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ABSTRACT

We present a unified analytical treatment of the interaction of

ultrasonic waves with single and multilayered arbitrarily oriented

anisotropic elastic plates. The individual components forming the plate are

allowed to posses up to as low as monoclinic symmetry. The plates are

assumed to be immersed in a fluid and subjected to incident acoustic waves

at arbitrary angles from the normal as well as at arbitrary azimuthal

angles. Reflection and transmission coefficients are derived from which all

propagation characteristics are identified. Highly complex reflection

behavior, expressed as phase velocity-frequency dispersion, is observed as a

consequence of anisotropy. Extensive comparisons with the concurrently

acquired experimental data by Chimenti at the ANWAL on a variety of

composite samples have been of unique help in assessing the validity of our

theoretical modeling, and its potential application in the nondestructive

evaluation of materials.
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I. INTRODUCTION

In recent years considerable efforts have been expended upon the

modeling, testing and analysis of fibrous composites. This is due in part

to their popularity in applications requiring high stiffness to weight

ratios and also to their intrinsic interest as challenging mechanical

systems. However, the morphology of fiber-reinforced composites, as

compared with that of homogeneous isotropic media, can seriously complicate

their mechanical response. For example, these materials differ from

isotropic homogeneous materials in that they are anisotropic and dispersive.

The degrees of anisotropy and dispersivity depend upon the specific material

under consideration and also upon the specific application, however.

Since most fibrous structural components are subjected to cyclic or

impulsive loads which can lead to degradation in load-carrying capability,

initial inspection and continued monitoring of these materials for detection

and sizing of strength-degrading flaws is necessary in order to insure

structural reliability. Ultrasonic nondestructive evaluation is one useful

means to provide information related to structural integrity of composites.

To assist in the exploitation of this technique for inspecting composites, a

full understanding of the propagation of elastic waves in fibrous composites

is highly desirable.

Compared with the voluminous literature on the propagation of elastic

waves in isotropic media, a limited amount of work exists on anisotropic

materials. This is particularly true for the classes of guided waves such

as surface, Love, Lamb, and Stonely waves. Investigation of the propagation

of bulk waves in anisotropic materials is relatively well established (see,

for example, Musgrave [1], Synge [21 and Fedorov (3]). Comparatively
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speaking, few quantitative results have been reported on solutions of guided

waves in anisotropic media.

Several authors [4-14] have discussed the reflection and refraction

problems from interfaces of anisotropic media in varying degrees of detail.

Stonely, in 1955, studied Rayleigh surface wave propagation on an

anisotropic half-space having cubic crystal symmetry [15]. Since then

several other authors (16-22] have considered and reported on similar

problems. Theoretical analyses have been undertaken for free Lamb waves in

plates of orthotropic [23-24] , transversely isotropic (25-27] and cubic

[28-29] materials. Some limited approximate theoretical and experimental

results for wave propagation in thin (small values of fd where f is the

frequency and d is the plate thickness) orthotropic plates with arbitrary

orientations have been presented (30-32].

Because fiber-reinforced composites are often employed in plate-like

structures and ultrasonic testing is conveniently performed in immersion, we

recently investigated both theoretically and experimentally the behavior of

guided elastic waves in liquid-coupled plates of unidirectional fibrous

composites [33,34]. For consistency we refer, in our work, to the liquid-

coupled modes as plate modes. Hereafter, we refer to liquid or fluid

coupling synonomously. These excitations may be contrasted with Lamb modes

for a plate in vacuum, like that studied in [35,36]. In [33,34] results

were presented for cases where the plate wave vector is along the direction

of symmetry, i.e., the fiber axis.

As compared with isotropic cases, solutions to the anisotropic problem

are much more difficult to obtain. This is because of the added algebraic

complications in handling of the pertinent equations. Based on the widely

used slowness wave surface techniques (1-3] several differences between the
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wave propagation characteristics of isotropic and anisotropic media can be

identified. In the isotropic case, the slowness surface consists of two

concentric spherical sheets, the inner one represents longitudinal wave and

the outer represents two coincident shear waves. For the anisotropic case

however, there are three general surfaces, one for a quasi longitudinal and

two for quasi shear waves. This means that incident and reflected waves 4n

anisotropic media can no longer be thought of as purely longitudinal or

shear with appropriate directionally independent wave speeds. This also

implies that the direction of energy flow (i.e., group velocity) does not,

in general, coincide with the normal to the wave front [3]. The uncoupling

of the longitudinal and shear potentials in the isotropic case simplifies

the algebraic treatment of their wave propagation characteristics compared

to the corresponding anisotropic case. Generally speaking, in the case of

anisotropic media equations describing the motions of the three waves are

coupled, and in order to identify them one needs to solve a sixth order

polynomial characteristic equation. For special material symmetry

directions the equation of one of the shear waves uncouple, leading to

fourth order polynomial equations which are relatively easier to handle.

Taken together these complications perhaps explain why many of the available

treatments of wave propagation in anisotropic media emphasize wave motions

along material symmetry directions.

In this report we develop complete analysis for the propagation of

guided waves in a liquid-coupled, arbitrarily oriented single and

multilayered anisotropic plates. The wave is allowed to be incident at an

arbitrary direction on the plate (i.e., for arbitrary incident and azimuthal

angle). The solutions obtained will thus include, as special cases, those

pertaining to higher symmetry materials such as ortotropic, transversely
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isotropic (an example of which is unidirectionally reinforced composite),

cubic, and isotropic media. The reflection and the transmission

coefficients are derived, and algebraic expressions for the characteristic

symmetric and antisymmetric plate modes are found possible for the single

layer plate system. Detailed comparisons are presented between the

experimental data of Chimenti and the theory on a variety of composite

sapmles as representatives of anisotropic media are presented.

Typically a layered medium consists of two or more material components

attached at their interfaces in some fashion. Generally speaking, for wave

propagation in such media our solutions are obtained by expressing the

displacements and stresses in each component in terms of its wave

amplitudes. By satisfying appropriate interfacial conditions,

characteristic equations are constructed which involve the amplitudes of all

layers. This constitutes the direct approach. The degree of complication

in the algebraic manipulation of the analysis will thus depend upon the

number of components. For relatively few components, the direct approach is

appropriate. However, as the number of components increases the direct

approach becomes cumbersome, and one may resort to the alternative matrix

transfer technique introduced originally by Thomson (37]. According to this

technique one constructs the propagation matrix for a stack of an arbitrary

number of layers by extending the solution from one layer to the next while

satisfying the appropriate interfacial continuity conditions. In this report

we use both the direct and matrix transfer methods in order to obtain

solutions for the single layer plate and the multilayered ones,

respectively.

A key condition which is found to facilitate our analysis is the fact

that the wave vectors of the incident and refracted waves must all lie in
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the same plane. This result is a consequence of satisfying continuity

conditions at the liquid-solid interface (see [10] for justifination). We

will therefore conduct our analysis in a coordinate system formed by

incident and interfacial planes rather than by material symmetry axes. This

expedient leads to a simplification in our algebraic analysis and

computations.

II. THEORETICAL ANALYSIS

1. THE SINGLE PLATE CASE

In this section we present theoretical and experimental studies of the

interaction of ultrasonic waves with generally oriented monoclinic elastic

plates immersed in liquid. The analysis yields exact calculation of the

reflected and transmitted partial waves. The plane of incidence of the

acoustic wave makes an arbitrary angle with respect to material symmetry

axis, resulting in coupling of the equations describing the motion of the

vertically and horizontally polarized waves in the plates. Highly complex

reflection behavior, expressed in velocity dispersion, is observed in the

model prediction. Comparisons are made to extensive experimental data

collected by Chimenti in ultrasonic reflection measurements on a plate of

T300/Ciba-Geigy 914 composite, selected as a model system to test the

theory. Excellent agreement is seen in curves at several azimuthal angles

between 00 and 900, despite the complicated behavior of the propagation.

1.1 Formulation of the problem

Consider an infinite anisotropic plate having the thickness d and

immersed in fluid such that its symmetry axes are oriented originally along

the cartesian coordinate system xi -(x ,x2 ,x3 ). The plane xl-X2 is chosen

7



4

to coincide with the upper surface of the plate, and the x3 coordinate is

normal to it, as illustrated in Fig. 1.1. With respect to this primed

coordinate system, the elastic field equations of the plate are given by the

momentum equations

' 2'
' Ou2
Ox p at2  >(l 1)

and, from the general constitutive relations for anisotropic media,

Oij -Cijk1 ek2 (1.2)

by the specialized expanded matrix form to orthotropic media

* I I I I I

11 CI1 C12 C13 0 0 C16 ell

# I F t I ,

a22 C12 C2 C;3 0 0 C26 e22

# P P 0 I 1

a33 C1 3  C23 C3 3  0 0 C3 6  e3 3  (1.3)

0 0 r 0

023 0 0 0 C44 C45 0 "23

013 0 0 0 C45  C55  0 Y13

012 C16 C;6 C36 0 0 C66 112

where we us.ed the contracting subscript notations 1-11, 2-22, 3-33, 4-23,

5-13 and 6-12 to relate cijkto CPq (i,j,k,l - 1,2,3 and p,q - 1,2 ... 6).

Thus, C55 stands for c1313, for example. Here a e and u. are the

components of stress, strain and displacement, respectively, and p is the

material density. In Eq. (1.3), 1j - 2eij (with i,'j) defines the

engineering shear strain components.
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Since cijkA is a fourth order tensor, then for any orthogonal

transformation of the primed to the non-primed coordinates, i.e., xi to xi ,

it transforms according t"

Cmnop " OM, OnJ Ook OpA co jk (1.4)

where 0iJ is the cosine of the angle between xi and xj, respectively. For a

rotation of angle 4 in the xi -xj plane, the transformation tensor fij

reduces to

coso sino 0

-sino cosO 0 (1.5)

0 0 1

which, if applied to Eq. (1.2) through the relation of Eq. (1.3) yields well

known relations (see Love (38])

a11 C11 C12  C13 0 0 C16 el1

a22 C12 C22 C23 0 0 C26 e22

a33 C13 C23 C33 0 0 C36 e33 (1.6)

a23 0 0 0 C44 C45 0 723

013 0 0 0 C45 C55  0 '13

012 C 16 C26  C36 0 0 C66 f12

where the transformation relations between the C and C entries are
pq pq

listed in Appendix A. Notice that, no matter what rotational angle 0 is

used, the zero entries in Eq. (1.6) will remain zero. In fact, the matrix

of Eq. (1.6), although particularized to orthotropic media, resembles that

of monoclinic media (i.e. media which has x3 - 0 as a plane of symmetry).
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In terms of the rotated coordinate system Xk, we write the momentum

equations as

xJd - t 2  (1.7)

1.2 Analysis

Substituting from Eq. (1.6) into Eq. (1.7) results in a system of

three coupled equations for the displacements ul, u2 and u3. If we now

identify the plane of incidence to be the x1 -X3, as in Fig. 1.1, a formal

solution for the displacements ui can be written as

(ulu 2,U3) - (1,V,W)Uei (xI + ax3 - ct) (1.8)

where f is the wave number, c is the phase velocity (w/), w is the

circular frequency, a is still an unknown parameter, and V,W are ratios of

the displacement amplitudes of u2 and u3 to U1, respectively. Combinations

of Eqs. (1.8), (1.7) and (1.6) yield the matrix relation

C11 _ pc2 + C 255a C16+ C 452 (C13+ C55 )a 1

C16+ C45a
2  C66- pc 2 + C 44 2 36+ C4 5 )a V - 0

(C13 + C55)a (C36+ C45 )a C55- pc2+ C 33 a2 W

Nontrivial solutions for V and W demand the vanishing of the determinant in

equation (1.9) and yield an algebraic equation relating a to c.

This
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equation is reduced (see Appendix B) to a sixth-degree polynomial equation

in a, namely

a6 +Aa 4 + + A3 - 0  (1.10)

2 
Equation (1.10) admits three solutions for a2 which we label as a2, 2 and

2a5 . These lead to six solutions for a which we further label as

a 2 - - al, a4 - - a3 and a - - (. )

Using superposition, together with the relation (1.9), we can relate

the displacement ratios V and W for each a as
q q q

F 23(F+ ) - (F12+ C 45 )F 3
F - - ( (1.12)

q F (F+ C 1 (F Ca 2)F
q F 3(F22 + C4 4 q)  12+ 45q 23

F23(F 1+ C55 a) - (F1.2 + C45a )F13
W q - a q F 2  2 q - 1,2.. .6 (1.13)

where Fst ,s,t- 1,2,3 are defined in Appendix B. Combining Eqs. (1.12) and

(1.13) with the stress-strain relations Eq. (1.6), we rewrite the formal

solutions for the displacements and stresses as

6 i (x1+aqx3 -ct)
(Ulu 2 ,U3) - Z (1, V q,W q)Uq e (1.14)

q-q

6 i (x1+ qX3 - ct)
(a33,a13,a23 -Z (Dlq D2qlD 3q)Uqq (1.15)q-1 DqD~)q

where

D C1 3
+ C36 V +C 3 3 a .J (l.16a)

lq 1 36q 33q q

D2q- C55 (aq+Wq) + C4 5 aq Vq (1.16b)

and
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D3q -C45 (aq+ Wq) +C44 aqVq , q - 1,2,..., 6 (I.16c)

With reference to Eq. (1.11) and by inspection of Eqs. (1.12) - (I.16c) one

deduces the relations

V2 - VI, V4 - V 3 V6 - V5  (l.17a)

W2 - -Wi, W4  -W3 W6 - -W5  (l.17b)

D - Dill D14 D 13, D16 - D 15 (l.18a)

D22 D 21' D24 - -D23, D2 6 - 25 (1.18b)

D - -D31' D - -D33' D36 -- D35 (1.18c)

1.3 Derivation of reflection and transmission coefficients

To determine the reflection and transmission coefficients for plane

waves incident from the fluid onto the plate surface at an arbitrary angle 0

we need to obtain general solutions for the upper and lower fluids similar

to those of Eqs. (1.14)'and (1.15). Recognizing that the fluid does not

support shear deformation, its field equations reduce to

Pii_ 2f (1.19)
axj 0t2

=(f) _ )

'ij - Af ! TS ij - 1,2,3, (1.20)

where both equations hold only for i-j; pf and Af are the fluid density and

Lame' constant. If the wave is assumed to be incident and hence reflected

in the upper fluid and transmitted into the lower fluid, then using similar

analysis to that of the plate yields, for the upper fluid,

ik+l
() 2 (u 2(u [xl+("1 k fx3ct]

, ) 2 , k pfc )u 1 e (1.21)

k-I
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and for the lower fluid

(1) 2 (A) i [x + af(x3d)-ct]

(Ulu 2,U3, a33) -(l,0,affiPfC )U e f 3  (1.22)

where

W(U) W(u)- _a (1.23a)
1 f' 2 f

2 .1
22

- ,2 -1) (Pf (1.23b)
cf
Cf

Notice the vanishing of shear component u2  in both the upper and lower

fluids.

By invoking the continuity of the normal displacements and stresses at

z - 0 and z - d and setting the solid shear stresses a13 and a23 equal to

u
zero at z - 0 and z - d we obtain, for a given incident amplitude U1, a

system of eight linear simultaneous equations for the amplitudes U(U), UA

U1, U2, U3, U4, U5 and U6 is obtained. Solving these equations with the

help of the relations (1.17) and (1.18) and applying rather lengthy

algebraic reductions and manipulations, we derive the following expressions

for the reflection and the transmissibn coefficients

U(u) 2

R U2A (1.24)

T " )iY(S+A) (1.25)

where

S - DI GIcot(yI) D 13G3cot('3 ) + D155cot(7a5) (1.26a)
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A - D11Gltan(-ycl) - D13G3tan(a 3) + D15G5tan(Ia5) (1.26b)

2

Y -- f- (W1G1 -W 3 G3 
+ W5G5 ) (1.26c)

with

G1 - D23D35 - D33D25  (1.27a)

SG3 - D2 1D3 5 - D31D2 5  (1.27b)

G5 - D2 1D3 3 - D31D23 (1.27c)

7 - Cd/2 - wd/2c. (1.27d)

1.4 Results and discussions

Except for the more complicated definitions of the functions S,A and

Y, the expressions R and T resemble those reported in our earlier paper

[34], and our notation was chosen for consistency with this previous

calculation.

The expressions of Eqs. (1.24) and (1.25) for the reflection and the

transmission coefficients contain, as a by-product, the characteristic

equation for the propagation of modified (leaky) guided waves in the plate.

We refer to such waves as plate waves [34] rather than Lamb waves, whose

properties were derived originally by Lamb [39] for isotropic solids in the

absence of the fluid. Setting either denominator equal to zero, namely

(S+iY) (A-iY) - 0 (1.28)

defines the characteristic equations for such waves, where the vanishing of

the first term corresponds to symmetric and the second to antisymmetric mode

propagation. In the absence of the fluid, i.e. for pf(or Y) - 0, Eqs.

(1.28) reduce to SA - 0 which is the characteristic equation for Lamb-like

waves in the orthotropic plate.
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For the special cases of propagation along axes of symmetry (in the

present example - 0* or 90°), the off-diagonal tensor components C16 ' C26 '

C36, and C45 vanish in Eq. (1.6). The implication is that the displacements

u2, out of the xI-x3 plane, go to zero, thereby confining all particle

motion to the plane of incidence. This result is equivalent to the

decoupling of the wave equations for vertical and horizontal shear motions

in the plate, noted by us and other authors in treating anisotropic plates

(23,34]. In addition, the secular equation (1.10) for the x3 -component of

the wavevector factors and reduces to the lower dimensional result presented

in our earlier analysis [33,34]. In fact, for symmetry axis propagation we

recover entirely our previous results for the reflection coefficient from

the fluid-coupled composite plate.

In comparisons between the results of many measurements at several

azimuthal angles and the model calculation, we have concentrated our

attention, as in previous investigations (33,34], on the reflection

coefficient. Since the basis of the experimental data is an amplitude

signal in the reflected field of the incident beam, we calculate the plane-

wave reflection coefficient for the plate and investigate it for the same

type of behavior as we observe in the measurements. In addition to direct

comparisons of amplitude spectra, we have also expressed our results as

dispersion-like curves, where the results correspond to functions

conditioned by the reflection coefficient. The theoretical dispersion

curves are based on the occurrence of total transmission for given Fd and

incident angle. Numerically, the curves are generated by searching Eq.

(1.24) for the mirima in the magnitude of the reflection coefficient which
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are accompanied by a rapid reversal in its phase. Both of these aspects of

our studies are presented below.

A finite ultrasonic beam is composed of a range of plane wave

components which define its angular spread,

#(x) - 8(e)exp(-2riex)d (1.29)

where 6(x) is the one-dimensional real space incident beam profile, x is a

coordinate perpendicular to the beam direction, and the caret denotes

Fourier transform. When such a finite beam interacts with a plate, each

Fourier component of the incident field will contribute to the reflected

field, weighted by the appropriate value of the reflection coefficient for

that f. The resulting expression for the reflected field is given by

A(Fd,xi) - f ()R(,Fd)exp[-2wi (x l-fx3)]d4 (1.30)

where R( ,Fd) is the reflection coefficient from Eq. (1.24) for the

composite plate. The expression of Eq. (1.30) evaluated over frequency is

an approximation to the experimental spectrum of the plate, if the beam

profile O(x) is chosen to represent the incident beam. We have performed

such calculations for a variety of experimental conditions. Some typical

comparisons are contained in Figs. 1.2(a)-(d).

Figure 1.2(a) shows the measured and predicted spectra from 1 to 8 MHz

for an incident angle e - 120 and azimuthal angle 0 - 300. The two curves

have been vertically scaled, but in no other way adjusted. The solid curve

is the expression of Eq. (1.30), and the dashed curve is the experimental

data deconvolved to remove transducer response. Positions of the deep

minima in the two curves are nearly coincident, as we have observed for

propagation in the fiber direction [34]. We conjecture that the additional

shallower sharp dips, some of which do not appear in the data, arise from
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the coupling between vertical and horizontal shear displacements which

occurs for propagation in a general azimuthal direction. At 9 - 280 and 4 -

150 in Fig. 1.2(b), similar results are found, where the general trend of

the data is well reproduced by the model calculation. In particular, the

two shallower minima between 2 and 4 MHz are given fairly accurately by the

prediction. This structure disappears for 4 - 00, leaving only the deep

minima at 1.9, 4.3 MHz, and beyond. Holding the incident angle constant and

incrementing 0 to 300, the structure of the curve has evolved in Fig. 1.2(c)

with the two minima near 3 MHz approaching each other more closely and

deepening considerably. These features are also seen in the model

calculations. In the final frame, Fig. 1.2(d), results are given for 0 -

240 and 4 - 900. This case corresponds to symmetry axis propagation, and

therefore the complex structure of the previous examples is largely absent.

The positions of the minima are well modeled by the theory, whereas the

minor differences in the lineshape details may be attributed to wavefront

distortion and sound absorption, neither of which is considered in the

model.

Taking the results of the many dozens of Cmimenti's experimental

spectra such as those shown in Fig. 1.2 and recording the minima as a

function of the incident angle (expressed through Snell's law as a phase

velocity), yields a dispersion-like plot of the ultrasonic reflection

behavior. In previous work [34,41] we demonstrated that the hypothesis of

Cremer [42] concerning the coincidence of reflection minima with the

excitation of Lamb wave modes is not well satisfied in all regions of plate

wave dispersion in graphite-epoxy composites. Therefore, although we

present these data in the manner of a velocity dispersion curve, it must be

stressed that it is the reflection properties which are being reported.
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Figure 1.3(a) shows data acquired in the current study at an azimuthal

angle 0 - 00 plotted together with the results of the analytical prediction

derived by examining the behavior of the reflection coefficient, Eq. (1.24).

To obtain the theory curves rapid phase variations in the reflection

coefficient, generally indicative of total transmission, have been recorded

as a function of Fd for many values of phase velocity. These calculations

are presented as small filled circles which coalesce into solid curves over

most of the plot. In some cases to be discussed a dashed line has been

added as a guide to th3 eye. In Fig. 1.3(a) the data, plotted as discrete

crosses, are in excellent agreement with the prediction of our new, more

general model. All features of the data from 8 - 120 to 0 - 400 are well

explained in the model. Propagation in the other material symmetry

direction - 900 is shown in Figure 1.3(b). Here the results reflect the

substantial effective softening of the composite as the fiber axis is

rotated out of the plane of incidence. Therefore, we observe a marked

reduction in the phase velocities at which certain features occur. The

vertical intercept of the curve, which is similar to the S0 mode, is seen to

be near c - 2.2 km/sec. Likewise, the point of diminishing slope of some
p

of the higher order curves is much lower here than for - 00 as in Fig.

1.3(a). In fact, the behavior referred to is not even visible in Fig.

1.3(a) because it occurs above c - 9.8 km/sec.p

For a transversely isotropic material, setting - 900 implies that

elastic behavior in the plane of the incidence (x- x' plane) will be

isotropic. An important experimental finding by Chementi of the present

study is the suggestion that transverse isotropy is not an appropriate

symmetry class for the eight-ply Thornel/Ciba-Geigy composite sample we
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studied. Our result on the inequality of Ci2 and 93 stands in contrast to

previous investigations, both mechanical (43] and ultrasonic [441, on thick-

section T300 - 5208 unidirectional composite. In these earlier studies the

ratio Ci2193 was measured to be within 2% of unity. Because of the method

of fabrication of these materials in which compressive stresses are exerted

on the surfaces of the curing composite, fibers might tend to be distributed

nonuniformly in the plate. That is, the number of fibers per unit length in

the xi direction could be higher than the same quantity in the xi direction

(refer to Eqs. (1.1)-(1.3)). Our experimental data for 0 - 900 are

consistent with the above interpretation and draw us to the conclusion that

orthotropy is the correct symmetry class for thin sections of this material.

Since the elastic constant denoted Ci2 in Eq. (1.3) is difficult to measure

independently, we have inferred this quantity from our reflection data and

the model calculation. The results of this evaluation yield a ratio of C'

to Ci3 of 0.72. Once this adjustment in Ci2 is made, all subsequent

comparisons at intermediate values of 0 are carried out using this same

constant. Here we note that Ci2 does not influence the propagation behavior

along - 00, and hence this issue was not encountered in our previous work

[34]. In our calculations we use the qraphite- epoxy material properties

listed in Ref. [40].

If we now depart from the principal axis directions, the reflection

behavior becomes substantially more complicated, as can be seen in Fig.

1.4(a) for 0 - 300. The simple structure of Fig. 1.3(a) is replaced by

curves which split apart, rejoin, and cross over each other. Throughout the

range of the measurements, relatively good agreement with the theory is
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apparent. Although interpretation of these results is delicate, we may note

a few consistent trends. As the fiber direction is rotated out of the plane

of incidence, the effective material constants begin to soften, causing the

phase velocity intercept of the S0 -like curve to decrease, as in Fig.

1.3(b). In Fig. 1.4(a) that velocity is about 8.5 km/sec, whereas the value

is 9.8 km/sec for propagation along the fibers. Moreover, an additional set

of curves seems to have nucleated, in agreement with our calculations and

data starting as low as 0 - 150. These general features will be seen to

persist in the results for higher values of 0 as well.

Comparison of measurement and theory for * - 450 is contained in Fig.

1.4(b). As expected, the intercept velocity has decreased to about 7

km/sec, and behavior of even higher complexity has appeared above this

value. The series continues with 0 - 600 in Fig. 1.4(c), where the overall

pattern established earlier is evident here also. Finally, in Fig. 1.4(d)

for - 750 we have the last of the comparisons. The intercept velocity

here is near 3.4 km/sec, nearly a factor of 3 below its 0 - 00 value. These

curves contain an almost unbelievably rich variety of reflection phenomena,

considering the relatively simple form of the 0 - 00 curves in Fig. 1.2(a).

As we have stated earlier, it is our conjecture that these additional

features arise from the coupling of the vertically and horizontally

polarized waves, which are independent for propagation along principal axes.

We note in closing this section that in all these comparisons, but

especially Figs. 1.4(c) and 1.4(d), agreement between measurements and

theory is not simply a matter of general trends. Excellent detailed

agreement is seen over most of these-plots, in spite of the richly complex

behavior observed for a general azimuthal angle. This observation lends

confidence in the validity of the theoretical approach.
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1.5 Free waves in monoclinic plates

In a recent paper [45], we developed the analysis for the propagation

of free wares in a general anisotropic plate and presented numerical results

for some special cases of interest. We began with a formal analysis for

waves in a plate belonging to the triclinic symmetry group (the most general

with 21 independent elastic constants). The calculation was then carried

forward for the slightly more specialized case of a monoclinic plate (13

independent elastic constants), where the surface of the plate is parallel

with the single plane of mirror symmetry in this material system. We

derived the secular equation for this case in closed form and isolated the

mathematical conditions for symmetric and antisymmetric wave mode

propagation in completely separate terms. Material systems of higher

symmetry, such as orthotropic, transversely isotropic, cubic, and isotropic

are contained implicitly in our analysis. The equivalent crystal systems of

monoclnic, orthorhombic, hexagonal and cubic may be substituted for the

elastic material systems analyzed here. We demonstrated numerical free wave

dispersion results drawn from concrete examples of materials belonging to

several of these symmetry groups. For orthotropic and higher symmetry

materials where the remaining two principal axes lie in the plane of the

plate, it was shown that the particle motions for Lamb and SH modes uncouple

if propagation occurs along either of these in-plane axes.

1.6 The case of a 2late seDeratin& a liguid from a vacuum

In another recent paper (46] we derived an exact expression for the

reflection coefficient of an orthotropic plate, which is loaded on a single

surface by a fluid medium while the second surface is stress free. For this

case, we assumed guided wave propagation along a principal axis in 'he

plate. We found that the reflection coefficient for this case can be
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expressed in terms which are identical to the case of a fully immersed

plate, namely expressions (1.26) and (1.27) . Furthermore, it bears a

strong formal resemblance to the reflection coefficient of the fluid-coupled

halfspace, in particular as far as the role of the fluid is concerned. From

the results derived we obtained the solution for an isotropic plate to

compare with experiments.
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2. BIAXIALLY LAMINATED COMPOSITE PLATES

This section presents the analysis of biaxially laminated plates

utilizing water as a fluid coupling medium. Here the stacking sequence of

the individual laminae is restricted such that in each layer a principal

material axis lies in the incident plane of the acoustic wave. In what

follows we shall use the transfer matrix approach to derive our results.

Specifically we derive the reflection and transmission coefficients from

which the characteristic behavior of the system is identified. Results are

presented both as reflection spectra and dispersion curves. In general, very

good agreement is found between prediction and experiment. Moreover,

significant changes in the reflection spectra are observed, depending on the

layer ordering in the composite plates. In the next section we summarize

the theoretical calculation, followed by a comparison with the concurrently

acquired experimental date of Chimenti.

2.1 bna~ysisa

Consider a plate consisting of an arbitrary number n of monoclinic

layers rigidly bonded at their interfaces and stacked normal to the x3

direction of a cartesian system xi - (X1 ,x2,x3). Hence the plane of each

layer is parallel to the x1 -x2 plane which is also chosen to coincide with

the bottom surface of the laminated plate. The stacking of the layers is

restricted, however, such that the x1 and x2 directions coincide with their

principal axes. Thus, for a plate constructed from several uniaxial fibrous

composite lamina of the same material, only 0 and 90 lay-ups are allowed.

In this section, we derive exact analytical expressions for the reflected

and transmitted fields of an acoustic wave incident from a surrounding fluid
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onto the plate. The wave is restricted to propagate along one of the in-

plane symmetry axes of the plate. Sufficient generality is maintained such

that the solutions obtained will include, as special cases, those pertaining

to higher symmetry materials.

Using our homogeneous, monoclinic plate analysis as a starting point

we introduce, for each layer k, a local coordinate system x (k) with origini

at the interface between layers k-l and k. Hence layer k occupies the space

0 ' xSk) d(k) where d(k) is its thickness. Thus the laminated plate has
n (k

total thickness d - Z d(k).

k-l

With this choice of coordinate system and the restricted propagation

directions mentioned above, the displacement will reduce to a two-

dimensional vector. In-plane transverse motion will vanish, and the

remaining field variables will be independent of x2. The relevant field

equations for each layer will thus consist of

aijj - Pui ij - 1,3 (2.1)

and the constitutive relations

aij - Cijkeki , (2.2)

appropriately specialized to the two-dimensional case of propagation in the

x1 -x3 plane. Appropriate field equations for the fluids can be similarly

written by noting that fluids are isotropic and cannot support shear

deformation.

The field equations in the solid and fluid media must be supplemented

with the appropriate interfacial continuity conditions. At the fluid-plate

interface, x3 - 0 and x3 - d, the appropriate continuity conditions are
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V (f) U u (f) (2.3)

13 -, 333 33 3 u 3

whereas at the lamina interfaces they are

(k) (k+l) (k) (k+l) (k) (k+l) (k) (k+l)
u" ,u 3  u3  a 33 a 33 13- a13 (2.4)

In what follows we shall describe the propagation process in the

system. For each layer k, equations (2.1) - (2.2) are combined into two

coupled equations in uI and u3 and a formal solution in the form

(ulu 3 ) - (U,W)ei((xl+ax3 "ct) (2.5)

where U and W are displacement amplitudes, is the x1 wave number, c is the

phase velocity and a is the ratio of the x3 and x wave numbers. For

nontrivial solutions, one obtains a characteristic equation for a. This

equation admits four solutions and, by using superposition, one finally

obtains

4 
4f , a - t)t

("pu-VI33 'a13) E (l,W DlpD 2p)kp ( pX3 , (2.6)

where the index p assumes the values 1,2,3,4 and a is the solution of

Aa4 + Ba2 + C - 0 (2.7)

with

A C 33 C55

2 2 2B (C11 -pc)C 33 + (C55 -pc)C 55  (C13 + C55)

C -(Cill- pc2)(C55 - pc2)

and, for each ap

pc I

PC a

w 11 55 pR
p (C1 3 + C5 5 )a p
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Dlp C13 + C3 3apWp

D2p -C 5 5(a p + Wp) a j - oij/i (2.8)

Equation (2.6) can be used to relate the displacements and stresses at

x(k) - 0 to those at x(k) - d(k). This can be done by specializing (2.6) to
3 3

x(k) - 0 and to x(k) - d~k) , and eliminating the common amplitude column

made up of UI,U2, U and U4 resulting in

(F i) x (k) - d(k) - [aij]k(Fj) (k) - 0 (2.9)

3 3

here Fi, for i - 1,2,3, and 4, designates the field variables ul,u 3, a33

a 13, respectively. Here the summation convention on repeated indices i and

j hold and

BI B2  B3  B4  1 1 1 1 -1

W 1B1 W2B2 W3B3 W4B4  WI W2  W3  W4

[aijIk - (2.10a)

D11BI D12B2 D13B3 D14D4 D11 D12 D13 D14

D12B1 D22B2 D2 3B3 D2 4B3  D2 1 D2 2 D23 DI4

and

B - e pc d , p - 1,2,3,4 (2.10b)

By applying the above procedure for each layer and invoking the continuity

relations (2.4) at the layer interfaces we can finally relate the

displacements and stresses at the top of the layered plate to those at its

bottom via the transfer matrix multiplications [37]

[Au] - [aijn [a ijnl . .[aij]l (2.11a)
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resulting in

(Fi)x3 d - [AijI(Fj)x 3_O (2. lib)

2.2 Derivation of reflection and transmission coefficients

Now, in order to satisfy the remaining continuity conditions (2.3) at

the plate-fluid interfaces, we need to solve the field equations in the

fluid. By inspection, such solutions can be deduced from the formal

solution (2.6). First, due to the absence of shear deformation,

specializing (2.6) to the upper fluid half-space yields
r 1

(u) 1 U(u)eifaf(x3"d) ei(x I - ct)

(u) I1 e
u3  - af -af Ue-i 0f(x3-d) (12a)

H(u) 2 2
33 pfc Pfc

.where

02 _ (c 2 /2 11 (u) - a(h 21b
f /f) 33 3,

Here, U(U) is the constant amplitude of the incoming wave and u(U) is1 2 that

of the reflected wave. Also, the sub and superscripts u denote quantities

belonging to the upper fluid. Similarly, for the lower fluid the response

can be obtained by analogy with the upper fluid's response given by (2.12a)

and by concurrently satisfying the requirement for bounded solutions so that

U( ] - Ufc] tb)ei(x I + afx3 - ct) ,(2.13)

3 f I

where I denotes the lower fluid.
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Subjecting the solutions (2.12a), (2.13) and (2.6) to the continuity

conditions (2.3) while identifying the superscript (f) with (u) and (A) at

x3 - d and x3 - 0, respectively finally yields the reflection and

transmission coefficients

M2 1 + QM2 2 - Q(M11 + QM1 2)
M 2 1 + QM2 2 + Q(Mll + QM1 2)

T - 2QM2 1  (2.14b)
21 + QM2 2 + Q(MII + QM1 2 )

where

2

Q - Pf2 (2.15a)

M11 M12" 'A21 A 22 A 23' A42 -A 43

A A41 0 (2.15b)

M21 22 A31 A32 A 33 0 A41

2.3 Results and discussions

Since ultrasonic reflection behavior in biaxial composites is

dependent on details of the layering, we present our results primarily as

frequency spectra from which dispersion curves could be developed. An

example of experimental and theoretical curves for a four-layer biaxial

composite [02,902]s (pictures of which are shown in Fig.2.1) are depicted in

Fig. 2.2. The dashed curve is the measurement, while the calculation is

demonstrated as a solid curve. Only the relative amplitudes of the two

curves have been scaled, since absolute reflectance has not been measured.

a

An incident angle of 16 is selected, and the fiber direction in the upper

28



layer is in the incident plane. The comparison between experiment and

theory is very good; nearly all details of the data are reproduced by the

calculation.

Figure 2.3 shows the result of rotating the incident plane by 90 while
0

maintaining a 16 incident angle, so that the upper fiber layer is

perpendicular to the wave propagation direction. The experimental

reflection spectrum is markedly different, both in appearance and precise

location of the minima. Yet the model calculation follows the data very

well. This case, and many others we have examined, exemplify the complexity

and non-intuitive nature of the results in layered anisotropic materials.

Clearly, a simpler model in which the mechanical properties are averaged

through the plate thickness would be unable to account for the difference

between the data in Figs. 2.2 and 2.3. A further comparison at an incident
0

angle of 20 is shown in Fig. 2.4. The solid curve is theory, and the

dashed curve is the normalized data for the [02,9021s sample with the top

layer fibers in the incident plane. Once again good agreement is observed 0I
in this direct comparison. Rotation of the incident plane through 90

demonstrates a similar strong variation of the reflection spectrum, as seen

in Fig. 2.5. No minimum in Fig. 2.5 coincides with one from Fig. 2.4. The

structure of the curve is completely different, but the agreement between

measurement and prediction is still very good. In Fig. 2.5 we see that the

theory curve has sharper features than the data, as expected for the plane-

wave reflection coefficient.

A much more complicated situation is presented by a 12-ply sample having

an alternating structure in each layer. The lay-up scheme is [0,90]3 s . No
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special care has been taken in the preparation of this sample or the other

biaxial lay-up, and therefore some discrepancies between data and prediction

can be attributed to this source. However, even with this proviso the

significant features of the experimental data are well reproduced by the

0

theory curves. Figure 2.6 shows measurements for an incident angle of 22

with the upper layer fiber direction in the incident plane. In Fig. 2.7 the

0

incident plane is rotated 90 . Comparison of these two cases reveals that

even with as many as 12 alternating layers, the order of the anisotropic

layers is still important. The minima near 1 and 2 MHz are basically

constant between Figs. 2.6 and 2.7, but significant differences in the

successive structure of the curve minima occur above 2 MHz. These

variations can be attributed only to the order of layering, a relatively

surprising result since only the slow transverse quarter wavelength in the

90-degree layers is approaching the layer thickness.

0 0

At an incident angle of 30 with 0-0 in Fig. 2.8 comparable results

are achieved, where the theory curve follows the data rather closely, except

near 4 MHz. The small amplitude oscillations on the peaks of the

experimental curve at 3.5 and 4.8 MHz are artifacts which have been caused

by overlap reflections from the water surface in the tank. In Fig. 2.9 with

the fiber direction perpendicular to the incident plane the curve structure

below 2.2 MHz repeats that of Fig. 2.8, but substantial differences in the

reflected field amplitude appear at higher frequency values, as in the

0

previous spectrum pair for 9-22

For the case of the biaxially laminated composite samples, dispersion

behavior is clearly structure-dependent. However, by way oZ illustration we
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present experimental and theoretical dispersion curves for the (02,902]s

0

plate in the 0-90 direction in Fig. 2.10, where the phase velocity has been

inferred from the incident angle. We have shown previously (33,34] that in

low density materials like graphite-epoxy composites reflection-derived

dispersion curves can deviate significantly from solutions of the

characteristic equation contained implicitly in Eq. (2.14a). Evidence of

that deviation can be seen in the data (open circles) and theory (solid

line) in the lower left portion of Fig. 2.10, where the lowest order mode

appears to turn back on itself. In general, agreement between measurement

and calculation is good, as expected on the basis of the comparisons

presented for reflection spectra in Figs. 2.2-2.9. However, it should be

emphasized that the curves in Fig. 2.8 are not universal; that is, they are

dependent not only on the elastic properties of graphite-epoxy. If the

laminate structure or layer ordering changes, the dispersion behavior will

vary accordingly.
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3.MLTILAYERED ANISOTROPIC PLATES

In this section we generalize the results of both of our earlier

sections to the case of a plate consisting of an arbitrary number of

arbitrarily oriented anisotrpic layers. Each of the individual layers is

allowed to possess up to as low as monoclinic symmetry. The plate is

assumed to be immersed in a fluid and subjected to incident acoustic waves

at arbitrary angles from the normal as well as at arbitrary azimuthal

angles. Solutions are obtained for the individual layers which relate the

field variables at the upper and lower layer surfaces. The response of the

total plate proceeds by employing the matrix transfer method (37] which

require satisfying appropriate interfacial conditions across the layers.

The reflection and transmission coefficients of the total system will are

derived from which all of the propagation characteristics are readily

extracted. Our results are rather general and contain a wide variety of

special cases.

3.1 Analysis

Consider a plate consisting of an arbitrary number n of anisotropic

layers, each possessing up to as low as monoclinic symmetry, rigidly bonded

at their interfaces and stacked normal to the x3 axis of a global orthogonal

Cartesian system xi - (Xx 21x3 ) . Hence the plane of each layer is

parallel to the x1 -x2 plane which is also chosen to coincide with the bottom

surface of the layered plate. To maintain generality we shall assume each

layer be arbitrarily oriented in the x1 -x2 plane. In order to be able to

describe the relative orientation of the layers we shall assign for lach
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layer k, k - 1,2,...,n, a local cartesian coordinate (xi)k such that its

origin is located in the middle plane of the layer with (x3)k normal to it.

Thus, layer k extends from -d(k)/2 s (x3 )k : d(k)/2 where d
(k ) is its

thickness. According to this notation the total thickness of the layered

plate d equals the sum of the thicknesses of its layers, and hence the

plate occupies the region 0 : x3 : d. Equivalently, the orientation of the

kth layer in the xi space can be described by a rotation of an angle 0k

between (xi)k and x . With this , once all orientation angles Ok are

specified the geometry of the plate will be defined.

Without any loss in generality we shall assume that a plane wave is

incident in the xI-X3 plane on the plate from the upper fluid at an

arbitrary angle. The problem here is to study the reflected and transmitted

fields. We therefore conduct our analysis in a coordinate system formed by

incident and reflected planes rather than by material symmetry axes.I!
Accordingly, the primed system (xi)k rotates with one material symmetry axes

while the global unprimed system xi remains invariant. As was pointed out

in the introduction this approach leads to significant simplification in our

algebraic analysis and computations.

In what follows we use the analytical procedure of section 1 in order

to construct a transfer matrix for each layer k. This matrix relates the

displacements (ui)k and stresses (aij)k of one face to those of the other of

layer k. Using our earlier analytical procedure, the formal solutions for

each layer can be adapted from equations (1.14) and (1.15) which hold for
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each layer and can be used to relate the displacements and stresses at (x3)k

- -d(k)/2  to those at (x3)k - d(k)/2 . This can be done by specializing

these equations to these two locations, eliminating the common amplitudes

U1 .... U6 and after rather lengthy algebraic reductions and manipulations we

obtain (with the summation holding)

F+ - a F ,p,q - 1,2,...,6 (3.1)
P Pq q

where F stand for the variables column .u[,U,uu 3,a33 a13 23 ± specialized

to the upper and lower surfaces of the layer, k, respectively, and

[a pqk - [T psB sq]k (3.2)

where

1 i 1 i 1 i

V1  iVI  V3  iV3  V5  iV5

, I I

iW1T1  W1T1  iW3T3  W3T3  iW5T5  W5T5

T - (3.3)T iD D1 0 iD13  D15  iD1 5

iD2 1T1  D2 1T1  1D2 3T3  D2 3T3  1D2 5 T5  D2 5T5

D3 1T1  D3 1T1  iD3 3T3  D3 3T3  iD35T5  D3 5 T5

Here, Bsq is obtained from the above matrix Tps by replacing i by -i as it

explicitly appears and inverting the resulting matrix in Eq. (3.3)

T - - cot( Q d/2(k)) r - 1,3,5 (3.4)
r r r
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The matrix [apq]k constitutes the most general transfer matrix for the

orthotropic layer k. It allows the wave to be incident on layer k at an

arbitrary angle from the normal x3 or equivalently (x3)k and at any

azimuthal angle 0. Matrix transfer for higher symmetry material such as

transversely isotropic, cubic and isotropic can be obtained from Eq. (3.2)

as asymptotically limiting cases. Furthermore, if the wave happens to

propagate along an in-plane axis of symmetry of layer k (namely for k " 0 °

or 90*) results for such a case can be obtained from (3.2) in the limit.

Strictly speaking Eq. (3.2) does not hold in its present form if 0k is

identically 0* or 90*. This is of course due to the presence of the

superflous coupling (as implied by Eq. (3.1)) between the equations

describing the horizontally polarized wave (SH) and the Lamb wave. The

matrix transfer technique then yields, via the continuity of displacements

and stresses at the various layer interfaces, the response vector at x3 - d

in terms of the response vector at x3 - 0

Fp(d) -Apq Fq(0) (3.5)

where

[A pqI - [ap In [ajknl ,- [a rql - (3.6)

Using superposition and the stress-strain relations (6) we finally obtain

the formal solutions

3.2 Too Fluid Boundary

The plate we consider separates a top fluid half-space from the bottom

bounding media. To maintain generality we here consider a different fluid or

a vacuum as choices for the bottom bounding medium. The input wave is

assumed to be originating in the top fluid half-space and incident on the

plate at an arbitrary angle from the normal. The displacements and stresses
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within the top fluid are given by properly specializing (1.14) and (1.15)

and recognizing the absence of shear deformation within the fluid so that

u(U) 1 1 (u) eiqeu (z3 -d)

W(u) - U "U1 e(xoct)
-(u) 2 2 (u) e.iqa(z 3 d) e (3.7)

a Pu C Pu c U 2  u3

where a- (c 2/c) - 1, u(U) is the constant amplitude of the incoming wave,
u uc /1U

U(u) is that of the reflected wave and the sub and superscripts u denote

2

quantities belonging to the fluid. The continuity conditions at the plate-

fluid interface are given by

w~)=~n o(u..c(n) c(n)_, c(n)_,. at d. (3.8)

3.3 Bottom Bounding Fluid

If the bottom bounding medium of the plate consists of a different

fluid, then its formal solution consists of the transmitted component and is

given by

u (b) 1

w(b) () e b)ie(Xl-Ct+b 3) (3.9)

-(b) 2
01 ZPb c

With this, the appropriate interface conditions at the bottom of the plate

are

w(1 ) - w(b)' a()- a (b) ' a(I) , a(I) - 0 , at x - 0. (3.10)

Combinations of Eqs. (3.7) and (3.10) yield the following expressions for

reflection and transmission coefficients

(M2 1 + QbM 2 2) - Qu(Mll + QbMl2)
(M 2 1 + QbM 2 2) + Qu(MII + QbM12)

T -
2Qb(A51A6 2 - A61A5 2) (3.11b)

(M21 + QbM2 2 ) + Qu(MI + QbMI2)
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where

A31 A32 A33 A31 A32 A34

H1 1 - det A51 A52 A53 M12 - det A51 A52 A54 (3.12a)

A61 A62 A63 A61 A62 A64

and
2 2

P u c Pbc

(3 1 c

Qu - - 51 (3.12b)

The results pertaining to the bottom free conditions (i.e., the absence

of a bottom bounding media, in essence a vacuum) can be easily obtained from

those corresponding to the above case of a different fluid bounding media by

setting Qb - 0. This results in

R - (3.13a)

M21 + QuMll

T - 0 (3.13b)

as expected.

3.4 Qualitative description of results

So far we have derived expressions for the reflection and transmission

coefficients for multilayered plates consisting of an arbitrary number of

anisotropic layers. Specifically, equations (3.11) and (3.13) list results

obtained for such plates bounded by an upper fluid and whose bottom bounding

medium consists of either a different fluid or a vacuum , respectively.

Results for propagation along axes of symmetry can be obtained

asymptotically from the general results. The expressions (3.11) and (3.13)

for the reflection and transmission coefficients contain, as a by-product,

the characteristic equation for the propagation of modified (leaky) free
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waves on the corresponding media. The vanishing of the denominator in Eq.

(3.11), namely,

(M2 1 + QbM2 2 ) + Qu(MII + QbMl2 ) - 0 (3.14)

defines the characteristic equation for such waves on a plate separating two

different fluids. By setting Pb - Pu we get results for the free waves on

orthotropic plates immersed in a single fluid. Furthermore, in the absence

of both fluids Eq. (3.14) reduces to

K2 1 - 0 (3.15)

which defines the characteristic equation for the propagation of free

natural waves on a dry multilayered plate.

By setting Pb - 0 (i.e., Qb - 0) Eq. (3.14) reduces to

M 21 + OuM1 1 - 0 (3.16)

which defines the characteristic equation for free waves on the plate with

one side of it kept free.
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Appendix A

C11 - Cl G 4 + C2 2S
4 + 2(C + 2C6 6 )S 2G2

0111 22 -2 6666 -
C12 (Cl + c2 -4C66S2 G2 + C12 (S4 + G

4 )

C C' 
2 + ' 2

13 13 23
V I 3 P p p 3

c - - 2C ' S c, 2 + 2C66)GS3
16 - (Cl C12 2C6 6 )SG + 12 2 66

'4 '6)2G2 ' 4
C 22 -CllS + 2(C12 + 2C66) + C22G

C23  c2 G + C13S2

2 ' 3 + 2 ' 3

26 (Cl C12 - 2C6 6 )GS + (C1 2 - C2 2 + 2066 )SG

C33 C33

C36 - (C2 3  C13)SG

c45 - (C44 - 05 5 )SG

' 2 ' 2
C - C G 2+ C S2
44 44 55

0 -c G 2 +0' S2

55 55 44

(C , )2S2G2 (S4 G4 )

66 - ( 1 1 + 2 2  12 C6 6) + C6 6  +

Where G - cos 0 and S - sin .
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Appendix B

The coefficients of Eq. (1.10) are given by

A1 - (P1F11 + P2C55 - P4F1 2 - P5C 4 5 + P7F13)/A

A2 - (P2F11 + P3C5 5 - P5F1 2 - P6C45 + P8F13)/A

A3 - (P3F11 - P6F12)/A

A- PIC 5 5 - 4C45

P 1 "C 4 4C5 5 ; P3 'F 2 2F3 3

P2 F F23C33 + F3 3C4 4 - F23

P4 " 33C45 ' P6 - F12F3 2

P5 F C P 45 F 3F 23

P 6 F 23C45 F1 3C4 4 ; 7 " 12FF23 F13F22

F1 1 -C 1 1 -pc 2

F12 - 16

F13 . 13 + C55

F2 2 - C6 6 -

F2 3 -C 3 6 + C4 5

F33 -C 5 5 - pc
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