HIGH TEMPERATURE OXIDATION STUDIES ON ALLOYS CONTAINING DISPERSED PHASE PARTICLES AND CLARIFICATION OF THE MECHANISM OF GROWTH OF SiO₂

Submitted to: Dr. Liselotte J. Schioler
Submitted by: R. Yan, B. Munn and Dr. G. Simkovich

January 1989
PENN STATE
College of Earth and Mineral Sciences

Undergraduate Majors
Ceramic Science and Engineering, Fuel Science, Metals Science and Engineering, Polymer Science;
Mineral Economics; Mining Engineering, Petroleum and Natural Gas Engineering;
Earth Sciences, Geosciences; Geography; Meteorology.

Graduate Programs and Fields of Research
Ceramic Science and Engineering, Fuel Science, Metals Science and Engineering, Polymer Science;
Mineral Economics; Mining Engineering, Mineral Processing, Petroleum and Natural Gas
Engineering;
Geochemistry and Mineralogy, Geology, Geophysics; Geography; Meteorology.

Universitywide Interdisciplinary Graduate Programs Involving EMS Faculty
and Students
Earth Sciences, Ecology, Environmental Pollution Control Engineering, Mineral Engineering

Associate Degree Programs
Metallurgical Engineering Technology (Shenango Valley Campus).

Interdisciplinary Research Groups Centered in the College
C. Drew Stahl Center for Advanced Oil Recovery, Center for Advanced Materials, Coal Research
Section, Earth System Science Center, Mining and Mineral Resources Research Institute, Ore
Deposits Research Group.

Analytical and Characterization Laboratories (Mineral Constitution Laboratories)
Services available include: classical chemical analysis of metals and silicate and carbonate rocks;
X-ray diffraction and fluorescence; electron microscopy and diffraction; electron microprobe
analysis; atomic absorption analysis; spectrochemical analysis; surface analysis by secondary ion
mass spectrometry (SIMS); and scanning electron microscopy (SEM).

The Pennsylvania State University, in compliance with federal and state laws, is committed to the policy that all persons shall have equal
access to programs, admission, and employment without regard to race, religion, sex, national origin, handicap, age, or status as a disabled or
Vietnam-era veteran. Direct all affirmative action inquiries to the Affirmative Action Officer, Suzanne Brooks, 201 Willard Building,
University Park, PA 16802; (814) 863-0471.
U.Ed. 87-1027
Produced by the Penn State Department of Publications
A wide variety of high temperature oxidation tests have been conducted on Fe and Ni based alloys. Especially, the effects of dispersion phase particles on the oxidation properties were well studied.
II. Studies on alloys containing dispersed phase particles and clarification of the mechanism of growth of SiO₂
HIGH TEMPERATURE OXIDATION STUDIES ON ALLOYS CONTAINING
DISPERSED PHASE PARTICLES AND CLARIFICATION OF THE
MECHANISM OF GROWTH OF SiO₂

Submitted to: Dr. Liselotte J. Schioler
Submitted by: R. Yan, B. Munn and Dr. G. Simkovich

January 1989
Introduction

In most binary transition metal alloys, additions of Cr are used to promote the formation of a protective Cr_2O_3 layer. Once formed, this layer acts as a barrier between the metal and its environment and, thereby, prolongs service life of the alloy. The ability to form such a layer depends upon a complex interaction of variables; the most influential being the concentration of Cr present in the alloy. In fact, there is a critical concentration of Cr, below which, a complete, protective Cr_2O_3 scale will not form. Under the severe conditions employed in this investigation, upwards of 18 weight percent Cr is required to form a protective layer in the binary Ni-Cr and Fe-Cr alloys.

Previous investigations have shown that the presence of small amounts of finely dispersed oxides or nitrides such as ThO_2, Y_2O_3, TiO_2, Si_3N_4 and TiN can significantly effect the oxidation behavior of binary Ni-Cr, Fe-Cr, and Co-Cr alloys. The beneficial effects of these oxide/nitride additions were increased oxidation resistance, an enhanced scale adhesion, and a decreased concentration of Cr necessary to form the protective Cr_2O_3 layer. However, previous investigations have been limited to studying alloys containing Cr concentrations between 14-20 weight percent and dispersed oxide additions of only 1-2 volume percent.

In the present investigation, a broader composition range of dispersion containing alloys was studied in the hope of gaining a better understanding on the effects of oxide dispersions and the mechanisms involved in the oxidation process. To do this, the Cr concentration was varied between 0 to 15 weight percent with dispersed oxide additions up to 40 volume percent. The dispersed oxide/nitride employed in this investigation was Si_3N_4 and SiO_2 because of their relative abundance, high temperature stability although their effect on transition metal alloys is relatively unknown.
The experimental procedure involved processing elemental powders by simple powder metallurgical techniques. This was followed by kinetic studies using an automatic recording semi-micro-balance under the desired conditions of 1 atmosphere O₂ and temperatures of 1273 and 1373° K. The specimens were held isothermally at the test temperature for approximately 50 hours. Surface topographies of oxidized specimens were then examined by Scanning Electron Microscopy. Transverse sections of representative specimens were also prepared and examined both optically and by SEM techniques in order to determine the distribution of elements in the oxide scales. Finally, standard x-ray diffraction techniques were employed to identify the phases present in the scale. To try and better understand the growth characteristics of the scales, series of short term oxidation tests of 5, 10, 15, and 30 minutes were done in O₂ at 1273° K.

The following discussion summarizes the work and results obtained on a number of Fe-Cr-Si₃N₄, Ni-Cr-SiO₂ and Fe-Cr-SiO₂ alloys and, also, discusses the possible mechanisms involved in the oxidation process of these alloys.

Fe-Si₃N₄ and Fe-Cr-Si₃N₄ Alloys

Si₃N₄ was first chosen as fine, dispersed particles due to its low solubility and strengthening effect in the Fe base alloys. Si₃N₄ also can serve as the Si source for the growth of a protective SiO₂ scale. In this study, Fe-Cr alloys with and without the addition of 10 vol% Si₃N₄ particles were made by conventional powder metallurgy method and then oxidized at 1173 and 1273° K in 1 atm of O₂. The oxidation kinetic results (shown on Fig.1) confirm that the addition of Si₃N₄ significantly reduces the
oxidation rates in comparison to that of pure Fe. Similar behavior is observed on the series of Fe-Cr alloys (i.e., Fe-3Cr, Fe-5Cr, Fe-7Cr, Fe-9Cr, and Fe-14Cr). The incorporated Si$_3$N$_4$ reduces not only the oxidation rate but also the weight gain during the initial oxidation period even in an alloy containing only 3 wt% of Cr.

The previous investigations of Fe-Cr alloys usually utilized high Cr content (about 14-20 wt%) in order to get continuous protective layer on the surface. In the present study, the results indicate that the critical bulk concentration of Cr necessary for forming a continuous Cr$_2$O$_3$ layer is significantly reduced to about 5% in the presence of large amounts of Si$_3$N$_4$ dispersions in alloys prior to sintering. This reduction may result from increased nucleation of Cr$_2$O$_3$ on the remaining Si$_3$N$_4$ or the formed SiO$_2$ particles. As a matter of fact, the motion of Fe is slowed down in the continuous external Cr$_2$O$_3$ scale under which SiO$_2$ layers may form to provide additional oxidation resistance.

The variation of Cr content in the Fe-Cr alloys containing dispersion of Si$_3$N$_4$ greatly effects the oxidation behavior. These results are illustrated in Fig. 2 and 3. From Fig. 3, little difference between the weight gains after two different oxidation times is observed. This indicates that the formation of the protective scale is virtually completed within 20 hours in the Fe-Cr alloys with the presence of SiO$_2$ from the decomposition of Si$_3$N$_4$ particles as well as the unreacted nitride particles.

Upon the completion of kinetic measurements, the oxidized specimen were examined with scanning electron microscope to evaluate the grain size from the surface topographies as well as the stacking sequence and thickness of the different oxide layers from the transverse section views. Fairly fine oxide grains and a smooth oxide surface are observed on the alloys with Si$_3$N$_4$ while large oxide grains are formed on the alloys
without Si₃N₄. Thus, the number of grain boundaries which may increase diffusion of Cr is higher in the alloy systems with Si₃N₄ dispersions.

Inert platinum markers, initially placed on the alloy surface prior to oxidation, were found on the top of the Cr₂O₃ which formed on an Fe-9Cr alloy with Si₃N₄ after 50 hours of oxidation at 1273°K while the Pt markers were in the middle of the oxide scale formed on an Fe-9Cr alloy without Si₃N₄ after 72 hours of oxidation at 1273°K. This difference in marker position shows the change of oxide growth mechanism due to the presence of Si₃N₄ dispersion. The growth mechanism changes from predominantly outward ion motion to anion inward motion.

Phase identification of the oxide scale was done by X-ray diffraction analysis utilizing diffractometer and Debye-Sherrer techniques. The oxide in Fe-Cr alloys with Si₃N₄ consisted of Fe₂O₃, Cr₂O₃ and SiO₂. In addition, Fe₂O₃ and SiO₂ were detected in pure Fe with 10 vol% of Si₃N₄. On the other hand, the oxides in Fe-Cr alloys without Si₃N₄ consisted of Fe₂O₃, Fe₃O₄, Cr₂O₃ and some FeCr₂O₄. The amount of Fe₂O₃ decreased as the Cr content was increased until no Fe₂O₃ was detected in the Fe-9Cr with Si₃N₄. FeO was not found in these alloys except for the case of pure Fe oxidation. As the Cr content was increased, the ratio of Fe₂O₃/Fe₃O₄ increased and no Fe₃O₄ was detected in the Fe-14Cr alloys.

Fe-SiO₂ and Ni-SiO₂ Alloys

Additions of SiO₂ (up to 20 volume percent) to pure Fe reduced the weight gained by the Fe based alloys as can be seen in Figure 4 and, also, increased their oxidation resistance as can be seen in the decrease in parabolic rate constant as a function of Ω₂.
in Figure 5. However, the effect was a modest one and large weight gains occurred regardless of the amount of SiO$_2$ present. Scale examination revealed no significant changes in scale appearance or composition when compared to those of pure Fe, but SiO$_2$ particles were found at the alloy/scale interface and in the scale near the interface. Therefore, the increased oxidation resistance (i.e. decreased K_p values) was the result of the SiO$_2$ particles effectively blocking the transport of ionic species at the alloy/scale interface as well as in the oxide scale itself.

Additions of SiO$_2$ (up to 20 volume percent) to pure Ni increased slightly the weight gained by these alloys. Examination of the oxide scale revealed no significant changes in either scale appearance or composition as compared to that which formed on the pure Ni. Therefore, the slight decrease in oxidation resistance was thought to be caused by the SiO$_2$ particles increasing the cation vacancy concentration in the p-type NiO scale. An increase in the vacancy concentration would have effectively accelerated the diffusion of ionic species through the scale and ultimately result in a decrease in oxidation resistance for the Ni alloys containing SiO$_2$. In general, the addition of SiO$_2$ to either pure Fe or Ni had a relatively small effect on the overall oxidation behavior of the alloys.

Ni-6Cr-SiO$_2$ and Fe-6Cr-SiO$_2$ Alloys

The presence of SiO$_2$ dispersions in Ni-6Cr alloys significantly effected their oxidation behavior as shown in Figure 6. During the early stages of oxidation, the oxidation kinetics of the Ni-6Cr alloys containing 5 and 10 volume percent SiO$_2$ were similar to that of the binary Fe-6Cr alloy. However, after a relatively short period of time, the oxidation rates were markedly reduced. These sudden reductions in the oxidation rates were apparently due to the completion of a protective oxide scale
underneath the initially formed NiO. SEM and x-ray analysis of these scales revealed a thin Cr$_2$O$_3$ layer adjacent to the alloy SCALE interface which caused the dramatic reduction in oxidation rates. The time required to develop a complete, protective Cr$_2$O$_3$ layer was reduced as the volume percent of SiO$_2$ dispersion in the alloy increased. A schematic of the overall oxidation process of Ni-6Cr-SiO$_2$ alloys with (a) low volume percents and (b) high volume percents of SiO$_2$ is shown in Figure 7. Alloys containing low volume percents of SiO$_2$ formed a protective Cr$_2$O$_3$ layer underneath the initially formed NiO scale. As the SiO$_2$ was increased, a Cr$_2$O$_3$ layer developed more readily further reducing the amount of Ni containing oxides which formed.

Additions of SiO$_2$ to Fe-6Cr alloys had little effect on their oxidation behavior as shown in Figure 8. The scales that formed were thick and consisted primarily of Fe-Cr spinel and Fe$_2$O$_3$. Only a small amount of Cr$_2$O$_3$ was detected; therefore, it can be concluded that no protective layer developed at any stage in the oxidation process of the alloys.

Ni-9Cr-SiO$_2$, Ni-12Cr-SiO$_2$, and Ni-15Cr-SiO$_2$ Alloys

The oxidation behavior of alloys containing 9 to 15 weight percent Cr displayed a dramatic decrease in oxidation rate upon the addition of up to 40 volume percent SiO$_2$. Weight gains ranged from approximately 4 mg/cm2 for a Ni-9Cr-5%SiO$_2$ alloy to a low of 0.6 mg/cm2 for a Ni-15Cr-40%SiO$_2$ alloy. The small weight gains observed were expected since an increase in Cr content would have resulted in the development of a protective Cr$_2$O$_3$ layer in a shorter period of time. Consequently, the amount of Ni containing oxides that formed decreased, causing a reduction in the overall weight gained by the alloys. Also, increasing additions of SiO$_2$, from 5 to 40 volume percent, had a
diminishing effect on the overall weight gained by the alloys the higher the Cr content. In other words, the difference between the weight gained by an alloy containing only 5 volume percent SiO\textsubscript{2} and that of an alloy containing 40 volume percent SiO\textsubscript{2} decreased the higher the Cr content in the alloy. This difference was upwards of 3 mg/cm2 in the Fe-9Cr alloys containing 5 and 40 volume percent SiO\textsubscript{2}, and less than 1 mg/cm2 in the Fe-15Cr alloys containing 5 and 40 volume percent SiO\textsubscript{2}.

Fe-9Cr-SiO\textsubscript{2} and Fe-12Cr-SiO\textsubscript{2} Alloys

Additions of up to 20 volume percent of SiO\textsubscript{2} to Fe-9Cr alloys dramatically reduced the overall weight gained by the alloys as can be seen by comparing Figures 9 and 10. The parabolic rate constants shown in Figure 11 also decreased dramatically upon the addition of SiO\textsubscript{2} which indicated a significant change in the scale behavior upon the addition of SiO\textsubscript{2}. SEM and X-ray analysis of the scales formed on the SiO\textsubscript{2} containing alloys revealed the presence of a thin Cr\textsubscript{2}O\textsubscript{3} layer adjacent to the alloy/scale interface. The overall oxidation process of the Fe-9Cr-SiO\textsubscript{2} alloys is shown in Figure 12 and is similar to that proposed for the Ni-Cr alloys containing low volume percents SiO\textsubscript{2}.

During the early stages of oxidation, the alloy surface was covered by Fe rich oxides. Consequently, the Cr\textsubscript{2}O\textsubscript{3} layer developed underneath the initially formed Fe rich oxide layer which dramatically increased the oxidation resistance of the Fe-9Cr alloys containing SiO\textsubscript{2}.

The oxidation behavior of Fe-12Cr alloys with SiO\textsubscript{2} additions (up to 20 volume percent) are shown in Figure 13. These results were inconsistent and unexpected due to the relatively large weight gains found for the Fe-12Cr alloys containing 5 and 10 volume percent of SiO\textsubscript{2}. The large weight gains were determined to be the result of an
absence in the development of a complete, protective Cr_2O_3 layer. One possible explanation for the absence of this layer was that during the early stages of oxidation the thin Cr-rich film that may have been formed transformed from a protective to a non-protective type of film. Consequently, the increase in diffusion of Fe ions through the non-protective scale could have resulted in the relatively large weight gains observed in the Fe-12Cr alloys containing 5 and 10 volume percent SiO_2.

The significant improvement in oxidation resistance in both the Ni-Cr and Fe-Cr alloys containing SiO_2 was the result of the development of a protective Cr_2O_3 layer. The level of Cr required to develop such a layer was significantly lower than that which would be required to form a protective layer in the binary Ni-Cr and Fe-Cr alloys. Therefore, it was concluded that the SiO_2 dispersions had a significant role in the overall oxidation behavior of these alloys.

Enhancement of Cr_2O_3 formation

The role that Si_3N_4 or SiO_2 dispersions played in the overall oxidation process of both the Ni-Cr and Fe-Cr alloys was difficult to determine. However, it would appear that the Si_3N_4 or SiO_2 dispersions enhanced the transport of Cr through an increase in short circuit diffusion paths as well as providing additional low energy nucleation sites for the first formed oxides, in particular Cr_2O_3. These conclusions on how dispersion phase enhanced the formation of a protective Cr_2O_3 layer are briefly discussed in the following paragraphs.

The addition of Si_3N_4 or SiO_2 dispersions, resulted in a significant reduction in the grain size of both the Ni-Cr and Fe-Cr alloys. Since grain boundaries have been known
to be rapid diffusion paths for the transport of Cr, any increase in boundary area would have effectively enhanced the transport of Cr to the surface and increased the amount of Cr available to develop a protective Cr$_2$O$_3$ layer. Once at the surface, interfacial boundaries (i.e. the boundaries created between the alloy/SiO$_2$ particles) acted as rapid diffusion paths for the lateral transport of Cr. Thus, the accelerated transport of Cr along such boundaries could ultimately result in the development of a continuous protective Cr$_2$O$_3$ layer. However, another possible mechanism exists that could have aided in the formation of a protective layer.

The presence of SiO$_2$ particles at the surface also acted as physical discontinuities and, as such, were low energy sites for oxide nucleation (i.e. heterogeneous versus homogeneous nucleation). This could have reduced the distance between Cr$_2$O$_3$ nuclei which would have limited to an extent the lateral growth necessary for the impingement of Cr$_2$O$_3$ grains and the development of a Cr$_2$O$_3$ layer. The SiO$_2$ particles were, therefore, preferential sites for oxide nucleation which could have aided in the development of a protective Cr$_2$O$_3$ layer in both the Ni-Cr-SiO$_2$ and Fe-Cr-SiO$_2$ alloys.

In general, the Si$_3$N$_4$ or SiO$_2$ dispersions appear to have enhanced mechanisms already inherent to the oxidation process of the Ni-Cr and Fe-Cr alloys. However, the SiO$_2$ dispersions had a greater influence on the oxidation behavior of the Ni-Cr alloys suggesting its effects were not independent of the base metal.

SiO$_2$ Growth Mechanism Study

According to previous studies, it is generally agreed that the growth of SiO$_2$ scale is mostly due to the inward interstitial diffusion of oxydant species which contain both charged oxygen ions and noncharged oxygen molecules or atoms. The possible influence
of electronic species (i.e., electrons and electron holes) on the SiO₂ growth at high temperature was also studied in this project.

Basically, the experiment consisted of placing an inert electronic oxide conductor which acts as electronic short circuit path on the surface of pure silicon and then oxidizing them in dry oxygen atmosphere. Since Si is too brittle to drill a hole for inserting a inert conductor, fine Cr₂O₃ powders were pressed on the Si surface to serve as electronic conductor, as shown on Fig. 14. After oxidizing at 1200°C for 90 hours, the cross section area of the sample was examined by scanning electron microscopy (SEM) to determine whether the growth rate of SiO₂ is accelerated in the regions close to the conductor or not. Because of the poor conductivity of Si and SiO₂, a thin film of Au is coated on the samples to show better SEM images. It is still very difficult to have very clear and highly magnified SEM images. The result is shown on Fig. 15.

Only a very small difference of the growth rate was observed on the edges of Cr₂O₃ powder. The oxide layer is thicker in the region right next to the electronic conductors. We might find that the electronic species may act as a kind of transport defect which will promote the growth of SiO₂. Since the exact thickness of the oxide layer is difficult to recognize, it is hard to get kinetic data through optical observation of these very thin oxide layer whose thickness is about 2-3 μm.
REFERENCE

Fig. 1 Isothermal oxidation curves for pure Fe with and without an initial addition of 10% Si₃N₄ (≈ 2.84 Si) at 1173 and 1273 K.
Fig. 2 Isothermal oxidation curves for Fe-Cr alloys with an initial addition of 10 v/o Si$_3$N$_4$ as a function of Cr content in 1 atm O$_2$ at 1273 K.

Fig. 3 Weight gain in Fe-Cr alloys with an initial addition of 10 v/o Si$_3$N$_4$ (see Table 2); one for initial 20 hours and the other for 60 hours in 1 atm O$_2$ at 1273 K.
Fig. 4 Weight gain per unit area in O$_2$ for Fe-SiO$_2$ alloys at 1273 and 1373 K
Fig. 5 The relationship between parabolic rate constant (K_p) and volume percent SiO$_2$ in Fe-SiO$_2$ alloys.
Fig. 6 Weight gain per unit area in O₂ for Ni-6Cr-SiO₂ alloys at 1273 and 1373 K
Fig. 7: Schematic representation of oxide formation on Ni-6Cr-SiO$_2$ alloys at (a) low volume percents and (b) high volume percents of SiO$_2$.
Fig. 8 Weight gain per unit area in O₂ for Fe-6Cr-SiO₂ alloys at 1273 and 1373 K
Fig. 9: Weight gain per unit area in O₂ for binary Fe-9Cr alloys at 1273 and 1373 K
Fig. 10: Weight gain per unit area in O₂ for Fe-9Cr-SiO₂ alloys at 1273 and 1373 K
Fig. 11: The relationship between parabolic rate constant (K_p) and volume percent SiO$_2$ in Fe-9Cr-SiO$_2$ alloys.
Fig. 12 Schematic representation of oxide formation on Fe-9Cr-SiO₂ alloys
Fig. 13: Weight gain per unit area in O₂ for Fe-12Cr-SiO₂ alloys at 1273 K
Fig. 14 Surface morphology of the Si sample, white particles are Cr$_2$O$_3$ powders
Fig. 15 Cross section view of the oxide layer

Cr$_2$O$_3$

SiO$_2$