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"\ Abstract
3

Binocular robots whose cameras can be independently directed require some mechanism
for aiming both cameras at the same world point. We describe a mechanism for verging
the cameras of the Rochester Robot in real time. The mechanism consists of a discrete
control loop driven by an algorithm that estimates a single disparity from the two cameras.
We present two algorithms for disparity estimation. The first uses the cepstral-transform
approach of Yeshurun and Schwartz [1987]. We argue that in this application the cepstrum
is best understood as autocorrelation with an adaptive filter that acts to sharpen peaks in
the autocorrelation image. We show that qualitatively similar filters have similar effects,
with the limiting case being equivalent to deconvolution. We describe efficient real-time
implementations of the cepstral and deconvolution approaches. /1 e ) L
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1 Introduction

Recently a significant amount of work in computer vision has focused on the problems of
acting, behaving systems, and in particular on how “active vision” differs from analvsis
of static scenes or vision with fixed cameras [Aloimonos et al., 1987; Bandopadhay, 1986:
Ballard, 1987]. In many cases it turns out that giving a vision system the power to move
around in its environment simplifies many previously intractable problems. Over the sum-
mer of 1988 the Rochester vision group began development of an integrated facility for the
study of vision, Al and systems issues related to active vision. The facility will be described
in some detail in section 2. Briefly, it consists of an industrial robot arm bearing a custom-
built “head”. The head has two CCD television cameras which can be moved together
in altitude (pitch) and independently in azimuth (yaw). The head, arm and cameras are
connected to a pipelined image processor, a workstation and a set of large-scale parallel
processors.

A major goal of our research is the development of a real-time gaze control system. We
believe that the robot must be able to majntain fixation on world points and change gaze
to new ones without the intervention of high level “cognitive” faculties. To this end, we
are developing a set of quasi-reflexive gaze control mechanisms that compensate for known
ego motions (similar to the human vestibulo-ocular reflex), maintain fixation on moving
objects, make saccadic movements to targets selected by some external process, and verge
the eyes so that their optic axes intersect at a surface.

We envision the gaze control modules forming a layered control structure along the lines
described by Brooks [1987; 1986). The details of the control structure and module interac-
tions are a current research topic, but the individual modules are fairly well developed. This
paper describes the internal workings of the module responsible for maintaining vergence.
In the next section we describe the robot’s environment and capabilities. We then discuss
reasons for verging and describe our general approach. In section 4 we describe a verg-
ing algorithm based on the cepstrum. Section 5 contains a discussion of why the cepstral
approach works, developing conclusions which are used to derive a better algorithm. We
conclude by discussing plans for extending the vergence system.

2 The Rochester Robot

The philosophy and goals of the Rochester Robot project are detailed in [Brown, 1988],
along with a detailed description of the hardware and preliminary research results. Here
we will summarize this material in just enough detail to motivate the work to be described
in later sections.

The centerpiece of the University of Rochester Robotics and Vision Laboratory is the
robot head/body assembly, shown in figure 1. The “body” is a PUMA 761 six degree-
of-freedom robot arm made by Unimation, Inc. It can place the head virtually anywhere
inside a sphere with a radius of two meters, and can move it at a maximum speed of 1 meter
per second. The head (figure 2), built as a joint project with the University’s Mechanical
Engineering Department, has two RS-170 CCD cameras feeding a DataCube MaxVideo™




pipelined image processor. The cameras are moved by three stepper motors, one of which
controls the pitch of the camera platform while the other two control the yaw angles. The
cameras thus have roughly the same degrees of freedom as human eyes. The stepper motors
have an angular resolution of 0.14 degrees per step and a maximum speed of 400 degrees
per second.

Figure 3 shows the computational hardware and communication links that make up
the laboratory. Operators typically control the robot from the console of the Sun 3/260.
from which they can watch the robot through a large plexiglas window!. Standard Unix™
network tools make it possible to run programs on the Butterflies, LISP machines or other
Suns from the Sun 3/260 if desired. One of the Butterflies has direct access to the Suu’s
VME bus, and hence can access the image processor and motor drivers directly.

The MaxVideo system [Datacube, 1987] consists of a set of VME-based boards that can
be cabled together via a separate digital image bus to form an image processing pipeline.
Functions available as pipeline stages include digitization and storage, convolution, his-
togramming, and point operations on one or two images. The MaxVideo system also
includes EUCLID, a single-board computer based on the ADSP-2100 digital signal pro-
cessing microprocessor [Analog Devices, 1987]. We used EUCLID extensively for the work
presented here, so we will describe it in some detail.

In addition to the CPU, the EUCLID board contains 32K words of data memory, 16K
words of program memory and various bus interfaces. The ADSP-2100 runs at 8 Mhz and
has separate data and instruction busses; most instructions execute in one 125 nS cycle.
Its instruction set and functional units are heavily optimized for digital signal processing
applications. Half of the data memory is dual-ported to the VME bus, and supports zero
wait state access by the ADSP-2100 concurrently with access by the Sun. The other half
of the data memory is dual-ported to the digital image bus, so that regions of interest can
be transferred in at video rates.

An important limitation of the ADSP-2100 is that the data memory address space is
only 16K 16-bit words long. On the EUCLID board this space is divided into 16 1K-word
pages. Fifteen of these pages can be mapped to 1K-word blocks in either half of local data
memory, or to 1K-word or 1K-byte blocks of VME memory. The remaining page contains
mapping and control registers and scratchpad memory. Because of the small address space,
it is difficult to manipulate large data objects. For the disparity computations described
below, this limits sample density to 32 x 32 samples per image. Higher sample densities
could be implemented by using remote memory, but this would slow the system down
significantly.

The EUCLID board is programmed using a C cross-compiler, cross-assembler and linker
running on the Sun host. Unfortunately the C compiler, while very useful for prototyping,
does not make efficient use of the ADSP-2100’s rather exotic architecture. In order to
obtain real-time performance it is usually necessary to convert all inner loops to microcode
subroutines. Fortunately the DataCube libraries provide a number of examples of well-
written microassembly codes, which can be used as models.

YFor safety reasons, the room containing the robot is normally kept locked, and the doors to the room
are equiped with switches that cut power to the robot when the doors are opened.




3 The Vergence Problem

For primates like ourselves the need for a vergence mechanism is obvious. Human eyes have
non-uniform resolution, so we need a way to direct both foveas at the same world point
80 as to extract the greatest possible amount of information about it. The human brain
has an extraordinary ability to extract depth information from stereo pairs, but only if the
disparities fall within a limited range. Verging on surfaces usually constrains points near
the fixation point to fall inside this range.

The Rochester Robot’s cameras do not have foveas. Even so, there are good reasons
to have a low-level mechanism that maintains vergence. As Ballard argues [Ballard, 1987].
having a unique fixation point defines a coordinate system which is related as much to the
object being observed as it is to the observer, and hence is a step in the direction of an
object-centered coordinate system. Verging the eyes also provides an invariant that may be
useful to higher level processes. It guarantees that the depth of at least one world point is
known, even if we do not attempt stereo reconstruction in the usual sense.

3.1 Vergence on the Rochester Robot

The vergence control mechanism of the Rochester Robot assumes that one eye is designated
as dominant. That is, one of the two eyes is assumed to be under the control of the saccadic
or tracking systems. The vergence system’s job is to control the other eye so as to make the
optic axes of the two eyes intersect at or near a surface. To do this, it repeatedly executes the
simplest possible control loop: it grabs left and right images using the digitizer, estimates
the disparity in pixels, converts the disparity to an angular error using an empirically derived
calibration table, and commands the non-dominant eye motor to null out the error. It waits
for the camera motion to complete and then repeats. In all tests to date the “dominant”
eye has in fact been fixed. When the gaze control system is finally integrated, some changes
in the control mechanism will be necessary; these will be discussed in section 6.

Disparity measurement has been studied extensively in the context of stereo depth
reconstruction [Barnard and Fischler, 1982]. Unfortunately the best stereo methods are not
very suitable for the real-time vergence application. The most sophisticated methods tend
to be based on a search through matching space for an assignment of depths that is optimal
under some cost metric. They are usually expensive to compute, and (what is perhaps
worse for a real-time application) their running time is usually data-dependent. Since they
depend on optimizing global criteria, it is hard to talk about estimating single disparities.

For real-time vergence what is needed is a simple algorithm that estimates a single
disparity in a fixed amount of time. This narrows the field by and large to image processing
methods such as cross-correlation. Past attempts to use such methods for stereo depth
recovery have uncovered many problems (see {Horn, 1986] for a review.) We have found,
however, that two operators that are closely related to correlation work quite well for
vergence. These operators are described in sections 4 and 5.

Correlation-like disparity estimators work by comparing sample windows taken from the
left and right images. The first step in using them is to decide what size sample windows to
compare. If the sample windows are too large they are likely to contain objects at different
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depths, which may lead to ambiguous results. If they are too small, two problems arise.
First, they may not contain enough detail to provide an adequate basis for the disparity
computation. Second, they may not overlap at all, in which case no disparity computation
will be possible.

After. choosing sample windows one must decide how densely to sample them. A low
sampling rate will limit the angular resolution of the disparity estimate. Furthermore, if
the sampling rate is not high enough to satisfy the Nyquist criterion then the left and right
images may contain spurious frequencies whose phase depends on the position of the sample
window. In this case the disparity operator may produce meaningless results. In general,
denser sampling will improve the signal-to-noise ratio and angular resolution at the cost of
more work for the algorithm.

We have so far made no attempt to optimize the window size and sample density param-
eters for either of our algorithms. Window size selection is an interesting research problem,
which we plan to explore in a later study. Any solution will certainly involve an adaptive
algorithm that adjusts the window size continously to suit changing conditions. In the
experiments described below, the sample windows were usually the entire left and right
camera images. As for sample density, early empirical studies showed that reducing the
512 x 512 images to 32 x 32 by subsampling produced adequate results. This was fortunate,
since using larger sample arrays would have greatly complicated the task of porting the
algorithms to EUCLID.

Our work to date, then, has consisted of developing fast disparity measures for 32 x 32
subsampled versions of the original image. The next two sections describe our results.

4 Computing disparity using the cepstral filter

Yeshurun and Schwartz [1987] describe a one-pass algorithm for estimating the disparity
between two image patches using the cepstral filter. We have successfully used this algorithm
to verge the cameras of the Rochester Robot. A single disparity estimate for the left and
right camera images is used to adjust the camera yaw angles to minimize the horizontal
disparity. In theory the vertical disparity should be zero, but small errors can arise due to
camera miscalibration, imprecision in the camera positioning system et cetera.

To compute a single disparity value, the cepstral procedure is:

¢ extract sample windows of size h X w from the left and right images. Splice them to
form a single image of size h x 2w.

Compute the 2-D Fourier transform of the resulting image.

Use the result to compute the power spectrum of the image, and take the log of each
pixel.

Take the 2-D Fourier transform of the result.

Find the peak value in a subregion of the resulting image.




The peak values occur at (x(w + dp), £d,), where dj, and d, are the estimated horizontal
and vertical disparities.

Since the vergence control loop requires only one disparity estimate per image pair.
the cost of the cepstral filtering approach is not necessarily prohibitive. However, even
single cepstral disparities are hard to compute at anything close to real-time rates. For
example, the Sun 3/260 that serves as system controller for the Rochester Robot requires
approximately 2.6 seconds to compute one disparity estimate. By analysing the algorithm
and implementing carefully on special-purpose hardware we have been able to compute
disparities in less than a tenth of a second, which is more than adequate for our system.
The remainder of this section describes our approach and experiences.

4.1 Efficient computation of the cepstrum

The derivation of the cepstral filter given in [Yeshurun and Schwartz, 1987} is phrased in
terms of continuous functions. As stated earlier, it is based on Fourier transforms of an
h x 2w image formed by splicing two windows together. However, simply applying a 2-D
FFT to this image will not work. A discrete Fourier transform of size A x 2w can only
handle frequencies in the range —h/2 to h/2 vertically and —w to w horizontally. Positive
horizontal disparities will produce peaks falling outside this range. Since discrete FFTs
are circular, positive disparities will wrap around to the opposite ends of the horizontal
frequency axis. The result will be that the magnitude of the disparity can be recovered,
but not its sign.

The simplest solution to the ambiguity problem would be to widen the spliced image by
padding with zeros. For 32 x 32 sample windows, for example, one might pad the image to
32 x 128 by appending 32 x 32 arrays of zeros to each end. However, given that time and
memory are scarce resources, this solution is less than satisfactory. The extra work does
nothing to improve the signal-to-noise ratio; its sole purpose is to provide enough frequency
range to handle the expected output.

It turns out that the range problem can be gotten around in another way, at least
for this application. Recall the previous discussion of the effect of applying a 2D FFT
to an unpadded cepstral input image. If the horizontal disparity is positive, the output
peak that should have appeared at (w + dj,d,) will wrap around to the other end of the
spectrum, appearing instead at {—(w — d)),d,). At the same time, the peak that should
have appeared at (—(w + di),—d,) will appear at (w — d,—d,). The transform output
will then be indistinguishable from that produced by disparities of (—dj,—d,). But now
suppose that (as in the case of vergence or stereopsis) the vertical disparity is known to be
small - specifically, that it is in the interval +h/4. The disparity peaks can be “tagged”
by introducing an artificial vertical disparity of +h/4. To do this, transform the right-hand
sample window by moving row m to row (m+h/4) mod h. Discrete Fourier transforms wrap
around at their borders, so no samples will be lost and the signal-to-noise ratio will not suffer.
After the cepstral transform, locate peaks in the usual way. Since the vertical disparity
should be positive, a negative vertical disparity indicates that the horizontal disparity has
wrapped around, and that the correct disparities can be obtained by flipping the signs of
the measured disparities.




The main body of the cepstral algorithm consists of a 2-D FFT, a point transform
(the log of the power spectrum), and a second 2-D FFT. A multidimensional FFT is per-
formed by applying 1-D FFTs along each dimension of the input array. In-place FFT
algorithms require either the inputs or the outputs of the transform to appear in scrambled
(bit-reversed) order. The overhead of scrambling inputs or unscrambling outputs can be
avoided by adopting a strategy used in linear filtering. First transform each column of
the input using a decimation-in-frequency (DIF) FFT that expects normally ordered input
and produces scrambled output. Since each column is scrambled identically, this leaves the
data correctly ordered within each row; the rows simply appear in a different order. Next.
transform each row by the same DIF FFT. This completes the first 2-D FFT, but leaves the
data scrambled in a very complex way. However, taking the log of the power spectrum is a
point operation, so the fact that the points are out of order is unimportant. The second 2-D
FFT is performed using a decimation-in-time algorithm that expects scrambled inputs and
produces normally ordered outputs. Applying this transform first to the rows and then to
the columns undoes the scrambling produced by the first FFT, leaving us with a correctly
ordered output image.

Computing the power spectrum from the Fourier transform is trivial, but taking the
pointwise logarithm at first seems likely to be expensive - especially if it is to be done on an
integer machine with a small address space, such as EUCLID. The standard derivation of
the cepstral filter uses the natural log (base €), but the base is immaterial to the algorithm;
all that matters is that logab = loga + logb, which is true for any base. It is possible
to estimate log, n (in fixed point, for any integer n > 2) to within 2% by counting the
bits in » and then linearly interpolating between the two nearest powers of two. In fact
the cepstral disparity algorithm works quite well even if the interpolation step is omitted,
so the EUCLID implementation simply counts bits. The ADSP-2100 has a NORMALIZE
instruction, so counting the bits requires only two or three instructions per point.

As a final optimization, note that the final set of column transforms only needs to be
done in the region that will be searched for peaks. This region consists of the columns
representing horizontal frequencies between w/2 and w. This makes it possible to eliminate
3/4 of the column transforms.

All of the optimizations described above were incorporated into the EUCLID imple-
mentation of the cepstral disparity estimator. Sixteen-bit fixed-point arithmetic was used
throughout. The DIT and DIF FFTs were implemented as assembly language subroutines,
as was the procedure that computes the power spectrum and takes its log. All other code
was written in C. Using the optimizations described above, EUCLID computes the cepstral
disparity estimate for 32 x 32 windows in 58.6 milliseconds, not including the 3-4 ms re-
quired to acquire the VME bus and copy the sample arrays from the frame buffer into local
memory.

A final optimization (which we have not done) would be to take advantage of the fact
that the FFTs in the cepstral filter operate on real data. This would involve using a real-data
transform on the image rows, and then (since the output is known to be symmetrical about
the origin) transforming only half of the columns. We expect that this would cut the run
time to about 40 milliseconds, including image load time. Note that this is comparable to
the RS-170 frame time, so that synchronizing with the cameras might become a significant
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part of the loop delay.

Figure 4 b) shows shows the result of running the implementation described above on
the input shown in 4 a). The input image is synthetic in that it consists of two overlapping
windows taken from the same real image. Since the two sample windows are related by a
pure shift, this represents something of a “best case” for the algorithm. For display purpose-
all of the columns in the output have been computed, and the result has been shifted to
put frequency (0,0) in the center. The pixel values have also been logarithmically scaled in
order to reduce the relative brightness of the central peak. The two bright dots to the upper
left and lower right of the central peak are the disparity peaks. The apparent noisiness of
the cepstral output is an artifact of the reproduction process; in fact the disparity peaks
stand well above the noise background, and can be extracted with high reliability.

L}

4.2 Using the Cepstral Disparity for Vergence Control

The vergence control loop for the Rochester Robot can be split into three stages: digi-
tization, error estimation, and error correction. Digitization is done under control of the
Sun host using the MaxVideo digitizer. At present the system has only one digitizer, so
the Sun must select one camera, digitize a frame, switch cameras and digitize again. This
stage requires 4 frame times (132 milliseconds?.) Once the frames are available in the frame
store, the Sun signals EUCLID to begin computing a disparity estimate. The EUCLID
computation takes about 63 milliseconds, during which time the Sun is free to do other
- things. EUCLID places its disparity estimate in a well known location in shared memory
and issues an interrupt to signal completion. The Sun converts the pixel disparity to motor
coordinates and commands the non-dominant eye motor to make the appropriate correc-
tion. It then waits for the motor to stop, and the loop repeats. The motor correction takes
about 80 milliseconds, varying slightly with the size of the correction. Thus the total loop
time is approximately 275 milliseconds, reducible to about 210 by adding a second digitizer.

Figure 5 shows samnles from two video sequences produced by the MaxVideo system
while the robot viewed a changing scene. For both sequences the MaxVideo system was
programmed to display the average of the left and right images, so that disparities would
be readily visible. The left-hand series was produced with vergence disabled, the right-hand
series with vergence enabled. Note the extreme disparities that occur when the cameras do
not verge. Note also that the cepstral algorithm works quite well even when the target is
very close, at which time the assumption that the two images are related by a pure shift is
grossly violated.

5 Understanding the cepstral filter

Our work with the cepstral filter has helped us to develop some intuition about why it
works so well. The standard view [Bogert ef al., 1963; Yeshurun and Schwartz, 1987] is that

2A second digitizer will be added to the system soon. This will permit simultaneous digitization of the
left and right images. lowering the duration of this part of the loop to 1 to 2 frame times (33-66 milliseconds.)
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the transform extracts a periodic term in the log power spectrum of the sum of the original
and shifted images. This is mathematically correct, but for purposes of understanding how
the algorithm works we find it more useful to stress its relation to autocorrelation. The
argument is as follows:

Ignore for the moment the fact that the cepstral input consists of the left and right
images spliced together. What does the rest of the algorithm do? It is well known that the
Fwer spectrum is the Fourier transform of the autocorrelation function. If one skips taking
the log of each pixel, and replaces the second Fourier transform with the inverse transform,
then the procedure computes exactly the autocorrelation. But the Fourier transform of any
function is just the complex conjugate of the inverse Fourier transform of that function.
Since the autocorrelation function is even-symmetric, its Fourier transform is strictly real-
it is its own complex conjugate. Therefor, the second Fourier transform might as well
be an inverse Fourier transform. Without the log step, then, the filter just computes the
autocorrelation function.

What is the effect of taking the logarithm before the inverse Fourier transform? For
any particular input image, it is equivalent to multiplying each point in the transformed
autocorrelation function by a scalar. This implies that the cepstral filter is equivalent to
a linear filter applied to the autocorrelation function - except that the filter isn’t really
linear, because the filter mask depends on the image. At present we have only an intuitive
understanding of what this filter does. The log function makes small numbers a little
smaller, but it makes large ones a lot smaller. Thus we argue that for two signals of equal
energy; it will favor the one whose energy is the most evenly distributed, i.e. the one with
the broadest spectrum. The signals with the broadest spectra, of course, are impulses; so
the logarithm tends to favor spikes in the autocorrelation function. The cepstral filter can be
thought of as modifying the image to make its autocorrelation function more impulse-like,
hence easier to interpret.

If this intuitive argument has any validity, then any non-linear compressive function
applied to the power spectrum should have a similar sharpening effect. Experiments suggest
that this is in fact the case. Figures 6 a) and b) show an input image and its autocorrelation,
the latter being the inverse Fourier transform of the power spectrum. Note the bright regions
(marked by arrows) corresponding to the disparity match in the upper left and lower right
parts of the image. Figure 6 c) shows the effect of taking the log of the power spectrum
before inverting, i.e. the standard cepstrum. Figure 6 d) shows the effect of replacing the
log with the fourth root, while 6 e) shows the effect of taking the arc tangent. Note that
the peaks in the latter two cases are comparable in quality to those in the cepstrum.

The ultimate compressive operator would be one that takes all input values to a constant.
The Fourier transform of a constant is an impulse at (0, 0), so this operator would provide
the unhelpful information that the image matches itself perfectly at a disparity of zero.
In order to get useful disparity information by this method we would have to find a way
to preserve the phase information which is normally destroyed when we take the power
spectrum. For example, we might compute the transformed cross-correlation of the left and
right images by multiplying the transform of one times the conjugate of the transform of
the other, and then rescale so that all entries in the resulting complex array have the same
magnitude. It turns out that this intuitively derived algorithm can be rigorously justified




as a type of deconvolution, as we shall see in the next section.

5.1 Estimating Disparity by Deconvolution

The cepstral filter was originally developed to solve a particular problem in the processing
of one-dimensional signals - that of analysing signals containing echos [Bogert et al.. 1963).
Such signals can be modelled as an original signal S(t) convolved with a train of impulses.
ie.

R(2) = S(t) * (6(t) + aod(t — to) + @16(t — 1) + ...)

Taking the log of the power spectrum transforms the received signal into a sum of two terms.
one of which depends only on §(¢) and the other of which is a combination of distorted
sinusoids with frequencies related to %, ¢, et cetera. If the cepstrum of S(t) does not overlap
the frequencies of the echo terms, conventional linear filtering techniques can be used to
extract the values of the echo delays.

The Yeshurun and Schwartz method of disparity estimation begins by appending the
left and right images. This creates a two-dimensional analogue of the situation described by
the above equation. That is, on the assumption that the two images are related by a shift.
the input can be interpreted as the result of convolving an ideal image with two impulses,
one at (0,0) and the other at (w+dj,d,). One can then compute the cepstrum and look for
peaks produced by the sinusoidal terms, trusting that the log power spectrum of the ideal
image will have negligible energy at the frequencies corresponding to plausible disparities.

Given the assumption that the right and left images differ only by a shift, however, a
more direct approach is possible. The stated assumption is equivalent to the formula
R(z,y) = L(z» y) * 6(3 - dh,y - dv)
In the frequency domain, this translates to

Fp(u,v)= Fr(u, v)e"f'*"(udp.wdv)

from which we can derive
e—J2m(uda+vdy) _ Fr(z,y)
Fr(z,y)

Fn(u,v)FL(u,v))
|FL(u, v)
By hypothesis, however, F1, and Fg have identical magnitude spectra - they differ only in

phase, because the left and right images differ only by a shift. Thus the division can be
rewritten

or

6(z — dn,y—d,) = F! (

Fp(u,v)Fj(u,v) (1)
lFR(ua v)Fi(u’ v)l
which is the Fourier transform of the crosscorrelation of the right and left images, rescaled
so that all entries have magnitude one. That is, it is exactly what we argued for on intuitive
grounds in the previous section. What was described there as a peak-sharpening operation
turns out to undo the convolution of L(r,y) with the disparity delta function.
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Deconvolution by dividing Fourier tranforms is of course not new, and it has a number
of well-known difficulties [Rosenfeld and Kak, 1982]. Problems arise even if the divisor in
expression (1) is non-zero. Observe that the effect of the division is to obliterate magnitude
information and preserve only the phase at each frequency. But if the magnitude of the
complex number at a given frequency is small, then a small amount of additive noise may
radically alter the phase. Thus trouble can be expected whenever the magnitude of the
transformed correlation is small. In the EUCLID implementation of deconvolution we
simply return 0 whenever the magnitude is less than an empirically determined threshold.
In practice, this does not seem to degrade the quality of the solutions significantly. Figure 7
shows the input images and the recovered impulse for a synthetic stereo pair, in which the
assumption that the two images differ by a shift is perfectly satisfied. The location of the
impulse correctly indicates that the horizontal and vertical disparities are (resp.) -5 and -2,
and the impulse stands two orders of magnitude above the background noise.

The deconvolution disparity estimator performs quite well on the synthetic stereo pair
of figure 7. Given deconvolution’s reputation for instability, however, one might expect it
to give much less satisfactory results on real images. So far, however, this does not appear
to be the case. Figures 8 a), b) and c) show the inputs and the result of deconvolution for a
real stereo pair taken by the robot head. Note that in this case the deconvolution produces
three distinct peaks corresponding to the disparities of the book, the statuette and the
bottle. Figure 8 c) shows the result of shifting the right image by the strongest disparity in
the deconvolution image and adding it to the left image. We do not have “ground truth”
about the correct disparity for this stereo pair, but based on figure 8 c) it appears that
the estimate is quite accurate. We suspect that deconvolution’s bad reputation is due in
part to the fact that its paradigmatic applications are very hard problems, such as undoing
camera misfocussing and motion blur. It is not surprising that deconvolution turns out to
be unstable in these applications, for the applications themselves are inherently unstable.

5.2 Efficient computation of deconvolution

The steps required to compute the deconvolution disparity estimate are very similar to those
needed to compute the cepstrum. They are:

¢ extract sample windows of size & X w from the left and right images.

Compute the 2-D Fourier transforms of each window.

Compute the pointwise prbduct of one image with the complex conjugate of the other
and rescale so that each point has magnitude one.

¢ Take the 2-D Fourier transform (forward or inverse) of the result.

Find the peak value in the resulting image.
The result image will have a single peak at (ds,d,), provided that d; is on the interval

(—w/2,w/2). Disparities between w/2 and w may still be detected, but the returned value
will be incorrect by £w - a potentially disastrous situation. This ambiguity can be avoided
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by the same trick that was used in the cepstral implementation. One of the images is
transformed in such a way as to add a vertical disparity of h/4. If the peak value occurs
at a negative vertical disparity, then the horizontal disparity is off by w. If the measured
horizontal disparity is negative, then w must be added to the estimate, otherwise w must
bé subtracted.

Since the deconvolution and cepstrum algorithms are structurally similar, many of the
techniques used to implement the cepstrum efficiently can also be used for deconvolution.
Like the cepstrum, the deconvolution algorithm consists of two 2-D FFTs separated by a
point operation. It can therefor be implemented efficiently by using DIT and DIF 1-D FFTs
as described in section 4.1.

Taking the pointwise product of the two transformed images is easy, but normalizing the
resulting complex numbers to magnitude one is not. The straightforward approach would be
to divide the components of each complex number by the number’s magnitude. This however
would require a potentially expensive square root operation. This expense can be avoided
by using the power spectrum of one of the input images as an estimate of the magnitude of
the product image. This approximation is valid because we assume (as in section 5.1) that
the two input images have identical magnitude spectra. Avoiding the square root does not
solve all of the problems, however. The EUCLID microprocessor does not have a single-cycle
divider - division by n bits is an n-cycle operation. Fortunately, the following very crude
approximation produces excellent results: First, estimate the magnitude of the complex
number by the method just described. Next, let b be the number of bits in the estimated
magnitude minus the number of bits in the fixed-point representation of one. If b is negative.
the complex number already has a small magnitude, so it should be skipped. If not, right-
shift each component of the complex number by b. The effect of these manipulations is to
preserve the phase of the complex number while bringing its magnitude to within a factor
of two of the fixed-point representation of one. The fact that the algorithm continues to
perform well despite the crudeness of this approximation is a testimony to its robustness.

Using the optimizations and approximations described above, EUCLID computes the
deconvolution disparity estimate for 32 x 32 windows in 54.7 milliseconds, not including
image load time. This is about 7% faster than the EUCLID cepstral filter implementation.

6 Conclusion

We have argued that vergence is important for active vision systems, and have demonstrated
two algorithms for real-time vergence on the Rochester Robot. We have also presented an
intuitive argument relating the cepstral method of disparity estimation to autocorrelation,
and claimed that deconvolution is a logical extension of the cepstral approach. Deconvolu-
tion offers two advantages over the cepstrum. First, it is slightly faster, since it replaces one
large FFT with two smaller ones. Second, its output is a pure disparity signal, containing
no trace of the original input image. Traces of the original image can be removed from the
cepstrum if necessary, but doing so requires a computationally expensive post-processing
stage.

Our immediate plans for the vergence system include work in two major areas. One
deals with the problem of selecting the right size sampling windows for the cepstral or
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deconvolution algorithms. Recall that a window that is too small may not have enough
detail to support reliable disparity estimation. A window that is too large may have multiple
disparities present, and will have lower precision for a given number of samples per window.
We would like a way for the algorithm itself to decide how large the sampling window should
be. In order to do this, we need to determine how our disparity estimators behave in the
situations described above. If we can detect situations where the window size is too large or
too small, we can hope to adapt the window size continuously to suit changing conditions.
Figure 8 b) offers some hope that this will indeed be possible.

The other major task awaiting us is to integrate vergence with saccadic and tracking
movements of the dominant eye. The current set of tracking algorithms uses a velocity
tracking loop [Brown, 1988], so the simple positional error-nulling vergence control loop
that we have used so far may not be appropriate. We may want to use the tracking
velocity control signal to drive both eyes, with superimposed saccadic movements of the
non-dominant eye to correct vergence errors. Alternatively, we may want to convert the
positional vergence error to a velocity and combine it with the velocity error signal from
the dominant eye.

A longer term project that we are considering would be to convert the entire gaze control
mechanism to a foveate camera system. We have a long-standing interest in biological vision
systems, and feel that working with foveate cameras might yield interesting insights about
human vision. One way to implement a fovea would be to construct a “chopped” resolution
pyramid using the MaxVideo image processor. For example, we might convert the 512x512
input images into sets of five 64x64 images centered on the optic axis. The first would be
an appropriately filtered and subsampled version of the entire image, the second a more
detailed view of the central 256 x 256 region, and so on. The last image would show a small
region in the center of the image at full resolution. Aside from the interesting research
issues, there is a brutally practical reason for doing this. The MaxVideo processor runs
at ten megapixels per second, independent of the size of the input image. Compressing a
218.pixel input into 5 x 2!2 pixels would greatly increase the number of computations we
can do in a frame time.
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Figure 2: The robot head consists of two CCD television cameras mounted on a movable
beam. The beam can rotate about its long axis, and the cameras can rotate about their
points of attachment to the beam.
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Figure 3: The University of Rochester Robotics and Vision Laboratory — computational
resources and communication links.

Figure 4: Inputs and outputs for the EUCLID implementation of the cepstral disparity
estimator. The input consists of two 32 x 32 sample windows spliced together, with the
right window scrolled up by one quarter the window height. The positions of the peaks to
the upper left and lower right of the output array give the estimated disparity.




Figure 5: Samples from two video sequences showing the sum of the left and right camera
images. Left: without vergence. Right: with vergence. The horizontal lines in the vergence
sequence are an artifact of the reproduction process.




Figure 6: The cepstrum and related filters. a) A padded input image. b) The autocorrela-
tion of the input image. Arrows show where the disparity peaks occur. c) Effect of taking
the log of the power spectrum before inverting, i.c.the cepstrum. d) effect of taking the
fourth root instead of the log. e) effect of taking the arc tangent.




Figure 7: Estimating disparity by deconvolution. a) Two 128 x 128 overlapping windows
extracted from a real image. The horizontal and vertical disparities are -5 and -2. b) The
deconvolution output((0,0) at center) The peak occurs at (-5,-2) as expected.




Figure 8: Deconvolution with a real stereo pair taken by the robot head. a) The input
images. b) The deconvolution output. Note that we now have three peaks corresponding
to the three main objects in the scene. The strongest peak is at (-28,1). ¢) The result of
shifting the left image by the indicated amount and adding it to the right image.




