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- ABSTRACT

We present a unified analytical treatment of the interaction of
ultrasonic waves with single and multilayered arbitrarily oriented
anisotropic elastic plates. The individual components forming the plate are
allowed to posses up to as low as monoclinic symmétry. The plates are
assumed to be immersed in a fluid and subjected to incident acoustic waves
at . arbitrary angles from the normal as well as at arbitrary azimuthal
angles. Reflection and transmission coefficients are derived from which all
propagation characteristics are identified. Highly complex reflection
behavior, expressed as phase velocity-frequency dispersioﬁ, is observed as a
consequence of anisotropy. Extensive comparisons with the concurrently
acquired experimental data by Chimenti at the AFWAL on a variety of
composite samples have been of unique help in asseséing the validity of our
theoretical modeling, and its potential application in the nondestructive

evaluation of materials.
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1. INTRODUCTION

‘In recent years considerable efforts have been expended upon the
modeling, testing and analysis of fibrous composites. This is due in part
to their popularity in applications requiring high stiffness to weight
ratios and also to their intrinsic interest as challenging mechanical
systems. However, the morphology of fiber-reinforced composites, as
compared with that of homogeneous isotropic media, can seriously éomplicate
their mechanical response. For example, these materials differ from
isotropic homogeneous materials in that they are anisotropic and dispersive.
The degrees of anisotropy and dispersivity depend upon the specific material
under consideration and also upon the specific application, however.

Since most fibrous structural components are subjected to cyclic or
impulsive 1loads which can lead to degradation in load-carrying capability,
initial inspection and continued monitoring of‘these materials for detection
and sizing of strength-degrading flaws is necessary in order to insure
structural reliability. Ultrasonic nondestructive evaluation is one useful
means to provide information related to structural integrity of composites.
To assist in the exploitation of this technique for inspecting composites, a
full understanding of the propagation of elastic waves in fibrous composites
is highly desirable.

Compared with the voluminous literature on the propagation of elastic
waves 1in ({sotropic media, a limited amount of work exists on anisotropic
materials. This 1is particularly true for the classes of guided waves such
as surface, Love, Lamb, and Stonely waves. Investigation of the propagation
of bulk waves in anisotropic materials is relatively well established (see,

for example, Musgrave (1], Synge (2] and Federov [3]). Comparatively




speaking, few quantitative results have been reported on solutions of guided
waves in anisotropic media.

Several authors [4-14] have discussed the reflection and refraction
problems from interfaces of anisotropic media in varying degrees of detail.
Stonely, in 1955, studied Rayleigh surface wave propagation on an
anisotropic half-space having cubic crystal symmetry [15]). Since then
several other authors [16-22] have considered and reported 6n similar
problems. Theoretical analyses have been undertaken for free Lamb waves in
plates of orthotropic [23-24] , transversely isotropic [25-27] and cubic
[?8-29] materials. Some limited approximate theoretical andAexperimental
results for wave propagation in thin (small values of fd where f is the
frequency and d 1is the plate thickness) orthotropic plates with arbitrary
orientations have been presented [30-32].

Because fiber-reinforced composites are often employed in plate-like
structures and ultrasonic testing is conveniently performed in immersion, we
recently investigated b;th theoretically and experimentally the behavior of
guided elastic waves in 1liquid-coupled plates of unidirectional fibrous
composites [33,34]. For consistency we refer, in our work, to the liquid-
coupled modes as plate modes. Hereafter, we refer to liquid or £fluid
coupling synonomously. These excitations may be contrasted with Lamb modes
for a plate in vacuum, like that studied in [35,36]. 1In [33,34] results
were presented for cases where the plate wave vector is along the direction
of symmetry, i.e., the fiber axis.

As compared with isotropic cases, solutions to the anisotropic problem
are much more difficult to obtain. This is because of the added algebraic
complications in handling of the pertinent equations. Based on the widely

used slowness wave surface techniques [1-3] several differences between the




wave propagation characteristics of isotropic and anisotropic media can be
identified. In the isotropic case, the slowness surface consists of two
concentric spherical sheets, the inner one represents longitudinal wave and
the outer represents two coincident shear waves. For the anisotropic case
however, there are three general surfaces, one for a quasi longitudinal and
two for quasi shear waves. This means that incident and reflected waves ‘n
anisotropic media can no longer be thought of as purely longiﬁudinal or
shear with appropriate directionally independent wave speeds. This also
implies that the direction of energy flow (i.e., group velocity) does not,
in general, coincide with the normal to the wave front [3]. The uncoupling
of the 1longitudinal and shear potentials in the isotropic case simplifies
the algebraic treatment of their wave propagation characteristics compared
to the .corresponding anisotropic case. Generally speaking, in the case of
anisotropic media equations describing the motions of the three waves are
coupled, and in order to identify them one needs to solve a sixth order
polynomial characteristic equation. For special material symmetry
directions the equation of one of the shear waves uncouple, leading to
fourth order polynomial equations which are relatively easier to handle.
Taken together these complications perhaps explain why many of the available
treatments of wave propagation in anisotropic media emphasize wave motions
along material symmetry directions.

In this report we develop complete analysis for the propagation of
guided waves in a 1liquid-coupled, arbitrarily oriented single and
multilayered anisotropic plates. The wave is allowed to be incident at an
arbitrary direction on the plate (i.e., for arbitrary incident and azimuthal
angle). The solutions obtained will thus include, as special cases, those

pertaining to higher symmetry materials such as ortotropic, transversely




isotropic (an example of which is unidirectionally reinforced composite),
cubic, and isotropic media. The reflection and the transmission
coefficients are derived, and algebraic expressions for the characteristic
symmetric and antisymmetric plate modes are found possible for the single
layer plate system. Detailed comparisons are presented between the
experimental data of Chimenti and the theory on a variety of composite
sapmles as representatives of anisotropic media are presented. |

Typically a layered medium consists of two or more material components
attached at their interfaces in some fashion. Generally speaking, for wave
propagation in such media our solutions are obtained by expressing the
displacements and stresses in each component in terms of 1its wave
amplitudes. By satisfying appropriate interfacial conditions,
characteristic equations are constructed which involve the amplitudes of all
layers. This constitutes the direct approach. The degree of complication
in the algebraic manipulation of the analysis will thus depend upon the
number of components. For relatively few components, the direct approach is
appropriate. However, as the number of components increases the direct
approach becomes cumbersome, and one may resort to the alternative matrix
transfer technique introduced originally by Thomson [37]. According to this
technique one constructs the propagation matrix for a stack of an arbitrary
number of layers by extending the solution from one layer to the next while
satisfying the appropriate interfacial continuity conditions. In this report
we use both the direct and matrix transfer methods in order to obtain
solutions for the single layer. plate and the multilayered ones,
respectively.

A key condition which is found to facilitate our analysis is the fact

that the wave vectors of the incident and refracted waves must all lie in




the same plane. This result is a consequence of satisfying continuity
conditions at the liquid-solid interface (see [10] for justifircation). We
will therefore conduct our analysis in a coordinate system formed by
incident and interfacial planes rather than by material symmetry axes. This
expedient leads to a simplification 1in our algebraic analysis and

computations.

IT. THEORETICAL ANALYSIS

1. THE SINGLE PLATE CASE

In this section we present theoretical and experimental studies of the
interaction of ultrasonic waves with generally oriented monoclinic elastic
plates immersed in 1liquid. The analysis yields exact calculation of the
reflected and transmitted partial waves. The plane of incidence of the
acoustic wave makes an arbitrary angle with respect to material symmetry
axis, resulting in coupling of the equations describing the motion of the
vertically and horizontally polarized waves in the plates. Highly complex
reflection behavior, expressed 1in velocity dispersion, is observed in the
model prediction. Comparisons are made to extensive experimental data
collected by Chimenti in ultrasonic reflection measurements on a plate of
T300/Ciba-Geigy 914 composite, selected as a model system to test the
theory. Excellent agreement is seen in curves at several azimuthal angles
between 0° and 90°, despite the complicated behavior of the propagation.
1.1 Formulation of the problem

Consider an infinite anisotropic plate having the thickness d and

immersed in fluid such that its symmetry axes are oriented originally along

’

’ ’ ’ 14 '
1 -(xl,xz,x3). The plane Xy "X, is chosen

the cartesian coordinate system x




to coincide with the upper surface of the plate, and the Xq coordinate is

normal to it, as 1illustrated in Fig. 1.1. With respect to this primed
coordinate system, the elastic field equations of the plate are given by the

momentum equations

aa;! ' azu;
=P 2 >(1.1)
axj at

and, from the general constitutive relations for anisotropic media,

’ ’ !

%35 = S1jks  °ks (1.2)
by the specialized expanded matrix form to orthotropic media
v' 14 [ [ ’ ’
°11 11 Cy2 Cy3 0 0 Ci6| | 211
14 [ ] ' s ’
%92 €12 2 Cy3 0 0 Co6 ! | ©22
[} ’ ’ ’ ’ [
933 Cy3 Cy3 C33 0 0 Cigl |&33| (-3
[ ’ ’ ’
93 | = | 0 0 0 Cas  c4s 0 1 1723
’ ’ ’ ’
%13 0 0 0 Cis  Css 0 {mM3
’ ’ ! ’ ’ ’
%12 C16 Co6 Cig 0 0 Cos| | 712

where we wused the contracting subscript notations 1-11, 2422, 3-33, 4-23,

! ’
5+13 and 6-+12 to relate cijklto Cpq (i,j,k,£ =-1,2,3 and p,q = 1,2....6).

’ 4 4

Thus, CSS stands for ¢1313° for example. Here aij' eij and u; are the

components of stress, strain and displacement, respectively, and p' is the
material density. In Eq. (1.3), 7;j - 2e;j (with imj) defines the

engineering shear strain components.




Since c;jkz is a fourth order tensor, then for any orthogonal

,

transformation of the primed to the non-primed coordinates, i.e., Xy to x,

it transforms according t~

cmnop - ﬁmi an ﬂok ﬂpl c’ijkl (1.4

where ﬂij is the cosine of the angle between x! and x,, respectively. For a

i 3§’

rotation of angle ¢ in the xi -xé plane, the transformation tensor ﬂij

reduces to

cos¢ sing 0
-sing cos¢ 0 (1.5)
0 0 1

which, if applied to Eq. (1.2) through fhe relation of Eq. (1.3) yields well

known relations (see Love [38])

%11 €11 S22 C3 0 0 G °11
) Clg G C3 0 0 Cy €22
o33] = |C3 Cp3 C33 0 0 Gy €33 (1.6)
723 0 0 0 G Cs O 123
°13 © 0 0 G5 G55 O 713
912 C16 €26 €36 O 0 G 712

where the transformation relations between the Cpq and Cpq entries are

listed in Appendix A. Notice that, no matter what rotational angle ¢ is
used, the =zero entries in Eq. (1.6) will remain zero. In fact, the matrix
of Eq. (1.6), although particularized to orthotropic media, resembles that

of monoclinic media (i.e. media which has Xy = 0 as a plane of symmetry).




In terms of the rotated coordinate system X, we write the momentum

equations as

aai] 82\1i .
ax at
]
1.2 Ana S

Substituting from Eq. (1.6) into Eq. (1.7) results in a system of

three coupled equations for the displacements uy, v, and us. If we now
identify the plane of incidence to be the X, "X, as in Fig. 1.1, a formal

solution for the displacements u; can be written as

(up,u,,uy) = (1,V,W)Ueté Xy + axy- ct) (1.8)

l,uz’
where £ 1is the wave number, c¢ 1is the phase velocity (=w/£), w is the

circular frequency, a is still an unknown parameter, and V,W are ratios of

the displacement amplitudes of u, and uy to u,, respectively. Combinations

of Egqs. (1.8), (1.7) and (1.6) yield the matrix relation

2 2 2
C11 _ pc + Cssa C16+ 045a (C13+ 055)0 1
c,,+ C a2 C. - c2+ C 02 (C,.+ C, ) v -0
16" “45 66~ ° INA 367 “45
{C + C.)a (C,.+ C, a Ccc- c2+ C 02 W
13 55 36" “45 55~ P 33

Nontrivial solutions for V and W demand the vanishing of the determinant in
equation (1.9) and yield an algebraic equation relating a to c.

This

10




equation is reduced (see Appendix B) to a sixth-degree polynomial equation
in a, namely \

06 + A a4 + A az + A

1 9 3 - 0 (1.10)

Equation (1.10) admits three solutions for a2 which we label as a%, a% and

ag. These lead to six solutions for a which we further label as
a, = - @, a = - &, and @ =~ - ag (1.1

Using superposition, together with the relation (1.9), we can relate

the displacement ratios Vq and Wq for each aq as

2
- (Fpo+ °45°q)F13

2
Fy3(F1qa* Cssay.
o]

vq (1.12)
F13(Fopt Cupal) - (Fip* Cpsar )F23
F23‘F11 + 55“2) - (Fyg + Cpsa )F13
W =a : =, q=1,2...6 (1.13)
T 9¢F 5@ )(F

12 * 33“q) - F13Fp3%g

where Fst ,S,t= 1,2,3 are defined in Appendix B. Combining Egs. (1.12) and

(1.13) with the stress-strain relations Eq. (1.6), we rewrite the formal

solutions for the displacements and stresses as

6 i&(x1+aqx3-ct)
(ul,uz,u3) =2 (1, Vq,Wq)Uq e (1.14)
q-1
6 if(x1+aqx3-ct)
(033,013,023) -qfl (D 1q’ 2q 3q)qu (1.15)
where
qu - Cl3+ C36 Vq + C33 aq Vq (1.16a)
qu- CSS(°q+wq) + C45 aq Vq (1.16b)

and

11




Dy

With reference to Eq.

-C45(°q+ Wq) +Ca4 aqVq , Q=

deduces the relations

(1.11) and by inspection of Egs.

(1.16c)

(1.12) - (1.16¢c) one

Vy =V, V, =V, V= Vs (1.17a)
Wy = W, W, = Wy, W = oW (1.17b)
Dya = D13+ Dy4 = Dy3» Dyg = Dy5 (1.18a)
Dyg = -Dy3» Dy4 = -Da3s Dyg = -Dyg (1.18b)
D3 = -Dyy» D3y = D33, Dyg = -D3g (1.18c)

1.3 Derivation of reflection and transmission coefficients

To determine the reflection and transmission coefficients for plane
waves incident from the fluid onto the plate surface at an arbitrary angle §
we need to obtain general solutions for the upper and lower fluids similar
to those of Eqs. (1.14) and (1.15). Recognizing that the fluid does not

support shear deformation, its field equations reduce to

(£) (£)
aail -, auI (1.19)
ax, f 2 ’
j at
f)
agf)- Ag fﬁg 5is 1, = 1,2,3, (1.20)
axk 3

where both equations hold only for i=j; Pg and Af are the fluid density and

Lame’ constant. If the wave is assumed to be incident and hence reflected
in the upper fluid and transmitted into the lower fluid, then using similar
analysis to that of the plate yields, for the upper fluid,

) if[x1+(-1)k+1afx3-ct]

W .5 a0 w(“)iepfc )U(“) (1.21)

(uy,u,,u,, 0,,)
1'7°2°73 33 k 1
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and for the lower fluid

(4 4y, 45, a33)(£) -(1,o,mf,1u3pfc2)u(“ei‘“x + ag(xy-d)-ce] 4 59
where
wi“)- ag w‘g)- -ap (1 23a)
1 1
2 A
ag = (55 -D?, cpm (;f)2 (1.23b)
cf f

Notice the vanishing of shear component uy in both the upper and lower

fluids.
By invoking the continuity of the normal displacements and stresses at

z = 0 and z = d and setting the solid shear stresses 0,3 and g, equal to

zero at z = 0 and z = d we obtain, for a given incident amplitude UY, a

system of eight linear simultaneous equations for the amplitudes U(;), uf

U U }) i) U. and U, is obtained. Solving these equations with the

1 2 3 T4 75 6
help of éhe relations (1.17) and (1.18) and applying rather lengthy
algebraic reductions and manipulations, we derive the following expressions

for the reflection and the transmission coefficients

(v)

2| As-y? (1.24)
g(w)  (S+Y) (A-1Y) :
1

R

€))
Ut _AX(S+A) (1.25)

T - S® T E+HY) (A-1TD)
1

where

S = D11G1cot(7al) - D13G3cot(7a3) + D15G5cot(1a5) (1.26a)

13




A= DllGltan(yal) - D13G3tan(1a3) + Dlscstan(yas) (1.26b)
poc?
Y- ;—i—— (W)G, - WG, + WeGs) (1.26c)
with
G1 - D23D35 - D33D25 (1.27a)
G3 - D21D35 - D31D25 (1.27b)
G5 - D21D33 - D31D23 (1.27¢)
¥y = £4/2 = wd/2c. (1.274d)

1.4 Results and discussions

Except for the more complicated definitions of the functions S,A and
Y, the expressions .R and T resemble those reported in our earlier paper
[34), and our notation was chosen for consistency with this previous
calculation.

The expressions of Egqs. (1.24) and (1.25) for the reflection and the
transmission coefficients contain, as a by-product, the characteristic
equation for the propagation of modified (leaky) guided waves in the plate.
We refer to such waves as plate waves [34) rather than Lamb waves, whose
properties were derived originally by Lamb [39] for isotropic solids in the
absence of the fluid. Setting either denominator equal to zero, namely

(S+iY) (A-iY) = O (1.28)
defines the characteristic equations for such waves, where the vanishing of
the first term corresponds to symmetric and the second to antisymmetric mode

propagation. In the absence of the fluid, i.e. for pf(or Y) = 0, Egs.

(1.28) reduce to SA = O which is the characteristic equation for Lamb-like

waves in the orthotropic plate.

14




For the special cases of propagation along axes of symmetry (in the

present example & = 0° or 90°), the off-diagonal tensor components C16' C26’
036, and C45 vanish in Eq. (1.6). The implication is that the displacements
u,, out of the Xy X4 plane, go to zero, thereby confining all particle

motion to the plane of incidence. This result 1is equivalent to the
decoupling of the wave equations for vertical and horizontal shear motions
in the plate, noted by us and other authors in treating anisotropic plates

[23,34]. In addition, the secular equation (1.10) for the x3-component of

the wavevector factors and reduces to the lower dimensional result presented
in our earlier amalysis [33,34]. In fact, for symmetry axis propagation we
recover entirely our previous results for the feflection coefficient from
the fluid-coupled composite plate.

In comparisons between the results of many measurements at several
azimuthal angles and the model calculation, we have concentrated our
attention, as in previous investigations ([33,34], on the reflection
coefficient. Since the basis of the experimental data is an amplitude
signal 1in the reflected field of the incident beam, we calculate the plane-
wave reflection coefficient for the plate and investigate it for the same
type of behavior as we observe in the measurements. In addition to direct
comparisons of amplitude spectra, we have also expressed our results as
dispersion-like curves, where the results correspond to functions
conditioned by the reflection coefficient. The theoretical dispersion
curves are based on the occurrence of total transmission for given Fd and
incident angle. Numerically, the curves are generated by searching Eq.

(1.24) for the mirima in the magnitude of the reflection coefficient which

15




are accompanied by a rapid reversal in its phase. Both of these aspects of
our studies are presented below.
A finite ultrasonic beam is composed of a range of plane wave

components which define its angular spread,

8x) = [ B&)exp(-2nigx)az ' (1.29)
where pB(x) 1s the one-dimensional real space incident beam profile, x is a
coordinate perpendicular to the beam direction, and the caret denotes
Fourier transform. When such a finite beam interacts with a plate, each
Fourier component of the incident field will contribute to the reflected
field, weighted by the appropriate value of the reflection coefficient for

that £. The resulting expression for the reflected field is given by

A(Fd,x,) = IE(&)R(E yFd)exp[-271{(x,-a.x,)]d¢ (1.30)

where R(§,Fd) 1is the reflection coefficient from Eq. (1.24) for the
composite plate. The expression of Eq. (1.30) evaluated over frequency is
an approximation to the experimental spectrum of the plate, if the beam
profile B(x) 1is chosen to represent the incident beam. We have performed
such calculations for a variety of experimental conditions. Some typical
comparisons are contained in Figs. 1.2(a)-(d).

Figure 1.2(a) shows the measured and predicted spectra from 1 to 8 MHz
for an incident angle § = 12° and azimuthal angle ¢ = 30°. The two curves
have been vertically scaled, but in no other way adjusted. The solid curve
is the expression of Eq. (1.30), and the dashed curve is the experimental
data deconvolved to remove transducer response. Positions of the deep
minima in the two curves are nearly coincident, as we have observed for
propagation in the fiber direction [34]. We conjecture.that the additional

shallower sharp dips, some of which do not appear in the data, arise from

16




the coupling between vertical and horizontal shear displacements which
occurs for propagation in a general azimuthal direction. At 6 = 28° and ¢ =~
15¢ in Fig. 1.2(b), similar results are found, where the general trend of
the data 1s well reproduced by the model calculation. 1In particular, the
two shallower minima between 2 and 4 MHz are given fairly accurately by the
prediction. | This structure disappears for ¢ = 0°, leaving only the deep
minima at 1.9, 4.3 MHz, and beyond. Holding the incident angle constant and
incrementing ¢ to 30°, the structure of the curve has evolved in Fig. 1.2(c)
with the two minima near 3 MHz approaching each other more closely and
deepening considerably. These features are also seen in the model
calculations. In the final frame, Fig. 1.2(d), results are given for § =
249 and ¢ = 90°. This case corresponds to symmetry axis propagation, and
therefore the complex structure of the previous examples is largely absent.
The positions of the minima are well modeled by the theory, whereas the
minor differences in the lineshape details may be attributed to wavefront
distortion and sound absorption, neither of which is considered in the
model. |

Taking the results of the many dozens of Cmimenti's experimental
spectra such as those shown in Fig. 1.2 and recording the minima as a
function of the 1incident angle (expressed through Snell’'s law as a phase
velocity), yilelds a dispersion-like plot of the ultrasonic reflection
behavior. In previous work [34,41) we demonstrated that the hypothesis of
Cremer [42] concerning the coincidence of reflection minima with the
excitation of Lamb wave modes is not well satisfied in all regions of plate
wave dispersion in graphite-epoxy composites. Therefore, although we
present these data in the manner of a velocity dispersion curve, it must be

stressed that it is the reflection properties which are being reported.
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Figure 1.3(a) shows data acquired in the current study at an azimuthal
angle ¢ = 0° plotted together with the results of the analytical prediction
derived by examining the behavior of the reflection coefficient, Eq. (1.24).
To obtain the theory curves rapid phase variations in the reflection
coefficient, generally indicative of total transmission, have been recorded
as a function of Fd for many values of phase velocity. These calculations
are presented as small filled circles which coalesce into solid cﬁrves over
most of the plot. In some cases to be discussed a dashed line has been
added as a guide to the eye. In Fig. 1.3(a) the data, plotted as discrete
crosses, are in excellent agreement with the prediction of our new, more
general model. All features of the data from § = 12° to § = 40° are well
explained in the model. Propagation in the other material symmetry
direction ¢ = 90° is shown in Figure 1.3(b). Here the results reflect the
substantial effective softening of the composite as the fiber axis is
rotated out of the plane of incidence. Therefore, we observe a marked
reduction in the phase velocities at which certain features occur. The

vertical intercept of the curve, which is similar to the So mode, is seen to
be near cp = 2.2 km/sec. Likewise, the point of diminishing slope of some

of the higher order curves is much lower here than for ¢ = 0° as in Fig.
1.3(a). In fact, the behavior referred to is not even visible in Fig.

1.3(a) because it occurs above cp = 9.8 km/sec.

For a transversely isotropic material, setting ¢ = 90° implies that

elastic behavior in the plane of the incidence (xé - xé plane) will be

isotropic. An important experimental finding by Chementi of the present
study 1is the suggestion that transverse isotropy is not an appropriate

symmetry class for the eight-ply Thornel/Ciba-Geigy composite sample we
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studied. Our result on the inequality of Céz and Cé3 stands in contrast to

previous investigations, both mechanical [43] and ultrasonic [44], on thick-
section T300 - 5208 unidirectional composite. In these earlier studies the

ratio Céz/C§3 was measured to be within 2% of unity. Because of the method

of fabrication of these materials in which compressive stresses are exerted
on the surfaces of the curing composite, fibers might tend to be distributed
nonuniformly in the plate. That is, the number of fibers per unit length in

the xé direction could be higher than the same quantity in the xé direction

(refer to Eqs. (1.1)-(1.3)). Our experimental data for ¢ = 90° are
consistent with the above interpretation and draw us to the conclusion that
orthotropy is the correct symmetry class for thin sections of this material.

Since the elastic constant denoted Céz in Eq. (1.3) is difficult to measure

independently, we have inferred this quantity from our reflection data and

the model calculation. The results of this evaluation yield a ratio of 3

to C53

of 0.72. Once this adjustment in Céz is made, all subsequent
comparisons at intermediate values of ¢ are carried out using this same

constant. Here we note that Céz does not influence the propagation behavior

along ¢ = 0°, and hence this issue was not encountered in our previous work
[34]. In our calculations we use the qraphite- epoxy material properties
listed in Ref. [40].

If we now depart from the principal axis directions, the reflection
behavior becomes substantially more complicated, as can be seen in Fig.
l.4Ca) for ¢ = 300, The simple structure of Fig. 1.3(a) is replaced by

curves which split apart, rejoin, and cross over each other. Throughout the

range of the measurements, relatively good agreement with the theory is




apparent. Although interpretation of these results is delicate, we may note
a few consistent trends. As the fiber direction is rotated out of the plane
of 1incidence, the effective material constants begin to soften, causing the

phase velocity intercept of the So-like curve to decrease, as in Fig.

1.3(b). 1In Fig. 1.4(a) that velocity is about 8.5 km/sec, whereas the value
is 9.8 km/sec for propagation along the fibers. Moreover, an additional set
of curves seems to have nucleated, in agreement with our calculations and
data starting as low as ¢ = 15°. These general features will be seen to
persist in the results for higher values of ¢ as well.

Cémparison of measurement and theory for ¢ = 45° is contained in Fig.
1.4(b). As expected, the intercept velocity has decreased to about 7
km/sec, and behavior of even higher complexity has appeared above this
value. The series continues with ¢ = 60° in Fig. 1.4(c), where the overall
pattern established earlier is evidegt here also. Finally, in Fig. 1.4(d)
for ¢ = 759 wé have the last of the comparisons. The intercept velocity
here is near 3.4 km/sec, nearly a factor of 3 below its ¢ = 0° value. These
curves contain an almost unbelievably rich variety of reflection phenomena,
considering the relatively simple form of the ¢ = 0° curves in Fig. 1.2(a).
As we have stated earlier, it is our conjecture that these additional
features arise from the coupling of the vertically and horizontally
polarized waves, which are independent for propagation along principal axes.
We note in closing this section that in all these comparisons, but
especially Figs. 1l.4(c) and 1.4(d), agreement between measurements and
theory 1is not simply a matter of general trends. Excellent detailed
agreement 1is seen over most of these plots, in spite of the richly complex
behavior observed for a general azimuthal angle. This observation lends

confidence in the validity of the theoretical approach.
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1.5 Free waves in monoclinic plates

In a recent paper [45], we developed the analysis for the propagation
of free waves in a general anisotropic plate and presented numerical results
for some special cases of interest. We began with a formal analysis for
waves in a plate belonging to the triclinic symmetry group (the most general
with 21 independent elastic constants). The calculation was then carried
forward for the slightly more specialized case of a monoclinic-plate (13
independent elastic constants), where the surface of the plate is parallel
with the single plane of mirror symmetry in this material system. We
derived the secular equation for this case in closed form and isoclated the
mathematical conditions for symmetric and antisymmetric wave mode
propagation in completely separate terms. Material systems of higher
symmetry, such as orthotropic, transversely isotropic, cubic, and isotropic
are contained implicitly in our analysis. The equivalent crystal systems of
monoclinic, orthorhombic, hexagonal and cubic may be substituted for the
elastic material systems analyzed here. We demonstrated numerical free wave
dispersion results drawn from concrete examples of materials belonging to
several of these symmetry groups. For orthotropic and higher symmetry
materials where the remaining two principal axes lie in the plane of the
plate, it was shown that the particle motions for Lamb and SH modes uncouple
if propagation occurs along either of these in-plane axes.

1.6 The case of a plate seperating a liquid from a vacuum

In another recent paper [46] we derived an exact expression for the
reflection coefficient of an orthotropic plate, which is loaded on a single
surface by a fluid medium while the second surface is stress free. For this
case, we assumed guided wave propagation along a principal axis in the

plate. We found that the reflection coefficient for this case can be
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expressed 1in terms which are 1identical to the case of a fully immersed
plate, namely expressions (1.26) and (1.27) . Furthermore, it bears a

strong formal resemblance to the reflection coefficient of the fluid-coupled

halfspace, in particular as far as the role of the fluid is concerned. From
the results derived we obtained the solution for an isotropic plate to

compare with experiments.
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2. BIAXIALLY LAMINATED COMPOSITE PLATES

This section presents the analysis of biaxially laminated plates
utilizing water as a fluid coupling medium. Here the stacking sequence of
the individual 1laminae is restricted such that in each layer a principal
material axis 1lies in the 1nc1dent.p1ane of the acoustic wave. In what
follows we shall use the transfer matrix approach to derive our results.
Specifically we derive the reflection and transmission coefficients from
which the characteristic behavior of the system is identified. Results are
presented both as reflection spectra and dispersion curves. In general, very
good agreement is found between prediction and experiment. Moreover,
significant changes in the reflection spectra are observed, depending on the
layer ordering in the~composite plates. In the next section we summarize
the theoretical calculation, followed by a comparison with the concurrently
acquired experimental date of Chimenti.

2.1 Analysis
Consider a plate consisting of an arbitrary number n of monoclinic

layers rigidly bonded at their interfaces and stacked normal to the X4
direction of a cartesian system X, = (xl,xz,x3). Hence the plane of each
layer 1is parallel to the XXy plane which is also chosen to coincide with

the bottom surface of the laminated plate. The stacking of the layers is

restricted, however, such that the Xy and X, directions coincide with their
principal axes. Thus, for a plate constructed from several uniaxial fibrous

composite lamina of the same material, only 0 and 90 lay-ups are allowed.
In this section, we derive exact analytical expressions for the reflected

and transmitted fields of an acoustic wave incident from a surrounding fluid
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onto the plate. The wave is restricted to propagate along one of the in-

plane symmetry axes of the plate. Sufficient generality is maintained such

that the solutions obtained will include, as special cases, those pertaining
to higher symmetry materials.
Using our homogeneous, monoclinic plate analysis as a starting point

(k)

we introduce, for each layer k, a local coordinate system xg with origin

at the interface between layers k-1 and k. Hence layer k occupies the space

0 < xgk) < d(k) where d(k) is its thickness. Thus the laminated plate has

o (k)
total thickness d =3 d .
k=1
With this choice of coordinate system and the restricted propagation
directions mentioned above, the displacement will reduce to a two-

dimensional wvector. In-plane transverse motion will vanish, and the

remaining field variables will be independent of Xy. The relevant field

equations for each layer will thus consist of

o45.5 = P% 1, = 1,3 (2.1)

and the constitutive relations

o (2.2)

17 © C1jke®ks '
appropriately specialized to the two-dimensional case of propagation in the

X)Xy plane. Appropriate field equations for the fluids can be similarly

written by noting that fluids are isotropic and cannot support shear
deformation.

The field equations in the solid and fluid media must be supplemented
with the appropriate interfacial continuity conditions. At the fluid-plate

interface, Xy = 0 and Xy = d, the appropriate continuity conditions are
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- - gtE) - (B
%93 0, 933 033" » Ug uy , (2.3)

whereas at the lamina interfaces they are

(k)  (k+1) (k) (k+1)
“1w ™Y 3 "W

In what follows we shall describe the propagation process in the

GO | ety () (k1)

» 4 » 933 33 v 913 13

system. For each 1layer k, equations (2.1) - (2.2) are combined into two
coupled equations in vy and uy and a formal solution in the form

(u),u5) = (U,W)els(Xtoxy-ct) (2.5)
where U and W are displacement amplitudes, £ is the x, wave number, c is the
phase velocity and a is the ratio of the Xq and X, wave numbers. For

nontrivial solutions, one obtains a characteristic equation for a. This

equation admits four solutions and, by usiﬁg superposition, one finally

obtains
- - 4 1€ (%, +a_X,-Ct)
(ul,u3,c33,al3) -pfl (l’wp’Dlp’D2p)kUpe 1 7p™3 , (2.6)

where the index p assumes the values 1,2,3,4 and a is the solution of

Ac® + Bal + C =0 (2.7)

with

A = Cq3C55

2 2 2
B = (Cy; - pe7)C35 + (Cgg - pc7)Cgq - (G5 + C55)

2 2
C=- (Cll - pcC )(655 - pcC ) ’
and, for each ap

2 2
g €11 - Css59y
- (C,, + Ccc)a
P 13 ¥ “557%

25




D, =C

1p~CG3+C

33apwp '

Dy, = Csslay + W) aij - 0yy/1€ . (2.8)

2p

Equation (2.6) can be used to relate the displacements and stresses at

(k) () _ (k)

X3 0 = 0 to those at X3 This can be done by specializing (2.6) to

xgk) = 0 and to xgk) - d(k) , and eliminating the common amplitude column

made up of Ul’UZ’ U3, and U4 resulting in

(F,) oy = [ag )y (F)) . 1 (2.9)
P L g0 T Pyl 0

here Fi' for i = 1,2,3, and 4, designates the field variables Uy, uq, &33,

ZEY respectively. Here the summation convention on repeated indices i and

j hold and
- 1.
[ B, B, B, B, ] 1 1 1 1 1
|W1By WpBy WiBy W,B 1 (W W, W, W,
[aij]k - (2.10a)

D11B1 D187 Dy3B3 DyuD4f |P13 Dy Dy3 Dy
P12%1 P22B2 P23B3 PouBsf [Pa1 P2z Pz Pis |

and

B, - elfapd o 12,34 (2.10b)

By applying the above procedure for each layef and invoking the continuity
relations (2.4) at the layer interfaces we can finally relate the
displacements and stresses at the top of the layered plate to those at its
bottom via the transfer matrix mult{plic;tions (37]

(A (2.11a)

13} = (agglalagglny - - -lagghy
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resulting in

(Fi)x -d - [Aij](F )x =0 (2.11b)

2.2 Dexjvation of reflection and transmission coefficients

Now, 1in order to satisfy the remaining continuity conditions (2.3) at
the plate-fluid interfaces, we need to solve the field equations in the
fluid. By inspection, such solutions can be deduced from the formal
solution (2.6). First, due to the absence of shear deformation,

specializing (2.6) to the upper fluid half-space yields

[ (W] - -
u 1l 1
}u) U{“)eifaf(xa'd) JEGx, - et
™ - e -ag Uéu)emifaf(x3-d) - a2
.g‘;) Pfcz pfc2
. where i .
a% - (c2/c§) -1, W -l (2.12b)

Here, U{u) is the constant amplitude of the incoming wave and Uéu) is that

of the reflected wave. Also, the sub and superscripts u denote quantities
belonging to the upper fluid. Similarly, for the lower fluid the response
can be obtained by analogy with the upper fluid's response given by (2.12a)

and by concurrently satisfying the requirement for bounded solutions so that

u, & 1
WD | o | e | U@l +agry- o) (2.13)
75 pee’

where £ denotes the lower fluid.
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Subjecting the solutions (2.12a), (2.13) and (2.6) to the continuity
conditions (2.3) while identifying the superscript (f) with (u) and (£) at

Xy = d and Xy = 0, respectively finally yields the reflection and

transmission coefficients

p o2l t Wy - 0, + ey (2.142)
Myp + Qy, + QM) + Q)
T 28 (2.14b)
Hpp + Qlyy + QMy, + QM) ¢ '
where
pec?
Q= —4— , (2.15a)
[+ 3
£
- - a 2 [-a -A, ]
M1 My Byp Ay Apy 42 43
- Ay ol . (2.15b)
Ma1  Mpo 431 A32 Ay | O A41]
2.3 Resu iscussions

Since ultrasonic reflection behavior in biaxial composites 1is
dependent on details of the layering, we present our results primarily as
frequency spectra from which -dispersion curves could be developed. An
example of experimental and theoretical curves for a four-layer biaxial

composite [02,902]s (pictures of which are shown in Fig.2.1) are depicted in

Fig. 2.2. The dashed curve is the measurement, while the calculation is
demonstrated as a solid curve. Only the relative amplitudes of the two

curves have been scaled, since absolute reflectance has not been measured.

An 1incident angle of 16 1is selected, and the fiber direction in the upper
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layer is in the incident plane. The comparison between experiment and
theory 1is very good; nearly all details of the data are reproduced by the

calculation.
Figure 2.3 shows the result of rotating the incident plane by 90° while

maintaining a 16° incident angle, so that the upper fiber layer is
perpendicular to the wave propagation direction. The experimental
reflection spectrum is markedly different, both in appearance and precise
location of the minima. Yet the model calculation follows the data very
well. This case, and many others we have examined, exemplify the complexity
and non-intuitive mnature of the results in layered anisotropic materials.
Clearly, a simpler model in which the mechanical properties are averaged
through the plate thickness would be unable to account for the difference

between the data in Figs. 2.2 and 2.3. A further comparison at an incident

angle of 20° is shown in Fig. 2.4. The solid curve is theory, and the

dashed curve is the normalized data for the [02,902]s sample with the top
layer fibers in the incident plane. Once again good agreement is observed

in this direct comparison. Rotation of the incident plane through 90°
demonstrates a similar strong variation of the reflection spectrum, as seen
in Fig. 2.5. No minimum in Fig. 2.5 coincides with one from Fig. 2.4. The
structure of the curve is completely different, but the agreement between
measurement and prediction is still very good. In Fig. 2.5 we see that the
theory curve has sharper features than the data, as expected for the plane-
wave reflection coefficient.

A much more complicated situation is presented by a 12-ply s;mple having

an alternating structure in each layer. The lay-up scheme is [0,90]35. No

29




FIllIllIIIIIIIIIlIllIIlllIllIllIlIIlIIllllIIIlIllIIIIIIIIIIIIIII------(f

special care has been taken in the preparation of this sample or the other
biaxial lay-up, and therefore some discrepancies between data and prediction

can be attributed to this source. However, even with this proviso the

significant features of the experimental data are well reproduced by the

theory curves. Figure 2.6 shows measurements for an incident angle of 22

with the upper layer fiber direction in the incident plane. In Fig. 2.7 the

incident plane 1s rotated 900. Comparison of these two cases reveals that

even with as many as 12 alternating layers, the order of the anisotropic

layers 1is still imﬁortant. The minima near 1 and 2 MHz are basically

constant between Figs. 2.6 and 2.7, but significant differences in the

successive structure of the curve minima occur above 2 MHz. These

variations can be attributed only to the order of layering, a relatively
-

surprising result since only the slow transverse quarter wavelength in the

90-degree layers is approaching the layer thickness.

At an incident angle of 30. with ¢-0. in Fig. 2.8 comparable results
are achieved, where the theory curve follows the data rather closely, except
near 4 MHz. The small amplitude oscillations on the peaks of the
experimental curve at 3.5 and 4.8 MHz are artifacts which have been caused
by overlap reflections from the water surface in the tank. In Fig. 2.9 with
the fiber direction perpendicular to the incident plane the curve structure
below 2.2 MHz repeats that of Fig. 2.8, but substantial differences in the

reflected field amplitude appear at higher frequency values, as in the

previous spectrum pair for #=22 .
For the case of the biaxially laminated composite samples, dispersion

behavior is clearly structure-dependent. However, by way oi illustration we
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present experimental and theoretical dispersion curves for the [02,902]s

plate in the ¢-9O° direction in Fig. 2.10, where the phase velocity has been
inferred from the incident angle. We have shown previously [33,34] that in
low density materials 1like graphite-epoxy composites reflection-derived
dispersion curves <can deviate significantly from solutions of the
characteristic equation contained implicitly in Eq. (2.14a). Evidence of
that deviation can be seen in the data (open circles) and theory (solid
line) in the 1lower left portion of Fig. 2.10, where the lowest order mode
appears to turn back on itself. In general, agreement between measufement
and calculation 1is good, as expected on the basis of the comparisons
presented for reflection spectra in Figs. 2.2-2.9. However, it should be
emphasized that the curves in Fig. 2.8 are not universal; that is, they are
dependent not only on the elastic properties of graphite-epoxy. If the
laminate structure or layer ordering changes, the dispersion behavior will

vary accordingly.
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3.MULTILAYERED ANISQTROPIC PLATES

In this section we generalize the results of both of our earlier
sections to the case of a plate consisting of an arbitrary number of
arbitrarily oriented anisotrpic 1layers. Each of the individual layers is
allowed to possess up to as low as monoclinic symmetry. The plate is
assumed to be immersed in a fluid and subjected to incident acoustic waves
at arbitrary angles from the normal as well as at arbitrary azimuthal
angles. Soluticns are obtained for the individual layers which relate the
field variables at the upper and lower layer surfaces. The response of the
total plate proceeds by employing the matrix transfer method [37] which
require satisfying appropriate interfacial conditions across the layers.
The reflection and transmission coefficients of the total system will are
derived from which all of the propagation characteristics are readily
extracted. Our results are rather general and contain a wide variety of
special cases.
3.1 Ansalysis

Consider a plate consisting of an arbitrary number n of anisotropic

layers, each possessing up to as low as monoclinic symmetry, rigidly bonded

at thelr interfaces and stacked normal to the %4 axis of a global orthogonal
Cartesian system X, = (xl,xz,x3) . Hence the plane of each layer is
parallel to the X%, plane which is also chosen to coincide with the bottom

surface of the layered plate. To maintain generality we shall assume each

layer be arbitrarily oriented in the Xy "X, plane. 1In order to be able to

describe the relative orientation of the layers we shall assign for ~ach
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layer k, k =1,2,...,n, a local cartesian coordinate (x;)k such that its

origin 1s located in the middle plane of the layer with (x;)k normal to it.

Thus, 1layer k extends from -d(k)/2 < (x;)k < d(k)/z where d(k) is its

thickness. According to this notation the total thickness of the layered
plate d equals the sum of the thicknesses of its layers, and hence the

plate occupies the region 0 < Xq < d. Equivalently, the orientation of the

kth 1layer in the X; space can be described by a rotation of an angle ¢k

between (x]'_)k and Xy - With this , once all orientation angles ¢k are

specified the geometry of the plate will be defined.
Without any loss 1in generality we shall assume that a plane wave is

incident in the Xy -4 plane on the plate from the upper fluid at an

arbitrary angle. The problem here is to study the reflected and transmitted
fields. We therefore conduct our analysis in a coordinate system formed by

incident and reflected planes rather than by material symmetry axes.
’

Accordingly, the primed system (xi)k rotates with one material symmetry axes

while the global unprimed system Xy remains invariant. As was pointed out

in the introduction this approach leads to significant simplification in our
algebraic analysis and computations.

In what follows we use the analytical procedure of section 1 in order
to construct a transfer matrix for each layer k. This matrix relates the

displacements (ui)k and stresses (aij)k of one face to those of the other of

layer k. Using our earlier analytical procedure, the formal solutions for

each layer can be adapted from equations (1.14) and (1.15) which hold for
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each layer and can be used to relate the displacements and stresses at (x3)k

- -d(k)/Z to those at (x - d(k)/2. This can be done by specializing

!
3k
these equations to these two locations, eliminating the common amplitudes

Us,...,Ug and after rather lengthy algebraic reductions and manipulations we

1’

obtain (with the summation holding)

+ -
F_=- F , P4 =~1,2,...,6 3.1
P~ %pqq P.q (’ )

+ T .
where F; stand for the variables column [ul,uz,u3,a33,al3,023]i specialized

to the upper and lower surfaces of the layer, k, respectively, and

[apq]k - [TpsBsq]k (3.2)
where

1 i 1 1 1 i

Vl 1V1 V3 iv 3 v 5 iv 5

WoT, WT, W,T, W, NI WTg

T, - (3.3)

D11 iDy;  Dyg iDy3  Dys iDy5

iDy)Ty  DpyTy 1iDy3Ty  DyaTy 1DysTg  DygTg

iDyyTy D3yTy 1D33T3  DyaTy3 iDggTs  DygTs

Here, Bsq is obtained from the above matrix Tps by replacing i by -i as it

explicitly appears and inverting the resulting matrix in Eq. (3.3)

1 =1l
r

i - cot(fard/Z(k)) . r=1,3,5 (3.4)
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The matrix [apq]k constitutes the most general transfer matrix for the
orthotropic layer k. It allows the wave to be incident on layer k at an

arbitrary angle from the normal Xy or equivalently (x;)k and at any

azimuthal angle ¢. Matrix transfer for higher symmetry material such as
transversely 1isotropic, cubic and isotropic can be obtained from Eq. (3.2)
as asymptotically 1limiting cases. Furthermore, 1if the wave happens to

propagate along an in-plane axis of symmetry of layer k (namely for ¢k = 0°

or 90°) results for such a case can be obtained from (3.2) in the limit.

Strictly speaking Eq. (3.2) does not hold in its present form if ¢k is

identically 0° or 90°. This is of course due to the presence of the
superflous coupling (as 1implied by Eq. (3.1)) between the equations
describing the horizontally Apolarized wave (SH) and the Lamb wave. The
matrix transfer technique then yields, via the continuity of displacements

and stresses at the various layer interfaces, the response vector at Xy = a
in terms of the response vector at Xy = 0
F(d)=A F (0 3.5
p() pqq() (3.5)

where

[Ag) = [ayg)y gy g oo la )y (3.6)

Using superposition and the stress-strain relations (6) we finally obtain
the formal solutions
3.2 Top Fluid Boundary

The plate we consider separates a top fluid half-space from the bottom
bounding media. To maintain generality we here counsider a different fluid or
a vacuum as choices for the bottom bounding medium. The input wave is
assumed to be originating in the top fluid half-space and incident on the

plate at an arbitrary angle from the normal. The displacements and stresses
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2 2,2
where @ - (c /cu)

2

within the top fluid are given by properly specializing (1.14) and (1.15)

and recognizing the absence of shear deformation within the fluid so that

1 .
o Ul(u)elqau(z3-d) 9 |
u ié(x-ct
e (3.7)
puc2 Ugu)e-iqau(z3-d)

-1, U(u) is the constant amplitude of the incoming wave,

1

U(u) is that of the reflected wave and the sub and superscripts u denote

quantities belonging to the fluid. The continuity conditions at the plate-

.

fluid interface are given by

(u)

w - w

(n)

1 933 7 %33

(m) aig)- aég)- 0, at x, = d. (3.8)

3.3 Bottom Bounding Fluid

If the bottom bounding medium of the plate consists of a different

fluid, then its formal solution consists of the transmitted component and is

given by
u(b) 1
]

U{b)eif(x1°°t+abx3) (3.9)

With this, the appropriate interface conditions at the bottom of the plate

are

(1) (®)

w -w

Combinations of Egs.

(
1 933 T 933

(b) aéi) - aé%) -0, at xy = 0. (3.10)

(3.7) and (3.10) yield the following expressions for

reflection and transmission coefficients

My + QMy0) - Q (M, + QM)

R-

2Q, (Agq1Agy - AgqAsy)

Mgy + QMyy) + Q My + QMyy)

(3.11a)

T w

(Mgq + QuMyp) + Q (Myy + QuMy))

(3.11b)
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where
Aq1 A3y Azg Agp A3y Ay,
My, = det A5y A5y Ag3| M), = det A5y A5y A, (3.12a)
Agy A2 g3 Ag1 fe2 Aeu
A1 By 43 Apl B4 B4y
M, = det A5y Agy Ag3| | M,, = det Agy Agy Agy, (3.12b)
Ag1 A2 A3 - A61 B2 Leu
and
puc2 pbc2
Qu- a ! Qb- (3.12¢)
u %

The results pertaining to the bottom free conditions (i.e., the absence
of a bottom bounding media, in essence a vacuum) can be easily obtained from
those corresponding to the above case of a different fluid bounding media by

setting Qb = 0. This results in

M,, - QM

R - l-{ll+—Q“Mll (3.13a)
21 * QM

T =0 (3.13b)

as expected.
3.4 tive d tion of resultg

So far we have derived expressions for the reflection and transmission
coefficients for multilayered plates consisting of an arbitrary number of
anisotropic layers. Specifically, equations (3.11) and (3.13) list results
obtained for such plates bounded by an upper fluid and whose bottom bounding
medium consists of either a different fluid or a vacuum , respectively.
Results for propagation along axes of symmetry can be obtained
asymptotically from the general results. The expressions (3.11) and (3.13)
for the reflection and transmission coefficients contain, as a by-product,

the characteristic equation for the propagation of modified (leaky) free
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waves on the corresponding media. The vanishing of the denominator in Eq.
(3.11), namely,

(M1 + Qulpp) + QM + QM) = 0 (3.14)

defines the characteristic equation for such waves on a plate separating two

different fluids. By setting Py, = P, Ve get results for the free waves on

orthotropic plates immersed in a single fluid. Furthermore, in the absence
of both fluids Eq. (3.14) reduces to

le =0 (3.15)

which defines the characteristic equation for the propagation of free
natural waves on a dry multilayered plate.

By setting p, = 0 (i.e., Q = 0) Eq. (3.14) reduces to
g Py b

M21 + Qunll =0 (3.16)

which defines the characteristic equation for free waves on the plate with

one side of it kept free.

ACKNOWLEDGEMENT

The collaborative experimental effort by Dr. Dale E. Chimenti of the
Material Laboratory at AFWAL has been of major importance to our theoretical
modeling. Our combined efforts have resulted in several archival
publications and a 1large number of presentations. For this I am greatful.
The author 1is also pleased to acknowledge the competent assistance of

T. W. Taylor.

38




Appendix A

Cyq - C;1G4 + cézs“ + 2(0;2 + 2c;6)szc2

Gy = (Cyy + Cpp - acés)szc2 . G, (s + ¢*)

Cyz = Cp30” + Cpys”

Clg = (Cgq = Cpp = 26¢)SG + (Cp, - Cpy + 2C4()GS
022 - C;ISA + 2(012 + 2c;6)52G2 + C;ZGA

Cpg = Cpal” + Cp55°

Cpp = (c;l ; Ciz ; 20;6)033 + (ci2 ; 0;2 + 20;6)sc
C33 = G35

C36 = (c;3 - Ci3;SG

Cys = (Cyy - Cs5)SC

Cun = CuyS” + Co58°

Cgs = CysC” ; 0452

Cgg = (Cyp + Cpp - 261, - 26,,)5%6% + o (5% + &™)
Where G = cos ¢ and S = sin ¢.
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Appendix B
The coefficients of Eq. (1.10) are given by

A = (PyFq + PyCgg - BFyy - PSCyo + PoF15)/A

11 2755 4712 5745 7

A2 - (PZF + P,C - P.F -PC .+ P F13)/A

11 3755 5712 6 45 8

Ay = (P3F 1 - PgFp5)/8

A =P,C - PC

1655 ° B4l
Py = Cu4Css 3 Py = FpoFss
Py = Fp3€33 + F33C4 - Fy3
Py = C33C45 » Pg = FyoFsy
P, =

5 = C33F1p * F330,5 - Fi3Fy3

6 = F2304s - F13C4 3 By = FroFp3 - Fi3Fy
F13 = €31 - pe?
F12 = €16

13 = %13

55
2
Fog = Cgg - #¢

F,, =~ C

36 45

2
Fi3 = C55 - pc
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FIBER AXIS

X3

Figure 1.1. Coordinate system for leaky plate wave problem. Incident beam

atrikes plate at angle 8, and ¢ is angle between fiber axis and
plane of incidence.
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Figure .2(a). Reflection (plate-wave) spectrum for 6 = 12° and ¢ = 30°.

Theory is solid curve and experiment is dashed curve. Dpata
. _ has been deconvolved to remove transducer response,
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Figure 1.3(b) Dispersion plot for ¢ = 90°,
are small filled cirocles.

Data are crosses;

theory curves
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Figure 1.4(b). Dispersion plot for ¢ = 45°,
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"n»w. 2.2. Experimental (dashed) and theoretical (solid) reflection spectrum

for the -e».cew_u laminate with an incident angle of 16 and with the mwvan

direction of the uppermost ply in the incident plane.
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Fig. 2.3. Reflection spectrum for same conditions as in Fig.2.2 but with the

fiber direction in the uppermost ply perpendicular to the incident plane.
This variation corresponds to the reversal of the layer ordering. Yet, the

reflection behavior is completely different. Measurement is dashed curve;

theory is solid curve.
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Fig. 2.8. As in Fig.2.6 but at an incident angle of 30 . Small amplitude

oscillations on peaks near 3.5 and 4.7 MHz are experimental artifacts.

Theory curve is solid.
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