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Abstract

Hermod is an interactive behavioral synthesis program developed at Stanford University.

Using a combined control and data flow graph (C/DFG) as an intermediate representation,
Hermod generates functional blocks and their interconnection from L -havioral descriptions.
Hermod supports a menu-driven interface, displaying the control and data flow graph with a

set of legitimate dming-cus and its hardware representation. Emphasizing user

participation, the system allows the user to control state partitioning and resource sharing

through a graphical interface to explore the maximal design space. Written in an object-

oriented language C++, Hermod generates a hardware representation in several minutes

C from a behavioral description of practical size on a VAXstation H/GPX.

• -Indexing Terms: behavioral synthesis, structural synthesis, control and data flow graph,

register-transfer level description, design space exploration.
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S. The Hemmod Behavkoral Synthesis System

1. Introduction

Silicon compilation is the process of automatically mapping an abstract design
representation to a physical structure [19]. Depending upon the input language, silicon
compilers are classified into behavioral compilers (or behavioral synthesizers) and structural
compilers. A behavioral synthesizer translates a behavioral description into a structure,
creating structural designs consisting of functional blocks and their interconnection. In a
behavioral synthesis system, the design is specified by a functional relationship between
input and output ports described in a hardware description language [4, 11, 26.! The
behavior of output ports is specified in terms of input ports and internal state. Th output
from a behavioral synthesizer contains hardware modules" (data paths) required to
implement the given behavioral specification, and their scheduling (control). .h 1/

The synthesis task includes generation of data paths and their control blocks. Data path
synthesis consists of the folowiig subtasks: module bindings, state bindings (control step
partitioning), and register and connection bindings. In the module binding process, a
functional module is assigned to each abstract operation, and a register is assigned to data
carried across state transitions. The functional modules (or registers) can be shared among
more than one abstract operation (or variable). Further, the binding process relies on library,
which may contain structural modules at several abstraction levels [9]. The module binding

(process has a great impact on the system cost and performance, since an abstract operation
can be realized in many ways. The module binding process is performed before control
logic synthesis, even though the process can be iterated later if imposed constraints are not
met. State binding implies assignment of each operation to a machine state. Machine states
are created depending on the clock period of the system and the delay of hardware modules.
Based on the clock period and the number of maximum allowed states, the system assigns
each abstract operation to a machine state such that maximum parallelism can be achieved
within available hardware modules. Connection bindings imply the interconnection between
functional modules and registers, creating the data transfer paths between them.
Connections can be implemented using bus structure or multiplexors.

Control synthesis creates the finite state machine that controls the data path units for the
proper execution of code sequences. The goal is to define the sequence of the micro-
operations and the timing of the control signals to the data path. To generate the control Fo
block, the data path must be fully defined, and the required operations must be specified as a I o
linear ordered list of micro-operations which affect either the control flow or data path. Two 0
different design styles have been used for control block implementation: structured and id 0

' tin this paper, a functional module represents a hardware block which can execute an operation like addition
and subtraction, while a hardware module is used to represent a functional module, register, or wire. On/ __

r ty Codes
jAvalU end/ortst Special

' ' I I i l I I I I I



Mw Hamad Behaviora Synthuls System 2

custom implementations. In a structured implementation, the next state information and
(7signals for data path selection are encoded in a structured array. This implementation is

flexible and easy to modify. A custom implementation uses random logic for efficiency,
exploiting the particular features of the data path. Detailed description of various algorithms
for control synthesis can be found in [7, 14, 18, 24].

Automatic synthesis from behavioral specifications is an exploratory area for design
automation. A number of behavioral compilers have been reported that generate structural
descriptions from behavioral level descriptions (6, 8, 14, 16, 17, 20, 23, 251. Those systems
automatically generate a structr description from a behavioral description using the
design constraints given by a designer. However, supported design styles are limited in
most systems, giving few chances for the designer to change what the system generates.
Thuis, designer may feel alienated from the system with no choices other than to accept the
machine-generated designs, even if he is not satisfied with the output.

This paper describes the Hermod behavioral synthesis program that gives a hardware
designer full system control to select the design style he like through a menu-driven
graphical interface. The system is not intended for use with design descriptions which
would require thousands of components for reldization, but for designs at high abstraction
levels where design space exploration is of primary concern in the early stage of design.SThe Hermod program is included in an integrated environment for hardware simulation and
synthesis under development at Stanford University. The functional models written in a
behavioral description language ILSP [15] can be simulated on the THOR
logic/functional/behavioral simulator [2] without translation. The behavioral models that
have been verified through the THOR simulator are input to Hermod to generate RTL
descriptions, which can be again simulated by THOR simulator for verificatioc purposes.
Efficiet algorithms are incorporated in Hermod for generating timing-cuts for state
partfiioning, checking consistency after modifications to the system-generated designs, and
optimizing through resynthesis.
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2. Input Language and Internal Representation

2.1 ILSP: Behavioral Description Language for Hermod
11SP (Input Language for Synthesis Program) is used to describe the function or behavior

of the hardware to be designed. Based on the C-language, ILSP has conditional (if and
switch), and loop (while- and do-loop) control constructs, and allows explicit specification
of the actual hardware interface to the outside world. Many features of the C language
considered redundant or unnecessary for behavioral representation of a hardware module are
omitted in ILSP. For instance, only integer type variables are supported, and parameter
passing is handled through interface declarations. Compared to the ISPS (Instruction Set
Processor Specifications) [4] which describes the behavior and structure of the design at
register-transfer and behavioral levels, the ILSP description is purely procedural. The
features of ILSP are briefly reviewed nexL A detailed description can be found in [ 15].

Signal Declarations: Three fundamental object types are supported. The objects
declared as integers are local variables to the procedure in which they are declared. The
objects declared in the signal declaration sections (IN LIST, OUT UiST and ST LIST
sections) as signals (SIG) are one-bit-signal variables and those declared as groups (GRP or
BUS) are multiple-bit-signal variables. The SIG- and GRP-type objects are the abstract

Crepresentations of registers in hardware realization. An integer object may be realized by a
register, or just as a wire depending on its usage and lifetime.

Control Constructs: Most control constructs in the C language are supported:
conditional statements (if- and switch-statements) and loop (while- and do-loop) constructs.

Expressions and Statements: Expressions and statements supported in ISP are a subset
of those in the C language. Arrays of complex data structure (like arrays of structure with
several data fields) are not supported. Array structure is allowed only to represent a group
of signals, which will be realized by registers or memory modules. The differences from the
C language in expressions and statements are summarized as follows:

* Structures and pointers are not allowed. An exception is that a pointer is passed
to a subprocedure as an argument for a (RP-type object in a procedure call.

* Array structures are used to specify bit position for group signals. A GRP-type
object followed by a range in square brackets specifies a portion of group
signals. The expression xOI implies the entire signal group of x will be treated
as an integer. The expression x[3] represents the signal value of the third bit of
x, and x[7:4] means the partial signal group between the seventh bit and fourth
bit of x treated as an integer.

* Increment expressions (++ and -) are allowed for integer variables only.
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- Procedure calls that return one or mom values are supported. The
(receiwer-ist) - procedur-cal-ozpreion;" form is used for procedure calls

that return multiple outputs and distribute the values to the variables and group
sinas in the receiver-fin.

o A break statement is allowed only in a switch statement to eliminate abrupt
loop exit.

e Parameter passing in a procedure call is handled through the hardware interface
mechanism. That is, the input and output parameters are declared in the
interface declaration seciom (INLST and OUT UST declarations), unlike C

* A return statement is allowed only at the end of procedure. No expressions are
allowed after a return statement. Instead, a procedure can return values by
assigning values to the variables declared in the OUT LIST section.

Figure 1 shows a procedure describing the design that takes two groups of signals, in and

enable, and calculates the summation of the value of in, setting the signal group out and

signal line valid. The objects declared in the INLIST section represent input signals or

ports. Enable rpresents one signal line, and In represents a group of signals consisting of 8
signal lines. Likewise the objects in the OUT LIST section repremnt output signals or ports

set by the procedure. The statement "r - inn" means that the signals grouped as in are

packed into an integer (r). The statenment "outl] = s" sets the group of output signals, out, by

unpacking the integer (s)

2.2 Graph Representation
In the behavioral synthesis process, a behavioral representation is translated into an

intemediate representation in graph form, which is subsequently transformed and translated

into a structural description. In Hermod, a graph representation is chosen that reflects both

the control sequencing and the data flow in the program. In the graph, a node can represent

a data carrier, an abstract operation, or a control construct. An edge can be a control edge

eprcsting control sequencing in the behavioral description, or a data edge representing
data usage or data flow depending on the types of the nodes connected by it. The graph

consists of several data flow subgraphs corresponding to basic blocks of the behavioral

description, each of which consists of straight line codes and control nodes connecting them.
The graph shows not only the dependency or parallelism of each operation but also the

global control and data flow in the model. The C/DFG allows hierarchical design by
o ting a procedure-call node. A procedur-call node representing some hardware

block can be specified by another graph. Tis graph representation is similar to the

McFarand's Value Trace [121. However, unlike VT, nested loop constructs are used in the
representation, which is a natural way to handle loops.

. re five types of nodes: data, constant, operation, control, and temporary nodes.
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su(
SUMO

INLUST /* declare input ports */
SIG( enable);
GRP( in, 8);

ENDUST;

OUT LIST /* declare output ports */
SIG( valid );
GRP(out, 16);

ENDLIST;

int r, s; /* declare local variables */

valid = 0;
if ( enable) {

r in[];
s -0;
while (r >- 0) 0

r--:

out[ - s;
valid . 1; /* set the flag*/

}
return;

Fi

Figure 1: A behavioral model calculating the summation of a given integer.I

C ''
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Each node has one or more input ports and output ports. Each port is idcentif by ,.i o-

attribute and port-id. Data, constant, temporary, and operation nodes (together with directed

edges into and out of the nodes) reflect the data flow and data dependencies, while control
nodes are used for control sequencing and to mark the boundaries of basic blocks.

" DatalConstantlTemorary Nodes: A data (or constant) node corresponds to an
object (variable or constant) in the behavioral description. Basically, for each
appearance of a variable, there is a corresponding data node in the graph.
Temporary nodes are used to represent the data produced by an operation and
used by another operation or control node.

" Operation Nodes: An operation node corresponds to an abstract operation in the
description. A procedure call is considered an operation with multiple inputs
and outputs.

" Control Nodes: A control node shows the beginning and end of a basic block.
There are seven different control nodes: start, end, fork (for if-statements),
sfork (for switch statements), join, loop, and loop-end nodes.

An IlSP procedure consists of three types of blocks: straight line code, conditional
statements, and while- and do-loops.

Straight Line Code: A block of straight line code consists of expressions and
( assignments. Expressions are realized in such a way that operation nodes take edges from

operand data nodes. Assignment is normally realized by the edge from an operation node to

a data node, which means that the result of the operation is stored in the variable represented
by the data node. Temporary data nodes are inserted if necessary. Retrieving data from or
assigning values to a subset of group signals is allowed. To construct the subgraph showing
such a partial retrieval or assignment, the fpack and funpack2procedure-call nodes are used
as shown in Figure 2.

1 hm am intinsic libraiy functions in the THOR simulation system 13]. Fpack converts a group signal of
specified bit width into an integer andfunpack converts an integer into a group signal.
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X =a[3:5] a[3:51 = x

Figure 2: Graph representation. for the functions (a) fpack (b)funpak.
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Condltonal Statements: The if block consists of two sub-blocks corresponding to the
then-part and else-part, respectively. The then-part (else-part) sub-block starts from the
TRUE (FALSE) port of a fork node and ends at a join node. The subgraph corresponding to
the conditional expression is connected to the CONTROL port of the fork node.

While/Do Loop Constructs: A while-loop subgraph is also constructed with join and
fork nodes. In this subgraph, the join node is followed by the subgraph corresponding to the
conditional expression of the while statement, which is connected to the CONTROL port of
the fork node. The subgraph of the while-loop body starts from the TRUE port of the fork
node, and ends at the join node through BACK edges to show the iterative nature of the
block. A do-loop subgraph consists of one block which starts from a loop node and ends at
a loop-end node. The output of the conditional expression is connected to the CONTROL
port of the loop-end node. The loop-end node has two output ports: the TRUE port
connected to the loop node by a BACK edge, and the FALSE port from which a new basic
block begins after the do-loop statement.

Figure 3 shows the graph representation of the procedure shown in Figure 1. Rectangles
represent operation nodes that will be mapped into structural components in the module
binding process, and circles represent variables and constants (data nodes). Control nodes
are represented by trapezoids (fork and join nodes) or hexagons (start and end nodes). The

(outer fork-join node pair corresponds to the if-statement that is controlled by the value of
enable. The inner join-fork pair corresponds to the while-loop statement. The control input
to the fork node is from the condition expression.
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3. The Synthesis Process In Hermod

3.1 Syster,, Overview
Figure ; shows an overall picture of Hermod. Taking a procedure describing the desired

beha; 20 of a design, Hermod converts it into the intermediate graph form (C/DFG), then

builds the hardware realizing the behavior in two passes. In the first pass, the operations in

the graph are assigned to machine states and the initial hardware is created by allocating

functional modules to the operation nodes, and wires or registers to the arcs. Two graphs
are produced as a result of the first pass. One is a data path graph that consists of nodes

representing functional modules or data storage and edges mrem ting interconnections.

The other is a state transition diagram in which each node corresponds to a machine state

and each edge shows a state transition and its conditions. In the second pass, functional

modules and registers are merged, if they have no usage conflicts. Those optimization

processes can be performed automatically by the system using the information on number of

available modules and their functionality, or can be directed by the user through a graphical
interface. As a final result, Hermod produces a netlist of the created data path and a control
unit specification in the truth table format (a format) for PLA descriptions [5].

3.2 Initial Synthesis Process

3.2.1 Functional Module Binding
The module binding process transforms the functional block representation provided by

the data path allocator to a hardware-bound level of description [9]. In Hermod, the module

binding process is embedded in data path synthesis in the initial synthesis process. During

initial synthesis, no restrictions are imposed on the number of hardware modules used. The

system assigns hardware modules to each node and timing-cut edge. Hardware modules are

selected from a module library. Module selection specifies the type, functionality, and other
attributes (such as delay, area, control setting, and io-ports) for each abstract operation. A
dedicated module is assigned to each abstract operator during the initial synthesis phase.
This can exploit the parallelism inherent in the original behavioral description. However, it
would be desirable to share functional modules among opertors to reduce the overall

hardware requirements for implementation. In Hermod, the resource sharing is handles

during optimization phase.

3.2.2 Control Step Partitioning and State Binding
When the C/DFG is generated, only control and data dependencies are represented in the

graph. The state binding process partitions the graph into machine states. Each operation

node in the graph is assigned to a particular state. Thus state binding determines the
Q parallelism of the generated design.
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C
A. Automatic Operaton Scheduling Process

Timing-cuts are used in Hermod for control step partitioning. A timing-cut is a set of

edges that forms a cut-set of the subgraph corresponding to a basic block of code. A set of
timing-cuts divides the graph into several data flow subgraphs each of which forms a
machine state. For example, refer to Figure 5. The graph is divided into five subgraphs.
Note that states 2 and 4 overlap. It is due to the loop construct in the graph. At state 2,
values are assigned to the symbols r and s, which occurs when entering the while-loop. At
State 4, condition variable is checked after each iteration of the loop. Timing-cuts are
generated depending on the system clock period and the module delay. In this process,
Hermod employs the as soon as possible (ASAP) scheduling algorithm that schedules each
operation in a greedy fashion (16, 25]. It schedules as many operations as possible in each
machine state as long as a-z delay does not exceed the clock period. Timing-cuts are
inserted in the following two cases;

* When the delay exceeds the clock period. (Hermod supports chaining and
multi-cycling [ 16].)

o In front of a fork/sfork node (starting node of if/switch statements). In a
conditional statement, only one of the branches is executed in the next machine
state. To determine which branch should be taken, the previous state must end
at the fork/sfork node regardless of the execution delay. This also avalts the
race condition of the loop constructs. el,,it-s

The automatic timing-cut generation process is based on the longest path search. Starting

from the start node of the graph, the system calculates the maximum execution delay for

each node reachable from the start node until a fork/sfork node or end node is encountered.

Then, each node on the path is assigned to a particular machine state according to their

maximum delay. The edges connecting operation nodes in different machine states form a
timing-cut. When a fork/sfork node is encountered during the search, a timing-cut is created

consisting of the edges connected to the node. Then, all the branches from the fork/sfork

node are put in a branch queue. While the branch queue is not empty, the process retrieves

the fit entry of the queue and resumes the search. The search continues until another
timing-cut or fork/sfork node is encountered. The state binding process determines the
values to be stored for use in the next control steps. In the hardware implementation, latches
are inserted in the data transfer paths where timing-cuts are generated.

, ,
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B. Manual Timing-cu Modificatons

To maximally utilize hardware resources, modifications are allowed on the C/DFG such
as adding, deleting, and moving timing-cuts. Through a graphical interaction tool, the graph
is displayed in a window and the user is allowed to pick up the edges to onstruct a new
timing-cut, or pick up an existing timing-cut to add, delete, or move it by clicking the
mouse. If the user defines a new set of edges as a timing-cut, the system checks if those
edges forms the cut-set of a basic block subgraph. If the changes are legal, that is, they
don't violate the behavioral specifications and design constraints, the system accepts the
changes. When the user deletes or moves some timing-cuts, the clock period may be
changed (become longer) and the execution delay of each state is recalculated. If the
maximum delay exceeds the clock period in any state, Hermod asks the user if the clock
period may be increased. Those modifications may change the state binding of some
operations. Once the modifications are accepted, the system generates a new state transition
diagram based on the new state binding, and the new data path.

C. Example

Figure 6 shows the data path for the behavioral description in Figure 1. It is generated(using the state binding of Figure 5. The design is obtained by setting the clock period to be
the module delay (all the functional modules used here have the same delay). It consists of
five machine states, and uses four dedicated functional modules. The registers available in
the module library have only reset and load control inputs.
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Figure 6: A hardware representation of the graph in Figure 3.
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(3.2.3 Register Binding
Registers are assigned to store the temporary results generated by the operators in a state

when tbes results are used in the following states. The system assigns a register to each
edge belonging to a timing-cut, unless the edge comes from a constant node. The system
also allocates registers to the data nodes connected to timing-cut edges. The registers
allocated to the same variable are merged into one in the optimization phase. Caution must
be taken when the same variable appears more than once in a timing-cut edge. For example,
in Figure 7, edges e2 and e3 are connected to the data nodes representing the same variable
a. Since the data node connected to the edge e3 is the last definition of the variable a in that
state, the register associated with the edge e.3 must be associated with the variable a. The
register associated with the edge e2 becomes the temporary register. In order to deal with
this problem, the register binding routine first determines the last definition node for each
variable in each state. Then it assigns a temporary register to the timing-cut edge connected
to the data node which is not the last definition node. In the optimization pass, registers
allocated to different symbols that have non-overlapping lifetime ar merged.

3.2.4 Connection Binding
Allocation of hardware resources (functional modules and registers) implies that there

exist physical paths among them. These paths can be obtained by analyzing the paths( between the abstract operations. The connection binding routine analyzes the connections of
each machine state one by one. First, the connection binding routine extracts the data flow
subgraph corresponding to the currently processed machine state. Then, it creates the
connections between the functional modules and registers by tracing the edges connected to
the operation and data nodes. If an operation uses inputs or produces outputs across the state
boundary (e.g, timing-cut), a connection wire is created between the functional modules
corresponding to the operation nodes and the register corresponding to the timing-cut edge.
Each time a new connection wire is created, the system encodes the currently processed state
into the wire data structure for later use during the control generation process.

To allow the maximum sharing of functional modules and registers, multiplexors/busses
are created and inserted wherever necessary to transfer data between operands (registers)
and opetos (functional modules).
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(3.2.5 Control Generation
Control structure is not specified in the behavioral description. Instead the control block

is automatically generated from the description using the information on available resources
(library modules) used in the data path synthesis process. The control block can be
generated at the same time as the data path. However, it is straightforward to generate the
control block after the data path structure is determined, since the timing and sequencing of
the control signals are embedded in the state transition diagram and the data path graph. In
other words, the control signals are determined by the state binding and resource allocation.
The result of data path synthesis (module/state/connection bindings) is a symbolic
microcode for control generation. The control model in Hermod is a finite state machine
followed by an encoder for generation of control signals for particular data path modules. A
finite state machine for the control of the data path in Figure 6 is specified in tt format [5] in
Figure 8.

3.3 The Design Optimization Process
Although the hardware built in the initial synthesis pass realizes the behavior of a given

description and satisfies the user-defined timing constraints, it may use more hardware
resources than necessary, increasing the wiring and routing complexity. Basically, two
hardware modules (functional modules, registers, or connection wires) can be merged if

(there are no usage conflicts among them in any machine state. Several hardware
optimization procedures have been proposed based on the above principle [25]. In Hermod,
optimization is performed separately for functional modules and registers in a pre-defined
order. Although reducing the number of those hardware resources is the main concern of
the optimization process, the numbers of interconnections (nets) and multiplexers should
also be taken into account, because those interconnections usually take a large portion of the
realized chip area (131. The final optimization results including the interconnections and
multiplexers depend heavily on the execution order and technique of each optimization
process.

The Hermod hardware optimizer takes two inputs generated during initial synthesis, the
data path graph and the state transition diagram, and produces an optimized data path. The
optimizer consists of a rebinding process for each type of hardware resources: functional
modules, registers, and connection wires. (The connection rebinding process is currently
under development.) The rebinding processes provide menu-driven graphical user
interaction tools so that the user can specify the pre-bindings for several hardware modules.
The user can also unbind the old module bindings partially or totally and re-optimize the
data path using the remaining bindings. The user is allowed to pick functional modules or
registers by clicking mouse on them to force them to be merged or split. The user-directed
bindings are checked if they have usage conflicts. Once a rebinding process is done, the
system reconstructs the data path using the new binding information to rebuild the data path.
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Figure 8: Control block in u format for the data path in Figure 6.
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The rebuilt data path is displayed on the screen so that the user can evaluate the automatic
rebinding results.

3.3.1 Functional Module Rebinding
Two functional modules in a data path can be merged into one if they are not activated

simultaneously in any machine state and they can be realized by a library module. (The
second condition is not strict, because a library module that can execute those operations
may be added later.) Let Gc be the usage compatibility graph consisting of nodes
representing the functional modules of the data path and edges connecting the functional
modules that satisfy the above conditions. Then, finding the minimum number of functional
modules necessary to realize the data path is reduced to clique partitioning problem of the
graph Gc (251.

Figure 9 shows the functional module rebinding procedure in Hermod. The procedure is
based on the cluster development method.

Step 1: Build the usage compatibility graph Gc for the data path graph.

Step 2: Determine the kernel functional modules.

Step 3: While compatibility graph GC is not empty, do the following:

(Step 3.1: Calculate the cost function for each edge of Gc.

Step 3.2: Choose edge e with minimal cost

Step 3.3: Merge two functional modules connected by e.

Step 3.4: Update the graph Gc.

Step 4: Generate the new data path.

Figure 9: Functional module rebinding procedure.

In the procedure, kernel functional modules are determined first. The kernel functional
modules are the modules that construct the maximum independent set of the graph Gc. Let N
be the number of the kernel functional modules. Then, N gives the minimum number of the
functional modules necessary to realize the data path. Finding the maximum independent set
of the given graph is NP-complete [10]. However, the maximum independent set of the
graph Gc can be determined using the following heuristics. Suppose the data path is realized
by library modules L1, L2,..., Lm. First, count the number of functional modules realized by
the library module L1 in each machine state. Then, for each library module LI , find out the
machine state Si that requires the maximum number of functional modules realized by Li. If
more than one state requires the maximum number of the module Li, then one is chosen
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arbitrarily. Finally, collect the functional modules realized by Li in Si. The collected
(" functional modules form the maximum independent set of the graph Gc and become the

kernel functional modules.

Once the kernel functional modules are determined, the modules other than the kernel
modules are merged into one of the kernel modules one by one. The interconnections (wires
and multiplexers) are taken into account when functional modules are merged. Among pairs
of functional modules that can be merged (connected by edges in the usage compatibility
graph), one is selected with minimal cost The cost function for the edge connecting
modules ui and uj is

number of multiplexors required to merge ui and uj
+ c2 * number of wires added

- c3 * area reduction due to merging of two modules,

where cI, c2, and c3 are constants determined empirically.

After merging a pair of functional modules ui and uj, the compatibility graph is updated.
If either one of them is a kernel functional module, say u, then uj is removed from the
graph. Then, the edge ( uk, ui ) is removed from the graph, unless there was edge ( uk, uj ) in
the compatibility graph before merging. Figure 10 shows the results of automatic functional

(module rebinding on the initial design of Figure 6. Three functional modules ar merged
into one, and one three-input multiplexor is added due to the merging. This new
configuration is reflected when generating the control block for this data path.

3.3.2 Register Rebinding
Two registers can be merged into one if and only if they are not simultaneously live at the

entry and exit points of any machine state. The register allocation based on this property has
been employed in behavioral synthesis systems as well as in optimizing compilers [1].
Tseng and Siewiorek reduced the register optimization problem into the clique partitioning
problem [25]. The algorithm is implemented in Hermod supplemented with menu-driven
interactive tools. Using the tools, the user is able to interact with the system in the register
rebinding process by picking particular registers for merging. Or the user can ask the
system to retract a particular merging to further explore the alternatives. Figure 11 shows
the results of register rebinding on the partially optimized design of Figure 10. Two
registers are saved after register rebinding for this particular example, i.e., registers in and r
are merged, as are out and s registers.
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(

enable in

nabi I8 r
resetI--'-

+ out valid

r~reset

to controller out valid

Figure 10: Hardware representation of the procedure in Figure I
after functional module rebinding.

C
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(

enable in

nabi r Se s/Out in/r

01
II

Svalid reset

to controller out valid

Figure 11: Hardware representation after register rebinding
on the data path of Figure 10.
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4. Synthesis Examples

The Hermod behavioral synthesis program is implemented in C++, an object-oriented
extension of the C language, and runs on a VAXstation IIIGPX under UNIX~r'. This section
shows the synthesis results by Hermod for two CPU chips: FRISC microprocessor, a stack-
based 16-bit microprocessor [22], and PDP-8 CPU [21].

4.1 FRISC Design
The top-level description of the FRISC processor is given in the Appendix. Here,

memory read/write is simulated by the procedures mread and m-write. One variable is
used as a dummy output of the procedure mread. The data path synthesis routine ignores
the dummy variable and no registers are assigned to it, since it is never referenced in the
main procedure.

Figure 12 demonstrates the schematic of the data path synthesized by Hermod. The
design was done automatically except for slight manual modifications in state bindings to
avoid memory access conflicts. In this design, four functional modules (two ALUs, one
shifter, and one comparator) and six registers are used. One ALU is used to perform
increment and decrement operations for stack pointer S and program counter P. The other
ALU performs plus, minus and logical operations. Two registers A and B are used as
operand registers for the ALU, while register B is also used as memory buffer. Register I is
the instruction register, and register M is used for subroutine calls.

4.2 PDP-8 Design
The second example is taken from the ISP behavioral description of the PDP-8 in (21].

Figure 13 shows the data path generated by Hermod. In this design, several 1-bit inverters
and gates are used, as well as 12-bit functional modules such as ALU, shifter, and
comparators. Those 1-bit logical operators are employed to realize the expressions of the
if-constructs. After initial data path is generated by the system, manual optimization tools
are invoked to optimize the 1-bit modules in the design, because better optimization results
can be obtained by considering the logical meaning and structure of the circuit. The
remaining portions of the data path are optimized automatically. It took less than 20
minutes to finish the data path design using manual and automatic optimization tools in
Hermod. Of course, the control FSM is automatically generated.

Qii II



0(

0

ExE

00



last-.PC 0Dt u aaI drs

PCBM

12

itche 12__12__0

itche

11

121

1.1

to 12role to conroe

0~ur 13: PP daaptWeIgeNuoaialyb emd



The Hermad Bebavioral Synthes System 27

(- 5. Concluding Remarks

Hermod is a behavioral synthesis system developed to provide designers an interactive
environment within a graphical frame, thus to equip them with tools for direct control of
synthesis process. From behavioral descriptions, Hermod generates and displays the control
and data flow graph (with a set of legitimate timng-cuts) and its hardware representation.
Unlike the other synthesis systems, Hermod allows the designer to control the synthesis
process in state partitioning and resource sharing through a menu-driven graphical interface
to explore the maximal design space. When the designer wants changes in a machine-
generated hardware, the system checks the legitimacy of a user's request, then generates a
new hardware representation that results from the changes. This system gives designers a
clear view of the synthesis process, and suggests a systematic way to create and modify the
designs.

Hermod provides a framework for tool development. It is simple to hook up new tools
into the system to upgrade its synthesis and verification capabilities. Hermod is not
intended for use with design descriptions which would require thousands of components for
direct hardware realization. Instead, the system can be effectively used for design
descriptions at high abstraction levels in the early stage of design, where (1) the desired
behavior is normally described in a hierarchical fashion and (2) design space exploration is

(of primary concern. Further, it has no predefined data paths, thus does not impose any
particular design style for hardware generation.

Although Hermod has some limitations in its capabilities in the current implementation, it
can be extended without major modifications in the program. Future extension will include
the interconnection hardware optimization and development of more tools for intelligent
hardware synthesis.
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A. Behavioral Description of FRISC
1*
* FRISC - 16-bit Microprocessor
*1

#def'me CPUSIZE 16

frisco

IN LIST
SIG (RESET);
SIG ( IRQ);

ENDLIST;

OUT LIST
SIG ( ACK);

ENDLIST;

ST LIST
GRP(P, CPUSIZE);
GRP( S, CPUSZE);
GRP (M, CPUSIZE);
GRP (A, CPUSIZE);
GRP (B, CPUSIZE);( GRP (I, CPUSIZE);

ENDLIST;
int dum, dum2, T; /* local variables *1

IACK = IRQ;

if (RESET){
P[ = cae d (0);
So = read( 1);

}
else if (IRQ) /* Interrupt request? */
{

SO = SO + 1;
dum = m write (S, B);
SO = SO+ 1;
dum2 = m write (S, A);

Af = PfJ;
MI So + 1;
PD]= m read (2);
LACK =0;

10-] mread (P);
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P[] "-P[] + 1; /* Increment program counter */

while(IO )
{ /* Until no opcodes left in buffer, decode ops.*/

if (1[3:0] = 1){
switch (117:4]) {

case 0: /* Nand */
A[ -~(A] & B[);
B[] m mad (S );
SO SO - 1;
break;

case 1: /* Subtract *1An - Bn -AO;
B] - m read (S)
SO - SO - 1;
break;

case 2: /* Shift right */
An = Al >> 1;
break;

I
In = I] << 8; 1* Shift out opcode *1

else /* Normal op code */

Cswitch (1[4:0]) {
case 2: /* Constant *1

SO = S] + 1;
dum = rewrite (S, B);
B = An;
An =m read (P);
PO = PD- +1;
break;

case 3: /* Get S
So= SO + 1;
dum=m write(SB);

break;
case 4: /* Set S */

SO = AO;
B[-] re_read ( S );
SO = SO - 1;A[] - Bn;
B[] - m read ( S);
SO D SO - 1;
break;

case 5: /* Get MQ SO = SO + 1;
dum-mwrite(S,B );
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B[I AD;
( A[] M[];break;

case 6: /* Load */
A[]m read(A);break;-

can 7: /* Store*I
dum=m write(B,A);A[] - Bf;
B[]=m _read(S);So - s[] - 1;
break;

case 8: /* Go to*/
PO AO;
A[] = BO];
BO -m read (S);
SO = SO]- 1;
break;

case 9: /* If *I
if (B >0)

PA = A];

BE]=m read(S);
S] =S -1;
break;

case 10: /* End*/

BE=m _read(S);
SO SO E- 1;
break;

cutc 11: * Mark *
S] - S[] + 1;
dum -m write (S,B);
BO = AfJ;
A] - M[];
M[] = S] + 2;
break;

case 12: I* CaI*
T - P[];
PO -AD;
AO - T;
break;

case 13: /* Retur
P0-=BE];
SO - ME];
BO -m read (S) ;
SO - SO -i;
MD - B[];
B[] - mreead ( S ) ;
S] - s[] - 1;
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I ( break;
cae 14: /* Add

AO - BO + AD;
BO=m read(S);
SO - SO - i;break.

case 15: I* Increment */
A[] - A[ + 1;
break;

default:
break;I

11= I << 4; /* Shift out opcode*/
r}

return;
}

I ("


