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§1. Introduction

The problem considered in this paper is whether the capacity of
a discrete time Gaussian channel (GC) is increased by feedback or not.

It is known that the capacity of a white GC is not incréased by
feedback (see [6] for Fontinuous time case and Theorem 2 of this paper
for discrete time case). On the other hand, some examples of
non-white GC's have been presented to show that the capacity can be
increased by feedback (see [4] for continuous time case and [3], [5]
for discrete time case).

The main aim of this paper is to give conditions under which the
capacity of a discrete time GC is increased by feedback. The GC to

be considered is presented by

Y =X +2Z_, n €N

{(1,°°°,N}, (1)

where X Yn and Zn represent the channel input, the output and

nt
the noise, respectively, at time n, and N is the terminal time.
The noise Z = (Zn; n € N) is a Gaussian process such that Zn' n €
N, are linearly independent. We assume that an average power

constraint

2

N 2
2 E[X"] < o7, (2)

n=1

is imposed on the input X = (xn), where p > 0 is a given constant.
Let 6 be a message, to be transmitted, which is a random variable

or a stochastic process independent of the noise 2Z. Denote by &(80)

and ?m(Y) the o-fields generated by 0 and '(Yn: n <m,
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respectively. The GC (1) is with feedback if xn is a function of

the message and the channel output up to n - 1, namely

(a.l) X is F(6) v F (Y) measurable.

n n-1
The GC is without feedback if X, is a function of the message,

namely

(a.2) xn is F(0) measurable.

In each case we denote by dF(pz) and dd(p

2 the classes of all

admissible pairs of a message and an input:

2

JF(D ) {((0,X); 0 and X satisfy (2) and (a.l)};

2

do(p ) {(0,X); 0 and X satisfy (2) and (a.2)}.

We denote by 1(68,Y) the mutual information between the message

# and the output Y = (Yn; n € Ny. Under the constraint (2), the

capaci ties CF(pZ) and Co(pz) of the GC (1) with feedback and

without feedback, respectively, are defined by

2

Co(p™)

. 2
F sup {1(0,Y); (8,X) € JF(p )}

and

2
ColP)

sup {I(8,Y); (6,X) € do(pz)).

Note that if the GC is without feedback we can identify the message

with the input and that

C.(p%) = sup (I(X,Y); X € 80(02)).

0

2

where ﬂo(p ) = {(X; X satisfies (2) and is independent of Z}.

1f the GC is without feedback, a formula for the capacity




Co(pz) is known (see Theorem 1). 1£ Z = (Zn) is a white noise,

namely if Z n € N, are mutually independent, the GC is called a

n’

white Gaussian channel (WGC). Since it is known that the capacity
of the WGC is not increased by feedback, we are concerned with the
case of the non-white GC.

Let X = ( omn )q,neN be the covariance matrix of 2Z. We say

that the Gaussian process Z = (Zn: n € N) is blockwise white, if

there exist mkxmk matrices 2(k), k=1,,K (1 ¢ K <N and

K =
2 27 M = N) such that

(1)
z
2(2) 0

Z(K)

The relation ~ is defined as follows. For NxN matrices A =

( %mn )m,neN and B = ( bon )m,neN' we denote A ~ B if there

exists a permutation m® on N = (1,-+-,N} such that bmn =

& mmeny® ™ D € N. We note that if Z 1is blockwise white then

(k) _ = cee
Z = (Z Nk-l < n«< Nk). k=1, »K, are mutually

n(n);

independent, where Nk = m1 + 4 mk. The GC is said to be

blockwise white if the noise Z is blockwise white. If Z is not
blockwise white, Z is called a completely non-white noise and the
corresponding GC is also called a completely non-white GC.

It will be shown that the capacity of the GC is increased by
feedback if the GC is completely non-white or the GC is blockwise
white but not white and the power p2 is grea{er than a constant pg
specified later (Theorem 4). It is conjectured that if the GC is

blockwise white and 02 < pg the capacity of the GC with feedback is




the same as the capacity of the same channel without feedback. We
can give an example of a blockwise white GC whose capacity is not
increased by feedback (Theorem 5).

It is known that the capacity of the GC with feedback is never
more than twice the capacity of GC without feedback [7]. We have
given in Part I [5] an example of a GC whose capacity is almost

-

doubled by feedback.

§ 2. Preliminaries

This section is devoted to summarizing previously known results
on the capacity of GC, which will be used later.
The mutual information I(€,n) between random variables £ and

n is defined by

du
1(E,n) = I log —o0—

if the joint probability distribution nﬁn of &€ and n is
absolutely continuous with respect to the product measure "&x"n of
the probability distributions uE and un of &€ and 'n,
respectively, where dﬁgn/duexun is the Radon-Nikodym derivative;
otherwise I(&,n) is infinite. The differential entropy h(E) of

an m-dimensional random variable & with a continuous distribution is

defined by




h(g) = - me pg(x) log pg(x) dx,

if the integral exists, where pa(x) is the probability density
function of E. If h(é,n) (= h((¢,nd))) and h) exist, the

quantity h(Eln) defined by
h(€in) = h(€,n) - h(n)

is called the conditional entropy of £ given n.
The following properties of the mutual information and the

differential entropy are used later.

LEMMA 1. Let 6, X = (xn) and Y = (Yn} be a message, an

input and the corresponding output of the GC (1), respectively.

N
(i) 1(8,Y) = nzl th(Y 1Yy, oo Y 1) = h(Y_10,Y,,0,Y 1))
N
= n§1 (hCY 1Y .00 Y 1) = hZ 1Z),+,Z 1)), (4)

wvhere h(Yn|Y1,~--,Y ) = h(Y,) if n =1,

n-1 1
(ii) Denote by tﬁ the variance of the conditional digtribution
of Y ~given (Y,,:::,Y ;). Then
h(Y _1Y.,+++,Y. .) <+ log (2net?) (5)
n "1° ' "n-1 2 n’’

\

The equality holds in (5) if and only if the conditional distribution
is Gaussian. '

(iii)y If X,2) = (xn.zn; n € N) 1is Gaussian, then




1¢(0,Y) = 2 (log er| - log 121},

= (Yn) and |+l denotes

where FY i8 the covariance matrix of Y

the determinant.

2y of the GC (1) without feedback is known to

The capacity Co(p )
be determined by the eigenvalues (lﬁ; n € N) of the covariance

matrix X of the noise Z = (Zn).

THEOREM 1 (see, e.g. [11). The capacity Co(pz) .of the GC (1)

without feedback subject to (2) is given by

2,2

log max (1, a“a_
1 n

(92) =% ),

C
0 n

" MZ

i8 a constant uniquely determined by

where a = a(p) > 0

N
> max (0, aZ - Ai) = pz. (6)
n=1

There exists an orthogonal matrix P = ( pmn )m neN such that

A 2 .
t 1. 0 t -1
PZP = A, where A = .. and P (= P °) is the
o] xz
N
transposed matrix of P. A Gaussian process ¢ = (:n: n €N)
defined by
N
¢ = ZP ¢ = 2 PrnZp’ n €N (7)
m=1
Indeed, the covariance matrix of ¢ 1is the

is a white noise.




diagonal matrix A. Define constants <t_ = tn(p) 20, n €N, by

n

ti = max (O, 32 - Aﬁ). (8)
Let & = (En; n € N) be a zero mean Gaussian process independent of
£, such that E[Emzn] = 6mnt§’ and n = (nn; n € N) be defined by

n =& + Su. n € N.

n n
: 0_ 0, 0 0

We define Gaussian processes X = (Xn, n € N) and Y = (Yn; n € N)
by

0. .t o_ N |

X'= 8P (X_ = 2 p_E) (9)
n nm°m
m=1

and

o _ L0
Then X° is independent of Z and E:=1 E((Xg)zl = 2§=1 E[ﬁﬁ] = p2,

In the case of without feedback, it is known that x° is the optimal

input signal in the sense that the capacity is attained by

transmitting XO:

N -

Co(pz) =1 3 1oz max (1.a21n2> = 1¢e,m = 1x%,v%.  aon
n=1
We put ¥y =Yy __(p) = E[XOXOJ and denote by I = ( Y )
mn -~ 'mn m'n mn /m,n€EN
. 0o _ 0 _ _
the covariance matrix of X = (xn)neN' Since a = a(p) and tn =
_ <N 2 2

tn(p) are monotone non-decreasing in op, Ymn = 2 =1 pmntm is also

non-decreasing in p. We assume, for a moment, that the noise Z is

blockwise white but not white. Then there exists a permutation =«

(k) _ . ’ - e -
on N such that 2Z = {Zpinyd Ny € RS Np), k= 1.. K, (0 =N

0

- 10 - -




-

< N1 € o+ NK = N and 1 ¢ K ¢ N) are mutually independent. Here
we may assume that
m =1, k <L,
k (11)
mk 2 2 and Z(k) is completely non-white, k > L,
where mk = Nk - Nk-l and 0 < L < N. In this case we can easily
show that -
pn(m)n(n) 0 if Nk-l <m<x< Nk' N£-1 <{ng«g N£ (k = {)
and ( pn(m)n(n) )Nk-1<m‘Nk is an orthogonal matrix. Hence we have
Y = P T
- n(m)r(m) - n{m)rx(n) n(n)
m-Nk_1+1 m,n-Nk_1¢1
= T . (12)
- n(n)
n-Nk_1+1
We define a constant po 2 0 by
. .2 . 2
P, = inf {(p; a“(p) 2 min A }. (13)
0 nin)
n>NL
From (8) and (12) we see that p > po if and only if
>
Y (p) > 0.
"=NL*1 n(n)n(n)

Thus we have obtained

LEMMA 2. Let Z

noise satisfying (11),

the following

(Zn)

Then, if p > po.

- 11 -

be a non-white and blockwise white

there exists an integer




k such that me = N = N, 22 and

N .
E Yr(nymemy P > 0 (14)

When the GC (1) is white, the following theorem is known.
THEOREM 2. If the GC (1) is white, then the capacity under the

congtraint (2) is not increased by feedback:

2,-2

N
Cotp?) = Cp%) =1 I 1og max (1, aZr"?),
F 0 2 n=1 n

where xﬁ = Etzﬁl and a is given by (6).

For the completeness we shall give the proof in Appendix.

We do not have explicit formulae for the capacity with feedback
except for the case of WGC. However it has been known that the
capacity is attained in a Gaussian scheme. We consider the
following conditions.

(b.0) A message 0 = {On; n € N) is a white Gaussian noise with
- 2,
E[GnJ = 0 and E[Gn] = 1.

(b.1) An input X = {Xn; n € N) is of the form

a, (8, - E(6,1F _ (1),

k

>4
[}
[+
=
D
+
ntMm

where k=1,--+,n, are constants and E[leﬁn_ (Y)] denotes the

ak.
conditional expectation.

1

- 12 -




THEOREM 3 [2]. It holds that

cF(p2> = sup (1¢0,Y); (8,X) € 9(p2)),

where 9(02) = ((8,X) € JF(pz); @ and X satisfy (b.0) and (b.1)}.

§ 3. Main Results

In this section we shall give the statements of our main results.
The proof of them will be given in § 4.
First, we give conditions for the increase of the capacity by

feedback.

THEOREM 4. If
(i) the noise Z of the GC (1) i8 completely mon-white,
or
(ii) the noise Z 1is blockwise white but not white and op > Por
where Po is the constant given by (13),

then the capacity of the GC subjeet to (2) is increased. by feedback:

2 2
CO(D ) S CF(O ). (15)

By (10) the capacity Co(pz) of the GC without feedback 1is

achieved by transmitting the signal x°= (X:) of (9). To prove

Theorem 4, using the signal x° and feedback; we shall construct a

- 13 -




coding scheme which enables us to transmit mutual information

2

strictly greater than C_.(p").

0
If the dimension N of the GC (1) is equal to 2, a non-white

Gaussian noise 2 = (Z,,Z,) is completely non-white. Therefore, as

1°'72
a consequence of Theorem 2 and Theorem 4, we have the following

COROLLARY. The ‘capacity of a 2-dimensional GC is_increased by
feedback if and only if the GC is not white.

It is conjectured that if p < Po the capacity of a blockwise
white GC is not increased by feedback. Al though we have not
succeeded in proving this for the general case, we can show that
there exists an N (2 3) dimensional blockwise white GC whose
capacity is not increased by feedback. We consider a 3-dimensional

non-white GC
n=1,2,3, (16)

to get an example of a GC whose capacity is not increased by feedback.

We denote by Ai. n=1,2,3, the eigenvalues of the covariance

matrix X = ( Omn )m.n=1.2.3 of the noise Z = (21.22.23). We
assume that Z3 is independent of (21.22) so that
] =0 = 0. (17)

13 23

We may take A? and Ag as the eigenvalues of the matrix

2 |
( Tmn )m.n=l,2' Then 13 = O33-
2, .2, .2, .2, .2
1 2 12 Z p o+ 13 > 13 . (18)

We assume that

A

- 14 -




and

011 * Ty * P2+ 1oy, /1 ol1°° 1
< 2 (19)
A P+ 044
- - a2 »
are satisfied, where A = 011022 012. Note that if 011 and 022
are large enough, and 012 is small enough, then l? and xg are

large, and (18) and (19) hold.

THEOREM 5.  Assume that the conditions (17) - (19) are
satisfied. Then the capacity of the 3-dimensional mnon-white GC (16)

subject to (2) is not increased by feedback.

In order to prove Theorem 5 we need to use a result from the

capacity of a 2-dimensional GC

Y = X_ <+ 2

n n n’ n =1,2, (20)

where Z = (21.22) is a 2-dimensional zero mean Gaussian random

variable with covariance matrix 2% = ( omn )m,n=l.2 satisfying A =

2 2 2

- 012 > 0. We denote by CF(pl.pz) the capacity of the GC

911922
(20) with feedback under the constraint

2

2
E[Xn] < Pue

n=1,2, (pn 2 0). (21)

We can show the following result.

THEOREM 6. Under the constraint (21), thé capacity of the

2-dimengional GC (20) with feedback is given by

-15 -




2 2

Cp(ps.03)
2 2 2.2 /] 1.2
1 11P2 * TPy * PPy + 20,p, 10 %17
=3 log 1 +
A
(22)
Moreover it holds that
2. _ 2 2
cpp?) = sup CLp?,03), (23)

pl'pZ

where the supremum is taken for all Py 2 0 and Py 2 0 such that

2 2 _ 2

§ 4. Proof of Theorenms

We recall that the capacity Co(pz) of the GC (1) without
feedback is attained by transmitting the signal x° = (xg) given by

(9), and the covariance of x° is denoted by ?mn = ?mn(p) = E[x°x°).

In order to prove Theorem 4 we prepare a lemma.

LEMMA 3. Assume that (i) or (ii) of Theorem 4 hold. Then

there exist m and n (n # m) such that Y 0,

PROOF. At first we assume (i). Let u§ suppose that Ymn = 0

- 16




for any m # n. Let L be the subset of N such that x: # 0, n €

L and xg=o.neM=N\L. Since X0 = t'P and & = X°P wve

have
HLX ; n € NIl = H(X ; ne€ L] = xttn; En = 0],

where 1[xn: n € N] denotes the set of all linear combinations of

xn. n € N. Therefore we may assume that

&n # 0, n €L, and En =0, n € M. (24)
It follows from (24) that
P =0 if n€M and me€L. (25)

nm

Using (7) and (25) we have
[ 4 ex[;m:meMJ, n € M,

and x[zn; n € Ml c l[;n; n € M). Since Zn' n € N, are linearly

independent, it should be held that
xtzn; n €M = x[;n; n € M1.

Therefore we see that

N
¢ = 2 p . Z = 2 p Z, n €M,
and that

Pon = 0 if meée€L and n € M.

Thus, if n € L, z, = zlel P %, 18 independent of Spe M € M, and

- 17 -




consequently independent of 2 m € M. Since the noise Z is

m’
completely non-white, this means that L = N. Therefore, ﬁn # 0

and E[&ﬁ] = tﬁ = 32 - Ai > 0 for all n € N. Thus, for any m =
n, we have
N N
2 2 2
0=y = 2 p. Pty = 2 P .P,(a° - 215
mn k=1 mk nk 'k k=1 mk* nk k
N N N
2 2 2
=a° 3 PPy - 2 PPoAL == 2 PP A
k=1 mk* nk k=1 mk*nk"k k=1 mk nk" k
= -0 _ .
mn

But this does not occur unless Z 1is a white noise, and contradicts
the assumption (i). Therefore we conclude that there exist m and
n (m # n) such that ?mn = 0. Secondly we assume (ii). In this

case, by Lemma 2, we know that there exists Xk such that Z(k) =

(2, (ny? Ng-3 ¢ M <N} 1s completely non-white, N - N _, 22 and
(14) holds. Therefore, as we have shown above, there exist Nk-l <
m<n< N, such that Ynm)nen) = O° Q.E.D.

We are now in a position to prove Theorem 4.

PROOF OF THEOREM 4. Let Xo

= (xg) be the optimal input
signal given by (9). By Lemma 3, there exist kX and ¢ (1 £ k ¢ ¢

< N) such that th = Etxgxgl 0. For simplicity, we put

2

Y v
ae—TkE TRt
Yk * “kk Yk * kK

We define a message 0 = (en)neN by

- 18 -




= y0 _ 0
en - xn. n # {, ec - X£ + xo'
where Xo is a zero mean Gaussian random variable with variance §8
which is independent of Xo and Z. Then we define an input signal
X = (xn)neN by
xn = enp n~# L. X£ = et - aYk'
where Y = (Yn) is the corresponding output:
{ Y =X +2Z = en + 2, n#¢,
Yt = xt + Zt - (ec - qyk) + Z{.
From the definition, ECX2] = E(6%1 =y _, n# ¢, and
n n nn
Etx2) = E[(8, - a8, + 2,.))%1
L ¢ k k
_ 2 o _ 0,2 2 2
= E[Xo] + E[(Xt axk) l] + E[Zk]
=8 + 7 - 207 + az(v +0,.) =Y
e ke kk kk L
Hence
N N
> E[xil = 2 Yoo = 92.
n=1 n=1
Thus (90,X) € JF(pz) and consequently
1¢0,Y) < CF(pz). (26)

We define Y = (?n) by

-19 -




Then it is clear that x[?n; n € Nl = l[Yn; n € N] and
1¢0,Y) = 1(0,Y). (27)

By Lemma 1, 1(0,¥) is given by

1¢0,Y) = 5 (log Q1 - log IZI}, (28)
where Q = ( qmn )m.neN is the covariance matrix of Y. We denote
o _ 0 0o _ 0
by Q = ( qmn m, neN the covariance matrix of the output Y = (Yn)
o _ ,0 ~ - s _ 0,0, _ O
given by Yn = xn + Zn. Then qmn = E[YmYn] = E[YmYn] = qmn for

any (m,n) # (£,8) and q,, = ELTp?) = YD1+ Exdy = o), 4 8.
Therefore
0

. 0 0

where A?z is (2,8) cofactor of Q°. It follows from (28), (29)

and (10) that

0,0

1¢0,%) > % {102 1Q°%1 - 10g 1=} = 1x%,¥% = c.(p?

O(P ). (30)

Thus we obtain the desired inequality (15) from (26), (27) and (30).

Q.E.D.

PROOF OF THEOREM 5. By (18) and Theorem 1 we know that the

2

capacity C.(p") withont feedback is given by

0

2 1 2. -2 )
CylP™) = 5 log ( 1+ p%2, . 31)

We proceed to calculate the capacity CF(pz) 6f the GC (16) with

feedback. Let (0,X) be any admissible pair of a message and an

input signal, namely 6 and X = (xl.xz.xa) satisfy (2) and (a.l).

-20 =




2 _ 2
We put pn = E[Xn]. n
pz. Using Lemma 1 we have

1,2,3. We may assume that p1_+ p2 + p< =

1¢(8,Y) = I(9.(Y1.Y2)) + h(Y3IY1'Y2) - h(Yale,Yl.Y )

2

y -1

= 2 :
= 1(9,(Y1,Y2)) + h(YalYl.Y2 2 log (2ne13). (32)

Since 23 is independent of (Y,.,Y

1° 2). 23 is independent of x3 and

it follows from (ii) of Lemma 1 that

1 2 2
h(Ya1Y,,Y,) < 3 log { 2re (5 + 13 }. (33)
Clearly I(G.(Yl.Yz)) is upper bounded by CF(pf,pg). We put 72 =
2 2 2 2 2 2 2 2

p1 + 92 = p° - p3. then pl, pz. 2p1p2 < y° £ p”. Using (22) we

get the following inequality:

2 2
I(9.(Y1.Y2)) < CF(pl.pz)

2 -1 2
g + 0 + p° + lo, | J/I + 0..P
< % log | 1 + 11 22 12 11 02 |.
A
(34)
It follows from (34) and (19) that
1 2
1¢0,(Y,,Y.)) < = log ( ] ¢ —X—— )
1’72 2 2 2
p + 13
2 2 2
Y P+ X
< 1 log ( 1 + ——-——————') = 1 log ( —_— ). (35)
2 03 4 22 2 03 4 22
3 3 : 3 3

Combine (31) - (33) and (35) to get
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1 p2 + 12 pz . lz
1¢0,Y) £ L 1og [ —3 3 ) + 1 eg ( — 3 )
2 12 2 p2 . 12
3 3 3
21 ( 2 -2 ) 2
=9 log 1 +0p 13 = Co(p ),
for any admissible pair (6,X). This means that CF(pz) < Co(pz).
2 2 2 2

Since Co(p ) £ C.(p°) by definition, C

-

F F(p ) 1is equal to Co(p ).

Q.E.D.

PROOF OF THEOREM 6. We consider the following coding scheme

X, = p,0
1 171 (36)
X2 = a92 + 8(91 - 91).
where 91 and 92 are mutually independent zero mean Gaussian
random variables with variance one, 51 = E[01I7(Y1)]. and o and B8
are constants such that
2 2 212, _ 2
o« + B Etlel °1| 1 =05 (37)

In 2] it is shown that

cF(pf,pg) = sup 1(6,Y),
o,B
where 0 = (91.92). Y = (YI’YZ) and the supremum is taken for all
constants o and B8 satisfying (37). For simplicity we put <t =
@, pf)l/z. For the coding scheme (36), we know that
2 124 _ 2 -1 _ . =2
E[le1 ell 1=0,, (p] + 0,0 " =0T

Denote by 22 = E[Zzlf(Yl)] and Z2 = E[ZZI?(ZI)]. Then 2Z

- 22 -




-2 ) -1
019 Yo Z, = 0,,01,Z,,
5902, _ . _ 2 _-2
E[lZ2 22| 1 =0y, - 05,t
and
2. . -1
By (4) we have
1€0,Y) = 1€8,Y;) + h(Y,1¥)) = h(Y,1Y,,0). (38)
We can show that
2
p, + O 2
1(6,Y.) = 1¢0,,Y,) = L 10g ( 111 ) =1 jog I—, (39)
1 1°' N 2 o 2 p=
11 11
h(Y,IY.) = + log {2ne EClaB, + 8 (6, - 8.) + (Z, - 20121} (40
2 1Y 2 2 1 1 2 2

and

- . | _ ¥ 12
h(Y,1Y,,0) = h(Z,1Y,,0) = 1 log {2ne Ellz, - Z,1%1}

-1

=1 jog (2reaci]). (41)

2

In order to get the capacity CF(pf.pg). we need to maximize

_ _ ~ - ~ 2
e(x,8) = E[Iae2 + 8 (8, -8 + (2, zz)l 1,
which can be written as
A 42
o(x,8) = Et|ae2 + 8 (e1 - al)l 1
~ . ~ : -~ 2
+ 28 EL(8, - 8,)(Z, - Z,)) + Etlz2 22| ]

-2- ~ -A2
= p, - 28 E[0,Z,1 + E[|z2 zz| ]
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2 -2 _ 2 -2
= Py = 28py0,,T T+ 0,y - 0F,T 0.

Since

2 2, 82

- - A 124 _ 2 -2
py = o E[IG1 ell 1 =a° + 8%, .t ©,

11

8 can run on the interval

-

-1/2 -1/2
pza11 t<$8 < pzo11 <.

Thus, if 919 > 0 (resp. %9 < 0), o(x,8) 1is maximized when 8 =
- pzozilzt (resp. 8 = pzazi/zt) and o = 0, and the maximum value

is

- -1/2_-1
2T + 2°1p2|°12|°11 Tt .

Combining this with (38) - (41), we get (22). Eq. (23) is clear

from the definition of CF(pz). Q.E.D.
Appendix
PROOF OF THEOREM 2 For each (p2,--+,p2) such that T N. p?
y 1’ *¥N n=1 "n
2 2 2 2 2

= p~, we denote by CF(pl.~°-.pN) (resp. Co(pl,'°'.pN)) the

capacity of the GC with (resp. without) feedback under a constraint

2 1

2 e 0
EIX 1 <p, N=1,"°°,N. (42)

It is known that




2 ... .2, _1
Co(pl' ’pN) - 2

nMZ

2.-2
log ( 1 « p X ).
n=1 n“n

In order to prove Theorem 2 it suffices to show

2 o e 2 = 2 * 00 2 ‘

For any pair (6,X) satisfying (a.l1) and (42) we have

* o 0 = =l 2
hez 1Z,,c-+,2 ) = h(Z ) = 5 log (2mex))

and

1 2 2
) £ h(Yn) < log [2:xe (pn + xn)].

h(Yn|Y1.°'°.Y 2

n-1

Therefore, using Lemma 1, we have

N
1(6,Y) < % T log ( 1 + p2a72 ),
n"n
n=1
and consequently
2 o & 2 2!.. 2
Co(pl. .DN) < CF(pl' .PN)
< 13 10 ( 1+ p2a72 ) = C . (p2,-++,p2)
2 & g n*n = ColPye el
n=1
Thus we get (43) and the proof is completed. Q.E.D.
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