AD-A2C5 911

RADC-TR-87-219
Final Technical Report
September 1988

RESEARCH ON SIGNAL PROCESSING
SUPERCOMPUTERS

Carnegie Mellon University

H. T. Kung

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

NTIC

FLECTE

-y Y

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nationms.

RADC-TR-87-219 has been reviewed and is approved for publication.

APPROVED: W /1/ W

RICEARD N. SMITH
Project Engineer

BRUNO BEEK
Technical Director
Directorate of Communications

FOR THE COMMANDER:/// 2 Cléf ;
JAMES W. HYDE TII

Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (DCCD) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucment require that it be returned.

SECURITY CLA§5IFICATION %F TRIS PAGE

REPORT DOCUMENTATION PAGE s P e 188

1a. REPORT SECURITY CLASSIFICATION
| UNCLASSTFIED

7. RESTRICTIVE MARKINGS
N/A

Z§7§CURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

N/A

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited.

N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

e —— T
S. MONITORING ORGANIZATION REPORT NUMBER(S)
RADC~-TR-87-~219

e " T et o
6a. NAME OF PERFORMING ORGANIZATION
Carnegie Mellon University

M —
6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Rome Air Development Cemter (DCCD)

6c. ADORESS (City, State, and ZIP Code)
Department of Computer Science
Pittsburgh PA 15213

7b. ADDRESS (City, State, and ZIP Code)

Griffiss AFB NY 13441-5700

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

Rome Air Development Center

8b. OFFICE SYMBOL
(if applicable)

DCCD

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F30602-81-C-0206

8c. ADDRESS (City, State, and 2IP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB MY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO.
611027 2305 J8 P8

R ——
11. TITLE (include Secunity Classification)

RESEARCH ON SIGNAL PROCESSING SUPERCOMPUTERS

he—————————————————
12. PERSONAL AUTHOR(S)

H. T. Kun
T73a. TYPE OF REPORT 13b. TIME COVERED T4, DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Final _ FROM_Sep 85 70.Sep 86| Septegber 1988 22

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Cmputmg
25 Q2 signal processing

A 17 04 01 systolic parallel

insights into the development o

Mellon supports these models. ~§h

-

-, -
> D L

9. ABSTRACT {Continue on reverse if necessary and identify by block number)

Signal processing is an area where the required computational bandwidth in an applicar{ion can
be unbounded. Applications such as radar, sonar and communications already call for signal
processing systems capable of delivering billions or tens of billions of operations per

second. In developing a new signal processor to meet these requirements, it is essentfal to
understand the underlying computational models.

is unclear on the computational models will likely be wasteful and unable to meet the long-
term performance goal. Fortunately, because the control in signal processing is typically
data-independent, computational models in this area can be relatively simple. Based on the
study performed under this contract, this report describes some important computational model
for parallel signal processing, and illustrates how the Warp machine developed by Carnegie

e viewpoint expressed in this report may provide some useful
the next-generation signal processing supercomputers.

An ad-hoc processor development effort that

20 OISTRIBUTION / AVAILABILITY OF ABSTRACT

f 22a. NAME OF RESPONSIBLE INOIVIDUAL
Richard N. Smith

G UNCLASSIFIED/UNLIMITED [Same As ReT [J OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22 TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
(315) 330-3224 RADC (DCCD)

DO Form 1473, JUN 86

Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Lfccession For

NTIS CPRA&I

TIC TAR
Unannsuxced 0
Ju:zification________,
By

Di§};}pgtion/
Avallability Codes
Avail and/or
Dist Special

Al

There are serious problems with current processors for high-speed signal processing. To meet speed

1. Background

requirements in real-time applications, many companies, including AT&T, GE, Honeywell, Hughes,
IBM, TRW, TI, and Westinghouse, have developed their own versions of programmable signal proces-
sors. The development of these processors has been enormously expensive, and yet they are far from
ideal. These processors are typically programmed in assembly languages, and as a result, it is extremely
difficult to develop and maintain software for them. Moreover, these machines rely heavily on custom
CPUs and special-purpose hardware to obtain their performance. It is not clear at all how these systems
can be scaled up to provide another order of magnitude improvement in performance without incurring a
huge cost.

For a contrast, consider the community of scientific computing, which also deals with computationally
demanding applications. That community enjoys access to general purpose supercomputers built by
companies such as CDC, CRAY and NEC, and even smaller companies such as Convex. It has not been
as necessary for researchers in scientific computing to build their own high-performance computers, as it
has been for professionals in high-speed signal processing. One can easily see that computing needs for
scientific computing have been more cost-effectively met than those for high-speed signal processing.

There could be many reasons for this phenomenon. High-speed signal processing machines are often
embedded in larger systems, so in this case special designs are needed to deal with various interfaces to
the extenal world. It may be also due to the fact that applications usually impose stringent power and
size limitations on signal processors. However, we believe that there are other, subtle reasons. Consider
for example the impact of programming languages being used in these two communities. The scientific
community uses FORTRAN throughout. They know very well that all they need is machines that can

execute FORTRAN code efficiently and have an effective vectorizer compiler. This goal is clearly stated,
and (despite FORTRAN being an old programming language) concentrated efforts in machine architec-
tures and Lheir implementations have been possible. The high-speed signal processing community on the
other hand has mostly been programming in assembly or lower level languages: programming ex-
periences are highly machine-dependent. Therefore, the requirements of supercomputers for signal
processing have not been clear.

To solve these problems, a fundamental way is to understand the computational models that high-
performance signal processors need to support. This is elaborated in the following section.

2. The Importance of Computational Models

When developing a new computer system, some models about the computations that the machine will
support efficiently are always in the designer’s mind. For example, a typical signal processor is op-
timized to execute data-independent inner loops for routines such as FFT, filtering and matrix multiplica-
tion. Computational models are more fundamental than architectures, because the former define the
usage patterns of the machines from which the latter are derived. Unfortunately, these models are often
not explicitly stated, because sometimes it is difficult to describe them precisely.

The importance of computational models increases for new signal processing machines that use paral-
lelism as a mechanism for achieving additional performarice. High performance execution on parallel
architecture is achieved by having the programmer or compiler organize the computation so that many
tasks can be performed concurrently. The computational models are needed to give guidance on how the
partitioning can be done, and how the communication cost between the processors can be minimized.
Without the computational models, it would be very difficult to manage the kind of complexity due to the
parallelism.

More importantly, computational models provide necessary insights about the design of high-level
programming languages to support parallel computations. The most difficult part of the design of such a
language is on the inter-processor communication, and this can be done properly only if the computa-
tional models have been clearly defined. Similarly the models give the hardware requirement to support
efficient inter-processor communication.

Rather than proposing new architectures and discussing their computational bandwidths, in the follow-
ing we give computational models for future high-performance signal processors. These models are
based on our experience in projects such as Warp and (Warp, in design of parallel algorithms such as -
systolic algorithms, and in signai and image processing applications such as the autonomous land vehicle

(ALV) navigation.

We give computational models only for parallel computers using partitioned, rather than, shared
memory. These computers are capable of delivering very high computational throughput because all of
their processors can work simultaneously on their own local memories. - Almost all of the very high-
performance, parallel signal pfocessors available today, including Warp, are machines of this kind. This,
we expect, will remain to be true in the foreseeable future.

It is well-known, however, that partitioned memory parallel computers are more difficult to program
than shared memory ones, because users will have to manage explicitly various memories present in the
system. As stated above, computational models identified in this report will help specify hardware and
software tools needed to aid the programming.

3. Some Experience at Carnegie Mellon University

High-speed signal architectures have been a focus of research at Camegie Mellon for many years. Two of
our most recent efforts in this area are the Warp and iWarp projects.

The Warp machine is a systolic array computer of linearly connected cells, each of which is a
programmable processor capable of performing 10 million floating-point operations per second (10
MFLOPS). A typical Warp array includes 10 cells, thus having a peak computation rate of 100
MFLOPS. The Warp array can be extended to include more cells to accommodate applications capable
of using the increased computational bandwidth. Warp is integrated as an attached processor into a UNIX
host system. Programs for Warp are written in a high-level language supported by an optimizing com-

piler.

The Warp system is depicted in Figure 1. The Warp array performs the computation-intensive routines
such as image processing routines or matrix operations. The interface unit handles the input/output
between the array and the host, and can generate addresses (Adr) and control signals for the Warp array.
The host supplies data to and receives results from the array. In addition, it executes those parts of the
application programs which are not mapped onto the Warp array. For example, the host may perform
decision-making processes in robot navigation or evaluate convergence criteria in iterative methods for

solving systems of linear equations.

The Warp array is a linear systolic array of identical cells called Warp cells, as shown in Figure 1. Data
flow through the array on two communication channels (X and Y). Those addresses for cells’ local
memories and control signals that are generated by the interface unit propagate down the Adr channel.

Adr

HOST

I

INTERFACE
UNIT

I(___

LHR L HP

WARP PROCESSOR ARRAY

Figure 1.

Warp system overview

The direction of the Y channel is .statically configurable. This feature is used, for example, in algorithms

that require accumulated results in the last cell to be sent back to the other cells (e.g., in back-solvers), or

require local exchange of data between adjacent cells (e.g., in some implementations of numerical relaxa-

Y

YY

AReg > Add
31 x 32 >
IR
< Mem
> 2k x 32
REs 0
e
31 x 32 77

tion methods).
XQ
—- >
512 x 32
YQ <
| >
512 x 32
Data
Mem 51 Cross
i Bar
32k x 32 |€ —&—
A A
<Literal>
A
~_ j Address|—€
<] Cross
AdrQ Bar
—] >
512 x 32

AGU

Y

Y

Figure 2. Warp cell data path

Y

The first 10-cell prototype was completed in February 1986; delivery of production machines by our
industrial partner (GE) started in April 1987. Extensive experimentation with both the prototype and

production machines has demonstrated that the Warp architecture is effective in the application domain of
robot navigation, as well as in other fields such as signal processing, scientific computation, and computer
‘vision research [2, 1, 3, 5, 6, 14]. For these applications, Warp is typically several hundred times faster
than a VAX 11/780 class computer.

Presently mounted inside of a robot vehicle called NAVLAB, Warp has been used in vehicle control to
perform road following and obstacle avoidance. We have implemented road following using color clas-
sification, obstacle avoidance using stereo vision, obstacle avoidance using a laser range-finder, and path
planning using dynamic programming. We have also implemented a significant portion (approximately
100 programs) of an image processing library on Warp (15], to support robot navigation and vision
research in general.

' Anticipating the future need for integrated Warp systems, we have been developing a chip with Intel
Corporation, called the iWarp chip, since April 1986. When it becomes operational in 1989-90, the
resulting ;Warp system is expected to represent an order of magnitude improvement in cost and perfor-
mance over the current Warp. Using tens of cells, the /Warp system will be able to deliver over a billion
floating-point operations per second.

4. Some Background on Systolic Arrays

The Warp architecture evolves from many years’ research in systolic arrays at Camegie Mellon and

elsewhere. It is therefore important to review the basic concept of systolic arrays.

4.1. Principle of Systolic Arrays

Systolic arrays are suited for ‘‘front-end processing’’ that deals with large amounts of data obtained
directly from sensors. Although processing of this kind usually requires much computing power, it is
highly regular and parallelizable. The systolic array architecture exploits this regularity and parallelism to
meet the computation requirement with low costs.

The principle of a systolic array architecture (Figure 3) is that by replacing a single processing element
(PE) with an array of processing elements, called cells, a higher computation throughput can be achieved
without increasing the input/output bandwidth with the outside world [11]. The function of the memory
is analogous to that of the heart; it ‘‘pulses’’ data through the array of cells. The crux of this approach is
to ensure that once a data item is brought out from the memory it can be used effectively at each cell it
passes while being ‘‘pumped’’ from cell to cell along the array. Being able to use each input data item a
number of times is just one of the many advantages of a systolic array. Other advantages include modular
expandability, simple and regular data and control flows, use of simple and uniform cells, efficient fault-

tolerant schemes, and elimination of global data communication. These properties are highly desirable

MEMORY

Conventional
| PE
MEMORY
systolic

pE M PE pEMY pe [pE

Figure 3. Processor architecture: conventional processor with one
processing element (PE), and systolic array processor with an array of PEs or cells

for VLSI> (Very Large Scale Integration) implementations. Indeed the advances in VLSI technology

have been a major motvation for recent interest in systolic arrays.

Systolic arrays typically call for simple and regular array interconnections between their processing
elements. Many systolic algorithms have been developed on arrays depicted in Figure 4. A bibliography
maintained at Carnegie Mellon lists more than 350 papers published in the past eight years on systolic

5

oo OoOOd

Figure 4. Typical interconnection schemes for systolic arrays

arrays.

4.2. Properties of a Systolic Array Machine
We summarize some of the typical properties of a systolic array machine.

S1. The systolic array is attached to a host, which represents the “‘outside world’’ that supplies
data and receives results to and from the array, respectively. The host may also controi the
array. This differs from a traditional ‘‘cellular automaton,'’ which is assumed to be self-
sufficient for the entire computation.

S2. The machine achieves its efficiency by a cbreful mapping of computation onto the systolic
array.

(a) The mapping requires only simple and regular inter-cell communication for the ar-
ray.

(b) Only boundary cells communicate with the outside world so the array’s external [/O
bandwidth is minimized.

This is unlike data flow computers where the mapping is done dynamically in an unpre-
dictable manner.

S3. Cells of the systolic array are optimized for inter-cell communication, so data can efficiently
flow through the array as they are being processed.

(a) Each cell has sufficient [/O bandwidth for efficient implementaton of very
fine-grain parallelism (e.g., only one or two arithmetic operations performed for
each I/O operation).

(b) Systolic communication: each cell can operate direcly on data residing at the cell’s
input queues and move computed results directly to the cell’s output queue. There-
fore it may not be necessary to store incoming or outgoing data in the cell’s local
memory.

This differs from a typical message passing, distnibuted memory parailel computer such as a
hypercube.
4.3. Why the Warp Project?
A systolic array can implement a special-purpose processor, or a programmable processor. For special-
purpose implementation, the systolic array is justifiable by a predetermined set of application tasks.
Clever systolic algorithm design and highly optimized implementation, possibly with custom-made I/O
devices, for the tasks are the name of the game. Tools for fast turnaround implementation are sometimes

important.

When implementing a programmable systolic array processor considerations span more dimen-
sionaiities, and issues are in general more complex. One must develop programming models and support,
handle the I/O with a general purpose host computer, and compete with many other programmable paral-
lel computers. It is not simple to strike a balance between competing design goals such as high perfor-
mance, low cost, and high degree of programmability; only extensive experiments will provide the neces-
sary insights.

The objective of the Warp project is to explore the design space of high-performance and yet highly
programmable systolic array machines, and prove that the resulting architecture will be cost-effective
when compared to other parailel architectures. Programmability here does not mean merely that the
hardware is flexible so that it can be reconfigured to perform a variety of tasks. We need to show that
efficient and effective programming tools can be developed on the system, and with these tools lots of
algorithms and applications can be implemented at relatively low cost.

5. Computational Modeis Supported by Warp

The current Warp systen. supports the following computational models for linear, or 1-dimensional (1D),

processor arrays:
1. pipelining;
2. data partitioning;
3. recursive computation;
4. domain decomposition;
5. divide-and-conquer;
6. multi-function pipelining.
In the following we briefly describe these models. In the discussion cells in the 1D processor array are
named as cell 1, cell 2, - - -, cell N from left to right.
5.1. Pipelining
In this model, typical of systolic processing, the algorithm is partitioned among many Warp cells, where
each cell does one stage of the processing. More precisely the computation for each output is partitioned

into a sequence of identical stages, and cell i is responsible for stage i. A characteristic of this model is
that cell i+1 uses computed results of cell i, as depicted in Figure 5.

INTERMEDIATE RESULTS

INPUT —{] L .XE—..—) SUTPUT

STAGE 1 STAGE 2 STAGE N

Figure 5. Pipeliring model
Thus during the computation cell i+1 cannot start its operation until cell i completes at least a stage of
computation. Intermediate results move from left to right, and final results emerge from the right-most
cell. The sequence of computation in computing each output is exactly the same as that for the sequential

one.

The Warp array’s high inter-cell communication bandwidth and effectiveness in handling fine-grain
parallelism make it possible to use this model. For some algorithms, this is the only method of achieving
parallelism that is possible.

A simple example of the use of pipeliningAis the solution of elliptic partial differcntial equations using
successive over-relaxation (18]. Consider the following equation:

0%u % _
$2_ + -a?z' = f(x.y).

The system is solved by repeatedly combining the current values of « on a 2-dimensional grid using the

following recurrence:

[el AU
ro_ % M) B W 23 iad T W Al 3 O
W, =(l-0)y; ;+ o n)

In the Warp implementation, each cell is responsible for one relaxation, as expressed by the above equa-

where @is a constant parameter.

tion. In raster order, each cell receives inputs from the preceding cell, performs its relaxation step, and
outputs the results to the next cell. While a cell is performing the 4% relaxation step on row i, the
preceding and next cells perform the k—1%t and &+1%* relaxation steps on rows i+2 and i-2, respectively.
Thus, in one pass of the u values through the 10-cell Warp array, the above recurrence is applied ten

times. This process is repeated, under coritrol of the external host, until convergence is achieved.

The Warp implementation of FFT also uses this pipelining model [12, 14].

5.2. Data Partitioning

In this model, data are partitioned across the cells and each output is computed entirely within a cell.
That is, the entire computation for each output is done locally at a cell. The input required by the
computation of a cell is shifted in via the cells to the left. The output produced by a cell is shifted out via
the cells to the right. This computation model is depicted by Figure 6, in which dotted arrows denote the
shift-in and shift-out paths for input and output, respectively.

INPUT swmmm—) -—1 -

| J . | eewes) CUTPUT

Figure 6. Data partitioning model
Various partitioning schemes can be used to assign computations to cells for the data partitioning com-
putation model. Most of the schemes are based on the partitioning of the input or output data set [14].

5.3. Recursive Computation

The above models involve data flowing in one direction, that is, from left to right However, bi-
directional data flows are often used for computations where previously computed results are needed to
compute future results. By flowing results that were previously computed against the flow of inter-
mediate resuits that are currendy being computed, recursive computations can be implemented. The
important feature of the recursive computation model is the presence of these bi-directional data flows
over t_he 1D array, as illustrated by Figure 7. Examples of recursive computations that have been imple-
mented on 1D arrays with bi-directional data flows include recursive filtering [10], solution of triangular
linear systems [13], and QR-decomposition [8].

INPUT ---1 : k———)- s —#_-r-) OUTPUT

Figure 7. Recursive computation model

5.4. Domain Decomposition

The domain decomposition model arises when a problem domain (such as the grid space used in a finite
difference or finite element modelling) is decomposed so that each cell handles a subdomain. This model
is like the local computation model where each output is computed entirely by a single cell. However,
once in a while bi-directional exchanges of information between neighboring cells are needed. The
exchanges of information are relatively infrequent; they occur only after cells have done a fairly large
amount of computations locally. The information exchanged between two neighboring cells involves
intermediate results computed by both cells. Figure 8 depicts the domain decomposition model. In
contrast, for the recursive computation model of Figure 7, bi-direction exchanges of information are
relatively frequent, and each right-to-left arrow carries previously computed results by the array rather

than intermediate results computed by the sending cell.

H e

Figure 8. Domain decomposition model

There are many computations that can be conveniently carried out using the domain decomposition
model. Numerical simulations of properties of a physical object, by either PDE or Monte Carlo, can be
partitioned along the physical space. A large file can be sorted on a 1D array by using the bi-directional
communication to merge sublists sorted by individual cells. The merging can be done in a manner similar
to that used in the odd-even transposition sort, involving only nearest neighbor communications [4].
Labelling of connected components in an image can be done by using the bi-directional communication to
merge labels of subimages computed by individual cells [14].

5.5. Multi-function Pipelining

A single computation may involve a series of subcomputations each executing a different function. If the
different function stages can be chained together on the 1D array, then a one-pass execution of the entire
computation would be possible. This is the basic idea of the multi-function pipelining model [6]. In this
model, the 1D array is a pipeline of several groups, each consisting of a number of cells devoted to a
different function. The number of cells in each group can be adjusted so that every group will take about
the same time, in order to maximize the pipeline throughput.

10

Figure 9 illustrates the use of the multi-function pipelining model to implement the geometry system
portion of 3-D computer graphics. The first cell performs the matrix multiplications, the next three cells
do clipping, and the last cell does the scaling operation. Three cells are devoted to clipping as it requires

more arithmetic operations than either matrix multiplication or scaling [9].

[J L) L J

GROUP 1 GROUP 2 G@UP 3
{FOR MATRIX MULT) (FOR CLIPPING) (FOR SCALING)

Figure 9. Multi-function pipelining model to implement a geometry system

The data rate and format of the input to a group may not be compatible to those of the output from the
preceding group. In this case a buffering capability is needed at either end of a group.

Figure 10 depicts another example of multi-function pipeline. This is a laser radar simulation that we
have recently implemented on Warp:

Group 1: Perform 1024-point complex FFT using 10 cells, then partition the FFT output
sequence into 30 overlapped 256-element subsequences.

Group 2: For each of the 30 256-clement subsequerice, perform the following operatiorts.
o Cell 1: Multiply each element by a complex number (weight).
e Cells 2-9: Perform 256-point complex inverse FFT.
e Cell 10: Compute the amplitude of each of the 256 outputs.

Group 3: Threshold the resulting 30x256 image using 3x3 windows.

The figure shows that all the operations in the three groups are performed in one pass on a linear array.

1024-pt 30x%256

I 4Cell cellly 4Cell 4Cell _T
1 —1 N 9 10

1024-pt FFT Lo 256-pt ppp ——— Amplitude

& &
Multiplication Thresholding

Figure 10. Radar processing on Warp

In summary, the multi-function model differs from the pipelining model described earlier in that cells
are now allowed to perform different functions. This flexibility in the usage offers the opportunity of

11

effectively using a large number of cells in a 1D array.

6. Computational Models for 2-D Arrays

This section considers 2-dimensional (2-D) processor arrays, as illustrated by Figure 11.
Figure 11. Examples of 2-D processor arrays
We have identified the following important computational models for 2-D arrays:
1. pipeline;
2. local computation;
3. recursive computation;
4. domain decomposition; and
S. divide-and-conquer.

s .

These models are straightforward extensions of the corresponding ones for 1-D arrays, and thus we will
discuss them only briefly.

It is possible to define query processing, multi-function pipeline and task queue models for 2-D arrays.
However, they do not seem to lead to more useful applications than their counterparts for 1-D arrays.

6.1. Pipeline Model for 2-D Arrays

In the pipeline model, the 2-D array is a **wide’’ pipeline where each stage may consist of more than one
cell. During the computation, cells in one stage send intermediate results, that they have computed, to
their nearest neighboring cells in the next stage. Examples are 2-D systolic arrays for matrix multiplica-
tion {13, 17] and dynamic programming [7].

6.2. Local Computation Model for 2-D Arrays

The characteristic of the local computation model is that the computation for each output is computed
entirely within a cell. An example is the matrix multiplication scheme where terms in the product matrix
are accumulated locally at individual cells.

12

6.3. Recursive Computation Model for 2-D Arrays

In the recursive computation model, previously computed results are fed back into the array to interact
with other intermediate results. An example is the LU decomposition of banded matrices [13], where
previously computed results flow back to the array in two directions to meet intermediate results that flow

in yet another direction.

6.4. Domain Decomposition Model for 2-D Arrays

Physical problems can often be decomposed naturally over a 2-D processor array. Each cell performs
computations associated with the assigned region. When one stage of the local computation is completed,
the cell communicates with its nearest neighbors to update the values on the boundary of the region.

6.5. Divide-and-conquer Model for 2-D Arrays
Both the bitonic sort and merge sort are recursive sorting methods that can be implemented on a 2-D array
(16].

7. Computational Model for Heterogeneous Machines

Figure 12 indicates various tasks involved in an ALV road following application. Tasks such as road
predictor and finder are well-suited to special-purpose machines employing, say, 1D or 2D processor
arrays. The computational models, described earlier in this report, are useful for devising computational
schemes for these individual tasks. However, to get the next level of performance we need to explore the
fact that many of the tasks such as landmark recognition and road finding can operate in parallel, possibly
on a varety of machines. In this section we discuss this task-level computational model for

heterogeneous machines.

Driven by application needs, heterogeneous parallel computers have become increasingly common, and
will represent an important trend for next-generation signal processing supercomputers. For example, the
DARPA ADRIES image anaiysis project uses a system that integrates a 16-node Butterfly and a Sym-
bolics 3670 for symbolic processing, as well as a Star 100 array processor, a Warp and a 128-node
Butterfly for numeric processing. These processors are configured around a high-bandwidth Aptec bus,
which also interfaces to a high-bandwidth disk system via a VAX 11/750.

Another example of a heterogeneous parallel computer is the current Warp machine itself. The system
has a general purpose workstation and standalone MC68020 processors, in addition to the Warp array.
Run-time software is provided to make these components work in parallel, and to handle various func-
tions of the machine. Moreover, Warp is an open system in the sense that special interfaces can be added
to the machine in the future to fulfill individual application needs. In fact, the design of interfaces to the
Butterfly machine, the Aptec bus and a high-speed digitizer has already started.

13

Dest ination from
Mission Control

Map database

Map database

Wheel motion

Obstacles

Figure 12. A task-level program for the ALV road-following

For these systems, local area networks such as Ethemet can provide the flexibility but not the required
speed. To meet the speed requirement special hardware and software means are often used. However,
the integration structures such as those used in the current Warp system or in the ADRIES system are
ad-hoc. They do not support a unified programming environment and cannot be expanded or modified
easily.

A high-performance common framework for integration purposes is crucial for open system architec-
tures as well as for exploiting task level parallelism. The framework should support efficient use of the
individual processors, and allow the user to schedule them easily.

Figure 13 depicts the configuration of a heterogeneous system. The system consists of one or more
Warp arrays, several general purpose processors, sensors, and an iWarp array when it becomes available.

In programming the heterogeneous machine, we can use existing programming methods to program the
individual processors, but we need new computational models to make the heterogeneous processors in
the system work together in parallel at the task level. In the following we describe a task-level model for
exploiting the task level parallelism.

14

Switch

//ii"\w Warp Array
P e |

¢ 0 @
Workstation

Sensors « ¢ o
(Vision, Sonar, Radar)
General-purpose
- Processor
Output devices

Figure 13. Configuration of a heterogeneous machine

An application program is viewed as a collection of coarse-grain, asynchronous, cooperating tasks, as
depicted by Figure 14,

From camera

Task4
at Warp array

Tasks
at Warp array

To display

Figure 14. Program illustration using the task-level model
A task usually depends on other tasks to provide its input data, and produces output for consumption by
yet other tasks. Input and output data queues can be used between tasks to smooth the data flow. Each

15

task executes on a single special- or general-purpose processor, $pecified by the programmer. In general,
a number of tasks within a program may execute concurrently on different processors, subject to data-

dependency constraints.

The programmer can specify an input condition to trigger the execution of a task as soon as the con-
dition is satisfied. A condition may be the minimum amount of data needed in an input queue, or the
existence of certain kind of data in the queue. For instance, a landmark recognition task can start as soon
as some distinguished sign appears in the image.

The programmer explicitly associates each task with a set of processors, any of which is capable of its
execution. It will be up to a run-time scheduler to determine the particular processor on which the
execution of the task is to be scheduled.

8. Conclusions

Computational models for 1-D and 2-D processor arrays are useful for front-end processing that deals
with data directly from the sensors. The task-level model is suited to back-end processing that deals with
reasoning. The ultimate signal processing supercomputer should be able to utilize the task-level paral-
lelism provided by the task-level model, and the fine-grain parallelism provided by the computational
models for 1-D and 2-D arrays.

16

References

1. Annaratone, M., Bitz, F., Clune, E., Kung, H. T., Maulik, P., Ribas, H., Tseng, P. and Webb, J.
Applications and Algorithm Partitioning on Warp. COMPCON Spring '87, [EEE Computer Society,
1987, pp. 272-275.

2. Annaratone, M., Amould, E., Kung, H.T. and Menzilciogiu, O. Using Warp as a Supercomputer in
Signal Processing. Proceedings of ICASSP 86, IEEE, 1986, pp. 2895-2898.

3. Annaratone, M., Bitz, F., Deutch, J., Hamey, L., Kung, H. T., Maulik, P., Ribas, H., Tseng, P. and
Webb, J. Applications Experience on Warp. Proceedings of the 1987 National Computer Conference,
AFIPS, 1987, pp. 149-158.

4. Baudet, G. and Stevenson, D. " Optimal Sorting Algorithms for Parallel Computers”. [EEE Trans-
actions on Computers C-27, 1 (January 1978), 84-87.

S. Clune, E., Crisman, J. D., Klinker, G. J., and Webb, J. A. Implementation and Performance of a
Complex Vision System on a Systolic Array Machine. Tech. Rept. CMU-RI-TR-87-16, Robotics In-
stitute, Camegie Mellon University, 1987.

6. Gross, T., Kung, H.T., Lam, M. and Webb, J. Warp as a Machine for Low-level Vision. Proceedings
of 1985 IEEE International Conference on Robotics and Automation, March, 19885, pp. 790-800.

7. Guibas, L.J., Kung, H.T. and Thompson, C.D. Direct VLSI Implementation of Combinatorial Al-
gorithms. Proceedings of Conference on Very Large Scale Integration: Architecture, Design, Fabrication,
California Institute of Technology, Jan., 1979, pp. 509-525.

8. Heller, D.E. and Ipsen, I.C.F. Systolic Networks for Orthogonal Equivalence Transformations and
Their Applications. Proceedings of Conference on Advanced Research in VLSI, Massachusetts Insutute
of Technology, Cambridge, Massachusetts, January, 1982, pp. 113-122.

9. Hsu, F.H,, Kung, H.T., Nishizawa, T. and Sussman, A. Architecture of the Link and Interconnection
Chip. Proceedings of 1985 Chapel Hill Conference on VLSI, Computer Science Department, The
University of North Carolina, May, 1985, pp. 186-195.