
'9

11/10/88 k . -

SPIM
Santoro and Horowitz

SPIM: A Pipelined 64 X 64 bit Iterative Multiplier

N Mark R. Santoro
Mark A. Horowitz

[N Center for Integrated Systems
0 Stanford University
NStanford, CA. 94305

(415)725-3707

Abstract

A 64 by 64 bit iterating multiplier, SPIM (Stanford Pipelined Iterative Multiplier)

is presented. The pipelined array consists of a small tree of 4:2 adders. The 4:2

tree is better suited than a Wallace tree for a VLSI implementation because it is

a more regular structure. A 4:2 carry save accumulator at the bottom of the

array is used to iteratively accumulate partial products, allowing a partial array

to be used, which reduces area. SPIM was fabricated in a 1.6gr CMOS

process. It has a core size of 3.8 X 6.5mm and contains 41 thousand

transistors. The on chip clock generator runs at an internal clock frequency of

85MHz. The latency for a 64 X 64 bit fractional multiply is under 120ns, with a

pipeline rate of one multiply every 47ns.

DTIC
ELFOTEAPR2 8 1989

DetrhuI tU .

4

11/10/88
SPIM
Santoro and Horowitz

SPIM: A Pipelined 64 X 64 bit Iterative Multiplier

Mark R. Santoro
Mark A. Horowitz

Center for Integrated Systems
Stanford University
Stanford, CA. 94305

I. Introduction

The demand for high performance floating point coprocessors has created a

need for high-speed, small-area multipliers. Applications such as DSP,

graphics, and on chip multipliers for processors require fast area efficient

multipliers. Conventional array multipliers achieve high performance but

require large amounts of silicon, while shift and add multipliers require less

hardware but have low performance. Tree structures achieve even higher

performance than conventional arrays but require still more area.

The goal of this project was to develop a multiplier architecture which was faster

and more area efficient than a conventional array. As a test vehicle for the new

architecture a structure capable of performing the mantissa portion of a double

extended precision (80 bit) floating point multiply was chosen. The multiplier

core should be small enough such that an entire floating point co-processor,

including a floating point multiplier, divider, ALU, and register file, could be

fabricated on a single chip. A core size of less than 25mm 2 was determined to

be acceptable. This paper presents a 64 by 64 bit pipelined array iteratively

accumulating multiplier, SPIM (Stanford Pipelined Iterative Multiplier), which

1

11/10/88
SPIM
Santoro and Horowitz

can provide over twice the performance of a comparable conventional full array

at 1/4 of the silicon area.

II. Architectural Overview

Conventional array multipliers consist of rows of carry save adders (CSA)

where each row of carry save adders sums up one additional partial product

(see Figure 1).1 Since intermediate partial products are kept in carry save form

there is no carry propagate, so the delay is only dependent upon the depth of

the array and is independent of the partial product width. Although arrays are

fast, they require large amounts of hardware which is used inefficiently. As the

sum is propagated down through the array, each row of carry save adders is

used only once. Most of the hardware is doing no useful work at any given time.

Pipelining can be used to increase hardware utilization by overlapping several

calculations. Pipelining greatly increases throughput, but the added latches

increase both the required hardware, and the latency.

Since full arrays tend to be quite large when multiplying double or extended

precision numbers, chip designers have used partial arrays and iterated using

the system clock. This structure has the benefit of reducing the hardware by

increasing utilization. At the limit, an iterative structure would have one row of

carry save adders and a latch. Figure 2 shows a minimal iterative structure.

Clearly, this structure requires the least amount of hardware and has the , low

highest utilization since each CSA is used every cycle. An important 1

observation is that iterative structures can be made fast if the latch delays are .10

small, and the clock is matched to the combinational delay of the carry save
.__ton/

'Carry save adders are also often referred to as full adders or 3:2 adders. A--labIlity Codes
_TI IJ Aall-and/or:sOTC Speolal

2

11/10/88
SPIM
Santoro and Horowitz

adders. If both of these conditions are met the iterative structure approaches

the same throughput and latency as the full array. This structure does, however,

require very fast clocks. For a 21±m process clocks may be in the 100MHz

range. A few companies use iterative structures in their new high performance

floating point processors [5].

In an attempt to increase performance of the minimal iterative structure

additional rows of carry save adders could be added, resulting in a bigger array.

For example, addition of a row of CSA cells to the minimal structure would yield

a partial array with two rows of Carry Save Adders. This structure provides two

advantages over the single row of CSA cells: it reduces the required clock

frequency, and requires only half as many latch delays.2 One should note,

however, that although we doubled the number of carry save adders, the

latency was only reduced by halving the number of latch delays. The number of

CSA delays remains the same. Increasing the depth of the partial array by

simply adding additional rows of carry save adders in a conventional structure

yields only a slight performance increase. This small reduction in latency is the

result of reducing the number of latches.

To increase the performance of this iterative structure we must make the CSA

cells fast and, more importantly, decrease the number of series adds required to

generate the product. Two well known methods for the latter are Booth

encoding and tree structures [2][9]. Modified Booth encoding, which halves the

number of series adds required, is used on most modern floating point chips,

21n fact one rarely finds a multiplier array that consists of only a single row of carry save adders. The

latch overhead in this structure is extremely high.

3

11/10/88
SPIM
Santoro and Horowitz

including SPIM [7][8]. Tree structures reduce partial products much faster than

conventional methods, requiring only order logN CSA delays to reduce N

partial products (see Figure 3). Though trees are faster than conventional

arrays, like conventional arrays they still require one row of CSA cells for each

partial product to be retired. Unfortunately, tree structures are notoriously hard

to lay out, and require large wiring channels. The additional wiring makes full

trees even larger than full arrays. This has caused designers to look at

permutations of the basic tree structure [1][11]. Unbalanced or modified trees

make a compromise between conventional full arrays and full tree structures.

They reduce the routing required of full trees but still require one row of carry

save adders for each partial product. Ideally one would want the speed benefits

of the tree in a smaller and more regular structure. Since high performance was

a prerequisite for SPIM a tree structure was used. This left two problems. The

first, was the irregularity of commonly used tree structures. The second problem

was the large size of the trees.

Wallace [9], Dadda [4], and most other multiplier trees use a carry save adder as

the basic building block. The carry save adder takes 3 inputs of the same

weight and produces 2 outputs. This 3:2 nature makes it impossible to build a

completely regular tree structure using the CSA as the basic building block. A

binary tree has a symmetric and regular structure. In fact, any basic building

block which reduces products by a factor of two will yield a more regular tree

than a 3:2 tree. Since a more regular tree structure was needed the solution

was to introduce a new building block: the 4:2 adder, which reduces 4 partial

products of the same weight to 2 bits. Figure 4 is a block diagram of the 4:2

adder. The truth table for the 4:2 adder is shown in Table 1. Notice that the 4:2

4

11/10/88
SPIM
Santoro and Horowitz

adder actually has 5 inputs and 3 outputs. It is different from a 5:3 counter

which takes in 5 inputs of the same weight and produces 3 outputs of different

weights. The sum output of the 4:2 has weight 1 while the Carry and Cout both

have the same weight of 2. In addition, the 4:2 is not a simple counter as the

Cout output must NOT be a function of the Cin input or a ripple carry could

occur. As tor the name, 4:2 refers to the number of inputs from one level of a

tree and the number of outputs produced at the next lower level. That is, for

every 4 inputs taken in at one level, two outputs are produced at the next lower

level. This is analogous to the binary tree in which for every 2 inputs 1 output is

produced at the next lower level. The 4:2 adder can be implemented directly

from the truth table, or with two carry save add (CSA) cells as in Figure 5.3

A 4:2 tree will reduce partial products at a rate of Iog2 (N/2) whereas a Wallace

tree requires log 1 . 5 (N/2); where N is the number of inputs to be reduced.

Though the 4:2 tree might appear faster than the Wallace tree, the basic 4:2 cell

is more complex so the speed is comparable. The 4:2 structure does however

yield a tree which is much more regular. In addition the 4:2 adder has the

advantage that two Carry Save Adders are in each pipe in place of one. This

reduces both the required clock frequency and the latch overhead.

To overcome the size problem SPIM uses a partial 4:2 tree, and then iteratively

accumulates partial products in a carry save accumulator to complete the

computation. The carry save accumulator is simply a 4:2 adder with two of the

3SPIM implemented the 4:2 adder with two CSA cells because it permits a straight forward
comparison with other architectures on the basis of CSA delays. By knowing the size and speed
of the CSA cells in any technology a designer can predict the size and speed advantages of this
method over that currently used.

5

11/10/88
SPIM
Santoro and Horowitz

inputs used to accumulate the previous outputs. The carry save accumulator is

much faster than a carry propagate accumulator and requires only one

additional pipe stage.

Figure 6 compares a single 4:2 adder with carry save accumulator, to a

conventional partial piped array.4 Both structures reduce 4 partial products per

cycle. Notice, however, that the tree structure is clocked at almost twice the

frequency of the partial piped array. It has only 2 CSA cells per pipe stage,

whereas the partial piped array has 4. Consequently, the partial array would

require 32 CSA delays to reduce 32 partial products where the tree structure

would need only 18 CSA delays. Using the 4:2 adder with carry save

accumulator is almost twice as fast as the partial piped array, while using

roughly the same amount of hardware.

The 4:2 adder structure can be used to construct larger trees, further increasing

performance. In Figure 7 we use the same 4:2 adder structure to form an 8

input tree. This allows us to reduce 8 partial products per cycle. Notice that we

still pipeline the tree after every 2 carry save adds (each 4:2 adder). In contrast,

if we clocked the tree every 4 carry save adds it would double the cycle time

and only decrease the required number of cycles by one. The overall effect

would be a much slower multiply.

41n figures 6, 7, and 9 the detailed routing has not been shown. Providing the exact detailed
routing, as was done in figure 5, would provide more information; however, it would significantly
complicate the figures and would tend to obscure their purpose, which is to show the data flow in
terms of pipe stages and carry save add delays.

6

11/10/88
SPIM
Santoro and Horowitz

Figure 8 shows the size and speed advantages of different sized 4:2 trees with

carry save accumulators vs. conventional partial arrays. This plot is a

price/performance plot where the price is size and the performance is speed

(latency = I/speed). The plot assumes we are doing a 64 X 64 bit multiply.

Booth encoding is used, thus we must retire 32 partial products. Size has been

normalized such that 32 rows of CSA cells (a full array) has a size of 1 unit.5 In

the upper left corner is the structure using only 2 rows of CSA cells. In this case

the tree and conventional structures are one and the same and can be seen as

a partial array 2 rows deep, or as a 2 input partial tree. We can see that adding

hardware to form larger partial arrays provides very little performance

improvement. A full array is only 15% faster than the iterative structure using 2

rows of carry save adders. Adding hardware in a tree type structure however,

dramatically improves performance. For example, using a 4 input tree, which

uses 4 rows of carry save adders, is almost twice as fast as the 2 input tree.

Using an 8 input tree is almost 3 times as fast as a 2 input tree and only 1/4 the

size of the full array.

The latency of the multiplier is determined by the depth of the partial 4:2 tree

and the fraction of the partial products compressed each cycle. The latency is

equal to Iog 2 (K/2) + (N/K) where N is the operand size and K is ihe partial tree

size. If Booth encoding is used N would be one half the operand size since

Booth encoding has already provided a factor of 2 compression. Startup times

and pipe stages before the tree must also be taken into account when

determining latency. We choose the 8 input piped tree with Booth encoding for

5Latency is in terms of CSA delays. We have assumed a latch is equivalent to 1/3 of a CSA delay
in an attempt to take the latch delays into account. Size is the number of CSA cells used. It does
not include the latch or wiring area.

7

11/10/88
SPIM
Santoro and Horowitz

SPIM, as we felt this provided best area speed tradeoff for our purpose. The

number of cycles required to reduce 64 bits using Booth encoding and an 8 bit

tree is:

1og 2 (8/2) + (32/8) + one cycle overhead = 7 cycles6

II1. SPIM Implementation

Figure 9 is a block diagram of the SPIM data path. The Booth encoders, which

encode 16 bits per cycle, are to the left of the data path. The Booth encoded

bits drive the Booth select muxes in the A and B block. The A and B block Booth

select mux outputs drive an 8 input tree structure constructed of 4:2 adders

which are found in the A, B, and C blocks. Each pipe stage uses one 4:2 adder

which consists of two carry save adders. The D block is a carry save

accumulator. It also contains a 16 bit hard wired right shift to align the partial

sum from the previous cycle to the current partial sum to be accumulated.

Figure 10 is a die photograph of SPIM. The A block inputs are pre-shifted

allowing the A block to be placed on top of B block. Using 4:2 adders in a

partial tree allows the array to be efficiently routed, and laid out as a bit slice,

thus making the SPIM array a very regular structure. Interestingly, the CSA

cells occupy only 27% of the core area. The Booth select muxes used in the A

and B blocks make these blocks three times as large as the C block. Each

Booth mux with it's corresponding latch is larger than a single carry save adder.

Also, due to the routing required for the 16 bit shift, the D block is twice as large

as the C block. The array area can be split into four main components; routing,

6The one cycle overhead is used for the Booth select muxes.

8

11/10/88
SPIM
Santoro and Horowitz

CSA cells, muxes, and latches. The routing required 20% of the area, while the

other 75% was equally split between the CSA cells, muxes, and latches.

The critical path in the SPIM data path is through the D block. The D block

contains the slowest path because of the added routing at the output, and the

additional control mux at its input. The input mux is needed to reset the carry

save accumulator. It selects "0" to reset, or the previous shifted output when

accumulating. The final critical path through the D block includes 2 CSA cells, a

master slave latch, a control mux, and the drive across 16 bits (128pgm) of

routing.

IV. Clocking

The architecture of SPIM yields a very fast multiply; however, the speed at

which the structure runs demands careful attention to clocking issues. Only two

carry save adders (one 4:2 adder) are found in each pipe stage, yielding clock

rates on the order of 100MHz. The typical system clock is not fast enough to be

useful for this type of structure. To produce a clock of the desired frequency

SPIM uses a controllable on chip clock generator. The clock is generated by a

stoppable ring oscillator. The clock is started when a multiply is initiated, and

stopped when the array portion of the multiply has been completed. The use of

a stoppable clock provides two benefits. It prevents synchronization errors from

occurring and it saves power as the entire array is powered down upon

completing a multiply. The actual clock generator used on SPIM is shown in

Figure 11. It has a digitally selectable feedback path which provides a

programmable delay element for test purposes. This allows the clock frequency

9

11/10/88
SPIM
Santoro and Horowitz

to be turied to the critical path delay. In addition, the clock generator has the

ability to use an external test clock in p!ace of the fast internally generated clock.

When a multiply signal has been receivod a small delay occurs while starting

up the clocks. This delay comes from two sources. The first is the logic which

decodes the run signal and starts up the ring oscillator. The second source of

delay is from the long control and clock lines running across the array. They

have large capacitive loads and require large buffer chains to drive them. The

simulated delay of the buffer chain and associated logic is 6ns, almost half a

clock cycle. Since the inputs are latched before the multiply is started, SPIM

does the first Booth encode before the array clocks become active (cycle 0).

Thus, the startup time is not wasted. After the clocks have been started SPIM

requires seven clock cycles (cycles 1-7) to complete the array portion of a

multiply.

The detailed timing is shown in Table 2. In the time before the clocks are

started (cycle 0) the first 16 bits are Booth encoded. During cycle 1, the first 16

Booth-coded partial products from cycle 0 are latched at the input of the array.

The next four cycles are needed to enter all 32 Booth-coded partial products

into the array. Two additional cycles are needed to get the output through the C

and D blocks. If a subsequent multiply were to follow it would have been started

on cycle 4, giving a pipelined rate of 4 cycles per multiply. When the array

portion of the multiply is complete the carry save result is latched, and the run

signal is turned off. Since the final partial sum from the D block is latched into

the carry propagate adder only every fourth cycle, several cycles are available

to stop the clock without corrupting the result.

10

11/10/88
SPIIL'
Santoro and Horowitz

The clock generator is located in the lower left hand side of the die (see Figure

10). The clock signal runs up a set of matched buffers, along the side of the

array, which are carefully tuned to minimize skew across the array. Wider than

minimum metal lines are used on the master clock line to reduce the resistance

of the clock line relative to the resistance of the driver. The clock and control

lines driven from the matched buffers then run across the entire width of the

array in metal.

V. Test Results

To accurately measure the internal clock frequency the clock was made

available at an output allowing an oscilloscope to be attached. SPIM was then

placed in continuous (loop) mode where the clock is kept running and multiplies

are piped through at a rate of one multiply every 4 cycles. Since the clock is

continuously running its frequency can be accurately determined.

Throe components determine the actual performance of SPIM. The startup

Lime, when the clocks are started and the first Booth encode takes place (cycle

0), the array time, which includes the time through the partial array plus the

accumulation cycles (cycles 1-7), and the carry propagate addition time, when

the final carry propagate addition converts the carry save form of the result from

the accumulator to a simple binary representation. Due to limitations in our

testing equipment only the array time could be accurately measured. Since the

array time requires 7 cycles, and the array clock frequency was 85MHz the

array time is simply 7 * (1/85MHz) = 82.4ns. The startup and cpadd times,

11

11/10/88
SPIM
Santoro and Horowitz

based upon simulations, were 6ns and 30ns respectively. In flowthrough mode

the total latency is simply the sum of the startup time (6ns), the array time

(82.4ns), and the cpadd time (30ns), for a total of 118.4ns. Thus SPIM has a

total latency under 120ns. SPIM has a throughput of one multiply every 4

cycles or 4 * (1/85MHz) = 47ns, for a maximum pipelined rate in excess of 20

million 80 bit floating point multiplies per second.

The performance range of the parts tested was from 85.4MHz to 88.6MHz at a

room temperature of 24.5 0C and a supply voltage of 4.9 volts. One of the parts

was tested over a temperature range of 5 to 100 0C. At 5 0C it ran at 93.3MHz

with speeds of 88.6MHz and 74.5MHz at 25 and 100 0C. The average power

consumed at 85MHz was 72mA while an average of only 10mA was consumed

in standby mode.

VI. Future Improvements

The Booth select muxes with their corresponding latches account for 38% of the

array area. This was larger than expected. Though Booth encoding reduces

the number of partial products by a factor of two, the same result could be

achieved by adding one more level of 4:2 adders to the tree. Since much of the

routing already exists for the Booth muxes, adding another level to the tree

requires replacing each two Booth select muxes with a 4:2 adder and 4 AND

gates (see Figure 12). Since the CSA cells are slightly larger than the Booth

select muxes the array size will grow slightly, (by about 7%). However, if we

take the whole picture into account, the core would remain about the same size,

as we would no longer need the Booth encoders. Replacing the Booth

12

11/10/88
SPIM
Santoro and Horowitz

encoders and Booth select muxes with an additional level to the tree would also

reduce the latency by one cycle from 7 cycles to 6. This occurs because the

cycle required to Booth encode is now no longer needed. There are other

advantages in addition to the increase in speed. Perhaps the greatest gain is

the reduction in complexity. Both the Booth encoders and Booth select muxes

are now unnecessary, thus the number of cells has been reduced. In addition,

Booth encoding generates negative partial products. An increase in complexity

results in the need to handle the negative partial products correctly. Replacing

the Booth encoders with an additional level of 4:2 adders would remove the

negative partial products. Our observation is that an increase in speed and

reduction in complexity can be obtained with little or no increase in area.7

SPIM uses full static master slave latches for testing purposes. These latches

are quite large, accounting for 27% of the array size. In addition they are slow,

requiring 25% of the cycle time. Since the SPIM architecture has been proven,

these latches are not required on future versions. One obvious choice is simply

to replace the full static master slave version with dynamic latches. Another

option is to split the master slave latches into two separate half latches and

incorporate them into the CSA cells. This would reduce area and increase

speed. A still more efficient structure, is the use of single phase dynamic

latches. The balanced pipe nature of the multiplier makes the use of single

phase latches possible. Since only half as many latches are required in the

7Replacing the Booth encoders and select muxes with an additional level of 4:2 compressors is a
viable alternative on more conventional, i.e. non-piped and non iterative, trees as well. The non-
pipelined speed gain depends upon the relative speed of the Booth encode plus Booth select
mux vs. the delay through one 4:2 compressor and a NAND gate.

13

11/10/88
SPIM
Santoro and Horowitz

pipe, single phase dynamic latches would reduce the cycle time and decrease

latch area.

Research on piped 4:2 trees and accumulators has continued. A test circuit

consisting of a new clock generator and an improved 4:2 adder has been

fabricated in a 0.81gm CMOS technology. Preliminary test results have

demonstrated performance in the range of 400MHz.

VII. Conclusion
SPIM was fabricated in a 1.6gm CMOS process through the DARPA MOSIS

fabrication service. It ran at an internal clock speed of 85MHz at room

temperature. The latency for a 64 X 64 bit fractional multiply is under 120ns. In

piped mode SPIM can initiate a multiply every 4 cycles (47ns), for a throughput

in excess of 20 million multiplies per second. SPIM required an average of

72mA at 85MHz, and only 10mA in standby mode. SPIM contains 41 thousand

transistors with a core size of 3.8 X 6.5mm, and an array size of 2.9 X 5.3mm.

The 4:2 adder yields a tree structure which is as efficient and far more regular

than a Wallace type tree and is therefore better suited for a VLSI

implementation. By using a partial 4:2 tree with a carry save accumulator a

multiplier can be built which is both faster and smaller than a comparable

conventional array. Future designs implemented in a 0.8m CMOS technology

should be capable of clock speeds approaching 400MHz.

14

11/10/88
SPIM
Santoro and Horowitz

Acknowledgements

The development of SPIM was partially supported by the Defense Advanced

Project Research Agency (DARPA) under contracts MDA903-83-C-0335 and

N00014-87-K-0828. Fabrication support through MOSIS is also gratefully

acknowledged.

15

11/10/88
SPIM
Santoro and Horowitz

References

[1] S. F. Anderson, J. G. Earle, et al., "The IBM system/360 Model 91:
Floating-Point Execution Unit", IBM Journal, VOL. 11, NO. 1, pp. 34-53,
January 1967.

[2] A. D. Booth, "A Signed Binary Multiplication Technique", Ot. J. Mech.
Appl. Math., Vol. 4, Part 2, 1951.

[3] J. F. Cavanagh, "Digital Computer Arithmetic Design and
Implementation", McGraw-Hill, 1984.

[4] L. Dadda, "Some Schemes for Parallel Multipliers," Alta Frequenza,
Vol. 34, No. 5, pp. 349-356, March 1965.

[5] B. Elkind, J. Lessert, J. Peterson, and G. Taylor, "A Sub 10 ns Bipolar
64 Bit Integer/Floating Point Processor Implemented on Two Circuits",
IEEE Bipolar Circuits and Technology Meeting, pp. 101-104,
September 1987.

[6] K. Hwang, "Computer Arithmetic: Principles, Architecture, and Design",
New York, John Wiley & Sons, 1979.

[7] P. Y. Lu, et al., "A 30-MFLOP 32b CMOS Floating-Point Processor",
IEEE Solid-State Circuits Conference proceedings Vol. XXXI, pp. 28-
29, February 1988.

[8] W. McAllister and D. Zuras, "An nMOS 64b Floating Point Chip Set",
IEEE Int. Solid-State Circuits conf., pp. 34-35, February 1986.

[9] C. S. Wallace, "A Suggestion for Fast Multipliers", IEEE Trans.
Electronic Computers, Vol. EC-1 3, pp. 14-17, February 1964.

[101 S. Waser, and M. J. Flynn, "Introduction to Arithmetic for Digital Systems
Designers", New York, CBS Publishing, 1982.

[11] D. Zuras, and W. McAllister, "Balanced Delay Trees and Combinatorial
Division in VLSI", IEEE Journal of Solid-State Circuits, VOL. sc-21, no.
5, October 1986.

16

11/10/88
SPIM
Santoro and Horowitz

Captions for Tables
Table 1: Truth table for the 4:2 adder.

where:
n is number of inputs (from Inl, In2, 1n3, In4) which = 1
Cin is the input carry from the Cout of the adjacent bit slice
Cout and Carry both have weight 2
Sum has weight 1

NOTES:
Either Cout or Carry may be "1" for 2 or 3 inputs equal to 1 but NOT

both.

Cout may NOT be a function of the Cin from the adjacent block or a

ripple carry may occur.

Table 2: SPIM pipe timing. Numbers indicate which partial products are being
reduced. 0 is the least significant bit.

n Cin Cout Carry Sum

0 0 0 0 0
1 0 0 0 1
2 0 * 0
3 0 *1

4 0 1 1 0
0 1 0 0 1
1 1 0 1 0
2 1 1
3 1 1 1 0
4 1 1 1 1

Table 1
Santoro and Horowitz

c 0 1 2 3 4 5 6 7

startup
Booth Encode 0-16 16-31 32-47 48-63

A and B blockABo 0-15 16-31 32-47 48-63Booth Muxs

A Block 0-7 16-23 32-39 48-55
CSA's

B Block 8-15 24-31 40-47 56-63
CSA's

C Block 0-15 16-31 32-47 48-63

clear
D Block 0-15 16-31 32-47 48-63

Table 2
Santoro and Horowitz

11/10/88
SPIM
Santoro and Horowitz

Figure Captions

Figure 1. Conventional Array Multiplier. Shaded areas represent intermediate
partial product flowing down array.

Figure 2. Minimal Iterative Structure using a single row of carry save adders.
Black bars represent latches.

Figure 3. A conventional structure (a) has depth proportional to N, while a tree
structure (b) has depth proportional to logN.

Figure 4. Block diagram of a 4:2 adder.

Figure 5. A 4:2 adder implemented with two carry save adders.

Figure 6. With the same 4 CSA cells a 4 input partial tree structure with a carry
save accumulator (a) will attain almost twice the throughput of a partial piped
array (b). In (a) the carry save accumulator is placed under the 4:2 adder.

Figure 7. An 8 input tree constructed from 4:2 adders can reduce 8 partial
products per cycle.

Figure 8. Architectural comparison of piped partial tree structure with carry save
accumulator vs. conventional partial array.

Figure 9. The SPIM Data Path.

Figure 10. Microphotograph of SPIM.

Figure 11. SPIM clock generator circuit.

Figure 12. Booth encoding vs. additional tree level. The Booth encoders and
Booth select muxes (a) can be replaced with an additional level of 4:2 adders
and AND gates (b).

CSA GSA CSA GSA

GSA CSA GSA CSA

LSAIGSA CSA CGSA1 C~SA CSA CSA S

CSA J SA JCSA jGSA J SA CSA GSA GSA

L (I N)........... ..

Figure 1
Santoro and Horowitz

2 12 21 2

ITh
CI CS S ICS

Figure 2
Santoro and Horowitz

Figure 3a
Santoro and Horowitz

Figure 3b
Santoro and Horowitz

Inl 1n2 1n3 IM4

Cout 4:2 Cin

Carry Sum

Figure 4
Santoro and Horowitz

Inl In2 In3 In4

CSA

Cout Cin

Carry sum

Figure 5
Santoro and Horowitz

CSA

CSA

tI,
CSA

Figure 6a
Santoro and Horowitz

CSAIlL
CSAJ

Figure 6b
Santoro and Horowitz

CSA CSA

CSA CSA

IS

CSA

Figure 7
Santoro and Horowitz

32 Full Array

array structures

InputPipedtreeV Piped partial tree
4 Inut Pped reestructures

16

8 Input Piped tree

8 Full Tree

I I I Size
1/4 1/2 3/4 1 (CSA cells/32)

Figure 8
Santoro and Horowitz

C9Booth Muxes Booth Muxes

C

0

Santoro and Horowitz

* * 0 0

*6 a Os

0 0
* Sm a

0

S

S

a

* 4 * S U

sPed Ah speed2.h speed3.h speed4.h speed5.h speed6.h

start.h

testclk

testmode.h112

fclk

Figure I1I
Santoro and Horowitz

Figure 12a
Santoro and Horowitz

Figure 12b
Santoro and Horowitz

