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A nearfield asymptotic analysis for underwater acoustics
Michael D. Collins
Nat'al Ocean Research and DeveloprnentActiuity, Stennis Space Center, Mississippi 39529

o (Received 1 September 1988; accepted for publication 30 November 1988)

The method of stationary phase is used to show that the homogeneous half-space field projects
properly onto the normal modes near a point source. The half-space field is useful for
initializing the parabolic equation (PE) in both the time domain and the frequency domain

cand in both two and three spatial dimensions. It is shown to be more accurate for wide-angleopropagation than the Gaussian PE starter. A Gaussian time-domain PE starter is derived and
compared with the half-space starter. Application of the approach to scattering problems is
discussed. The half-space field is the inner solution of a matched asymptotics solution. A o
simple approach for speeding up PE calculations and an efficient ray-tracing model for source
localization are motivated by the matching. c 11 *

PACS numbers: 43.30.13p, 43.30.Dr

UCTION satisfy the pressure release boundary condition P = 0 at the

The parabolic equation' (PE) method requires that the ocean surface, the outgoing radiation condition at infinity,

acoustic field be specified at some range. The Gaussian PE and the reduced wave equation'
starter"2 and more accurate PE starters3" have been used pV.[ ( I/p)VP] + K 2P = - 4n-6(x - x,), (i)
widely to initialize the PE. These approaches are sufficient where the point x, is the source location. The complex wave-
for solving two-dimensional time-harmonic propagation number K = k( 0 + ia/3) is used to model sediment loss,
problems, but they are difficult to apply to three-dimension- where the wavenumber is k = w/c, r = (40r log,(, e) - , fl
al, time-domain, and scattering problems. In this article, we is the attenuation in decibels per wavelength (dB/A), and c
consider a PE starter that is accurate, easy to construct and is the sound speed. The variable density term is due to Berg-
understand physically, and useful for both frequency-do- mann.9
main and time-domain problems in both two and three spa- Since the ocean is a waveguide, energy propagating from
tial dimensions including scattering problems. a source exhibits cylindrical spreading in the absence of azi-

Refraction in the ocean is weak and thus can be neglect- muthal variation in the ocean. Thus it is often beneficial to
ed near a sound source for a fairly large distance. Reflections solve Eq. (1) in cylindrical coordinates, with z being the
from the ocean bottom can also be neglected near the source depth below the ocean surface and r being the horizontal
because the reflection coefficient at normal incidence is distance from a source at the depth z,,. Variations in both
small. Reflection from the ocean surface, however, cannot be azimuth and range are assumed to be sufficiently weak so
neglected because total reflection is usually assumed at the that the region near the source can be treated as stratified,
ocean surface. Thus the homogeneous half-space field is a which simplifies Eq. (1) to
valid approximation near a sound source. Far from the
source, both refraction and reflection from the ocean bottom dZP 1 dp P a 2P+ + P
must be accounted for. Thus the half-space field breaks az- p dz az + - r ar
down in the farfield, and a boundary layer' exists near the 2=-- (r)6(z- z). (2)
source. r

We use the method of stationary phase 6 to show that the The normal-mode solution7 of Eq. (2), which is valid in

half-space field projects properly onto the normal modes the limit kr) I and cr/6 1, is
near the source. Thus the half-space field can be used to
replace a source condition with a boundary condition on a P(r,z) 2 ,exp[ ( ik - y )r]
cylinder enclosing the source to obtain an accurate farfield C T r , (z) ,,,,(
solution. We compare the half-space starter and the Gaus- (3)
sian PE starter in both the frequency domain and the time (d 2  1 dpd
domain. For deep-water problems, the boundary layer be- LOS,, = d---- + k l6,, k (4)

havior motivates an approach for speeding up PE calcula- p dz dz -

tions as well as an efficient ray-tracing model. where ,, (0) = 6,, ( o) = 0, and N is the number of modes
in the discrete spectrum of L. The normal modes satisfy

I. THE NORMAL-MODE SOLUTION (,4,, ) = 65....,where the inner product associated with L
is defined by

A time-harmonic steady state is assumed, and the

acoustic pressurep is factored asp(x,t) = P(x )exp( - 1wt), (g,h) [ g(z)h(z) dz. (5)
where t is time, x is the Cartian position ccoer, and o is the P (Z)
circular frequency. The complex pressure P is assumed to The constants y,, are defined by
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y',, =k~(/3.,), (6) (P,,.,,,)-(a,,/2i)[I,(r) -I (r) -J ,(r) +J (r)],

where k,, = k(z,,). The vertical propagation angles a,, are (13)

defined by ,exptik [2 (z z1,) +zsina,]}

k,,- k, cosa,,. (7) I (r)+ - d,

In the Appendix, we present a direct asymptotic derivation (14)

of Eq. (6), which has also been derived using the Rayleigh C, exp{ik [\- (z+z?- z sin a,
quotient. J. (r) =J - dz.

We do not consider frequencies less than o,, the fre- (rI) (Z + (15)
quency below which L does not have a discrete spectrum.
For each frequency (o > (o., we define A(co) to be the maxi- Since the first mode is essentially half of a cycle of a
mum of a,, over n. We define - to be the maximum of sinusoid for z<d, we deduce from Eq. (12) that

tan' A (o) over (o. The discontinuity in sound speed at the kd sin a, = 0(1). This implies that kd> I because

ocean bottomz = d(r) is relatively small. Thus energy prop- sina <l.ThusI, andJ, maybe evaluated by the method
agation is limited to small vertical angles, and we assume of stationary phase with the length scale taken to be d. First,
that c< 1. we consider

I_= FBzexpikff"z) ]dz, (16)

II. THE HOMOGENEOUS HALF-SPACE FIELD I ___________(1

Equation (2) is difficult to solve numerically near the = 7 + (z- z,,) 2 - z sin a,,, (17)

source because P and the Laplacian are singular at r = 0. 0, z- Z Z sin a,,, (18)
This problem can be handled by solving Eq. (2) asymptoti- ,r2 + (z -zo) -

cally ne-ar the source for r<r r. Any function that properly ib" r2 [r2 + (z - z,) 2 1] 3/2 (19)
excites the normal modes can be used as a boundary condi-
tion at r = r,, to replace the source condition at r = 0. In the From Eq. (18), t' vanishes at z, = z, + r tan a,,. This is a

high-frequency limit, it is necessary to accurately account stationary point of I- if z, < d, which occurs if

only for the trapped rays that propagate within the angle A of r < r,, = (d - z,,) cot a,,. (20)
the horizontal; and the homogeneous half-space field pro- This stationary point corresponds to the ray propagating
jects properly onto the normal modes at r = r0 if trapped downward at the angle a,,. At the stationary point,
rays do not reflect from the ocean bottom and are not signifi- = r' cosa, (21)
cantly affected by refraction in the ocean for r < r. This
asymptotic solution breaks down for large r. Thus a bound- ,= r cos a,, - z, sin a,, , (22)
ary layer exists near r = 0, and the half-space solution is an
inner solution. We will use the method of stationary phase to '" = (r cos3 a,) . (23)
demonstrate the validity of the half-space solution and to Thus we obtain
show when it is valid.

In the homogeneous half-space with/3 = 0, the solution I- (r) - V 21ri/kr cos a,,
of Eq. (2) is X exp(ikr cos a,, - ikz1 sin a,,). (24)

Ph (r,z) = exp(ikd - )/d_ - exp(ikd , )/d, , (8) A similar analysis for I, gives z, = z, - r tan a,,. If

z, >0, this is a stationary point of I,. If z, <0, 1+ does not

d 2 =r2 + (z + z") 2. (9) haveastationary point, and J+ hasthestationary point - z,
z - z+ ± r tan a,,. These stationary points correspond to

Since a ray propagating with small vertical angle a remains the ray propagating upward at the angle a,,; I, (J,) has the
in z < d for small r, one would expect that stationary point if the ray has not (has) reflected from the

(P,,d,, (P,d,,,). (10) ocean surface. If z, = 0, 1+ and J+ share this stationary
point. Here, J never has a stationary point. In each case, we

Since /3(z) 0 for z <d and b,, (z) is evanescent for Z> d, it find that
follows from Eq. (6) that k, ',, <,1/3< 1. We assume
yr< I < k,,r, and the factor exp( - y,, r) may be dropped in I+(r)-J±(r)+J(r)
Eq. (3). We obtain V 21ri/kr cos a.-

(P /. r s,,(z,)exp(ikrcosa). (11) Xexp(ikrcosa, + ikzo sin a,), (25)
krcusa,,, (Ph,&,,) 21ri/kr cos a,-

We establish Eq. (10) for the case in which c is constant Xa. sin(kz 1 sin a. )exp(ikrcos a, (26)
in the water column. Thus

Thus P, properly excites the normal modes.
,, (z) a,, sin tkz sin a,, ) (12) The above analysis is easily modified to handle the case

for z < d, where a,, is a normalization constant. Because in which c varies in the water; however, several cases must be
6, (z) is evanescent for z > d, considered. Ifd6,, (z) is not evanescent near z = z,, then a, is

1108 J. Acoust. Soc. Am., Vol. 85, 40,3, March 1989 Michael D. Collins: Nearfield asymptotic analysis 1108



real, and the following expansion is valid for z - z,: lution P, does not satisfy the pressure release boundary con-

(6,, (z) - b,, sin(k,,z sin a,, + ) . (27) dition at z = z,, resulting in Gibbs' oscillations. However,
the propagating modes in the truncated du,,iain aic cvancN-

where b,, and d,, are constants with 0-, d,, < 2,-r. The station- cent for z > d. Thus the Gibbs' oscillations project onto non-
ary phase analysis goes through similarly in this case. How-

~propagating modes and decay rapidly with r causing little
ever, r must be chosen sufficiently small so that Eq. (27) is error in the farfield.
valid at the stationary points. If (b,, (z) is evanescent near The major benefit of the half-space field is that it can be
z = z,,. it suffices to show that the projection of P, onto b,, is applied to several problems. If azimuthal variations are as-
subdominant to the projection of P, onto other modes, h,, is sumed to be a weak perturbation, the half-space field can be
not incorporated into the exponentials in Eqs. (14) and (15) applied to initialize the three-dimensional parabolic equa-
in this case. A similar analysis results in tion at r - r,, For a pulsed source with the source function

(P,,.,S,,) - \2mi/krb,, (z1 )exp(ikr). (28) f(t) of finite bandwidth, the homogeneous half-space field

Since 6,, (z,) < 1, (P,, b,, ) is subdominant. It is possible that p,,(r,z,t) =dLf t  )_ 1 _ (32)
Eq. (28) is not valid if the main contribution of one of thed - - f t - (32)
integrals does not come from a stationary point. However, is ) ,'!id inner solutinn of the time-domain problem by the
the contribution is automatically subdominant in this case. superposition principle since it is valid for each frequency

According to Eq. (20), r must be small enough so that a composing the source. The source condition at r - 0 is re-
ray from the source propagating at the angle a,, does not placed by the boundary condition p(r,,,z,t) =P ,(r,,z,t).
intersect the sediment. In the geometrical optics limit, r,, is This starter has been applied to initialize the time-domain
the range at which P, breaks down for rays propagating with parabolic equation ' (TDPE) and the progressive wave
vertical angles a < a,,. For lower frequencies, one would ex- equation'. producing accurate results.
pect P, to break down for smaller r. The stationary phase The inner solution can also be applied to simplify the
approximation is valid if exp(ikAb) oscillates rapidly away waveguide scattering problem for a bounded object in
from the stationary point. This occurs if 0 < z < d. Previous work on this problem has not exploited

k asymptotic limits. '.' 2 The total field P, is defined to be thek t!"=k ----- ° sin a,, >1 (29)
- ( -sum of the incident and scattered fields P, and P,, z, is as-r +( Z1 ) sumed to be a parameter, and the solution of Eq. (2) is writ-

for lz - z, 0( 1 ). Since 'z) 0(sin a,, ) or larger for ten as P(r,z;z0 ). The scattered field has the representation
Iz - z, 1 = 0( 1 ), Eq. (29) holds for the case k sin a,, > 1.

For k sin a,, = 0(1), Eq. (29) is equivalent to P,(x) aG (ax,x, P,)(xo

k Iz - Zl/\r- + (Z- z)-> 1 (30) (33)

Let r = Kr,, = (d - z0)cot a,,, where where G is the waveguide Green's function defined by

(d - z) , 1. (31) G(x,x,,) (1/4rr)P[ (x-x_, + (y -y_),z;z,,J . (34)

From Eq. (31) IZ, - Z= AId - << 1. We deduce that The integral is over the surface of the scatterer. Since G is the
,z- z, I = 0( 1 is equivalent to z -z,, = 0( 1), and thez - , =0(1 isequialet t z z~i= 01),andthe field due to a point source, and dG/dn can be approximated
stationary phase approximation is valid if Eq. (30) holds for by to point source ayb dd as te fied d

z- zJ = 0(1). For r = 0(1), Eq. (30) holds since k > 1. bytwopoint soirce-. P may be regarded as the field due to a

Due to the fact that k sin a,, = 0( 1), Eq. (30) follows from collection of point sources on and near the surface of the
scatterer. Thus the scatterer behaves like a collection ofEq. (31) for r>> 1. Thus the stationary phase evaluation ofthe integrals in Eqs. ( 14) and ( 15) is valid for r<<r,, if point sources, which suggests that a valid inner solution for

thez integrals in Eqs. ( d for r < r,, fd - ,rorsnt,, if 1. the scattering problem consists of the solution of the scatter-
d - z= 0(1) and for r< r,, if d - z,< I or k sin a,, > . ing problem in the homogeneous half-space. This is a signifi-

cant simplification of the waveguide scattering problem be-

Ill. APPLICATIONS cause useful methods for solving the half-space problem

With the inner solution, it is possible to avoid the singu- have been developed. An asymptotic analysis of the wave-

lar nature of Eq. (2) near r = 0. The source condition at guide scattering problem is given in Ref. 13.
r = 0 is replaced by the boundary condition P(rz)
= P,, (rz). There is an additional problem to be dealt with,
however, before the outer problem can be solved numerical- IV. COMPARISON WITH THE GAUSSIAN PE STARTER
ly in the outer region r> r,. The infinite spatial domain must
be truncated. The outer solution of Eq. (2) replaces the There is an alternate method for dealing with the singu-

boundary value problem with an initial value problem in lar behavior near the source. From Eq. (3), it follows that
range taking care of half of this problem. The problem is P-r- '2Q in the farfield, where

truncated in depth with the boundary condition ad-Q I dp Q a +O
P(r,z,) = 0, where z, is large. Since the sediment is lossy, 3z2 _ d+ z a,-
only a negligible amount of energy can travel to the lower d,, (Z,),,(z) (6)
boundary and return to the water column. Thus only a small Q(0,z) = 2-ri (36)
error is introduced by truncating the domain. The inner so- , ,k,, ,
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To avoid computing normal modes, the Gaussian PE starter Substituting D for Q in Eq. (42), we obtain

F(z.,z,:k<,) L [exp q(Ozt) = [6(z - z.) - b(z + zo)]2 4 , [2

(, -k,,z+ z,,)( ijt)de.
ep (37 exp[ - -) exp(

which approximates D(z.z,:k,) (2ni/k) I 2 [6(z - z ) (44)

- 6(z+z,).isusedinplaceofEq. (36) asan initial condi- The delta function in Eq. (44) can be approximated by a
tion at r = 0. This is a valid approximation since k,, - ki and Gaussian of width w:

(Q.6,, 2 i/k,, b,, (z,), (38) 6(z) (w\-rr) " exp[ - (z/u)']. (45)

(D.a.) 2ri/k,)&,, (z,). (39) Substituting Eq. (45) in Eq. (44) and manipulating the inte-

Since k,, diverges from ko as a,, increases, we see from gral, we obtain the Gaussian TDPE starter:

Eqs. (26) and (39) that P, excites the higher modes better q(O,z1t) = I 2c

than D, which should excite modes better than the approxi- w1it/ -r
mation F. We illustrate this with an example for which data J [ z -z[ + z,)]

appear in Table I. The subscript , stands for water value. X jexp[ - (,, )] - exp - I
The subscript b stands for bottom value. Projections of P, U

D, and F onto the modes appear in Table 1I. We observe that f'-- exp[)-](w +-cos(t- ) do.
the error in P, is small and uniform in a,,, while the error in Jo \2v /J\ 4/
F increases with a,, and is larger than the error in D for all (46)
a,,. We consider the example described in Table III. The

A pulsed source function is decomposed as numerical solution of the TDPE requires that q(r,z,t) -0

C( rapidly as I - - cc (see Ref. 9). We see from Fig. I that this

fI condition holds. A sequence of contour plots generated us-

By superposition, p r 2q in the farlield, where ing the TDPE with the Gaussian starter appears in Fig. 2.
From the plots generated using the half-space starter, which

d-q 1 dp aq +3 2q_ =1 aq (41) appear in Fig. 3, we deduce that the Gaussian starter evolves

dz' p dz az ar2  c- at 2 properly. The accuracy of the Gaussian starter is illustrated

= ( ' ,,) quantitatively in Fig. 4. The error in the surface-reflected

q(0,zft) = F(w)Q 0,z.-)exp( -iot)d~o, (42) arrival near t = 60 ms, which propagates at roughly 15°, is on

and c,=c(z,,). We consider the source function f(t) the order of 10%. We see from Table II that this error is of

exp[ - (vt)-], for which the appropriate magnitude.

F(w) = (2v\nr) exp[ - (&o/2)]. (43)

TABLE 11. Projections of P. F. and D onto modes.

( P,,,db) (r,6+,) (D,6,,) X

k, (m ' ',,(m ') el,, 
°
) "P ,,) (P,d',,) (P ,,-

Cr)

1.04676 0.00000 1.65951 0.99907 0.99895 0.99979 Q4C
1.04544 000002 3.31619 1.01666 0.99581 0.99916 C 0

1.04323 0.00004 4.96723 1.00280 0.99060 0.99812
1.O4014 0.00007 6.60980 0.98127 0.98333 0.99667
1.03616 0.00012 8.24106 0.99439 0.97407 0.99482
1.03126 0.00017 9.85815 1.02109 0.96285 0.99259 C
1.02546 0.1)0024 11.45808 1.00875 0.94974 0.98999 ,

1.01874 0.(XX)33 13.03760 0.97815 0.93483 0.98703 -t

1.01109 0.00046 14.59277 0.98854 0.91823 0.98374 oo 0
I.O0252 0.00068 16.11757 1.01759 0.90008 0.98015 RELATIVE TIME(ms)
0.99314 0,00126 17.59651 1.01015 0.88069 0.97632

FIG. I. The Gaussian TDPE starter at z - 75 m.

1110 J Acoust. Soc Am.. Vol 85, No. 3, March 1989 Michael D. Collins: Nearfield asymptotic analysis 1110
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(h) r =100 m. (c) r - 500 rn. The agreement with the solution generated

* with Ithe Gaussian starter is qualitatively good at r -500 m.
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0 -120

w_ 110

500 701
0 20 0 0 t00100

RANGE(km)
-t

200 15o to 50 0 FIG. 6. PE-generated transmission loss. The curved beams of the outer so-
RELATIVE TIME(nis) lution can be traced back to the Lloyd's mirror beams near the origin.

FIG. 4. TDPE solutions at r 500 in and z = 50 m generated with tile
Gaussian starter (solid) and the half-space starter (dashed). The
(3jussian-geeieraled solution breaks down for late arrivals that propagate atlarge angles. Fig. 6 foru. = 0.0071, c,, = 1500 m/s, z,,, = 1000 m, and

H = 1200 m. The curved beams, which can be traced to the

Lloyd's mirror beams near the source, are the dominant fea-
ture. The beams evolve to a constant width in the two-di-

V. EFFICIENT PE AND RAY-TRACING CALCULATIONS mensional vertical cross section, which is necessary since

The PE method is valid for high frequencies. However, cylindrical spreading applies in the sound channel. The PE
the computation time required for the numerical solution of calculation took 2.5 h on a Digital VAX-8650 computer.
the PE is proportional to the frequency squared in two di- The dipole behavior exhibited in Fig. 6 suggests an ap-
mensions. To avoid time-consuming calculations, one is proach for speeding up PE calculations. Since the beam pat-
tempted to apply ray theory. However, the ray theory solu- tern is determined by k(zo, transmission loss for the frequen-
tion can be unpleasant to implement due to the fact that it is cy co can be approximated efficiently by replacing to with -co,
implicit. In this section, we discuss approaches for speeding z, with Zo/, and /3 with fl/, where "< I. We refer to this
up PE calculations and for obtaining qualitative results effi- approach as the " method. For it to be valid, o must be large
ciently with ray tracing. enough for ray theory to be valid. We illustrate the 4" method

One of the standard methods for matching the inner and by taking " = 1/2 for the 200-Hz problem with Munk's pro-
outer solutions is to obtain the behavior of the inner solution file. The transmission loss plot obtained by the " method
in the outer region. " The half-space field P, exhibits beams appears in Fig. 7 and agrees well with Fig. 6. Since the "
in the outer region due to the Lloyd's mirror effect. Thus one method gives accurate results and decreases the run time by
would expect the outer solution to consist of beams that are the factor 2 in two dimensions and by the factor " in three
curved due to -efraction. We illustrate the beams in the outer dimensions, it should be useful for underwater acoustics cal-
region for a 200-Hz source placed at zt = 50 m in a deep- culations.
water ocean with Munk's exponential sound-speed profile' 5  Ray-tracing calculations are complicated because it is

c ) , Z2- zh necessary to determine all of the rays that pass through a
C_1(Z)=C11 1 I 2 given point and sum their contributions to the field at that

z Hpoint. A simple way to avoid this difficulty is to take into

+ exp( -2 Zh -1} (47) account the behavior in the inner region. A good qualitative
H J representation of the farfield is obtained by tracing rays from

where ji < 1, z,,, is the channel depth, c,u is the channel the origin in the directions of the Lloyd's mirror beams, as in
speed, and H is the channel thickness. A plot of c,,, appears in Fig. 8. This calculation required just 3 s on a VAX-8650, yet
Fig. 5. A plot of PE-generated transmission loss appears in the result gives a useful description of the farfield.
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FIG. 5. Munk's deep-water sound-speed profile. FIG. 7. The " method with C = 1/2. There is good agreement with Fig. 6.
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FIG. 8. Rays launched in the directions of the Lloyd's mirror beams to
obtain the qualitative behavior in Fig. 6. -to0-

These concepts of ray-tracing and matched asymptotics 150

combine to motivate an efficient method for source localiza- -150 -too -o0 50 1o 150

tion. Suppose that a high-frequency ( > 100 Hz), time-har- X(km)
monic signal from a point source of unknown location is FIG. 9. View from above an ocean with seamounts. The curves mark the

received at a vertical array. Signal processing techniques can locations of beam arrivals -t the ocean surface. Various shadow zones ap-

be used to determine the depths and angles of beam arrivals pear behind the seamounts.

at the array. To determine the source location, rays corre- opposite phase is needed to account for the pressure release
sponding to the beams are traced away from the array in surface. The half-space field is easy to interpret physically.
both directions. The range of the source is the range at which Refraction is weak in the ocean and can be neglected over
all of the rays meet at one point on the ocean surface. The short ranges. Reflections from the ocean bottom occur at
depth of the source is determined by the Lloyd's mirror large angles near the source and thus do not affect the far-
beam pattern described by the rays at this range. field. These concepts lead to an important simplification of

To further illustrate the ray-tracing method, we consid- the scattering problem. The concepts of matched asymptot-
er an ocean with the Munk profile used above and having the ics motivate the 4" method and the ray-tracing model.
bathymetry
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gence zones and plot them in Fig. 9. Although beams lose
energy as they reflect from the ocean bottom, they retain APPENDIX: ASYMPTOTIC DERIVATION OF

some energy, as is evident in the shadow zone forz < 2500 m

and r near 25 km in Fig. 6. Thus we do not terminate the rays We assume the following ansatz, which is similar to the
as they reflect from the seamounts. The seamounts result in WKBJ ansatz, for the eigenvalue problem:
various partial and total shadow zones. Some of the rays A
encounter the seamount nearest the origin two times produc- P(r,z) - ri 0 ,, (Zo) , (z)H (K,, r), (Al)

ing additional cusps in the curves. , (z) = d,, (z) + a,, (z) +....
41" Z) =(k Z) +0" () +(A2)

VI. CONCLUSIONS K,, = k,, + iy,, + _.. (A3)

The homogeneous half-space field is useful for time-har- Substituting the nth term of Eq. (AI) into Eq. (2), we ob-
monic and pulsed point and multipole sources in both two tain
and three spatial dimensions. It is probably the simplest pos- Ltb,, - k , =,, 2i( - oflk 2 + y,, k,, ) d,,. (A4)
sible inner solution because it accounts for rays from both

the source point and the image point at which a source of Equation (A4) has a solution only if the following solvabil-
ity condition is satisfied:

TABLE IV. Data for the three-dimensional ray-trace problem. (( - of3k 2 + y,, k,, ) ,, ,d,,) = 0, (A5)
(, =Cak,, ) (13k" 2,6,2 (6

x, = 20ikm x,= -70km x, = lOkm in (A6)

Y, = 0 !, = ?0 km y, = - 60km Equation (6) follows since k - k,, and k,, k.
h, = 2500m h, = 3000m h, = 2500m
w, = 10km w, = 15 km w, = 20km F. D. Tappert, "The Parabolic Approximation Method." in Wave Propa-
d,, = 5000 m (a = 400 z,, = 50 m gation and Underwater Acoustics, edited by J. B. Keller and J. S. Papada-

kis. Lecture Notes in Physics (Springer, New York. 1977). Vol. 70.
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