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1. INTRODUCTION

Mie theory provides a means of calculating the absorp-
tion and scattering of electromagnetic radiation by spheres
of any size compared with the wavelength. Although exact,
performing full Mie theory calculations is often cumbersome:
it requires an excessive amount of numerical storage space
and computer time, especlially when the particles are large
compared with the wavelength. Under certain circumstances
however, it 1is possible to obtain a reasonable estimate of
the scattering and absorption properties of spheres without
resorting to detailed Mie theory calculations. These alter-
native approaches to exact Mie theory calculations are
useful provided the user realizes their limitations.

The regions of validity for Mie approximations are
usually characterized 1in terms of the size parameter,
X = 2mr/), where r is the radius of the particle and ) is
the wavelength of the 1impinging radiation. Unfortunately,
the use of an approximation over Mie theory 1is not a
clearcut decision; that 1is, the accuracy of most
approximations depend not only on X, but to some extent on
the complex index of refraction of the particle, m = n + ik.
Also the wuser must consider the degree of accuracy required

for his or her particular problem.

1.1 Organization of the Report
1t is the aim of this report to explore some of the al-

ternatives to Mie theory and to access their ranges of




applicability. Chapter 2 discusses the use of ray optics to
obtain the phase matrix elements of a sphere that is large
compared with the wavelength. Chapter 3 discusses the use
of complex angular momentum theory to calculate the
efficiency factors for extinction, absorption and radiation
pressure. Chapter 4 compares various Mie approximations in
the scientific literature and assesses their regions of
validity. Chapter 5 summarizes the main results of this
report. For reference, Appendix A gives the equations for

the various Mie approximations investigated in this report.




2. THE USE OF RAY OPTICS TO OBTAIN THE SCATTERING MATRIX
ELEMENTS FOR A SPHERE

2.1 Overview
The angular scattering properties of spheres can be
calculated using the scheme of ray optics (van de Hulstl and

Liou and Hansenz) provided four conditions are satisfied:

1) the size parameter is much greater than one

2) the real part of the index of refraction is greater
than one

3) the user is interested in the scattering pattern for
a small spread of particle sizes

4) the far field scattering pattern is desired.

In ray optics, incident radiation is treated as local-
ized rays whose encounters with the particle are governed by
the laws of reflection and refraction for geometrical op-
tics. The localized rays can be reflected externally or can
enter the particle where they are either absorbed or
internally reflected a number of times before exiting.
Also, light rays passing very close to the particle are
affected by Fraunhofer diffraction. Thus the total
intensity at a particular scattering angle is equal to the
contribution from Fraunhofer diffraction, plus that for rays

emerging from the particle after reflection and refraction.

1. van de Hulst, H. C. (1957) Light Scattering by Small
Particles, Wiley, Inc., New York, 470 pp.

2. Liou, K., and Hansen, J. E. (1971) Intensity and polar-
ization for single scattering by polydisperse spheres:
A comparison of ray optics and Mie theory, J. Atmos.
Sci. 28:995-1004.




(Strictly speaking it is not correct to simply add the in-
tensities of the separate rays. For a single particle,
emergent rays interfere with each other because of phase
changes caused by external and internal reflection, and by
differing optical paths. These interference effects lead to
rapid oscillations in the scattered intensity as a function
of scattering angle which can only be predicted by Mie the-
ory. However if a small spread of particle sizes is consid-
ered, any phase effects are averaged out when integrating
over the spread of particle sizes.)

In ray optics, the gain, G, 1is used to describe the
relative scattered intensity as a function of scattering an-
gle. It represents the ratio of scattered intensity to that
which would exist if it were scattered isotropically and

conservativelyz. Thus the gain is defined such that

1
= — fouman (1)
4

where {! is the solid angle and wWos the single scattering

albedo, is the ratio of the scattered energy to that scat-
tered and absorbed by the particles.

Below the equations governing ray optics are presented.
These equations are essentially the samz as those found in
van de Hulstl and in Liou and HansenZ?. Next, a Fortran sub-
routine called RAYOPT is described which determines the an-
gular dependent phase matrix elements il’ j2’ i3 and i4.
These matrix elements relate the polarization and the ampli-

tude of the incident field to that of the scattered field.




The results from RAYOPT are then verified against those from

Liou and Hansen, and from full Mie theory.

2.2 PFraunhofer Diffraction

Diffraction of the incident beam occurs because the
wavefront is partially obstructed as it passes very close to
the particle. For spheres, the gain as a function of scat-
tering angle resulting from diffraction is given by

Jl(x sing) 2

2 (2)

6,7 (ax) = 6,Fo,x = 2x
X sinég

where the superscript F denotes the gain due to Fraunhofer
diffraction, J; is the first order Bessel function and the
subscripts 1 and 2 refer to the gain components perpendicu-
lar and parallel, respectively, to a particular scattering
plane. The diffracted pattern is radially symmetric about
the forward direction and becomes more concentrated in the
forward direction as the size parameter increases. For the

case when 6 = 0, GlF(O,X) = GZF(O,X) = o.5x2.

2.3 Geometrical Optics

The geometry of the problem is given in Figure 1. The
angle between an incident ray and the tangent of the local
particle surface is denoted by 7. For grazing incidence,
T equals 0 degrees; for central incidence, 7 equals 90 de-
grees, As an incident ray encounters the particle, some of
its energy is externally reflected while the rest enters the

particle. The ratio of externally reflected energy to the




Refraction With No g /| T~ Refraction With Two
internal Reflection Internal Reflections

p=3

External _
Reflection p=0

Refraction With One

internal Refieotion incident

Figure 1. Path of a Light Ray According to Geometrical
Optics, Where p Is the Order of the Ray (see Eq. 6)

incident energy is equal to the squares of the Fresnel re-

flection coefficients, r, and ro:

2 sint - m sinr' 2 (3)
Irll =
sint + m sinr?
and
. : 2
-— 1
l |2 m sinrt sinr7 (4)
r =
2 , .
m sinr + sinr'

where 7' is the direction of the ray upon entering the par-
ticle. The angle 7t' 1is related to the incident angle, -,

through Snell's law

cost' = cosrt/n (5)

Because energy is conserved, the energy entering the parti-

cle must either be absorbed or emerqge after any number of




internal reflections. For a nonabsorbing particle, the

fraction of energy emerging after refraction with no inter-

nal reflection 1is equal to (l—lr1 2l2)2; after one internal
’

reflection, it is |r Iz(l-lr |2)2, etc. Here it is con-
1,2 1,2
venient to define

2
|rl,2| for p = 0

e
1,2 (6)

(1-1r; 152005 1P for p 22
where p = 0 means external reflection and p > 1 means re-
fraction plus p-1 internal reflections (see Fig. 1). The
2

gain for geometrical optics, as given by Liou and Hansen®,

is then

(p) 2
G'P l,2(0,X) = 2e l,2D exp(-4X k p sinr'), (7)

where D is the divergence, defined as

sinrcosr
D:._——-_—___
sinf|dé (8)
ar
and
dé tanr
:2-2p . (9)
dr tanr'

In Eq. 7, the exponential term accounts for absorption with-
in the particle. The total gain at a particular scattering
angle is then

N
G = ¢gF (p)

’
p=0

(10)




where in practice, a value of 3 for N is sufficient to ac-
count for most of the energy scattered by geometrical op-

tics.

2.4 Relationship Between Gain And The Phase Matrix Elements

The angular dependent phase matrix elements relate the
polarization and amplitude of the scattered field to the in-
cident field. In the work of Blattner3, the incident and
scattered fields are described by the parameters I,, I,, U
and V which are similar to, but not the same as, the Stokes
parameters. For a spherical scatterer, the scattered field
(s subscript) is related to the incident field (o subscript)

through the amplitude scattering matrix

1

sl il ol
T2 | _ "o t 00 o2 (11)
U, ax%R% | o 0 iy i, u,
v, 0 0 -i, i, v,

where R is the distance from the scatterer to the observer
and il' i2, i3 and i4 are the angular dependent scattering

matrix elements defined as

i, = cls, | 2

ty = cls,I® (12)
i3 = ¢ Re{Slsz*}

i, = -c Im{s;s,”)

3. Blattner, W. (1972) Utilization instructions for opera-
tion of the Mie programs on the CDC-6600 computer at
AFCRL, F19628-70-C-0156, Research Note, RRA-N7240, Ra-
diation Research Associates, Inc., Fort Worth, Texas.




where S; and S, are the familar complex amplitude functions

and ¢ is a normalization constant such that

1 = _/El(u)du . (13)

Comparing Equations 1 and 12 suggests that

i, = Gy/4mw_

1y = Gy/d4mw, (14)
iy = (G1G2)1/2/4ww0 |

iy = 0

2.5 Ray Optics Subroutine

A subroutine called RAYOPT has been developed to deter-
mine the phase matrix elements il' i2, j3 and i4 at user
specified scattering angles. The inputs to the subroutine
are listed in Table 1. A flow diagram for RAYOPT is given
in Figure 2 and a brief description of the important vari-
ables and functions is given in Table 2.

For geometrical optics, RAYOPT determines the gains at
the user scattering angles in the following manner. With p
held fixed, the total deviation of a ray from its original
path, 6', is computed for incident angles, r, between 0 and

90 degrees in steps of 0.5 degrees where

9" = 27 - 2pr (15)

Next, each user scattering angle is transformed so that it
also represents the total deviation of a ray from its origi-

nal path. This deviation is then compared with the devia-




Table 1. Input Parameters for RAYOPT

VARIABLE DESCRIPTION

NP Maximum Value for p When Performing the
Ray Tracing

NTBETA Number Of User Scattering Angles. The
Maximum is 150

PM Complex Index of Refraction of the Particle.
The Imaginary Part Is Positive

THET(150) Array Containing the User Scattering Angles
WO Single Scattering Albedo of the Particle

X Size Parameter

tions for known incident angles to determine what incident
angles yield emergent rays at a user scattering angle. When
a user scattering angle falls between two values of 6', the
incident angle 1is obtained by means of a linear interpola-
tion. With the incident angle now known, the gain at the
user scattering angle is calculated using Egs. 3 - 9.

Before computing the gain, RAYOPT checks to make sure
the incident angle does not lead to either a rainbow, i.e.
d6/dr +0, or a glory, i.e. 6= 180 and sin 6= 0. (The scheme
of ray optics predicts infinite intensities at these angles,
see Eq. 8.) If a rainbow or glory angle is found, the gain
calculation is performed for an incident angle given
by 1= r- 2 degrees. The resulting gain is then used unless

it is still excessively large (>100); in that case, the gain

10




Compute the QGain
at the User Scattering Angles
Due to Diffraction

|

Cailculate the Galn
at the User 8S8cattering Angles
Due 10 External Reflection (P « 0)

|

Detarmine the Qaln
at the User Scattering Angles
for All P That Do Not Have

a Rainbow or Qlory (Criterion: P < n’)

|

Compute the Galn
at the User Scattering Angles
for Al Remalining P Upto NP

|

Convert the Galng to Matrix Elements

|

Return

Figure 2. Flow Diagram of the Subroutine RAYOPT
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GAIN1(150),
GAIN2(150)

GDIFF(150)

Jl

PNAUT

RENT1(150),
RENT2(150)
ENT3(150),
ENT4(150)

TAU

THETPR(181)

Table 2. Important Variables and Functions in RAYOPT
PARAMETER DESCRIPTION
GAINP Function That Returns the Gain for a

Given Incident Angle and p

Keeps a Running Total of the Gains
at the User Scattering Angles

Gains at the User Scattering Angles
Due To Fraunhofer Diffraction

Function That Returns The Bessel
Function Of The First Kind

Maximum Value of p that Does Not Have
a Rainbow or Glory

Angular Dependent Matrix Elements i,,
i,, i3 and i, Respectively

Angle of An Incident Ray With Respect
To The Particle Surface

Array Containing the Total Deviation
of Emergent Rays for Incident Rays
between 0 and 90 degrees in Steps of
0.5 degrees

12




is set equal to 100. The gain calculations are simplified
for p < n because they do not contain rainbows or glorys.
These values of p are done first in RAYOPT where the amount
of computer time is reduced significantly. Finally for cen-
tral incidence, where 7 is 90 degrees and ¢ is 0 degrees,

the gain equals Gpl 5 = 0.5(el 22/(l-p/n)2)exp(-4x k p).
[ ’

2.6 Sample Calculations Using RAYOPT
To ensure that RAYOPT is working properly, a series of
calculations have been performed and compared with those

from other researchers. Figures 3 and 4 duplicate Figures 1

10% 1 ] | | ] | 1 I 1 I L |
Geometrical Optics

10° \ k=20

10*
103
10?

10"

Angular Gain

10°

107"

1-2
0" T T T T T T T T T T 1

0 30 60 90 120150 0O 30 60 90 120150180
Scattering Angle (8) Scattering Angle (8)

Figure 3. Recalculation of Figure 1 of Liou and Hansenz,
Angular Gain for Geometrical Optics using RAYOPT. The Ver-
tical Scale Applies to the Lowermost Curves (n = 1.45 and
2.00) whils the Other Curves Are Displaced Upwards by Fac-
tors of 10

13




2.6 1 1 | 1 ] | ! [ B |

2 4 Geometrical Optics

k=0
2.2

2

1.8
1.6
1.4
1.2
1

0.8
0.6

Q.4

0.2
8]
-0.2
-0.4

Degree of Polarization

............................

1 T 1 T 1 T 1
0 30 60 90 120150 O 30 60 90 120150180

Scattering Angle (8) Scattering Angle (8)

Figure 4. Recalculation of Figure 2 of Liou and Hansenz,
Degree of Polarization for Geometrical Optics using RAYOPT.
The Vertical Scale Applies to the Lowermost Curves (n = 1.45

and 2.00) while the Other Curves Are Displaced Upwards by
0.8
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and 2 of Liou and Hansenz. There is complete agreement ex-

cept in some instances at the rainbow and glory angles: Liou
and Hansen did not say how they dealt with these angles.
Figures 5 and 6 give comparisons between ray optics and
Mie theory for the matrix elements il’ 12 and i3. Figure 5
represents the scattering by a particle with an index of re-
fraction of 1.33 + 0.0i while in Figure 6, an index of re-
fraction of 1.4 + (0.01i has been used. In both figures,
the matrix elements for ray optics represent a size parame-
ter of 400. When performing the Mie calculations, it was
necessary to use a particle number density distribution,
N(r), described by a log-normal distribution because inter-
ference effects 1lead to rapid oscillations in the angular
scattering pattern of a single sphere. This analytical for-

mulation is given by

dN(r) No log(r/x ) 2
N 1/2 exp |- - (16)
dlog(r) (2n) loge 2logo

where ro, ¢ and NO are the geometric mean radius, geometric
standard deviation and total number of particles respec-
tively. In Figures 5 and 6, an r, of 63.66 micro-
meters, o of 0.1, and N, of 1 particle cm*l have been used.
The value for r_  was chosen because it converts to a size
parameter of 400 for 1 micrometer radiation. The range of
the Mie calculations was from 50 to 100 micrometers.

Figure 5(a) shows good agreement between the values of

il for ray optics and Mie theory except for the rainbow re-

gion from 130 to 140 degrees and at 180 degrees. The peak

15
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Figure 5. Values of (a) i , (b) i, for Ray Optics
and Mie Theory Where There Is No A%sorption Within

the Particle
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Within the Particle. 1In (c) the vValues Beyond
About 80 Degrees Are Not Plotted Because i3 for
Mie Theory Is Negative
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at 180 degrees for Mie theory is related to the familiar
glory phenomenon. Ray optics does not predict the glory and
here lies one of its major weaknesses. Figure 5(b) suggests
only fair agreement between the values of i2 for ray optics
and Mie theory. In Figure 5(c), the values of i3 for ray
optics are close to those for Mie theory provided the scat-
tering angle 1is less than 80 degrees. Beyond this angle
however, ray optics cannot be used in place of Mie theory
because i; for Mie theory is negative. This limitation of
ray optics 1is not as severe as it may appear since !i3| is
small beyond 80 degrees.

Figures 6(a) and 6(b) show better general agreement be-
tween Mie theory and ray optics except near the diffraction
peak. The improved accuracy of ray optics can be attributed
to the absorption within the particle which eliminates the
less accurate contributions from p i 1. However discrepan-
cies still exist in the values of 12 for scattering angles
between 60 and 80 degrees. Here, ray optics predicts values
for i, that are 10 to 100 times greater than Mie theory. 1In
Figure 6(c), the values of i for ray optics are close to
those for Mie theory provided the scattering angle is less
than 60 degrees. Beyond 60 degrees, Mie theory predicts

negative values for i3,
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3. CALCULATING MIE EFFICIENCY FACTORS WITH COMPLEX ANGULAR
MOMENTUM THEORY

3.1 Overview

Three parameters often obtained from Mie theory calcu-
lations are the efficiency factors for extinction, absorp-

tion and radiation pressure which are refered to as Qext'

Qabs and Qpr respectively. Qext and Qabs are related to the
extinction and absorption cross sections, Coxt and Cabs’ by
C
ext
Q = (17)
ext A
and
C
abs
Qabs = —, (18)

where A 1is the cross-sectional area of the sphere and the

scattering efficiency follows as Q The

sct = %ext ~ Qabs-
radiation pressure efficiency, which measures the total rate
of momentum transfer to the particle, can be converted to

the asymmetry parameter, g, by

9 = (Qgue - Qpr)/Qsct y (19)

Complex angular momentum theory can be used to deter-
mine the Mie efficiency factors of a sphere that is large
compared with the wavelength. The governing equations have
been developed by Nussenzveiqg and wiscombe4. (These equa-

tions have been replicated in Appendix A due to their ex-

4. Nussenzveig, H. M., and Wiscombe, W. J. (1980) Efficiency
factors in Mie scattering, Phys. Rev. Letters, 45:
1490-1494.
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treme length.) Nussenzveig and Wiscombe have shown that
when compared with exact Mie values, complex angular momen-
tum theory gives relative errors of _(1-10)% for X = 10 and
~(0.01-0.001)% for X = 1000. The theory does not predict
as a func-

the rapid changes in the values of Q and Q

ext abs

tion of size parameter, but this high-frequency "ripple

structure" can be ignored in many applications.

3.2 Software

Source ccde has been obtained from Warren Wiscombe®
which calculates Q_ ., Q.. and Qpy using complex angular
momentum theory. The code was written in standard For-
tran 77 and therefore, required very few modifications to
operate on the AFGL CYBER system. Specifically, to avoid
underflow errors, checks have been inserted before calls to
the Fortran CEXP function. 1In addition the ACCUR parameter
in the code, which establishes a convergence criterion for
numerical integrations, has been changed from 1078 to 1073,

This change was recommended by Warren Wiscombe and acts to

speed up the program without a significant loss of accuracy.

3.3 Timing Comparisons with Mie Theory

It is well known that the computation time for Mie cal-
culations is directly proportional to the size parameter.
Figure 7 illustrates this clearly where the contours repre-
sent CPU times for various size parameters and imaginary in-

dices of refraction. The CPU times were determined using

5. Wiscombe, W. J., private communication.
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the Fortran SECOND function, available on the AFGL Cyper
computer.

For complex angular momentum theory, the expression for
is a "one line" expression that requires very little

Qext
computer time, Oon the otherhand, the expressions for Q

abs
and Qpr involve numerical integrations that require more CPU
time. Therefore, a series of timing runs have been per-
formed for a wide range of size parameters and indices of
refraction to determine where ccmplex angular momentum the-
ory is faster than Mie theory. In the comparisons, the CPU
time for complex angular momentum theory represents the to-

tal time required to compute Qext' Qabs and Qpr‘ (Qext’

Q

abs and Qpr are computed simultaneously during a single Mie
run.)

Figure 8 gives CPU times for complex angular momentum
theory as a function of size parameter and imaginary index
of refraction. The figure suggests that there is broad min-
ima in the CPU time for imaginary indices of ~(0.01-1).
Other timing runs indicated that the CPU times were not in-
fluenced by the real index of refraction.

Figure 9 compares the CPU times for complex angular mo-
mentum theory against those for Mie theory where the compar-

ison is expresced as

T
APX i (20)

log
TMIE
In Figure 9, it can be seen that complex angular momentum

theory is faster than Mie theory for size parameters greater
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than 200 to 500, depending on the imaginary index of refrac-
tion. Furthermore, percent errors are generally less than
ls for size parameters greater than 500 so Mie theory can be
replaced by complex angular momentum theory without sacri-

ficing accuracy.

3.4 A Singularity in the Expression for Qext

In the course of testing the source code provided by
Warren Wiscombe, it was discovered that a singularity exists
for Qext Wwhenever the imaginary index was less than about
1073 and the real index equals 3, 5, 7... Specifically,
this ill-behavior arises from a division by zero in the sum-
mation term of Eq. 1 of Nussenzveig and wiscombe?. The ex-
tent of the ill-behavior can be seen in Figures 1l0(a) and
10(b) where percent errors, when compared with Mie theory
values, are given for real parts of 2.5 and 3.0. Subsequent
testing showed that the expression for Qext can be used con-
fidently provided

In - n*| > 0.05 (21)

where n* = 3,5, 7...
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4. OTHER APPROXIMATIONS FOR Qext AND Qabs

This chapter examines various approximations for Qext

and Q that are available in the scientific literature.

abs
Specifically, regions of validity are established for each
approximation by comparing exact Mie value against the cor-
responding approximate value. A wide range of size parame-
ters and indices of refraction were considered in the analy-
sis. In addition, the regions of validity are represented
in a way that that permits the various approximations to be

intercompared. The purpose of this latter test is to see

where better approximations are needed.

4.1 Approximations That Were Investigated

have been investigated in
6,7

Five approximations for Qaxt

this report: two for small particles and three for large

4,8,9

particles For Qabs’ a total of seven approximations

were looked at: those given by 4'6—9, plus two other approx-

imations for large particleslo'll. A brief description of

6. Rayleigh, Lord (1871) On the light from the sky, its po-
larization and colour, Philos. Mag., 41:107-120, 274-
279 (reprinted in Scientific Papers by Lord Rayleigh,
Vol. T1:1869-1881, No. 8, Dover, New York, 1964).

7. Wiscombe, W. (1980) Improved Mie scattering algorithms,
Appl. Opt., 9:1505-1509.

8. Deirmendjian, D. (1969) Electromagnetic Scattering on
Spherical Polydispersions, Elsevier, New York.

9. Ackerman, S. A. and Stephens, G. L. (1987) The absorption
of solar radiation by cloud droplets: an application
of anomalous diffraction theory, J. Atmos. Sci.,
44:1574-1588.

10. Bohren, C. F. and Nevitt, T. (1983) Absorption by a
sphere: A simple approximation, Appl.Opt., 22:774-775.
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how each approximation works is given in Table 3. For ref-
erence, the equations governing the various approximations

have been reproduced in Appendix A of this report.
4.2 Comparison Scheme

4.2.1 Realm of Comparison

Table 4 summarizes the size parameters and complex in-
dices of refraction that are investigated in the current
analysis. These values encompass the realm of particles
normally encountered in atmospheric aerosol modeling. For
each approximation, n is held fixed and the exact Mie and
approximate values are calculated at incremental steps of
the size parameter, X, and the imaginary index of refrac-
tion, k. The steps are equally spaced in the logarithms of
X and k where the spacing consists of fifty steps per de-
cade of X and twenty five steps per decade of k. Similar

sets of data are also computed for other fixed values of n.

4.2.2 Smoothing Function

Before constructing error plots, data for Mie theory
and the approximations have been convolved with an eleven
point smoothing function, S. Specifically, the smoothing

function is passed over the data for X > 1 while k is held

11. Levine, P. H. (1978) Absorption efficiency for large
spherical particles: A new approximation, Appl. Opt.,
17:3861-3862.
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Table 4. Particle Characteristics That Were

Investigated
PARAMETER RANGE
Real Part of the 1.1 - 3.0
Index of Refraction, n
Imaginary Part of the 1078 - 19
Index of Refraction, k
Size Parameter, X 1072 - 103
fixed so that
10
F, = E S ¥ (22)
X "X, ;_
S =i i+L=5
where FXi represerts the Mie or approximate value at conse-

cutive steps of the size parameter, X The weighting fac-

10

tors for the smoothing function are given by

10
L
§ = —x71 1, =090, 1,

= ce., 10 (23)
L 1024

where (10) is the binomial coefficient,
L

<}o) = 101/({L1)(10-L)!) . (24)
L

The smoothing function acts to eliminate the high-fre-

quency ripple structure that occurs in the exact Mie values
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for the efficiency factors as a function of X for fixed k.
For reference, the ripple structure in Qsct is illustrated
in Figure 11 for fixed values of k. The reason for elimi-
nating the ripple structure is twofold:

1) it allows for a fairer assessment of the various ap-
proximations because the ripple structure can only
be calculated with Mie theory

2) since many aerosol modeling applications involve a
polydispersion of particles, the effects of the rip-

ples are "washed out" when integrating over particle
size.

The width of the smoothing function has been chosen to pre-

serve the large scale oscillations, known as interference

structure.

4.2.3 Percent Error Contour Plots

For each approximation, two-dimensional percent error
diagrams have been developed for fixed values of n. The
percent errors are computed by

Ey k. = 100(Ay o =My o /My (25)
i'73 17779 1] 1]

where A and M are the (smoothed) approximate and Mie values,
respectively, evaluated at size parameter Xi and imaginary
index of refraction kj' Contour lines have been drawn for

percent errors of 8, 20 and 50%.
4.3 Results

4.3.1 Regions of Validity for the Extinction Approximations
Figures 12(a) - 12(e) give representative percent error
diagrams for each of the extinction approximations. FEach

plot is for n = 1.54, and the regions where percent errors
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are less than 8% have been shaded. For brevity, plots for
other values of n have not been included here.

Figures 12(a) - 12(e), and similar plots for other n,
have been used to determine the regions of validity of the

various approximations for Q These results are given in

ext*
Figure 13. The dashed line for the Nussenzveig and Wiscombe
approximation indicates the useful range if the singularity
that arises for odd integer values of n is avoided (see Sec-
tion 3.4).

In general, existing approximations for Qext do reason-
ably well for both large and small size parameters. Of the
large particle approximations, the Ackerman and Stephens ap-
proximation extends to the lowest size parameter. If higher
accuracies are needed (i.e. 0.1 to 1% or better), the
Nussenzveig and Wiscombe approximation has a wider useful
range than the other large particle approximations because
it reproduces the higher-order ripple structure better.
Most approximations however, have trouble predicting the
magnitude and 1location of the first interference peak which
occurs between size parameters of 1 and 10 (see Figure 11).

On the other hand, percent errors within this narrow band

are generally less than 20% for many of the approximations.

4.3.2 Regions of Validity for the Absorption Approximations
Figures l4(a) - 14(g) give representative percent error
diagrams for each of the absorption approximations. Each

plot is for n = 1.54, and the regions where percent errors
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Figure 14. (continued) Percent Errors in Qabs for the
Approximation of (g) Levine, for n = 1.54
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are less than 20% have been shaded. For brevity, plots for
other n have not been included here.

Figures 14(a) =~ 1l4{(g), and similar plots for other n,
have been used to determine the regions of validity of the
various approximations for Qabs’ These results are given in
Figure 15. The region of wvalidity of the Nussenzveig and
Wiscombe approximation is drawn with a dashed line because
it is only computionally efficient for size parameters
greater than about 200, relative to exact Mie theory (see
Section 3.3), where it is accurate to about 0.1%. Also, to
avoid clutter, the region of validity of the Ackerman and
Stephens approximation has not been shown; however, its
omission does not alter the shape of the shaded region in
Figure 15 because the Ackerman and Stephens approximation

for Q is similar to the Bohren and Nevitt approximation.

abs
Figure 15 suggests that existing approximations for

are less accurate than those for Q For example,

Qabs ext”’

the tolerable error has been relaxed to 20% because signifi-
cant errors extend to rather large size parameters. Of the
large particle approximations, the Bohren and Nevitt approx-
imation appears to have the largest region of applicability.
In contrast to Figure 13, the percent errors within the

shaded region of Figure 15 often exceed 50%.
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5. SUMMARY AND CONCLUSIONS

This report has explored alternative algorithms to Mie
theory. Specifically, Chapter 2 discussed the use of ray
optics to calculate the phase matrix elements of polydis-
perse spheres in geometrical optics limit. Generally speak-
ing, ray optics should be used for size parameters greater
than 400, and becomes more accurate for particles containing
significant absorption. Chapter 3 explored the use of com-

Q

plex angular momentum theory to determine Q

abs

ext’ and Qpr

(or g). It was shown that although accurate for size param-
eters greater than 20, this technique is only computation-
ally efficient for size parameters greater than 500. In

Chapter 4, approximations for (Q and Qabs in the scien-

ext
tific literature were investigated and their regions of va-
lidity were established. It was shown that existing approx-
imations can give reasonable estimates of Qext for most size
parameters and complex indices of refraction. On the other

hand, the approximations for Q_, = are much less accurate.
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Appendix A

Equations for the Various Mie Approximations
Investigated in this Report

This appendix gives the equations used to calculate the

extinction efficiency, Qext’ and the absorption efficiency,

Qabs’ for the Mie approximations discussed in this report.

For some of the approximations, the scattering efficiency,
Qsca' is calculated in place of either Qext or Qabs where
the three terms are then related by Qext = Qsca + Qabs' The

list of equations serves only as an overview and the reader
should consult the original references for more detailed
information. Also, some of notation from the original ref-
erences has been changed such that it is consistent with the
terminology used in this report. 1In the equations below, X
represents the particle size parameter and m = n + ik repre-
sents the complex index of refraction of the particle.

Equations for the Rayleigh Approxination6

The Rayleigh approximation for Qabs is computed as

2_
Q,,,=4x Im{:2+21 } (A-1)

and QSca is given by

(A-2)

_8am =1
Q‘“_3x m?+2

where Qext = Qsca + Qabs‘




Equations for the Wiscombe Approxi-ation7

The Wiscombe approximation for Qext is computed as

_ A i . 3a -
0 -6XRe(al+b1+3a2) (A-3)

ext

and Qsca is given by -
4
Qsca = 6X T (A-4)

where Qab and

s - Qext T 9sca

1 .2 4m°+5 4

N 1-10 % * 1300 X
a, =2i—3 D (A-5)
2m’-5 2
N , o 2_ . 1+
b = 31X m——;— 70 (A‘ﬁ)
! 45 2m2—-5 2
1 30 X
1 .2
R > m2 — l-—X
a, = iX li;gl‘ 2}3 (A-7)
2m+3-2m 7,2
12 %
4 2
D = m*+2+ (1~-L n’)x?—8m' =385m?+ 350 4
( 10 ) 1400 X
2
, =1 3¢ 1 2 _
+2i 0 x' (1 lox) (A-8)
and
2 A |2 2
- A 5 A -
T = ,a1|+|b1| '+§|a2| . (A-9)




Equations for the Deirmendjian Approximation8

The Deirmendjian approximation for Q is computed as

ext

Q =

ext = Qe 1+ D) (A-10)
and Qabs is given by

Q.. = Q. +D) (A-11)

abs

where QVHext is the extinction efficiency from van de

Hulstl,
4 cos
Qupext =2~ —-b-——ﬁ- exp(—-ptan B) sin(p-P)

2

4(cops B) [cos 2B — exp(- p tan B)cos(p — 2B)] (A-12)

. . - 1
and QVHabs is the absorption efficiency from van de Hulst™,

exp(- 2p tan P) N exp(—-2ptanf) -1

. _ (A-13)
VHabs ptanp 2(p tan 5)2
where
- k
B:tan l(n_l (A_14)
and
p=2X(n-1) ) (A1)




In Eqs. A-10 and A-ll, the correction term, D, is given by

0.2p-n+1

- 1D£(B)

m[f(ﬁ)+1]+ for pssS(n-1)

4. 08

816 [f(B)+1]p for 5(n-1)$p$1+3tanB

b= ] g (16
(n- V[£(P) +1 4. 08 4,
2n(1+ 3 tan f) for 1+3tan[5Sp 1+tanf
2.04(n - 1)[£(B) + 1] 4.08

nf(B)p for p> 1+tanf
where
fP) =1+ 4tanB+3tan2B . (A-17)




Equations for the Ackerman and Stephens Approxi-ation9

The Ackerman and Stephens approximation for Qext is computed
as

2
4m? -ptanf cos

Q..=2-"p © [c:osﬁsin(p—B)Jr 5 l3cos(p-Zﬁ)]

2 -2
+ 4:)’0 e—ptanBJl—m [ ’l—m—ZCOSB

x sin(pV1-m? -p)+ cos” P cos(pv/1-m~? - 2[3)} (A-18)

p

and Qabs is given by

0, =2+ - o) 4 (axi

ab 2Xk
—2—';';8-“”“/1—:__2—(\/‘“—2‘_1-*&) (A-19)
where
B=tan'1(nfl) (A-20)
and
p=2x(n-1) . (A-21)




Equations for the Nussenzveiq and Wiscombe Approxi-ation4

The Nussenzveig and Wiscombe approximation for Qext is

computed as
2 -1
3 2
Q  =2+1.9923861X +81m{ L(m? +1) (m? - 1)

ext

-1

-1 -1 i 1 m-1 ] -1
-m¥(m + 1) (mz"l) [l+?x—(m—l m )X

23
x expl2i(m = DX - 3(m - 1) jzl [j- ] 2:1
-4
Xexp[Zi (m- 1+2jm)X]} -0.7153537x °
o )
- 0.3320643 Im e * (m? -1) “(m2+ 1) (2m* - 6m2 + )] X
_2 .
+O(X )-#rlpple (A-22)
Q.ps 1S given by
:<Qabs)F+(Qabs)a.e.+(oab5)b.e. (A-23)
where
2 2
(Q abs) 1§1'[02¢ (rjx)Sin 8 cos 6 d6 (A-24)
-l 2
(Qabs)ae =2 *x 3 EI q)( L )dx (A-23)
and
L2 o2 ox .
(Q‘“”)be = 3y 3 ;E'lj° I:(p(rﬂ‘)-q;(rj)L ):}dx ] (A=26)




—-——r

In Eqs. A-24 through A-26,

O(Fn) =(1-e™) (1 1,) /(A rue”) (A-27)

where

2

b]
rﬂ:lRJ”-I . J A=1,2; ijz(_l) (zj—uex) /(z+ue1) (A-28)
z=cosB, u=mcos®, sinB=msin@) (A-29)
-2 z for Eq. A-24
el=1' ez=m ’ 21—2, z2--{z'forﬁqs.1!\-25'and A-2§ (A-30)

and finally,

b = 4X Im(m cos 0 +8 sin 0) (A-31)

.

Equations for the Bohren and Nevitt Approximationlo

The Bohren and Nevitt approximation for Q.ps 1s computed as

4n’ 1 2
AP ——" CR— Y S
(n+1) -(n-1) exp(-D | " T n

n

x(l+'t‘\/n2—1)_exp(—'t) Q+1 ]} (A-32)

where

T= 4kX . (A-33)




j_.—-“

Equations for the Levine Appxoximationll

The Levine approximation for Qabs is computed as

Q,,. =20 - a)[H(4kx) + H(B) - H(4kX + B)]

(A-34)
where the function H(u) is given by
L, et et -1
Hlu) =3+ 55—+ = (A-35)
and
Zn[lﬁ-——'—‘——*( 22 2)J
_ n +k _
B = Y . (A-36)

The value for A in Egs. A-34 and A-36 is determined using an

iterative scheme given by

_2n(1+—'—~——'—2 2)
2
n“+k

1~2A (A-37)

A=R+(a-1)exp

where the iteration is begqun with A(O) = R and

) 4k
R=[-(‘D—:'—1-;—ﬂ7:! . (A-38)
(n+ 1) +k%k
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