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A GENERAL ADAPTIVE CONTROL STRUCTURE

James M. Krause and Gunter Stein

lis, Minnesota 55418

Honeywell Systems and Research Center
Minneapo,

ABSTRACT

A general adaptive control structure is given which provides
flexibility in defining the plant and eontroller parameterizations,
and the goal of the adaptation. A special case is conventional
mode] reference adaptive control with independent uncertinty in
all of the plamt transfer function coefficients, although & much
troader class of systems can be represented. A single derivation
of the error equations for parameter estimation purposes is pro-
vided, and is valid for the entire class of sysiems. The form of the
resulting error equations is appropriate for application of common

L INTRODUCTION

An adaptive conmol structure is the collection of (1) a plant
description conumining uncermin parameters, (2) & controller
description containing adjustable parameters, and (3) a design rule
or "goal” which maps plant parameters into controller parameters.

This paper presents a general adaptive control structure in an
especially simple form. Each of the three system elements (plant,
control, goal) is represented by a linear equation. A linear con-
straint assures that the goal is reachable for all possible values of
the plant parameters, by suitable choice of the controller parame-
ters. A standard linear parameter estimation problem resuits for all
represented systems, forming an interface to common parameter
adjustnent mechanisms.

In spite of its simplicity, the representation of this paper is
fiexible. Specifically:

(A) The representation provides significant freedom in specifying
the location of the plant’s uncertain parameters. A special case of
the representation is the frequently-studied case of independent
uncertainty in all of the plant transfer function polynomial
coefficients. However, more generality is allowed here. The unk-
nown parameters may be imbedded in the plant dynamics, and the
number of unknown parameters need not comrespond to the order
of the plant transfer function. Nonparametric (unstructured)
unceruainty is allowed as well,

(B) The representation provides significant freedom in specifying
the goal of adaptation. The much-swmdied case of model reference
adaptive control is suppported, as well as loop-shaping adaptive
control, and 2 host of other yet-unexplored alternatives.

The flexibility afforded by the general stucture representation
should prove to be important in the developement of adaptive con-
trol structures with desirable tuned system performance and robust-
ness properties. A single convenient representation for a broad

class of systems should expedite the comparison of alternative
structures.

The organization of the paper is as follows. Section II pro-
vides some notation. Section III describes the general structure in
two steps. First the ideal mned system equations are given.
Second, the acmal untuned system equations are given, with addi-
tional nonparametric uncertainty included. Section IV containg a
single derivation of the parameter estimation problem, valid for all
systems representable by the general structure. The resulting stan-
dard linear error equation mates well with conventional estimation
algorithms, such as recursive least-squares. With noaparamewric
uncerminty included, the estimation problem corresponds exactly o
that addressed by the robust parameter adjustment theory of (4],
2]. Section IV provides special cases of the plant, control, and
. geal-equations. -

IL NOTATION AND DEFINITIONS

A. Notation

Due to the nonlinear and time-varying nature of adaptive con-
trol systems, it is necessary to perform the system analysis in the
time domain. However, Laplace representations of Linear Time-
Invariant (LTI) operators are convenient Thus, throughout the
paper, signals are time-domain quanities and all operations are
time domain operations. Thus, even if an operator T is descibed
in the Laplace domain, when applied o an input &, as in y = Tu,
it is to be understood as a time domain convolution operation.

For a polynomial

G(s)=gus" + g, 45" 1+ - 43, ¢}

the underscore denotes the vector of coefficients, that is,

£
G=|5] @
g0

When & polynomial coefficient vector such as G is used in an
equaton requiring a vector of larger dimension, G should be
understood to include additional zero coefficients corresponding to
higher powers of s:

G(s)=0s"* + .- +80 3
Similarly, the symbol ( denotes a zero vector of whatever dimen-
sion is appropriate.

An overbar denotes the Toeplitz matrix

. +0.S""+8.3"+ PR

Go o
0Gg O
G=1lo00..:1] )}
P00
00 ¢

The number of columns is determined by the context in which the
matrix appears.

I denotes an identity mawix of whatever dimension is
sppropriate. Superscript T denotes transposition.
B. Regression Vector Construction

The regression vector construction is shown graphically in
Figure 1. In the Figure, up and yp denote, respectively, the input

and output of an n** order SISO plant. The signal r is the exo-
genous comxmnand input.

o[
r .

up yD

0 }
rcomnm o  PLANT :E.. »
-
. 2 ) _

Figure 1

Regression Vector Construction
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Let A(s) be any chosen Hurwiz polynomial of degree
N 2 n, and define

Fo 0 0
Fo:= R F = g ’;o: ®
0
wy =Foup, wy =Foyp, w,:=Fy ©
—— wl u’
w, r

The signal w(t) will be called the “regression vector.”
IIL GENERAL ADAPTIVE CONTROL STRUCTURE

A. ldeal Tuned System

In the analysis of the actual adaptive system, it is useful to
compare its behavior with that of a hypothetical "ideal tuned sys-
tem.” By “ideal,” we mean a system without nonparametric uncer-
tainty. By “tuned,” we mean a system with the controller gaing
initalized so as to achieve the specified goal for the particular
plant.

In this subsection, we briefly state the general structure as it
applies to the ideal wned system.

1. The Three Structure Equations
The tuned ideal system is described by

Plani: ©fqw* =0 (8a)
Control: ©fw* =0 (8b)
Goal: OLw* =0 (&)
where
©po = 6p;+Cp8)p E0)]
6co = ¢ 1+CcOp 9b)
6o = 81+Cc6p 9¢)

Here w* is the regression vector which would be produced by the
ideal tuned system (given 1), 6p;, O¢,, and 6, are all known
constant vectors, and Cp, Co. and C; are all known constant
matrices. 6, is the vector of unknown plant parameters, which
can have smaller dimension that the total plant parameter vector
Op, (that is, Cp can be nonsquare). We have chosen w0 allow the
goal to be plant-dependent, as shown in equation (9¢).

Remark: Equation (92) is chosen t0 have the form above for
flexibility in representing the location of uncertain parameters
within the plant dynamics, and (9c) is chosen for flexibility in
specifying the goal. Any value for 8p,, Cp, 65,, and C; is
sllowed. However, (9b) is not a matter of choice; the form of (9b)
and the values of 8., and C are determined by (92) and (S¢), as
will be shown later (Theorem 1).

2. Interrelationship Between Plant, Control, and Goal

Underlying the notion of "tuned” system is the understanding
that the plant equation and the control equation together imply
achievement of the goal, without any other assumptions regarding
the excitation. This may be stated more precisely. The Laplace
_transform domain is appropriate for this LTI interrelationship.

Coansider the scalar field S = ( scalar convolution kemels
having a rational Laplace transfrom representation ), and let scalar
multiplication be coavolution in the time domain. Let X be the
linear space over S of all triplets {up, yp. 7} such that each is a
Lebesgue-measurable function.

The plant constraint (8a) is
up
8fF |y | =o0. (10a)
L r P
The control constraint (8b) is
“p
olFly =0 (10b)

" |
It is necessary that, together, (10a) and (10b) imply the goal

up
foF |y |=0

r

(10c)

without any further restrictions on {up.yp.r) € X.

Note that (102) and (10b) are each a linear constraint on X
over S, which together must imply the third linear constraint (10c).
That is, the third constraint lies in the subspace spanned by the
first two, hence there must exist scalars d, b € S such that

dOfoF +bOLF = OFF. a1

Viewed in the Laplace transform domain, (11) is an equality
of rational transfer function vectors. The denomunators of the
transforms of d and b can be cleared to yield

a®foF + bOLF = cOLF (12)
for some polynomials g, b, and ¢.

An immediate consequence is the following theorem.

Theorem 1 : Given the plant and goal parameterizations (9a) and
(9¢), the interrelationship requirement (12) implies (9b) with

Ocy = BTBY 157 (48, + 95,)
Cc = GTBY BT (AT, + &;)
where @, b, & are Toeplitx matrices corresponding to the polyno-
mials a, b, ¢ of (12).

The appendix contains a proof.

Remark: Theorem 1 shows precisely how the location of the
plant parameter uncertainty within the plant dynamics (9a) and the
structure of the dependence of the goal on the uncertain plant
parameters (9¢) determine the structure of the conwmoller. The
adjustable coatrol coefficients must be located so as to be
equivalent to (9b) with the known pans given by Theorem 1. For-
mally, the adjustable controller coefficients 6 must be such that
there exists a mapping O from the 6, space onto the 8, space
(6p = Q(B8,), where all ©p are reachable by choice of 6c).
(For uniqueness of the controller gains in the ideal case, the map
@ must also be invertible.) Furthermore, the controller parameteri-
ztion must be equivalent to

©f, + 02O ChHw =0 (13)
where the values of 8¢, and C are given by Theorem 1.
Another consequence of (12) is the following theorem.

Theorem 2 : The interrelationship equation (12) implies
aCfF + bCLF = cCLF
The appendix contains a proof.
Je




Theorem 2 provides another inerelationship expression,
derived from the first, which will be useful later in the derivation
of the stability analysis setting,

Returning now to (12), one can also deduce the following.
Let p be any Hurwitz polynomial of sufficientdy high degree that

‘=alp (14a)
b’ =bip (14b)
c’=clp (14¢c)
are all proper. Then (12) implies that
a'®fow +b0Lgw = c'8Lyw (152)

[}
forw = F[y ]und any u,y, r (which need not satisfy (8a.b.c)).
r

B. Actual (nonideal) System

In the actual system, the controller gains are not necessarily
tuned; incomplete prior knowledge of the plant parameters prevents
inital perfect mning. Furhermore, the plant may contain non-
parametric uncertainty, which was neglected for the idealized sys-
tem.

1. Three Structure Equations

The actual system is described by
Plani: OFfw =d = Av (168)
Control: 6fgw =0 (16b)
Goal: 6fgw = ¢, (16c)

where 6 is a constant vector, 8¢ is the time-varying estimate of
the desired parameter vector ©¢g, 8gg is a possibly-time-varying
parameter describing the plant-dependent goal, and w is the regres-
sion vector produced by the actual system. It is assumed that v is
known (constructable) given w, and that A is an unknown dynami-
cal operator, constituting nonparametric plant uncerainty.

As in the case of the ideal system, the parameter vectors of
equations (16) can be described in terms of their known and unk-
nown parts:

9,;0 = 9,, I*Cp 6, (17a)
eco(t) = ec 1+Cc Op ) (17b)
ec;o(l) = GG I+CG 6’ ) (17¢)

Here 6p (1) is the plant parameter estimase corresponding to the
adjustable controlier parameters. When the controller paramesers
are identified directly (direct adaptive control), the plant parameter
estimate 8p(z) is implicit; the adaptive system might not solve for
8p., but Bcq(r) of equation (16b) must still satisfy (17b) for some
8p (1), at each time 1.

2. Construction of the Plant Input

The actual system is the system one implements, as opposed
1o the conceptual ideal systemn described earlier. Here we expli-
citly state the plant input definition which is implicit in (16b), so
that the control law impiemeatation is apparent. We also introduce
the final constraint on the stuctures we address, namely that the
plant input be properly defined by (16b). This constraint is noth-
ing more than the always-present requirement that a controller
implementation does not invoive the comstruction of improper
transfer functions or the closing of ill-posed loops.

First let us consider the special case in which the first element
of the vector 6. is never zero. Later we will transform & more

—general case inw the form of this special case.

Let the filter F of equation (5) be factored into a stnctly
proper part Fp and 2 real gain matrix D:

F=Fp+D 18)
Then
Fpup | |Dup D
w=lw |+10 l=w+ |0]u (19)
w, 0 0
D
8fgw =0 is equivalent o 8fowp + 68510 |up = 0. 20)
0

For notational convenience, denote the time-varying real scalar c,

D
OZo 0= Cy-
0
The scalar ¢, is nonzero by the assumption that the leading
coefficient of Ogp is nonzero. It follows from (20) that up is
well-defined by

2n

8Zgwp
&
Equations (21) and (22) shouid be used in implemenring the adap-

tive controller, although we will continue to use the equivalent
equation (16b) for analysis purposes.

The above derivation of the plant input involved the special
case where the first element of 8 is known to be non-zero. We
now show how other cases can be transformed into this special
case.

Note that all control laws of the form

Up =

22)

ofow =0 3)
are representations of the equation
K K K
~Lyp -2y, -2r=0 24)

A A A

where K; are arbitrary polynomials in 5, and the transfer functons
are proper. That is, equation (24) is equivalent to

(kT + X7 + XTw =0 @5)
As explained in the section on Notation, a coeffiecient vector
representing a polynomial can have leading zero coefficients for
compatibility of dimensions. As a consequence, the K; of (25) can
have leading coefficients which are zero, in general.

Note that for constant parameters, (24) is equivalent to

K, K3
Up = T('l‘)'r + ;T’ (26)

In non-adaptive control, the control law (26) can be imple-
mented only if the degree of K, is at least as great as the degree
of X3 and K3 We require that for 6o frozen at any insant in
time, the resulting LTI control law corresponds to (26) with the
degree of K, always n,, and the degree of K, and Ky always
S n), with n; arbitrary but independent of time.

Let A, be a polynomial such that the degree of X |A; equals
N, the degree of A (equation (5). Then the conwmol law (26) is
equivalent to

KAy KAy KA
A PTTAPTTA
which in wrn is equivalent to
3e

0 Qn




AT 0 ©
(k] 1+ -k 1+ -kT1]0 AT o fw=0 @B

0 0 A
Now, for compasibility of dimensions in the above matrix multipli-
cations, no zeros are augmented to the K, vector. That is, the first

coefficient of K, is nonzero by the assumption on the degree of
the product K)A,.

Allowing the coefficients of the K; of (28) 1 be adjustable,
one obtains an adjustable coatroller parametesization. Defining

K, AT 0 o
Onw = | K2 [+ Waew =0 AT 0 |w, 29
- K3 0 0 A

one finds that equation (28) is 81 wu,, = 0. with the coefficient
vector having a nonzero leading coefficient. As a consequence, the
carlier technique for explicitly solving for up (culminating in equa-
tion (22)) applies.

3. Summary

The class of systems we are addressing are all those which,

under idealizing approximations, can be represented by (8a,b.c)
and (9a,c), and in actuality can be represented by (16a,b.c) and
(17a,c). Two other minor (but important) requirements are added:
(1) For an adaptive system to make sense, the goal must be reach-
able by suitable choice of the controller parameters. This is the
interrelationship requirement, which was shown to be equivalent to
a linear constraint, which in turn leads to the requirement that the
conwoller be equivalent to (9b) and (17b).
(2) For an adaptive system to be implementable, the implicit
definition of the plant input in (17b) must be obtainable with an
explicit construction involving only proper transfer functions. This
is not a limitation of our represenmtion; it is a basic requirement of
all control systems.

IV. DERIVATION OF THE IDENTIFICATION SETTING

In this section. a certain error signal is defined in the same
general terms as the general structure. This error signal is con-
structable in real time using known quantities, and captures the
parareter error information in precisely the form required by the
robust identificarion theory of [4], [2], and (3].

Let f;,i=1,2,...,M be any M userchosen stable LTI
filters, and recall the definitions of a’, b’, ¢’ from equation (14).
For each filter f;, one can construct the signal

e = 0lg(~f:b'w)+ 0% o(f c'w). (30)
Let the parameter error be denoted by ¢p(t) = 0, (16,
where 8p is the (possibly implicit) plant parameter estimate.

Theorem 3 : ¢, = ¢fw;" +d;’

where w;" = f;(=0’CIw + c’CLw)
Mdj' ‘f‘a'd = A,‘a'v = AV.".

The appendix contains a proof.

In the above, ¢;’, w;’, and v;” are all constructable quantities.
The theorem states that the error signal ¢; is the product of the
unknown parameter vector and a8 known “regression vector® w;’,
plus 3 "noise” term. This is the setup of classical linear regression
theory, dating back to Gauss [1] and treated in depth for the so-
chastic noise case in modern textbooks, such as [9]. In our formu-
lation, d;’ is not characterized by a stochastic distribution. Instead,

we represent d;’ as L Lutput of an uncerain dynamical operator,
intended to capmure the nonparametric uncerainty of the plant
dynamics. Thi. class of uncerainty is addressed in the robust
parameter adjustment theory of {4], [2), and [3), which applies to
precisely the equations of Theorem 3.

While the identification problem has been derived for the gen-
eral structure, and given by equation (30) and Theorem 3 above,
the actual application and analysis of the robust identification
theory in the context of the general structure has not yet been per-
formed.

V. SPECIAL CASES

A. Plant Equation

The general structure equations include the plant equations
(82), (92) for the ideal tuned case, and (16a) and (17a) for the
nonideal case. These descriptions include, as a special case, the
conventional polynomial coefficieat uncertainty addressed by most
adaptive control theory, as well as a broad class of other plants not
previously addressed, as the following examples illustrate.

1. Common Exampie
Consider
Np
yp = [B’-]up. 31

where Np and Dp arc polynomials with unknown coefficients.
One can always choose one coefficient at will. For example, let us
choose the denominator polynomial to be monic (i.c.. leading
coefficient equals one). Then the polynomials are

Np =n 5™ +np_s™ 1+ ... 41y (32)
Dp =s™ +d,_s" '+ ... +d, (33)
where the n; and 4; are the unknown coefficients.

Choosing any Hurwitz polynomial A for the definidon of F
(equation (5)), one can rewrite (31) as

Np Dp
et e/ 0 (34)

which is equivalent to

+ ﬂy +...+d —l-y =0 35)
A P see o AP .

With the definition of w from (7), (35) is

©f, +6fChw =0 (36a)

6},={00..010..0] (36b)

8l :=(-n, =np_y...=ng dy_, ... dg1] (36¢c)
- [or000

cf = [ooozo : (36d)

for 0 and / matrices of the appropriate dimension.

Thus the most commonly studied case of a transfer function
with unknown polynomial coefficients falls within the general
structure representation, using an appropriate choice of 6p,, 6p,
and Cp.

2. Common Example Plus Stable Factor Perturbation
Consider the plant

-1
D N,
Y, = [—AL + A,w,] [—AL + A,w,] an




Note that with Ay = Ay = 0, this plant is u« same as that of equa-
tdon (31). Alternatively, one can allow A; and A, 0 represent
additional nonparametric uncertainty, in recognition of the fact that
parametric descriptions never exactly capture the input/output
behavior of physical systems.

Now, denoting

Wy 0 ][,
Y=o -wail»
A=[4 4) (39

and repeating the algebraic derivation for the common example
above, one obuins

(38)

(GI, + GICI)W = Av (40)

with the same definitions of ©p,, Op, and Cp as in (36). Thus s
plant with numerator and denominator polynomial coefficient
uncertainty and 8 nonparametric stable factor perturbation can be
represented within the general structure.

3. More General Example

The above parametric uncenasinty corresponds to complete
pole and zero uncertainty, This high degree of uncertinty is fre-
quently conservative; plant uncertainty often admits a lower-degree
parameterization. Fortunately, the general structure allows for
reduced uncertainty order. For example, consider the parameteri-
zation illustrated in Figure 2. In the figure,

My(s) Myx(s)
1) = | Myi(s) Mag(s)

is a known, swuble, proper, linear tme-invariant transfer function
matrix. The parameter vector ©p in this figure can have fewer ele-
ments than the corresponding vector in (36).

3s)

f e, o
Fiqure 2

Plant Parameterization

l..emma 1 : Without loss of generality, we may assume that
M3} is suable and proper. (Proof ‘n appendix.)

Now, through some algebraic manipulation, we get
MM M3l
[ f ] . aMy 2 [ up
4 - -
-MuMiMn MyM3 | LOP
Extracting a common denominator, A, yields
Ny Ny

HE ; !;l[;:] “3)

]. (42)

A A

Letting J;; denot¢ the suitably arranged matrix of coefficients of
the numerator polynomials, f = 8¢ (from Figure 2) yields

ayf, ¥ o1+0f(nl, 8L opw =0 (44)

This corresponds to the general structure equation (8a) and
(9a). Here the choices of ©p; and Cp are shown explicitly. The

—

dimension of the unceruain vector O, is reduced by the presence
of the known matrix Cp, which is calculated from the interconnec-
tion structure M.

The plant parameterization of Figure 2 includes, as a special
case, the complete parampeter uncertainty of (36), by choosing

o 0 o Fo s
n= » My = v My=1l, Mp=0. (45
Fo 0

As the above example illustrates, the general structure
includes a broad class of systems with parametric uncerainty
embedded within the dynamics of the system in a more compli-
cated fashion than the commonly studied polynomial-coefficient-
uncertainty case.

4. More General Example Plus Nonp«rametric Perturba-
tion
Consider the system of Figure 3 , with
rMn My
Mz‘ IMZI Mn (46)

My My

* T
e ‘
If'. P g

M2
Yp >Yp

Figure 3
Plant Parameterization with Perturbation

Through some algebraic manipulation, one obtains

s -M3{M3, M3
[5 ] = | My - M M35iM3; M M3 [1;: ]
Mp - MMMy MyMs)
[ ¥, M
A A
A A b/
N, N
A A
Applying this 1o f = 8fg + Av (from Figure 3) yields
anf, 8L or1+ef(al, ML opw=av 49

where v is a constructable quantity. Equation (49) is equivalent to
the general stucture equations (16a) and (9a). Thus any system
containing uncertain parameters and nonparametric uncertainty
inserconnected in the fairly general manner shown in Figure 3 can
be represented by the general structure equatons.

“n

48)

Se
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B. Controlier Equation
This section contains a discussion of the flexibility afforded
by the controller equation (8b) and (16b).

The flexibility in defining the plant input by (16b) can be
seen by noting that

up = Lup = (AT 1 OF 1O W,

(the last equality is due to equations (5) through (7)), so that equa-
tion (16b) defines up to be

up = [OZoHA’ Lo Q’l]w. 1)

Thus by selecting the value of 8., one is designing the feedback
gains (modulo a simpie known translation of coordinates) from the
signal vector w to the plant input.

The signal w coantains N smoothed derivatives of the plant
input and output, and the command input. This allows the con-
troller considerable freedom. In standard model reference control
structures (for example, [8]), the controller feeds back smoothed
derivatives of the plant input and output, and, in our notation, a
constrained combination of elements of w,, namely

kATw, (52

where k is the adjustable gain. Thus the controller gain placement
of (8] is a special case of (16b) of the general structure.

Another special case is the adaptive state feedback controller
of [6]. There, in the implementation of the adjustable feedback
controller, the plant input is defined to be an adjustable parameter
vector times smoothed derivatives of the plant input and output
plus, again, a constrained combination of the elements of w,.
Thus state feedback control structures are a special case of the
general structure control equation.

The general structure equation also offers additional flexibility
not afforded by the special cases mentioned above. In the general
structure, the gains associated with the elements of w, need not be
constrained to allow only a single parametric degree of freedom, as
in (52). Instead, a command-shaping filter may be adaptively
designed.

Concrete examples of controller equations will also appear in
the following section, in conjunction with examples of goal equa-
tions.

(50

C. Goal Equation

The general structure equations include the goal equations
(8¢c), (9¢) for the ideal tuned case, and (16¢) and (17¢) for the
nonideal case. These descriptions include, as a special case, the
conventional mode! following goal, as well as unconveational
goals in adaptive control, such as loop shaping. This is illustrated
by the following examples.

1. Mode! Following

The goal of mode! reference adaptive control is to have the
plant output y, respond to commands r as a chosen reference
model would respond, that is, to achieve

Ny
- —_
where Ny, and D,, are chosen mode! polynomials of degree m
and n, respectively, where m and n are the degices of the plant
numerator and denominator polynomials. The above is equivalent
to

(53)

D N

A A
which in turn is equivalenat to the goal equation

(54)

T R R R R R R R RIS =,

(0 2k Nfw=0 (55)

An interesting alternstive (for reasons to be seen later) is the
following. Let Ny be a chosen Hurwitz polynomial of the form

NxGs) = ”xa-n-l-'.-.-l + "xa-a-t‘.-..z +...+1 (56)

with all of the coefficients n,; allowed to be arbitrarily smail.
Then Ny is approximately equal to 1 except at high frequencies,
and in fact for the case of relative degree one plants (n—m = 1),
Ny is exactly equal to 1 at all frequencies. Consider now the
approximate model matching goal
Ny

—————
Dy + (Ny-1)Dp
where the idealized plant is assumed to be given by equation (31).
With some prior knowiedge of the maximum magnitude of Dp (s),
Ny can be chosen sufficiently close to 1 so that the response of yp
mruusenﬁnﬂyequﬂwdlcmoddmponuwerauﬁequencies
of interest.

It can be verified that the closed loop response of equation
(57) is achieved if and only if

Ny Dp - Dy

Yp = (57

u +
p = NNy r Nyl Yp (58)
which in turn is equivalent to
NpNy A, Ny A, (Dp + Dy)A,
A up - Ty r+ Y Yp = 0 59

where A, as a degree-one factor of A, A is chosen 1o have degree
N = n, and (without loss of generality) Dp and D, arc assumed
to be monic. Recalling equation (34) for the idealized plant, (59)
is equivaient to

Np(Nx-l) N" -Dp + Dy

A #TRAT*—ax »=0 ©@
which in tumn is equivalent to

( N g7 | -pF+DL | WL w=0. (6
with overbar denoting a Toeplitz matrix as described in the section
on notation. This, then, may be taken as the goal equation
Géow = 0.

The reason that (61) is an interesting altemative to (55) is that
the scalars a, b, ¢ relating the plant, control, and goal equatons in
equation (12) are @ = ¢ = A}, b = 1. This can be seen by noting
that the ideal plant corresponds to the one-by-three transfer func-
tion matrix

8fF = [—‘N—’ 0 ] (62)

and the tuned controller equation (59) corresponds 1o the transfer
function matrix

£
A

NpNy A (=Dp + Dy)A -NyA
T pIVx Hy p M M
6Cof = [ A A
and the goal equation (61) corresponds to the tmansfer function
matrix

] (63)

Np(Ng=D) Dy ‘NM] "

6501" [ A A

Equation (12) follows, witha =¢c = A}, b = 1.

The utility of @ = ¢ = A}, b =1 is twofold. First, these
scalars are independent of the unknown plant parameters and are
thus known g priori. This is important in the set-up of the
identification problem with nonparametric dynamics present, as can
be seen from the conswuction of e¢; (equation (30)) and w;’
(Theorem 3). Second, the simple values of a, b,c lead o0 a
simplification of the expressions in Theorem | and Theorem 3.

be




" Engineering remarks: For all res! sysiems, unmodeled
"dymamics make the control of high frequ behavior impossible.
Thus the above low frequency approximanon to model following
does not actually represent a degradation in model following per-
formance, in a practical sense. Moreover, at those frequencies
where Ny is not equal 1o 1, the presence of Ny gives the feedback
loop added rolloff (compared to Ny = 1), which improves the
high-frequency robustness margins.

Theoretical remarks: The theoretical purest may achieve Ny
equal to0 1, and simultancously achievea =c = A, and b = 1 by
simply always assuming the plant to be relative degree 1. The
weighting function on the nonparametric dynamics (W, of equation
(37)) can be chosen such that the assumption that Np has degree
n-1 is always valid 10 within the tolerances allowed by the non-
parametric dynamics.

—2. Loop Shaping

Consider again the ideal plant of equation (31). Suppose that

the denominator polynomial can be factored into

Dp = Dp\Dp, (65)
where Dp, is Hurwitz. Assume also that the numerator Np is
Hurwitz (right-haif-plane zeros of the actual (nonideal) plant must

be absorbed into the nonparametric unceruinty). Let A of equs-
tion (5) be represented in factored form as

A=AA (66)
where A, has degree N-m and A, has degree m (recall N 2 n).
Consider the following loop shape:
1
= . (66)
DpaA;

In the above, the classical convention of negative feedback has
been used, that is, a negative sign is omitted from the loop gain in
representing the loop shape. The above loop shape can be
obtained by the control law

up = 22 (roy,) )
NpA, 7P
which is equivalent to
NpA, Dp, Dp,

Al - =0 (68)

which is equivalent to
(MR AT 1 DFy 1 -Rfy 1w =0, 69

This, then, may be taken as the tuned coatroller equation.
Application of the control law (67) produces a response
yp = S B ao0)
P T DpaAy+1 T DpAy+ Dy,

which is equivalent to

(0" 1 DPAJ+Dpy 1 -0 W =0 an

This, then, may be taken as the goal equation.

Following steps analogous to those of equations (62) through
(64), one finds that the intwerrelationship equation (12) is satisfied
using known scalar polynomials:

a= Az
b =1
c =1

Remark 1: Xfthcplmushwwntobcopenloopmblc.lhe
plant denominator can be partitioned into Dp, = Dp, Dp, = 1, in
which case the tuned closed loop response is

> 1

r " A+l @3

72)

1 —

which is known a priori. Aliernatvely, if the plant is not sable
but the poles of Dp, known (10 within the tolerance ailowed
by nonparametric uncertainty), then the ideal tuned command
response is again known g priori (equation (70)). Finally, if the
poles which are not 10 be cancelled are not known well a priori,
then the tuned system command response is also not known well a
priori.

Remark 2: The loop shape reveals several imporant proper-
ties of a conuol sysiem. A large loop gain (compared to 1) at low
frequencies results in insensitivity to disturbances and non-
parametric plant dynamics. A small loop gain (compared to 1) at
high frequencies resuits in good robustness margins, allowing large
nonparametric plant dynamics at these frequencies. Where the
loop gain is near 1, a loop phase lag much less than 180 degrees
results in good damping, proper transient response, and robustness
o small nonparametric plant dynamics. Consequently, an on-line
adaptive design of a preselected loop shape may prove practcally
desirable in some cases.

VL CONCLUSIONS

This paper has presented a general adaptive control structure
which provides flexibility. For example, the plant parameter
uncertainty can be imbedded in the plant dynamics to reflect the
physical source of the uncertainty as understood by the control sys-
tem engineer. Likewise, there is flexibility in defining the goal of
the adaptation, with loop-shaping and model-reference goals being
among the alternatives.

As theoretical progress is made in robust stability and perfor-
mance analysis of adaptive control systems, those results posed in
the framework of the general structure of this paper will inherit its
degree of validity and applicability.

The convenience of a single simple representation for a broad
class of adaptive systems aiso provides us with a new opportunity:
we can now address "best structure” issues. Adaptive control
theoreticians can proceed to formulate various performence objec-
tives, and seek the particular adaptive system structure within the
general stucture representation which best accomplishes the objec-
tive. In effect, we have taken the first step in optimizing over the
set of alternative structures; we have defined the set of alternatives
in a simple and explicit fashion.
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APPENDIX

Proof of Lemma 1: One can factor My (s) into
(H(sYG(s ))M,,(s) where H (s) contains the nght-half-plnne zeros
of M4(s), G(s) is Hurwitz, G/H is proper, msz, is stable and
proper. Then defining f,.., = (H/G)f . Znew = (H/G)g, one

obtains
[gm [Mn (H’G)Mlz]

yp My Mp rew = OF e

Proof of Theorem 1:
Equating the numerator coefficients of (12), one obtains the
following real-coefficient equaltiy:
6'9,0 + b—eco = mco. (74)
Expanding this in terms of the tuned plant and goal parameteriza-
dons of equation (9) yields

2!'(9,,+Cp8,)+t79co-é'(96, #Caep)to. as)

Te




S e ——

Ty .

‘The least-squares solution for O is
Oco = (BTHY BT [(-a'e,,+tea,)+(-ac, +&;)8p ] 76)

For O¢c¢ = O¢) + Cc8p (equation (9)) to be cousistent with (76)
for fixed O, and C¢, irrespective of the value of 8,, it is neces-
arythnthemsqulmsolunonbemmsolunon.mdm
(equating (9) w (76))

8¢, = (BTBY 15T (~78p, + T8;)) an
Ce = BT 5) BT (~&Cp + &) 78)

which is the statement of the theorem. Added remark: the least
squares solution for the ideal tuned controller must exactly solve
(75). Thus, substituting the solution for @ into (75), and requir-
ing the equation to be valid for all ©,, one obtains

— b@THY BT @Oy, + TO;)) = @6, + FO;) 9

5GT5) 57 (@Cp + &g) = @Cp + &p) (sg) |

Proof of Theovem 2: the equality (12) is valid as ©p varies.

Therefore, equating partial derivatives (with respect to each ele- '

ment of 6, ) of each side yields the theorem.

a]
Proof of Theorem 3: Let
éco =8¢0 =~ Oco = Ccép (81)
960 :=6g0 = Ogo = Cép 82)
wiEw—w (83)
Equations (8a) and (16a) imply @fow = d. (84)
Equations (81) and (16b) imply ©fow + ¢ow = 0. (85)
Equations (8b) and (85) imply 8w + ¢Low = 0. (86)
Equation (16¢) implies 6Zqw + ¢Zow = e, 87
Equarions (8c) and (87) imply 8Fgw + 0w = ¢q (88)
Multiplying (88) by ¢’ from (14c) yields
c'Ofw +cofow = c’e,. (89)
Note that
ép
wa=Flyp

where i p = up—u*p, ¥ p = yp=y*p. r =r-r*(=0), so equa-
tion (15) applies to w . Therefore, applying (15) to the first term
of (89) yields

a'e’row- + b'eE.oH; + C'Ozow = Cleo. (%)
Applying (84) and (86) to (90) yields
a’'d -b'ofogw + c’ofow = c’eq. o1)

The usual error augmentation ([7], [5]) is based on the manipula-
ton: féw = fOw - fOw = fBw - Ofw (since constants com-
mute with LTI filters), hence f éw+8fw—f 6w = ¢f 0 where the
left hand side of this last expression is the "augmented” version of
féw. Now, incorporating the filter f; and applying the usual
error augmentation procedure above t0 move the time varying
quantities ¢cq and &5q to the left of the scalar transfer functions,
(91) becomes

fic'eq+ 00o(=f b'w) + b (8 qw) + 8 o(fcw) = £~ (8f qw)
= 97 (~f;b°CIw + fic’CLw). ©2)
Now 8lqw = ey from (16a) leads to a cancellation of two terms
on the left hand side of (92). 8fow = 0 from equation (16b)

causes another term to drop out. The result is the statement of the
Theorem, which was 10 be proved. o
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