approximate the co- position. To obtain x', the track initiator performs a
variance based on the major error sources due to the correlation on the target track projection and fixes the
Hough transform resolution Ap, quantization errors location of the target peak as described in Sec. Ill.
due to the Ax' projection resolution, missing measure- This value includes an estimate (using the target's
ments, and platform jitter. In each case, we give the average speed) of how far into the next projection
major error sources affecting each estimate and a co- sample the target has moved. This gives us the tar-
variance estimate that will be close to or larger than the get's position to within a distance v,.T (the amount the
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target would move over the sample time T). Any the velocity error is uniformly distributed between
angular error between the track and projection does plus and minus this maximum velocity, we obtain a
not enter into the x' error, since we are measuring x' variance
.directly. These errors do affect the y' measurement.
Our formula assigns the target's position to the center (13)
of the window shown. The standard deviation associ- 37--;

ated with this x' position estimate is plus or minus half Since these variance estimates are only approxima-
of the distance v,,T, is distributed uniformly, and con- tions, we checked how closely they represent the actual
tributes a variance equal to the square of the error variances. We did this by running fifty simulations
divided by 3. There is also an error term a2 due to and calculating an experimental covariance based on
sensor jitter giving a total variance of the postion and velocity errors for each run of the

V 8 simulation. Specifically, we simulate fifty targets
4(3) . with initial positions uniformly distributed in x and y

within the lower left quadrant of the image and moving
Missing measurements are included in PD * 1, and PD in a straight line at angles evenly distributed between 0
effects are included in the v, estimate in Eq. (8) as in = 90 and 1800 with a specified constant velocity. We
Eq. (7). We do not include the statistics for this here. performed a Hough transform on each of the fifty

The error in the y' measurements is easy to bound, target tracks, obtained the line parameters from each
since we assume that the target must fall into the strip Hough transform, and then obtained the target posi-
of width ±Ap. The y' position becomes offset when tion and velocity from the projection of each Hough
the Hough parameter 0 does not match the actual track transform line. The position and velocity values ob-
angle. However, we only need to know the projection tained were compared with the actual values, and an
width in y' to estimate the y' error. With a uniform average error and squared error were calculated over
distribution, the y' estimate has a variance all the simulation runs for different velocity and posi-

A2 .tion variables. These were then used to calculate the
3 (9) covariances. The Hough transform was produced

over T7. = 5 s at four sampling rates (T = 0.25,0.1,0.05,
We now consider error source effects on velocity and 0.025 s). This was a total of Np = 20,50, 100, and

estimates. The velocity of the target is determined by 200 Hough transform times samples for each of the
dividing the length L of the detected target track by fifty cases.
the number of target points Np that fall in this track. In Figs. 7-10, we compare the experimental stan-
Due to the quantization of the projection, the track dard deviation results to the expected values calculat-
length could be in error by ±v,.T, the distance the ed from our equations. We see that in all but one case
target could travel in one sampling interval. Assum- the standard deviations are within the expected val-
ing that this error is uniformly distributed, the esti- ues. The O, position error in Fig. 9 for V, = 5 pixels/s is
mated track length Ax'L in Eq. (6) becomes Ax'L ± above the expected value for T = 0.025 and 0.05 s and is
v,,T + ej, where ej is the position error due to sensor the only nonconsistent result. These results are useful
jitter. This gives an x' velocity estimate in estimating the worst-case errors expected in the

Ax'Lv, T + e1 I track initiator. For example, from the expected errors
S. .N T" (10) for the highest target velocity (Vma. = 30 pixels/s), aframe time of T = 0.25 s, and a total time of TT = 5 s for

We assume a point target for each sample. This gives Np = 20 frames, we obtain a combined x' and y' posi-
a velocity error of tion error of 2.5 pixels and a maximum velocity error of

e,, T I e, , )1 I pixel/s.tT1+ + 011)
N N T Np NPT VII. Optical Implementation

The variance of this error is Now that we have shown the feasibility of using the
2 ' Hough transform to perform track initiation, we dis-

+ -T-• (12) cuss an optical architecture to produce the Hough2 Ntransform and form the track projections shown in Fig.

Next, we consider the target's velocity v,1 perpendic- 1 and the correlations required on the projection data
ular to the track. This is taken to be zero, since it is for target position and velocity estimates. This sys-
assumed that the Hough transform line (which is the tem uses the rotating prism Hough transform architec-
basis for the x' axis) is exactly aligned with the target's ture.'.1 2 In this system at the top of Fig. 11, light is
motion. Since any error in the Hough transform in- projected through a spatial light modulator (SLM) at
validates this assumption, we need to know what the P1, on which the composite track image is written.
possible v,. error is. We first find the maximum y' The image is then passed through a Dove prism (which
velocity that the target can have and still remain in the rotates the input image) and imaged onto a second
image strip of width 2Ap for the entire time TT used to SLM at P2. We ignore this SLM at P2 for now and
form the composite image. The maximum y' velocity assume that an image of P1 is incident on the spheri-
is this width divided by the time TT. Assuming that cal/cylindrical lens set L2, which form images in the x
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.

D-0 D.--. ized on the space integrating AO correlator in the
D.- .bottom of Fig. 11. This system correlates the projec-

tion data in an AO cell at P5 with image plane masks
- - -------- M3 at P6 (which contain 1-D reference pulses of differ-

. ent lengths L) on a linear detector array at. P7. The
detector with a peak denotes the pulse width. The

L ~ -- C. ,,2'.-I .I. ...... .-.. . time of occurrence of the peak denotes the location of
zf t. " the center of the set of target pulses. With proper

modulation of the input data, the bipolar correlation
required can be obtained. Simple postprocessing
yields the target position and velocity information.

Vill. Conclusion
We have presented an optical track initiation system

for multitargets based on the Hough transform. This
- ' - ' -- system detects any number of targets in a fixed amount

* Am of time and provides target position and velocity in
linear time. Calculations of the accuracy of the track

W- -..?". initiation were given, and the performance and accura-
S L4 P7cy of the system were verified through simulation. An

,. .... optical implementation of this system was presented.
. * V-, A new thresholded Hough transform was also present-

ed which reduces the number of false target detections
Fig. 11. Optical Hough transform architecture for track initiation. i n ein noise.
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"A Fast JPDA Multitarget Tracking Algorithm"



Fast JPDA multitarget tracking algorithm

James L. Fisher and David P. Casasent

Multitarget tracking requires assigning probabilities that measurements are associated with particular
targets. A new and efficient algorithm to achieve this is detailed. Its implementation on an analog optical
processor using a new and cost-effective frequency-multiplexing technique is discussed.

I. Introduction scalar weighting coefficient Oj(k). We discuss the

The joint probabilistic data association (JPDA) first three steps (for background and to show the supe-
class of algorithms' provides excellent ability to main- riority of our new algorithm). The error covariance
tain track on multiple targets. Currently, they are not and state estimate updating are standard linear alge-
easily implemented in real time because of the large bra operations and are not detailed here. The major
number of matrices that are required and the resulting goal is to determine the Ojt(k).
high computational load (Sec. ID). We present a new A. Validation Matrix Formation
computationally efficient algorithm using predomi-
nantly analog vector inner product operations (Sec. The binary elements of the validation matrix' de-
III) and a new optical processor architecture for its note which measurement/target pairs are statistically
realization (Sec. IV). A summary of the notation used reasonable to consider as being true. Consider the
appears in the Appendix. example in Fig. 1 with T = 2 targets in track (denoted

by an X) and five measurements (denoted by a dot).
II. JPDA Class of Algorithms Each target has a validation gate associated with it

The JPDA algorithms have five basic steps: forma- (shown by an ellipse). These are obtained by standard
tion of the validation matrix (a record of coarse associ- procedures 2 using the error covariance matrix of the
ation information denoting, which subset of measure- state estimate and a predetermined acceptable proba-
ments could be associated with each target); bility of detection PD,, for each target t. If any of the
generation of feasible event matrices (with each matrix measurementsj lie within the validation gate (or confi-
representing a different combination of noncompeting dence ellipsoid) of any target, they are in the set of m
events, i.e., sets of single measurement/target pairs); validated measurements. For the example shown in
calculation of the probabilities Ojt (k) for each measure- Fig. 1, m = 3 measurements are validated for the T = 2
ment/target pair at time step k (the probability that targets.
measurement j = 1. .. ,m is associated with target t = The validation matrix for this simple example is 3 X
1,.. . ,T based on the probabilistic occurrence of all 3 for m = 3 validated measurements and T + I - 3
possible measurement/target pairings); updating the targets. (The target t = 0 is included to represent the
state estimate error covariance matrix; and updating source of a false measurement.) For each measure-
the state estimate vector for each target with all plausi- ment j lying within the validation gate of (the real)
ble measurements, each multiplied by the appropriate target t, we enter a 1 in the associated element of the

validation matrix. We also consider the probability
that each measurement is false, and. therefore, all mea-
surements are also associated with target t - 0. Thus
all entries in column t = 0 are l's. For example,

The authors are with Carnegie Mellon University. Department of consider row 1 in Fig. 1, for which measurement j I

Electrical & Computer Engineering, Center for Excellence in Opti- falls within the validation gate of target t - 1 only.

cal Data Processing. Pittsburgh, Pennsylvania 15213. Thus row 1 is 110 (since only the false measurement
Received 16 May 1987. target t - 0 and target t = 1 can be associated with
0003.6935/89/020371-06$02.00/0. measurement j = 1). Row 2 contains all l's since
C 1989 Optical Society of America. measurement j - 2 could be false and since it falls in
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A -,-..a.The purpose of the feasibility matrices is to provide
j. C . ., 1- a format in which we can examine every possible (sta-

/ \! tistically plausible) combination of measurements and
' targets, i.e., individual events. We denote a specific

7'1\ : event, i.e., one (j,t) pair by y,.,. For example, the event
that measurementj = 2 is associated with target t = 1 is
denoted as . For illustration, consider only mea-

MIEASUREMIENT VA, ICATION VAL OT )ON 1 X surements j = 1 and j = 2 in the example depicted in
Fig. 1. In one scenario, the events xl.o (i.e., measure-Fig. 1. Measurement validation example with five measurements ment j = 1 i. associated with t = 0) and x2.i occur

and two targets with their validation gates (shown to the left) and the mutanouly i a oter si o, z .and X2. oc-
corresponding validation matrix (shown to the right). simultaneously. In another scenario, X1 and X2.2 oc-

cur together. However, x(Ij and x2.1 cannot occur si-
multaneously (i.e., measurements j = I and j = 2
cannot both be assumed to have come from target t fI

01 0 [oo 10 0] [00 0 at the same time), and we call X I., and X2.l competing[1 1 1 [01
o 0 0 o 0events. A collection of noncompeting events Xjt

wherein each measurement is associated with a target
01 02  0 0 is called a feasible event Xi. (There is no correlation

between the index i and indices j and t.) Feasible
events are expressed as feasibility matrices 1,.

[01 01 [ 0 01 [0 1 01 [1 0 01 Each feasibility matrix S., is obtained from the vali-
0 1 [ 0 0 1 0 01 1 0 dation matrix by selecting only one I per row so that
0 0 0 1 0  

0 0 1 there is at most one 1 per column, except for column t =
0 56 07 08 0, which may have any number of I entries (i.e., any

Fig. 2. All possible feasibility matrices for the validation matrix of number of measurements may be false simultaneous-
Fig. 1. ly). Figure 2 shows all eight feasibility matrices 12i

(one for each x,) for the validation matrix in Fig. 1.
Case I (xi) corresponds to no targets detected. Case 5
(x5) corresponds to the case when target t = I produced

the intersection of the validation gates of both estab- measurement j = 1 (the first row of f1), target 2 pro-
lished targets. And finally, row 3 is 101 since measure- duced measurement 2 (row 2), and measurement 3 was
ment j = 3 could be false or it could have come from a false measurement (row 3), i.e., when individual
target t = 2, but it is statistically too far from target t = events x Ij, X2.2, and X3.0 occur simultaneously.
1 to be associated with target t = 1. The number of feasibility matrices for one valida-

B. Feasibility Matrices tion matrix depends on the structure of the validation
matrix. For the case of a validation matrix that is all

As an intermediate step in computing the ' 1(k) coef- 1's, we have derived an expression for the number officients, the conventional JPDA algorithm1 produces feasibility matrices to be formed:
and then interprets feasibility matrices. These matri-

ces exhaustively represent every possible combination ri (t - - i 1 + r -, m!
of feasible (noncompeting) events. Noncompeting 1 + k (M I k!(T - - T +k)
events are collections of events in which a measure-
ment is associated with only one target t and a target
can be responsible for at most only one measurementj Equation (1) holds for m ! T, for m < T, we inter-
(except for the target t = 0 case). In one feasibility change m and T. Table I lists Eq. (1) quantified for
matrix, all m measurements are associated with a tar- different numbers of measurements m and targets T.
get t 0,1,... .,T. As seen, the number of possible feasibility matrices

Tabe I. Nunibe of Pogaible Feasibillty MaIrkc4o for an en.Masurement T-Targot Valiclation
MatrIx Coaising of al Ones

Number I
of I

moa:ure-I Number of Targets (T)
eta 1 2 3 s 5 6 7 8 9 10

----------- I---------------- -------------------------------------------
1 2 3 4 Is a 7 B 9 10

2 3 7 13 21 31 43 57 73 91 II1
3 4 13 34 73 136 220 359 529 748 1021
4 6 21 73 209 501 104S 1961 3393 s509 6501
5 S 31 136 501 1546 4051 9276 19061 36046 63591
6 7 43 229 1045 4051 13327 37633 93289 207775 424051
7 57 359 1961 9276 37633 130922 394353 1047376 2S01801
8 73 529 3393 19061 93289 394353 1441729 4596s53 1297561
9 9 1 2 748 509 36046 207775 1047376 4596553 17572114 58941091
10 1 11 111 1021 S01 63591 4240S1 2501801 12975561 58941091 234662231
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a0 bO cO dO 0 fO of single-measurement/single-target pair probabilitiesal bi ci dl :1 fl
a2 b2 c2 d2 62 f2 PlXj.t. The vectors are stored in situ (i.e., we need to
a3 b3 c3 3 e3 f3 retain only the latest vector) in a vector of reasonable
&4 b4 C4 c14 e4 N length Fj'ma(im,-T+i) (7), especially when compared

Fig. 3. Modified validation matrix for the case of four measure- to the number of feasibility matrices in the conven-
ments and six targets. tional JPDA algorithm.

A. Modified Validation Mark
rapidly increases (235 million for m = T = 10). Each To record the coarse association measurement/tar-
feasibility matrix must then be interpreted (Sec. II.C)
requiring approximately m multiplications per feasi- mat ion we for m validatedbility matrix. This enormous computational load due matrix (MVM) with m + 1 rows (for the m validated
tobilit geatri This en er ptational lo due measurements plus the new j = 0 case) and T columnsto both generation and interpretation is the major (for the T established target tracks). We omit the t =
problem with this feasibility matrix approach to the 0 column of the conventional validation matrix and
calculation of the Oj31 (k). include the new j = 0 row in the MVM. (When we

C. Calculation of O3(k) in JPDA consider the conventional validation matrix and MVM
Each feasibility matrix 9, is interpreted to obtain in their entirety, the information is preserved.) Thus

the probability PIXA of the feasible event -xi. The our attention is shifted from false measurements to

probability PFXil is the product of the probabilities undetected targets, the latter being more desirable
prxj ofbithe cmpsi}the indivdual evets. e pb inits since we require the corresponding coefficient 00 ,t(k) asP{x×j of the composite individual events. The indi- defieinE.2)ThaalgntesnteMV ae

vidual probabilities are of one of two forms: if the h ed in Eq. (2). The analog entries in the MVM are
target t is undetected (i.e., measurement j is associated the individual probabilities P dXjjI. We introduce a

wit tagett 0) thn Pxtl Q PD,) oterwse shorthand notation wherein we denote the T estab-with target t = 0), then F1.A} = (1 - PD.1); otherwise lishedtrestb ~~,ec n h aiae

PXj.t = ft[zj(k)IPD.t, where PD., is the probability that med targets t by a,b,c, etc. and the m validated
target t was detected, and f1Iz,(k)] is the probability measurements j by 0,1,2,3, etc. Given this notation,
density of measurement j when associated with target the entries for the undetected target row j = 0 are

t. A scaled normal distribution f(zj) N[zj(k);!t(kI k aO for target t = 1,
1),S1(k)] is used, where S1(k) is the error covariance (1 - Pt,.,) - -bO for target t - 2, (3)

matrix of the innovations [zj(k) - it(kI k - 1)]. 1cO for target t - 3, etc.
The final step in the conventional approach to calcu- The entries in the other rows are

lating a single coefficient B,,(k) is to sum the probabili- Jaj for target t = I
ties of only those feasibility matrices in which the f,(zJ)Pr,., - bj for target t = 2 (4)
individual event Xj., occurred and normalize by divid- lcj for target t = 3, etc.
ing by the sum of the probabilities of all feasibility The analogous MVM for a general 4 X 6 = m X T case
matrices. For every I in the validation matrix in col- (m = 4 validated measurements and T = 6 targets)
umns t = 1,... ,T [representing a statistically plausible thus has potential entries as shown in Fig. 3. The
(j,t) pair] there exists a nonzero Ojj(k) weighting coeffi- MVM has zero entries where the conventional matrix
cient. The a posteriori probability Oo.1(k) that no did, and the analog entries in Eqs. (3) and (4) for the
measurements from target t were detected is nonzero entries.

= - .f,(k). (2) B. Vector T Formation
.1 We now consider how to determine all possible non-

Therefore, there are at most (m + 1)T coefficients competing events and the probability of each. [We
0,,(k) to be calculated at each time step k. will then use these values to determine the flit(k).] We

While the method of feasibility matrices is intuitive- use the MVM of Fig. 3 for a case study. We first form
ly appealing, it is computationally wasteful. In Sec. all possible sums of the last column of the MVM (indi-
I1, we detail our new algorithm, which is mathemati- vidual event or measurement association probabilities
cally equivalent to the conventional method and com- for target f for the example in Fig. 3). It can be shown
putationally more efficient. that the number of probabilities summed (excluding

those from row] = 0) varies from max (m - T+ 1,1) to
Ill. New JPDA Algorithm m. For our present case, this includes the sums of all

In our new JPDA algorithm, we adopt the same combinations of 4, 3, 2, and 1 individual event proba-
modeling assumptions as in the conventional JPDA bilities from target f. Toeach of these sums, we add fO
algorithm,' but we derive a very different method for (since target T could always have not been detected).
calculating the weighting coefficients 0,(k). In our Table II shows the sixteen possible target f measure-
new approach, instead of the binary validation matrix, ment combinations, the elements f, of the vector f
we employ an analog modified validation matrix (Sec. (column 2) grouped by bit counts, i.e., combinations of
III.A), and feasibility matrices are not formed or used. 4, 3, 2, 1, and no measurements (column 1). The
The method described in Secs. IIl.B through III.D number of elements (dimensionality) of this vector f is
iteratively calculates only T- vectors of combinations given by the sum of the number of combinations possi-
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ble for m = 4 elements taken four at a time, then three a bit count of 3, we exclusive OR (XOR) each MU bit
at a time, etc., i.e., count = 3 word with all MU bit count = 2 words and

[(4) (4) (4) (4) (1] retain only those results containing one .1. Those bit
4l | () +() +(. + = 1t ,. count = 2 words that result in one I denote which f,, is

L\.4 / . k. used, and the location of the 1 in the XOR result
Table III shows the size (dimension) of the last target denotes which ej multiplies the f, element. This
vector for different m and Tcombinations. As seen, it forms the new bit count = 3 elements of e. This
does not increase appreciably as m and T grow. In procedure is executed for bit counts of 4, 3, 2, and 1,
general, this vector is denoted by T for the last target thus determining all elements of e. Each element e, of
T. The measurements used (MU) binary word in e also contains the additive term eOf,, since each target
column 4 denotes the measurement association proba- could not have been detected as before.
bilities 4 to fl included in each f,,. The last column of Our idea of and use of the control vector MU to guide
Table II is discussed below, selection of the ej measurement elements that multi-

ply the f, elements are quite novel. We note that the
C. Generation of Probability Vector for all Feasible Events same MU vector also describes the ej measurements
for Targets 2 to T included. The e vector produced can be stored in the f

Each element f, of f represents a set of target f vector location in memory, since f is no longer needed
measurement association or individual event probabil- once e has been produced.
ities that represents a single event (for target f). We The aforementioned procedure is repeated for tar-
now include target e individual event probabilities into gets T - n (where n = 1,2, ... ,T - 2), i.e., for targets d
this set of target f data. This involves multiplying the through b in our example in Fig. 3. The same MU
differentf,, by different elements ej for target e (i.e., by control vector describes each target t measurement set
individual event probabilities for target e in column e combination. This procedure can be used to deter-
of Fig. 3) and forming their sums. The allowable (non- mine the target vectors d, c, and b, and as they are
competing) sums are indicated in the last column of calculated they can be stored in the location of the
Table 11. They comprise a new vector e (including prior vector. All the target vectors are of the same
feasible events for both targets f and e) with elements length, which is given in Table III. For our example,
C,. this procedure results in a final target vector b whose

One can precompute the pattern of these possible elements denote the probability of all feasible events
target e and f combinations (given m and T). Howev- for targets b through f (or targets 2 through 6).
er, the storage required can become quite large, and
thus we consider ways to produce e (and subsequent 0. Generation of the (f(k) Ooefficients
vectors including other target data) on-line. We The aforementioned procedure results in a vector b.
achieve this with the MU data word as we now detail. To obtain #,, for target 1, i.e., a vector of the m + I
For example, to obtain those elements of vector e with scalar weighting coefficients /3 .I(k) for each measure-

ment j that could be assigned to target 1, we multiply
Table I. Example of Generation of Vector e lor the MVM of Fig. 3 the reordered vector b' = [bitbm+i,bm,... ,b2]T by a

4 ,.,.,.3.1, , ... ... .e2.. ,e,(, Ij diagonal matrix A with elements given by the target a
S ,.3.,2., '.1 01, *0, ..- 0 ,. .,,11. measurement entries in the MVM (i.e., A

01, .0 01 .. 2( . diag[aO,al,. .. ,am]). The basic operation required to
,0.1.13 f, 101o .,. . e , . compute 0,,(k) is thus1', f..3.14 .1 11,0 eo(: I~ , 1.# i) 2, "n:)

2 10 .- 2 ,, 0011 0(,., I.e.-( ... e'( ,l e, Ab'. (6)
f0*fI!f3 CO ,~ eO( _I)e2k Ie'

tO.,2.,j , 0110 . . The calculation of e from f involves a vector inner
,0.,,.,, ,4 O . product (VIP) for each element en of e. ThefvectorisfO~f2.f4 11.1 1010 e0 1,,,}*4, i- *e2(.", .1

,o.,3.,, 1,00 ,,oo , .. ,,, ..).*, the vector T. The elements of the new e vector (or in
1 10.11 OOo, Io,,. ,e, general vector T - 1) are each given by a VIP of the

,O., 00 ,, o , .1-#2( 1 elements f, of f and elements ej of column e of the
13 1 010' 0..,-3

10-14 " 000 e0(.¢ 1)*:3( 1 MVM. We denote the elements of column e of the
, f,. 0000 .0 ,i MVM (or in general column T - 1) by p_-i (the m

individual event probabilities Ptxg.1 for target t= T -

Table Ill. Size of Vectors Proceseed In the New Algorithm

Number Number of Targe!.s
of

measuremaets, 3 4 S 6 7

3 711 81 oi1 8i 8i
4 1 1111 1521 1611 1611 16X1
S I 16,1 26x1 3111 32%1 321l

6 i 2211 42x1 5711 63x1 6411

7 ! 29i1 64%1 98,1 120%1 12711
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Fovrm Ali e"o . umns 1 and t in the MVM and repeat the aforemen-
_ e°g"n . . tioned procedure. Similar steps yield all 0j, vectors.

rteurne~s iNormalization so that ET 0 Ojk) - 1 for all targets tqlPetrmn|sr Meesureot e° 5 vec 1or

,v, : )'_ t ye; is straightforward. We simply calculate the normal-
VetL.ilo° . ization constant c" = E Ojt(k) for any one target tr.,t.,, feo, er00 ...... ,,,e,, . . .ns c and divide all (m + 1)T unnormalized coefficients

it,(k) by c'.
To reduce further the number of operations re-

M, U. 13 quired to produce jt(k) coefficients for subsequentvectors targets t;one can save intermediate fe, etc. However,
even if this is not done, the savings in our algorithm

Fig. 4. Block diagram of the computational steps in our new 0,,(k) over the conventional JPDA algorithm' are signifi-
direct generation algorithm, cant. Tables IV and V list the number of operations

required to compute the p M(k) coefficients via the con-
1). We thus require the VIP of P'-, and T, which ventional JPDA algorithm' and our new algorithm,
results in vector T - I or vector e in our example. respectively. (Table V does not reflect the potential

Figure 4 shows the block diagram of our algorithm, savings realizable by saving intermediate vectors fe,
The MVM is formed first and then the vector f (or in etc.) Table VI notes the factor by which the number of
general the vector T) as shown in the top center of Fig. addition and multiplications are reduced in our algo-
4. The VIP of f and p"-I is then formed (both vectors rithm. These factors are denoted as additions/multi-
are analog). A different VIP is formed with different plications in Table VI. As seen, the savings is a factor
P-I weighting elements to product each element en of of 52 (for additions) or 67 (for multiplications) for the
the new vector e (or in general the vector T - 1) as case of m - T = 7, and the improvement factor in-
shown on the right side of Fig. 4. The in situ storage creases significantly as m and Tincrease. When inter-
box in Fig. 4 denotes the fact that each new vector mediate f etc. vectors are stored, the improvement
T,T - 1, etc. is stored in the location of the prior vector, exceeds a factor of 110 (thus making our algorithm
The bottom portion of Fig. 4 shows the single matrix- even more attractive).
vector (MV) multiplication required to produce the
final j,(k) according to Eq. (6). IV. Optical Realization

The steps outlined above (Fig. 4) produce 0j,l for Optical processors can be used to achieve many of
target t = 1. To obtain 0,.2 etc., we interchange col- the functions or operations noted in Fig. 4. However,

Table IV. Operation Count for the Conventional JPOA. Entry Syntax Is Additions/
Multiplication&

Number i Number of Targets
or I

Measurements 3 4 5 6 7

3 I 54/68 144/219 300/544 640/1145 882/2148
4 I 144/146 528/627 1440/2004 3240/522S 6384/11766
5 I 300/272 1440/1503 5200/6148 15000/202SS 36540/55656
a 540/458 3240/3135 15000/16204 55620/66635 170100/225798
7 I 882/716 6384/5883 36S40/37104 170100/188165 652974/785532

Table V. Operation Count Io our Feel Algoithm s Number of Addilonas/Multiplcations

Number Number of Targets

of I
Neamsuremeutsl 3 4 5 6 7
------------------------------------------------------------------------------------

3 I 63/51 132/144 225/280 342/4568 483/672
4 I 132/78 304/260 540/560 840/960 1204/1456
S I 240/111 620/432 1175/1045 1890/1920 2765/3024
8 1 396/1S0 1152/872 2370/1830 3096/3654 6006/6048
7 I 609/Js 1989/892 4480/3030 8022/6624 12495/11655

Table VI. Savinge Factor (Addltefls/MuitpllIcatlon) for Our New Algorithm vs t
Conventlonal JPDA

Number J Number of Targets

0of 
I

Neslurementl 3 4 5 6 7

------------------------------------------------------------------------------------
3 I 0 9/1 3 I 1/1 S 1 3/1 S I 6/2 5 1 8/3 2
4 I 11/1 9 7/2 4 2 7/3S 3 9/54 5 3/8 1

I 1 3/2 5 2 3/3 5 4 4/5 7 8/10 / 13 2/18 4
8 I I4/3 1 2 8/4 7 a 3/8 13 9/18 2 28 3/37 3
I 1 1 4/3 7 3 2/5 B 8 2/12 2 21 2/28 4 52 3/67 4

15 January 1989 / Vol. 28, No. 2/ APPLIED OPTICS 375



ACAO bT Table VII. Summasry ofTorrm

10.4A1LF C'DT Synebol Dec~0t-on

4-,,~ i., ,~ ,. d scalar validation ttwe~hOd constant
r~~j Al:, probabulity enaity of V's ingle 'tSSSA M l' ft OE..tdrot W5 el.. A

iAl cooedvwAte transfoeiton maxltiematgtteaceos2I and
1* ji~ ~the rnea eenh space offo -Im, pet evat Ao

. .. 04 1 ia~atnetieo n ts ,.I.. nHc~n~~

toa nurIe ohf lte Cfeas -e at 1--e A

P 2 P 3 P4 ~~a prio,,sW te eshrile errorcovelorece reralriafortagt Ia f a I

Fig. 5. Optical processor for parallel calculation of m v'ector inner L!,(& A) a postoiE, stte estureateerrrv eriacO,,,e fifo tarWgtat toil

products. I %, probab.iliy that feasible event %occurred. conditioned an;"'

error covaw.Cc matrix ssocated winth 1( A I k -II

2 404al nunbe, of established target baCks at tern. A
the most time-consuming and repetitive function is I'nlxo sabihdtres ~. SeC40A anfd=t1.
the analog VIP. Initial studies show that this opera- In-t *p.SttCon *t..a111g~A~ttle

tion (to generate subsequent target probability vectors "Ise of 8l validated newnts L, ft04. tel. U to u. A

and eventually b) need be performed only to analog I 144 measuremnent vectorj (valdated or urevedated) of 1~ A,

accuracy. Thus an analog VIP optical processor is the j,f A 5-4I) aprior'Predicted iveaswaeent locatonotarget ( 61 tweA

system realization element given major attention here. P~bb,.' iesMmknoa otnad romntargvet 

This operation can be performed quite easily on the r measwement enovatons vecto for ineaasxernnt/target palf(j.1)at
archtectre f Fi. 5timeI

new arhtcueo i. 5., 50 a event, e. .a single mheasurenent/larpet pair

In Fig. 5, one vector t is applied to a linear laser diode 4, a feasible event, a collection of noml-comoeterng events %,,such that all

(LD)arry a P1 an a ecod vetorp~.. s iputto n measurements jhave been considered

acoustooptic (AO) cell A01 at P2. P1 is imaged onto "( vn,,cne niao
P2, and the resulting point-by-point products leaving I
P2 are imaged onto a second AO cell A02 at P3. Con- plexed control has been described. The basic use for
sider the A01 and A02 system. This system images generating all noncompeting feasible pairs of data
the vector fed to A01 onto a linear frequency modulat- from a large combination of data has many other at-
ed (LFM) signal at A02. This has the effect that every tractive and general applications.
possible element of the p' I vector is multiplied by all
frequencies in the LFM at some time. The A02 fre- The support of this research by a grant from the
quency determines which P3 detector receives the data Strategic Defense Initiative Office of Innovative Sci-
at the given spatial location in A01 at a given time. ence and Technology, monitored by the Office of Naval
This produces the desired p"', multiplicative factors Research, is gratefully acknowledged.
for the It vector elements to produce the new It Apedx Sumr1fNtto
vector elements on separate P1, detectors. At each Aped:SumrofNtio
time, the proper P1 laser diodes are pulsed on with the Table VII is a compilation of the notation used in
proper t vector elements, and one set of scalar products this paper. The notation used conforms to the follow-
is formed (by imaging P1 onto P2) with each product ing conventions: plain and boldfaced lowercase let-
directed to the proper P3 detector (by the LFM control ters not underlined are scalars, italicized lowercase
signal to A02). These results (partial products) are letters with numerical subscripts are vector elements
accumulated (by time integration) on the P3 detectors (scalars), underlined lowercase letters are vectors, and
to produce the VIPs required to calculate each element underlined uppercase letters are matrices. The sym-
of the new t - 1 vector. This space and time-integrat- bols in Table VII are listed in alphabetical order with
ing hybrid architecture uses a single LFM control sig- the letters of the Roman alphabet preceding those of
nal to produce the required VIPs by frequency multi- the Greek alphabet.
plexing (plus space and time integration). References
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tion," IEEE J. Oceanic Eng. OE-8, 173 (1983).been devised. It is very efficient in terms of calcula- 2. Y. Bar-Shalom and E. Tale, "Tracking in a Cluttered Environ-

tions, bookkeeping, and data flow. Only VIPs are ment with Probabilistic Data Association," Automatica 11. 451
predominantly required, and these can be implement- (1975); also in Proceedings, Fourth Symposium on Nonlinear
ed with analog accuracy. An efficient optical realiza- Estimation, Theory, and Its Applications (U. California. San
tion with a new and cost-effective frequency- multi - Diego, Sept. 1973). pp. 13-22.
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Abstract

A neural net processor and its optical realization are described for a multitarget tracking

application. A cubic energy function results and a new optical neural processor is

required. Initial simulation data are presented.

I. Introduction

Considerable interest currently exists in neural networks 1 ' 2 due to their adaptive

properties, fault tolerance and high computational throughput. One can distinguish

current neural processors by whether they concern pattern recognition and associative

memories3 , 4, 5 or multivariate optimization 6 ' 7. Our concern will be with the application

of neural networks in optimization problems. As a specific case study, we consider

multitarget tracking.

In Section II, we briefly review the evolution equations as used in neural

minimization. Section III contains a definition of the specific problem we consider, and

Section IV is a formulation of the constraints in our multitarget tracking problem as an

energy function to be minimized. New optical architectures for the implementation of the

equations in Section IV are then described (Section V). Simulation results are presented in

Section VI. Our work contains three new ideas: the application of the Hopfield model to a

multitarget tracking problem; the use of a non-quadratic energy function in the
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minimization problem and an optical architecture which can calculate the evolution of a

system with such a non-quadratic energy function.

H. Neural Model

We use the Hopfield model 6 as a minimization network. We represent the state of

the "neurons" by Xi(t), where t is a time variable and i labels a particular neuron

within the set of neurons. For an optimization problem, we wish to find the set of X i

that minimizes an "energy" function E, which is a function of the neural activities X.. In

this model, the evolution of the activity of each neuron (its rate of change with time) is

described by
dXi O

- . (1)
dt aX.

t

The time evolution of the energy function is

dE 8E dXi2

dt - ox. dt (2)

To show that the model in (1) minimizes E, we substitute (1) into (2) and obtain
dE 8E

dt (3)
i I

Eq. (3) shows that E is a decreasing function of time t. The energy E will converge to a

local minimum as t progresses. Thus, the set of neural activities {X} in the final

stationary state describe a minimum energy state of the system.

In our work, this basic algorithm is modified by using discrete time8 and by

employing binary neuron activities X. With binary X., the neuron activity (neuron

state) in (1) can now be replaced by



2

aE
if -<0

aE
0 if - > 0

aX.

That is, the state of neuron i is binary and depends on the energy as noted. The choice in

(4) insures that the energy function is approxim::tiy minimized in the stationary state,

as we now show.

With unit time steps, we replace dX/dt by AX and dE/dt by AE. To find the

change in energy due to a state change of neuron i, we recall the Taylor expansion of

E({X+AX'.}) in the vicinity of E({Xi}):

aE
E({X2+,X:1}) = E({Xj)+j: 7-Axt, (5)

a2E+ 5TZ a x, a-\fidj +

One can therefore calculate the change in neural energy AE due to the state changes

AX, of the neurons by AE=E({X.+,dX})-E({Xi}). From (5), keeping only the first

term:

aE

i 
i

Using (4) in (6), we see that if aE/aX. is negative, we set the state X i of neuron i to one
and if aE/aX. is positive, we set X. to zero. Thus, AE is negative. In (6) the higher

order terms were omitted. Thus, the prior analysis is only approximately correct, and the

energy of the system actually can increase on some iterations. It turns out that this is

more beneficial than harmful, since it allows the system to escape from shallow local

minima.
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Since we will express the multitarget-tracking problem as a constrained

optimization problem, it is also possible to use conventional (non-neural) optimization

techniques. However, such techniques are not suitable for optical implementation, and

generally require much more computation than the Hopfield net. We therefore restrict

our attention to the techniques described in this section.

IlI. Problem Definition and Case Study

The minimization problem we consider is a multitarget tracking problem. The

scenario we consider assumes:

1. NT targets are to be tracked with NT known and fixed (being determined by

the track initiator).

2. There are NN1 measurements each time step or frame of data. NM is fixed

and is the maximum number of measurements we will accept in any time

frame. This is achieved as explained below. If the number of peaks

(measurements) is less than NN,, we lower the detection threshold or insert

artificial measurements to insure that at each time we have NM > NT

measurements.

3. The targets do not accelerate appreciably during the time steps under

investigation and thus that their trajectories are approximately straight lines.

4. Each target corresponds to no more than one measurement at each time.

5. Each measurement is due to no more than one target at each time. (That is,

we ignore crossing targets for now.)

6. At each time step, each target must be assigned to one measurement. Our

selection of NM in item 2 insures that NM NT so that this rule can be

satisfied.

The optimization problem is to assign one track to each target, i.e., for each time step
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one set of detected coordinates is assigned to each target. Hence, our objective is to find

the NT best straight lines in the given data.

WY. Problem Formulation

We first present our notation, introduce the distance measures we wish to minimize

and then develop a neuron energy description. We denote the measured position vectors
a +1 a+2

at time steps a, a+1 and a+2 by ra, ra and r respectively. The subscripts ar,#

and -y are used to refer to a particular one of the NM different measurements at a given

time step, the time steps being indexed by the superscript. We denote the vector

difference between a specific measurement (one of the ce) at time step a and one of the f

measurements at time step a+1 by

da a a+1

Similarly, d a denotes the vector distance between a measurement 0 at time step a+1

and a measurement -y at a+2. In terms of these vector distances, the vector distance

measure we wish to minimize for a sequence of three time steps for all measurements is
Da Ida da+l
Dk'8-Y=[ d0- d$-y 1. (7)

The minimum of (7) assigns one measurement in each of time steps a, a+1 and

a+2 to the same target. Note that D in (7) is the norm of a vector difference. This

ensures that two successive distance vectors (for time steps a and a+1) should Se

collinear to minimize D; that is, D is minimized for straight line tracks. With equal time

step increments and a straight line trajectory with no acceleration, the two distance

vectors will be equal (for true target measurements). Thus D will be 0 for te case of

three collinear and evenly spaced measurements in three successive frames.

The measure D will now be used as a basis for the description of an energy function



E which, when minimized, solves our problem. We label each binary neuron with three

indices, such as Xia , where i is the target index, a is the measurement index and a is

the time step index. This neuron is active (i.e. Xtaa=l) if the i-th target is associated

with a specific position vector r (one of the measurements a) at time step a, and

otherwise Xiaa=O. The energy function to be minimized for the optimization problem

in Section III can be written as

E = Ail: E Y, X Xaa;j (8)
a a t 3 7 i

+ AE E E E XXAo
. a a 074a

+ A 3E (E E Xiaa-T)
2

t a

+ A, 1: E E E D X a ol+),o l
+ 4E DQ0XiaaX',(a+L)Xi',ya+2)'

a I a Is

where A, to A 4 are positive constants. Their choice is discussed in Sect. VI.

We now discuss the terms in this energy function to provide an understanding of it.

We first note that all terms are positive semi-definite. Consider the first term: each term

in this sum is either 0 or 1 (since binary neurons are employed). Note that XIaa and

X.,, denote neuron states associated with targets i and j (any of the NT targets) and

some measurement a (of the NNI) at time step a. The first term contains the sum over

the measurements and time steps of products of these neurons. Since only the target

index (i or J) differs in the XiaaX.aa product, a given term in term 1 can be one only if

targets i and j are assigned to the same measurement a at the same time step a. Since

we sum over a, a, i and j, term I is zero if and only if at each time step no measurement

is assigned to more than one target. Thus, minimization of this first term occurs when

each measurement is associated with no more than one target. It therefore enforces

condition 5 in Section III.
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The second term in (8) consists of a sum of products with different measurement

indices (a and 6) on the neurons. It is therefore minimized when one target is associated

with no more than one measurement (a or #) at the same time step a. Thus term 2 is

included so that the system satisfies condition 4 in Section III.

We next consider term 3. For a fixed time a, the set of neurons X.'a a for the

various target indices i and measurement indices a can be arranged in a matrix with

horizontal index a and vertical index i. When one measurement has been assigned to each

target, this matrix has a single one in each row i, indicating which measurement is

assigned to this target. Thus, Zi Zae X,iaa for a fixed time a is the number of non-zero

entries in the matrix above. This sum equals NT when condition 5 of Section III is

satisfied. Thus, term 3 is minimized when all NT targets are each associated with one

measurement at each time step; it is included so that condition 6 in Section III is

satisfied. Hence, the first three terms in (8) ensure that the measurement-target matching

is admissible.

In term 4, both the time step and measurement indices on the three neurons in the

product differ. This term selects a measurement (from each of the sets labeled by at, ft

and -y) in each of three successive time frames for each target. The measurement-target

pairs are selected such that these three measurements lie closest to a straight line, with

the search done for each target and for each measurement c in each frame. To see how

this is accomplished, recall that Da  in (7) is calculated for three successive time steps.

The three neurons in term 4 in (8) have their time indices appropriately stepped. For a

fixed time frame, the three X terms can each be represented by a matrix with horizontal

index a and vertical index i, as before. For a fixed target i, the neuron choices to be

considered occur in the same row (row i) in each of these matrices. Each row of each
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matrix should have only a single "one", because of condition 5 in Section III. The best

choice for the position of these "ones" is determined as follows.

Consider that there are 10 measurements in each frame. We select a measurement

a in frame a. For the single measurement a chosen, there are 10 possible choices for the

measurement (indexed by 0) in the second frame and for each of these there are 10

possibilities for the third measurement indexed by -y. For each of these 100 combinations,

the three X factors in term 4 could all be 1, but for only one set of these will D be small.

Minimization of E for this term ensures that the set of 3 successive measurements chosen

(for each measurement in the first frame) will be the set closest to a straight line. The

summation over a implies that this minimization is repeated for each time step (using the

prior two frames of data).

A possible variation to the energy function in (8) is the omission of the first term.

Then, one would not be enforcing the assignment of only one target to each input

measurement (this case arises if two paths of different tracks cross). In our simulations,

this term was retained. We intend to do more work and the target-crossing problem in

the future.

Note that the energy function in (8) enables us to tolerate both spurious

measurements and the absence of measurements for some targets at some time steps. To

achieve this, let NM be the largest number of measurements at any of the Np time steps.

If a given frame has A" < NM target measurements we set N M-M measurements equal

to the zero vector. (In our reference frame the zero vector lies in the center. This choice

minimizes the effect of missing measurements on D, for the case of a uniform spatial

distribution of targets). Spurious measurements (if they have random position vectors, as

they should) will not be assigned to true target tracks because of the energy minimization



step. If both spurious and missing measurements are present, we have found that the

spurious measurements are assigned to the same tracks as the missing measurements

(zero vectors).

The time evolution of the neurons is required to result in a neural system that

minimizes E in (8). This is given by the derivative of (8), i.e.

aEX. 2A, Z Xi,, + 2A 2  Xi a  
(9)

+ 2A 3 (Z Z X6a - NT)

+ A4 Z > {D:,qX'i#(a+l)Xi- a+2)

+Da-1 X+ la,.y i,6(a- i)' i , + )
±D a- 2  X.

+ -c .,,' i#(,,-2) i ,-)"

Fig. 1 shows the block diagram of the neural multitarget tracker described by Eqs

(4), (8) and (9). We produce aEIaX in (9) from X and threshold aEI49X as defined in

(4) to produce the new X with E given by (8) from which aE/OX is obtained in a closed

loop. In this design, the activities of the neurons evolve according to (9) and (4), and thus

their states will evolve to a steady state energy minimum. This minimum indicates which

target should be associated with which measurement at each time step.

We now discuss how to realize the terms in (9) as linear algebra functions. We

consider the case of NT=10 targets, N M=10 measurements and Np=3 time steps.

There are NTxNMxNp=300 neurons that represent the different Xiaa.We represent

these neurons as a vector x with elements Xk, where each value of the index k denotes a

different (i,aa) combination. In steady state, x will have 30 "one" entries (ten
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measurement/target pairs for each of three time step values a.) Term 1 in (9) is the sum

of a number of such vectors and can thus be described as a matrix-vector product

2A T x=y 1 . The elements Tkl of the binary connection matrix T 1 are described by

Tv = Toj~ 6 6b(1b%), (10)

where the indices k and I denote the different sets of target/measurement/time

parameters (iaa) and (jfib), respectively. Since both k and 1 range over 300 values, T1 is

a 300x300 matrix. This yl-term has non-zero contributions to the output only for indices

corresponding to different targets (i 4 J) but the same measurement (a - 8) and time

step (a = b).

Terms 2 and 3 in (9) are other sums of vectors x and can likewise be written as

matrix-vector products 2A 2 T 2x-y 2 and 2A 3 T 3x=y,. For these first three terms, the

connection matrices are fixed and thus we can form Tx=(2A 1T 1 +2A 2 T 2 +2A 3T 3 )x in

a single step with T and the constants A1 to A 4 fixed for all problems.

Term 4 in (9) is more complex. Each of the three parts of this term is similar and

contains the product of two different neuron states which we can relabel as X k and X 1

times a tensor D of rank three. If we think of Xk and X l as components of a vector x,

the product of two different neuron states XkX 1 for all k and I is a matrix with

components XkXI (where k and I are the row and column indices, respectively). This is

the vector outer product (VOP) matrix xxi, where the superscript t denotes the

transpose. In terms of this new vector labeling scheme, term 4 can be written as

4j= DktXXI(11)
kI

where Y4. denotes the .f-th component of term 4 in (9). We can view D as a number of

matrices. The sum of products in (11) for a given j is the sum of the point-by-point
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products of the elements of the VOP matrix and one of the matrices in D. The result for

all j is a vector Y4' which is called 9 the tensor-matrix inner product, i.e.

Y4 = D*xx t  (12)

Since this is not a simple matrix-vector product, it cannot be calculated in the same way

as the other three terms in (9). In addition, D changes with the input data whereas the

matrix T in the other terms is fixed. We now investigate how the linear algebra

operations and thresholding described in this section can be done optically.

V. Optical architecture

As has often been noted, connectionist architectures are well-suited for optical

implementation since optical systems easily achieve large numbers of interconnects' 0 . In

the optical design of the Hopfield net by Psaltis and Farhat 11 ' 12, a matrix-vector

multiplier was sufficient. This optical realization is suitable for implementing time

evolution equations that are linear in the "neuron activities" X (or equivalently, neural

systems and applications in which the energy function is quadratic in X). Such an optical

architecture is most efficient if only non-negative connection matrices are involved.

Thus, the first two terms in (9) and the positive definite part (2A 3 1:j 1,_, a ) of the

third term can easily be calculated by unipolar optical matrix-vector multiplications.

Our optimization problem involves one energy term which is cubic (term 4) and a

negative term (part of term 3). The optical realization of these terms is now discussed.

Eq. (9) can be realized on the optical system of Fig. 2 as we now detail. This optical

system is best drawn in two parts: Fig. 2a (which performs a matrix-vector

multiplication and implements terms 1 to 3) and Fig. 2b (which implements term 4).

The data plane Bi is common to both- parts of the optical system. For simplicity, only

the essential lenses are shown. In Fig. 2a, the vector data on a one-dimensional (I-D)
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bistable device 13 Bi is the current neuron state x. It is imaged vertically and expanded

horizontally by Li onto a 2-D spatial light modulator (SLM1) which contains the matrix

interconnection data T in (10). This is a fixed interconnection pattern that is

independent of the data. Thus, it can be recorded on film and need not be altered. The

light leaving SLMI represents the point-by point products T.x. This light is integrated

vertically and input back to BI (by 4 mirrors M in the version shown). This forms the

matrix-vector product T x =-(-jT x Z T2jxp ... , jTx.).
133 Pl~ 3j

The same Bi is also present in the system of Fig. 2b. In Fig. 2b, its output is

expanded horizontally by Li and rotated by 90o and expanded vertically (by the beam

splitter (BS), mirror (M) and lens L2). These two expanded patterns are superimposed on

a second bistable device B2 with horizontal and vertical indices k and 1. The light

intensity incident on element (k,l) of B2 is Xk + X,. When the threshold for B2 is set to

trigger only if both inputs are active, the B2 output is the binary VOP of the Bi data.

This VOP matrix is imaged onto SLM2 where it multiplies several multiplexed D-

matrices element-by-element. The computer-generated hologram (CGH) behind SLM2

directs the proper element-by-element products to different portions of BI. To

implement term 4 on this system, we form x on BI, the VOP matrix xxt on B2, and the

tensor-matrix inner product Y4 = Doxxt on B1 using SLM2 and the CGH. We now

consider the multiplexing data format on SLM2 and the CGH used.

In our simplified index notation (Sect. IV), the elements of the y4-vector output due

to term 4 are given by (11). Consider the case when j, k and I range from 1 to 3 in Dl

Xk and X 1.The neuron vector x then has three elements and the VOP matrix on B2 is 3

x 3. Each element XkXI must multiply the three different elements Dkj corresponding to

the three different values that j can take given the indices k and 1. One possible
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multiplexed arrangement for the SLM2 data DjkI is shown in Fig. 3, with the VOP

elements in row 1 of B2 corresponding to (k,)) = (1,1), (1,2), (1,3) and the elements.of

row 2 corresponding to (k,)) - (2,1), (2,2), (2,3) etc. The spatial size of the elements on

B2 and SLM2 and the imag;ng opti-s (not shown) from B2 to SLM2 are such that VOP

element (1,1) illuminates the first three elements in column 1 of Fig. 3 (i.e. Dil, D2 11

and D3 11), VOP element (1,2) corresponding to XIX 2 illuminates the first three elements

of column 2 (D1 12, D2 12 and D31 2), etc. The bold lines in Fig. 3 indicate regions of

SLM2 illuminated by one element of B2. Since D is a tensor of rank 3, it is not possible

to assign one spatial dimension (horizontal or vertical) to each rank (as is possible with a

tensor of rank 2, i.e. a matrix). This arrangement in Fig. 3 multiplies each VOP element

XjX by the 3 possible j values in Dj and thus forms the point-by-point product of the

VOP matrix and the different D-matrices. The CGH behind SLM2 focuses all products

with the same j onto the same region of BI (i.e. for the 3 x 9 example in Fig. 3, it sums

the light leaving the first, fourth and seventh rows, the light leaving the second, fifth and

eighth rows, etc). This forms the sum over k and 1 of DjktXkX for each j on a different

region of B1. A CGH could be placed between B2 and SLM2 to replicate the B2 data

onto the proper regions of SLM2 such that the CGH behind each region (3 x 3 region for

the example in Fig. 3) of SLM2 could be a simple spherical lens plus a grating at the

required spatial frequency and orientation. However, since the CGH is fixed and

independent of the input data, it appears that it can be fabricated on film with sufficient

resolution to allow one CGH to be used with improved light budget efficiency. We detail

this later.

Next, we consider how the negative part of term 3 in (9) is handled. Recall that BI

is common to both parts of the system*(Figs. 2a and 2b). Thus, the input to BI contains

the sum of all the non-negative terms in aE/caXt.aa in (9), i.e. the j-th element on the
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input side of B1 is aE/8X. + 2A 3 NT (where j corresponds to (iara)). Thus, we set the

threshold of BI to be 2A3 AT and hence achieve the subtraction of the positive and

constant 2A 3 NT portions of term 3 by thresholding without the need to compute

negative numbers and the proper neuron vector x emerzcs from B1 We note that the

contents of SLM2 need not change between iterations (in minimizing the energy E) for a

given set of input measurements. Its contents change for each set of input measurements,

but such distance calculations are needed for most multitarget tracking problems.

We next consider an improved version of the system of Fig. 2b with reduced space

bandwidth product for B2 and SLM2. To see the significance of this, consider the case of

NT = 6, N M = 7 and Np P 5. The vector x has 6 x 7 x 5 = 210 components, the

VOP has 210 x 210 components and SLM2 requires 210 x 210 x 210 pixels. Clearly, for

large values of NT, N M and Np, this architecture becomes unrealistic. Fortunately, not

all of the terms in xxt are required and most elements of D are zero. In (9), we see that

only those values of XI. aaX with i = i are used. To take advantage of this, we divide

the vector x into NT smaller vectors zi (i= ",..NT), one for each target j, with each

vector of size NM1xNP . Thus, the full vector x can be written as x (t = (If, Z2
t , ..,

Z t }. This allows us to calculate the VOP z.z t of each vector separately, multiplyNTJ • t

each by the proper elements of D point-by-point and sum up the products as indicated in

(9).

We now discuss how to efficiently separate the tensor D into several smaller

matrices. Recall that the full tensor D is described by NTNMNp matrices, each of

dimension NTN MNP. However, the only non-zero elements of these matrices occur for i

= j and do not depend on the. value of i or j (the entries of D do not depend on the

target, since the calculations of the elements of D involve only distance calculations on
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the measurements). The fact that only three adjacent time steps a are included in the D

calculation further reduces the number of non-zero entries. We chose to separate the D

tensor into N M matrices, each of dimension NI 4NP. To see how this is possible, recall

that each distance measure is associated with three measurements (a, 8 and "Y) at three

different sequential time steps. A given set of pairs of two measurements at two different

(not necessarily successive) time steps is described by a matrix of dimension NMNP.

There are NM possibilities for the third measurement in the other time step of the three

in sequence. Thus there are N., such matrices, each of dimension NMNP, that describe

the tensor data D.

This division is attractive since each of the NT = 6 reduced size 35 x 35 (when

N NP 35) VOP matrices can now be multiplied by each of the NM  7 D matrices.

After summation of the proper point-by-point products, the output is NT = 6 vectors,

each of dimension NM1NP = 35, i.e. the 6 x 35 = 210 element neuron state vector. Thus,

this new arrangement requires that we calculate six 35 x 35 VOPs (i.e. B2 requires only 6

x 35 x 35 = 7350 elements), and SLM2 is only of size 7 x (35 x 35). We have thus

reduced the space bandwidth product of SLM2 by a factor of over 1000. Bi is still a 1-D

SLM of size NTNMNP = 210 elements (one for each element of x). This size for x is still

much less than for cases when one assigns one neuron for each possible single target state

(position in x and y) for every time step n (i.e. xyn neurons, where x and y are the

number of pixels in the (x,y) projections of the measurement space, respectively). Our

assignment of one neuron for each measurement for each target for each time results in a

much smaller number (since the number of measurement points per frame is usually

much less than the number of 2-D pixels in one image frame).

The NT VOPs of the partitioned BI data can be produced on B2, by replacing Li
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in Fig. 2 by a CGH that is a set of NT cylindrical lenses with gratings at different

orientations and with different spatial frequencies. This Li lenslet CGH array focuses the

NT sections of x on the vertical Bi device onto NT different horizontal regions of B2 and

replicates the %ector data in each of the NT sections horizontally at B2. As before, L2

expands x vertically onto B2. After thresholding, the result on B2 is the desired NT

VOPs of the NMNP element vector in each of the NT regions on B1. These VOP's thus

emerge from B2 as NT matrices horizontally separated, with each matrix of dimension

NMNP -

The architecture in Fig. 2 (even with the reduced SLM2 and B2 resolution

requiiements) requires fast non-linear optical devices for BI and B2 (since they limit the

speed for one iteration of the system). Since such devices are not yet readily available, we

present the alternative architecture of Fig. 4 that does not require a non-linear optical

device. Rather, it computes the vector outer product by feeding the z-vectors to the rows

and columns of an electroded SLM such as a ferroelectric liquid crystal1 4 . Thus, SLM3 in

Fig. 4 can be substituted for the 2-D bistable device B2 in Fig. 2b. The outer products

formed by SLM3 are imaged onto SLM2, where they multiply D, and the CGH focuses

the terms belonging to the same sum to the same point on the detector array DI which

now replaces Bi in Fig. 2. The thresholding is done electronically by an array of

operational amplifiers fed from the detectors DI. These detector outputs provide the

electronic inputs to SLM3 in Fig.4.

The architctures which we have introduced in this section are quite complicated.

We do not find this surprising: it is well known that the multitarget-tracking problem is

very hard. Therefore, any parallel architecture which attempts to solve this problem in

real time will probably be rather sophisticated.
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VI. Simulation results

The above neural net and algorithm were simulated for the case of NT = NM == 4

and Np = 5. A 256 x 256 x 256 three-dimensional (x,y,z)-space was used. The initial four

measurement positions were chosen from a random number generator. The velocities and

directions of each target were similarly chosen. Np = 5 equally spaced time steps were

generated for each target. The target directions were evenly distributed over 360 °. They

generally ranged in length (in a 2-D projection) by a factor of 5:1 with the longest track

of five time steps occupying approximately 70% of the field of view. To simulate

imperfect measurements, each position was perturbed by n% of noise. This was achieved

by adding a uniformly distributed random number to the measurement. This produced a

random variation in the location of the measurement by at most n% of its distance from

the origin (the center of the 256 x 256 x 256 space).

For each run (corresponding to a given value n% of noise), ten different initial data

conditions (initial target positions, velocities and directions) were used. Thus, for each

value of noise, ten sets of four target tracks were processed. The initial conditions (the

neuron states at which the neurons were started in the processing) were chosen by

randomly perturbing the all-equal condition (in which each coordinate is assigned to each

target with equal probability). This is detailed more fully in Hopfield and Tank6 and

motivation for randomizing initial conditions is also provided there. Ten different random

perturbations were used in the ten simulations in each run. The A, to A4 coefficients

were chosen to equally weight the first three terms in (9), i.e. A 1  A2= k A3 =15 with

A4 chosen to be less (A4 =- 1.8). Larger A1 to A3 values were used to give more weight

to the first three terms in (9), i.e. we must have the proper form for the matrix Xiaa* Al

and A2 should be chosen equal (since these terms correspond to enforcing the correct row
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and column structure, respectively, and are thus equivalent by symmetry). A3 could

differ from these terms since it multiplies a different type of term; on the other hand, the

first three terms in (9) have similar roles and it was found that A3 = Al = A2 gave

good results. Term 4 is given less weight (A4 = 1.8) since it involves the sum of more

products than do the other terms and satisfying conditions (1), (2), (4), (5) and (6) in Sec.

III (terms I to 3) is essential. No detailed optimization of A, to A4 was attempted.

The coefficients D a and the connection matrix (T) were calculated. The

thre'hold 2A 3NT in term 3 in (9) was slightly increased (from 2A3NT to 2A3 NT +

0.035). We found this to be helpful when noise is present. Such an increase compensates

for the neglected higher-order terms in the Taylor expansion in (6). In the simulation, the

neural activities were updated as they were calculated, i.e the state of the first neuron

was calculated (using the most recent values of all other neurons) and then the state of

neuron one was updated before calculating the state of neuron two, etc. This better

models8 a continuous time rather than a discrete time system. After one set of updates of

the neurons, a new iteration commenced until the neural net converged. The serial mode

neural updating results in faster convergence than if all new neuron states are calculated

7in parallel and simultaneously fed back, as is usually done

Table 1 shows the results obtained. Column 1 lists the percentage noise (positional

variation) introduced into the measurements. Column 2 gives the percentage of runs that

converged in less than 50 iterations and column 3 gives the average number of iterations

to convergence for these cases. We restricted the number of iterations to 50. If

convergence was not obtained after 50 iterations, we call this an error. If the system

converged to the wrong set of measurement/target pair assignments, this is also an error.

As seen, the neural net converged in much less than 50 iterations on the average. Also,
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we found that whenever the net converged, it converged to the correct target-

measurement matching. A proof of this remains to be derived (but from these initial

tests, one should be able to accept results that converge with a high probability). At low

noise (n = 0% or 2.5%), the neural net converged to the correct solution for all 40 target

tracks (i. e. excellent performance was obtained.) As noise increased, correct convergence

or two other conditions occurred (the neural net wandered with no apparent trend to

convergence or it oscillated between two states, one being the correct solution and the

other differing in one target/measurement pairing.)

Fig. 5 shows a representative example of the evolution of the neurons to a stable

state for one set of data. In Fig. 5, each rectangle in the 5 x 5 grid shown represents the 4

x 4 matrix X.,, for i = 1 to 4, a = 1 to 4 and a fixed (the assignments at one time

step). The matrices from left to right on one row correspond to different time steps a =

1 to 5 and the matrices in the different rows are the neuron states after various numbers

of iterations, as indicated. The horizontal axis of each matrix has four divisions,

corresponding to the four different targets which are assigned to the measurements. The

four different measurements in a given time frame occupy the various rows of the

indicated matrix. A dark spot at position (i,a) indicates that target i has been assigned

to measurement ce. The neural net has converged if the matrices are unchanged between

two adjacent iterations. The targets are correctly tracked if X.ca (for a fixed) has only

one entry per row and one entry per column and row and column entries are the same in

all time frames. This is because the measurements for this example were generated such

that the same target was given the same number in all time frames.

From Fig. 5, the target-measurement associations appear random after the first

iteration (i. e. the neural net has assigned many of the measurements to only one target

and vice versa). They converge and eventually reach a correct solution after 15 iterations.



VII. Summary and Conclusion

In this paper, a neural net energy minimization formulation of multitarget tracking

with a reduced number of neurons was presented. Cubic energy terms were present and

an optical architecture to implement this neural net was described. Initial simulations

indicate that the al :orithm has desirable performance, even in the presence of random

noise. We expect improved performance when the optimal values for the A-coefficients

are understood, and when the characteristics of good initial neural states are known.

The formulation presented can be extended in a variety of ways. Other sensors than

the simple position sensors we employed can be introduced and non-straight tracks (i.e.

accelerating targets) can be considered. These extensions will not complicate the energy

formulation or optical architecture that we have presented, since they require only that

the D-tensor be calculated in a different manner.

The main reason why conventional tracking algorithms are so slow is because they

enforce a serial structure onto a process that is essentially parallel: the various targets are

being measured simultaneously, but are processed one-by-one. The parallelism of our

neural architecture means that it can perform at a much higher rate. We therefore feel

that this architecture is prototypical of the types of systems that will have to be used to

successfully deal with a complicated multitarget scenario.
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Figure 1: Block diagram of the multitarget tracking neural processor.
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%noise % successful avg. no. of
iterations

0 100 19

2.5 100 16

a 90 20

7.5 s0 13

Table 1: Simulation results for trackimig of 4 targets through

5 time Ste-ps.
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Abstract

Time sequential imagery is difficult to analyze, because of its high dimesionality. This paper advances
a new algorithm that screens input data in an intelligent way, discards data with negligible information
and uses the remaining images to represent the sequence in an optimal compact form. We present data
to illustrate how this algorithm can be used to do novelty filtering, novelty detection, segmentation,
background independent modelling and classification.

1 Introduction

A salient aspect of visual data is the large amount that is generated in typical situations 1-3. For
video data, bit rates of 5Mb/s are typical. Thus, it would be useful to limit the amount of data that
must be processed at a particular instant. Fortunately, most of an input image sequence is usually quite
redundant. Consider the output of a camera mounted on an autonomous vehicle: in this case, most of
the information in a frame is relatively slowly changing background. Once the background is known,
only a small percentage of the information in a frame is new or novel. Also, most new information
consists of shifts in the location of an object or different aspect views of an object that has already been
seen.

Our concern is to process a time sequence of images and to model objects and/or background from
a time sequential image sequence in a compact form suitable for recognition. This is closely related to
bandwidth compression problems 4-6 in image transmission. However, we are not concerned with the
visual quality of the result, but rather the ability of the model produced by the compression technique
to retain information useful for recognition purposes. Such problems can be optimally solved by using a
truncated Karhunen-Loive 7-10 (KL) expansion of the process. In this case, the process is represented
by a set of basis vectors and coefficients associated with each basis vector. One such set of basis vectors
and coefficients is the eigenvectors and eigenvalues of the covariance matrix of the process. This is the
KL expansion of the process.

Section 2 reviews the KL expansion, several techniques to efficiently compute it for an image sequence
and shortcomings associated with each. A new and efficient algorithm is then advanced (Section 3) and
we discuss the use of this algorithm for various new applications (Section 4). These applications includes
three dimensional object modeling, background modeling, novelty detection, novelty filtering, tracking
and the ability to determine the type of new information in new frames of time sequential imagery.
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2 KL description of time sequential imagery

Given a process with samples xi (where i - 1,...,I) which are a sequence of I lexicographically
scanned images, assume that we wish to find an optimum compressed description of that sequence. One
description of a process is a series expansion in terms of a set of basis vectors, the most obvious being the
sequence of images itself. The optimum series expansion description of the sequence k is the Karhunen
LoZve expansion 8

I

k=1

where 'bk and Ak are the normalized eigenvectors and eigenvalues respectively of the sample covariance
matrix C of the sequence of input vectors. The eigenvector and eigenvalue pairs are ordered in terms
of descending ei renvalues. In an optimum series expansion representation, the basis vectors must be
mutually orthof,onal to ensure that the information contained in each is unique. This is obviously the
case when the 'Iasis vectors are eigenvectors.

For an entire time sequential process, energy is a good measures of activity or information. In some
recognition tasks, the mean of a process does not contain significant discrimination information and this
information should not be included in the optimum description. The mean information can be ignored
by using the variance instead of the energy of the process as a measure of information. The variance
of the process is the sum of all the eigenvalues. If the basis vectors are orthogonal, then the amount
of relative information preserved in each eigenvector is given by its eigenvalue normalized by the sum
of all the eigenvalues. If the mean information is important, then we can preserve it in the optimum
representation by using the correlation matrix R of the process instead of the covariance matrix C.
When using R, the energy of the process is the sum of the eigenvalues, and as before we can calculate
the relative amount of information in each eigenimage, where the information measure in this case is the
energy of the process.

The KL expansion of a process is attractive since the set of basis vectors can easily be ordered in
terms of the information content of each. (If the eigenvectors are orthonormal, then the information
content is given by the eigenvalues associated with the eigenvectors.) The eigenvalues provide a measure
of the information content that allows us to make decisions on the number of basis vectors and which
basis vectors to retain to store a certain percentage of the information in the sequence. We will make use
of this in our time sequential work. If the expansion is truncated and only the basis vectors associated
with the largest eigenvalues are kept, then this truncated KL expansion is the minimum mean square
error representation of the process (and is better than any other series expansion with the same number
of basis vectors).

Even if we only desire the set of K eigenvectors associated with the K largest eigenvalues, this
computation is generally too complex for an image sequence. To see this, consider a sequence of N x N
two-dimensional images, each of which is lexicographically ordered into a one-dimensional N 2 element
vector. If N is typically of order 256, the covariance matrix is large (N 2 x N 2  64K x 64K), making
the direct calculation of its eigenvectors very difficult. The covariance matrix is also highly singular
with a rank much less than its dimensions. Recursive algorithms, such as the simultaneous iteration
method 11 and stochastic gradient ascent method 8, have been suggested to ease the computation of
the eigenvectors of this large matrix. Although they allow more efficient calculation of the first few
eigenvectors, the computations are still excessive (since convergence is slow and often does not occur)
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and both algorithms require the storage of all of the images in the sequence. This very excessive storage
requirement is what we want to avoid by compression of the data.

When the number of images I in the sequence is much smaller than the dimension N 2 of each image,
an economical technique to obtain the eigenvectors of C uses singular value decomposition (SVD) as
we now note. Since the covariance matrix has a rank of at most I, there are at most only I nonzero
eigenvalues and those eigenvectors corresponding to the zero eigenvalues are not of interest, since they
contain zero information. The simplified 12 algorithm to compute the eigenvectors and eigenvalues
using SVD is to form the (VIP) matrix V of the image sequence with the mean removed, calculate its
eigenvectors and from them obtain the eigenimages of the covariance matrix. We now highlight this
algorithm.

The VIP matrix with elements v(l,m) is given by

v(l,m ) = v(m,l) = (1/I) (xI - m)T(xm - M). I,m = 1,...,! (2)

where m is the process mean. The VIP matrix is I x I (which is much smaller than C), hence calculation
of its eigenvectors Oi and eigenvalues -yi (i = 1, . . ,I) is simple. We use the term eigenvector to refer
to the eigenvectors of the lower dimensionality VIP matrix. We use the term eigenimage in referring to
the eigenvectors of the higher dimensionality covariance matrix C. The larger dimensional normalized
eigenimages i and their eigenvalues Ai can be obtained from the eigenvectors 0i, their eigenvalues 7/
and the original images using

1 I
- -ZOxi

k=I

A, = - (3)

where Oi is the k-th element of the i-th eigenvector 0i. The eigenvalues -yi of the VIP matrix and the
eigenvalues A of the covariance matrix are equal. Thus, the eigenimages of C with nonzero eigenvalues
are linear combinations of the input images with weighting coefficients given by the elements of the
corresponding eigenvector of V as in (3).

The number of images I in a sequence is still large (1800 for only a one minute sequence of video data).
Thus the eigenvector solution of the reduced dimensionality I x I eigenvalue problem described above is
still quite difficult and we still need to store all of the images. However, in most time-sequential image
sequences and applications, a significant number of the eigenvaues of V are also zero or sufficiently close
to zero to be ignored (since the VIP matrix is also highly singular or numerically ill conditioned, because
of the natural redundancy in an image sequence). In this case (which is typical of image sequences),
we can provide a quite significant compression of many images in a sequence, thus allowing use of the
recursive SVD algorithm 13, 14 . As an example of when this occurs, consider a time sequence of images
in which the only difference between successive frames is a slow changes in the scale, aspect or rotation
of an object in the scene. To quantify this situation, we generated four sequences of four different rolling
aircraft flying in a straight line with only roll differences between frames. Each sequence had 36 images
at 10 degree intervals of roll, with the aircraft centered in each frame. For these data, we found that
3 eigenimages contained enough information to correctly recognize the aircraft in any roll orientation
in the sequence (and could also recognize a test set of 12 images at orientations not included in the
training set). We therefore concluded that the rank of the VIP matrix and hence also the rank of the
covariance matrix for this process was close to 3, which is much smaller than the number (36) of training
images. Since we correctly classified the aircraft at roll orientations not presented in the training set,
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we concluded that if more training images were included in the training set, that the rank of V and C
would still have been close to 3.

For such cases when the rank K of a process is much less than I and is known in advance, a recursive
SVD algorithm 13,14 can be used to estimate the K dominant eigenvectors and eigenimages of the
process (with a required storage of no more than K images). When K can be 5 - 10 out of a sequence of
I = 1800 images, this is quite significant. To start the algorithm, the first K + 1 images in the sequence
are used to calculate an initial set of K + 1 eigenimages using SVD. The last eigenimage (the one with the
smallest eigenvalue) is assumed to have a small associated eigenvalue and is discarded and the dominant
K eigenimages are used as an initial estimate of the first K + 1 images in the process. As a new image
arrives (images K + 2, etc), it is combined with the K eigenimages weighed by the square root of their
eigenvalues and a new set of K + 1 eigenimages is formed. The smallest eigenimage from this set is then
discarded. This process of updating a set of K eigenimages is continued until the process is completed,
at which time the resultant K eigenimages are used as a description of the image sequence.

This algorithm is storage efficient, since only the K most significant eigenimage estimates are saved
and since each image is seen only once. It is also computationally efficient, since the eigenvectors and
eigenvalues are calculated from the smaller VIP matrix. However, it has three shortcomings. First, a
priori information is required that the process has a small rank and a good estimate of this rank is needed
(i.e. the number of eigenvectors K to be saved). Such information is often not available. Secondly, there
is no clear relation between K and the amount of information retained in the final set of eigenvectors,
because information is discarded at each iteration. Therefore, the final K eigenimages obtained are only
approximations of the K eigenimages of C associated with the largest eigenvalues. The third problem is
that the process must be zero-mean. If the process is not zero-mean, then all of the images have to be
collected and stored before the mean vector can be estimated and subtracted from each image at each
iteration step (this is not realistic).

We now discuss these issues further and present (Section 3) a new algorithm that overcomes these
disadvantages and yet retains the computational and storage advantages of recursive SVD.

3 Novelty detector and filter algorithm

We do not use zero mean data (because the computation of the mean of the process requires excessive
storage as noted above). In our applications the mean information is important (for example, to estimate
the image background) and we have found that keeping the mean information does not influence our
recognition applications. We will use the VIP matrix of the non-zero-mean data. In this case, its
eigenvalues equal those of the correlation matrix R rather than the covariance matrix C. The KL
expansion uses the covariance matrix and compresses information to preserve maximum covariance of
the process which leads to a minimum least square error representation of the process. Calculating
the eigenimages of the correlation matrix rather than those of the covariance matrix is equivalent to
compressing information to preserve maximum energy rather than maximum variance of the process
and also leads to a minimum least square error representation of the process 9,10. The rank of the
correlation matrix R is one more than the rank of the covariance matrix C, since it also contains the
mean or background information. When we use the VIP matrix of R, we are not computing the KL
basis set of the process, but are determining a related (and equally useful) basis set with one additional
vector that contains the background information.
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We refer to our new algorithm as a novelty detector and filter (these terms will be clear shortly). We
monitor the information content (process energy) and ensure that a given percentage of the information
in the image sequence is retained in our eigenvector representation. This is a more direct measure than
retaining a fixed number K of eigenimages. To achieve this, we allow the number K of eigenimages
retained to vary and to adapt to the data (i.e. we adapt the number of significant eigenimages to the
given image sequence and application and do not fix K as is required in recursive SVD). We provide two
novelty measures (discussed below) for use in controlling the processor. We also discard new input images
(with negligible information) rather than eigenimages (as is done in recursive SVD) and we control this
by a novelty detector. We now discuss our algorithm and detail these issues.

Adaptive Recursive SVD Algorithm

Step Description
1 Initialize the iteration counter i = 1 and the sequence counter j = 1

2 Initialize the covariance rank estimation K1 = 1.
3 Read the first image x, to form the first estimate of the eigenimages of the process.
4 Increment the iteration counter i
5 Increment the rank estimate Ki = Ki-I + 1
6 Increment the sequence counter j and read the next image in the sequence xj.

7 Form the Ki x Ki VIP matrix Vi as detailed in Eqs (4) and (5).
8 If the current image is not novel as indicated by the novelty detector in Eq (8), then

go to step 6
9 Form the K eigenimages and eigenvalues from the eigenvectors and eigenvalues of

Vi according to Eq (9). This updates our eigenimage set.

10 Estimate the rank of the process Ki using Eq (11). Determine if one should add an
additional eigenimage or discard the excess eigenimages. Set Ki = Ki.

11 If there are more images in the input sequence, then go to step 4

Table 1: The Adaptive Recursive SVD Algorithm

Our adaptive recursive SVD algorithm is summarized in Table 1. Steps 1-3 initiate the process and
read the first image (K1 = 1). This image is the initial representation of the process and is therefore
used as the first eigenimage. Its eigenvalue is its squared modulus. We first provide an overview of
the algorithm. The iteration counter i (step 4) denotes the number of times that the eigenimages have
been updated. The sequence counter j (step 6) denotes the number of the current input image in the
sequence. This can differ from the number of iterations i, since input images with negligible information
are discarded, without updating the set of eigenimages and hence incrementing i. In steps 4-6, the
number of iterations is incremented and so is the rank estimate K (to allow for the possibility of adding
an additional eigenimage) and a new image is read. If the new image is not novel (step 8), then the
algorithm returns to step 6, reads a new image and proceeds. Note that K is not incremented for this
image and that K is only incremented if the input image is novel (only step 11 returns the algorithm to
step 4). Also, note that at step 10 we discard negligible eigenimages and hence reduce K. Thus, K can
change constantly (throughout even one iteration) and Ki denotes the present rank estimate.

Let us assume that at the end of iteration i = 4, we have Ki = K 4 = 4 (i.e. a rank estimate of 4). In

5



the fourth iteration, we have a K 4 x K 4 = 4 x 4 VIP matrix and its 4 eigenvectors Oi, = 04,1,1 = 1,...,4
(where Oi, denotes the /-th eigenvector at iteration i) and 4 eigenvalues Ai, = A4,,l = 1,...,4 (where
Ai, denotes the 1-th eigenvalue at iteration i). Next, in iteration 5, we enter step 4, where we increment
Ki and obtain K 5 = 5 (step 5) and read in a new image (step 6). We compute the new 5 x 5 VIP matrix
(step 7) in Eq. (2) and compute its eigenvalues and eigenvectors. This operation is greatly simplified
as we now detail. At the present iteration, only one new image is present and thus Ki - 1 of the Ki
vectors forming the new VIP matrix V i are already orthogonal (since they are the prior Ki - 1 retained
eigenimages). Specifically, the top-left Ki- 1 x Ki- 1 submatrix of V i is diagonal and its known first K- 1
diagonal elements are,

vll)= iAi-,, 1 = 1,...,K,- 1. (4)

Thus, the only new elements in the VIP matrix are the elements in the last row vi(K, 1) and column
vi(l, K). As in recursive SVD, the normalized eigenimages have to be weighed by the square root of the
corresponding eigenvalues. From (3), we see that this weighting is done automatically in SVD. Since the
VIP matrix is symmetric, we need only concern ourselves with its last row or column. These elements
are given by

vi(l, K) = vi(K,l) = (1/i) xTDi_1, 1 - 1,...,Ki - 1
vi(K,K) = (1/i)xTxj

They are easily calculated as the VIP of the new image xj and the prior eigenimages Oi-l,k and only Ki
(a small number) VIP calculations are needed. This completes step 7.

In step 8, we determine if the new image should be used or not (i.e. is it novel). We now discuss the
motivation for this step. When modelling a very unconstrained process such as an aircraft, one would like
to select the training images carefully to avoid cluttering the problem with too much data. There are two
advantages in reducing the sample data set. First and obvious, by limiting the number of input images,
we are limiting the dimensionality of the problem and therefore its computational complexity. Second,
a lower dimensionality problem ensures better conditioning of the VIP matrix and therefore reduces the
computational resolution (or precision) requirements in the algorithm. In step 8, we determine whether
the input image xj contains enough significant information to merit its inclusion in the training set. If
the image does not contain statistically significant novel information, then we discard it (step 8) and
consider the next input image (step 6). We now discuss how to determine this measure of novelty.

The last column (row) of the new VIP matrix Vi are the VIPs of the new image xj and the prior set
of eigenimages C.-1,k, k = 1,..., Ki- 1. The diagonal elements of Vi are the modulus of each eigenimage
and are unchanged except for the last diagonal element which is the modulus of the newest input image
xi. From these elements of Vi we can compute the angle between the xj and each one of the set of
eigenimages. The cosines of these angles are the projections of a unit vector along the direction of xi
onto each of the eigenimages. The set of eigenimages forms a normal basis set in Euclidean space and
therefore the squares of these projections of the unit vector can at most sum to one. If xj is contained in
the set of eigenimages, then the squares of the projections will sum to one. If xj is orthogonal to the set
of eigenimages, then the squares of the projections will sum to zero. The sum of the squares is therefore
a measure of the percentage of xj that is contained in the set of eigenimages (a correlation coefficient)
and can therefore be used to obtain a novelty measure ni. We first calculate the direction cosines ai

= xr,.i-.,k _ vi(k, Ki)
i xj= 1x. -I I -J Vvi (Ki, Ki) vi(k, k) (6)
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and subtract the sum of their squares from one to obtain the novelty measure ni

ni K- .i v (k, )(7
Ek=1 ' E= v,(k, k) v,(K,, Ki) (7k--1 k--I

Note that there is no need to calculate the eigenvectors and eigenvalues of the VIP matrix Vi in order
to calculate this novelty measure. Rather, we only require the VIPs. A novelty detector for image xi
can now be defined by comparing the novelty measure ni in (7) to a threshold Td

fNxi} true if ni > Td (8)
false otherwise

When N{xj} is true, image xj is novel. If Nfxj} is false, we discard image xj and return to step 6. For
Td in (8) we typically use 0.01-0.05. This concludes step 8.

If we determine (step 8) that xj is novel, we now include it in our data (eigenimages). We next
determine if we should add an additional eigenimage and increment Ki. We first calculate (step 9) the
new set of Ki eigenimages and eigenvectors from the VIP matrix Vi and the prior Ki - 1 eigenimages.
Since Vi is small, real and symmetric, its eigenvectors and eigenvalues are easily calculated in real-time
by techniques such as the Jacobi algorithm or the QR-method 15-18. The set of Ki new eigenimages fi,
(eigenimage k at iteration i) can be obtained from the eigenvectors 0 i,k of the new VIP matrix (where
0Lk is the/-th element of the k-th eigenvector of V at iteration i), the Ki - 1 prior eigenimages ti-1,

and the new input image xj by
K-1 ',z, + OKx X.(9

Oi,k ()i-,I
1=1

From (9), we see that computing the eigenimages from the eigenvectors of Vi is simple. It involves only
additions of the eigenimages Ci-I,k and the new input image xj, weighed by the eigenvector elements

! ,k. All pixels of each image are weighed by the same value. Calculation of the eigenimages and their
eigenvalues completes step 9.

In step 10 we now determine how many of the new eigenimages (step 9) to keep. During each
iteration, we increment the rank estimate (step 5) and compute a new set of eigenimages (step 9). Since
the new image information is included (potentially) in all the new eigenimages, we have reorganized and
redistributed the present data by computing the new set of eigenimages. The rank of the new sample
correlation matrix Ri (made up of all novel images thus far) does not necessarily increase by one, even
if the new image contained a significant amount of new information. We now detail how we form an
estimate of the true rank of Ri. Each eigenvalue of Vi when normalized by the sum of all the eigenvalues
indicates the fractional information in the corresponding eigenvector. Since the eigenvalues of Vi equal
those of RI, this measure of fractional information also holds for the k = Ki eigenimages ti,k. (We
assume that the information discarded at each iteration is negligible.) The fraction F,k of information
in eigenimage k is

Fik - Ak (10)

where Ai,k is the k-th eigenvalue at the i-th iteration and where the denominator normalizes this by the
sum of all Ki eigenvalues at iteration i. If the fractional information in the last new eigenimage F,,K, is
close to zero, then the rank of Ri is less than Ki. An estimate of the rank Ki of YI is given by

InI

Ki = min m such that , Fi,k > T1, (11)
k=I
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where T1 is a threshold that determines the information capacity of the filter (algorithm). When T = 1,
we are computing the true set of eigenimages of R and are retaining all information in the process in the
final set of eigenimages. With T < 1, we are limiting the information capacity of the set of eigenimages,
by purposefully discarding statistically insignificant information. T has to be chosen such that Ki in
(11) remains small, while maintaining a high information capacity. Typical values for T are 0.95 in the
case of segmentation and 0.99 in the case of novelty filtering (see section 4).

After we have made the new rank estimate Ki, we discard the Ki - Ki excess eigenimages and set
Ki = Ki (step 10). This is different from the recursive SVD algorithm 13,14 which always removes
an eigenimage. We allow for not removing any eigenimages at all or for removing several eigenimages,
should this be necessary. We then form our novelty filter i (our present description of the process) as
a weighted sum of the retained eigenimages.

Our main concern is to first check the novelty of the input image (step 8), before initiating the
calculation of tl.e eigenvectors and eigenimages and to allow for an increase in Ki in such cases (step
5). However, w, do not recursively increase the number of eigenimages (Ki), unless the storage capacity
of Ki eigenimz ges has been proven to be too low, as indicated by the fractional information in the
last eigenimag±s. There are many variations in the use of the parameters in this algorithm (several are
addressed and quantified in section 4). For example, we can monitor ni and when it remains small and
constant, we can feel comfortable that we have modeled the process and that the process is repeating
(this could, for example, correspond to a repetition of prior aspect views of an aircraft). In this case, the
learning phase of the process modeling is complete, no more vectors are added and no further eigenvector
and eigenimage calculations are performed.

@i-1 I )i--1Estimate

0 C-1ni 
>Td

-Vi _ Novelty
Detector

V,, xj Novelty
t=t+

Filter xJ

4bi-1 I Ki=K.-I+I

Figure 1: Adaptive Recursive SVD - Block Diagram

4 Applications and case studies

Figure 1 shows the block diagram of our novelty processor. The novelty filter ij is the truncated
series expansion of the current image in terms of the eigenimage basis set (the present model of the
process):

E Ak V(k,k)j---- j-



The novelty detector with a threshold Td (- 0.001 typically) declares each frame novel if it contains
enough new data. We form the difference ]xj - Ril of the input frame and the novelty filter to show
the new data in the present frame. In this novel image frame we show pixels for which the difference
Jxj - jI is more than T! (typically 8 out of 256 gray levels). Note that the new image is partly
present in the first and other eigenin'ages and not necessarily in just the last eigenimage (with the least
significant eigenvalue). We use F,k (the fractional amount of information present in each eigenimage)
to decide whether to increase the number of eigenimages necessary to describe the process. The amount
of fractional information in the retained eigenimages should be more than the information threshold TI.

Figure 2 shows a selection from a sequence of 24 frames (128 x 128 pixels with 8 bits of gray scale)
with two people moving in the background and one in the foreground. The sequence spans 24 seconds -
one video frame per second. This sequence was used as input to our novelty processor with Td = 0.002
and T1 = 0.95. In Figure 2 the left figure is the present input image and the center figure is the novel
data (with present image pixels different from Rj by more than 8 gray levels). Miscellaneous data are
shown on the right. For Figure 2a, frame 1, V1 denotes its energy; n1 = 1 (it is all new, since it is
the first frame); F1,1 = 1 (since there is only one eigenimage) and it becomes eigenimage 1. Frame 2
(Figure 2b) has negligible new information (n2 = 0.0018). The v2(1, 1) entry is less than v2(2,2) since
the energy in frame 2 is slightly larger than that in frame 1. The novel image shows new data (people,
movement, their old and new positions), but it is not sufficiently new. In frame 4 (Figure 2c) the data
is now sufficiently new (n 4 = 0.0025) with respect to the eigenimage (frame 1) since the people have
moved more. The process model (eigenimage 1) is updated, but no second eigenimage is needed since the
amount of information in it is small (F 4,2 = 0.0006). Every few frames, the process model is updated,
but only one eigenimage is sufficient to store all the information (since T = 0.95). This continues until
the person enters the foreground in frame 8 (Figure 2d). Now and hereafter each frame is new, the
process model (one eigenimage) is updated and only ore eigenimage is sufficient to satisfy T = 0.95.

In frame 2 (Figure 2b) several background pixels appear in the novel image because of camera syn-
chronization differences. The background behind the people and the people are both novel as seen in the
novel data image. The present image is declared novel when enough pixels differ by enough to exceed
Td = 0.002. No background pixels appear in the novel image of frame 3 (not shown) since the camera
was synchronized with frame 1 and therefore also with the current and only eigenimage (which is the first
frame). When frame 4 enters it is found to be novel and is combined with the current eigenimage to form
two new eigenimages (both contain information from frame 1 and frame 4). The dominant eigenimage
contains more than T1 = 95% (F 4,1 = 0.9994) of the information and therefore the other eigenimage is
discarded. In the next several frames (e.g. frame 8, Figure 2d) the energy in the first eigenimage increases
(due to the added data) and thus v8(1, 1) increases. The VIP values vi(l, m) shown are all divided by the
number of updates performed (i.e. the number of novel frames found thus far). The people moving in
the background occlude the scene behind them. These people, as seen in the first frame (Figure 2a, left)
are also in the eigenimage when frame 2 enters. The pixels where they were in frame 1 (background in
frame 2) as well as those where they are now are declared novel (Figure 2b, center). These novel areas
overlap in Figure 2 (center). In frame 4 (versus frame 1) the novel areas overlap much less and thus
more pixels are novel; the new information exceeds Td and triggers an update. The background behind
the people has been seen once in both of these areas and thus the new first eigenimage contains both
background and people information in these areas. In subsequent frames the people in the background
are not new enough to trigger an update (since only the people are new and not the background behind
them). It is not until frame 8 when the large person enters the foreground that another update is done.
While this person walks across the foreground each frame is considered novel, but only one eigenimage
was sufficient.
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The data obtained (Figure 2, center) shows the new information per frame and its location. When all
frames are seen we find that the system (the eigenimages) remembers moving parts with high contrast
(e.g. parts of the person in the foreground) for several novel frame updates, but it remembers lower
contrast moving parts (e.g. the background people) for fewer frames. This occurs because the eigenimage
is a linear combination of the previous eigenimage and the input image when it is novel. These moving
parts are averaged out after a few updates since they are replaced by background in the new update
frames.

In Figure 3 we show the results when we increase T1 = 0.9995 and decrease Td = 0.001, using the
same input sequence as in Figure 2. This larger T forces the novelty filter to retain more information
- more than one eigenimage. Figure 3 shows selected image frames and the output of the algorithm for
this sequence. The left image is the input frame. The center image is the novelty date and the right
image (if present) is the first eigenimage; it is shown when an update occurs. Frame 2 (Figure 3a) shows
the moving persons (center) and as before the first eigenimage is the first frame. In subsequent frames
the first eigenimage is updated, but only one eigenimage is retained. Figure 3b (frame 5) shows that
the dominant eigenimage now contains only a little of the background people. The foreground person
enters in frame 8. In frame 10 the first eigenimage (Figure 3c, right) contains only background. In all
subsequent frames (frame 8 etc.) a second image is added; this eigenimage will contain the person and
the first eigenimage will contain the background.

We now detail why the first eigenimage in the novelty filter contains the background information
(and thus its novelty data is the moving object information). As subsequent novel frames are added to
the process model, only a fraction of the new full image is added and thus the background is reinforced
in each new image and the person is not reinforced and becomes lost (in the first eigenimage). Thus,
as the Figure 3 data shows, the first eigenimage gradually forgets the moving objects (Figure 3, right)
since when new frames are added the background is reinforced much more than are the moving persons.
We could (if desired) modify the algorithm (using the centered novelty image) to add new data and not
background to the process model. In the sequence in Figure 3 up to three eigenimages are kept. The
lower Td causes more updating than in Figure 2. This results in a cleaner first eigenimage (since more
updates, dominated by additions, reinforces the background earlier in the sequence) and better novelty
data (a cleaner image of the moving person, not smeared by the background) results.

Our third test used five aircraft in different roll orientations and no background. The algorithm keeps
2-3 eigenimages per class when a novelty detector ni was formed for each class (with T1 = 0.97 and
Td = 0.06). These five novelty filters were then used on three new input images of each aircraft (at
orientations not present in the training set). The outputs of the five novelty detectors (one per class)
are shown (Table 2, columns 1-5) and the class estimate (smallest ni) is shown in columv. 6. As seen
100% recognition was obtained.
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Mig I DC-10 Mirage Phantom Boeing-737 Classification Description

0.7579 0.5555 0.7667 0.6644 0.0609 Boeing-737 Boeing-737 50
0.7169 0.5044 0.7136 0.6060 0.1721 Boeing-737 Boeing-737 450
0.6393 0.4457 0.6852 0.6003 0.3981 Boeing-737 Boeing-737 850
0.6772 0.0606 0.3645 0.5108 0.5122 DC-10 DC-10 50
0.5963 0.1530 0.3524 0.4036 0.5087 DC-10 DC-10 450
0.5542 0.3015 0.5787 0.5303 0.4350 DC-10 DC-10 850
0.0694 0.5239 0.3765 0.2945 0.6935 Mig Mig 50
0.1397 0.5319 0.3870 0.3180 0.6768 Mig Mig 450
0.1007 0.5990 0.3501 0.4777 0.6921 Mig Mig 850
0.5957 0.3074 0.0441 0.4167 0.7267 Mirage Mirage 50
0.4594 0.4066 0.0936 0.2789 0.7124 Mirage Mirage 450
0.2981 0.5884 0.1925 0.4499 0.6893 Mirage Mirage 850
0.4821 0.4190 0.2982 0.0533 0.6097 Phantom Phantom 50
0.3135 0.4267 0.3154 0.1657 0.6124 Phantom Phantom 450
0.2451 0.4591 0.3275 0.2337 0.5567 Phantom Phantom 850

Table 2: Aircraft Classification Results
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