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THE REASON FOR PERFORMING THIS WORK is that experience with the Target 
Detection Routine (TADER) model, used to compute probabilities of operational 
target acquisition (POTAs) in the Target Acquisition Study III (TAS III), has 
indicated the need for further methodology enhancement. An improved target 
acquisition methodology is needed to treat detection perishability and 
signals intelligence (SIGINT) for improved interface with the Nuclear Fire 
Planning and Assessment Model III (NUFAM III). The methodology should also 
be developed to effectively use the updated sensor performance data base to 
be generated by the Target Acquisition Study IV (TAS IV). 

THE PRINCIPAL FINDINGS of the work reported in this paper are: 

(1) A new target acquisition measure, the steady state probability of 
target acquisition (SPOTA), was developed to better treat acquisition as a 
function of elapsing time. 

(2) A new target acquisition methodology, denoted herein as the candidate 
TAME methodology, was designed to apply projected sensor data from TAS IV to 
generate SPOTAs for target units. The new method is a stochastic simulation 
which samples acquisition status from dynamically created target acquisition 
and retention functions. These functions are composites of single environ- 
ment component acquisition/retention functions generated by TAS IV. The new 
methodology appears implementable as a computerized process, given that the 
projected TAS IV products are completely defined. 

(3) The candidate TAME methodology is closely correlated with NUFAM 
acquisition events and will enhance assessments made with that model. 

(4) The candidate TAME methodology implicitly treats SIGINT through the 
use of algorithms from TAS IV based on nested results of higher resolution 
models. The effects of varied scenario environments are explicitly treated 
in the TAS IV products which are input to the methodology. 

THE MAIN ASSUMPTIONS are: 

(1) The order of battle is well known prior to determination of the 
acquisition probabilities. 

(2) The sensor data catalog of the TAS IV Study will be sufficiently 
developed to provide information on sensor characteristics and capabilities 
for methods developed. 

(3) The validity of an acquisition methodology depends on the validity of 
the input sensor data. 



THE PRINCIPAL LIMITATION of this paper is the reliance on the future 
availability and suitability, for the new methodology, of algorithms from the 
TAS IV Study. 

THE SCOPE OF THE STUDY includes the evaluation, and implementation, where 
feasible, of methodology for producing target acquisition measures which 
enhance the use and applicability of NUFAM and other force assessment models. 

THE STUDY OBJECTIVES were to assess approaches for, and feasibility of, the 
following methodological improvements in target acquisition: 

(1) Development and use of a single glimpse detection capability and 
variable search time to represent steady state acquisition probability. 

(2) Improved integration with NUFAM at the US Army Concepts Analysis 
Agency (CAA). 

(3) Use of conditional probability distributions to better represent 
environmental degradation for a scenario. 

(4) The automating of computations for methodologies developed. 

(5) A SIGINT methodology. 

THE BASIC APPROACH was to: 

(ij Use a literature search to define the scope and nature of the 
acquisition modeling problem. 

(2) Study acquisition modeling techniques in existing models and research 
papers. 

(3) Select and/or design a "best" methodological approach which: 

(a) Reduces assessed deficiencies of the TADER method. 

(b) Effectively applies input data to be generated by TAS IV. 

(c) Can effectively support current and future versions of NUFAM. 

THE STUDY SPONSOR is the Director, US Army Concepts Analysis Agency. 

THE STUDY EFFORT was conducted by Mr. Walter J. Bauman, Force Systems 
Directorate, US Army Concepts Analysis Agency. 

COMMENTS AND QUESTIONS may be addressed to the Director, US Army 
Concepts Analysis Agency, ATTN: CSCA-FSC, 8120 Woodmont Avenue, Bethesda, 
MD 20814-2797. 

Tear-out copies of this synopsis are at back cover. 
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CHAPTER 1 

INTRODUCTION 

I-l. CONTEXT. This study examines the problem of modeling the performance 
of a comprehensive array of sensors, deployed throughout a large combat force 
(at least corps level), which seek to acquire units (company, battery, or 
battalion) of an opposing force for targeting. This modeling problem treats 
only detecting and detectable entities. The interactive effect with combat 
and communications is not directly considered. The intention is to assess 
the susceptibility of a target unit to acquisition in a brief representative 
period in the combat scenario timeframe. These results may then be used by a 
combat model to assess the effects of target acquisition in terms of the 
availability of targets for attack. 

1-2. BACKGROUND 

a. Target Acquisition in Nuclear Fire Models at the US Army Concepts 
Analysis Agency (CAA). The principal nuclear fire model used at CAA to 
assess tactical nuclear requirements is the Nuclear Fire Planning and Assess- 
ment Model III (NUFAM III). NUFAM III simulates a two-sided exchange at 
corps level. An offline methodology, the Target Detection Routine (TADER) 
was created at CAA to analytically calculate the net target acquisition per- 
formance of a force of deployed sensors seeking a specified type of target 
unit. These net performance measures, denoted as probabilities of opera- 
tional target acquisition (POTAs) are then input to NUFAM in the form of 
lookup tables. Given a deployed force of sensors observing a specified type 
of target unit, the POTA for that sensor force against the specified unit is 
defined as the probability of (at least one sensor of the force) detecting 
recognizing, and locating the target unit at (specified) prescribed distances 
from the forward line of own troops (FLOT) during a random, but limited 
period of time in a day of intense combat. 

DOT?* /""^^ncAM ^T?"^;!^^* '^^^ ^'^^^^  methodology currently used to calculate 
POTAs for NUFAM III has evolved over three CAA target acquisition studies 
described in Table 1-1: the Target Acquisition Study (TAS), Target Acquisi- 
tion Study II (TAS II), and Target Acquisition Study III. Although the con- 
cept of a POTA IS used in the same way in all of the above studies, each one 
developed its own method for calculating it. A manual acquisition methodol- 
ogy was used by TAS. TAS II applied a computerized method denoted as the 
Probability of Operational Target Acquisition Routine (POTAR). The TADER 
methodology of TAS III is a new method which uses an enhanced TAS II input 
data set. TADER is a computerized (on the UNISYS 1100/82), analytic model 
developed at CAA designed to compute the probability of operational target 
acquisition (POTA) of generic military units scanned by opposing sensor 
arrays over a fixed search period. TADER assigns lucrativeness threshold 
inputs to target units to filter out detections not suitable for tarqetinq 
The model is documented in CAA-TP-87-9 (Ref. 1) and CAA-D-87-8 (Ref 2) 
!i'"Sn'^.^T"^^^'°" °^ ^^^^"^ ^"^ presented in Appendix D. The application 

of TADER IS documented in the TAS III Study Report (Ref. 3) 
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Table 1-1. Target Acquisition Studies Performed at CM 

Study 

TAS I 

Year 
completed 

1976 

TAS II   1979 

TAS III 1987 

Scope of forces 

US divs vs Red tgts 
3 Red divs vs Blue tgts 

US corps vs Red tgts 
NATO corps vs Red tgts 
6 Red divs vs Blue tgts 

US corps vs Red tgts 
NATO corps vs Red tgts 
NATO divs vs Red tgts 
9 Red divs vs Blue tgts 

Sensor 
types 

STAND 

STANO, 
SIGINT 

STANO 

Acquisition 
methodology 

Manual method 

Computerized 
STANO method 
(POTAR), SIGINT 
offline 

Computerized 
STANO method 
(TADER) 

c. Assessment of TADER Deficiencies. Experience with TADER revealed the 
following shortcomings In model and data attributes. 

(1) Unavailability of Updated Input Data. Updated input data Is not 
readily available. TADER input requires a comprehensive set of performance 
measures (detection probabilities) for a single sensor observing a single 
target element (e.g., a truck) over a wide spectrum of range and environ- 
mental conditions. Degradation factors for sensor-target element pairings 
for various attenuating environmental and system conditions also have to be 
constructed. TAS III used an existing data base created for the TAS II Study 
and. In the absence of new data from higher resolution sources (e.g., field 
tests), made selected subjective adjustments to perform system updates. The 
origin of the values in the TAS II data base are not sufficiently well 
defined to perform an audit trail. Since the TAS II data, created in (or 
before) 1978, is a decade old, an update is In order. The absence of a 
comprehensive input data base to TADER limits both the scope and credibility 
of future products of that model. 

(2) Scenario-restrictive Input Data Base. Available Input data is 
scenario-restrictive. The Input data base available from TAS II, which was 
also used in TAS III, contains detection probabilities for a single sensor 
observing a single target element only for a fixed 2-hour duration of search. 
Output POTAs are therefore constrained by that input to represent effects of 
only a 2-hour search period. Modeling of a different duration of search 
requires construction of an Input data base configured to that duration. 
Thus, TADER logic is restrictive in that information accumulation over time 
must be treated offline during input preparation. As noted above, new Input 
data, and the means (or models) for generating It, are not currently 
available at CAA. 

(3) No SIGINT Methodology or Data Base. There Is no Input data or 
methodology for assessing signals Intelligence (SIGINT). In order to 
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comprehensively represent the spectrum of target acquisition surveillance 
assets, a method and data base for assessing SIGINT should be devised and 
integrated with the assessment methodology for non-SIGINT sensors. 

(4) Simplistic Modeling of Environmental Degradation. Environmental 
and system degradation effects are crudely modeled. In general, degradation 
from conditions such as weather, crew performance, and smoke are represented 
as notional "average" factors expressed in terms of the fraction of inherent 
baseline performance (detection capability) remaining after application of 
the degradation effect. Thus, a degradation factor in TADER is a multiplier 
of single sensor or single system performance. Such a simplistic approach 
ignores the variation in effects which occurs in the real world. 

(5) Constraints Imposed on NUFAM Improvements. The rigid structure of 
TADER limits representation of target acquisition in NUFAM III. NUFAM III, 
used to assess tactical nuclear requirements at CAA, is undergoing a contin- 
ual improvement/upgrade process. The scope of feasible improvements is con- 
strained by the inflexibility of the TADER POTAs. NUFAM treats target units 
as possessing attributes of mobility and acquisition perishability. Acquisi- 
tion perishability is not addressed in TADER. Acquisition perishability 
should be incorporated into any target acquisition methodology which suooorts 
NUFAM III. yjr       HH --^ 

(6) Inadequate Treatment of Elapsing Search Time. Time is not explic- 
itly treated in TADER. As noted above, time is only implicitly considered in 
the definition of detection input data for a single sensor observing a single 
target element. These data must be based on the specific search period 
applicable to the scenario. The TADER methodology is basically an expected 
value assessment of acquisition status at the end of a predefined (2 hours 
for TAS III) search period. Sensor detections are not integrated over time. 
Instead, the TADER single sensor detection input data must have previously 
been integrated over time. TADER combines single sensor-single element 
detections by assuming statistical independence of separate detections. 
Flexibility and credibility of TADER are degraded by the absence of a time- 
dependent detection methodology in TADER. 

d. TAS IV. In order to improve the range and credibility of target 
acquisition methodology in support of NUFAM III, the Target Acquisition Study 
IV (TAS IV) was created at CAA. Originally configured to be a combined data 
base enhancement and model improvement effort, the study scope was subse- 
quently restricted to data base enhancement: Target acquisition methodology 
improvement is treated as a separate study, the Target Acquisition Methodol- 
ogy Enhancement (TAME) Study. TAS IV has as its primary objective the crea- 
tion of a comprehensive sensor data catalog for current and future US, non-US 
NATO (North Atlantic Treaty Organization), and Warsaw Pact (WP) systems. 
This data base would be applied by the enhanced target acquisition 
methodology created by TAME. 

(1) Responsibilities. The creation of the updated sensor data catalog 
IS a joint effort among CAA, the US Army Materiel Systems Analysis Activity 
(AMSAA), and a contractor. CAA and AMSAA agreed on data base design require- 
ments. _ AMSAA will exercise a family of sensor performance models to produce 
a detailed data base of parametric net assessments over varying search time 
for a force of sensors seeking a specific unit type under (each of) a wide 
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variety of scenario conditions. The contractor then will statistically 
process these data to produce algorithms for direct calculation of the 
probability of acquisition for each sensor force-target unit combination, as 
a function of elapsing time and scenario conditions. The contractor will 
also produce algorithms showing the conditional probability distribution of 
target retention time, given that the unit has been acquired. CAA will check 
interim products of TAS IV for correctness and suitability in the enhanced 
target acquisition methodology developed by the TAME Study„ 

(2) Schedule. Although the initial start of the TAS IV Study was in 
July 1988, difficulties in securing a contractor commitment delayed award of 
a contract until March 1989. The study was initially proposed as an 18-month 
effort. However, the effective schedule depends on contractor resource 
capability. The TAS IV products are to be delivered incrementally. Receipt 
of the final items is anticipated 1 year from award of the contract. 

The TAME effort was to parallel TAS IV since its methodology must apply TAS 
IV data products. The unforeseen delay in TAS IV contractor commitment 
necessitates that TAME be done in phases. The initial phase began in March 
1988 and was restricted to a 1-year analysis. Since the TAS IV data products 
were not defined until late in 1988, this first phase of TAME was limited to 
a methodology analysis and design effort. A follow-on phase will be defined 
as the TAS IV data construction gets underway. 

1-3. STUDY PURPOSE 

a. Purpose. The primary purpose of this study is to develop an approach 
for improved assessment of target acquisition for use in tactical nuclear 
warfare modeling at the CAA. The methodology developed will address the 
deficiencies in TADER cited above, viz.: 

• Scenario restrictive input data base. 

• No consideration of SIGINT. 

• Oversimplified representation of sensor degradation factors. 

• Limitations imposed on NUFAM improvements. 

• Inadequate treatment of elapsing search time. 

The emphasis is on supporting NUFAM III though an offline target acquisition 
methodology. Because of the potentially large number of sensors in a battle- 
field environment and the complexity of factors affecting detectability, the 
target detection and acquisition process is not simulated interactively in 
detail in NUFAM. Instead, the target units in NUFAM III are periodically 
assessed for acquisition status via a random draw from simple Bernoulli 
probability distributions with defining parameters (currently the POTA values 
created by TADER) generated offline. 

1-4. OBJECTIVES. The TAME study objectives were to assess approaches for 
and feasibility of the following methodological improvements in target 
acquisition: 

1-4 



CAA-TP-89-1 

a. Development and use of a single glimpse detection capability and 
variable sensor search time to represent steady state acquisition 
probability. 

b. Improved integration with NUFAM at CAA. 

c. Use of conditional probability distributions to better represent 
environmental degradation for a scenario. 

d. The automating of computations for methodologies developed. 

e. A SIGINT methodology. 

1-5. ELEMENTS OF ANALYSIS. From the study directive, the TAME elements of 
analysis are: 

a. Should the methodology be modified to take into account, separately 
and directly, the steady state acquisition capability of each type sensor? 

b. Can the methodology effectively support the NUFAM version current as 
of 15 December 1988 at CAA? 

c. How can modeling of environmental degradation factors be improved by 
using conditional probabilities to transform basic environmental data into 
modifiers for specific scenarios? 

d. To what degree can derived methodologies be automated? 

e. What are the implications to the target acquisition methodology of 
including SIGINT contributions directly rather than through intelligence 
preparation of the battlefield, as in TAS III? 

1-6. TAS IV/TAME/NUFAM INTERACTION. Figure 1-1 shows the interrelation of 
data and analytic guidance among three separate projects, TAS IV, TAME and 
NUFAM model improvement. The TAME study effort both supports and is 
supported by the TAS IV Study. The primary objective of the TAS IV Study is 
with AMSAA and contractor support, to collect a comprehensive set of new and' 
updated data and data algorithms on sensor capabilities. The new data will 
be the basis for the TAME methodology. Insights from the TAME methodology in 
turn will guide the structure of the data collected. At CAA, all TAS studies 
have had as their primary purpose the production of POTAs for input to NUFAM 
at CAA. The TAME methodology must be compatible with the current and evolv- 
ing operational versions of NUFAM. Changes in the application of target 
acquisition in model improvements to NUFAM are also guiding development of 
the TAME methodology. The relationship of products in Figure 1-1 is hierar- 
chical in that TAS IV data will be input to TAME, and TAME outputs will be 
input to NUFAM. Methodological guidance is nested in the reverse order in 
that NUFAM application needs are input to TAME, and TAME data requirements 
are input to TAS IV. From this perspective, the information flow is 
continuous among the three efforts. 
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Sensor data requirements   Model requirements 

{       n 
TAS IV TAME NUFAM 

(AMSAA/CAA) (CAA) (CAA) 

A: A 

Improved sensor data   Tgt acquisition measures 

Figure 1-1. TAS IV/TAME/NUFAM Interaction 

1-7.  APPROACH. The study approach is diagrammed in Figure 1-2. Starting 
with a literature search of approaches to the modeling of target acquisition, 
the scope and nature of the modeling problem were defined. Parallel to this^ 
existing techniques for modeling aspects of the target acquisition problem 
were identified as candidate tools for the TAME methodology. These tools 
included, but were not limited to, the TADER methodology of TAS III. The 
incorporation of selected candidate methods into a best unified TAME 
methodology was based on the extent to which: 

• Assessed TADER deficiencies were reduced. 

• Input data requirements were satisfied by the products of the TAS 
IV study. 

• The unified methodology supports current and projected versions of 
NUFAM. 
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TAS IV data 

availability 

y 

Literature 

search 

Define target 

acquisition 

modeling problem Evaluate 

candidate 

methods 

Select 

best 

approach 
Identify 

candidate 

methods 

■ 

NUFAM 

interface 

Figure 1-2. TAME Study Approach 

1-8. STRUCTURE OF REPORT. This paper is organized around the elements of 
analysis stated in paragraph 1-5. Chapter 2 summarizes the analytic nature 
of the target acquisition modeling problem and describes past modeling 
approaches. Chapters 3 and 4 develop a new modified steady state measure and 
methodology for target acquisition. This new method is denoted as the candi- 
date TAS IV methodology and is the preferred TAME approach. Chapter 5 
describes the appropriateness of the new method for supporting NUFAM 
Chapter 6 describes considerations in modeling environmental degradation 
effects on acquisition. Chapter 7 describes approaches to SIGINT detection 
modeling. Chapter 8 summarizes findings and describes the preferred (TAME) 
acquisition methodology. Appendixes A, B, and C show the study contributors 
study directive, and references respectively. Appendixes D, E, F, and G 
provide additional detail on modeling approaches summarized in the main 
report. Appendix H provides additional detail on the use of statistical 
independence assumptions in modeling. 
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CHAPTER 2 

STRUCTURE OF THE TARGET ACQUISITION MODELING PROBLEM 

2-1. TYPES OF SYSTEMS. The generic types of target acquisition systems are 
summarized in Table 2-1. These have been subcategorized into types primarily 
used to acquire targets for direct fire attack and those primarily used to 
acquire target information for indirect fire attack and for an intelligence/ 
surveillance data base. Further characteristics of these classes are: 

a. Direct Fire. Direct fire sensor systems are primarily handheld or 
vehicular mounted electro-optical devices for acquiring and attacking indi- 
vidual target elements, e.g., a vehicle. Small clusters of target elements 
might also be acquired. Targets acquired by these systems are at relatively 
close (direct fire) range. An acquisition event is generally rapidly 
processed for attack or evasion because the sensor carrier is frequently also 
the attacker and is itself subject to attack if the target has equivalent 
detection capability. Therefore, separate detection events are seldom stored 
and fused into a broader intelligence estimate. The deployment of direct 
fire sensor assets is generally dictated by the combat priorities of their 
carriers. Therefore, they often seek targets of opportunity rather than 
confirmation of targets cued by prior sources. Detailed modeling of direct 
fire combat and acquisition events in a force is usually done via stochastic 
simulation. The scope of such a simulation is generally limited to at most a 
division-size slice, due to the large time and memory requirements for 
processing generated by the many events in a battle. 

b. Indirect Fire/Surveillance. Indirect fire/surveillance sensor systems 
are generally on either ground-based or airborne carriers. Surveillance 
systems are usually organic to units whose primary function is collection of 
target acquisition information which is then transmitted to another unit 
which acts on the information. Intelligence centers receiving surveillance 
reports will attempt to fuse separate reports in time and space into a 
schematic of the enemy order of battle. Surveillance systems seek targets 
within a much greater range spectrum than direct fire systems. By design, 
they are usually sited to have unobstructed line of sight over a wide search 
area. Indirect fire target acquisition systems, e.g., counterfire radars, 
rapidly process a (firing) target for attack because of the tactically 
dictated high perishability of a firing unit. Counterfire systems can also 
be used to build a surveillance picture of the battlefield. The deployment 
of sensor systems for indirect fire and surveillance is often preplanned as 
part of an overall battlefield intelligence collection plan designed to 
acquire information on high priority targets in critical battlefield sectors. 

w 
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Table 2-1. Sensor System Types 

Direct fire Indirect fire/surveillance 

Electro-optic (EO) sights 
- visual 
- image intensifier 

Ground-based eye, EO, IR, image intensifier 
Ground-based counterfire radar (countermortar/ 
counterbattery (CM/CB)) 
Ground-based surveillance radar (MTI (moving 
target indicator)) 

Television (TV) Ground-based electronic intelligence (ELINT) 
system 

Unaided eye Ground-based communications intelligence 
(COMINT) system 

Infrared (IR) imager Airborne eye, EO, IR, image intensifier, photo 

Millimeter wave radar Airborne MTI 

Laser rangefinder Unattended acoustic/seismic sensors 
Flash ranging systems 
Airborne ELINT 
Airborne COMINT 

2-2. TIMELINES. As noted above, target acquisition is part of a dynamic 
process, the ultimate purpose of which is usually to select targets for 
attack. The sensor, target, and intelligence processing center all interact 
in the sequence of activity states shown in Figure 2-1. The sensor is in a 
search state until it acquires the target. At that point, it may transmit 
intelligence to a processing center while it tracks the target. The target 
acquisition itself is valid only as long as its position is known, or assumed 
known, to the sensor. The period of time after acquisition that an acquired 
target remains valid is denoted as the retention time of the target. This 
retention time may be greater than the duration of time after acquisition 
that the sensor tracks the target. Thus, the target retention time is a 
measure of the perishability of a target acquisition. Targeting can usefully 
be initiated only against a valid target (i.e., one that is retained). The 
interacting effects of these activity timelines create resolution diffi- 
culties in modeling. The following approaches are possible, depending on 
scenario assumptions and assessment objectives. 

a. Stochastic Model. All of the entities and event states in Figure 2-1 
could be represented in a stochastic model, possibly through a simulation. 
However, the usefulness of such a model depends on the completeness of the 
model representation of sensors and targets. The large number of sensors of 
different types on the battlefield can easily generate unwieldy computer time 
and resource requirements. In addition, a comprehensive Input data base for 
assessing one-on-one sensor performance is not readily available. Activities 
supporting the Joint Tactical Fusion Program (JTFP) simulate reports from a 
full sensor spectrum, but the inclusion of certain national systems produces 
a data base and algorithms that are releasable only as special compartmented 
information (SCI). 
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Figure 2-1. Activity Timelines in Target Acquisition 

b. Expected Value Model. An expected value approach will combine closed 
form algorithms representing many processes to yield a deterministic state of 
events. Time dependence is very difficult to treat, since time would then 
have to be a parameter of a closed form algorithm representing a process. A 
deterministic expected value assessment could then be made only by inte- 
grating the process over time. Typically, a time-dependent process (e.g., 
detection, over time, of a target by a sensor) must be assumed to be a steady 
state process over time, and a closed form algorithm (i-e., a formula or 
equation) must be defined to represent that process. If there are several 
processes occurring simultaneously, then a means of combining single process 
algorithms into a joint process algorithm must be found. If such a combined 
function can be found, the result would still have to be integrated over time 
to yield an expected value. Because detection depends on distance from the 
sensor, expected value assessment of target acquisition also requires inte- 
gration over space (distance). The large number of interacting sensor-target 
processes in the force-on-force target acquisition scenario can easily make 
treatment of time and space extremely complex. If one dimension, time or 
space, is fixed, the expected value problem is easier. For example, an 
"interval snapshot" of target acquisition probability at a fixed point in 
scenario time might be done analytically by integrating instantaneous 
detection functions over space (coverage area). 
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2-3. HIERARCHY OF MODELING 

a- Introduction. As stated previously, the large number of sensors and 
target elements in a force-on-force combat scenario makes high resolution 
modeling of acquisition processes unwieldy or intractable as the scope of the 
scenario enlarges. The apparent solution is to model a large problem with a 
nested set of models. A high-resolution model for a small force problem 
would generate output which provides algorithm processes (or even process 
results) as input to a model of large scope that has been partitioned into 
"small force problems." These "small force" components of the larger problem 
are then processed independently over the attributes treated in the high- 
resolution model. This solution does assume statistical Independence between 
entities and processes in separate small force problems modeled with high 
resolution. Appendix H discusses the use and appropriateness of independence 
assumptions in modeling. 

b. Definition of Terms. The following nomenclature applies to components 
of target and sensor groupings: 

(1) Target Elements. In terms of resolution, a target unit, treated as 
a military unit (e.g., a tank company), is defined in this paper as being 
composed of target elements, i.e., physical objects like tanks or trucks. A 
target element possesses one or more signatures which are detectable 
attributes. For example, a howitzer may have a visual shape signature and, 
when firing, an audio and flash signature. Sensors technically detect 
signatures rather than elements, but when a sensor-target interaction 
involves only one signature (as is often the case), then target element 
detection may equate to target signature detection. 

(2) Sensor Aggregations. In terms of resolution, individual ground 
sensors with identical characteristics, but deployed over an area, are 
denoted herein as a sensor suite of a single sensor type. Airborne sensors 
are generally deployed in missions. The entire spectrum of active sensors 
and sensor missions in a scenario is denoted herein as the scenario sensor 
suite. 

c. Model Hierarchy Categories. A nesting hierarchy for sensor models can 
be defined by the following three categories, described in order from highest 
resolution to lowest resolution: one-on-one models, one-on-many models, and 
many-on-many models. Their definitions are as follows: 

(1) One-on-one Model. This type of model computes the acquisition 
probability of a single target element by a single sensor under a specific 
set of conditions. The basic acquisition probability, or time to acquisi- 
tion, for a single sensor observing a single target element is the end result 
and, if done in parallel, is not fused or combined with other sensor-target 
interactions. Most one-on-one models apply formulas from engineering and 
physics to target elements with very detailed characteristics. A one-on-one 
model is often only a set of mathematical formulae and may not even comprise 
a labeled computer software package "model." A well-known example of a one- 
on-one model is the electro-optic search model created by the US Army Center 
for Night Vision and Electro-optics (CNVEO) as described in Institute for 
Defense Analysis (IDA) Paper P-2022 (Ref 4.). Inputs include field of view, 
target size, target contrast level, sensor resolution, and atmospheric 
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The one-on-one model is suited for assessment for direct fire acquisition, 
since acquisition information is generally not fused at that level. 

(2) One-on-many Model. This type of model computes the acquisition 
probability of a target unit by a single sensor through the fusion of single 
sensor-single target element acquisition probabilities comprising a scan of 
the target unit. In one sense, a one-on-many model integrates the results of 
one-on-one models over target elements in a unit. Most one-on-many models 
are integrated into many-on-many models. 

(3) Many-on-many Model. This type of model computes the acquisition 
probability of a target unit by a suite of sensors in a given timeframe or as 
a function of time. Such a model can be thought of as combining the results 
of many one-on-many models over sensors in a suite. TADER is an example of a 
many-on-many model. Figure 2-2 illustrates the interacting entities in each 
type model. 

Figure 2-2. Diagrammatic Representation of Sensor Model Resolution 
Categories 
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d. Nesting of Models. The definitions of the model resolution categories 
suggest the nesting of models shown in Figure 2-3. While one-on-one models 
could be used as subroutines in many-on-many models, the level of detail for 
scenarios with significant force sizes would often be difficult to implement 
on a computer. It is more efficient to use the one-on-one models to create a 
catalog of empirical functions or factors enabling the many-on-many model to 
access precomputed results (perhaps through a lookup table) for sensor-target 
interaction under a specified set of conditions. Ideally, the precomputed 
results would be in the form of empirically derived functions keyed to only a 
few of the many variables considered by the one-to-one model. To produce 
these functions, a large number of carefully defined (by the analysts using 
the many-on-many model) executions of many one-on-one models (the province of 
engineers) must subsequently be fitted to algorithms (the province of stat- 
isticians) to be used in the many-on-many model (by operations researchers) 
who report to management (the province of nonscientists). The overall task 
is complicated by the needs for communication and cooperation among diverse 
technical specialties. Instead of functions, a many-on-many expected value 
model, like TADER, often resorts to lookup tables, usually giving single 
sensor-single element detection probability as a function of range for a 
variety of conditions. Both the origin as well as the applicability of the 
one-on-one results reflected in such lookup tables are often ill-defined (if 
defined at all). 

Basic 
sensor/target 
characteristics 

Tgt definition 
method: fusion 

over elt detections 

Fusion method 
over sensors 

i ^ ' 
\ 

One-on-one 
model — 

Detection 
functions: 

lookup tables — 
.   One-on-manv Many-on-many 

model mo( Jel 

Figure 2-3. Hierarchical Nesting of Target Acquisition Model Processing 

2-4. FACTORS IN TARGET ACQUISITION MODELING. Figure 2-4 shows the inter- 
action of the major generic elements in assessment of combat target acqui- 
sition performance. Qualities of the sensors, the targets, and the environ- 
ment all interact with the tactical scenario to form the components of target 
acquisition assessment. Models of target acquisition in large (e.g., corps- 
level) echelons are many-on-many models which treat sensor performance 
factors in broad terms. These sensor performance factors used in models are 
often the result of a nesting, via aggregation, of higher resolution perform- 
ance factors. Thus, detailed system factors which affect sensor performance 
are combined and aggregated into a smaller set of generic factors for use in 
low-resolution modeling. 
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Figure 2-4. Major Elements in Target Acquisition Performance 

a. System Factors. Table 2-2 summarizes the system factors that can 
affect sensor performance. Different factors often apply to different 
sensor types, e.g., thermal contrast applies only to thermal sensors. The 
number of factors in Table 2-2 is too large to be processed for the large 
number of sensor-target interactions in a surveillance model of a large 
combat force. In addition, little is known about the effects of human fac- 
tors, such as operator fatigue and stress, on detection performance. Most 
system tests are engineering and machine oriented. The test environment is 
set to a standard "baseline" environment. Theoretical or subjective adjust- 
ments are often made to baseline measurements to account for degradation 
"Real-world" testing is both costly and difficult to control; the ranqe of 
available data is therefore limited. 

b. Generic Model Factors. Low-resolution models will use generic sensor 
performance factors, each of which may represent the combined effect of a 
group of detailed system performance factors. Acquisition algorithms were 
examined in three many-on-many expected value models: TADER, the COMWTH 
(Combat Worth) Model by BDM, and the SAI (Science Applications Inc). Target 
Acquisition Model. A summary of common generic sensor performance factors in 
expected value surveillance models was constructed. Table 2-3 shows these 
generic factors. The detailed sensor performance factors comprising each 
generic model factor are listed in the rightmost column of the table. ' Not 
all models treat all these factors. 
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Table 2-2. Factors Affecting Sensor Performance 

Sensor 

Search area 

Duration of search 

Deployment 
position 

Availability 

Reliability 

Survivability 

Target 

Size, shape 

Visual contrast 

Thermal contrast 

Noise 

Deploy pattern 

Motion/activity 
Cues 

Environment 

Weather 

Lighting 

Terrain masking 

Foliage 

Propagation 

Dust/smoke 
Clutter 

Other 

Range to target 

EW countermeasure 

Radio interference 

Decoy/false alarm 

Operator fatigue 

Operator stress 
Eye function 

c. Resolution- The importance of representation resolution of 
performance factors in a many-on-many expected value model of target 
acquisition is often neglected. Such a model is frequently used to assess 
the probability of acquisition of a notional type target in a notional (e.q 
average or random) location over a notional timeframe. The output measure is 
a probability of acquisition characterizing a target class, but not 
necessarily a uniquely located target unit. TADER, for example, computes 
probability of acquisition for a target unit randomly located in a target 
zone defined in terms of distance intervals from the forward line of own 
troops (FLOT). All sensor-target interactions have to be modeled and merged 
but the level of detail that is modeled in the sensor performance factors may 
be low because: 

(1) Computer Memory and Processing Time Requirement are Constrained 
If sensor-target interactions are assessed for each target over many 
sensor/target locations and points in time, then the dimensionality of the 
assessment problem can become so large that solution processing is unwieldy 
even on a computer. (Processing time requirements for even a very  small 
computer program can rapidly increase as additional 00-loops are nested)  If 
all ^^sensor-target interactions can be treated as independently occurring at 
an average" location over a common time period, then the combined effects 
might be simply, and efficiently, represented in terms of product and 
exponent operations on notional acquisition assessments. 

(2) High Input Resolution can be Inappropriate for Assessing Notional 
Targets. If the end product of the many-on-many target acquisition model is 
an acquisition probability characterizing a class of targets, rather than a 
unique target, then "approximate" inputs may be commensurate with notional 
outputs. Little may be gained by splitting hairs on process details, whose 
results will be heavily aggregated into a single "average" value assessment 
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Table 2-3. Generic Factors for Model Aggregate Representations of 
Sensor Performance 

Generic 
model factor Description Applicable sensor performance 

factors 

Pcov Probability the target is 
within coverage range of the 
sensor 

Sensor deployment position 
Duration of search 
Cues 
Sensor search pattern 
Target deployment pattern 

Plos Probability of unmasked line 
of sight from sensor to 
target 

Terrain masking 
Foliage 
Sensor deployment position 
Target deployment position 

Pwx Residual detection 
capability from degradation 
due to weather 

Weather 
Lighting 
Thermal contrast 

Pobs Residual detection 
capability from dust/smoke 
or interference 

Dust/smoke 
Clutter 
EW countermeasure/interference 
visual/thermal contrast 

Pfa Residual detection 
capability due to 
decoys/false alarms 

Decoy/false alarm 

Pav Fraction of time sensor is 
available 

Sensor availability 
Sensor reliability 
Sensor survivability 

Pcrew Residual detection 
capability due to operator 
performance 

Operator stress 
Operator fatigue 
Eye function 

Pd Inherent detection 
probability for sensor 
observing target under 
baseline test conditions and 
under various target 
cover/activity conditions 

Range to target 
Sensor/target deployment 
Duration of search 
Target size, shape, contrast 
Target noise 
Target motion/activity 
(baseline) light, propagation 

Prec Probability target is 
recognized, given it is 
detected 

Same as for Pd 
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(3) Detailed Sensor Input Data is Often Extremely Uncertain. As noted 
earlier, there appears to be no comprehensive data base on sensor performance 
that is available for many-on-many assessments. Theoretically, a user could 
insert one-on-one sensor performance models as subroutines into his/her many- 
on-many expected value model (since engineering-based models do exist). How- 
ever, this is impractical because the required level of detail would easily 
overwhelm computer resources needed to process it. Since test data on sensor 
performance is based on limited test environments, even engineering models 
are constrained by data unavailability. In the absence of consistent compre- 
hensive sensor performance data, much data must be subjectively adjusted or 
constructed using results from other models and studies which were not 
designed to support the user's problem. No precision may be gained by 
representing an uncertain quantity in terms of several uncertain component 
quantities. In the extreme case, the attitude may be: why use a dozen 
guesses when one will suffice? The use of notional input characteristics may 
be justified if there are insufficient data measurements to usefully charac- 
terize the data uncertainty through a probability distribution. (There is 
the alternative of working the problems of target acquisition methodology 
development and input data construction in tandem. This is the approach 
taken by the TAME Study with its linkage to the TAS IV data generation 
effort). 

d. Illustrative Example of Comparative Resolution. Table 2-4 illustrates 
two levels of model resolution for each of the generic sensor performance 
factors shown in Table 2-3. Except for coverage probability, all of the low- 
resolution representations shown are in terms of lookup tables. Higher 
resolution consists of integration over mathematical functions. In the case 
of coverage probability, the low-resolution option is based on the ratio of 
system coverage area to the area of the combat arena. By assuming uniformity 
of lateral coverage by sensors, these ratios can estimate "average" coverage 
without having to process the geographic pattern of specific sensor deploy- 
ments. Processing can then be greatly simplified relative to the higher 
resolution option which requires testing each specifically located target 
point for coverage by each specifically located sensor. In Table 2-4, target 
zone refers to an area within which the same notional factors are deemed to 
apply. Expressing Pd as a function of duration of search refers to the 
expressing of probability of target acquisition for a sensor-target pair as a 
function of elapsing sensor search time (among other things). 
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Table 2-4. Alternative Modeling Representations for 
Generic Model Factors 

Generic 
model factor 

Alternative 1 
low resolution 
representation 

Alternative 2 
higher resolution 
representation 

Pcov Compute ratio of area 
covered by sensor(s) to area 
containing target 

Test whether each point in 
target area is covered by 
each sensor. Compute 
fraction area covered by n 
sensors, n=l, 2, ... 

Plos Input lookup table giving 
Plos as function of sensor 
range to target and/or 
height of sensor and/or zone 
containing target 

Given each sensor/target and 
position and terrain grid, 
compute if terrain cuts LOS 
at each point in target 
area. Average the effects 

Pwx Input lookup table giving 
Pwx as function of sensor 
type and/or season 

Integrate (weight) Pwx over 
lookup table values computed 
for each set of scenario 
conditions 

Pobs Input lookup table giving 
Pobs as function of generic 
battle state and sensor type 

Integrate (weight) Pobs over 
lookup table values computed 
for each set of scenario 
conditions 

Pfa Input lookup table giving 
Pfa as function of generic 
battle state and sensor type 

From input data on false 
targets, compute Pfa as 
function of the ratio (true 
targets/all targets) in the 
search area 

Pcrew Input lookup table giving 
Pcrew as function of generic 
battle state and sensor type 

Same as Alternative 1 

Pav Input lookup table giving 
Pav as function of generic 
battle state and sensor type 

Same as Alternative 1 

Pd Input lookup table gives Pd 
for sensor-target- 
environment combination 
under the fixed scenario 
search interval 

Detection probability for 
each sensor-target- 
environment combination with 
a specified search interval 
is computed by integrating a 
detection function over 
duration of search 

Prec Evaluated in same way as Pd Evaluated in same way as Pd 
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2-5. MEASURES OF EFFECTIVENESS (MOE). There are several measures of 
effectiveness for assessing the acquisition potential of a suite of sensors 
arrayed against a target unit in a many-on-many model. Since sensor perform- 
ance varies with operational time and sensor-target distance, a target acqui- 
sition MOE must treat a target acquisition probability in terms of time and 
space. The following MOEs can be used to characterize the susceptibility to 
acquisition of a target unit by a suite of sensors: 

a. Fixed Interval Snapshot of Acquisition Probability. One approach is 
to compute an acquisition probability (for a target unit) that is averaged 
over a potential target location area and reflects sensor performance cumu- 
lated over a prespecified duration of search with assessment implicitly 
occurring at the end of the search period. In a sense, the MOE is an 
"interval snapshot," in time, of sensor performance. For example, the ROTA 
MOE, as used in TAS, TAS II, and TAS III is defined as follows in 
CAA-TP-79-4 (Ref 5): 

"ROTA is the probability of detecting, recognizing, and locating 
various types of potential targets at prescribed distances from the 
FLOT during a random but limited period of time in a day of intense 
combat." 

The "limited period of time" used in the TAS III effort was 2 hours. Such an 
interval snapshot MOE may be useful for specific scenarios, but scenario- 
restrictive input is often required to produce it. Lookup tables used by a 
many-on-many model to generate an acquisition MOE for a 2-hour search must 
consist of results from one-on-one models restricted to a 2-hour search. 
Flexibility and generalizability are lacking. 

b. Steady State Probability of Acquisition. In Figure 2-1, target acqui- 
sition is represented as an event in a scenario. The acquisition event is 
followed by a "retention state," during which the acquisition is retained or 
presumed to be retained (e.g., if the target is stationary). Therefore, an 
average, or steady state, acquisition MOE for the scenario timeframe may be 
defined as the probability that, at a random time in the scenario, a target 
unit is in an acquisition retention state relative to the opposing sensor 
suite. Use of this measure removes the time-restrictiveness implied in 
"interval snapshot" MOEs. However, time-dependent sensor performance 
functions are required to generate steady state probabilities of target 
acquisition. 

c. Mean Time to Acquisition. Another "steady state" acquisition MOE is 
the mean time to target acquisition (by the opposing sensor suite). This 
measure also removes the time-restrictiveness of the "snapshot" MOE and must 
be based on time-dependent sensor performance functions. A performance 
function represents a probability distribution which has the mean time to 
acquisition as a defining parameter. The associated probability distribution 
can be integrated over time to produce an "interval snapshot" probability of 
acquisition for any arbitrarily specified duration of search. Though a mean 
time to acquisition is not a probability, it is associated with an underlying 
probability distribution. Since lookup tables are easier to use (and define) 
than time-based functions, many-on-many expected value models generally are 
restricted to "interval snapshot" acquisition MOEs. 
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2-6. COMPARISON OF MANY-ON-MANY MODELS. After a literature search, docu- 
mentation was found on two many-on-many expected value models of target 
acquisition. These are the COMWTH Model created by BDM Corporation and the 
SAI Target Acquisition Model, denoted herein as the SAI model. COMWTH, the 
SAI model, and the TADER model, were analyzed for comparative approaches to 
the modeling of the generic sensor performance factors of Table 2-3. Summary 
results of this comparison are shown in Table 2-5. A brief description of 
each of these models is given below. More detail on TADER, COMWTH, and the 
SAI model is presented in Appendixes D, E, and F, respectively. 

a. TADER. For a sensor suite observing a target unit randomly located 
within a target zone, TADER computes the POTA as the probability of 
acquisition by (at least one sensor of) the sensor suite for the target unit 
over a 2-hour sensor search period. Inputs include: 

(1) Battlefield sector searched (target zones). 

(2) Sensor types, numbers, deployments, characteristics, coverage 
patterns, degradation factors for various operating conditions (weather, 
dust, etc.), availability, survivability. 

(3) Lookup tables for single sensor versus single target element. 
(These are results of one-on-one assessments). 

'   (4) Target units, target elements in units, target activity (firing, 
moving/static) frequency, target concealment state frequency. 

'   (5) Thresholds of target unit lucrativeness, i.e., the minimum number 
of target elements that must be detected to classify a group of target 
element detections as a worthwhile target. 

The output for a target unit in a target zone is the average probability that 
the unit in (a random location in) that target zone is detected at a 
lucrative level. TADER computes a POTA, for the target unit scanned by the 
sensor suite, at a large number of points in the target zone and averages 
them to obtain a zone POTA for the unit. Sensor-target coverage is also 
evaluated for each specific sensor/target location based on patterns 
radiating from sensors. Basic one-on-one input data are lookup tables giving 
single sensor probability of acquisition for each sensor type-target element 
combination in each target zone for each activity state and concealment 
state. All data and resulting POTAs are configured for a fixed search 
period. One-on-one results are fused into a many-on-many POTA by assuming 
and applying statistical independence of detections. 
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Table 2-5. Performance Factor Representation in the TADER, COMWTH, and 
SAI Models 

Generic 
model 
factor 

Acquisition model 

TADER COMWTH SAI Model 

Pcov Each possible 
target location is 
tested for 
coverage by each 
deployed sensor 

Coverage determined by 
ratio of sensor 
coverage areas and 
target areas relative 
to size of sector and 
no targets in sector 

Coverage 
determined by 
ratio of sensor 
coverage areas to 
sector size 

Plos Lookup table by 
sensor type and 
range band 

Lookup table for each 
sensor type-signature- 
range band combination 

Lookup table by 
sensor type and 
range band 

Pwx Input value for 
each sensor type 

Input value for each 
sensor type 

Visibility/ 
attenuation factor 
by sensor and 
target unit type 

Pobs Input value for 
each sensor type 

Not explicitly treated Not explicitly 
treated(included 
in Pwx) 

Pfa Not treated Based on ratio of 
(input) no. of tgt 
elts in tgt to (input) 
no. of non-tgt elts of 
same type in area 
searched 

Not treated 

Pcrew Input value for 
each sensor type 

Not explicitly treated Not explicitly 
treated 

Pav Input value for 
each sensor type. 
Separate surviva- 
bility factor is 
input by sensor 
type 

Input value for each 
sensor type 

Input value for 
each sensor type. 
For air missions, 
a separate mission 
survival factor is 
input 

Pd Lookup table gives 
single sensor Pd 
for each sensor- 
tgt elt combina- 
tion by range band 
for each activity/ 
concealment state 
of a tgt elt 

Lookup table gives 
single sensor Pd by 
sensor-signature 
combination in each 
range band 

Lookup table gives 
single glimpse Pd 
by sensor-tgt unit 
combination in 
each range band 
for each tgt 
concealment state 

Prec Not explicitly 
treated (must be . 
combined with Pd) 

Input value for each 
sensor-equipment type 
pair 

Lookup table 
configured in same 
way as that for Pd 
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b. COMVTTH. A BDM report on Tactical Target Acquisition (Ref. 6) 
describes COMWTH as a discrete event, deterministic simulation of a many-on- 
many assessment of target acquisition effectiveness. For each sensor system 
observing a target unit, COMWTH computes the probability of target acquisi- ' 
tion by (at least one sensor of) the sensor system over the system mission 
cycle. COMWTH inputs include: 

(1) Battlefield size. 

(2) Sensor types, target signature types detected by each sensor type, 
number of sensors, sensor swaths, minimum and maximum ranges, activity fre- 
quencies, information processing time, mission cycle parameters, weather and 
visibility degradation factors, and availability. 

(3) Lookup tables giving single sensor-single element/signature proba- 
bility of acquisition as a function of range. 

(4) Target unit types, target elements/signatures in units, depth 
behind forward edge of the battle area (FEBA), size, and activity 
(detectability) frequency. 

(5) Number of "false" target elements of each target type in the 
battlefield area (used to generate probability of false alarm). 

COMWTH output for a sensor system suite observing a unit is the probability 
of acquisition for the mission cycle. The assumption of statistical inde- 
pendence IS used to fuse one-on-one (lookup table) results and sensor system 
acquisition probabilities into a many-on-many result. Simulating these 
mission cycles and information processing times in an overall scenario 
timeframe enables the time-phasing of "interval snapshot" system acquisition 
probabilities into an approximation of overall acquisition probability as a 
function of time. Neither sensors nor targets are deployed in specific two- 
dimensional locations in COMWTH. Coverage is based on input sensor coverage 
areas and target areas. A lucrativeness threshold of one element detection 
(minimum required for unit acquisition) is implied. 

^! SAI Target Acquisition Model. An SAI report (Ref. 7) on combat system 
survivability and an Army report (Ref. 8) on target acquisition model com- 
parison state that the SAI target acquisition model was initially developed 
as a subelement of a larger model, the SAI combat survivability model  How- 
ever It was subsequently modified for use as a standalone model. The SAI 
model generates an overall "interval snapshot" probability of acquisition for 
a target unit at a specified distance from the FEBA observed by a suite of 
sensors over a specified scenario search period. Inputs include: 

(1) Battlefield size. 

(2) Sensor types, number of sensors, sensor coverage areas, deqradati 
factors for line of sight and atmospheric attenuation, and sensor 
availability factors. 

on 

(3) Lookup tables (of one-on-many results) giving single sensor-tarqet 
unit probability of acquisition for a single sensor glimpse as a function of 
range and target concealment state. 
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(4) Target unit types, target activity (movement) frequency, and target 
location. 

(5) Search period duration. 

The output is essentially an "interval snapshot" overall probability of 
acquisition by (at least one sensor of) the suite over the specified search 
period. Summed sensor coverage areas are used to determine overall coverage. 
No particular two-dimensional sensor deployment is specified. Basic building 
blocks are lookup tables of one-on-many results (for single sensor versus a 
target unit) which are fused over sensors, using statistical independence, to 
produce an overall assessment. 
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CHAPTER 3 

DEVELOPMENT OF A STEADY STATE ACQUISITION METHODOLOGY 

3-1. BACKGROUND. As noted in Chapter 2, the target acquisition problem must 
treat both time and space. A stochastic process that changes state over time 
may be treated as a steady state process represented by the probability 
distribution of states at a random moment in time. Such a steady state 
probability distribution can be used to stochastically generate a state value 
for a representative (pseudorandom) point in time. "Interval snapshot" 
acquisition probabilities specified for a fixed search interval are steady 
state results only if a steady state probability distribution of search 
effectiveness over time is used to compute them. As noted in Chapter 2, 
target acquisition is an event in a scenario followed by a "retention state," 
during which the acquisition is retained. For steady state purposes, the 
duration of this "retention state" and of the acquisition search state 
characterize acquisition. This chapter will develop some approaches for 
deriving a steady state acquisition probability assessment. 

3-2. TARGET ACQUISITION IN TACTICAL NUCLEAR SCENARIOS. In a tactical 
nuclear scenario, acquisition information is vital for targeting at the time 
(nuclear) fire authorization (the "nuclear trigger") is released. Acquisi- 
tion and contingency targeting must be done prior to the nuclear trigger, but 
no (nuclear) action is taken until then. The timing of the nuclear trigger 
in a scenario is not adjusted based on the timing of the acquisition of 
targets. Therefore, it may be plausible to model the preplanned nuclear 
trigger time as a random point relative to the scenario. Prior to the nu- 
clear trigger, target units are continually being acquired, retained, lost, 
and reacquired. Until the nuclear trigger time, a target unit is subject to 
the following states and events. 

a. Search State. In the search state, the target is being sought by 
sensors. (It is not acquired, nor is it being tracked). 

b. Acquisition Event. At the time of an acquisition event, the target is 
acquired (or reacquired after a previous acquisition had been lost). 

c. Retention State. In the retention state, the target, having been 
acquired, is placed on a target list as an active target acquisition. The 
duration and presence of the retention state is assessed in light of 
knowledge from tracking sensors and/or prior knowledge of inherent target 
characteristics (e.g., some target types are known to be stationary over the 
long term). 

^ d. Loss Event. At the time of a loss event, the target retention state 
is terminated when the original acquisition is assessed to be no longer valid 
or active (due to aging information, loss of tracking, or target 
disappearance). 

These states and events are schematically illustrated in Figure 3-1. 
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Acquisition 
event 

\ 

Loss   Acquisition 
event     event 

Retention state 

I Search state 

'(Search for unit) 

(Unit on acquisition list) 
Search 

I Retention 

Elapsing clock time 

Figure 3-1. Target Acquisition Events and States 

3-3. STEADY STATE PROBABILITY OF ACQUISITION (SPOTA). The steady state 
probability of acquisition (SPOTA) as described in paragraph 2-5 is an 
appropriate measure of target acquisition performance in a tactical nuclear 
scenario with acquisition events and states as depicted in Figure 3-1. For a 
target in such a scenario, the duration of search and of acquisition reten- 
tion are represented as probability functions dependent on elapsing time from 
start of search and of retention respectively. At any time, a target is 
represented as either being sought or else, having been acquired, it is being 
retained as an active acquisition on a target list. Thus, a target's state 
is represented in a time continuum. The SPOTA is just the probability that, 
at a random point in the continuum, a target unit is in an acquisition 
retention state relative to the opposing sensor suite. Selection of a time 
for target assessment for fire planning in a tactical nuclear scenario is 
dependent on factors other than target acquisition processes, and can 
therefore be treated as random in the continuum. In quantitative terms, 
referring to Figure 3-1, we have, for a specific target unit u: 

MRT 
SPOTAu = 

MTA   +MRT 
u u 

where MTAu = = mean time to acquire target unit u 
= mean search state duration for unit u 

MRTu = mean retention state duration for acquired target u 

The above formulation was proposed in CAA research papers (Refs. 9, 10) as an 
appropriate acquisition measure for use within NUFAM at CAA. The values for 
MRTu Sf^d MTAu can be stochastically estimated using acquisition functions and 
retention time functions. These are described in subsequent paragraphs. 
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3-4. ACQUISITION FUNCTIONS. An acquisition function for a target, relative 
to a sensor suite, describes the probability of the sensor suite acquiring 
the target as a function of elapsing search time. The target is assumed 
fixed at a specified location relative to the sensor under specified 
environmental conditions. In order to compute a SPOTA, the mean time to 
acquisition must be evaluated (or estimated) from the associated acquisition 
function. Different types of acquisition functions include the one-on-one 
acquisition function expressed in terms of acquisition of a single target 
element (e.g., a single tank) by a single sensor, the one-on-many acquisition 
function expressed in terms of acquisition of a target unit (a collection of 
target elements of several types) by a single sensor, and the many-on-many 
acquisition function expressed in terms of acquisition of a target unit by a 
suite of sensors. 

3-5. TARGET RETENTION FUNCTIONS. Given that a target unit has been 
acquired, the target retention function defines the probability distribution 
of the duration of the associated retention state. During this retention 
time period, the acquisition is retained on the list of active acquisitions. 
The retention time may depend on tracking capabilities of sensors or on 
knowledge of a target's tendency to remain in place. Thus, retention time is 
a measure of acquisition perishability, either as realized or perceived. The 
target retention function defines a conditional probability distribution. 
This distribution is conditioned on the occurrence of a preceding acquisition 
event because retention time is defined in terms of time since (last) 
acquisition of the target. In order to compute a SPOTA, the mean of the 
target retention function must be evaluated (or estimated). 

3-6. SPOTA FROM ONE-ON-ONE ACQUISITION FUNCTIONS. We must calculate a mean 
time to acquisition, MTAu, for a target unit, u, observed by a sensor suite. 
In addition to the definition of the acquisition functions, we also require a 
means of fusing single element acquisitions into a unit acquisition as well 
as a means of fusing single sensor acquisition probabilities into a sensor 
suite acquisition probability. We can also apply a lucrativeness criterion 
by requiring at least a specified minimum number of target elements (of one 
or more specified types) of the unit to be acquired before the unit is con- 
sidered acquired. Using these concepts, with the one-on-one acquisition 
functions for each type of target element expressed as a cumulative proba- 
bility function, the value of MTAu can be stochastically estimated from 
averages over a large number of sampling simulation replications in the 
following procedure. This procedure is only one of several ways for 
estimating the value of MTAy. In each simulation replication: 

a. The time to acquisition of each element (e.g., each truck) in the 
target by each sensor in the suite is stochastically sampled by inverting the 
associated acquisition function. 

b. For each sensor, the times to acquisition are rank ordered for each 
element type in the target unit. If Mj is the lucrativeness criterion 
(minimum element acquisitions required) for element type j, then the Mj-th- 
largest of the ranked times to acquisition for that element type is the 
sample time to target unit acquisition for the j-th element type for the 
given sensor in this replication. The smallest of the j element type 
acquisition times is the single sensor acquisition time for this unit. 
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c. The smallest of the single sensor sample times to acquisition, as 
computed in paragraph 3-6b above, is the sensor suite sample time to 
acquisition for this simulation replication. 

d. The sample times to acquisition are averaged, over all replications 
to yield an estimate of MTAu. 

The above process is explained in detail in Appendix G. 

3-7. LIMITATIONS OF ONE-ON-ONE FUNCTIONS 

a. Unavailability of Component Acquisition Functions. Application of the 
above algorithm requires that all one-on-one acquisition functions be well 
defined. There is no catalog of such functions. It is not likely that one- 
on-one acquisition functions are well behaved—they would probably be empiri- 
cal. For sensors that interact with each other during assessment, the use of 
one-on-one functions may even be inappropriate. 

b. Restrictions on Fusion Methods. Application of the assumption of 
statistical independence is frequently used to define a "standard" fusion 
method. There is no comprehensive fusion methodology for interdependent 
observations that is suitable for a many-on-many expected value model. Use 
of autocorrelation and other fusion concepts applied in the Joint Tactical 
Fusion Program would require extensive input data and high simulation 
resolution. Required resources are prohibitively large for use of these 
techniques as subroutines in low resolution models. 

3-8. A MANY-ON-MANY METHODOLOGY USING TAS IV PRODUCTS. The TAME interface 
with the TAS IV effort has suggested a steady state methodology for 
determining an SPOTA from TAS IV products. 

a. TAS IV Production. The projected allotment of analytic responsi- 
bilities in the TAS IV effort is: 

(1) AMSAA will simulate surveillance results for suites of sensor 
systems in a wide spectrum of scenario conditions against designated 
target unit types. Models exercised are projected to include: 

(a) The Tactical Simulator (TACSIM) model to simulate performance of 
electronic intelligence (ELINT) sensors and communications intelligence 
(COMINT) sensors. 

(b) Sensor system performance models from the US Army Training and 
Doctrine Command Analysis Center at White Sands Missile Range (TRAC-WSMR). 

(c) The Sensor Interaction Model (SIM) at AMSAA. AMSAA will fuse 
results from one-on-one system models with a methodology based on that used 
by the All Source Analysis System (ASAS) office. 

(2) The TAS IV contractor will fit the AMSAA-generated results to 
algorithmic functions showing two measures of sensor suite performance for 
each specified combination of scenario conditions as a function of elapsing 
time and possibly other parameters. Performance measures for an arbitrary 
interval, T, of elapsed time will be: 
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time and possibly other parameters. Performance measures for an arbitrary 
interval, T, of elapsed time will be: 

(a) The probability that a specific type of target unit sought in a 
specified target zone/area is acquired (detected and identified) by a speci- 
fied suite of deployed sensors within elapsed time T (from start of search). 
Parameters (e.g., systems) critical to overall performance will also be 
identified where possible. This function is denoted as the contractor 
acquisition function (for the specified target unit and the specified 
combination of scenario conditions). 

(b) The probability that a previously acquired target unit of speci- 
fied type has been continuously retained as an active acquisition for time 
interval T (since acquisition). This function is denoted as the contractor 
target retention function (for the specified target unit and the specified 
combination of scenario conditions). 

b. Application of Contractor Algorithms. A methodology for application 
of the TAS IV contractor algorithms to requirements for assessing target 
acquisition in NUFAM at CAA is described in detail in Chapter 4. This method 
is denoted as the candidate TAME methodology. This paragraph summarizes the 
methodology. For an arbitrarily placed assessment time, T, in the NUFAM 
scenario timeframe (corresponding to a nuclear fire window), NUFAM requires, 
for each specified target unit type: 

(1) The probability, considering the scenario, that the specified 
target unit has been acquired, and is still being retained on the acquisition 
list (at assessment time T), by the suite of sensors deployed in the 
scenario. This probability is denoted as the SPOTA for the specified target 
unit in the scenario. 

(2) The probability distribution for the duration of time remaining in 
the retention state after assessment time T (for a target unit acquired at or 
prior to T). This is denoted as the residual target retention time 
distribution. 

These would appear to be very similar to the products of the contractor 
algorithms defined in paragraph 3-8a(2) above. However, a typical contractor 
algorithm gives a performance measure, over elapsing time, only for a con- 
stant environment corresponding to a specific fixed combination of scenario 
conditions. The TAME scenario, to support NUFAM applications, will be 
dynamic, with conditions changing as time passes. A performance algorithm 
for elapsing time over the dynamic scenario is required. As shown in Chapter 
4, this may be constructed, for each of the performance measures, by building 
a composite performance function by connecting "pieces" of the contractor 
functions corresponding to interval "slices" during which conditions in the 
NUFAM scenario are treated as constant. Also, since the SPOTA defined above 
is a probability of acquisition and retention at random time in the scenario, 
and since the residual target retention time is dependent on when (within the 
scenario) acquisition occurs, a simulation solution is required to treat the 
time and event dependencies. 
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3-9. ADVANTAGES OF THE CANDIDATE TAME METHODOLOGY. Presuming that the 
product algorithms of TAS IV are delivered, the candidate TAME methodology 
has the following distinct advantages over methods based on one-on-one 
subroutines: 

a. The component acquisition functions will be available (from TAS IV). 

b. The fusion of one-on-one results will be implicit in the component 
acquisition functions. 

c. The use of many-on-many acquisition functions precludes having to 
process data at compartmented security level since the sources of component 
sensor results are masked by merging. 

d. As noted in the next chapter, the methodology can be implemented as a 
computerized process for a sufficient and well-defined set of component 
acquisition functions. 

3-6 



CAA-TP-89-1 

CHAPTER 4 

IMPLEMENTATION OF CANDIDATE TAME ACQUISITION METHODOLOGY 

4-1. PURPOSE. This chapter details the specific algorithms 
TAME acquisition methodology described in summary fashion in 
adaptability of the method to computerization is illustrated 
step algorithmic presentation. 

of the candidate 
Chapter 3. The 
via the step-by- 

specific combination of 
subconditions may include 
the weather state, and 

4-2. SCOPE OF PROBLEM. We consider a scenario timeframe consisting of a 
strip of elapsing time, beginning at time t = 0. A scenario will apply to a 
specific designated type of target unit, u. At any point in the scenario 
timeframe, the scenario state may be described as a 
states of subconditions (Ci, C2, ..., Cn). Example 
the number and types of sensors seeking the target, 
the target activity level. Example subcondition states for, say, the target 
activity subcondition might be target moving and target static. We assume 
that subconditions change state at discrete points over elapsing time 
according to defined probability distributions for the subscenario condi- 
tions. Thus, elapsing time is partitioned into consecutive intervals such 
that subcondition states are constant within an interval. Let to, ti, 
... denote the serially ordered (in time) end points of these intervals 
that (tm-l, tm ) is the m-th consecutive interval). Also let Sm denote 
combination of subcondition states applying in (tm-l, tm ). Sm may be 
thought of as the subscenario applying in the m-th interval. The structure 
of the scenario timeframe is portrayed in Figure 4-1. 

. .tri) 
(so 
the 

(Retention state) (Retention) 
!-<■ • ■   (Search state) ■ • >- | -^ • ■ On acq list   • ■ ■ >► |^ . -(Search) ■ ■ • >-|^ •   Acq list 

^^.*  _, Retention Tgt 
^^^"'^ed iQj^ reacquired 

(Applicable subscenarios) 
Si       S2 S3 S^ 

\~-\--\ I h-i ■ ■• {■■{ ^ 
^       ^'        ^.2 t3  t^.i tm End 

time- 
Elapsing time . >► frame 

Figure 4-1. Schematic of the Scenario Timeframe 

4-3. TARGET STATES. A target unit is treated as subject to the following 
states and events during the scenario timeframe: 

Search state - the target is being sought by sensors. (It is not 
acquired, nor is it on a target retention list). 
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Acquisition event - the target is acquired (or reacquired, having 
previously been dropped from a target retention list). 

Retention state - the target, having been acquired, is being actively 
listed as a valid target acquisition. 

Retention loss event - the target retention state is cancelled by the 
target being dropped from the acquisition list. 

These states and events are also illustrated in Figure 4-1. 

4-4. PROBLEM. For a randomly placed instant, t = T, in the scenario 
timeframe, evaluate, for specified unit type, u: 

a. The steady state probability of acquisition for target unit u, denoted 
by SPOTAu = probability of target unit u acquisition being in a retention 
state at time T. 

b._ Given that target unit u is in a retention state at time T, the 
associated residual retention time distribution function, denoted by RTDFu, 
is the probability distribution of the duration, after time T, that the 
acquisition is retained. (If T is randomly placed in the scenario timeframe, 
then this distribution is equivalent statistically to the probability 
distribution of the residual life of the target retention time duration 
distribution). 

Other problems can be treated, but the above embraces requirements for the 
Nuclear Fire Planning and Assessment Model (NUFAM) at CAA. 

4-5. SOLUTION TOOLS. The TAS IV contractor will provide algorithms for 
representing the following functions over the (to be defined) spectrum of 
subscenario states. Si, S2, .... Sk, which can apply to a target unit type. 

(.1) For each target unit type, u, and for each applicable subscenario 
Sj, define, for all z > 0, the subscenario acquisition function: 

PAu (z,Sj ) = probability the target unit u is acquired within elapsed 
time z under subscenario Sj conditions. 

Also define the subscenario target retention time function: 

PTu (z,Sj ) = probability the target unit u acquisition is retained, 
after acquisition, for at least time duration z under 
subscenario Sj, given that it was acquired. 

4-6. SOLUTION APPROACH. Given subscenario state transition times ti, t2, 
..., we first construct a composite acquisition function, PACu (z), defined 
as: 

PACu (z) = probability that the target unit u is acquired within elapsed 
time z after the last retention loss event for this target in 
our scenario timeframe (Figure 4-1). 
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In the formulas of the following methodological exposition, z denotes elapsed 
time relative to a state (search/retention) transition while t denotes 
absolute (clock) time in the scenario timeframe (Figure 4-1). The scenario 
timeframe consists of a series of successive changes of subscenario states. 
Therefore, given a retention loss event time, ti in the scenario timeframe, 
the acquisition function, PACu (z), associated with elapsing time in time- 
frame intervals following t], can be treated as a composite function con- 
structed by piecewise connection of segments from the acquisition functions 
(the PAu(z,Sk)) for the subscenarios associated with the timeframe intervals 
immediately following ti. Construction of the composite acquisition function 
associated with timeframe intervals immediately following to (start of time- 
frame) is as follows: 

In the scenario intervals of the timeframe in Figure 4-1, process the inter- 
vals in order of increasing time, beginning with (to, ti) and initially 
treating to as the time of last previous retention loss. 

For time interval (to, ti) in the scenario timeframe and PACy (z) defined for 
elapsed time z = 0 to z = (ti - to), PACy (0) denotes the acquisition proba- 
bility at scenario start and PACu (t - to) denotes the acquisition proba- 
bility at time t. Then, PACy (0) = 0 and PACy (ti - to) = PAy (ti - to,Si). 

For (ti,t2), first locate the elapsed time value, zi, for which PAy (zi,S2) = 
PACy (tl - to). Define PACy (z) for z = (ti _ to) to z = (t2 - to) as 
equivalent to the segment of subscenario function PAy (z,S2) between z = zi 
and z = zi + (t2 - tl). Thus, PACy (tl - to) = PAy (zi,S2) = PAy (ti - 
to,Si) and PACy (t2 - to) = PAy (zi + (t2 - tl),S2). Continue construction 
in the above manner, i.e.: for m >1 and for (tm.tm+i) and PACy (z) to be 
defined for z = (tm - to) to z = (tm+1 - to), first locate the elapsed time 
value, zm, for which PAy (zm,Sm+i) = PACy (tm - to). Define PACy (z) for z = 
(tm -to) to z = (tm+1 - to) as equivalent to the segment of subscenario 
function PAy (z,Sm+l) between z = zm and z = zm + (tm+1 - tm). Thus, PACy 
(tm - to) = PAy (zm,Sm+l) and PACy (tm+1 - to) = PAy (zm + (tm+1 - tm),Sm+l). 

4-7. DETERMINATION OF SIMULATED EVENTS AND STATES. The problem will be 
solved by simulating the target events and states over the subscenarios So, 
Si, ..., Sm. These are the target acquisition events, the retention loss 
events, the search states, and the target retention states. Only a single 
specified target unit will be processed during the simulation. The target 
may be lost and reacquired. The frequency of states and events over a large 
number of simulation states and replications will yield a solution to our 
problem. The problem, restated, is: 

Given a randomly chosen timepoint, T, in the scenario timeframe, 
determine, for a specified target unit type, u: 

• SPOTAy   = the frequency (probability) of target unit u being in a 
retention state at time T 

• RTDFu(z) = the probability distribution of the (residual) 
retention time remaining (until retention state is 
lost), given that the acquisition of target unit u 
was being retained at time T 
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= probability that retention time remaining after time T 
is less than z, given that the target unit u is being 
retained at time T 

Each replication proceeds as follows to simulate the sequence of events and 
states: 

a. The timepoint, T, is randomly chosen within the scenario timeframe. A 
time-phased simulation starting with all state attributes initialized to zero 
is characterized as using a "cold start." In this case, the simulation may 
initially generate statistically biased state values because dependence, over 
time, of successive states can be affected by the zero initial state  To 
avoid a bias from a "cold start," it may be desirable that the first part of 
the scenario timeframe is a "warmup period" and that T is sampled only from 
times after the "warmup period". 

b._ Draw a random number Ri in [0.1]. This number will be used to locate 
the time of the first acquisition event. We treat to as the time of last 
retention loss. 

_ c. For each successive interval following to, (tN-l,tN), construct, by 
piecewise connection as in paragraph 4-5 above, the portion, for z between 
(tN-1 - to) and (tN - to), of the composite acquisition function PACu (z). 
(Since there are no prior acquisitions yet, this function is the probability 
of acquisition in elapsed time, z, from starting point to). Process 
intervals only until, for some K, PACu (tK-1 - to) < Rl < PACu (tK - to). 
Then, interpolate to locate a time, tA, with tK-1 < tA < tK for which PACu 
(tA - to) = Rl . Further construction of the composite acquisition function 
IS unnecessary and inappropriate. Since we started at time to, to is treated 
as the time of the last retention loss event. The interval between t = to 
and t = tA IS a simulated search state for target u in this replication. A 
simulated acquisition event occurs at time t = tA. 

d. Draw another random number R2 in [0,1]. This number will be used to 
locate the time of the first simulated retention loss event. 

e. Over each successive interval after tA, construct a composite target 
retention time function for elapsing retention time, z, beginning at tA. 
This construction is done by piecewise connection of retention time functions 
(PTU(Z,SK)) in a manner exactly analogous to construction of the composite 
acquisition function, except that construction is done for timeframe 
intervals after tA. The composite retention time function, given a previous 
target acquisition at time tA, is defined as: 

PTCu (z) = probability the target unit u acquired at time tA is retained 
for at least time duration z (after time tA). 

Note that PTCu (0) = 0 for acquisition at time tA. 

Construct this composite retention time function only for intervals up to 
the first interval (tK-1, tK) such that R2 < PTCu (tK - tA). Then 
interpolate to find a time, tL, in that interval for which PTC (tL - tA)) = 
R2. Then (tt-tA) is the (simulated) duration of the acquisition retention 
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time begun at tA, I.e., a (simulated) retention loss event (for the target 
acquired at tA) occurs at time tL. 

f. Draw a random number, R3 in [0,1]. This number is used to locate the 
time of reacquisition of the target. 

g. For successive timeframe intervals after time tL in the scenario 
timeframe, construct a new composite acquisition function for the scenario 
intervals beginning at tL. This construction is similar to the algorithm in 
paragraph 4-5, except that tL (instead of to) is treated as the time of last 
retention loss. 

As before, this is done by piecewise incrementation of subscenario 
acquisition functions (PAu (z,Sk)) associated with the time intervals after 
tL. Locate a time tB for which PACu (te - tL) = R3 (in an analogous manner 
to the way tA was located). 

h. Successive search-retention states are simulated by continuing the 
above steps until the first event (either acquisition or retention loss) 
after time T is simulated. The replication processing ends at that point. 

i. The following replication results are noted and stored: 

• Whether the target was in a retention state at time T. 

• The duration after T that the target was retained, if it was in a 
retention state at time T. 

4-8. SOLUTION. After a large number of replications are done, we estimate, 
for the scenario timeframe: 

SPOTAu   = steady state probability of aquisition for target unit u 

= probability of unit u being in a retention state at 
random time 

= fraction of replications with target unit u in a 
retention state at time T 

and RTDFu(z) = residual retention time distribution function for target 
unit u 

= probability distribution of residual retention 
time remaining after a random timepoint 

= the empirical frequency distribution, over all 
replications in which unit u was in a retention state at 
time T, of the duration, z, of retention time remaining 
after time T 

4-9. SCENARIO INITIALIZATION. As noted above, if the start point of 
processing is not initialized to a random steady state value, calculations 
can be biased by a "cold start." One way to reduce this bias is to sample 
assessment time only after a preceding "warmup period" in the scenario  In 
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the warmup period, subscenario state transitions, acquisition, and retention 
are simulated, but there is no assessment of status. If the subscenario 
state transitions can be expressed in terms of steady state probability 
distributions of component conditions, then a more efficient initialization 
alternative is possible. In that case, the residual distribution of each 
component condition probability distribution can be sampled to create an 
initial random entry point into a subscenario state. No warmup period would 
then be required. 

4-10. STEADY STATE INITIALIZATION. If the subscenario state transitions can 
be expressed in terms of steady state probability distributions of component 
conditions, then simulations which sample of a single acquisition event and a 
single target loss event (instead of a series of such events) can be used to 
determine SPOTAu and RTDFu(z). In this case, we can define: 

MRT 
SPOTA   = 

" MTA   + MRT 
u u 

where MTAu = mean time to acquire target u in the scenario timeframe 

MRTu = mean retention time duration for an acquired target u 

The above is equivalent to the previous algorithmic process which simulates 
an explicit randomly chosen timepoint, T, in the scenario timeframe at which 
the assessments of SPOTAu and RTDFy are made. A series of simulation 
replications can be done, with each replication starting in an initialized 
random subscenario state. In each replication, the time of first acquisition 
would be simulated, as would the duration of target retention after 
acquisition. Target acquisition and loss would be simulated exactly as in 
the algorithm described previously. The estimated value of mean retention 
time duration, MRTu, "is the mean of the empirical frequency distribution of 
retention time duration, over all replications. The empirical retention time 
distribution can be used as the basis for statistical estimation of the 
distribution, RTDFu(z)» of residual retention time. The mean time to 
acquisition, MTAu, TS found by averaging over replications. SPOTAu can be 
directly calculated from MTAu and MRTu. 

4-11. DEFINITION OF SUBSCENARIO STATES. The above methodology assumes that 
the scenario timeframe is defined in terms of subscenario states under which 
the TAS IV algorithms are generated. Ideally, a combat simulation using the 
TAME acquisition measures would define the time-sequenced subscenarios of the 
methodology. However, many detection subconditions are not explicitly gamed 
in NUFAM, as well as in other combat models. Therefore, a scenario generator 
is needed to provide the candiate TAME methodology with a time sequence of 
subscenario states which is compatible with a specified NUFAM scenario. In 
the simplest case, this generator can be a set of defined data. However, a 
stochastic scenario generator may be needed to generate appropriate time- 
sequenced states for the scenario being processed by the methodology. Such a 
processor would have to treat the variability of the subconditions (e.g., 
weather) which are the components of each subscenario state. Dependence over 
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time and correlation between subconditions must also be considered. Specific 
sensor and target activities over time may be simulated to determine sub- 
condition states dependent on them. The definition and construction of a 
scenario generator can be complex. The TAS IV products need only define the 
menu of subscenario states. The probability distribution of state occur- 
rences over time must subsequently be defined in the scenario generator. The 
generator can then determine a state timeframe compatible with any specified 
application. 
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CHAPTER 5 

TARGET ACQUISITION FOR NUFAM 

5-1. INITIAL NUFAM III OVERVIEW. Available documentation (Ref. 11) 
describes the Nuclear Fire Planning and Assessment Model III (NUFAM III) as a 
two-sided, event-driven, stochastic simulation of tactical nuclear/chemical 
warfare. With no munition constraints, the model can be used for determining 
munition requirements. With munition constraints, it can be used to assess 

imTcvc''??nn!o!^^- ^^^^^ ^^^ '"' w^Ttten in SIMSCRIPT II.5 language for the 
UNISYS 1100/84 computer. Target acquisition is simulated in discrete 2-hour 
cycles. A fire planning cycle occurs only at times generated according to 
user specifications. A fire planning cycle generates fire planning orders 
against acquired targets. Fire units and munitions are allocated and 
scheduled against selected targets. The fire planning cycle is succeeded by 
a fire execution cycle. During a fire execution cycle, delivery of weapons, 
It feasible, is simulated along with damage assessment. Since NUFAM III does 
not simulate conventional fire, no fire action is simulated except the 
nuclear fires at the times designated in the fire plans. These events, over 
time, are represented in Figure 5-1. In the figure, target acquisition is 
represented as a continuous succession of cycles. Each cycle updates target 
unit status and a target list for fire planning. However, a number of cycles 
may we 1 pass with no fire planning. At the designated fire plan time, a 
fire planning cycle and a fire execution cycle are activated. These use the 
current cycle target list. Any altered status of targets (e.g., making a 
targetineffective) resulting from the fire cycles is input to succeeding 
acquisition cycles. ^ 
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Figure 5-1.    Time Sequencing of Event Cycles in NUFAM III 

a. Search state - the target is being sought by sensors. 

b. Acquisition event    - the target is acquired. 
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in that cycle. If it is acquired, the exact time of the acquisition event 
within the cycle is simulated, and a drop event is scheduled after a period 
of time equal to the expected duration of the retention state. Beginning 
with the next acquisition cycle after the drop event, the target unit becomes 
subject to reacquisition. The target acquisition cycles are continuous 
except during simulated nuclear fires. The analytic purpose of the acquisi- 
tion process in NUFAM III is to have a current target list, with acquisition 
status, at the (preset) time that fire planning occurs. A schematic of the 
interaction of acquisition and fire planning/execution is shown in Figure 
5-2. The changing acquisition status of a target is portrayed. In the 
figure, the presence of a target on an acquisition list is indicated by the 
line between the acquisition and succeeding drop events. At fire plan time, 
a candidate target is removed from the current prioritized list of target 
acquisitions and checked to see if it meets standards for receiving fire 
(e.g., weapons being available and engagement meeting preclusion require- 
ments). Fire execution follows fire planning if constraints (available fire 
units, ammo) allow. The target unit will not receive fire if the munition 
time on target (TOT) is later than the acquisition drop time. 

Fire 
plan 
time TOT 

Fire execute I        h-ire execute        i 
V- "^ ^t 

Acq cycle 1   .   Acq cycle 2   .   Acq cycle 3   . 

■2 hours- 

Retention time 
J^ 

r" ^ 

f 1 f "\ 

Tgt Drop Tgt Drop 

acq acq 

^   Elapsing time 

Figure 5-2. Acquisition and Fire Planning Events in NUFAM III 

5-3. DEFICIENCIES OF POTA IN NUFAM. The TAME study team assessed the 
following deficiencies in the applicability and use of the TAS III POTAs in 
NUFAM III. Some of these are related to the TADER deficiencies noted in 
Chapter 1. 
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a. Uncertain Data Genesis. The TAS III Study, which generated POTAs for 
NUFAM III, used as input a modified version of an existing sensor data base 
created for the TAS III Study. In the absence of comprehensive quantified 
performance data, selected subjective adjustments were made to perform system 
data updates. There was no visible audit trail for most of the system 
descriptors in the baseline TAS II data base. The uncertainty in TAS III 
input data credibility carries over to detract from NUFAM credibility. 

b. Inadequate Treatment of Reacquisition. In NUFAM III, a target dropped 
from the target list in an acquisition cycle cannot be reacquired until the 
next acquisition cycle. Since the cycles are of 2-hours' duration, the 
cyclic simulation of acquisitions may incorrectly ignore significant multiple 
acquisitions within a cycle. Greater resolution in time is needed for 
completeness. However, the TAS III input data base is restricted to a sensor 
data base for a fixed 2-hour search period. The resolution of the TAS III 
POTAs, produced by TADER for use in NUFAM III, is likewise restricted to a 
2-hour search cycle. 

c. No Treatment of SIGINT. The TAS III POTAs were based on data for only 
non-SIGINT sensor systems because no adequate SIGINT input data base for 
TADER was available. Inclusion of SIGINT effects is required for complete- 
ness and accuracy. 

d. Inadequate Treatment of Elapsing Time. Time is not explicitly treated 
in the TAS III POTAs, which are based on a specific 2-hour search period. 
The POTA reflects an "interval snapshot" assessment of the probability of a 
unit being acquired at least once during an "average" 2-hour period. The 
only analytic basis for such a measure is an integration of search effective- 
ness over elapsing time. No explicit integration over time is evident in 
either the TADER methodology or the inputs to it. The single sensor-single 
target element input to TADER is defined as the acquisition probability over 
a 2-hour search period. The use of such a discrete search period is not 
meaningful without consideration for, and treatment of, search events prior 
to the beginning of the search period. The timing of an event is dependent 
on previous events. The current POTAs treat the beginning of each acquisi- 
tion cycle in NUFAM III as a "cold start" because there is no dependence on 
preceding events. A corrected acquisition measure and methodology are needed 
to properly treat elapsing time. 

5-4  IMPROVEMENT POTENTIAL OF SPOTA. A steady state probability of acqui- 
sition (SPOTA) similar to that defined in paragraph 3-3 can adequately 
account for elapsing time. The SPOTA is the average probability of target 

■acquisition at a random point in time. In order to be useful in NUFAM, 
analogous steady state measures of target retention should be computed. The 
value of steady state measures in NUFAM is twofold: 

a. Correct treatment of elapsing time is introduced. 

b. NUFAM can be made more efficient because the acquisition status at 
fire planning time can be directly determined probabilistically without the 
tedious simulation of successive acquisition cycles to generate a continual 
series of target lists which are acted on (for fire planning) only rarely. 
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5-5.  INTERIM TARGET ACQUISITION MODIFICATIONS IN INITIAL NUFAM III. A CAA 
analyst working with NUFAM III, MAJ Mark Youngren, noted in a technical paper 
(Ref. 12) that the target acquisition simulation in NUFAM could be repre- 
sented in terms of steady state probabilities since the POTAs were unchanging 
and cyclically applied. The TAS III POTA, as applied in NUFAM III, is 
equivalent to treating a POTA as the defining parameter of a geometric 
probability distribution. From this distribution for a given target unit, u, 
the mean time to acquisition (MTAu) can be computed. The mean retention time 
(MRTu) can be computed from the retention time distribution. The probability 
of acquisition of unit u at random time, PACQu> is then: 

MRTu 
PACQu= 

MTAu + MRTu 

Since the (preset) fire plan time is independent of the acquisition status, 
this is also an estimate of the probability of acquisition at the time of 
fire planning. PACQu is equivalent to the SPOTA defined in paragraph 3-3. 
Using the PACQu probabilities, acquisitions need only be simulated by random 
draw (against the PACQ values) at the fire planning time. This eliminates 
the tedious, time-consuming simulation of states and events in acquisition 
cycles in which there is no fire planning. NUFAM efficiency is thereby 
increased. However, no increase in resolution or accuracy is gained by this 
improvement because these qualities are lacking in the basic TAS III POTAs, 
whose values are unchanged in the above procedure. A better basic 
acquisition measure is required. For increased efficiency of operation, the 
version of NUFAM III current at the start of the TAME effort will be modified 
in the above manner to include a steady state representation with the TAS III 
POTAs. Because they do not constitute a quality improvement, these changes 
represent only interim target acquisition modifications to NUFAM. 

5-6. APPLICABILITY OF CANDIDATE TAME METHODOLOGY. The candidate TAME 
acquisition methodology described in Chapters 3 and 4 will serve to enable 
generation of valid and improved SPOTAs for use by NUFAM III. The basic 
technique for determining an SPOTA was applied in the interim NUFAM SPOTA 
modification described above. However, the use of a geometric acquisition 
function based on 2-hour glimpses and of an arbitrary retention time function 
is inadequate. This will be remedied in the candidate TAME methodology 
through use of the appropriate contractor-generated acquisition functions and 
retention functions from TAS IV. The methodology is defined in terms of 
integration over time and is directly derived from results of high-resolution 
sensor performance models. The NUFAM scenarios must be defined in terms of 
time-sequenced condition sets which correspond to those in the family of 
acquisition functions from TAS IV. Development of an improved NUFAM to 
process the new SPOTAs from the TAME methodology should parallel the 
development of that methodology. 
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CHAPTER 6 

MODELING OF ENVIRONMENTAL DEGRADATION 

6-1. INTRODUCTION. Table 2-2 of Chapter 2 noted the major factors affecting 
sensor performance. These factors were partitioned into system factors, 
environmental factors, target factors, and "other." Since limited field/test 
data is available for detection capability of systems in varied environments, 
most models must operate with input data for systems under a "baseline" 
environment. Capabilities under nonbaseline conditions are then generated by 
adjustment of values for baseline acquisition capability. Variation of 
conditions may be over both time and space. Representation of acquisition 
capability under degraded conditions must consider the interdependence of 
factors as well as their correlation over individually deployed sensors and 
target elements. In addition, a minimum degree of resolution in representing 
environmental (or other) variation is needed. 

6-2. DEPENDENCE 

a. Interdependence Among Performance Factors. Degradation factors have 
often been represented as residual fractions of baseline capability remaining 
after the degraded performance factor is applied. Degradation factors may be 
computed separately for different performance factors. For example, separate 
degradation factors for weather, foliage, smoke, and crew performance might 
be given. In such a case, the separate factors must at some point be fused 
into an overall degradation factor. In a simulation, this may be implicit in 
the successive generation of events. In an analytic model, the easiest 
method of fusion is to multiply the separate factors together to estimate the 
average combined degradation effect of all factors. Such multiplication 
assumes statistical independence of the underlying performance factors. If 
the component factors are not properly defined, independence can be inapplic- 
able, even as an approximation. For example, weather and foliage may be 
highly correlated in some scenarios. Weather conditions associated with high 
detectability may generally occur with foliage conditions associated with 
high detectability. In such a case, the product of the weather and the 
foliage degradation factor will overstate the combined degradation effect 
because a common (to both weather and foliage) degradation influence was 
"double counted." Probability rules do exist for combining effects of 
correlated factors if quantified measures of correlation are given. Unfor- 
tunately, the associated computations can become complex and intractable as 
the number of factors increases. The only alternative to separate factor 
effects is to construct an overall average. This can only be done by inte- 
grating over a joint probability density function. The joint density 
function would give the probability of acquisition for each combination of 
environmental conditions. Construction of such a function can be done from 
empirical results of high-resolution system performance models. 

b. Dependence Among Sensors and Targets. Consider the effect of a single 
degradation factor. If it is applied to a single sensor observing a single 
target element, then a means must be found for combining this one-on-one 
modifier over sensors and target elements to yield a many-on-many modifier. 
Any method for such fusion must consider whether the associated performance 
factor is correlated over sensors and target elements. For example. 
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Identical weather conditions apply to all target elements of a compact unit 
and to all nearby sensors simultaneously observing them. In such a case a 
weather degradation factor is properly applied only after a many-on-many' 
assessment under baseline conditions has been made. As a simple example 
suppose that there are two weather states, good and bad. Also suppose that 
single sensor-single residual detection fraction is 1.0 for good weather and 
0.0 for bad weather. Suppose also that good weather and bad weather each 
occur 50 percent of the time. Suppose that the baseline condition is perfect 
detectability. Consider the weather degradation effect for a single sensor 
observing a cluster of 10 target elements. Consider first the case with 
perfect weather correlation over target elements, i.e., all elements have the 
same weather state. In this case, the entire target (all 10 elements) is 
detectable half the time, and nothing is detected the other half of the time 
Thus, the probability of detection for the unit in this case is .50  Now 
consider the case in which no correlation over elements is assumed.' Then 
each element (of the 10) has a .50 probability of detection. Assuming 
statistical independence in this case, the probability that at least 1 
element (of the 10) in the unit is detected is 1. - (.5)10 = i.oo. Under 
this assumption, the unit is essentially always detectable. This example 
illustrates the importance of defining and applying dependence of effects 
among elements and sensors. The modeler must understand the types of varia- 
tion of an environmental effect in the "real world" and model it appro- 
priately. He (or she) must consider whether effects are constant over 
separate target elements of a target unit. If all target elements of a unit 
are nearly collocated, then an area environmental effect, such as lighting 
may well be constant for all elements of the target unit. Treating such 
effects as varying will distort acquisition assessment of the unit. Specific 
correlation assessments might be needed to measure interdependence. 

6-3. RESOLUTION. The importance of sufficient resolution in the repre- 
sentation of environmental degradation effects has been noted in guidance 
provided to TAME by the NUFAM development team at CAA. The usual treatment 
in analytic many-on-many models is to multiply a baseline acquisition 
probability by a single average degradation factor for each environmental 
condition. This implies that a determination has been made of the average 
level of degradation present over time and the sensor response to this 
average level of degradation. It is important that this determination be 
done in an analytically correct way. The associated method should use 
conditional and marginal probabilities which will give the desired result 
i.e., the average acquisition probability of the sensor, adjusted for the' 
environmental degradation. The following examples, based on an unpublished 
memorandum (see reference 13 of Appendix C), will help to clarify this. 

a. Example 1. Suppose that we are examining the effect of the cloud 
cover over the target area on optical systems (visual or photographic 
observation). There is some inherent probability of detecting a target unit 
under conditions of no degradation—i.e., 0 percent cloud cover. As cloud 
cover increases, the probability of detection decreases. The cloud cover 
reported by the Air Force Weather Service (AFWS) represents an average area 
covered by clouds. Thus, a 30 percent cloud cover means that 30 percent of 
the target area is covered by clouds and 70 percent is not. In this case 
the probability of detecting a target element, given a 30 percent cloud 
cover, is 70 percent of the unobscured (baseline) value. Generalizing if p 
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1s the baseline inherent detection probability and C is the percent cloud 
cover, then the conditional probability of detection, given C, is: 

P(detect IC) = p (1, - C) 

To generate a single average unconditional value for detection probability in 
this case, we should integrate, over all cloud conditions, the product of the 
above conditional detection probability and the probability of occurrence of 
the associated cloud condition. This accords with the statistical definition 
of an average value. If, for example, the probability density function for C 
IS a Beta function of the form Beta(3, 1.5), then the average unconditional 
detection probability is: 

P{detect) = Pidetect I O P(C = c) dc=p/3 
c = 0 

from the properties of a Beta distribution. 

Also from the properties of the Beta distribution, we have: 

average cloud cover = E[C] = .67 

Therefore, in this case, average P(detect) = p ( 1. - E[C] ) 

= p X average residual cloud cover 

However, the adjustment may not always be so straightforward. Suppose that 
the conditional detection probability in the above example was changed to 
degrade with the square of the cloud cover parameter, i.e., 

P(detect I C ) = p ( 1. - C2 ) 

In that case, the adjustment factor would be 1. - Var[C] - E[C]2, where 
Var[C] denotes the variance of the distribution of C. 

_ b. Example 2. Consider now an adjustment for wind speed which (hypothet- 
ical ly) degrades the ability of an airborne sensor system. Suppose that the 
aircraft carrying the sensor is allowed to fly only whenever the wind speed  • 
is less than some average threshold level, T. Suppose that the average wind 
speed IS 15 mph, while the takeoff threshold, T, is 10 mph. Use of only the 
average wind speed in this case means that the aircraft never takes off and a 
zero acquisition probability results. This is clearly wrong, because it is 
likely that sometimes the wind speed is below 10 mph and the aircraft can 

K P-t:. Suppose, from the probability distribution of W, that we know that 
probability (W < 10) = .25. Then this value is an appropriate adjustment 
factor. Thus, the correct adjustment factor for wind speed is the cumulative 
distribution function for W evaluated at T. To evaluate this, we need to 
know the distribution of the environmental effect (wind speed) and the 
probability of detection conditioned on values of the environment 
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c. Summary Assessment. Although we were able, in the above examples to 
express the average unconditional adjustment factor as the product of an 
"average" factor and a baseline detection probability, this is not the same 
approach as multiplying the probability by some sort of average of the 
environmental effect distribution. Application of the correct method 
requires integration of the probability distribution of (occurrence of) an 
environmental condition with the conditional probability of detection, given 
each specific condition state. This does beg the question of where to obtain 
therequired distributions. Distributions might be fitted to available 
empirical data. Models can then be run using environment state values that 
reflect "real-world" variation over time. 

6-4. REPRESENTATION IN EXISTING MODELS. Chapter 2 summarized the repre- 
sentation of effects degradation in existing models. As was shown in Table 
2-5, the TADER, COMWTH, and SAI many-on-many expected value models all apply 
input values that are simple multipliers for the residual effect of "average" 
environmental states. No method for calculating or estimating these adjust- 
ment factors was given. In addition, statistical independence of effects was 
assumed. A linkage to one-on-one model results was not apparent. 

6-5. DATA REQUIREMENTS. Proper treatment of dependence and resolution in 
degradation modeling requires the use of probability distributions for 
environmental states as well as the detectability of each sensor in each 
state. Empirical data, where available, must be generated or extrapolated 
Detectability functions then need to be fitted to this empirical data. Thus, 
a data generation or algorithm generation effort should precede or parallel 
any many-on-many acquisition assessment effort. 

6-6. REPRESENTATION IN CANDIDATE TAME METHODOLOGY. As noted earlier, fusion 
and dependence of environmental factors at any fixed time is implicit'in the 
TAS IV detection algorithms in the models used to generate the data under- 
lying them. Variation in environment conditions over time is explicitly 
integrated, via stochastic simulation/estimation, in the implementation 
described in Chapter 4. The parallelism of the development of the steady 
state methodology and the data/algorithm effort of TAS IV should ensure 
feasible and appropriate treatment of environment. Credibility and com- 
pleteness of the TAS IV products will require careful coordination between 
CAA, AMSAA, and the contractor. 

6-7. ASSESSMENT OF OPTIONS. The candidate TAME methodology offers the best 
chance to construct a many-on-many acquisition assessment methodology based 
on high-resolution effects modeling. Environmental variation in static 
assessments is processed by high-resolution models used by AMSAA to generate 
results which can be combined over elapsing time. The documented analytic 
many-on-many models, such as TADER, COMWTH, and the SAI model, lack time 
resolution during detection assessment. No audit trail for environmental 
effects, even for "interval snapshot" effects, is found in these models. If 
TAS IV were to generate a data base for them, that data would not be usable 
for steady state assessment over a scenario with probabilistic variation in 
search time. Only the candidate TAME methodology is designed to support a 
valid steady state acquisition assessment and appears to be the preferred 
methodology. 
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CHAPTER 7 

MODELING OF SIGINT 

7-1. INTRODUCTION. SIGINT (signals intelligence) sensors detect electronic 
emission signatures rather than target elements. A signature is present only 
if the associated equipment is "on," i.e., transmitting/emitting in the 
electronic spectrum. This paper considers only SIGINT detection modeling. 
Jamming and deception are not treated. SIGINT sensor types may be further 
subdivided into ELINT and COMINT sensor types. ELINT sensors detect elec- 
tronic emissions other than radios. COMINT sensors intercept and analyze 
radio communications. The object of SIGINT search is to identify and/or 
locate the type of emitter. In the case of COMINT, the identification of a 
type of radio net is often the goal. SIGINT information is usually passed to 
an intelligence processing center, such as an All Source Analysis System 
(ASAS), for analysis. Rather than being used as a primary source for 
targeting, SIGINT information is more often used to prepare an order of 
battle, to cue another sensor to a target area, or to add confirmatory 
information on the identity of a previously sensed target. 

7-2. OPERATIONAL ASPECTS. SIGINT sensors may be ground-based or airborne. 
Ground-based sensors are generally deployed as a netted cluster of two to 
four sensors and a net control station (which may also act as a sensor). The 
net arrangement is needed to generate effective lines of bearing (LOBs) for 
triangulation and direction finding. While only two sensors are theoreti- 
cally needed to triangulate, ghost effects can be produced. These effects 
are significantly reduced with three LOBs. Airborne SIGINT sensors can 
generate LOBs during the mission path, but this may create processing delays. 
The series of states that must precede a successful SIGINT detection is 
schematically summarized in Figure 7-1. In brief: the target signature must 
be present, the sensor must be set to recognize it, the target must be in the 
field of view (FOV) of the sensor, and the signal/noise ratio (S/N) at the 
sensor must be large enough to discriminate the target emission. The major 
factors affecting SIGINT detection are listed in Table 7-1. A SIGINT sensor 
is usually set to search only a selected spectrum of frequencies, dictated by 
the search priorities of the seeking force. An emission will be invisible to 
a sensor unless it is programed to recognize it. An emitter is also unde- 
tectable if its signal is masked by interference from other equipment on the 
same channel. The frequency of transmission of an emitter, known as its duty 
cycle, is likely to be correlated with its distance from the PLOT during 
combat. Forward units and combat units tend to have high duty cycles. Near 
the PLOT, the duty cycle will also tend to depend on combat posture, but this 
effect levels off toward the rear of the force. In the case of COMINT, a 
clear line of sight (LOS) is not always necessary to detect, but significant 
propagation loss can result from masking. The time-dependence of the duty 
cycle, and the time- and space-dependence of the interference effects make 
SIGINT especially difficult to model. 
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Table 7-1. Major Factors in SIGINT Detection 

Sensors Emitters Other 

Location, altitude Location Background interference 

Frequencies searched Duty cycle Propagation effects 

FOV searched Frequencies emitted Terrain masking 

Receiver sensitivity Power 

No 
detection 

No 
detection 

Detect 
prob 

Pd>0 

Background 
interference 

Propagation, 
LOS 

Figure 7-1.    State Sequence for SIGINT Detection 
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7-3. SYSTEM TYPES. Table 7-2 shows descriptive names for typical SIGINT 
sensors. Unless otherwise noted, only US systems are represented. The table 
shows only airborne and ground-based systems. Theoretically, satellite 
systems may also be capable of ELINT and COMINT sensing, but information on 
capabilities of such national systems would generally be at compartmented 
security (SCI) levels. TEREC denotes the Tactical Electronic Reconnaissance 
System, while PLSS is the Precision Location and Strike System. 

Table 7-2. Typical SIGINT Systems 

COMINT ELINT 

Ground-based Airborne Ground-based Airborne 

AN/TRQ-32 SENIOR SPEAR TEAMPACK TEREC 

TRAILBLAZER RIVET JOINT BEADY EYE (UK) QUICK LOOK 

VAMPIRE (UK) GUARDRAIL SENIOR RUBY 

QUICK FIX RIVET JOINT 

PLSS 

7-4. HIERARCHY OF ANALYTIC REPRESENTATION. The hierarchical tree of one-on- 
one models, one-on-many models, and many-on-many models described in Chapter 
2 also applies to SIGINT. The principal factors to be modeled are those 
summarized in Table 7-1. The SIGINT modeling problem is considerably more 
complex than that for non-SIGINT. The time-dependence of the equipment duty 
cycle, the time- and space-dependence of interference effects, and the 
netting of SIGINT sensors are especially difficult to represent analytically. 
Interactions over time and space require a stochastic simulation to model 
effectively. Since a SIGINT sensor is often specialized to detect only one 
type of signature, the concept of a one-on-many model is often redundant for 
SIGINT. 

7-5. DATA CONSTRAINTS. As noted earlier, capabilities of SIGINT systems, 
especially national systems embracing high technology, are often disseminated 
only at SCI security levels. Computer modeling of these capabilities also 
requires authorization for computer operation with SCI data. These con- 
straints severely restrict the modeling of SIGINT using one-on-one input 
data. The merged results of one-on-one models, however, can likely be 
disseminated at the SECRET level if the component system results of any SCI 
systems are not referenced. 

7-6. CURRENT MODEL REPRESENTATION.  In spite of the above difficulties in 
modeling SIGINT with a many-on-many expected value model, several approaches 
have been tried. Usually, these require exercising another model offline to 
generate results for SIGINT sensors. The offline results are then input to 
the main model, where they are combined with non-SIGINT sensor results. Of 
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the many-on-many expected value models described in Chapter 2, TADER does not 
treat SIGINT at all, but COMWTH and the SAI model do treat SIGINT, albeit 
offline. The first TAS methodology at CAA (a precursor of TADER) also 
included SIGINT. SIGINT methodology in these models is described below. 
Since many-on-many modeling depends on the results of one-on-one models, a 
discussion of the latter is appropriate before discussing the former. 

a. One-on-one Methodology. The methods of one-on-one models depend on 
equations from physics. The following aspects of one-on-one SIGINT modeling 
are described in a SIGINT analysis study performed by R&D Associates for the 
Defense Nuclear Agency (DNA) (Ref. 14). 

(1) ELINT. The intensity of a stationary emitting radar signal, as 
measured by an ELINT sensor searching the radar frequency, is a function of 
the radar power, the directional antenna gain of the radar, the radar wave- 
length, and the range to the sensor. A nonzero probability of detection 
results if the target radar antenna gain in the direction of the sensor is 
greater than the minimum gain for which detection (by the sensor) is possible 
at that range. A single look probability of detection is calculated, based 
on a specified minimum observation duration. If the emitter is moving, the 
assessment is complicated by the requirement to integrate detectability over 
dynamically varying sensor-target conditions. 

(2) COMINT. A CGMINT sensor detects an emitting transmitter if the 
computed signal-noise (S/N) ratio exceeds a minimum threshold required for 
detection/discrimination. The S/N ratio is a function of transmitter power, 
band width, sensor receiver gain, system noise, and propagation loss. An 
important COMINT degradation effect results from cochannel interference 
caused by simultaneous transmissions from radios on the same frequency. The 
interference problem may not affect ground radio nets, but can be significant 
for an airborne COMINT sensor searching a large field of view. 

(3) Fusion. In ground-based SIGINT nets, fusion of netted SIGINT 
sensor results may be done under the assumption of statistical independence. 
For example, if at least two sensors from a net of three are needed to fix a 
detection, then, if p denotes the single look probability of detection for a 
single sensor, then the net probability of detection, PN, might be computed 
as PN = p3 + 3(l-p)p2. One-on-one models usually generate single look 
results that are conditioned on the emitter continuously emitting and a 
sensor being set to the correct matching search frequency. 

An adjustment for intermittent operation and uncertain search requires the 
melding of such one-on-one results into a specialized SIGINT simulation. 
Such simulations are often complex and not well documented. In addition, a 
simulation that can incorporate SCI systems is likely to have documentation 
restricted for security reasons. Examples of comprehensive SIGINT simula- 
tions include the TACSIM Model, used by the US Army Intelligence Center and 
School (USAICS) and the Intelligence and Electronic Warfare Simulation 
Systems used by the US Army TRADOC Systems Analysis Activity at White Sands 
Missile Range. 

b. TAS Methodology. The 1976 TAS methodology at CAA used an offline 
many-on-many SIGINT analysis performed by the US Army Security Agency 
(USASA). Prior to the SIGINT analysis, the CAA study team determined the 
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radio and emitter population for each target unit type in the observed 
forces. Using these emitter deployments, USASA provided a probability of 
operational detection (POTA) for a force's total SIGINT assets versus each 
opposing target unit type located in each of four target zones. The USASA 
analysis was conditioned on the targets emitting and the sensors being 
available. The study team applied the following three operational 
degradation factors: 

(1) The fraction of time that the target radios/radars were emitting. 

(2) The fraction of time that SIGINT sensors were available. 

(3) The probability of no degradation by SIGINT system crew 
performance. 

Only one value of each factor was specified for a force. The force SIGINT 
POTA computed by USASA was multiplied by the product of the above degradation 
factors to yield an adjusted operational SIGINT POTA. The adjusted SIGINT 
POTA was combined, via mathematical independence, with the independently 
computed POTA for non-SIGINT systems. The study documentation provided no 
specific information on the type models used by USASA to obtain its results. 
It would appear more appropriate for the degradation factors to be applied in 
a dynamic, high-resolution simulation. 

c. SAI Model. The SAI model is a many-on-many analytic model which does 
assess the acquisition potential of SIGINT sensor systems. A target is 
individually specified as either being an ELINT target, a COMINT target, or 
neither. No consideration is made for cover and concealment. Also, all 
SIGINT targets are treated with range-independent, single look probabilities. 
ELINT sensors are treated very similarly to non-SIGINT sensors in the 
methodology. The target's ELINT signature is simply treated as a target 
element. Target activity factors for a SIGINT target are represented in 
terms of the frequency of emissions. The COMINT methodology computes the 
probability that the net control station of "important" communications nets 
will be detected and located during the search period. The COMINT model is 
an offline stochastic simulation of the time-dependent events which must 
occur for SIGINT acquisition. It is not an engineering model of signal 
propagation, probability of intercept, or location errors of COMINT hardware. 
The COMINT simulation model does treat: 

(1) Number of sensor assets available for intercept and direction 
finding (DF). 

(2) Number of radio nets (important and unimportant). 

(3) Transmissions per hour from each net type. 

(4) The number of nets each target equipment belongs to. 

(5) The number of detected transmissions required (by a processing 
center) to qualify a target detection as important. 

(6) Intelligence processing time delays of various types. 
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Using the above inputs, the SIGINT simulator then computes a value, PA, for 
the average acquisition probability for a net from SIGINT in the following 
steps in each simulation replication. 

(1) Determine the probability of intercepting a single radio 
transmission from an important net. 

(2) Generate (by stochastic simulation) a time sequence. 

(3) Simulate the number of net control stations located. 

(4) Compute average acquisition probability of a net, PA, as the ratio 
of the number of net control stations that were located to the number of 
nets. 

After all replications are done, PA is averaged over all replications to 
yield an average value, PAV. Since each control station may participate in 
more than one net, the overall COMINT acquisition probability for the 
scenario is PESM = 1. - (1. - PAV)NRPT, where NRPT denotes the number of 
nets to which the target belongs. Using mathematical independence, the 
overall acquisition probabilities from COMINT (PESM), ELINT (PELINT), and 
non-SIGINT systems, PNSIG, are combined into an overall POTA, PACQ, by: 

PACQ = 1. - (1. - PESM)(1. - PELINT)(1. - PNSIG) 

d. COMVfTH Model. COMWTH assesses a SIGINT signature in exactly the same 
way as any non-SIGINT target element. "Interval snapshot" single sensor 
probabilities of detection are input, via lookup tables. These are adjusted 
for the fraction of time the emitter (associated with the signature) is "on." 
No simulation of time and equipment interaction or engineering determination 
of one-on-one capability is done. Any one-on-one modeling has to be implicit 
in the single-element, single-signature lookup table input used by COMWTH. 

7-7. REPRESENTATION IN CANDIDATE TAME METHODOLOGY. The candidate steady 
state acquisition methodology described in Chapters 3 and 4 applies the 
inputs from many-on-many models. SIGINT system assessment is therefore 
implicit rather than explicit. The input component acquisition functions 
(detection as a function of time) from TAS IV are built from the combined 
"net assessment" results of higher resolution models operated by AMSAA. The 
SIGINT systems' effectiveness will be modeled through operation of high- 
resolution models, such as TACSIM and SIM. Where necessary, input sensor 
effectiveness values for these models will be generated using sensor 
performance models from TRAC-WSMR. During the course of the TAS IV effort, 
AMSAA and the TAS IV study team at CAA will jointly define the scope of the 
results to be generated for use by the TAS IV contractor in building 
acquisition functions. Detailed sensor and target deployments will be 
developed for input to the TACSIM and SIM sensor performance models run by 
AMSAA. This will ensure the quality and quantity of data sufficient to 
construct the component function "building blocks" for TAME to apply over a 
variety of scenarios, using the methodology described in Chapter 4. This 
approach is consistent with the hierarchical application of nested models 
suggested in Chapter 2. 
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7-8. EXAMPLE SIGINT REPRESENTATION IN CANDIDATE TAME METHODOLOGY. A 
subscenario environment for a TAS IV sensor acquisition function is defined 
in terms of a combination of scenario/environment condition states. Table 
7-3 gives a stylized example of a set of condition state values for defining 
SIGINT subscenario environments for an acquisition function. Each 
subscenario environment is defined in terms of a combination of states for 
each of the five conditions. A total of (2)(4)(2) = 16 subscenario 
environments can be mathematically constructed from Table 7-3. A composite 
acquisition function would be computed by the TAME candidate methodology 
(from Chapter 4) for a time-sequenced succession of subscenario environments 
from the table. This function implicitly includes the conditions in the 
table. A generalization of this stylized example would be used in the 
practical application of the candidate TAS IV methodology. 

Table 7-3. Example Condition States Defining SIGINT Subscenario 
Environments 

Condition State values 

Target movement Stationary, moving 

Emitter activity Silent, low power, medium power, high power 

Time of day Day, night 

7-9. ADVANTAGES OF CANDIDATE TAME METHODOLOGY. The candidate TAME method- 
ology has the following advantages relative to the approaches used in 
the TAS, COMWTH, and SAI models: 

a. Visible Audit Trail. The linkage of the method's development to the 
TAS IV product construction should enable a derivable audit trail to the 
conditions modeled during the preparation of inputs (the acquisition 
functions and target retention functions). No audit trail was evident in the 
available documentation for many-on-many models of target acquisition. 

b. Use of Inputs Generated from Existing Credible Models. The TAS IV 
products, which are input to the proposed method, are derived from higher 
resolution models with a history of operational credibility in US Army 
analytic centers. 

c. No Severe Security Restrictions on Applications. As noted above, the 
implicit, rather than explicit, modeling and representation of any systems 
with compartmented security characteristics should allow combined, net, 
acquisition assessment results to be generated and disseminated at SECRET 
level. The increased knowledge transferrence permitted by this can only be 
beneficial to the US Army. 
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CHAPTER 8 

FINDINGS AND OBSERVATIONS 

8-1. PURPOSE. The purpose of this chapter is to address the elements of 
analysis for the TAME Study as stated in Chapter 1 and to present key 
findings and observations resulting from the study. 

8-2. ELEMENTS OF ANALYSIS. The study directive identified five elements of 
analysis, which are restated below with a summary of the responses based on 
the results of the study. 

a. Should the methodology be modified to take into account, separately 
and directly, the steady state acquisition capability of each type sensor? 

(1) The TAME acquisition methodology should treat acquisition proba- 
bility as a function of both time and space. In a tactical scenario, a 
target essentially alternates between two states relative to opposing sen- 
sors. It is either being sought (not yet acquired), or it is acquired and on 
an acquisition list. It is subject to reacquisition (from renewed search) 
after being dropped from the acquisition list. Descriptors characterizing 
these states can be meaningfully and feasibly determined only from steady 
state algorithms which express probabilities of target acquirability and 
retainability (on an acquisition list) as a function of elapsing time. 

(2) A new acquisition measure, the steady state probability of target 
acquisition (SPOTA) was developed for TAME. The SPOTA for a target unit 
opposed by a force of sensors in a scenario timeframe is defined as: 

MRT 
SPOTA 

MTA + MRT 

where MTA = mean time (for sensor force) to acquire the target unit in the 
scenario timeframe 

MRT =  mean target retention time duration (on acquisition list) for 
the target unit, given that it is acquired 

The SPOTA, as defined above, appears to be the most meaningful and feasible 
way to represent steady state acquisition status in a scenario. 

(3) Use of nested models and data is advisable to avoid the diffi- 
culties in modeling and processing a multidimensional problem with high 
resolution. Under appropriate assumptions, a many(sensors)-on-many(target 
elements) model can be theoretically structured in terms of one-on-many 
models and one-on-one models. Existing many-on-many expected value models 
(TADER, COMWTH, SAI model) which were studied have no documented audit trail 
to high-resolution results. The TAME methodology should be clearly based on 
performance model results. 
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TAMc ^^ .The linkage of TAME to the TAS IV Study has produced a proposed 
TAME acquisition methodology, denoted herein as the candidate TAME 
methodology. That methodology will use a comprehensive catalog of fixed- 
scenario acquisition algorithms, to be generated in TAS IV through the US 
Army Materiel Systems Analysis Activity (USAMSAA). The function catalog will 
be based on empirically generated, time-dependent results of sensor perform- 
ance models. The methodology will use the catalog to build composite algo- 
rithms for assessing steady state measures of target acquirability and 
retainability in a dynamic scenario. These can be used to compute an 
estimate of the SPOTA for a scenario. ^uMipuue an 

(5) The candidate TAME methodology is preferred over existinq 
approaches studied because it is clearly linked (via TAS IV) to accepted 

?^n??^Er^°''T" '"°.^"' '^^sults, appears implementable, treats sensor fusion 
implicitly, and minimizes security restrictions in processing. 

Of Js December aSs^J'^Mr'''"'" '"''°'* ''' '"'"^ '''''''' '''''^' '' 

TflMP ilL  1^1 '^^^^■"^■t^'o" °^ SPOTA, as used in and generated by the candidate 
TAME methodology, is compatible with the acquisition event states of NUFAM 
HI. The computed SPOTAs from the method can be directly used bv NUFAM  ThP 
greater credibility of the SPOTA values, relative to the TAS III POTAs 'wi 1 
enhance the credibility of NUFAM. 

4.U 4- iVuc ^^^'^^ ^.^^  °^ ^''^^^^ ^^°'" ^^^ candidate TAME methodology requires 
that TAME scenarios for use with NUFAM be defined in terms of time-sequenced 

frnrn'Tn^Tw  T!!^''"' ^""^ included in the catalog of acquisition functions 
from TAS IV. This requires effective interface between NUFAM development/ 

?^a^n?ipH^f'°'^' '"? lt^K'° '""'''^ ^^^^ ^ ''^'^^  ^"d practical mechanism 
MMCAS^  ?• .•°"^^'^^^^ ^^^ time-sequenced condition sets associated with 
NUFAM applications using the TAME products. 

c. How can modeling of environmental degradation factors be improved by 
using conditional probabilities to transform basic environmental data into 
modifiers for specific scenarios? 

4-- ^V  ,i" "^^e'^age" detectability adjustment for an environmental condi- 
tion should be computed by integration of the probability distribution of 
(occurrence of) states of that condition with the conditional probability of 
detection, given each specific condition state. 

_ (2) In the candidate TAME methodology, fusion and dependence of 
environmental factors at any fixed time is implicit in the acquisition 
functions in the TAS IV catalog. Variation in environmental conditions over 
time IS explicitly integrated, via stochastic simulation. 

d. To what degree can derived methodologies be automated? The alqo- 
rithmic process description of the candidate TAME methodology directly 
corresponds to the processes of a stochastic, event-based simulation program. 
The structure of the underlying simulation events requires definition by TAS 
IV. The program will be an interface between the TAS IV data catalog and an 
input scenario  The feasibility of the process automation is apparent, given 
availability of specific TAS IV products. The application of the methodology 
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to a combat scenario depends on the availability of a mechanism for repre- 
senting a scenario timeframe as a time-sequenced succession of (TAME 
methodology) scenario states. 

e. What are the implications to the target acquisition methodology of 
including SIGINT contributions directly rather than through intelligence 
preparation of the battlefield, as in TAS III? 

(1) The SIGINT modeling problem is specialized. Transient emissions, 
rather than objects, are sensed. The seeker characteristics (frequencies 
searched) of sensors can change dynamically over time. The multidimensional 
(time and space) complexity of the SIGINT scenario imposes a burdensome data 
and processing requirement. Past acquisition models of large scope have 
either omitted SIGINT or have input aggregated SIGINT performance factors 
evaluated offline. However, a documented credible audit trail of the origin 
of SIGINT factors is usually lacking. Dissemination of performance data for 
some SIGINT systems may be limited by classification as compartmented infor- 
mation. Modeling of such systems is similarly restricted. Few computer 
sites are authorized operation with compartmented data. 

(2) The recommended candidate TAME methodology has a visible audit 
trail, the TAS IV algorithm catalog, which will be derived from inputs 
generated by established sensor performance models. In addition, the use of 
combined performance assessments, rather than single system performance 
assessments, in the TAS IV product should allow processing at no higher than 
SECRET level. 

8-3. THE CANDIDATE TAS IV METHODOLOGY 

a. Input Algorithms. AMSAA will exercise computerized sensor performance 
models to simulate surveillance results for suites of sensors in a wide 
spectrum of constant scenario environments against various target unit types. 
The TAS IV contractor will fit the AMSAA-generated results to algorithmic 
acquisition and retention functions showing probability of target acquisition 
and probability of target retention as a function of time under each constant 
scenario environment. 

b. Input Scenario. The scenario to be assessed should be representable 
as a series, over elapsing time, of environmental states. Each state must 
correspond to one of the environment states used in the derivation of the TAS 
IV algorithm catalog. 

c. Simulation. The method stochastically simulates the target acquisi- 
tion status and retention status at a random assessment point in the scenario 
timeframe. This Is done, in each replication, by dynamic construction of 
composite (relative to the set of environments) target acquisition and 
retention functions. Each composite function is constructed by piecewise 
connection of "slices" of functions from the TAS IV data catalog. 

d. SPOTA. After a sufficient number of replications 1s completed, the 
SPOTA is estimated as the empirical average frequency, over all replications, 
of the acquisition state being present at the random assessment time. The 
SPOTA can be used to assess whether an average unit, of a specified type In a 
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scenario, is on an acquisition list at the assessment time. The assessment 
is integral to NUFAM scenarios at CAA. 

e. Residual Retention Time. The duration of retention time remaining for 
an acquisition starting at the random assessment time is denoted as the 
residual retention time. An estimate of the distribution of residual 
retention time duration can also be produced with the method. The estimated 
residual retention time distribution can then be used to estimate the proba- 
bility that an acquisition remains a valid target until the completion of the 
fire execution cycle. This probability can be used to determine fire events 
in NUFAM scenarios at CAA. 

8-4. RECOMMENDATIONS. In consideration of the reported findings, it is 
recommended that: 

a. The candidate TAME methodology be adopted as the TAME acquisition 
methodology. 

b. The TAME project team should work with the TAS IV project and the 
NUFAM development project to: 

(1) Define the environmental states and state values for which the 
TAS IV/TAME acquisition algorithms must be computed. 

(2) Define the mechanism for representing TAME scenarios as a time- 
sequenced succession of environment states from TAS IV. 

(3) Define the interface between TAME and NUFAM scenarios to ensure 
compatibility and credibility for specific NUFAM applications. 

c. Upon definition of the TAS IV product algorithms, the TAME project 
team should construct operational programs to: 

(1) Compute the TAS IV algorithms needed in the TAME methodology. 

(2) Express a TAME scenario as a time-sequenced succession of TAS IV 
environment states. 

(3) Apply the TAME methodology documented herein to compute the steady 
state probability of acquisition (SPOTA) and the residual retention time 
distribution for TAME scenarios. 
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APPENDIX B 

STUDY DIRECTIVE 

DEPARTMENT OF THE ARMY 
us ARMY CONCEPTS ANALYSIS AGENCY 

8120 WOODMONT AVENUE 
BETHESDA, MARYLAND 20814-2797 

REPLY TO 

ATTENTION Of: 

CSCA-FSC 0 7NOV1988 

MEMORANDUM FOR ASSISTANT DIRECTOR, FORCE SYSTEMS DIRECTORATE 

SUBJECT: Target Acquisition Methodology Enhancement (TAME) Study 

1. PURPOSE OF STUDY DIRECTIVE. This directive provides study guidance for 
the enhancement of the Army's Target Acquisition methodology through the 
Target Acquisition Methodology Enhancement (TAME) Study. 

2- BACKGROUND. POTA values reflect many complex technical and operational 
considerations and have been widely used in Army, Joint, and SACEUR 
studies. Most recently, the Target Acquisition Study III (TAS III) at the 
U.S. Army Concepts Analysis Agency (CAA) developed and operated a new 
model, "Target Detection Routine (TADER)," to generate POTA values for 
U.S., non-U.S. NATO, and Warsaw Pact (WP) forces in various postures (i.e., 
defense, attack, on the move, and assembly). Experience with this model 
and analysis of its results have shown the need for further enhancement of 
this methodology, in particular, treatment of detection perishability, 
treatment of SIGINT, and improved interface with the CAA Nuclear Fire 
Assessment Model (NUFAM). 

3. STUDY SPONSOR. Director, U.S. Army Concepts Analysis Agency (CAA). 

4. STUDY AGENCY. Force Systems Directorate, U.S. Army Concepts Analysis 
Agency. 

5. TERMS OF REFERENCE 

a. Scope. The general scope of the TAME Study includes the evaluation 
and implementation, where feasible, of methodology improvements for 
enhancing the use and applicability of the NUFAM Model as well as for 
broader applications. These can only be realized in two phases. The TAME 
Study effort described herein consists only of a methodology analysis/ 
feasibility assessment phase. Work will be guided by ongoing upgrades of 
NUFAM and objectives of the TAS IV Study at CAA. When products from NUFAM 
improvement and TAS IV become available, this first phase should be 
succeeded and completed by a second implementation and issue analysis 
phase. 

b. Objectives. Assess approaches for and feasibility of the following 
methodological improvements in target acquisition: 

(1) Development and use of a single glimpse detection capability and 
variable sensor search time to represent steady state acquisition 
probability. 

(2) Improved integration with the NUFAM Model at CAA. 
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(3) Use of conditional probability distributions to better represent 
environmental degradation for a scenario. 

(4) The automating of computations for methodologies developed. 

(5) A SIGINT methodology. 

c. Assumptions and Limitations 

(1) The order of battle is well known prior to determination of the 
acquisition probabilities. 

(2) The capability of a suite of sensors to acquire (recognize and 
locate) target units in an operational environment can be measured by the 
probability of detecting user-specified combinations of single elements of 
those units. 

(3) The sensors modeled can differentiate between wheeled and 
tracked vehicles. There will be no significant confusion due to civilian 
traffic and personnel, and the probabilities of detection of different 
elements in a target unit are statistically independent of one another. 

(4) Much of the input data is widely averaged over area, time, and 
sensor/target conditions. 

(5) The sensor data catalog product of the TAS IV Study will be 
sufficiently developed to provide information on sensor characteristics and 
capabilities for methods developed. Data products from the TAS IV Study 
suitable for implementation in specific applications may not be available to 
this study. 

(6) The validity of an acquisition methodology depends on the 
validity of the input sensor data. 

d. Elements of Analysis 

(1) Should the methodology be modified to take into account, 
separately and directly, the steady state acquisition capability of each type 
sensor? 

(2) Can the methodology effectively support the NUFAM version 
current as of 15 September 1988 at CAA? 

(3) How can modeling of environmental degradation factors be 
improved by using conditional probabilities to transform basic environmental 
data into modifiers for specific scenarios? 

(4) To what degree can derived methodologies be automated? 
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(5) What are the implications to the target acquisition methodology 
of including SIGINT contributions directly rather than through intelligence 
preparation of the battlefields, as in TAS III? 

6. LITERATURE SEARCH. DTIC search has been conducted. Selected references 
ordered are being received and will be consulted as documentary and 
informational need dictate. 

7. REFERENCES 

a. CAA Technical Paper, CAA-TP-76-2, Target Acquisition Study (TAS), May 
1976 (SECRET). 

b. CAA Technical Paper, CAA-TP-79-4, Target Acquisition Study II (TAS 
II). August 1979 (SECRET). 

c. CAA Study Report, CAA-SR-87-23, Target Acquisition Study III (TAS 
III), September 1987 (SECRET). 

d. Unpublished research paper, Youngren, Mark A., Modeling Target 
Acquisition, May 1987 (UNCLASSIFIED). 

8. ADMINISTRATION 

a. Support. Funds for travel and per diem will be provided by CAA. CAA 
Requirements Directorate will provide analytic support defining the interface 
between this study and the NUFAM Model. 

b. Milestone Schedule: 

Study directive approval 

Phase I: 
Assessment of single glimpse methodology 
Assessment of improved NUFAM integration 
In Process Review ARB 
Assessment of environmental degradation 

enhancement 
Assessment of method automation 
Assessment of SIGINT approaches 
Technical Paper ARB 
Technical Paper published 

r 
15 Get 88 

30 Oct 88 
30 Nov 88 
1 Dec 88 
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APPENDIX D 

TARGET DETECTION ROUTINE (TADER) METHODOLOGY 

D-1. SYNOPSIS OF METHODOLOGY. The principal purpose of TADER is to 
determine the probability of detection of combat units of various types at 
different distances from the PLOT. The values developed are called "ROTA" 
(probability of operational target acquisition) or "unit POTA" values. The 
target units typically are of company, battalion, command post, and battery 
sizes. The POTA values are averages over zones of prespecified depth, 
currently 0-3, 3-12, 12-25, 25-100, and 100-300 km. The POTA values for a 
zone are developed by first determining the POTA values for uniform (1 km) 
squares in the zone, and then averaging these over the whole zone. 

a. Input Sumnary. The following input data are required by TADER: 

(1) Types, composition, and locations of deployed sensor suites. A 
sensor suite containing only sensors of a common type is denoted herein as a 
sensor system, i.e., each sensor of the system has exactly the same 
characteristics except for emplacement location. 

(2) The inherent single sensor-single element detection probability 
value for each sensor type against targets located in each sensor-tarqet 
distance zone. 

(3) Degradation factors which are multipliers of inherent detection 
probability to adjust for the following conditions: 

(a) Relative effectiveness due to weather. 

(b) Relative effectiveness due to wind. 

(c) Relative effectiveness due to dust and smoke. 

(d) Relative effectiveness due to crew performance. 

(e) Relative effectiveness due to line of sight restrictions. 

(f) Relative effectiveness due to visibility restrictions. 

(g) Fraction of time the sensor is available (excludinq attrition 
effects). 

(h) Probability sensor survives. 

(4) Activity/environment factors, which multiplicatively degrade 
inherent detection probability to account for the effects of: moving in the 
open, moving in woods or towns, stationary in the open, and stationary in 
woods or towns. 

(5) Coverage patterns for each sensor. 
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(6) Unit structure in terms of the number and types of target elements 
in the unit in a target zone. Element types include: personnel, wheeled 
vehicles, tracked vehicles, artillery/rocket tubes or launchers, mortar 
tubes, and artillery/rocket/mortar volleys fired in the search period. 

(7) Fraction of units which are firing during a search period. 

(8) Frequency of time spent by each target unit in each activity/ 
environment state: moving in the open, moving in woods or towns, stationary 
in the open, and stationary in woods or towns. 

(9) The "OR" lucrativeness level for each element type in a unit, i.e., 
a fraction of elements required to be detected such that detections in a unit 
are "OR" lucrative if at least the "OR" level is detected for at least one 
element type in the unit. TADER assesses only lucrative detections in a 
unit. 

(10) The "AND" lucrativeness level for each element type in a unit, 
i.e., a fraction of elements required to be detected such that detections in 
a unit are "AND" lucrative if at least the "AND" level is detected for each 
(and every) element type. 

b. Summary. The zone unit POTA computed by TADER is for a target unit 
randomly located in a target zone and searched for by all scenario systems. 
The sequence of computations is summarized below. More detail is provided in 
paragraph 2-5, Chapter 2. 

(1) The target zone is partitioned into grid squares of uniform (input- 
specified) size. 

(2) For each deployed sensor of each system, a single-sensor unit POTA 
for each grid square is computed, based on the target unit being in that grid 
square and scanned by that sensor. This is the probability that the sensor 
detects the target unit as lucrative. 

(3) For each system, a single-system POTA for each grid square is com- 
puted by combining single-sensor POTAs. This is the probability that the 
system detects the target as lucrative. 

(4) Over all noncounterfire systems, the noncounterfire unit POTA for 
each grid square is computed by combining single-system POTAs versus the 
unit. This is the probability that at least one noncounterfire system 
detects the unit as lucrative. 

(5) Over all counterfire systems, the counterfire unit POTA for each 
grid square for each unit capable of firing artillery/rockets or mortars in 
the grid square is computed by combining single-system POTAs versus the unit. 
This is the probability that at least one counterfire system detects the unit 
as lucrative. 

(6) The combined unit POTA for each grid square is computed by combin- 
ing the noncounterfire and counterfire unit POTAs in each square. This is 
the probability that at least one system detects the target unit as 
lucrative. 
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(7) The unit POTA for the target zone is computed by averaging the grid 
square unit POTAs over all grid squares in the target zone. Averaging 
randomizes the effects of target location over the target zone. 

D-2. POTA CALCULATION OVERVIEW (TOP DOWN). The end product of TADER is the 
unit POTA for a target unit randomly located in a target zone and searched 
for by all scenario systems. This zone unit POTA is determined in the 
following manner. 

a. The unit POTA for a target zone is computed as the arithmetic average 
of the unit POTAs computed for each grid square g of the target zone. 

POTA    = unit POTA in target zone z 

nz \ 

^ POTAAlnz 

where 

nz     = number of grid squares in target zone z 

and 

POTAg   = the combined unit POTA in any grid square 

b. The combined unit POTA for a grid square g is computed by combining 
the noncounterfire and counterfire POTAs for the unit. 

POTAg   = probability at least one system detects the target unit in g 
as lucrative 

= 1, _ (1. -POT\ ) (1. -P0T2 

where 

POTlg   = probability at least one noncounterfire system detects the 
unit in g as lucrative 

P0T2g   = probability at least one counterfire system detects the unit 
in g as lucrative 

c. A noncounterfire POTA for all nn noncounterfire system s versus the 
unit In grid square g is computed as: 

POTlg   = probability at least one noncounterfire systems of nn 
systems detects the unit in g as lucrative 

an 

= 1.-11 (1. -POT   ) 
1 1 sg 
s = l 
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where 

POTsg   = probability system s detects the unit in g as lucrative 

d. A counterfire POTA for all nc counterfire systems versus the unit in g 
is computed as: 

P0T2g   = probability at least one counterfire system s of nc systems 
detects the unit in g as lucrative 

where 

1. - n (i.-POV  ) 
1  I sg 

s = l 

iPFIR) 

POVsg   = probability counterfire system s detects the unit as 
lucrative, given that the unit is firing 

PFIR    = probability the target unit is firing 

e. For a noncounterfire system s versus a target unit in grid square g, 

POTsg   = probability system s detects the unit in g as lucrative 

= l._ n (i._P[/ ) 
1 • ISB 

Where '=' 

M      = number of sensors in system s 

PUisg   = probability the single sensor, i, detects the target unit as 
lucrative 

f. For a counterfire system s versus a firing unit in grid square g, 

POVsg   = probability system s detects the unit as lucrative 

M 

= 1. - n (1. -po ) 
I   I ISg 
1=1 

where 

M      = number of sensors in system s 

POisg   = probability the sensor i (of system s) detects enough 
volleys (of the unit in g) to be "OR" lucrative 

= the probability of at least TOv detections in a binomial 
distribution of volleys with single detection probability = 
Pisvg 
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where 

TOv     = "OR" lucrativeness threshold for volleys 

Pisvg   = the weighted operational probability, given coverage, that a 
single sensor (of the specified system s) detects a single 
volley of the target unit in g. 

g. For each emplaced sensor i of a noncounterfire system s scanning a 
grid square g: 

PUsig   = probability the single sensor, i, detects the target unit as 
lucrative 

7=1 

POisjg   = probability the sensor i (of system s) detects enough 
element j (of the unit in g) to be "OR" lucrative 

= the probability of at least TOj detections in a binomial 
distribution of Nj elements with single detection 
probability = Pisjg. where TOj is the "OR" lucrativeness 
threshold for element type j and Nj is the number of element 
type j in the unit. 

PAs     = availability/survivability factor for system s 

and 

A      = a term accounting for effects of "AND" lucrativeness 

Pisjg   = weighted operational probability, given coverage that a 
single sensor (of system s) detects a single target element 
(of specified type j) of the target unit in g 

h. The Pisjg definition depends on whether system s is a noncounterfire 
or a counterfire system. For each sensor of each system, Pisjg is a single 
sensor/single element operational detection probability whose computation is 
based on the target unit being in that grid square and scanned by that sen- 
sor. The various sensor degradation factors, the sensor capability activity/ 
environment factors, and the inherent detection probability are combined to 
form an operational probability of detection, given coverage, of a single 
target element by a single available sensor for each activity/environment 
condition. This is then weighted by the activity/environment frequencies for 
element types in the target unit to yield Pisjg* 
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(1) Noncounterfire System. For each emplaced sensor i of a noncoun- 
terfire system s scanning a single target element of type j in a specific 
grid square, g: 

p      =( y FACT .]( PDET. .   ]l DEG 
e = l 

where 

e    = 1, 2, 3, or 4 is, respectively, (a), (b), (c), or (d) of 
paragraph 2-3b(3) 

FACTej    = frequency of element type j in activity/environment e 

PDETisjg   = input inherent detection probability for the single sensor, 
i, of system s against a single element of type j located in 
grid square g 

DEGsje    = product of the sensor degradation factors (excluding 
availability/survivability) for element type j in 
activity/environment e. 

(2) Counterfire System. For each emplaced sensor i of counterfire 
system s scanning a grid square g. 

p. .  ={PA      PVOL   . 
isjg \ S J\ ISJg 

where 

PAs     = availability/survivability for system s 

PVOLisjg = operational probability that at least one round of an in- 
range volley fired by element type j in a grid square g is 
detected by the single sensor, i, of system s. This 
includes weighting for sensor degradation factors, but 
excludes activity/environment degradation factors. 
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APPENDIX E 

THE COMBAT WORTH (COMWTH) MODEL 

E-1. MODEL PURPOSE. The COMWTH Model, developed by BDM Corporation is a 
computerized simulation of the major battlefield factors that affect the 
target detection and evaluation process. COMWTH is designed to run on an 
IBM-PC (personal computer) AT. Given a target unit with a mix of target 
signatures being observed by a suite of sensors, COMWTH will determine the 
associated probability of acquisition. 

E-2. MODEL INPUTS. Each sensor is described by the target signature it will 
detect. A target unit consists of numbers of equipment types. Each equip- 
ment type has up to six signatures which are detectable by sensors. The 
basic element detected is an equipment signature. The COMWTH input data base 
is as follows: 

a. Sensor Data 

(1) Type sensor. 

(2) Number sensors deployed for each sensor type. 

(3) Minimum and maximum scan ranges behind the front, for each sensor 
type. 

(4) Swath width of sensor coverage pattern for each sensor type. 

(5) Number of swaths scanning an area, for each sensor type. 

(6) Probability of single sensor-single signature detection as a 
function of range, for each sensor type. 

(7) Probability of single equipment identification given a detection, 
for each equipment type detected by each sensor type. 

(8) Probability of line of sight as a function of range, for each 
sensor type. 

(9) Relative effectiveness of sensor type due to weather conditions. 

(10) Fraction of time that sensor is active. 

(11) Time required by sensor type to complete one mission cycle. 

(12) Downtime needed by each sensor type to prepare for next mission. 

(13) Response time needed to evaluate data obtained during a mission 
for each sensor type. ' 

(14) Target location error for each sensor type. 

(15) Resolution of each sensor type. 
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b. Target Data 

(1) Distance (depth) of target unit from front. 

(2) Size (area) of target unit. 

(4) Number of target units present in the battlefield. 

(3) Number of each equipment type in the target. 

(4) Fraction of time each equipment type of each signature is 
detectable. 

(5) Number of elements in each equipment class which are present in the 
battlefield but which are not associated with the target unit. This data is 
used to estimate the possibility of a false alarm due to the acquisition of a 
non-target element. 

E-3. COMVfTH COMPUTATIONS. The computations performed by COMWTH can be 
divided into the following stages: 

a. Determination of Coverage in Space by a Sensor. COMWTH computes the 
probability of coverage in space by taking into account the battlefield size, 
target size, sensor swath width, number of sensors deployed, number of swaths 
scanned in a mission, and the number of targets located on the battlefield. 
The probability of coverage is determined by a ratio of the areas covered by 
the sensors and the targets. The depth of the target behind the front is 
compared with the sensor range to determine if the probability of coverage 
should be zeroed out due to insufficient sensor range. If the sensor is 
tagged as cued, then the probability of coverage is increased due to the fact 
that the sensor is now scanning a smaller area of the battlefield which is 
known to contain the target. 

b. Determination of Coverage in Time by a Sensor. A COMWTH acquisition 
probability is computed for a specified duration of search period. COMWTH 
checks whether the sum of the (input) mission cycle time and response time 
for a sensor are less than the search period duration. If so, the 
probability of coverage in time is 1.0. Else, it is zero. This calculation 
is used to make acquisition probability a function of elapsing time. 

c. Determination of Equipment Class Contribution to Acquisition. Each 
type of equipment in a unit is evaluated to determine its overall contribu- 
tion to overall target unit acquisition. This contribution is a function of 
the number of elements of that equipment type contained in the target unit, 
the number of elements not contained in the target but present in the 
battlefield, the fraction of time that the equipment type is detectable by 
the sensor, and the probability of equipment type identification given 
detection. 
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For example, assume that a given equipment type has only one signature type 
and is being observed by only one sensor type over a search period, T. Let: 

NE  = number of equipments of the equipment type in the target . 

F  = fraction of equipments that are detectable 

Prec = probability of equipment identification given detection by the 
sensor type 

Pd  = probability of detection of a single equipment signature by the 
sensor type 

Pnfa = probability of no false alarm detection of the equipment type by 
the sensor type 

Then the equipment type contribution to acquisition, given coverage, is the 
probability of target unit acquisition by the sensor type, computed as: 

1. - [1. - (Pd)(Prec)(Pnfa) ]F x NE 

c. Probability of Target Recognition if Covered. The overall probability 
of target unit recognition given detection by a sensor can be determined once 
the individual equipment contributions have been obtained. The probability 
of overall target recognition if covered, Pac, is just: 

E 
Pac = 1. - n (1. - PaK) 

K=l 

where PaK denotes the acquisition contribution of equipment signature type K 
and E denotes the number of equipment signature types. 

d. Probability of Target Unit Acquisition. The probability of target 
acquisition, over a search period, T, for a sensor system is a function of 
the probability of coverage in space (Pcov), the probability of coverage in 
time for search period T (Ptm), the probability of line of sight (Plos), the 
probability of target recognition if covered (Pac), and the relative sensor 
effectiveness due to weather conditions (Pwx). The overall probability of 
target unit acquisition by the sensor system is then: 

Pacq = (Pac)(Pcov)(Ptm)(Plos)(Pwx) 

A probability of target unit acquisition, Ptot, over a search period T, for a 
combination of several different sensor systems can be determined by 
combining the Pacq values (for each sensor type) using statistical 
independence, viz.: 

NS 
Ptot(T) = 1. - n [1. - Pacq(i,T)] 

i=l 

where Pacq(i,T) = single system probability of target acquisition for 
sensor system I over search period T 

NS = number of sensor system types 
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e. Probability of acquisition as a function of time (search period) can 
be computed and plotted by varying the length of period T. However, this 
computation assumes a "cold start" at time zero, when no sensors are assumed 
active. 
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APPENDIX F 

THE SAI TARGET ACQUISITION MODEL 

F-1. BACKGROUND. The SAI Target Acquisition Model was developed by Science 
Applications Inc. from the target acquisition module of the SAI Combat 
Survivability Model, which primarily assessed nuclear weapon effects. The 
model computes total target acquisition (defined as detection and classifi- 
cation) probability, using input values for single sensor types detecting 
targets. Primarily, the model computes the time-adjusted aggregate probabil- 
ity of detecting a given target using many individual single sensor probabil- 
ities (all assumed to be operating independent of each other). Time slices 
must be short enough so that the majority of targets can be considered 
stationary. 

F-2. INPUT 

a. Sensor Data. The sensor scenario is defined in terms of available 
sensor assets as opposed to specific deployments of sensor arrays. A target 
unit is characterized in the model by its "acquisition type." An acquisition 
type is essentially a target unit type. The basic sensor detection data are 
detection probabilities for each sensor type against each acquisition type. 
The model separately treats fixed sensor systems, sweep-rate systems that 
penetrate beyond the FEBA, sweep-rate systems that fly along the FEBA, and 
patrols. Input on SIGINT detection is generated offline by a separate 
stochastic simulation model. Sensor inputs include: 

(1) Single-look acquisition probability for each acquisition type 
observed by each sensor type, expressed as a function of range and cover/ 
concealment mode (target in open, target in light cover, or target in heavy 
cover). 

(2) Single-look classification probability, given detection, for each 
acquisition type observed by each sensor type, expressed as a function of 
range and cover/concealment mode. Classification refers to identifying the 
type of target detected. 

(3) Time to detect and classify (and report to an intelligence 
collection center) for each acquisition type observed by each sensor type, 
expressed as a function of range and cover/concealment mode. 

(4) Number of sensors of each sensor type. 

(5) Swath width of sensor for each sensor type. 

(6) Minimum and maximum ranges (only fixed sensors, patrols, and 
aircraft flying along FEBA) for each sensor type. 

(7) Aircraft velocity (for airborne penetrators only) for each sensor 
type. 

(8) Total area to be searched (penetrating sensors only) for each 
sensor type. 
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(9) Mission survival probability (airborne sensors only) for each 
sensor type. 

(10) Probability of line of sight (for non-ELINT sensors only) as a 
function of range (from sensor) and sensor type. 

(11) Visibility/attenuation factor for each ELINT sensor type. 

(12) An activity factor for each sensor type against each acquisition 
type. The activity factor is expressed as the fraction of time that the 
specified acquisition type is detectable by the specified sensor type. 

(13) Fraction of time sensor is available for each sensor type. 

(14) The maximum range beyond the FEBA for COMINT acquisitions. 

(15) The overall acquisition probability due to COMINT against 
communications type targets. 

(16) Area searched per unit time, for patrol sensor types only. 

b. Target Data. The targets are target units. Each target unit is 
characterized by its acquisition type for purposes of assessing 
detectability. Input data include: 

(1) Target name and location. 

(2) Acquisition type characterizing each target. 

(3) Target permanence, expressed as the expected duration of target 
stay time (time that the target remains in position, for each target type). 

(4) Probability that an acquisition type is in each cover/concealment 
mode (in open, light cover, or heavy cover). 

F-3. METHODOLOGY FOR SINGLE SYSTEMS (EXCEPT COMINT) 

a. Fixed and/or Sweep-rate Systems 

(1) Calculate the number of looks, NL, that sensors of this type could 
take in the time period, P, of interest under ideal conditions (i.e., each 
sensor is continuously available and the target continuously presents the 
relevant signature). This quantity, for the specified sensor type, is: 

(a) NL = (NSEN)(SW)/WF for fixed sensors. 

(b) NL = (NSEN)(VEL)(SW)(T)(PSURV)/A for penetrating airborne 
sensors. 

(c) NL = (NSEN)(VEL)(T)(PSURV)/WF for sensors flying along the FEBA. 

where NSEN = number of sensors of the specified type 
SW = swath width for a sensor of the specified type 
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WF = width of the battlefield area 
T = length of the acquisition search period P 

VEL = velocity of the penetrating sensor 
PSURV = probability the sensor survives its mission 

A = size of the area to be searched by the penetrating system 

(2) Calculate the single system acquisition probability, PAl, for the 
NSEN sensors of this type against the specified target in a specified 
coyer/concealment mode at a specified range for the specified search period P 
as I 

PAl = 1. - [1. - (PVIS)(PLOS)(PD)(PCLASS)(PE)](NL)(PAV)(PACT) 

where PVIS = visibility/attenuation factor for this sensor type against 
this target type 

PLOS = probability of line of sight for this sensor and range 

PD = inherent single-look detection probability of this target 
at this range in this cover/concealment mode by this sensor 

PCLASS = probability of classification given detection for this 
combination of sensor, target, range, and cover/concealment 
mode 

NL = ideal number of looks, as calculated in (1), for search 
period P by this sensor type (assuming sensor availability 
and target detectability) 

PAV = probability the sensor is available 

PACT = probability the target signature is detectable by the 
sensor 

PE = probability the target will be available for sufficient 
time to be reported and classified after detection 

= max [0. min(T. TSTAY - TDC)] 
min (T, TSTAY) 

where T is the length of the search period 

TSTAY = duration of target stay time 

TDC = time needed by sensor to detect and classify 
this target at this range 

b. Patrols 

(1) Calculate the average coverage per unit area searched by patrols, 
iL, asi 

FC = (NPAT)(APAT)(T)/TAP 
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where NPAT = number of patrols 

APAT = area searched per unit time by one patrol 

T = length of search period 

TAP = total area to be searched by patrols (based on input) 

(2) Compute the single system acquisition probability, PAl, for all 
NPAT patrols against a specified target at a specified range and in a 
specified cover/concealment mode as: 

PAl = 1. - (1. - PD)FC 

where FC is as above and PD denotes the inherent single-look detection 
probability for a patrol against the specified combination of target, 
range, and cover/concealment mode 

F-4.  METHODOLOGY FOR INTEGRATED SYSTEMS (EXCEPT COMINT). Once the values 
of the single system acquisition probability, PAlij. have been computed for 
all non-COMINT sensor types, I, and cover/concealment modes, J, the overall 
non-COMINT probability of acquisition, PNC, for a specified target of 
acquisition type, T, is calculated as: 

3      NS 
PNCT = 1. - S CFJT[ n (1. - PATX,)] 

J=l    1=1 

where CFjj = probability a target of acquisition type T is in 
cover/concealment mode J 

PAiJT = single system acquisition probability for system I against 
a target of acquisition type T in cover/concealment J 

F-5. COMINT METHODOLOGY. The overall acquisition probability from COMINT, 
PCOM, against all communications type targets, is determined offline by a 
stochastic model for subsequent input into the target acquisition model. The 
stochastic COMINT model performs the following sequential steps: 

a. Calculates the probability of intercept for a single radio 
transmission from a net. 

b. Simulates a time sequence of intercepted transmissions from each net. 

Co Simulates the processing of intercepts and DF results. 

d. Counts the nets located in the search period and computes the fraction 
located, PN. 

e. Calculates the average value of PN over all replications. 
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f. Computes overall acquisition probability, PCOM, against all 
communications type targets as C: 

PCOM = (1. - PN)NNET 

where NNET denotes the number of nets which the target is in. 

F-6. TOTAL ACQUISITION PROBABILITY. With PNCj and PCOM computed as above, 
the total acquisition capability for a target, T, is then: 

PTOTT = 1. - (1. - PNCT)(1. - PCOM) 
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APPENDIX G 

A METHOD FOR DETERMINING MEAN TIME TO TARGET ACQUISITION FROM 
SINGLE SENSOR DETECTION FUNCTIONS 

G-1.  BASIC CONCEPTS AND DEFINITIONS 

a. Target Characteristics. A target unit is assumed to consist of target 
elements of specified types. Example types are wheeled vehicles, tracked 
vehicles, and personnel. All elements of a single type (e.g., all tracked 
vehicles) in a target unit are treated as identical in characteristics and 
form an element "cluster" for that element type within that target unit. 

b. Sensor Systems. A sensor system consists of a group of deployed/ 
emplaced sensors with identical characteristics. Depending on the type of 
system, a single sensor can be an emplaced equipment in static operation or, 
in the case of a penetrating aircraft, it can be a reconnaissance mission 
overflying a path through the combat area over a fixed time interval. In the 
case of a standoff aircraft (e.g., side-looking airborne radar (SLAR)) it can 
be an aircraft traversing a linear path at a standoff from the PLOT. All 
scenario sensors can be grouped into systems. 

c. Scenario Search Interval. The scenario search interval is a period of 
clock time, in a scenario, over which the desired target acquisition measure 
is averaged. 

d. Lucrativeness. For each element type in a target unit, we specify an 
"OR" lucrativeness threshold and (optionally) also an "AND" lucrativeness 
threshold. The "OR" lucrativeness threshold is the minimum number of 
elements (of that type) that must be detected by at least one sensor to 
qualify the target unit as detected with respect to that element type under 
the "OR" criterion. For a combination of element types, the set of "AND" 
lucrativeness thresholds for these types is a set of thresholds (number of 
elements) which, if detections of those types are jointly at or above all of 
them, qualify the target unit as detected with respect to the "AND" criteria. 
The "AND" lucrativeness threshold must be less than or equal to the 
corresponding "OR" threshold. 

e. Target Unit Acquisition. A target unit is acquired if either of the 
following occurs: 

(1) The unit is detected, under the "OR" criterion, with respect to at 
least one element type by at least one sensor of at least one system. 

(2) The unit is detected, under the "AND" criterion, by at least one 
sensor of at least one system. 

f. Single Sensor Detection Functions. A single sensor detection function 
describes the single sensor (of a specified type) probability of detecting a 
target (of a specified type) as a function of consecutive search time. The 
target is assumed fixed at a specified location relative to the sensor under 
specified environmental conditions. However, depending on type sensor, the 
function may be a "one-on-one" detection function in terms of detection of a 
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single target element (e.g., a single tank) or a "one-on-many" detection 
function in terms of detection of a target unit (a collection of target 
elements of several types). Also, consecutive search time can be expressed 
in terms of continuous elapsing clock time or in terms of successive clock 
intervals of equal length, called glimpses or glimpse cycles. We classify 
each sensor type in one of two categories. An "element accumulating sensor" 
establishes a target unit detection by accumulating and fusing detection 
information from one-on-one detection functions separately and independently 
applied to each element in the unit. A "target unit accumulating sensor" 
accumulates detection information from a one-on-many detection function. 
These types are described below. 

(1) Example Detection Function for an Element Accumulating Sensor. For 
an element accumulating sensor, the single sensor scan of a single element 
may be treated as a series of consecutive "glimpses" with an implicit 
cumulating memory causing the probability of detection to tend to increase as 
the scan continues. The one-on-one detection function then expresses the 
probability of detection within a specified duration of scan. The CNVEO 
target acquisition methodology is of this type, with an exponential detection 
function of the form: 

F(t) = probability of a single sensor s detecting a single target element 
of type j within t minutes of scanning 

= [PLIMsjKl. - exp(-{Plsj]{t}/M)] 

where 

PLIMsj = probability of single sensor s detecting a (single) element 
in infinite time (infinite glimpses) 

M = duration of a single glimpse 

Plsj = single glimpse probability of (single) element detection (by 
single sensor) 

For an element accumulating sensor, the values of Plsj and PLIMsj in the one- 
on-one detection function will depend on the distance from the sensor to the 
target. 

A similar glimpse model is the single sensor geometric detection function of 
the form: 

F(k) = probability of a single sensor s detecting a single target element 
of type j within k scan glimpses 

= [PLIMsj][l. - (1. - Plsj)^] 

where PLIMsj and Plsj are defined as in the previous case. 
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In the geometric model, we can write: 

f(l<) = probability of type j element detection by sensor s in exactly k 
glimpses 

= [PLIMsj][(Plsj)(l. - Plsj^l^-l 

(2) Example Detection Function for a Target Unit Accumulating Sensor. 
In this case, the system scans and assesses the entire target unit in a 
single glimpse. The general definition of the associated one-on-many 
detection function is then: 

F(m) = probability of target unit detection by the system in exactly m 
glimpses (m = 1, 2, ...) 

For a target unit accumulating sensor, target unit detection is determined 
from simultaneously processed (i.e., in the same glimpse cycle) detections 
resulting from single independent glimpses of each target element in the 
target unit. In this case, an individual element single glimpse detection is 
modeled by a Bernoulli probability distribution, and the fusion of individual 
single glimpse element detections of a single element type is modeled by a 
binomial probability distribution. This situation may be true, for example, 
of an air or ground reconnaissance mission, or set of missions, which transit 
and observe a target unit for only a brief period during a mission cycle. In 
this case, the specific formula for the one-on-many detection function can be 
calculated as follows: 

For each glimpse s scanning each target element type j in the target unit, 
let: 

pj = single glimpse probability of single element detection 
for element type j 

Nj = the number of elements of type j in the target 

Mj = the minimum number of elements of type j that must be detected in 
order to establish the target unit detection (i.e., the "OR" 
lucrativeness threshold for element type j) 

Mlj = the minimum number of elements of type j that must be detected 
jointly with at least Ml|< detections of all other element types 
(for k not = j) in order to establish the target unit detection 
(i.e., the "AND" lucrativeness threshold for element type j) 

Assuming simultaneous and independent target element processing, we can 
compute the single glimpse (mission cycle) probability that the entire target 
unit is detected under both ("OR" + "AND") lucrativeness criteria. This is 
done by determining and combining single glimpse detection probabilities for 
the sensor observing all elements of each specified type in the target unit. 
All elements of a specified type j in the target unit are denoted as the 
element j cluster in the target unit. The associated computations and 
combinations are shown below. 
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(a) Compute, for each element type j: 

PSOj = single glimpse (mission cycle) probability of element j cluster 
detection under the "OR" lucrativeness threshold 

= probability that at least Mj of the Nj elements of type j in the 
target unit are detected in a single glimpse 

Nj 
=  r B(Nj,k)(pj)k(l.-pj)N-k 

k=Mj 

where B(Nj,k) = binomial coefficient with Nj and k 

and 

PSAj = single glimpse (mission cycle) probability of element type j 
cluster target detection under the "AND" lucrativeness threshold 

= probability that at least Mlj of the Nj elements of type j in 
the target unit are detected in a single glimpse 

1J S B(Nj,k)(pj)k(l.-p)N-k 
k=Mlj 

where B(Nj,k) and pj are as in PSOj above. 

If element type j has no Mij specified, then PSAj = PSOj. 

(b) Combine single glimpse element cluster detection probabilities 
over all element types in the unit to determine the single glimpse target 
unit detection probability as follows: 

PSs = single glimpse (mission cycle) probability of (entire) target 
detection under both ("OR" + "AND") lucrativeness criteria 

NE NE 
= 1. - n (1. - PSOj) +  n (PSAj - PSOj) 

where NE denotes the number of element types in the target unit. 

(c) Assuming that detections from separate mission cycles are 
statistically independent, calculate the one-on-many detection function for a 
single target unit accumulating sensor as: 

F(m) = probability that the target unit is detected within m mission 
cycles 

m 
-    H  (prob target is first acquired during mission cycle k) 

k=l 
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=    2    PSs (1. 
k=l 

- PSs) 

=      1. - (1.  - PSs)ni 

)k-l 

The target unit detection function for this type sensor is therefore a 
geometric model with units of time expressed in terms of successive mission 
cycles. 

G-2. METHODOLOGY. The following methodology for calculating a mean time to 
target unit acquisition from single sensor detection functions was suggested 
by MAJ Mark Youngren of CAA in an unpublished research paper (reference 9). 
The method employs stochastic sampling and is therefore not deterministic. 
Certain simplifying procedures are explained which reduce sampling require- 
ments and increase computational efficiency. The method will first be 
described in its most basic form, i.e., without any simplifying procedures. 
The simplifying procedures will subsequently be discussed. Element 
accumulating and target unit accumulating systems are separately treated. 
The following definitions of terms and indices are applicable: 

Systems i =1, 2, ... NY 
Available sensors s = 1, 2, ...NS(i) (of system i) 
Element types j = 1, 2, ...NE 
Nj = Number of elements of type j in the target unit 
Mj = Minimum elements (of type j in target m) to detect ("OR") 
Mij = Minimum elements (of type j in target m) to detect ("AND") 

where 

Mj is the "OR" lucrativeness threshold for element type j 

Mlj is the "AND" lucrativeness threshold for element type j 

a. Algorithm. A number of statistical replications are done. Each 
replication's final product is a stochastic sample of "time to target 
acquisition" for all systems observing a specific target unit. After all 
replications are done, the "time to target acquisition" samples are averaged 
over all replications to determine a best estimate of this measure. Each 
replication computes its product according to the following algorithm: 

(1) Element Accumulating Systems. Let i denote an element accumulating 
sensor system consisting of NS(i) sensors. 

(a) For each of the NS(i) sensors observing each of the Nj elements 
in the element j cluster in the target unit, determine a sample value of Tlsj 
= the (sampled) time to detection of a single target element of the cluster 
by sensor s (s = 1, 2, ... NS). Assuming invertability of the detection 
function, this can be done by inverting the element detection function and 
assigning a very large time value if the element is not detectable. For 
example, if the geometric detection function of paragraph G-lf(l) applies, 
and if X is a random draw between 0.0 and 1.0, then: 
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glimpses 
1, Set X = F(g) = probability of single element detection in g 

= PLIMsj [1. - (1. - Plsj)g] 

2. Solving this for g yields: 

g = log(l. - X/PLIMsj)/log(l. - Plsj) for X<PLIMsj 
so: 

if X<PLIMsj, then Tlsj = g is the drawn (sample) time to 
sensor s detection of the single target element, expressed as the 
number of glimpses. This can be converted to clock time through 
multiplication of glimpse duration. 

if X>PLIMsj, Tlsj "is set to a very large (unattainable) number to 
reflect the fact that the element can not be acquired. 

(b) For each sensor s of system i versus each element j cluster, 
determine TOsj = the Mj-th order statistic from the Nj samples of Tlsj, is 
the minimum time for the s-th single sensor to detect Mj elements of the 
cluster for element type j, i.e., under the "OR" lucrativeness threshold. 

(c) For each sensor s versus each element cluster j, determine TAsj = 
the Mlj-th order statistic from the Nj samples of Tlsj. This is the minimum 
time for the s-th single sensor to detect Mlj elements of the cluster for 
element type j, i.e., under the "AND" lucrativeness threshold. 

(d) For each single sensor s in system i, compute time until the s-th 
single sensor acquires the target unit, m, based on both ("OR" + "AND") 
lucrativeness criteria as: 

T2s = min[TOsl, T0s2, .••, TOs NE. max{TAsl, TAs2, ..., TAs NE)] 

where NE denotes the number of element types in the target. 

(e) Compute (earliest) time to target unit acquisition by system i 
as: 

TSi = min[T2i, T22, T2NS(i) 

(2) Target Unit Accumulating System. Let i now denote a target unit 
accumulating sensor system. All NS(i) glimpses, or mission cycles, of the 
target unit accumulating system are assumed to have identical detection 
characteristics. 

(a) For a single sensor, s, determine a sample value for TUs = the 
time to target unit acquisition in a single glimpse. This can be done by 
inverting the (one-on-many) target unit detection function and assigning a 
very large time value to TUs i^" the element is not detectable. For example, 
if the geometric detection function of paragraph G-lf(l) applies and if X is 
a random draw between 0.0 and 1.0, then: 
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1. Set X = F(g) = probability of target unit detection within g 
glimpses 

= 1. - (1. - PSs)g 

where PSs is the single glimpse detection probability for the target unit as 
calculated in paragraph G-lf(2)(b) above. 

2. Solving this for g yields: 

g = log(l. - X)/log(l. - PSs) 

Then TUs = g is the determined sample value for the time to single sensor 
acquisition of the target unit, in terms of the number of glimpses. This can 
be converted to clock time through multiplication by glimpse duration. 

(b) Compute (earliest) time to target acquisition by system i (in 
this replication) as: 

TSi = min[TUl, TU2, ..., TUNS(i)] 

(3) If necessary, convert all values of TSi expressed in glimpses to 
values expressed as search time to acquisition. This may be as simple as 
multiplication of TSi by the glimpse duration. In the case of a target unit 
accumulating system, this may require special processing to account for 
scheduled inactive periods between missions. 

(4) Calculate earliest time to target acquisition by the entire 
spectrum of scenario sensor systems observing the target unit (in this 
replication) as: 

T = min[TSi, TS2, ..., TSNYI 

where all TSi are in terms of elapsed search time to acquisition. 

The values of T are then averaged over all replications to produce a best 
estimate for the simulation. 

b. Processing Time Considerations. While the above method is feasible, 
the number of random draws required can become large, since, for each target 
unit in each replication, a draw is required for each sensor/element type 
combination. If 100 radars are deployed to scan a target with 5 target 
element types, then at least 100 x 5 = 500 random draws are required during 
the determination of the required order statistics. Since a scenario often 
employs many systems against a number of target units, the process described 
above may require significant processing time, even on a computer. Calcula- 
tion shortcuts that do not degrade precision are therefore highly desirable. 

c. Simplifying Procedures. For element accumulating systems, the 
calculation of order statistics can be simplified, and processing time 
decreased, by applying the following simplifying procedures. 
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,o ^ ^}h [Vl^  Simplified Order Statistic Sampling Method. It is well known 
(Ref. 15) that, given two positive integers n and m, with n<m, the n-th order 
statistic from a sample of m uniformly distributed random variables is 
distributed as a Beta (n, m - n + 1) random variable. Therefore, we can 
quickly obtain a pseudorandom sample of the n-th order statistic of a 
detection time distribution for a single sensor of an accumulating system 
observing m target elements as follows: 

(a) Let F(t) be the cumulative distribution function of single 
element detection time by a single sensor of a system that accumulates over 
time, so that F(t) = probability of single element detection in search time 

(b) Draw a single pseudorandom sample, S, from the Beta (n, m - n + 
1) distribution. 

(c) Set F(tl) = S and solve for tl. 

Then tl is a pseudorandom sample from the n-th order statistic of the 
detection distribution sampled for each of the m target elements. Note that 
this procedure can be applied only if F(t) is invertible, i.e., if the 
equation in (c) above is uniquely solvable for tl. 

The specific use of the above procedure is to simplify the steps (a) through 
(c) of the basic methodology described in subparagraph G-2a(l) which deter- 
mines TOsj and TAsj for an element accumulating system. Using the notation 
of that subparagraph, the replacement steps are: 

_  1. For an element accumulating system s observing an element of 
type j, e.g., with a geometric detection function of the form: 

F(t) = probability of element detection within g glimpses 

= [PLIMsj][l. - (1. - Plsj)]g 

determine the following in each replication for each element type i cluster 
in the target unit: 

a. Draw a pseudorandom sample from the binomial distribution with 
defining parameters PLIMsj (= probability of detection in infinite time) and 
Ni (= number of type j elements in target) to determine NDi = sample number 
of detectable elements from the Nj in the cluster. 

b. For the "OR" lucrativeness criterion with lucrativeness 
threshold Mj for element type j in the target unit, calculate TOsi = the 
sampled Mi-th order statistic from a sample of detection times, ex 
numbers of glimpses, fa    ' 
target unit as follows: 

-_...^.^- ni-tn oraer statistic from a sample of detection times, expressed as 
numbers of glimpses, for each to the NDj detectable elements of type i in the 

If Mj>NDj, then the cluster is not detectable, so set 
TOsj = a very large value (e.g., 999999) 
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• If Mj<NDj, then set TOsj = In (1. - Sn) 
ln(l. - Plsj) 

where Plsj 1s the single glimpse detection probability and Sn Is a single 
pseudorandom draw from Beta (Mj, Nj - Mj + 1). Tosj should be rounded to the 
nearest integer. 

c. For the "AND" lucrativeness criterion with lucrativeness 
threshold Mlj for element type j In the target unit, calculate TAsi = sample 
Mij-th order statistic from the sample of detection times for each of the NDi 
(same value as in (b) in this replication) detectable type j elements of the 
target umt as follows: 

• If Mlj>NDj, then the cluster is not detectable, so set 

• TOsj = a very  large value (e.g., 999999) 

• If Mlsj<NDj, then set TAsj = ln(l. - Si) 
ln(l. - PTsj) 

where Plsj Is the single glimpse detection probability and Si is a sinqle 
pseudorandom draw from Beta (Mlj, Nj - Mlj + 1). TAsj should be rounded to 
the nearest integer value. 

2. Steps (d) and (e) are not affected. T2s and TSi are computed 
exactly as described previously. 

(2) Second Simplified Order Statistic Sampling Method. For a target 
unit accumulating system, i, consisting of homogeneous missions/glimpses with 
a geometric detection function, the first order statistic of a sample of 
times to detection is also geometric. Therefore, if S is a random draw from 
the uniform distribution, U[0,1], then TSi = sample time to target unU 
detection over all missions/glimpses is: 

TSi = log(l. - S)/[NS(1)log(l. - PSs)] 

where PSs and NS(1) are as in subparagraph G-2a(2). 
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APPENDIX H 

APPROPRIATENESS OF STATISTICAL INDEPENDENCE ASSUMPTIONS 

H-1. PROBLEM. Chapter 2 described the assessment of the probability of 
target unit acquisition by a suite of sensors (a many-on-many model) by 
combining acquisition assessments for single sensors against single target 
elements (one-on-one models). This approach assumes that the processes 
generating the one-on-one results are statistically independent of each 
other. Independence is the simplest way to fuse separate (in time and/or 
space) acquisitions of single elements of a target into a multisensor 
assessment of a cluster of elements defining a target unit. The candidate 
TAS IV methodology in Chapter 4 assumes independence in at least two areas: 
between units and between an initial acquisition and a subsequent reacquisi- 
tion (after the target is dropped from an acquisition list). Thus, the 
values of mean time to unit acquisition, the mean duration of acquisition 
retention, and the SPOTA for any specific target unit are not affected by the 
processes used to generate these measures for any other unit. These assump- 
tions, as is usually the case when independence is assumed, are not true. 
The applicability analysis contained herein is based on a CAA technical paper 
(Ref. 12). 

H-2. PROLIFERATION. The application of independence assumptions is standard 
in models of target acquisition that the author is aware of, even those that 
involve detailed, complex combat simulations. Relative to closed form 
mathematical models, simulations provide great flexibility in the representa- 
tion of complex processes in time and space. However, in a combat simula- 
tion, statistical independence is inherent in the pseudorandom number draws 
which generate each stochastic event. This implies independence of the 
interactions between units. 

H-3. IMPACT OF ASSUMPTIONS. The acquisition probabilities for target units 
are dependent over time, space, hierarchical relationship, and environment. 
Acquisition of a unit is affected by the knowledge from other acquisitions 
which are "close" in time or space separation. It is possible to construct 
examples in which the application of independence assumptions leads to wildly 
erroneous results. In practice, however, in the nuclear warfare scenarios 
modeled by NUFAM III, the correlation between variables derived from differ- 
ent units and prpcesses appears to be relatively small. The impact of 
incorrectly applied independence assumptions can not be quantified unless the 
correct model, considering dependence, can be defined and evaluated as a 
"control case" for comparison. These comparison cases have been limited to 
relatively simple hypothetical examples. Therefore, an analyst is forced to 
apply judgment as to the degree and extent that the assumption of independ- 
ence is acceptable. 

H-4. LACK OF ALTERNATIVES. Assumptions of statistical independence are used 
in closed form mathematical models because process formulas treating depend- 
ence considerations are either not definable or else are not tractable for 
analysis. The assumption of independent and/or identically distributed 
random variables permeates the standard techniques of statistics and proba- 
bility. Theory does allow the representation of an arbitrary probability 
density function for a joi'nt distribution of interdependent random 
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variables. However, a useful family of closed form formulas is not avail- 
able. A stochastic simulation allows probability distributions to be 
empirically defined (often via lookup tables). However, the input data 
requirements geometrically increase with the increasing dimensionality of 
(and number of state combinations in) an arbitrary joint probability 
distribution. The increased complexity and magnitude of the input data 
required to define an arbitrary empirical joint probability distribution 
function are justified only if the data are sufficiently well-defined. 
Unfortunately, data for theater-level combat and acquisition models are often 
scanty and uncertain. The principle of economy and simplicity in the face of 
uncertainty, expressed philosophically as Ockham's razor, supports the 
"standard" application of independence in theater model process 
representations. 

H-5. USEFULNESS. In operations research, a model is a simplified abstract 
approximation of reality. Even if a model does not give accurate absolute 
quantitative results, the model may be useful for assessing relative 
comparison of outcomes, both qualitatively and quantitatively. The model can 
be used to illuminate relationships between inputs and outputs even though 
the precise values generated can never be regarded as absolute "truth," The 
fact that some assumptions incorporated into a model do not necessarily hold 
does not invalidate the model or render it meaningless.  It is sometimes 
possible to extend a model incorporating statistical independence to look at 
limited and special forms of dependence. Insights, rather than "true" 
absolute solutions are likely to be gained from such side analyses because of 
the limited practical size of model representation of interdependent effects. 
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GLOSSARY 

1. ABBREVIATIONS, 

AMSAA 

AFWS 

ASAS 

BDM 

CAA 

CB 

CM 

CNVEO 

COMINT 

COMWTH 

DF 

div 

DNA 

elt 

ELINT 

EO 

EW 

FEBA 

FLOT 

FOV 

IDA 

IR 

JTFP 

LOB 

MAJ 

ACRONYMS. AND SHORT TERMS 

US Army Materiel Systems Analysis Activity 

Air Force Weather Service 

All Source Analysis System 

Braddock, Dunn, and MacDonald 

US Army Concepts Analysis Agency 

counterbattery 

countermortar 

US Army Center for Night Vision and Electro-optics 

communications intelligence 

Combat Worth (model) 

direction finding 

division 

Defense Nuclear Agency 

element 

electronic intelligence 

electro-optic 

electronic warfare 

forward edge of the battlefield area 

forward line of own troops 

field of view 

Institute for Defense Analysis 

infrared 

Joint Tactical Fusion Program 

line(s) of bearing 

Major 
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MOE 

MRT 

MTA 

MTI 

NATO 

no 

NUFAM III 

POTA 

POTAR 

PLSS 

RTDF 

S/N 

SAI 

SCI 

SIGINT 

SIM 

SLAR 

SPOTA 

STAND 

TACSIM 

TADER 

TAME 

TAS 

TAS II 

TAS III 

TAS IV 

nieasure(s) of effectiveness 

mean retention time 

mean time to acquisition     v 

moving target indicator 

North Atlantic Treaty Organization 

number 

Nuclear Fire Planning and Assessment Model III 

probability of operational target acquisition 

Probability of Operational Target Acquisition 
Routine 

Precision Location and Strike System 

residual retention time distribution function 

signal/noise (ratio) 

Science Applications Inc. 

special compartmented information 

signals intelligence 

Sensor Interaction Model 

side-looking airborne radar 

steady state probability of target acquisition 

surveillance, target acquisition, and night 
observation 

Tactical Simulator (model) 

Target Detection Routine 

Target Acquisition Methodology Enhancement (study) 

Target Acquisition Study 

Target Acquisition Study II 

Target Acquisition Study III 

Target Acquisition Study IV 
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TEREC Tactical Electronic Reconnaissance System 

tgt target 

TOT time on target 

TRAC-WSMR US Army TRADOC Systems Analysis Activity - White 
Sands Missile Range 

TRADOC US Army Training and Doctrine Command 

TV television 

UK United Kingdom 

USAMSAA US Army Materiel Systems Analysis Activity 

USAICS US Army Intelligence Center and School 

USASA US Army Security Agency 

WP Warsaw Pact 

GLOSSARY-3 




