
HARDWARE C -A LANGUAGE FOR
HARDWARE DESIGN

tN
David C. Ku and Giovanni De Micheli

Technical Report No. CSL-TR-88-362

August 1988

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305

,¢oo - g T- ,t -oJgp g
Abstrac

High-level synthesis is the transformation from a behavioral level specification of
hardware to a register transfer level description, which may be mapped to a VLSI
implementation. The success of high-level synthesis systems is heavily
dependent on how effectively the behavioral language captures the ideas of the
designer in a simple and understandable way. This paper describes HardwareC,
a hardware description language that is based on the C programming language,
extended with notions of concurrent processes, message passing, explicit
instantiation of procedures, and templates. The language is used by the
HERCULES High-Level Synthesis System.

Key Words and Phrases: High-level synthesis, hardware description languages.j

DTIC
S ELECTE

AP281989U

I 0809 A
Approved for pubhi e r IwA 8

MXvtzbution USHImfd

Copyright@© 1988

by

David C. Ku and Giovanni De Micheli

HardwareC - A Language for Hardware
Design

David C. Ku Giovanni De Micheli

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

1 Introduction
High-Level synthesis is the transformation from a behavioral level specification
of hardware to a register transfer level description, which may then be mapped
to a VLSI implementation. The success of high-level synthesis systems is heavily
dependent on how effectively the behavioral language captures the ideas of the
designer in a simple and understandable way. This paper describes Hardware C.
a behavioral hardware description language that is used by the HERCULES
High-Level Synthesis system [1,2].

The input to HERCULES consists of two sets of specifications - a description
of the functionality and a set of design constraints. The functionality is described
in a C-based language extended for hardware description called HardwareC. The coP.
design constraints specify the timing and resource limitations that are imposed \Ns cTro]
on a given design. The HardwareC description is parsed and translated into
a parse tree abstraction called the behavioral intermediate form, which is the
basis for behavioral synthesis. Behavioral synthesis performs transformations
similar to those found in optimizing compilers. Upon completion of behavioral
synthesis, the optimized intermediate form is mapped to a register transfer level
implementation.

2 Motivations

Many hardware description languages have been proposed and used in both ' For
academia and in industry. Most hardware description languages are oriented GRMI A&"
towards simulation. As high-level synthesis systems mature, a need arises for TAR 0
languages that aid not only in the simulation of hardware, but also in its design OuDnced 0
as well. 'f" tsti ol

By-
Di ri.bution/

Availability Codes

~jA'tiil and/or
rpist BS0cial.

Several criteria must be met by a language for hardware design, they are
described below.

1. Surpports full spectrum of design styles.

The language should support readily the varying spectrum of design styles
of the designer, ranging from a pure behavioral description that is inde-
pendent of the structural implementation, to a mixture of behavior and
structure, to a pure structural description of the interconnection and in-
stantiation of hardware modules.

This criterion is crucial in a design environment since very often the de-
signer has a particular structure in mind when designing hardware. This
partial structure should be captured by the language, and reflected in
the results of synthesis. A design often requires interfacing to an existing
hardware unit, such as an ALU or incrementer. The ability to interface
with external structure is of utmost importance in automated synthesis.

Many synthesis systems and hardware description languages support only
a specific design style, either pure structure or pure behavior. We believe
a more efective approach to design is to use a flexible underlying language
that captures the essence of the design from the designer, whether that
essence be behavioral or structural.

2. Supports simulation.

The language should support simulation in order to ascertain the correct-
ness of a given description. As designs become bigger and more complex.
it becomes more important to be able to simulate at all levels of synthesis.
from behavioral to structural to logic to gate level.

3. Simple to learu and use.

The language is a tool that the designer uses to capture and transform
abstract ideas into complete designs. The tool must therefore be simple
to learn and easy to use. Specifically, the language should contain the
most basic constructs that are needed to describe a design. Details such
as timing and delay should be left out of the language.

Hardware C attempts to satisfy the requirements stated above. As its name
implies, it is based somewhat on the C programming language. However, several
enhancements are made to increase the expressive power of the language. as
well as to facilitate hardware description. The major features of HardwareC are
described below.

* Notions of concurrent processes and message passing,

* Templates that allow a single description for a group of similar behavior
(polymorphism). For example, an adder template describes all adders of
any given size,

" Instantiation of procedures, similar to instantiating objects in object ori-

ented languages, and

" Explicit Input/Output commands that access the ports of a given model.

HardwareC can be linked to the THOR simulation environment, which is
also based on a C-like simulation language '4].

3 Modeling Hardware Behavior

Hardware behavior is modeled as a collection of concurrent and interacting pro-
cesses. Each process consists of a hierarchy of procedures, and the processes
interact and synchronize with each other through the use of inter-process com-
municatzon mechanisms. This model is appropriate since hardware modules are
allocated resources which continuously operate on a time varying set of inputs.
A process upon completion will automatically restart execution with a new set
of inputs.

The concept of processes ai,d inter-process communication is powerful for
both hardware and software models. In both domains, it allows the designer to:

1. Specify the parallelism between interacting modules at a high level, and

2. Isolate the communication and synchronization points between the pro-
cesses in an explicit manner.

As an illustration of the use of processes and inter-process communication.
consider the Intel 8251 UART (Figure 1). The UART is modeled as four concur-
rently executing processes. The main process accepts commands from the micro-
processor and coordinates the execution of the other processes. The transmitter
process writes data out on the serial interface, and the two receiver processes,
synchronous.receiver and asynchronous-receiver, reads data from the serial in-
terface. Note that the execution of each process is independent with respect to
each other. and is synchronized through the use of inter-process communication.
Inter-process communication is discussed further in Section 12.

HardwareC is a hardware description language for synchronous digital cir-
cuits. This is a reflection of the hardware model assumed by the HERCULES
Synthesis system. Therefore, there is the notion of a control state that is some-
times used to describe the language. A control state is defined as an interval of
time that corresponds to a system clock cycle in a synchronous system. When
a particular operation is said to take one or more states, it means that the ex-
ecution of the operation requires one or more clock cycles to complete before
other operations that depend on it can begin.

The HardwareC language is described in the sections that follow.

3

- -

I Hain Process I <---> microprocessor

/ I \
/ I \

+ - -- + ---- +--+

I Knit I I Synckcv I I Asynctcv I
+-.... + -..... + -.... +

V I I

Serial Interface

Figure 1: Hardware model for Intel 8251 UART

4 Program Structure

In HardwareC, there are two fundamental functional abstraction mechanisms
- process and procedure. A process consists of a hierarchy of procedures, and
executes concurrently and independently with respect to the other processes in
the system. Similarly, a procedure is also a hierarchy of procedures. However,
a procedure executes whenever it is called by another procedure or process.'

The transfer of data to and from a process is accomplished through the
use of either parameters to the process or through message passing mechanisms
(Section 12). The transfer of data to and from a procedure. on the other hand. is
accomplished solely through the use of parameters to the procedure (Section 11).
A procedure can neither return a value as the result of its invocation, nor use
message passing to communicate with other procedures. The major differences
between a process and a procedure are summarized below.

a Process. A process continuously operates on a time-varying set of input
data. Upon completion of the last statement in its body, a process will
restart its execution, operating on a possibly different set of inputs. An
example of the definition of process procA is shown below. Note the use

of the keyword process which prefixes the name of the process.

process procA(a, b, c
in boolean a;
out boolean b;

'No recursive procedures are allowed

4

inout boolean c(2];
f

/* body of process */}

e Procedure. A procedure can either be combinational or sequential, de-
pending on whether the procedure requires any control states to execute.
A sequential procedure begins execution whenever it is called by another
procedure. Upon completion of execution, a procedure places valid data on
its output ports, and returns control to the calling routine. For combina-
tional procedures, execution involves propagating the input data through
a network of combinational operations. An example of the definition of
procedure procB is shown below.

procB(z, y, z)
in boolean z;
out boolean y;
inout boolean :[2];{
/- body of procedure ,/}

A procedure cannot be defined within the body of another procedure.
This restriction follows the C language, which disallows nested procedural
definitions. The resulting flattening of the procedural definition is appro-
priate since for hardware description, it is more convenient and secure to
identify explicitly all inputs and outputs to a given procedure. A proce-
dure defined within the scope of another allows access to all variables that
are defined within the scope of its definition. As a result, a procedure's
boundary is not well defined if nested procedural definitions are allowed.

Nested procedural definition is different from nested procedural invoca-
tion, the latter of which is both permitted and encouraged. For example,

/, /*

* invalid procedure * valid procedure
* definition * definition

5I *I

procA(a, b) validproc(x, y)

o o o .o

invalidproc(x, y)

} procA(a, b)

invalidproc(...) {
validproc(...

4.1 Statement Block

Statement block, more commonly known as compound statement. is used to
group variable declarations and statements together so that they are syntac-
tically equivalent to a single statement. A statement can either be a variable
assignment, an if-then-else statement, a switch statement, a while statement,
a for statement, an input/output statement, a message passing primitive, or a
block. Semi-colons are used as terminators to statements. A semicolon by itself
represents a null statement.

HardwareC supports two types of statement blocks - parallelizable blocks
and serial blocks. Parallelizable blocks are encapsulated using curly braces ({
and }), whereas serial blocks are encapsulated using square brackets (and
The differences between the two types are:

e Parallelizable Block { }- The statements within a parallelizable block can
all execute in parallel, subject to the data dependencies that exist between
the statements. For example,

variable.declarations;

statemenil;
siatemen2;

}

means that siaiementl can be executed concurrently with statement2. The
degree of parallelism is determined by the synthesis system.

o Serial Block [I - The statements within a serial block are guaranteed to
execute in serial order, starting from the first statement in the block. For
example, statementl will always execute before siatement2, regardless of
their data dependencies.

6

variable.declarations;

statementl;
statement2;

Serial block allows the designer the ability to specify control dependencies
between otherwise data independent statements.

A description written using only serial blocks is always guaranteed to be
correct - that is, the control dependencies between the statements are fully
described. However, the description may not be efficient, since inter-statement
parallelism is not exploited. In order to specify such parallelism, the designer
should use whenever possible parallelisable blocks ({ }) in describing hardware.

4.2 Parameter Classes

The parameters to processes and procedures are categorized into three differ-
ent classes: in, out, and inout. Input (in) parameters can only be referenced
within the body of a routine; assignments to input parameters are illegal. Out-
put (out) parameters can be modified within the body of a routine; references
to output parameters are illegal. Input/output (inout) parameters are bidirec-
tional lines that can be either referenced or assigned. The access protocol to
this bidirectional line is left to the designer, and specified as part of the high-
level description. Note that an inou-t parameter is not simply data that will
both be read and modified in the routine. It is reserved for the description of
bidirectional lines.

For example, Busy is an in parameter that controls the access to an :nout
parameter Data. A lZero is an output parameter that returns a flag on whether
Data is all zero.

process test(Busy, Data, AllZero)
in boolean Busy,
inout boolean Data[81;
ouwt boolean AllZero;

while (Busy)

/. write to Data */
Data = newdata;
write Data;
AllZero = (Data == 0);

7

Notice the use of the serial block ([]) to ensure that the write to Data occurs
after the busy waiting while loop, which does not have any data dependencies
with respect to the write.

4.3 Declare Before Use

Whenever a procedure is called, the arguments to the invocation are checked
for both compatibility in the variable size and type, as well as for compatibility
in the parameter classification. For instance, an input parameter cannot be
used as the argument to a procedure call that requires an output parameter.
Similarly, an output parameter cannot be used as the argument to a procedure
call that requires an input parameter. This compile time consistency checking
improves the security of the language.

In order to provide this information to the parser, it is necessary to declare
a procedure before it can be called. The declaration of a procedure involves
specifying:

1. Name of the procedure - can be any alphanumeric string beginning with

a character.

2. Number and order of parameters - only Boolean parameters are allowed.

3. Sizes of the parameters - the size of a parameter can be specified in terms
of a constant, or an expression that evaluates to a constant.

4. Classes of the parameters - in, out, or inout.

An example of the declaration for a procedure is shown below.

* define MIX 4

declare example(a, b, c)
in boolean a;
out boolean b[MAX];
inout boolean c[MAX+1);

The actual names of the parameters are irrelevant; they are used only for
the purpose of specifying the classes and sizes of the corresponding parameters.
Another example is shown below.

declare sum(z, y, z)
in boolean x;
out boolean y(2];

8

inout boolean ,

foo(...

'/....'/

sum(a. b, c
/I.....!/

}

If the declaration of sum is not supplied, then the subsequent call in foo
will be invalid. Similarly, for inter-process communication through message
passing, it is necessary to predeclare a particular process before sending or
receiving messages from it. The declaration for a process is exactly similar to
the declaration for a procedure, with the sole exception of the keyword process
that prefixes the name. For example, the declaration for a process named foobar
is as follows.

declare process fooba7i a, b, c
in boolean a[3];
out boolean b[41;
inout boolean c[2];

5 Data in HardwareC

There are two types of data entities in the language - constants and variables.
They are described in the following sections.

5.1 Constants

There are two types of constants in the language - integer constants and hez-
adectmal constants. Integer constants are positive numbers described in the
decimal notation. For example, 5 and 223 are integer constants. Hexadecimal
constants are numbers described in the hexadecimal notation. They are pre-
fixed by 0z, followed by a string of hexadecimal digits { 0 - 9, a, b. c, d. e. f
}. For example, 0zf represents 15, and 0z10 represents 16. Binary constants
are subsets of hexadecimal constants, where I is represented as 0z1, and 0 is
represented as 0z0.

Negative constants are not represented in the language. This restriction
stems from the independence of HardwareC to a particular style of complemen-
tation. Therefore, if the designer wishes to specify -3 in one's complement
notation, then he should specify the bit-wise representation of the value using

9

hexadecimal constants. For an 8-bit number in one's complement notation. -3
is represented as 0zf8.

5.2 Variables

There are two variable types in the language - Boolean and integer. Boolean
variables are mapped to wires or registers in the final hardware, whereas integer
variables are provided for the convenience of the description, and will be resolved
at compile time during behavioral synthesis.

A variable may be declared within any block ({ or []) of any arbitrary
nesting. The semantic follows that of block structured languages, where a vari-
able is visible only within the scope of its definition. A variable with the same
name at a deeper nesting block level will override any current definition of the
variable.

For instance, all declarations in the following example are valid.

int i:
boolean x:
{

int i: /* new integer */
boolean x, y;

}
/- y is not defined here -/

No global variables are allowed in HardwareC. This restriction is due to the
fact that global variables allow side effects that are not explicitly identified.
This is undesirable from the standpoint of security, verifiability, and program
readability. If some data must be shared between two routines, then the data
should be explicitly specified as common parameters to the two routines.

Integer Integer variables can only be scalar quantities. Integer variables may
be used in any arithmetic, Boolean, and relational expressions. They can also
be used as indices to constant iteration loops (for loop), and as indices for
accessing components of Boolean vectors and matrices. The following example
demonstrates the use of integer variables and expressions in accessing compo-
nents of a Boolean vector.

I.

* swaps the two nibbles in "a" to "b"

10

swap(a, b)
in boolean a[8J;
out boolean b[8];

int i, j, k;

k = 3;

/* copies LSB nibble to b a/
for i = 0 to k do

bE i+4:i+4 I = a[i:i 1;

/* does exactly the same thing '/
i =0;

j =3;
bE i 4:j+4 I = a[i:j J;

/* copies MSB nibble to b s/

bE i:j I = a[i+4:j 4 1;

write b;
}

The exact syntax on accessing components of a Boolean vector is discussed
in the next section. The example below shows the use of integer expressions
and values in control structures.

int i;

boolean vec E24);

for i = 0 to 7 do {
switch (i) {
case 0:

vec[3*i:3*i+2 I = Ox7; /* binary Ili l/
break;

default:
ved 3*i:3-i+2 I i;
break;

}

/* vec should have the following value:
111 110 101 100 Oil 010 001 111
NSB LSB

0/

11

Boolean A Boolean variable represents one or more signals, where each bit of
the variable corresponds to a signal that can be either 0 or 1. Boolean variables
can be scalar, vector, or matrix. For example, the following declarations are all
valid Boolean variables. In particular, a is a scalar, b is a vector of five elements
starting from index 0, and c is a matrix of 25 elements, with the rows starting
from 0 to 4, and columns starting from 0 to 4.

boolean a; /* scalar */
boolean b[53; /* vector */
boolean c(S [53; /* matrix */

In Boolean vectors, specifying the variable name without brackets, or with
empty brackets, represent the entire vector. For example, b and b D are equiv-
alent to b[0:4]. Columns of a Boolean matrix can be accessed similarly. For
example, c [2) and c [2) D are equivalent to c [2) C0:4). Since assignments to
matrices are not permitted, a reference to c will automatically be converted to
c [03 [0:4), the first row of the matrix.

For Boolean vectors and matrices, it is also possible to access a subrange of
values. This is specified by the colon (:) notation. For example, b(2:3] repre-
sents a vector of two values that corresponds to the third and fourth element
of b. The most significant bit (MSB) is always the higher index, with the least
significant bit (LSB) being the smaller index.

Integer variables and expressions can be used in variable declarations to
specify the dimensions of the variable, or they can be used to access components
and subranges of Boolean variables. For example,

i =3;
c[i][i:i+1) = b[O:1);

boolean q[i+l; /* q has 4 elements */
I

Boolean variables are further classified as local, static, and register.

" boolean - Local Boolean variables are the default. A local boolean is
initialized to zero, and its value is not saved across procedure invocations.
For example,

boolean flag;
boolean vectorflag[2], matrixflag[2] [3);

" static - Static Boolean variables are similar to local Boolean variables,
with the semantic difference that their values are retained across proce-
dural invocations. For example,

12

static inteornal-state 12;

Static variables will always be implemented with storage elements such as
registers.

r register - Register Boolean variables are architected registers that are
specified by the designer. Similar to static variables, they also retain
their values across procedural invocations. Every assignment to a register
variable immediately loads the corresponding register with a new value.
For example,

register status [8);

The difference between register and static variables is in how assign-
ments are handled, which is discussed next.

Assignments to boolean and static variables are resolved during behavioral
synthesis, and hence do not require any control states for run-time execution.
In contrast, each assignment to a register variable corresponds to the loading
of the register with a new value, and hence requires a control state at run-time.

To demonstrate the differences between static and register variables, consider
the two examples below. In procedure foo, each assignment to the static
variable c will not consume a control state at run-time. This is due to the fact
that the assignment only changes subsequent references to c. and hence does
not imply loading the register that implements c with a new value.

foo()
{

static c;

c = 1; /* change reference only a!

c = 0; /* change reference only */
c = 1; I* change reference only */
c = 0; /* last value of c is 0 a/

Similarly, the register variable c in procedure bar also has a final value
of 0. The difference is that during the execution of bar, the register is loaded
with 4 values, corresponding to each assignment to the variable. Therefore, the

procedure requires four control states to execute.

bar()
{

register c;

13

C a 1; /* register has 1 a!

c = 0; /* register has 0 */
c = 1; /* register has I again 'I
c = 0; /0 last value of c is 0 */

In terms of port behavior, static and register variables perform the same
action - retain values across invocations. Architected registers allow the designer
explicit control over the contents of the register. They are useful for testability
purposes where the designer wishes to check the contents of a particular register
during execution. For example, architected registers are often used as a status
register in a processor description.

5.3 Variable Declaration

The dimension of a Boolean variable may be specified as either a constant. an
integer variable, or an integer expression. For instance, consider the declarations
for Boolean variables a and b.

int i;

i =3;
{

boolean a[i]; /* a has 3 elements ./

I

i =8;

f
boolean b[i+3J; /* b has 11 elements */

I

In fact, even the dimensions of the parameters can be specified as arbitrary
integer expressions. The delayed binding of variable dimension to variable def-
inition greatly increases the expressiveness of the language, and improves the
flexibility and adaptability of an input description. An illustration of the use of
integer expressions in parameter declaration is shown below.

X define MAX 8

declare foo(a, b)
in boolean a[MAX+1;, /* 9 elements .f

14

out boolean b[MAIX+2); /* 10 elements */

Note that the integer expressions (MAX+I1) and (MAX+2) are used to declare
the dimensions of the parameters.

6 Control Flow Constructs

HardwaeC supports a single-in, single-out control flow, similar to the Pascal
programming language. This implies that no gotos and returns are allowed in
the language. Such restriction is appropriate since by supporting a single-in,
single-out control flow, the semantics of the language is made simpler. which
greatly aids in the correctness verification of programs. The four major control
flow constructs are if, switch, for, and while; they are described below.

" if

selects among two alternatives, depending on whether the conditional ex-
pression evaluates to TRUE or FALSE. non-zero or zero. respectively. The
conditional expression can be any arithmetic, Boolean. and relational ex-
pression that involves both integer and Boolean variables. The else part
may be unspecified. For example.

if (! b & chipselect)
a : 0; /s any statement *I

else

a = 1; /* any statement '/

" switch

selects among one or more alternatives, depending on the value of the
switch conditional expression. The individual cases in the switch state-
ment may be cascaded, and are delimited through the use of break state-
ments.

switch (<switch expr>)
case nul.:

<statement>
case nua2:

case nua3:

<statement>
break;

default:
break;

15

break statements are illegal in any other contexts, such as for premature
exits from while loops.

" for

is a constant bound iteration on a given integer variable. The exact syntax

is as follows,

for <in% var> = expri {toldownto} expr2 [step expr3]
do <statement>

where exprl, expr2, and expr3 can be any constant or integer expression.

The step clause is optional, and has a default of one.

* while

is a data dependent iteration on a given Boolean expression. The syntax
of the while loop is as follows.

while (loop.expr)
<statement>

loop.expr can be any integer, relational, or Boolean expression.

There are only two types of iterative loop constructs in HardwareC - for
loops and while loops. For loops are deterministic iteration loops, whose bounds
are known at compile time. A while loop is a non-deterministic iteration whose
exit condition can be data dependent, and hence is in general unknown at com-
pile time. Whereas there are many variants of data-dependent loops, such as
do-while and repeat-until, they can all be written in terms of while loops.
Including the many variants of data-dependent loops does not increase the ex-
pressive power of the language. Therefore, for reasons of simplicity, HardwareC
supports only one style of data-dependent loops - the while loop.

7 Assignments
When a program references a particular variable at different locations in the
code, it may reference different values, depending on whether the variable has
been re-assigned between the references. The value of a variable is defined to
be the data most recently assigned to it. 2 An assignment to a variable modifies
the value of the variable.

Both Boolean and integer variables, as well as inout and out parameters,
can be assigned. Note that an assignment is not an expression that returns a

2 Data is defined to be the results of procedure call, binary and unary operators, or message
passmng.

16

value. For example, a = a + 1 does not return the new value of a, which is in
contrast to the C programming language.

The semantics of assignment to different types of variables are described
below.

" out or inout parameters.

Assignments to an output or input/output parameter will update the value
of the port. The actual reflection of the port values to externally visible
signals is performed explicitly through the use of input/output commands,
discussed in Section 11.

"int, boolean, or static variables.

Assignments to these variables will be resolved and removed during be-
havioral synthesis. Therefore, the assignments serve only to update the
value of the variable for subsequent references, and do not consume any
control states at run-time. Only constants or integer expressions can be
assigned to integer variables. There is no restriction on the values that
can be assigned to Boolean variables.

* register variables.

An assignment to an architected register loads the register with a new
value. Therefore, every assignment requires a control state for execution
at run-time.

8 Templates

Very often two descriptions differ in only very restricted ways. For example.
they are the same with the sole exception that the variable sizes are different.
as illustrated below for a four-bit and a five-bit adder.

/,.

* Four-Bit adder
-/

adder4(a, b, c, cin, Gout)

in boolean a[4), b[4), cin;
out boolean c[4], cout;

{

/* 4 bits add S/
I

/4.

* Five-Bit adder
0/

17

adderS(a, b, c, ciii, cout)
in boolean a[S], b(61, cin;
out boolean c"S], cout;

{

/* same as above, but for S bits /
}

It is much simpler and expressive if only one description is given for the adder
function which takes an argument specifying the size of the operation. This
approach offers the advantages of(1) consistency of descriptions, (2) economy of
code, which decreases design time, and (3) reusability of code (polymorphism).

In HardwareC, the mechanism which supports parameterized descriptions is

a template. A template can either be used to generate a procedure or a process.
Templates are similar to generic packages in ADA, or generic classes in several
object oriented languages. A template takes one or more integer arguments
as parameters, and given a particular mapping of integer values to the integer

parameters, a corresponding instance can be obtained. A good analogy can be
made between templates and module generation; in fact. a template is a form
of high-level module generation. The exact syntax of templates for procedures
and processes is given below.

" Procedure Template definition:

template <procedurename> (<parameters>)
with (<integerparameters>

<parameter declarations>
{

<body>
I

" Process Template definition:

template process <procedure-name> (<parameters>)
with C <integer.parameters>)

<parameter declarations>
{

<body>
}

The keyword template prefixes the name of the template, and the keyword
with separates the Boolean parameters from the integer parameters. The in-
teger-parameters are the names of the integer parameters, and are separated
by commas (,) if more than one is present. These integer parameters can be

18

used in both parameter declaration and the body of the template as integer
constants. Specifically, assignment to an integer parameter is not allowed.

Let us consider the description of a template for the ripple-carry adder func-
tion.

/.

ripple carry adder
*/

template adder(a, b, c, cin, cout) with (size)
in boolean a[size], b[size], cin;
in boolean c [size], cout;

{

int i, j;
boolean temp;

teamp = cin;
j = size -1;
for i = 0 to j do {

c[i:i] = a[i:i] xor b[i:i] xor temp;
temp = a&i:i) & b[i:i] I

temp & (a[i:i] I b[i:i]);

cout = temp;
write c, cout;

Templates can be used in two ways, corresponding to the environment level
and the language level.

1. Environment Level - The HERCULES Synthesis system can create any
number of instances of a given template. This is useful for example in
generating library units such as adders or incrementers.

2. Language Level - Within the description, the designer can make refer-
ences to particular instances of a template through instantiating templates.
Template instantiation is described next.

9 Instances

HardwareC supports ezplicit instantiation of procedures and procedure tem-
plates in the description. A instance of a procedure represents an object that
encapsulates both behavior and state. In a similar manner, a Boolean vari-
able is also an object whose behavior is specified by the language in terms of
the semantics of accessing and modifying the variable. Instances can therefore

19

be treated as instance variables that are declared and used in the scope of its
definition. The syntax of procedure instantiation is described below.

instance <procedure-naa.> inst, inst2, ... , instn;

The keyword instance prefixes the name of the procedure , followed by the
names of the instances to be created, separated by commas. If a template is
instantiated, the syntax is described as follows.

instance <teplatename>(<in.egerarg>) ti ... ,tn;

the arguments to the integer parameters should be specified. separated by
commas. The integer arguments must be constants, and cannot be any variables
or expreesions. Note that the scoping rules for variable visibility also apply to
instances. Consider the example below, where counter is a procedure that
increments an internal variable each time it is called.

instance counter a;
instance adder(4) o4; /* 4 bit adder -/

instance counter a, b;

a(...); /, new counter ./

/* can access 04 also -/

a(...); /* old counter */

/* b is undefined here *,

The instance a of counter is different for each different nesting of the block.

9.1 Calling a Procedure

A procedure may be called by another process or procedure. This is accom-
plished by specifying the name of the procedure to be called, along with the
arguments to the procedure separated by commas and enclosed in parentheses.
A procedure must be declared or defined before it can be called, otherwise the
call will result in an error.

Valid arguments to a procedure call depend on the particular class of the
corresponding parameters. Specifically,

20

* In Parameter - All in parameters, inout parameters. local boolean.
static, and register variables and expressions are allowed to be used
as arguments in the procedure call.

* Out Parameter - All out parameters, inout parameters, local boolean
variables, and static variables are allowed. No register variables are
allowed.

* Inout Parameter - Only inout parameters are allowed.

There are two types of procedure calls - generic or instantiated calls. A
generic call is a call made to a given procedure type. The particular instance of
the procedure type that is used to implement the call is not specified. To invoke
a particular instance of a procedure, the name of the instance simply replaces
the name of the procedure in a procedure call. This style of procedure call is
called an instantiated procedure call. For example,

instance counter x;

counter(...); /- generic call ./
X(...); /,, instantiated call ./

counter(...); /= generic call ,/
X(. .) /- instantiated call */

All the calls to x will invoke the same instance. However, if a procedure
is invoked without specifying the instance (generic procedure calls). then the
synthesis system is free to determine whether the call can be shared with other
generic calls, or whether to allocate an instance to the oall.

9.2 Advantages of Instantiating Procedures

There are several advantages in supporting both generic and instantiated pro-
cedure calls. They are briefly described below.

1. Resolves Ambiguity in the behavior. The designer can completely describe
the behavior that is intended without relying on hidden assumptions.

2. Access to both State and Behavior. The designer can access not only
behavior through procedure calls, but also internal state information as
well.

3. Supports Spectrum of Design descriptions. Depending on the style of the
designer, hardware can be described in a spectrum ranging from pure

21

behavior that is free from structural implications to pure structure that
describes the interconnection and instantiation of hardware components.
A procedure instantiation is similar to instantiating a hardware module.
and therefore HardwareC supports fully the spectrum of design description
styles.

4. Specifies Resource Sharing at descriptwin leveL Although it is not required
by the synthesis system, it is possible for a designer to specify the sharing
of resources (procedure instances) through the use of instantiating pro-
cedures. For example, the designer can specify whether only one adder
should be used to implement a description verses one that uses two adders.

9.3 Motivation and Example

A major drawback with many languages is the inability to specify exactly which
instance of a given procedure is invoked in a procedure call. This restriction is
reasonable for procedures that describe only the functionality without internal
state information. However, if a procedure has internal state associated with
it (through the use of either static or register variables), such restriction sev-
erly handicaps the usability and expressiveness of the language. In fact. the
such deficiency can result in either inefficient or even incorrect implementation.
depending on whether the assumptions made by the synthesis system matches
those made by the designer.

Consider the Jescription of a counter below.

/,

* each call to it increments by 1

counter(valu.)
out boolean value[8);

static stat*(8];

state = state + 1;
value = state;
write value;

Every call to the counter module will increment the corresponding internal
state variable by one. If a call is made to counter without specifying the
particular instance that is to be invoked, then one of two situations will arise.

1. Single instance assumption - If the synthesis system assumes that one and
only one instance is associated with a procedure, then a call to counter

will always increment the same internal state (corresponding to the single
instance).

However, this approach is overly restrictive since one of the powers of
synthesis systems is to explore the spectrum of design tradeoffs between
parallel and serial implementations, and by always assuming one instance
per procedure this exploration is not possible.

2. No assumption on the invoked instance - On the other hand, if no assump-
tions are made on which instance a given call will invoke, the synthesis
system will then have the flexibility to either dedicate an instance to the
call, or share several procedure calls onto the same instance. However.
if the procedure has internal state information, then :he description can
be incorrect, dependent on the particular mapping of procedure calls to
procedure instances.

The assumptions that are made by the synthesis system may not be what
the designer had in mind when writing the description. For instance, in the
code segment below, counter is called twice.

counter(suml);

counter(sum2);

The designer can either view the two calls as incrementing the same value
twice, or he can view the two calls to be distinct, each incrementing a value
independent of the other. Through instantiation of procedures, the designer
can explicitly specify the exact semantics of a procedure call. For example. if
the designer wishes to increment a single value twice, then the corresponding
code is given below.

instance counter value;

value(...); /= increment ./
value(...); /* increment again ./

On the other hand, if the designer wishes to increment two different values,
then the code is as follows.

instance counter valuel, value2;

valuel(...) /* increment valuel */

23

value2(...) /* increment value2 ,,
valuel(...) /* increment valuel again ./

The designer can instantiate not only procedures, but also procedure tem-
plates. This is accomplished by supplying the values to the integer parameters
to the corresponding template, separated by commas if more than one value
is required. The example below makes use of the adder template described in
Section 8.

instance adder(4) o4; /* 4 bit adder .1
instance adder(5) o5; /* S bit adder s/

o4(...);
05(...)

10 Operators

HardwareC supports all Boolean and relational operators available in the con-
ventional C programming language. It also supports all arithmetic operators.
The operators can be unary or binary, and take both integer and Boolean vari-
ables as operands. Mixed operations between Boolean and integer variables are
also allowed if it makes sense. For instance, Boolean inversion on an integer
variable is illegal.

The operators are summarized below.

Arithmetic { -, -, *, / } Applies to both integer and Boolean variables and
expressions.

Boolean { !. &, ;, xor } bitwise Boolean operators, shift left (< <), shift right
(>>), rotate left (ri), and rotate right (rr). Applies to only Boolean
variables and expressions.

Relational { ! = ==, <=, >=, <, > } Applies to both integer and Boolean
variables and expressions.

Auto-Increment/Auto-Decrement { -- , -- } Applies to both integer
and Boolean variables and expressions. For example, a + -4- and - - a
are equivalent to a = a -- 1, whereas a - - and - - a are equivalent to
a = a-l.

24

11 Input/Output

HardwareC has explicit input and output commands to allow reading from and
writing to the ports of a process or procedure. The three main commands are
w7rite, free, and read, and are described below.

write writes the most recently assigned 'value' of an output or inout parameter
onto the corresponding ports. Different semantics exist for different types
of parameters; they are summarized below.

" No write is specified for an inout or out parameter - any change
made to that parameter will not be visible. In the example below,
the assignments to the inout parameter a do not affect the value
of the port; they only serve to alter the value of a for subsequent
references.

inout boolean a;

a = 1; /* port unaffected a/

a = 0; /* port unaffected */

a = 1; /* port unaffected -/

" Singe write to an out parameter - in many situations, the designer
wishes to connect an output port directly to the result of a particular
operation. There are two advantages for using direct connection.
First, it does not waste a state at run-time. Second. direct connection
allows external visibility of a particular operation.
Direct connection is achieved by specifying a single write for an
output parameter in the body of the routine. For instance, the output
parameter -- is connected directly to the output of the adder in the
example below.

while (run)
temp = temp + 1;
Z = temp;
write z; /* direct connection */

}

Any value written to a port will be retained until either the next write or
free statement. In the example below, the out parameter c will generate
a pulse on the ports.

out boolean c;

25

c=0
write c; /* port has 0 */

c=;

write c; /* port has 1 */

C: 0

write c; /* port has 0 again ./

free sets the corresponding output or inout port to high impedance float value.
For both free and write, the effect of the change on port boundary will
take place exactly one cycle after the statement begins execution. Any
write to a port that has been set to float state will overwrite it with the
new value. For example,

out boolean d;

d= 1
write d; /= port has 1 */

free d; /= port has high-Z ./
write d; /= port has 1 again s/

read samples the corresponding in or inout port into a register, and returns
the output of the sampling register. Execution of a read statement will
take one cycle to complete. For example.

y = read(x);
/* y is sampled version of x

12 Inter-Process Communication

There are two paradigms for inter-process communication - shared medium and
message passing. Shared medium communication refers to the transfer of infor-
mation between modules through a common set of ports. The protocol which
governs correct handshaking between the modules is provided by the designer,
and is described as an integral part of the high-level description. Message pass-
ing communication, on the other hand, utilizes explicit send and receive opera-
tions to synchronize between the two concurrent processes.

26

Each approach has its advantages and limitations. For example, in com-
munication through shared medium. the performance advantage is offset by an
increase in the complexity of the resulting high-level description. Likewise, the
conceptual elegance of message passing solves both synchronization and commu-
nication in systems, but may result in unacceptable implementation complexity
if it is used without restraint.

HardwareC offers both approaches. First, it allows shared medium commu-
nication through the use of parameters to processes or procedures. Second, it
allows a synchronous send-receive message passing scheme with fixed-size mes-
sages. The size of a message represents the number of bits that is communicated
between the processes, and may be specified by the designer in the input descrip-
tion. Synchronous message passing provides a simple yet powerful approach to
inter-process synchronization and limited data transfer without incurring the
cost of message buffering.

12.1 Message Passing Primitives

There are three primitive operations in message passing: send, receive, and
msgwait. Only processes can use the message passing primitives, send transmits
a fixed size message to another process. The current process will wait and
synchronize until the corresponding process issues a receive, whereupon the
transfer of information will take place. For example, targetprocess is the
receiving process, and message is the message to be sent.

send(targetprocess, message);

receive accepts a message from a given process, and will wait and synchronize
until the corresponding process issues a send. For example, sourceprocess is
the sending process, and buff or is the message received.

receive(sourceprocess, buffer);

msgwait is a query that returns a scalar Boolean flag signifying whether
the specified process is currently sending to the current process. For example,
Producer and Consumer are two processes that synchronize with each other
using message passing.

process Producer(...)

/* generate item ./
send(Consumer, item);

I

process Consumer(...)

27

if (msgait(Producer))

receive(Producer, item);
/* consume item */

else
/* producer not ready */

There is a system wide message size, which is the bandwidth of the commu-
nication channel between the processes. The default is 8 bits wide, and it can
be changed by specifying the size in the description as follows.

/* <num> is new message size */
ipcsize = constant-number;

ipcsize is a keyword in the language, and constant-.number is a positive
integer constant. The message size change must be done before any message
passing operation takes place, as the parser will check to ensure proper size
messages and buffers are used in the send and receive operations. The assign-
ment should not be within the body of any particular process or procedure. and
should lie between procedural definitions.

13 Miscellaneous

HardwareC relies on the C preprocessor during parsing to handle macro defi-
nition (#define) and file inclusion (#include) facilities. The designer is free to
use any C preprocessor commands in the description.

14 Appendix

Four detailed examples of hardware description using HardwareC are described
below. The first is a four bit carry look-ahead adder. The second is a counter
process that uses the four bit adder. The third is the traffic light controller
described in the Mead-Conway book. The final example is the Intel 8251 UART
description.

Four-Bit Adder

add4bii(a, b, carryin, result, carryout)
in boolean a[4];
in boolean b[4);
in boolean carryin;
out boolean result[4];

28

out boolean carryout;

nt i;

boolean P[41, G[4], new;

: calculate propagate and generate

for i = 0 to 3 do
P[i:i] = a(i:i] xor b[i:i];

for i = 0 to 3 do
G[i:i] = a[i:i] & b[i:i];

* calculate carryout
2/

carryout = Gf3:3] I (P[3:3] , G.2:2])
I (P[33] & P[2:21 & G[1:i])
I (P 3:3] & P[2:2] & P[1:I & GrO:0])

I (Pi3:3] & Pr2:2] & PI:I & PfO:0 & carryin);
/-

calculate sum
-/

new = carryin;
for i = 0 to 3 do{

result[i:i] = P[i:i' xor new:
new = G[i:i] I (P[i:il & new

}

write result, carryout;

Counter

process counter(run, load, updown, data, sum)

in boolean run,
load, updown,
data[4J;

out boolean sum[41 ;

boolean temp[5J;

while(run) (

if load)

temp = data;

29

else
if (updown)

add4bit(temp, 1, 0, toemp[0:32, temp[4:4]);
else

add4bit(temp, Oxf, 0, temp(0:3], teup(4:4));

I
sum = temp[0:3];
write sum;

Traffic controlier

/*

H Head/Conway Traffic Light Controller
*/

define HIWATGREEN 0
* define HIWATTELLOW 1
* define FARM-GREEN 2
S define FA&RXTELLOW 3

define GREEN 1
define YELLOW 2
S define RED 3

S define TRUE 1
S define FALSE 0

process traffic (run, Cars,
TimeoutL., TimeoutS,
HiWayL, FarmL, StartTimer)

in boolean run;
in boolean Cars,

TimeoutL,

TimeoutS;
out boolean HiWayL[2),

FarmT12),
StartTimer;

static state[23;
boolean newstate[2J;

while (run) {

30

/ combinational logic
to determine nexstate

*/

switch (state)

case HIWATGltEEN:
HiWayL = GREEN;
FarmL =RED;

if (Cars & TiaeoutL) {
nestate = KIWAYYELLOW;
StartTimer = TRUE;

} else {
newstate = HIWAYGREEN;
StartTimer = FALSE;

}
break;

case HIWAYTELLOW:
HiWayL = YELLOW;

FarmL RED;

if (TimeoutS) {
newstate = FARM_.GREEV;
StartTimer = TRUE;

} else {
newstate = FARM-YELLOW;

StartTimer = FALSE;
I
break;

case FARM-GREEN:
HiWayL = RED;
FarmL GREEN;

if (! Cars I TimeoutL) {
nevstate = FARMTELLOW;
StartTimer = TRUE;

I else {
nevstate = FARM-GREEN;

StartTimer = FALSE;
I
break;

case FARM.YELLOW:

31

HiWayL = RED;
FarmL = YELLOW;

if (TimeoutS) {
newstate 2 HIWAIYGREEN;
Star-tTier = TRUE;

I else {
newstate = FARM_YELLOW;
StartTimer = FALSE;

I

break;

state = newstate;

write HiWayL, FaraL, StartTimer;
I

Intel 8251 UAR.T There are four processes - main, xmit. sync.recv, and
sync.recv. They communicate through send/receive message passing primi-

tives.

/,,

* i8251 UART - HardwareC version
a

* Written by David Ku
* Stanford University
0/

S define DataSize 8

S define forever 1
define wait(f) while (f)

define TRUE 1
t define FALSE 0

/*

* field definition
0/

U define eh control [7:7]
S define ir control(6:6J

32

def ine rts coxxtrol[5:5J
def ine or coatrol(4:4J
S define sbrk control(3:33
0 define rxE coritrol[2:2)
S define dtr conitrol1(1:1)
* define txen control[0:0J

define dar status7:7)
0 define syndet status (6:6)
0 define fe status(5:6)
define 0e status (4:4)
define pe status(3:3]
define Use status (2:2)
* define rxrdy status (1:13
S define txrdy status (0:0)

8 define acs mode[7:7)
S define usbits mode(6:7)
def ine cod mode[5:5J
$ define op mode(4.4)
8 define pen mode(3.3)
8 define nbits mode[1:2)
8 define brat. mode[0:0J

* humt-.modsO(

* searches in synchronous
* receive mode f or sync chars

hunt.mode(rxd, dzdy, syncl, sync2, mode)
in booleun, rxd;
in boolean drdy;
in boolean synci (DataSize),

sync2(DataSizeJ,
mode (DataSize);

boolean done;
boolean data(DataSizeJ;
boolean ncount (3];

done z FALSE;

33

while CIdone){

data =Oxff
while (data != syncl

wait (drdy);
data(7:7J a read Crxd)

data = data >> 1;
dones = TRUE;

it C ode[7:7) == 0){

acoumt[2:2) = 1;
ncount(0:1) = nbits;
while C ncoumt) I

wait (dzdy)
data[7:7] = rxd;-
data = data >> 1;
ncount =ncoiumt - 1;

done = (data ==sync2);

x mit -transmit process

declare process i8251(ChipSelect,
WriteEnable, ReadEnable, ChipData,
data, valid, syncl, sync2, mode,
control, status)

in boolean ChipSelect;
in boolean WriteEnable;
in boolean ReadEnable;
in boolean ChipData;
inout boolean data(DataSizej;
out boolean valid;
out boolean synci (DataSizeJ;
out boolean synkc2(DataSize);
out boolean mod*[DataSizeJ;
out boolean control[DataSize];

34

in boolean status [DataSize);

process xmit~cts, txd. xdxdy, valid,
mode, status, control,
syncl, sync2)

in boolean cts;
out boolean txd;
in boolean xdrdy;
in boolean valid;
in boolean. synci (DataSize),

sync2([DataSize);
in boolean mode[DataSize),

control (DataSize)
out boolean status [DataSizeJ;

mnt i;
boolean sync-.mode; /* sync mode s

boolean sync-.f lag;
boolean data-.ready;
boolean par;
boolean ncount[3); /* # bits .
boolean dbuf (DataSize);
boolean xdata[DataSize];
boolean okay (DataSize);

free'status;

a initialization - valid
* true when syncl/sync2 is ready

if (valid){

txd 1; txe =0;
write txd;

sync-mode = (mode[6:7J 0);

/e wait for enable *

wait C tien & cts);

35

/* check for sbrk */

if (! sync-mode k sbrk)

S d O;
write txd;
wait ('sbrk) I (!txen) I (,cts));

txd = 1;
write txd;

3

/*

* wait if in async mode,
* or send sync char if sync
*/

%xe = 1;
write txe;
free txe;

if (sync-mode)
{ /* check if message are pending ./

if (sgwaitingi82S1))
receive(i8251, xdata);

else

{ if (sync-flag)
xdata = syncl;

else
xdata = sync2;

sync-flag = sync-flag;

}

else

receive(i8251, xdata);

/*

* send start bit
*/

if (! sync-mode)

C wait (xdrdy);
txd = 0;
write txd;

/*

36

* send data
*/

ncount[2:2] = 1;

ncount[0:i] = nbits;
while (ncount)
[wait (zdrdy);

txd = dbul [0:O];
write txd;
ncount a ncolnt - 1;
dbuf = dbuf >> 1;

3

/.

* send parity bits if required
*/

if (pen)
C

par = xdata[O:O];
for i = 1 to 7 do

par = par xor xdaza[i:i2;

if (ep)

par = ! par;
wait (xdrdy);

txd a par;
write txd;

/*

* send stop bits
*/

if (sync-mode)
[wait (xdrdy);

txd a 1;
write txd;

2

write status;

3

/.

* rcvr-sync -

37

* receiver synchronous process
*/

process rcvr.sync(rxd, drdy, valid,
mode, control, status,

syncl, sync2)
in boolean rxd; /* receive serial */
in boolean drdy; /* data ready ./
in boolean valid;
in boolean mode[DataSize];
in boolean control[DataSize];
in boolean synci [DataSize];
in boolean sync2[DataSize];
out boolean status[DataSize];

boolean sync-mode;
boolean par;

boolean ncount [3);
boolean data[DataSize];

/-

- free up line
-/

free status;

/-

* determine initialization
-/

if (valid) {

sync-mode = (mode[6:7 == 0);

if (sync-mode) [

/5

* wait for mode
5/

if (eh)
hunt-mode(rxd, drdy,

syncl, sync2, mode);

/3

38

* start shifting data in
*/

ncount[2:2] = 1;
ncount[O:1] = nbits;
while (ncount) [

wait (drdy);

data[7:7] = read (rxd);

data = data >> 1;

ncount = ncount - 1;
J

/*

* send data to main process
a,

send(i8251, data);

write status;

* rcvr-async -
*

* receiver asynchronous process

process rcvr.async(rxd, drdy, valid,
mode, control, status)
in boolean rxd; /= receive serial data */

in boolean drdy; /* data ready '/
in boolean valid;

in boolean mode(DataSize);
in boolean control[DataSize];
out boolean status[DataSize);

int i;
boolean sync-mode;
boolean par;

boolean ncount[3];

boolean data[DataSize];

39

'C

* determine initialization
C,

free status;
if valid) {

/* assume mode is stable now */

sync-mode = (mode[6:7] == 0);

if C ' sync-mode) [

/*

* wait for start bit

ai
wait C rxd);
wait C ! rid);

/*

* start shifting data in
*'

ncount[2:2) = 1;
ncount CO: 1] = nbits;
while (ncount) [

wait (drdy);

data[7:7] = read (rxd);
data = data >> 1;

ncount = ncount - 1;

* sample parity bit

if C pen) [

par data[O:O];

for i = 1 to 7 do

par = par xor data[i:i);

if (ep)

par = I par;
wait (drdy);

if (par != rxd) {

40

/* parity error */
pe = 1;
write pe;

* sample stop bit
*/

wait (drdy);

if (rxd == 0) {
/* framing error ./
fe = 1;
write fe;I

/*

* send data to main process
-/

send(i8251, data);

write status;

S main process for intel 8251
5/

process i8251(ChipSelect, WriteEnable,
ReadEnable, ChipData, data, valid,
syncl, sync2, mode, control, status)

in boolean ChipSelect;
in boolean WriteEnable;
in boolean ReadEnable;
in boolean ChipData;
inout boolean data[DataSizeJ;
out boolean valid;
out boolean syncl[DataSize);
out boolean sync2[DataSizeJ;
out boolean mode[DataSize);

41

out boolean control[DataSize);

in boolean status [DataSize);

boolean aodebud [DataSize);
boolean dbuf [DataSize];
boolean decode[3];
boolean sync-mode;

valid = 0;
write valid;

/*

reset sequence: read mode character
*/

wait (ChipSelect & WriteEnable & ChipData);

modebuf = read (data);

mode = modebut;
valid = 1;

sync-mode = (modebuf[6:7] == 0);

/*

* read sync characters if necessary
*/

synci = 0;

sync2 = 0;

if (sync-mode)
/* read first sync char */
wait (ChipSelect&WriteEnable&ChipData);

syncl a read (data);

/" read second sync char */

if C ! modebuf[7:7])
[wait (ChipSelect&WriteEnable&ChipData);

sync2 = read (data);J

/* write to output port ./
write valid, mode, syncl, sync2;

42

main interp loop

decodo[O:OJ = ChipData;
decode[1:11 = ReadEnable;
decode[2:2J = WriteEnable;

while (ChipSelect)
{ switch (decode) {

case Ox2: /* read data */
[
it (sync-mode)

receive(rcvr-sync, dbuf);
else

receive(rcvr-async, dbuf);

wait ! I WriteEnable);
data - dbuf;

write data;
J
break;

case Ox3: /* read status */
[
data - read (status);
wait ! I WriteEnable);

write data;

break;

case OxC: /* write data */
dbul = read (data);
send(xmit, dbuf);
break;

case OxD: /* write control ,/
dbuf = read (data);
control = dbuf;
write control;
break;

}

43

References

[1] David C. Ku, G. De Micheli, HERCULES - A System for High-Level
Synthesis Proceedings of the 2 5 1h ACM/IEEE Design Automation Con-
ference, Anaheim, 1988.

[2] David C. Ku, G. De Micheli, Using the HERCULES High-Level Syn-
thesu System Internal report, 1988

[3] Frederic Mailhot, G. De Micheli, Structural/Logic Intermediate Form
Specification Internal report, 1988

[4] Robert Alverson, Tom Blank, et. al., THOR User's Manual: Tutorial
and Commands Stanford Technical Report CSL-TR-88-348, January.
1988

44

