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The spatial distribution of light that constitutes the input to our eyes is the foundation
of all visual functions, such as perception of brightness, color, texture, form, and 3-D
organization. The perception of brightness may perhaps appear to be the simplest of all
functions: the most natural initial explanation of why surface A appears brighter than
surface B is that more light arrives into our eyes from surface A than from B. However,
as we will show in the following, the relation of luminance (which is a physical variable
involving the amount of light energy arriving at the retina) and brightness (which is a
psycholcgical variable denoting perceived intensity of light) is much more complicated.

The brightness-from-luminance problem is the following: find the mapping that trans-
forms any given spatial distribution of luminance into the corresponding spatial distribu-
tion of brightness. The prob'em is generally solved for the simple visual situatio:1 involving
a bright patch on a dark background. Increasing the luminance of the patch causes it to
look increasingly brighter, but in a nonlinear manner. The function is negatively acceler-
ated, and the debate is only whether it is mathematically better described as a logarithm
(Fechner, 1889) or as a power function (Stevens, 1957).

In more complicated visual situations containing several surfaces, their briglitnesses
may be predicted by taking logarithms, or power functions, of their luminances. This
prediction will be wrong, and there will be a luminance-brightness mismatch, in two types
of cases. They correspond to the two ways in which a one-to-one relation such as the
power function can be violated (Todorovié, 1987). On the one hand, there are cases in
which different luminances can induce the same brightness percept. On the other hand,
there are converse cases in which surfaces of the same luminance can appear differently
bright. These two types of cases are best exemplified by brightness contrast and brightness
constancy, two classical phenomena of brightness perception.

Brightness constancy refers to the fact that surfaces of the same reflectance (same
ratio of reflected to incoming light) tend to be perceived as approximately equally bright,
even under unequal illumination (Arend and Reeves, 1986; Katz, 1935). For example, two
identical pieces of gray paper are perceived as approximately equally bright, whether in
sunlight or in shadow, whether directly under a lamp or in a dark corner of the room.
Being differently illuminated, but having the same reflectance, the two pieces of paper
have different luminance (which is the product of illumination and reflectance). Their
approximately equal brightness is often thought to be due to their equal reflectance. It
is assumed that in the percept of brightness the visual system in some way discounts
the illumination and recovers the reflectance. Perceptual brightness constancy, then, is a
reflection of physical reflectance constancy: the ratio of reflected to incoming light does not
depend on the intensity of incoming light. In this approach, the brightness-from-luminance
problem reduces to the reflectance-from-luminance problem (Horn, 1974; Hurlbert, 1986;
Land, 1977, 1986).

A difficulty for such reflectance theories of brightness is that if they are completely
successful (in recovering reflectance) than they must be wrong. This is because surfaces
of equal reflectance do not always appear equally bright, and any theory which predicts
that they do misses an important aspect of brightness perception. Brightness contrast is
the prime example of such phenomena: put two equal pieces of gray paper under equal
illumination but place them on differently luminant backgrounds. Then the gray piece sur-
rounded by the black background will look brighter than the piece on the white background.
This effect of contextual dependence of brightness, where surfaces of equal luminance and
reflectance look differently bright, was already known to Leonardo da Vinci, and was se-
riously studied in the 19th century. More recently, a host of related phenomena were
discuvered, such as the Hermann grid (Spillmann and Levine, 1971), the Koffka-Benussi
ring (Koffka, 1935), brightness assimilation (Helson, 1963), the Wertheimer-Benary figure
(Benary, 1938), and others.

An attraciive phenomenon of this type is the Craik-O’Brien-Cornsweet Effect (COCE)
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(Cornsweet, 1970; see Todorovic¢ (1987) for a review). One version of the COCE is pre-
sented in Figure 1. Readers unfamiliar with this effect might suppose that, since the left
rectangle is brighter than the right rectangle, it is also the more luminant one. However,
the luminance of the two rectangles is actually identical, except for a luminance cusp over-
shoot at the left flank and a luminance cusp undershoot at the right flank of the midline
(see Figure 6a). The illusory nature of the phenomenon is most easily demonstrated by
the occlusion of the contour region. Placing a pencil or a piece of wire vertically across
the midline in Figure 1 causes the two rectangles to appear equally bright.

Figure 1 .

To summarize, there are at least two factors that make the relation of brightness and
luminance a problem: illumination discounting and contextual dependence. We will now
present a neural network architecture that deals with both issues. The model general-
izes to two dimensions the types of processes that Cohen and Grossberg (1984) used to
simulate 1-D brightness phenomena. This generalization conjoins processing concepts and
mechanisms from Cohen and Grossberg (1984) and those from Grossberg and Mingolla
(1985, 1987). For a detailed presentation of the theory and simulations please consult
Grossberg and Todorovi¢ (1988). The theory suggests that two parallel contour-sensitive
processes interact to generate a brightness percept. The Boundary Contour (BC) System,
comprised by several interacting networks, synthesizes an emergent boundary segmenta-
tion from combinations of oriented and unoriented scenic elements. The Feature Contour
(FC) System triggers a diffusive filling-in of featural quality within perceptual domains
whose boundaries are determined by output signals from the BC System. Neurophysiolog-
ical and anatomical data from the lateral geniculate nucleus and visual cortex which have
been analysed and predicted by the theory are summarized in Grossberg (1987a, 1987b).

THE MODEL

Figure 2 provides an overview of the neural network model that we have analysed. The
model has six levels depicted as thick-bordered rectangles numbered from 1 to 6. Levels
1 and 2 are preprocessing levels prior to the BC and FC Systems. Output signals from
Level 2 generate inputs to both of these systems. Levels 3-5 are processing stages within
the BC System. Level 6, which models the FC System, receives inputs from both Level 2
and Level 5.

Figure 2

Each level contains a different type of neural network. The type of network is indicated
by the symbol inside the rectangle. The symbols provide graphical mnemonics for the
processing characteristics at a given level, and are used in the figures that present the
computer simulations of the 2-D implementation of the model. The arrows connecting the
rectangles depict the flow of processing between the levels. The type of signal processing
between different levels is indicated inside thin-bordered insets attached by broken lines to
appropriate arrows, and coded by letters A through E. The sketch inside the inset coded F
depicts the complex interactions between Levels 2, 5, and 6. The mathematical structure
of the model is presented in the Appendix.

The first level of the model consists of a set of units that sample the luminance distri-
bution. In the 1-D version of the model the units are arranged on a line; in the 2-D version
they form a square grid. Level 2 contains two networks with units that model on-cells and
off-cells. These are neurons with concentric antagonistic receptive fields found at early
levels of the visual system. In Figure 2 the on-cells are symbolized with a white center and
a black annulus, and the off-cells with a black center and a white annulus. The 1-D cross-
sectinns of these fields are sketched in insets A and B of Figure 2. In two dimensions, these
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profiles have the shapes of sombreros for on-units, and inverted sombreros for off-units.
The activity level of such cells correlates with the size of the center-surround luminance
contrast. Due to the postulated shunting interaction (see Appendix), the cells are sensi-
tive to relative contrast in a manner approximating a Weber law (Grossberg, 1983). In
addition, the cells are tuned to display non-negligible activity levels even for homogeneous
stimulation, as do retinal ganglion cells (Enroth-Cugell and Robson, 1984). This property

enables such a cell to generate output signals that are sensitive to both excitatory and
inhibitory inputs.

Level 3 consists of units that share properties with cortical simple cells. The symbol
for *hese units in Figure 2 expresses their sensitivity to luminance contrast of a given
orientation and a given direction of contrast. Inset C depicts the 1-D cross-section of the
receptive field of such units, taken with respect to the network of on-cells. In our 2-D
simulations, the function we used to generate this receptive field profile was the difference
of two identical bivariate Gaussians whose centers were shifted with respect to each other.
A similar formalization was used by Heggelund (1981a, 1981b, 1985). In our current
implementation, Level 3 units are activated by Level 2 on-units.

Level 3 units are sensitive to oriented contrasts in a specific direction-of-contrast, as are
cortical simple cells. However, complex cells sensitive to contrasts of specific orientation
regardless of polarity are also well-known to occur in striate cortical area 17 of monkeys
(Hubel and Wiesel, 1968) and cats (Hubel and Wiesel, 1962). See Grossberg (1987a) for
a review of relevant data and related models. Units fulfilling the above criteria populate
Level 4 of our network. Inset D in Figure 2 depicts the construction of Level 4 cells out
of Level 3 cells. The mathematical specification is similar to the one used by Grossberg
and Mingolla (1985a, 1985b). The symbol for Level 4 units expresses their sensitivity to
oriented contrasts of either direction. Each Level 4 unit at a particular location is excited
by two Level 3 units at the corresponding location having the same axis of orientation
but opposite direction preference. Thus the twelve Level 3 types of units give rise to six
Level 4 unit types. Interestingly, several physiological studies have found that the simple
cells outnumber the complex cells in a ratio of approximately 2 to 1, and that complex
cells have a higher spontaneous activity level than simple cells (Kato, Bishop, and Orban,
1978). Both of these properties are consistent with the proposed circuitry.

In the simulations presented in this paper, we have used a simplified version of the BC
System. The final output of this system is found at Level 5 of the model. A unit at a given
Level 5 location can be excited by any Level 4 unit located at the position corresponding
to the position of the Level 5 unit. A Level 4 unit excites a Level 5 unit only if its own
activity exceeds a threshold value. The pooling of signals sensitive to different orientations
is sketched in inset E and expressed in the symbol for Level 5 in Figure 2. This pooling
may, in principle, occur entirely in convergent output pathways from the BC System to
the FC System, rather than at a separate level of cells within the BC System.

Network activity at Level 6 of our model corresponds to the brightness percept. Level
6 is part of the FC System, which is composed of a syncytium of cells. This is a regular
array of intimately connected cells such that contiguous cells can easily pass signals between
each other’s compartment membranes, possibly via gap junctions (Piccolino, Neyton, and
Gerschenfeld, 1984). Due to the syncytial coupling of each cell with its neighbors, the
activity can rapidly spread to neighboring cells, then to neighbors of the neighbors, and
so on. Because the spreading, or filling-in, of activation occurs via a process of diffusion,
it tends to average the activation that is triggered by an FC input from Level 2 across
the Level 6 cells that receive this spreading activity. The inset labeled F in Figure 2
summarizes the three factors that influence the magnitude of activity of units at Level
6. First, each unit receives bottom-up input from Level 2, the field of concentric on-cells.
Second, there are lateral connections between neighboring units at Level 6 that define the
syncytium, which supports within-network spread of activation, or filling-in. Third, this
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lateral spread is modulated by inhibition from Level 5 in the form of BC signals -apable
of decreasing the magnitude of mutual influence between neighboring Level 8 units. The
net effect of these interactions is that the FC signals generated by the concentric on-cells
are diffused and averaged within boundaries generated by BC signals.

The idea of a filling-in process has been invoked in various forms by several authors in
discussions of different brightness phenomena (Davidson and Whiteside, 1971; Fry, 1948;
Gerrits and Vendrick, 1970; Hamada, 1984; Walls, 1954). In the present model, this notion
is fully formalized, related to a possible neurophysiological foundation, tied in with other
mechanisms as a part of a more general vision theory, and applied in a systematic way to
a variety of brightness phenomena.

1-D SIMULATIONS

The model described in the preceding section was implemented in a 1-D and a 2-D
version. Simulations from both versions will be presented. All graphical depictions of the 1-
D simulations contain four distributions: the stimulus luminance distribution (Level 1), the
on-unit distribution (Level 2), the output of the BC System (Level 5), and the syncytium
distribution (Level 6), which corresponds to the predicted brightness distribution. Cohen
and Grossberg (1984) presented their simulation of various brightness phenomena in a
similar format. The graphs of the four distributions were scaled separately; that is, each
was normalized with respect to its own maximum.

We begin with the simulation of a simple visual situation whose purpose is to set the
context for the following simulations. The Level 1 luminance distribution, labeled Stimu-
lus, is presented in the bottom graph of Figure 3. It portrays the horizontal cross-section
of an evenly illuminated scene containing two equally luminant homogeneous patches on a
less luminant homogeneous background. The Level 2 reaction of on-units to such a stim-
ulation, labeled Feature, illustrates the cusp-shaped profiles that corresponu to luminance
discontinuities. The four boundary contours formed at Level 5 of the system are labeled
Boundary. Finally, the top graph, labeled Output, presents the Level 6 filled-in activity
profile that embodies the prediction of a brightness distribution qualitatively isomorphic
with the luminance distribution. This percept contains two homogeneous, equally bright
patches on a darker, homogeneous background.

Figure 3

What happens when the two-patch scene is unevenly illuminated? Figure 4 presents
a luminance distribution that mimics the effects of a light source off to the right side of
the scene. The luminance profile is now tilted, and the right patch has more average
luminance than the left patch. Inspection of the Output reveals that the model exhibits
brightness constancy. It predicts a percept whose structure is very similar to the one in
the preceding, evenly illuminated scene. One factor that contributes to this outcome is
the ratio-processing characteristic of the Level 2 units. Although the absolute luminance
values in the stimulus distribution in Figures 3 and 4 are different, the ratio of the lower
to higher luminance across all edges in both distributions is 1 : 3. Therefore, the activity
profiles of Level 2 on-units are very similar in both cases, as is the activity in all subsequent
processing stages. The consequence is that the illuminant is effectively discounted.

Figure 4
The importance of luminance ratios for brightness perception was stressed by Wallach
(1948, 1976). He found that if one region was completely surrounded by another, the

brightness of the inner region was predominantly influenced by the size of. the ratio of its
luminance to the luminance of the surround. Our model provides a mechanical explanation
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of why the ratio principle is effective in such situations. In addition, the model is applicable
to more general visual situations in which multiple regions have multiple neighbors, and
it provides perceptually correct predictions in situations in which the ratio principle fails.

Figure : shows how the model handles brightness contrast. This luminance profile
characterizing the favorite textbook example of this phenomenon is depicted as the Stim-
ulus. The luminance distribution is similar to the one in Figure 3 in that it contains
two patches of medium luminance level. However, the left patch is positioned on a lower
luminance background, and the right patch on a higher luminant one. Inspection of the
Output in Figure 5 reveals that the prediction of the model is in accord with the per-
ceptual fact that the patch on the dark background looks brighter than the patch on the
bright background. Note that the central portions of the on-units profiles (Level 2) that
correspond to the stimulus patches in Figure 5 have the same activity magnitude. Hence,
these activity profiles cannot account for the difference in the appearance of the patches.
However, the filled-in activity patterns within each region of the Level 6 output in Figure
5 are different and homogeneous.

Figure 5

In addition to the classical brightness phenomena, the model also explains a variety of
more recently studied effects. Grossberg and Todorovi¢ (1988) presented 1-D simulations
of experimental findings by Arend, Buehler, and Lockhead (1971), Arend and Goldstein
5198.7 ), Shapley (1986), and Shapley and Reed (1986). In all cases, brightness relationships
ound in the psychophysical experiments match those predicted by the model.

2-D SIMULATIONS

Although a 1-D model suffices for some brightness effects, others can only be profitably
studied and simulated by means of a 2-D architecture. The graphical depictions of our
simulations consist of 30 x 30 or 40 x 40 arrays of circular symbols of different types. As
noted, the type of a symbol serves as a mnemonic of the type of the unit it represents. The
size of the radius of a symbol represents the magnitude of its activity. The particular sizes
of the circular symbols on the printed page were chosen according to the following scaling
procedure: the unit or units with the maximum activity are represented with circles whose
radius is equal to half the distance between the centers of two neighboring units on the
grid; the remaining circles are scaled proportionally.

Figure 6 shows how the model handles the COCE. Figure 6a is a 2-D stimulus repre-
sentation (Level 1) depicting the standard case of the COCE presented in Figure 1. Figure
6b describes the activity pattern across the field of circular concentric on-units (Level 2).
Note that the middle portions of the left and right region corresponding to the two rect-
angles have approximately the same level of activity. However, there is an overshoot at all
four edges of the left region, but only at three edges of the right region. Thus, on average
there is more activity within the left than within the right region. Figure 6¢ describes the
activity pattern across the field of boundary contour units which delineate two recta.ngu.lar
compartments (Level 5). The activity pattern at Level 2 generates a filling-in reaction
at Level 6 within these boundary compartments. Figure 6d, which should be compared
with the percept in Figure 1, presents this final filled-in activity pattern. The activity is
uniformly higher in the left rectangle than in the right one, because on the left sidg tl}ere is
a larger total amount of Level 2 activity than on the right side, but they diffuse within the
same-sized compartments. See Grossberg and Todorovi¢ (1988) for simulations of several
variations of COCE presented by Todorovi¢ (1987).

Figure 6
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The interactions of the BC System and the filling-in process are well illustrated in
Figure 7, which presents the simulation of the Koffka-Benussiring (Berman and Leibowitz,
1965; Koffka, 1935). The version that we simulate uses a rectangular annulus. The annulus
has an intermediate luminance level and is superimposed upon a bipartite background of
the same type as in the classical brightness contrast condition, with one half having a
high luminance level and the other half a low luminance level (Figure 7a). The percept
of such a stimulus is that the annulus is approximately uniform in brightness, although
the right and the left halves of the annulus exhibit some brightness contrast. This percept
corresponds to the Level 6 activity profile in Figure 7b.

Figure 7

The brightness distribution in the percept can be changed by the introduction of a
narrow black line dividing the stimulus vertically into two halves. Figure 7c presents
the new stimulus distribution. In the percept, as in the Level 6 activity profile (Figure
7d), the annulus is now divided into two regions with homogeneous but different bright-
nesses that are in accord with brightness contrast. These effects depend critically upon
interactions between contrast, boundaries, and filling-in in the model. In the unoccluded
Koffka-Benussi ring, the annular region at Level 6 is a single connected compartment
within which diffusion of activity proceeds freely. The opposite contrast due to the two
halves of the background are effectively averaged throughout the annular region, although
a residual effect of opposite contrast remains. The introduction of the occluding boundary
(Figure 7c) divides the annulus into two smaller compartments (Figure 7d). The different
contrasts are now constrained to diffuse within these compartments, generating two homo-
geneous regions of different brightness. See Grossberg and Todorovi (1988) for additional
2-D simulations of brightness phenomena of the Hermann grid and the Kanizsa-Minguzzi
anomalous brightness differentiation.

The last set of simulations that we present here was done on a set of images popularized
by E. Land, who named them after Piet Mondrian, the Dutch painter. They consist of
randomly arranged collages of homogeneous surfaces of different reflectances. We use here
an example similar to the one presented by Shapley (1986). Consider the two squares in
Figure 8a, the first near the top left corner, and the second near the bottom right corner,
which have the same size and luminance. Despite these equalities, the filled-in activity
profile of the upper square is more intense than that of the lower square, corresponding
to the percept that the upper square is brighter. This brightness difference is due to the
following combination of factors in our model. The luminance of the regions surrounding
the two squares were chosen such that, on average, the upper square is more luminant than
its surround, and the lower square is less luminant than its surround. In consequence,
as can be seen in Figure 8b, more Level 2 on-unit activity is present within the region
corresponding to the upper square. The on-unit activity diffuses within the compartments
delineated by the BC’s (Figure 8c). Thus, in the filled-in upper square of Figure 8d, a
larger amount of activity is spread across the same area as in the lower square, thereby
explaining the final brightness difference.

Figure 8
Figure 9

Figure 9a presents a Mondrian that is illuminated by a gradient of light that decreases
linearly across space from the lower right corner of the figure. The upper square now
exhibits, on average, less luminance than the lower square. Despite this fact, the filled-in
activity profile of the upper square at Level 6 is more intense than that of the lowe.r square
(Figure 9d). Figures 8b and 9b, 8¢ and 8¢, and 8d and 9d are, in fact, \:irtually indistin-
guishable. Thus this simulation exhibits brightness constancy by effectively discounting
the illuminant, while at the same time retaining the effect of generalized brightness con-
trast. We call this contrast . »natancy, an effect which, to our knowledge, has not yet been
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psychophysically tested. This result does not, however, imply that complete discounting
will occur in response to all combinations of achromatic and chromatic images, illumi-
nants, and bounding regions (Arend and Reeves, 1986). The systematic analysis of all
these factors remains for future research.

DISCUSSION

The computer implementation of the model described in this paper has a limited
domain of application since it deals only with monocular achromatic brightness effects.
Extensions into the chromatic and the binocular domains have been described in Gross-
berg (1987a, 1987b). Brightness can also be influenced by emergent segmentations that are
not directly induced by image contrasts, as in Kanizsa’s illusory triangle, the Ehrenstein
illusion, and neon color spreading effects. These and related grouping and segmentation
effects have been discussed by Grossberg and Mingolla (1985a, 1985b). Their implemen-
tation includes a version of the BC System in which emergent segmentations can be gen-
erated through lateral interactions between oriented channels. Such interactions may play
a role in the orientation-sensitive brightness effects reported by McCourt (1982), Sagi and
Hochstein (19852, and White (1979). The implementation in this paper also omits possible
effects of multiple scale processing, as the receptive fields of all units within a network were
assumed to have a single receptive field size. Units of multiple sizes may be involved in
the explanation of classical brightness assimilation (Helson, 1963). Grossberg and Min-
golla have studied the role of multiple scales in the perception of 3-D smoothly curved and
shaded objects. A number of depth-related effects, such as the phenomena of transparenc
(Metelli, 1974) and proximity-luminance covariance (Dosher, Sperling, and Wurst, 1986
have been discussed by Grossberg (1987a, 1987b). The model in its current form also
does not treat the temporal variation of brightness due to image motion (Cavanagh and
Anstis, 1986; Todorovi¢, 1983, 1987) or stabilization (Krauskopf, 1963; Pritchard, 1961;
Yarbus, 1967). Finally, the application of the model to natural noisy images has yet to be
accomplished.

In sum, the system described in this paper does not attempt to explain the complete
gamut of brightness phenomena. These limitations are not, however, insurmountable ob-
stacles; rather, they point to natural extensions of the model, many of which have been
discussed and implemented in related work. However, even the processing of brightness
in monocular, achromatic, static, noise-free images is full of surprising complexities. Only
a model capable of handling these basic phenomena can be a foundation upon which still
more complex effects can be explained. Not much computationally oriented work has been
devoted to these fundamental aspects of visual perception. Several contemporary algo-
rithms were influenced by Land’s seminal work (Blake, 1985; Frisby, 1979; Horn, 1974;
Hurlbert, 1986). Other computational models have provided alternative approaches to the
analysis of filling-in (Arend and Goldstein, 1987; Hamada, 1984). Our model has been used
to simulate a much larger set of brightness duta, and includes mechanistic explanations
of classical longstanding phenomena described in every review of brightness processing,
recently discovered but unexplained data, and predictions of yet untested phenomena,
including predictions of testable patterns of physiological activation.




APPENDIX

The equations underlying the model are based on and are an extension of work by
Grossberg (1983), Cohen and Grossberg (1984) and Grossberg and Mingolla (1985b,
1986a). The exposition follows the description of Levels in Figure 2. Only the two-
dimensional versions of the equations are presented. The one-dimensional forms can be
derived by straightforward simplifications. The two-dimensional simulations were per-
formed on a 30 x 30 lattice or a 40 x 40 lattice. The one-dimensional simulations involve
256 units. 4

Level 1: Gray-Scale Image Description

We denote by I;; the value of the stimulus input at position (,7) in the lattice. In
all simulations these values varied between 1 and 9. In order to compute the spatial
convolutions of Level 2 cells without causing spurious edge effects at the extremities of the
luminance profile, the luminance values at the extremities were continued outward as far
as necessary.

Level 2: Shunting On-Center Off-Surround Network for Discounting Illu-
minants and Extracting FC Signals

The activity z,; of a Level 2 on-cell at position (¢, j) of the lattice obeys a membrane
equation

d
7% = —Azi; + (B — 25)Ci; — (25 + D) Eyj, (A1)

where C;; (E;;) is the total excitatory (inhibitory) input to z;;. Each input C;; and E,; is
a discrete convolution with Gaussian kernel of the inputs I:

Cij = Y IpgChqi (A2)
(r.9)
and
Eij = 3 TpgEpgis (43)
(p9)
where
Cpais = C exp{—a~?log2[(p — i) + (¢ — 5)*]} (44)
and
Epgij = Eexp{—p~?log2[(p - 9)* + (¢ — 7)*]}- (45)

Thus, the influence exerted on the Level 2 potential z;; by input I, diminishes with
increasing distance between the two corresponding locations. The decrease is isotropic,
inducing the circular shape of the receptive flelds. To achieve an on-center off-surround
anatomy, coefficient C of the excitatory kernel in (Ad4) is chosen larger than coefficient E
of the inhibitory kernel in (A5), but a, the radius of the excitatory spread at half strepgth
in (Ad4), is chosen smaller than S, its inhibitory counterpart in (A5). In the simulations,

this equation is solved at equilibrium. Then %z.-,- = 0, so that

. E(p,q) (BCpqis — DEN"J')IN ) (A6)
T A+ Tip.0)(Conis + Epgis) Ipg

z

The denominator term normalizes the activity z;;.
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The off-cell potential Z;; at position (7,7) also obeys a membrane equation with an
equilibrium value of the same form

.. = z:(p,q)(Bamij - Dquij)Ipq

Fii = okl ! (AT)
A+ 2 (p,0) (Crais + Epgiz)Ipq

The duality between on-cell and off-cell receptive fields was achieved by setting

Coqii = Epgi (48)
and .

Epgij = Cpgij- (49)
The output signal from Level 2 is the nonnegative, or rectified, part of z,;:

X,'J' = ma.x(:z:,-,-,O). (AlO)

Levels 3-5 compute the Boundary Contour signals used to contain the featural filling-in
process.

Level 8: Simple Cells

The potential y,,; of the cell centered at position (1, ;) with orientation k on the hour
code in Figure 7 obeys an additive equation

d k
ZpVisk = ~Vije + > quFéq.-),- (A11)
)]
which is computed at equilibrium:

Vijk = J_ quF,S:;')j (A12)
(p,9)

in all our simulations. In order to generate an oriented kernel F‘S:,-)j as simply as possible,
let F,S:-), be the difference of an isotropic kernel G, centered at (¢, ) and another isotropic

kernel H{¥). whose center (f + my,J + ny) is shifted from (¢, 5) as follows:

pat;
k
Fxs:')’ = Gpgij — Ht(m)f (413)
where 2 n3
Gpgij = exp{-7"*[(p — 9)* + (¢ - 5)*]} (414)
and
HQ), = exp{-77*(p— i —me)* + (¢ — m)’]} (415)
with ok
my = sin _;r{_ (A16)
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and

21k
ng = cos _I"{— (A17)

In the 2-D simulations, the number K of hour codes is 12, whereas for the 1-D simulations
it is 2.
The output signal from Level 3 to Level 4 is the nonnegative, or rectified, part of y,,
namely
Yije = max(yijz,0). (A418)

Level 4: Complex Cells

Each Level 4 potential 2,;; with position (¢,) and orientation k is made sensitive to
orientation but insensitive to direction-of-contrast by summing the output signals from the
appropriate pair of Level 3 units with opposite contrast sensitivities; viz.,

Zije = Y + Y,-J-(H%) (A19)

An output signal Z;; is generated from Level 4 to Level 5 if the activity z,;; exceeds the
threshold L:

Z;jx = max(zix — L,0). (A20)

Level 5: Boundary Contour Signals

A Level 5 signal z;; at position (1, j) is the sum of output signals from all Level 4 units
at that position; viz.,

Z,'J' = Z Z,'J'k. (AZI)
k

Level 6 computes the filling-in process, which is initiated by Feature Contour inputs
from Level 2 and contained by Boundary Contour inputs from Level 5.

Level 6: Filling-In Process
Each potential S;; at position (7,7) of the syncytium obeys a nonlinear diffusion equa-
tion
d
-&ES,',' = —MS.-,- + Z (Spq - S."')qu,'j + X.',' (A22)
(p9)EN;;

The diffusion coefficients that regulate the magnitude of cross influence of location (1, 5)
with location (p,q) depend on the Boundary Contour signals Z,, and Z;; as follows:

6
i = A23
The set N,; of locations comprises only the lattice nearest neighbors of (i,7):
Ny ={(,7-1),( - 1,7, +1,4), (5,5 +1)}- (A24)

At lattice edges and corners, this set is reduced to the set of existing neighbqrs. According
to equation (A22), each potential S;; is activated by the on-cell output signal X,; and

thereupon engages in passive decay (term —MS;;) and diffusive filling-in with its four

10




nearest neighbors to the degree permitted by the diffusion coefficients Ppgij- At equilibrium,
each S;; is computed as the solution of a set of simultaneous equations

Xi5 + 2 (p.g)eNi; Spa Ppais
Sy = : ) A25
Y M + 3(p.9)eNi; Pogii (425)

which is compared with properties of the brightness percept.
In all simulations the following parameter values were used: A = 1,B = 90,D =
60,~ = 1. All two-dimensional simulations shared the following parameters: C = 18, M =

l,a =.25,e =1, E = .5, = 3,6 = 300,L = 10. All one-dimensional simulations used
C=4,M=10,a=1,e=100,E = .5,8 = 8,6 = 100,000, L = 5.
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FIGURE CAPTIONS

Figure 1. The Craik-O’Brien-Cornsweet Effect (COCER. The left rectangle looks uni-
formly brighter than the right one. They have identical luminance, except for the cusp-
shaped profile of their shared vertical border (from Todorovic, 1987).

Figure 2. Overview of the model. The thick-bordered rectangles numbered from 1 to 6
corresnond to the levels of the system. The symbols inside the rectangles are graphical
mnemonics for the types of computational units residing at the corresponding model levels.
The arrows depict the interconnections between the levels. The thin-bordered rectangles
coded by letters A through E represent the type of processing between pairs of levels. Inset
F illustrates how the activity at Level 6 is modulated by outputs from Level 2 and Level
5. See the text for additional details.

Figure 8. One-dimensional simulation of an evenly illuminated scene. In this and the
following 1-D simulations the four graphs, from bottom to top respectively, refer to the
Level 1 stimulus distribution (labeled Stimulus), the Level 2 on-cell distribution (labeled
Feature), the Level 5 BC output (labeled Boundary), and the Level 6 filled-in syncytinm
(labeled Output). The parameters used in the simulations are listed in the Appendix.

Figure 4. Brightness constancy: The same scene as in Figure 3, but now unevenly
illuminated. Although the two Stimulus distributions in Figures 3 and 4 are different, the
final Output distributions are very similar.

Figure 5. Brightness contrast: The stimulus contains two medium luminance patches, the
left one on a low luminance background, and the right one on a high luminance background.
The Output predicts the left patch to look brighter than the right patch. In contrast, in
the Feature profile, the central activity levels corresponding to the two patches are equal.
Thus brightness contrast cannot be explained solely by contour generated activity, but a
filling-in process is also necessary.

Figure 8. The COCE. (a) The stimulus distribution. (b) The on-cell activity profile. (c)
The output of the BC System. (d) The filled-in syncytium, which predicts the brightness
of the stimulus, and should be compared with Figure 1. The parameters for this and the
following 2-D simulations are listed in the Appendix.

Figure 7. The Koffka-Benussi ring. (a) The stimulus distribution corresponding to the
homogeneous undivided square annulus of medium luminance on a bipartite background.
Sb) The filled-in output corresponding to the stimulus in (a). (c) The same stimulus

istribution as in (a), except that the annulus is here divided by vertical short lines into
two equiluminous halves. Sd) The filled-in output corresponding to the stimulus in (b).
The two halves of the annulus are homogeneous and have different brightness levels.

Figure 8. The evenly illuminated Mondrian. (a) The stimulus distribution consists of
13 homogeneous polygons with 4 luminance levels. Note that the square in the upper left
portion of the stimulus has the same luminance and size as the square in the lower right
portion. However, the average luminance of the regions surrounding the lower square is
higher than the corresponding average luminance for the upper square. (b) The on-cell
distribution. The amount of on-cell activity within the upper square is higher than that
within the lower square. (c) The BC output. (d) The filled-in syncytium. The upper
square i8 correctly predicted to look brighter than the lower square.

Figure 9. The unevenly illuminated Mondrian. (a) The stimulus distribution s.imulat.:es
the transformation of Figure 8a caused by the presence of a light source whose intensity
decreases linearly from the lower right corner toward the upper left corner of the stimulus.
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The lower square is now more luminant than the upper square. (b) The on-cell distribution.
(c) The BC output. (d) The filled-in syncytium. Figures 9b, 9c, and 9d are very similar to
the corresponding figures for the evenly illuminated Mondrian (Figure 8). This illustrates
the model’s discounting of the illuminant. In addition, the upper square is still predicted
to appear brighter than the lower square, a case of contrast constancy.
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