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Abstract - The problem considered in this paper is whether the

capacity of a discrete time Gaussian channel Is increased by feedback

or not. It is well known that the capacity of a white Gaussian

channel under the average power constraint is not changed by feedback.

We give some conditions under which the capacity of a discrete time

Gaussian channel is increased by feedback. It is also shown that

there exists a non-white Gaussian channel whose capacity is not

increased by feedback.
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§ 1. Introduction

The problem considered in this paper is whether the capacity of

a discrete time Gaussian channel (GC) is increased by feedback or not.

It is known that the capacity of a white GC is not increased by

feedback (see [63 for continuous time case and Theorem 2 of this paper

for discrete time case). On the other hand, some examples of

non-white GC's have been presented to show that the capacity can be

increased by feedback (see [4] for continuous time case and [33, [5]

for discrete time case).

The main aim of this paper is to give conditions under which the

capacity of a discrete time GC is increased by feedback. The GC to

be considered is presented by

Y nf= Xn + Z , n E N (1,'-,N), (1)

where Xn Yn and Zn  represent the channel input, the output and

the noise, respectively, at time n, and N is the terminal time.

The noise Z = {Zn; n E N) is a Gaussian process such that Zn , n E

N, are linearly independent. We assume that an average power

constraint

NE 2 (2)
2 EEXn :c(2
n=1 n

is imposed on the input X = (Xn), where p > 0 is a given constant.

Let 0 be a message, to be transmitted, which Is a random variable

or a stochastic process independent of the noise Z. Denote by Y(O)

and m(Y) the a-fields generated by 0 and (Yn: n m n),
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respectively. The GC (1) is uith feedback if Xn  is a function of

the message and the channel output up to n - 1, namely

(a1) Xn  is 7(6) V 9n- (Y) measurable.

The GC is uithout feedback if Xn  is a function of the message,

namely

(a.2) Xn  is 9(9) measurable.

In each case we denotd by dF(P2 ) and d0 (P2 ) the classes of all

admissible pairs of a message and an input:

dF(P2 ) = ((G,X); 6 and X satisfy (2) and (a.1));

d0(P2 ) = ((O,X); 6 and X satisfy (2) and (a.2)).

We denote by I(G,Y) the mutual Information between the message

0 and the output Y = (Yn; n E N). Under the constraint (2), the

capacities CF(P 2 ) and C0 (P 
2 ) of the GC (1) with feedback and

without feedback, respectively, are defined by

CF(P2 ) = sup {l(eY); (GX) E dF(P2)

and

C0 (p 2) = sup (I(GY); (O,X) E d0 (p )).

Note that if the GC is without feedback we can identify the message

with the input and that

C0 (P
2 ) = sup (I(X,Y); X E 0 (P ),

2where S0 ) = (X; X satisfies (2) and is independent of Z).

If the GC is without feedback, a formula for the cappcity

-5-



C 0( 2 ) is known (see Theorem 1). If Z = (Z n ) is a white noise,

namely if Z n , n E N, are mutually independent, the GC is called a

uhite Gaussian channel (WGC). Since it is known that the capacity

of the WGC is not increased by feedback, we are concerned with the

case of the non-white GC.

Let X = ( omn )m,neN be the covariance matrix of Z. We say

that the Gaussian process Z = (Zn; n E N) is blockwise white, if

there exist m kxm matrices £(k) k = 1,.,K (1 < K < N and

2K m = N) such thatk=1

Z(1)

(1 T. (2 .
(3)

The relation is defined as follows. For NxN matrices A =

( a m )mneN and B =( b m )mnFN' we denote A -B If there

exists a permutation 7t on N = (1,.--,N) such that bmn =

an(m)7(n), m, n e N. We note that if Z is blockwise white then

Z(k) = (Zt(n); Nk-1 < n C Nk), k = 1,-,K, are mutually

independent, where Nk = m1 + ..+ mR . The GC is said to be

bLockuise white if the noise Z is blockwise white. If Z is not

blockwise white, Z is called a comptetety non-white noise and the

corresponding GC is also called a completely non-white GC.

It will be shown that the capacity of the GC is increased by

feedback if the GC is completely non-white or the GC is blockwise

white but not white and the power P2  is greater than a constant p2

0

specified later (Theorem 4). It is conjectured that if the GC is

blockwise white and p2 < P02 the capacity of the GC with feedback is

-6-



the same as the capacity of the same channel without feedback. We

can give an example of a blockwise white GC whose capacity is not

increased by feedback (Theorem 5).

It is known that the capacity of the GC with feedback is never

more than twice the capacity of GC without feedback [73. We have

given in Part I E53 an example of a GC whose capacity is almost

doubled by feedback.

§ 2. Preliminaries

This section is devoted to summarizing previously known results

on the capacity of GC, which will be used later.

The mutual information I(4,n) between random variables and

n is defined by

I(4,n) = log dgxn dM,

if the joint probability distribution g, of and n is

absolutely continuous with respect to the product measure Ax n  of

the probability distributions g and n of 4 and "n,

respectively, where dt14 /dy ,x is the Radon-Nikodym derivative;

otherwise I(,n) is infinite. The differential entropy h() of

an m-dimensional random variable with a continuous distribution is

defined by

- 7-



h() = Rm pt(x) log P,(x) dx,

if the integral exists, where p,(x) is the probability density

function of 4. If h(,n) (= h((t,n))) and h(n) exist, the

quantity h(tIn) defined by

h(4ln) = h(t,n) - h(n)

is called the conditional entropy of given n.

The following properties of the mutual information and the

differential entropy are used later.

LEMMA 1. Let 0, X = (Xn) and Y = (Yn) be a message, an

input and the corresponding output of the CC (1), respectively.

N
(i) I(O,Y) = {h(Y nY l ...' Yn 1 )  - h(Yn l0, Y1 ,***,Yn 1

n=1

N
2 {h(YnlYl-'...,Yn_) - h(Z n1Zl Z n-1 (4)

n=l

where h(YnIYl,'-',Ynil) h(Y1) if n = 1.

(ii) Denote by T2 the variance of the conditional distributionn

of Yn given (Y ,''',Y n). Then

h(Y ly 1'.,Yn ) log (27er 2). (5)
n 1, n-i 2 n

The equality holds in (5) if and only if the conditional distribution

is Gaussian.

(ill) If (XZ) = (X n,Z n; n e N) is Gaussian, then
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I(G,Y) (log r I - log XII),

uhere ry is the covariance matrix of Y = (Y ) and I'1 denotes

the determinant.

The capacity C (p2 ) of the GC (1) without feedback is known to

be determined by the e-igenvalues U 2; n e N) of the covariance

matrix Z of the noise Z = (Z n.

THEOREM 1 (see, e.g. (1]). The capacity C0 (P 
2 ) *of the CC (1)

without feedback subject to (2) is given by

CP2) .1 N 2 -2C0 (p 2 ) = 2 log max (1, a A ),
n=1n

uhere a a a(p) > 0 is a constant uniqueiy determined by

N 2 2 2
-max (0, a I n P (6)

n=1

There exists an orthogonal matrix P = ( Pmn )m,nEN such that

2
t 1 0 tp1

PEP = A, where A= and (= P-) is the
0 2{N

transposed matrix of P. A Gaussian process t Q {n; n E N)

defined by

N
fiZP ( n 2 Pmn Zm neN) (7)

m=1

is a white noise. Indeed, the covariance matrix of is the
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diagonal matrix A. Define constants r n = n (p) k 0, n E N, by

2 = max (0, a2 - A) (8)n n

Let = { n; n E N) be a zero mean Gaussian process independent of
n2

t, such that E Mt n ] = 6mn n and n = (nn; n E N) be defined by

nn = n + n-' n EN.

We define Gaussian processes X = (X0; n E N) and Y = (YO n Nn; n E

by

X 0  tP (X 0 = 2 Pnmtm (9)

and

Y 0 =X0 + Z n E N.

0 7N 02 N [2 2Then X is independent of Z and . = EE(X 0)n =1~ E( 2 n 2

In the case of without feedback, it is known that X0  is the optimal

input signal in the sense that the capacity is attained by

transmitting XO:

c 2 =1N lo ma-1 2 2  0 0C02) 5 2 2 log max (' Xn) = I(tn) = I(X ¥Y (10)
n=1

0 0We put 7mn V mn () = E[X m] and denote by r = (Ymn)m,neN

the covariance matrix of X0 = (X0 n) Since a = a(p) and n=n neN*

n () are monotone non-decreasing in p, Ymn = pN mT 2  is also

non-decreasing in p. We assume, for a moment, that the noise Z is

blockwise white but not white. Then there exists a permutation 71

on N such that Z(k) = ZY(n); Nk 1 < n :C Nk), k = 1,.'.,K, (0 = N0

- 10-



< N . " N K = N and 1 ( K ( N) are mutually independent. Here

we may assume that

1 k ik1, k C L,

mk 2 and Z (k )  is completely non-white, k > L,

where mk = Nk - Nk- and 0 < L < N. In this case we can easily

show that

Pnt(m)n(n) = 0 if N k-1 < m c Nk , N_ 1 < n ! Nt (k d t)

and I Pn(m)n(n) )N k-1<mN k  is an orthogonal matrix. Hence we have

Nk NkN k Nmk 2 2
= P n(m)n (n) 7(n)m=N k-1+1l m,n=fNk-l+

Nk
~2

= 1C7(n) (12)
n=Nk1 +1

We define a constant p0 k 0 by

P0 = inf (p; a2 (P) k min 2 (13)n>NL YE(n)

From (8) and (12) we see that p > P0  if and only if

N
Y71(n )jE(n)(P) > 0.

n=N L+1

Thus we have obtained the following

LEMMA 2. Let Z = (Z n be a non-uhite and btockwise uhite

noise satisfying (11). Then, if p > PoO  there exists an integer
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k such that mk = Nk - Nk- 1 k 2 and

Nk

2V 71()t()(P)>O0 (14)
n=Nkl +1

When the GC (1) is white, the following theorem is known.

THEOREM 2. I the CC (1) is white, then the capacity under the

constraint (2) is not increased by feedback:

2) 2 N 2-
(P CO( )  2 log max (1, ax -),

202n=1 n

wahere x2 = EZ 2 and a is given by (6).
n

For the completeness we shall give the proof in Appendix.

We do not have explicit formulae for the capacity with feedback

except for the case of WGC. However it has been known that the

capacity is attained in a Gaussian scheme. We consider the

following conditions.

(b.0) A message 0 = {0 n; n E N) is a white Gaussian noise with

E[G I = 0 and EG 2] = 1.n n
(b.1) An input X = {X n; n E N) is of the form

n-1
Xn = a n n+ I ak (9k - EEO k1n- (Y)]),

k=k

where ak' k = 1,-,n, are constants and EEOkIn-1 (Y)] denotes the

conditional expectation.
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THEOREM 3 E23. It hoLds that

CF( 2 ) = sup (I(OY); (0,X) E S(02 ,

waher'e ( 2) = ((GX) E dF(P 2); 0 and X satisfy (b.0) and (b.1)).

§ 3. Main Results

In this section we shall give the statements of our main results.

The proof of them will be given in § 4.

First, we give conditions for the increase of the capacity by

feedback.

THEOREM 4. If

(i) the noise Z of the CC (1) is completety non-uhite,

or

(ii) the noise Z is blockujse white but not uhite and P > oll

uhere P0  is the constant given by (13),

then the capacity of the CC subject to (2) is increased.by feedback:

CO (2 )  CF(02). (15)

By (10) the capacity C0 (P ) of the GC without feedback is

achieved by transmitting the signal XO = (X ) of (9). To prove
n

Theorem 4, using the signal X0 and feedback, we shall construct a
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coding scheme which enables us to transmit mutual Information

strictly greater than C0 (p 2).

If the dimension N of the GC (1) is equal to 2, a non-white

Gaussian noise Z = (Z1 9Z2 ) is completely non-white. Therefore, as

a consequence of Theorem 2 and Theorem 4, we have the following

COROLLARY. The capactty of a 2-dimensional CC isincreased by

feedback if and ony if the CC is not hite.

It is conjectured that if p < p0  the capacity of a blockwise

white GC is not increased by feedback. Although we have not

succeeded in proving this for the general case, we can show that

there exists an N (k 3) dimensional blockwise white GC whose

capacity is not increased by feedback. We consider a 3-dimensional

non-white GC

Yn = Xn + Zn ,  n = 1,2,3, (16)

to get an example of a GC whose capacity is not increased by feedback.

2
We denote by An, n = 1,2,3, the eigenvalues of the covariance

matrix 1 = ( am )mn=123 of the noise Z = (Z1,Z2,Z3). We

assume that Z3  is independent of (Z1 ,Z2 ) so that

a13 = a23 i0. (17)

We may take A2 and X2 as the eigenvalues of the matrix

Then 2 : We assume that(mn )m,n=1,2" 3 33*

12 kX2 >.P2 +'2 >X2 (821  A 2 P +2A3 >A 3  (18)

14



and

+ 2 + 2 1 io2 2
a11 022 + + 1012 1 a 11 2 1

A 2 + 033

are satisfied, where A = 011022 - a2 . t 22
12 Noe tha if d 2 n

are large enough, and 012 is small enough, then 1 and 2 are
12 1 2

large, and (18) and (19) hold.

THEOREM 5. Assume that the conditions (17) - (19) are

satisfied. Then the capacity of the 3-dimensionat non-uhite GC (16)

subject to (2) is not increased by feedback.

In order to prove Theorem 5 we need to use a result from the

capacity of a 2-dimensional GC

Y = Xn + Zn n = 1,2, (20)

where Z = (Z1 ,Z2 ) is a 2-dimensional zero mean Gaussian random

variable with covariance matrix I = ( 0 mn )m,n=1,2 satisfying A

a11 22 - a 2 > 0. We denote by CF(P1, P) the capacity of the GC

(20) with feedback under the constraint

EX 3 pn2 n = 1,2, (Pn 0). (21)

We can show the following result.

THEOREM 6. Under the constraint (21), the capacity of the

2-dimensionaL GC (20) with feedback is given by

- 15 -



2 2
CF(PlP 2 )

2+ 2 22 - 12

= 2 11 2 22  1  01  2  1 2 p2 1o 1 21 1 + o1 1  1I o +2

(22)

Moreover it hoLds that

CF(P = sup CF (P 1,P), (23)

here the supreaux is taken for aLL P1  0 and P2 > 0 such that

2, 2 2
P+ P2 =

§ 4. Proof of Theorems

We recall that the capacity C0 (P
2) of the GC (1) without

feedback is attained by transmitting the signal X 0  (X0  given by
n

(9), and the covarlance of X0  is denoted by Vmn m (P ) = E(X X 0.
,n = m n

In order to prove Theorem 4 we prepare a lemma.

LEMMA 3. Assume that (I) or (Ii) of Theorem 4 hoLd. Then

there exist m and n (n # m) such that Ymn P 0.

PROOF. At first we assume (i). Let us suppose that Ymn = 0

- 16 -



for any m P' n. Let L be the subset of N such that X 0 0, n 6n

L and X 0 = 0, n e14=N\1 Since X 0 = ttPand t x X0P wen

have

A 0;n E NJ ACXn0; n e L AI; 01nn n n

where AX;n E NI denotes the set of all linear combinations of

x on e N. Therefore we may assume that

4n; 0, n e L. and 4n= 0, n ENM. (24)

It follows from (24) that

Pnm = 0 If ne M and m eL. (25)

Using (7) and (25) we have

N
Zn nm gm Pnmm e im m zM, n6 .

m=1 mEM

and J([Z n; n MI 1]c ACt n n 6E MI. Since Z no n e N, are linearly

independent, it should be held that

i(Z n; n e NI = AE n ; n 6 M31.

Therefore we see that

N
tn ml mnzm mzo neM

m=1 mEM m

and that

Pmn =0 if m GL and neNM.

Thus, If n f L, Z n zXLEL Pnt~t to Independent of ;m, m e N, and

- 17T



consequently Independent of Zm, i E . Since the noise Z is

completely non-white, this means that L = N. Therefore, n Pd 0

and E2] 2 = = 2 - 12 > 0 for all n G N. Thus, for any m Pn n n

n, we have

N 2 N2 2
=n 2 amknkk k mknk(
mn k=1 p = , ( k

2 N N 2 N= a 2  Pmn - 2 A=- p
a Pnk - mkPnkXk PmkPnk kk=l k=l k=l

mn

But this does not occur unless Z is a white noise, and contradicts

the assumption (i). Therefore we conclude that there exist m and

n (m # n) such that Vmn - 0. Secondly we assume (ii). In this

case, by Lemma 2, we know that there exists k such that Z(k) =

(Z(n); N k-I < n K Nk) is completely non-white, Nk - Nkl 1 2 and

(14) holds. Therefore, as we have shown above, there exist Nk_1 <

m < n < Nk such that 7 71m),r(n) d 0. Q.E.D.

We are now in a position to prove Theorem 4.

X0 0 X)b h pia nu
PROOF OF THEOREM 4. Let X 0 (X0 be the optimal input

signal given by (9). By Lemma 3, there exist k and t (1 k < t
0

C N) such that Y = EEXkXL] 0. For simplicity, we put

Vkk + Vkk Vkk + akk

We define a message 0 = (e N  by

- 18 -



= X0  n ; t = X0 + XO

where X0  is a zero mean Gaussian random variable with variance 6

which Is independent of X0  and Z. Then we define an-input signal

X = (Xn)neN  by

X n = n o n 0 L, XZ = O - UYk

where Y = (Y ) is the corresponding output:

I Y=X+ nnnOn+ZnYn =  n + Z n = n + Zt

Y = X - + Z t = (0 t - tY k) + Z V

From the definition, E[X 2 3 = EEO2  = n to, andn n nn

E[X23 = EU(O - c(Ok + Zk)) 2

=E 2 3+EX0- ax 0)2 3 + a2 EZ 2 3

+ 7 U 2aykt + a2(Ykk + akk) 7t"

Hence

N 2 N 22 E[Xn 2 = enn "

n=1 n=l

Thus (9,X) E dF(P 2 and consequently

I(O,Y) CF(P2). (26)

We define Y (Yn) by

Yn = n + Zno n

- 19 -



Then it is clear that AYn;n e IN] A[ iYn n E NI and

I0,Y) =I(e,Y). (27)

By Lemma 1, I(G,Y) is given by

2(Y ( log IQI - log ElI), (28)

where Q = q i the covariance matrix of Y. We denote
0 ( 0n 0mnN '

by Q 0 q. 0n)~e the covariance matrix of the output Yo = (O

given by Y n X n + Z n Then q a EEY MY~ n3 EEY0mY0nJ = q nfor

any (m,n) ;d (t,t) and q E((Y 32  EC(Y 32  + EEX 03 q t + ~

Therefore

IQI = IQ 0I + M0> IQ 0I1 (29)

0 0
where A tis (L,t) cofactor of Q . It follows from (28), (29)

and (10) that

I(G.Y) > -1 flog 1Q01 - log Xiz) = I(X0,Y0 ) - C (P2  (30)

Thus we obtain the desired inequality (15) from (26), (27) and (30).

Q.E.D.

PROOF OF THEOREM 5. By (18) and Theorem 1 we know that the

capacity C 0(P 2) without feedback is given by

C (P2) =1 log (1 + P2 1- 2 ).(31)

We proceed to calculate the capacity C F(P2  of the GC (16) with

feedback. Let (O,X) be any admissible pair of a message and an

input signal, namely 0 and X a (X 1,X2 'X3) satisfy (2) and (a.1).

-20-



We put p2 = EX 2 3, n = 1,2,3. We may assume that 2 2 +n n p1. 2  p3
2p Using Lemma 1 we have

I(6,Y) = I(G,(YI,Y 2)) + h(Y3 YI,Y 2) -h(Y 3 1,Y 1 Y2)

I(O,(YIY 2 )) + h(Y3IYY 2 ) - I log (2.e9.2 (32)

Since Z3  is independ-ent of (Y1 ,Y2), Z3  is independent of X3  and

it follows from (ii) of Lemma 1 that

h(Y 3 YI,Y 2 ) I log { 2ne (02 + X2 (33)

(P 2 3  A 3).

Clearly I(e,(Yl,Y2 )) is upper bounded by C 2(P2P 2 We put 1e2=

2 2 2 2 2 2 2 2
1p = P - p3  then P1 , P2 , 2P 1 P2 C V :K . Using (22) we

get the following inequality:

i(6,(y1,Y2 ) ( P 2F( O P 2)

11+a22 + V121 +-1P2 ~ 2
.1 2log 1 +

(34)

It follows from (34) and (19) that

I(O,(Y 1 Y2 )) I log ( + 2 )
V 2 P2 + X 2

.< og I + I I 2 og ( (35
2 +X 22 P 2

Combine (31) - (33) and (35) to get

- 21 -



I(ey) 1C log 3 32  + 2  I log (

log (1 + 3 P2X C,=

2 3 2

for any admissible pair (0,X). This means that C (2) 2 C0(02

Since C0 (P 2 ) 2 C F(P ) by definition, CF(P 2 ) is equal to C0 ( ).

Q.E.D.

PROOF OF THEOREM 6. We consider the following coding scheme

1 = P10 1  (36)

X2 =G 2 + 8(61 - 01),

where 1 and 02  are mutually independent zero mean Gaussian

random variables with variance one, 01 = EEG 1 IY(Y 1 )3, and o and

are constants such that

! +2 Ee 1 _ 0112]3 = P2 (37)

In E23 it is shown that

C F (P1,2 = sup I(G,Y),

where 0 = (01,02), Y = (Y1,Y2) and the supremum is taken for all

constants c and B satisfying (37). For simplicity we put x =

2 1/2
(a 1+ For the coding scheme (36), we know that

EdO2 Ol= 2)-1 = 11-

ilo1 " 12 (p1 1  
2

Denote by Z = E[Z 2 IY(Y 1 )3 and Z = E[Z 2 19(Z 1 )]. Then Z =

- 22 -



a12C-2Y1s 2 a a-1
12 2 12 11 1'

E 2  2 22 

and

E[IZ 2 - 221 = -1
2 2 11"

By (4) we have

I(6,Y) = I(0,Y1) + h(Y21Y1) - h(Y21YI,0). (38)

We can show that

( 2+ a 2
I(G,Y 1 I (O6,Y) log -~----I =L log X(39)1 1 2 2 a 210all °11'

h(Y2 1Y1 ) =2 log {2ne E[lc0 2 + 0 (01 - 1 + (Z2 - Z2)12J) (40)

and

h(Y2 1YI,0) = h(Z2 1Y1 ,6) = log {2ne EEIZ 2 - 2 }3)

I l og (2neAa - I

2~ 112 (eo 11). (41)

In order to get the capacity C (p2 p2 ), we need to maximizeF 1' 2

9(a,0) = E[lIEO2 + 0 (0 - 1 + (Z2 - Z2 )12 ,

which can be written as

9(x,$) = E[Ia 2 + 0 (01 - 81)12]

+ 20 EC(O 1 - 61 )(Z2 - Z2 )
3 + E[IZ 2 - Z2 1 2

2  12 2 +1 2P2 20EE 1 Z2 3+E[IZ2 - Z 2 3

- 23.
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=2 -2 2 -2
- 28P 1a 1l2 I + a 22 a 12T

Since

P 2 C2 +82 EEIG - 123 a 2 + 8a T'2 ,
1 1 1

O can run on the interval

- ~ ~ 1 1 2  
P~ 2a1

Thus, if a012 > 0 (reap. a1< 0), (pW,P) Is maximized when B

- aQ1/ 2 -r (resp. 0 = Pa-1 /2 T) and ct = 0, and the maximum value
p2 11 21

Is

P2 + - a2 T-2 +2I0 O 1/ -
p2  22 12 1 P1 2  12 f 11

Combining this with (38) - (41), we get (22). Eq. (23) is clear

from the definition of CF(p 2  Q.E.D.

Appendix

PROOF OF THEOREM 2. For each (2 '..P2) Nuc ta 2

P2 we denote by C(2 '. P2) (reap. C (P2 '..P2) th

capacity of the GC with (resp. without) feedback under a constraint

ECX2 JC P2 N z 1,--,N. (42)n n

It is known that

- 214-



2 Pi P 2 1~ log n 1n.p) 2 1
Co(Pi..Pw) 2n=l nl.

In order to prove Theorem 2 it suffices to show

2 .. 2 2 .. 2)
C 0(P 1 "PN =C F(P 1, ,PN (43)

For any pair (G,X) satisfying (a.1) and (42) we have

h(Z Iz i'..zn) = h(Z ) I= o (7e 2
n 1- 2 lg( nn

and

h(Y Iy *...'Y 1 ) :C MY ) 1C o e( 2 +'2)3n 1 2- lo 22n n n J

Therefore, using Lemma 1, we have

Holy) :C I~ N lg(1 + P2 1-)2

2 x2 log n n

and consequently

2 . . 2 2 . . 2

N 2 -2 ~) 2'.. 2
I log 1 + 1= C (P," P)

2 n~ ~.~ n 0 O1 N

Thus we get (43) and the proof is completed. Q.E.D.
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