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A GENERAL ADAPTIVE CONTROL STRUCTURE

James M. Krause and Gunter Stein

Honeywel Systems and Research Center
Minneapolis, Minnesota 55418

ABSTRACT IL NOTATION AND DEFINITONS
A general adaptive control structure is given which provides

flexibility in defining the plant and sontroller p&-arainetiflons, A. Notation
and the goal of the adaptation. A Vpecial case is eanventiooal
model reference adaptive control with independent uncertainty in Due to the nonlinear and time-varying nature of adaptive con-

all of the plant transfer function coefficients, although a much trol systems. it is necessary to perform the system analysis in the
bro1 class of systems can be repm ented. A single derivation time domain. However, Laplace representations of Linear Time-

of the error equations for paramew estimation purposes is pm- Invariant (LTI) operators are convenient. Thus, throughout the
vided, and is valid for the entire class of systems. The form of the paper, signals an time-domain quanities and all operations are
resulting ew equations is ap e for application Of commo time domain operations. Thus, even if an operator T is describedpwriesig estimaon echis pprin the a tplace domain, when appied t an input u, as in y = Tu,
pminameer ettmaxiit t e it is to be understood as a time domain convolution operation.

L INTRODUCTION For a polynomial

An adaptive control structure is the collection of (1) a plant G(s) = g.s" + g._ISM-1 + • + go. (1)
description containing uncertain pmameters, (2) a controller the underscore denotes the vector of coefficients, that is,
description containing adjustable parameters, and (3) a design rule
or "goal" which maps plant parameters into controller parameters. [:n

This paper presents a general adaptive control structure in an ign-I
especially simple form. Each of the three system elements (plant = (2)
control, goal) is represented by a linear equation. A linear con- [ g'o
sn'aint assures that the goal is reachable for all possible values of When a polynomial coefficient vector such as C is used in an
the plant parameters, by suitable choice of the controller parame- equation requiring a vector of larger dimension, C should be
ters. A standard linea parameter estimation problem results for all understood to include additional zero coefficients corresponding to
represented systems, forming an interface to common parameter higher powers of s:
adjusment mechanisms.

In spite of its simplicity, the representation of this paper is (s) = Osm  + + Os" ' + s" + + • + So (3)
flexible. Specifically: Similarly, the symbol 0 denotes a zero vector of whatever dimen-
(A) The representation provides significant fteedom in specifying sion is appropriate.
the location of the plant's uncertain parameters. A special case of An overbar denotes the Toeplitz matrix
the representation is the frequently-studied case of independent Cr 0
uncertainty in all of the plant transfer fuction polynomial 0
coefficients. However, mre generality is allowed here. The unk- 0 0
nown parameters may be imbedded in the plant dynamics, and the G = 00 ... (4)

number of unknown parameters need not correspond to the order 0
of the plant transfer function. Nonparametnic (unstructured) 0 0
ucetainty is allowed s wel. The number of columns is determined by the context in which the

(B) The representation provides significant freedom in specifying matrix appears.
the goal of adaptation. The much-studied case of model reference I denotes an identity matx of whatever dimension is
adaptive control is supppo" as well as loop-shaping adaptive appropriate Superscrpt T denotes unsposition.
control, and a host of other yet-unexplored alternatives.

The flexibility afforded by the general smcture representation B. Iermio Vector suctir
should prove to be important in the developement of adaptive con-
trol strctres with desirable tuned system performance and robust. The regression vector consicnon is shown gaphically in
ness properties. A single convenient representation for a brad Figure 1. n the Figur, Up and y denote, rspectively, the input
class of systems should expedite the comparison of alternave andoutputof essoerSlSOplant. Thesignair istheexo-
structures. gous command input.

The organization of the paper is as follows. Section Ul pm-
vides; some nouition Section MI describes the general stucture in F0 T
two steps. First the ideal tuned system equations am given. r uSecond, the actual untuned system equations am given, with adi. cONTm PLAN
tional nonparametric uncertainty included. Section IV contains a
single derivation of the parameter estimation problem, valid for all
systems ' esentable by the general structure. The resulting stan -
dard linear error equation mates well with conventional estimation i v
algorithms, such as recursive least-squares. With nonperamntic
uncertainty included, the estimatim problem corresponds exacly to Figure 1
that addressed by the robust parameter adjustment theory of 141,
[21. Section IV provides special cases of the plant. control, and Regression Vector Construction
m-equa4PA /3



Let A(s) be any chosen Hurwitz polynomial of degree Consider the acalar field S sdaca convolution kernels
N X. and define .having a nitional Laplac tranafron representation ), and let scalar

SN multiplication be convolution in the ante domain. Let X be the
SN-., linear spac ovar S of all triplets (up, yp. r) such that each is a
S Lebesgue-measurable function.

Q F0 1M plant constraint (11a) is
Fo= A(s) F: F0  (5) ' ls

L~ p Fi [P If 0

w. := Foup w, Fayp. w, :For (6) The control constaint (8b) is

- (I0Ob)

Wr r It is necessary that, together. (l0a) and (10b) imply the goal
The signal wQt) will be ale the"ereso vector."1

JIL GENERAL ADAPTVE CONTROL STRUCTURE 81 Y 00

A. Ideal Tuned System without any further restrictions on (up. yp.r ) a X.
In the analysis of the actual adaptive system it is useful to Note that (10a) and (10b) are each a linear constraint on X

compare its behavior with that of a hypothetical "ideal tuned sys. over S. which together must imply the third linear constraint (10c).
temn." By "ideal," we mean a system without nonparametric uncer. That is, the third constraint lies in the supspace spanned by the
tainty. By "tuned," we mean a system with the controller gaing first two, hence there must exist scalars d, b e S such that
initialized so as to achieve the specified goal for the particular deJ0i +~e =0O -e1W. 011)
plant.

In this subsection, we briefly state the general structure as it Viewed in the Laplace transform domain, (11) is an equality
applies to the ideal tuned system. of rational transfer function vectors. The denominators of the

transforms of d and b can be cleared to yield
1. The Three Structur'e Equtationis aeW; + b eJ - ce()JF (12)
The tuned ideal system is described by for some polynomials a.* b, and c.

PlaM: elo = 0 (8) An immediate consequence is t following theorem.
Control: eo.= 0 (9b)

Goal: 0w- (8c) Theorem I :Given the plant and goal paranteterizations (9a) and
Goa:ere~= (9c), the interrelationship requirement (12) implies (9b) with

whe-rer'7-rpi eGi

e9p 0=elop1+cpe(, ft cc - 'b'(-~~ + zcG)
co= e)C1+CC(e (9b) where X, b,. F are Toeplitx matrices corresponding to the polyno-

eGO -eG]4CG(e, (9c)l mials a.b, c of (12).

Here vw, is the regression vector which woul be prdue bydi The appendix contains a proof.
ideal tuned system (given r). e 1 e 1 ,and eJGl are all IMno Remark: Theorem 1 shows precisely how the location of the
constant vectors, and Cp. Cc. and CG ane all kniown constan plant parameter uncertainty within the plant dynamics (9a) and the
matrices. Op is the vector of unknown plant parameters, which mobiftue of the dependence of the goa on the uncertain plant
can have smaller dimension that the total plant parameter veco parameters (90) deteitniti the structure of the controller. The
e,0o (that is, Cp can be nonaquare). We have chosen to allow t adjustable control coefficients must be located so as to be
goal to be plant-decpendent, as shown in equation (9) equivalent to (9b) with the known parts given by Theorm 1. For-

Remark: Equation (9a) is chosen to have the form aborve fo mally, the adjustable controller coefficients 4)c must be such that
flexibility in representing the location of uncertain paramee there exist a Mapping Q from the 0C space onto the iep space
within the plant dynamics, and (9c) is chosen for flexiilty* ' (e, = Q (er). where all Op are reachable by choice of Oc).
specifying the goal. Any value for Op 1, Cp, 8G 1. and Ca ' (For uniqueness of the controller gains in the ideal case, the map

allowed. ~ ~ ~ ~ ~ ~ ~ ~ ~~i Hoevr (9)i o atro hie h ~ ~ ' must also be inivertible.) Furthermore, the controller parameteni-
andl the values of 19C and Cc are determined by (9a) and (9c),~ as inmseeqiaett
will be shown later (Theorem 1). (ell + Q(eoc)T )w - 0 (13)

2. Interrelationship Betwee Plant, Coubvi, wrd Ga where the values of 0e I and Cc are given by Theorem 1.
Another consequence of (12) is the following theorem.

Underlying the notion of "tuned" system is the voauusaing
that the plant equation and the control equation together imply Theorem 2 :The interrelationship equation (12) implies
achievement of the goal, without any other assumptions regarding aT CF-cJ
the excitation. This may be stated mere precisely. The Laplace a? ~F 4
transfom domain is appropriat for this Lii inserreladonahip. The appendix contain a proof.

.)e-



Theem 2 prwvides another inm elationsip e Let the filter F of equation (5) be factored into a nctly
derived from the first which will be useful later in the derivation proper por Fp and a real gaim mam D:
of the stability analysis setting. F = Fp + D (18)

Retuming now to (12), one can also deduce the following.
Let p be any Hurwitz polynomial of sufficiently high degree that Then

a'= =ap (14a) p u

b= hip (14b) W a - + 0 W p + 0 P(19)

c" = cip (14c) W1

are all proper. Then (12) implies that
a'ep'ow + b'e 0w = c'eGow (1Sa) O(w=oW 0 is equivalent to Oowp + 6o10o 0 = 0. (20)

F '~ 1For notational convenience, denote the time-varying real scalar c.
for w = F and any u, y, r (which need not satisfy (8a,b.c)). by

B. Actual (nouideal) System e10 . c'. (21)
In the actual system, the controller gains ame aot nsyosay Lo0

turied; incomplete prior knowledge of the plant parameters n The scalar C, is nonzero by te assmpon that the leading
initial perfect tuning. Furthermore, the plant may contain non-
parametric uncertainty, which was neglected for the idealized sys- coefficient of 0co is nonzero. It follows from (20) that Up is

well-defined by

1. Three Structure Equations Up (22)Ca'

The actual system is e d by Equations (21) and (22) should be used in implementing the adap-

Plant: eTOw = d = Av (16a) ive controller, although we will continue to use the equivalent

Control: Gl0w = 0 (16b) equation (16b) for analysis purposes.
Goal: elow = eo (16c) The above derivation of the plant input involved the special

caw where the first element of 9C0 is known to be non-zero. We
where eo is a constant vector, Oco is the time-varying estimate of now show how other cases can be transformed into this special
the desired parameter vector eco, OG0 is a possibly-time-varying case.
parameter describing the plant-dependent goal, and w is the regres- Note that all control laws of the form
sion vector produced by the actual sysm. It is assumed that v is O 0w = 0 (23)
known (constructable) given w, and that A is an unknown dynami-
cal operator, constituting nonparamen-ic plant uncertainty, ae representations of the equation

As in the case of the ideal system, the parameter vectors of K, K 2  K 3
equations (16) can be described in tams of their known and unk- -up - 7 yp - -Tr = 0 (24)
nown parts:

where K, are arbitrary polynomials in , and the transfer funcions
are proper. Thal is, equation (24) is equivalent to

eca(t) = e+ce(w) (17b) i .- I .- j w = 0. (25)

eGo(S) = eGI+CGeP(t) (17C) As explained in the section on Notation, a coeffiecient vector

Here Op(t) is the plant paramete estimm corresponding o the rqeesenting a polynomial can have leading zero coefficients for
adjustable controller parameters. When the controller parumes compatibility of dimensions. As a consequence, the &. of (25) can
are identified directly (direct adaptive control), the plant parameter have leading coefficients which am eo. in general.
estimate Op(t) is implicit; the adaptive system might not solve for Note that for constant parameters, (24) is equivalent to

p, but ec0(t) of equation (16b) must still satisfy (17b) for some K2 K3
ep (t), at each time r. up = yp + _ (26)

2. COMItructlo of the Plant Input In non-adaptive control, the control law (26) can be imple-
The actual system is the system one implements, as opposed mented only if the degree of K, is at least as reat as the degree

to the conceptual ideal system described earlier. Her we expli- of K 2 and K3 We require that for Oe frozen at any instant in
cidy state the plant input definition which is implicit in (16b), so time, the resultin; LTI control law corresponds to (26) with the
that the control law implementation is apparentL We also introduce degree of K, always n1, and the degree of K2 and K3 always
the final constraint on the structures we address, namely that the 5 n 1, with n I arbitrary but independent of time.
plant input be properly defined by (16b). This cottraint is noth-
ing more than the always-present requirement that a conroller Let A, be a polynomial such that the degree of K A, equals
implementation does not involve the constucton of i N, the degree of A (equation (5). Then the control law (26) is
transfer functions or the closing of ill-posed loop. equivalent to

First let us consider the special case in which the first element KIA K2A, K3A,
sf the vector ec 0 is never zero. Later we will mauform a more -u -A 0 (27)

.. weral cae in the form o this specia ase. which in tun is equivalent to



we I I u • d' as L utput of an uncertain dynamical operator,
0 0 intended to capture the nonparamet-ic uncertainty of the plant

T1 IT . (8 dynamics. Thi, class of uncertainty is addressed in the robust1 0 0 XT Pao - adjusmnt theory of [4], 12], and 131, which applies to
0 precisely the equations of Theorem 3.

While the identification problem has been derived for the gen-Now, for compatibility of dimensions in the above matrix multipli- oal strucuir, and given by equation (30) and Theorem 3 above,cations, no zeros are augmented to the K, vector. That is. the first ed cu angvnbyeaio(0)ndTorm3boe
coeffi.nt of n is noazen byt the ssumpton on the degree of the actual application and analysis of the robust identification
the de e KoAf. theory in the context of the general structure has not yet been per-

formed.
Allowing the coeficients of the of (28) to be adjusta),

one obtains an adjustable controles parameriation. Defining V. SPECIAL CASES

1 A 00 A. PlantEqatio
.- 2 - w..- 0X 0 W, (29) The g s equations ilude the plant eq s

-- [ [ 0 XTI (sa). (9a) for the ideal tuned case, and (160 and (17a) for the
nonideal case. These descriptions include. as a special case, the

one finds that equation (28) is Oew,.. =0, with the coffiet conventional polynomial coefficient uncertainty addressed by most
vector having a nonzero leading coeficient. As a consequence, the adaptive control theory, as well as a broad class of other plants not
earlier technique for explicitly solving for up (culminating in qua- previously addressed, as the following examples illustrate.

on (22)) applies. 1. Com.on Example

3. Summary Consider

The class of systems we are addressing are all those which, fl'_
under idealizing approximations, can be represented by (8a,b,c) Y, = Dp )uP (31)
and (9ac), and in actuality can be represented by (16ab,c) and
(17a,c). Two other minor (but important) requirements are added: where Np and Dp are polynomials with unknown coefficients.
(1) For an adaptive system to make sense, the goal must be reah- One can always choose one coefficient at will. For example, let us
able by suitable choice of the controller parameters. This is the choose the denominator polynomial to be monic (i.e., leading
interrelationship requiremnt, which was shown to be equivalent to coefficient equals one). Then the polynomials are
a linear constraint, which in turn leads to the requirement that the Np = nms' + n.-ts - + ... + n o  (32)
controUer be equivalent to (9b) and (17b).

(2) For an adaptive system to be implementable, the implicit
definition of the plant input in (17b) must be obtainable with an where the ni and di are the unknown coefficients.
explicit construction involving only proper transfer functions. This Choosing any Hurwitz polynomial A for the definition of F
is not a limitation of our representation; it is a basic requirement of (equation (5)), one can rewrite (31) as
all control systems. N u + D(

IV. DERIVATION OF THE IDENTIFICATION SETTING - - + yp = 0 (34)
In this section. a certain eror signal is defined in the same which is equivalent to

general term as the general struicture. This error signal is con-r 5  11 1
structable in real time using known quantities, and captures the - n, ,,u, - n,_-.1  - ... - no " ...
parameter error information in precisely the form required by the[ 4 0 (35

Let i, i = 1, 2, ... , M be any M user-chosen stable LTI + Y "Y = 0(
filters, and recall the definitions of a', b', c' from equation (14).
For each filter I, one can construct the signal With the definition of w from (7), (35) is

e, = e1o(-f b'wV + eo(f , c'w). (30) (eK + ec)w 0 0 (36a)

Let the parameter enor be denoted by #p(t) = Op(t)-Op, ell =[o 0 ... 0 1 0 ... 01 (36b)
where Op is the (possibly implicit) plant parameter estimate. := ( -n. -n,_ ... -n o d._] ... do ] (36c)

Theorem 3: e = Jwi ' + di' CVI:= 0 10 0 " (36d)

where wi ' - i (-b'Clw + c'Cjw) for 0 and I matrices of the appropriate dimension.

and d1' - f a'd = Af, av a Av='. Thus the most commonly studied case of a transfer function
with unknown polynomial coefficients falls within the general

The appendix contains a proof. structure representation, using an appropiate choice of 8 pl, O,
In the above, ei', w5', and v i ' am all constructable quantities, and Cp.

The theorem stas that the error signal ei is the product of the
unknown parameter vector and a known "regression v w w,. 2. Common Example Plus Stable Factor Perturbation
plus a "noise" term. This is the setup of classical linear reHo ssio Consider the plant
theory, daing back t Gauss [1] and treatd in depth fr to- _]-'[rN 1
chastic noble canz in modem txdxob such as [9). In our foru- Ae A & + AlWl (37)
lation, di' is not characterized by a stochastic distribution. Instead.

chastic~~~~~~~~~~~~~ noseaei adr etoos nha 9.I wftnn - w ~L+ W



NoWe dot with Al - 62 - 0. this plant is taw sau tatia of aqua dimension of the uncertaizi vector 01, is reduced by the presence
tion (31). Alternatively, one can allow A, and A2 to represent of the known matrifx C . which is calculated from the interconnec-
additional noupfalenic Uncertainty. mn recognition of die fact diat non structure M.
parametric descriptions never exactly capture the ,iput/outpuzt The plant parameterization of Figure 2 includes, as a special
behavior of phsia sytes case, the complete parater uncertainty of (36), by choosing

Now, denoting = 2[Y (38) Ml - [a ], M 12= [FO 1, M2 1 = , M2=O.' (45)

A-I A, 1&2] (39) As the above example illustrates, die general structure
and repeating the algebraic derivation for the cosmmon example includes a broad class of systems with parametric uncertainty
abv, on ban embedded within the dynamics of the system in a mome comph-

(01,+ ejj)W ,&v 40) caged fashion than die commonly studied polynomial-coefficient-
(e;1+ e;;)w Av 40) Uncertainty case.

wiffie same definitions of ep 1, Op. and Cp as in (36). Thus a
plant with numerator and denominator polynomial coefficient 4. More General Example Pls Nonpisrametric Perturba-
uncertaity and a nonparametric stable: factor pertubadon can be dorn
represented within die general structure. Considier the system of Figure 3, wit

3. More General Example rM,, M12 1
The above parametric uncertainty corresponds to complete M2 - A 21 M22 (46)

pole and zero uncertainty. Th3is high degree: of uncertainty is fre- M3 M3
quently conservative; plant uncertainty often admaits a lower-degree MIM
parameterization. Fortunately. the general structure: allows for
reduced uncertainty order. For example, consider the parameteri-
ration illustrated in Figure 2. In the figure,

[M21(S) M22(s) 1
is a known, stable, proper, linear time-invariant transfer function +
matrix. The parameter vector Op in this figure can have fewer ele- _
ments tha the corresponding vector in (36).+

U M, S) ypFigure 3
P _ Plant Parameterization with Perturbation

Filoure 2

Plant Paravneterizatlon Through soealgebraic manipulation, one obtains
Lemma)I: Without loss of generlity, we may asue1a _31M23

Mill is stable and proper. (Prf ai appendix.) 9 KM ]I3 l 3 41

Now, through some algebraic manipulation, we get lv [M M 1 M1 M 2  2 M,

-f I. y (42) N1 N12M 12- Mj1M2 .M22(yIM2,1 A A

Et a c ommoann denominatoA.yields hl NLj [Up]()

Nil N12  
_~T -- IP1(8

fIA up (43) A A
N2, N y Applying this to f - e~g + Av (from Figure 3) yields

j([T, hjT2 O ] + eit b~l L 1]).w=&v (49)
Letting Nq~ denote the suitably arranged matrix of coefficients of where v is a constructible quantity. Equation (49) is equivalent to
die numerator polynomials, f = 079 (fromn Figure 2) yields the general structure equations (16a) and (9a). T7hus any system

(IR YT O+ 0141 XL 0)w = 0. (4) containing uncetain parameters and nonpmrametric uncertainty
insreonecedin die fairly general manner shown in Figure 3 can

This corresponids to die general structure equation (Ia) and be represented by die general strucure equations.
(9a). Here the choices of Op., and Cp are shown explicitly. Thbe



B. CaMtUjer Eq-Mom [W D. I- J 0 (55)
This section contains a discussion of the flexibility afforded

by the controller equation (8b) and (16b). An interesting alternative (for reasons to be seen Low) is the
The flexibility in defiin the pln input by 06b) cane following. Let Nx be a chosen urwitz polynomial of the form

aee by noting tha Nx(s) + R,,m2 -+ .. + 1 (56)

up a AUP 0 1if1T with all of dhe coefficients nj allowed to be arbitrily small.
A I ~IO~,Then NX is approximately equal tlIexcept athigh frequencies,

(the last equality is due s o equations (5) through (7)), so that equa- And in fact for the case of relative degree: one plants (n - = 1),
tion (16b) defines. up to be Nz is exactly equal to 1 at all frequencies. Consider now the

up Z ( 11 0 + Y I r I if I) W . p p rxim a te m odel m a hching goal f

y= r (57)
Thus by selecting the value of Oco, one is designing the feedback =DM + (NX-l)Dp
gains (modulo a simple known translation of coinaes) froms the weeteielzdpa:a sue ob ie yeuto 3)
signal vecaor w to the plant input. wiethe idle pln is asue to be gie yeuto (3 1).

The signal w contains N smoothed derivatives of the pln NX can be chosen sufficiently close to I so that the response of yp
input and otput. sad the command input. Thi allows the con- to r is esetal equal o the model response over a frequencies
troller considerable freedom In standard model reference control o trs
strucaures (for examp*e [81), the controller fod back stcnbevrfidtattecosdloprsoneoeeuto
derivatives of the plan: input and output. and, in our notation, a (5)Is an bveifind onay thif sdlo esos feuto
constrained combination of elements of w, namely(5)iacevdfanolyf

kATw, (52) up NM + Dp -Dm(8
NP NX ~ Np NX ''(8

where k is the adjustable gain. Thus die controller gain placement which in turn is equivalent to
of (81 is a special case of (16b) of the general wtuctusrc. p A IU -D +D)A

Another special case is the adaptive state feedback controllerN NA: NA 1  A0  +P =~ )A9
of 16]. There, in the implementation of the adjustable feedback A U r+A=0 (9
controller the plant input is defined tobean adjustablep-am-t -I=~i where Aas adegree-one factor of A.As chosen tohave degree
vector times smoothed derivatives of the plant input and output N = n. and (without loss of generality) Dp and Dm am assumed
plus, again, a constrined combination of the elements of w,. to be monic. Recalling equation (34) for the idealized plant. (59)
Thus state feedback control structures are a special case of th is equivalent to
general structure control equation. Np(Nx-l) NMfr -Dp+ Dm (0

The general structure equation also offers additional flexibility A " _'- C A ~=0 (0
not afforded by the special cases mentioned above. In the general which in turn is equivalent to
structure, the gains associated with the elements of w, need not be __

constrined to allow only a single parametric degree of freedom, as (4 VQ;xlP I -DJ? + Qk 1 -N4 ]w = 0. (61)
in (52). Insteadi a command-shaping filter may be adaptively with overbar denoting a Toepitz matrix as described in the section
designed. on notation. This, then. may be taken as the goal equation

Concrete examples of controller equations will also appear in elow = 0.
the following section, in conjunction with examples of goal equa- The reason that (61) is an interesting alternative to (55) is that
tions. the scalar a. b, c relating the plant, control, and goal equations in

C. Gol Equtionequation (12) are a = c = A1, b = 1. This can be seen by noting
C. Gol Equtionthat the ideal plant corresponds to the one-by-three transfer func-

The general stuure equations include the goal equation tion matrix
(8c). (9c) for the ideal tuned case, and (16c) and (17c) for dhe [-Np1  Dp 1nonadeal case. These descriptions include, as a special case. the 0),. = - - 0(62)
conventional model following goal. a well as unonventional [A A tetase

goal inadativeconroLsuchas oopduOg- 71isis ~usuW ad te Wn cotrolerequation (59) Calespods to tetase
by the following examles. function matrix

1. Model Following =CO [NpNXAI (-Dp + D~)A 1  -N A, (63
The goal of model reference adaptive control is to have the I A A A I 63

plant output Yp respond to commands r as a chosen reference and the goal equation (61) corresponds to the transfer function
model would respond, that is, to achieve mti

NMa V (53) - Np(Nr-l) DM -Nu (64)

whateNm anidDM ane chosen model polynomials of degree n Equation (12) follows, with a = c = Ap b = 1.
and n. respectively, where m and nt are die degices of die plan:
numserldorand denominator polynomials. The above is equivalent The utility of a = c - A,, b = I is twofold. First. these

to scalars are independent of the unknown plant parameters and are
DM NM thus known a priori. This is important in the set-up of the

-(54) identification problem with nonparametric dynamics present. as can
-TY - A r=0be see froms the construction of e, (equation (30)) and wi'

which in nurn is equivalent to the goa equation (Theoem 3). Seconid. the simple values of a, b, c lead to a
simplification of the expressions in Theorem 1 and Theorem 3.



Enlinanug nema1sL Fm all VC01 sysems, unmodelud which is mown a prio,'. Alternatively, if the plant is not stable
dynamics make the coanml of high freqa behavior ipossible, but the poles of Dp2  known (to within the tolerance allowed
Thus the above low frequency spproximanon to model following by nonpametric unceminty), then the ideal tuned command
does not actually represent a degradation in model following per- respose is agin known a prion (equation (70)). Finally, if the
frmance, in a practical sense Moreover, at those fequenies poles which m not to be cancelled are not known well a prori,
where NX is not equal to1, the pee -of NX gives the feedback then the tuned system command response is also not known well a
loop added roloff (compared to NX = 1), which improves the priori.
high- ucy robusness ari Remark 2: The loop shape reveals several important proper-

Theoretical remarks: The tbeoretc purest may achieve N r  ties of a control system. A large loop pin (compared to 1) at low
equal to 1, and simultaneously achieve a - c A1 and b = I by frvquencies results in insensitivity to disturbances and non-
simply always assuming the plant to be relative degree 1. The parametic plant dynamics. A small loop gain (compared to 1) at
weighting function on the noaparamuemc dynamics (W I of equation high frequencies results in good robustness margins, allowing large
(37)) can be chosen such that the assumption that Np has degree nonparanetric plant dynamics at these frequencies. Where the
n-I is always valid to within the tolerances allowed by the non- loop gain is ner I, a loop phase lag much less than 180 degrees
parametic dynamics. results in good damping, proper transient response, and robustness

to small nonparamenic plant dynamics. Consequently, an on-line
.2. Loop Shaping adaptive design of a preselected loop shape may prove practically

Consider apin the ideal plant of equation (31). Suppose that desirable in some case
the denominator polynomial can be factored into

= DpD, 2  65)VL CONC"LUSIONS
This paper has preseted a general adaptive control structure

where Dp1 is Hurwitz. Assume also that the numerator N# is which provides flexibility. For example, the plant parameter
Hurwitz (right-half-plane zeros of the actual (nonideal) plant must uncertainty can be imbedded in the plant dynamics to reflect the
be absorbed into the nonparameric uncertainty). Let A of equa- physical soure of the uncertainty as understood by the control sys-
tion (5) be represented in factored form as ten engineer. Likewise, there is flexibility in defining the goal of

A = AIA 2  (66) the adaptation, with loop-shaping and model-reference goals being

where A2 has degree N-m and A1 has degree m (recall N > n). among the alternatives.
As theoretical progress is made in robust stability and perfor-

Consider the following loop shape: mance analysis of adaptive control systems. those results posed in
L = 1 (66) the framework of the general structure of this paper will inherit its

DP2A2 "  degree of validity and applicability.

In the above, the classical convention of negative feedback has The convenience of a single simple representation for a broad
been used, that is, a negative sign is omitted from the loop gain in class of adaptive systems also provides us with a new opportunity:
representing the loop shape. The above loop shape can be we can now add"ess "best structure" issues. Adaptive control
obtained by the control law theoreticians can proceed to formlate various performance objec-

tives, and seek the particular adaptive system structure within the
r-y.) (67) general structure representation which best accomplishes the objec-

Np A 2  tive. In effect, we have taken the first step in optimizing over the
which is equivalent to set of alternative structures; we have defined the set of alternatives

N A2 up+Dp D 1) in a simple and explicit fashion.
AW "  A T yP A " r' = 0o

which is equivalent to Acknowledgement: This research was supported in part by AFATL
[A T I . i I -0 1 ]w = . (69) under Conact No. F08635-86-C-0138.

This, then, may be taken as the tuned controller equation.
Application of the control law (67) produces a response APPENDIX

IDp Proof of Lemma 1: One can factor M 2 1(s) into
SD# 2 A 2 + 1 = DpA2 +D# 1' (70) (H(s)IG (S)) 2 1 (s) where H (s) contains the right-half-plane zeros

f M 21(), G(s) is Hurwitz. GIH is proper, and AMj1 is stable and
which is equivalent to proper. Then defining f,, = (HIG)f, g = (HIG)g, one

[ V I D XT+ p II -J ]w=0. (71) otains

This, then, may be taken as the goal equation. g. [M12 (HI1G)M 12 1 .Following steps analogous to those of equations (62) through = L2 M2 ' f" 8
(64), one finds that the interrelationship equation (12) is satisfied 03
using known scalar polynomials:

a = A2  Proof of Theorem 1:
b = 1 (72) Equating the numerator coefficients of (12), one obtains the
c = 1. following real-coefficient equaltiy:

Rcmark 1: If the plant is known to be open loop stable, the -OP0 + b'O = F GO. (74)
plant denominator can be partitioned into D,1 = Dp, DP2 = 1, in
which case the tuned closed loop response is Expanding this in terms of the tuned plant and goal parametenza-

tions of equation (9) yields

7 ' A2+1 (73) I(ePT + cPP) + 7eCO - eOG + cGOP) = o. (75)

I e-



*l'i leass-squam soludi for O is Rele..es
ec (6b-'Vr [(-"rPI + MG 1 ) + (-4CP, + Z'CG)eP ] (76) L. K. F. Gauss, Theoria Mona, 1809.

For 09C0 =e(, + ccep (equation (9)) to be consistent with (76) 2. 1. M. Krause and P. Khargonekar, *'Robust Parameter Adjust-
for fixed ec, and CC. iresectve of the valtue of Op. iti ncs mern, 1988 American Control Conference.
sary that the least squares solution be an exa= solution, and that 3. J. M. Krause, P. P. Khargonekar, and G. Stein' "Robust
(eutn (9) to (76)) parameter Adjustmet for Model Reference Adaptive Con-

OC I(57r'Sr(-" I MG ) C7trol," Submifnedfor Publication.

-( _7' ea, +. JG)(7)~ . M. Krause and P. P. Khargonekar, "On an Identification
C - (S'' TE) -dC + MG) (78) Problem Arising in Robust Adaptive Control," Proceedings

which is the statement of die themrm. Added remark: th 1ea of the 26th IEEE Conference on Decision and Control. 1987.
squares solution for the ideal axmed controller mst maz~ty solve 5. J_ M. Krause, "Generalization of Monopoli's Error Augmen-
(5.Tu sbtttnthsouinfrG ito (75,admur tation, and an Application," IEEE Transactionsr on Automatic
ing the equation to be valid for all Op. one obtainsCotlJnay198

7 y, S7 "P I+ FG 1 - TOPI +FOG1) 79) 6. G. Kreisaelmeier, "On Adaptive State Regulation," IEEE
- b~b~ba-e,+Fe I)=-eP,~9G) ~Transactions on Automatic Control, vol. AC-27, February,

b(VbrIV(acp + aG) - (UCp + aG) (80) 1982.
13 7. R. V. Monopoli, "Model Reference Adaptive Control with an

Proof of Theceu 2: die equality (12) is valid as ep varies. Augmented Error Signal," IEEE Transactions on Automatic
Therefore, equating partial derivatives (with respect to each ele- Control, vol. Vol. AC.19, October 1974.
men: of 0p.) of each side yields the theorem. 8 . K S. Narendra, Y. I. Lin, and L S. Valavani, "Stable Adap-

0tive Controller Design. Pan II: Proof of Stability." IEEE
Pofof Theosun 3: We Transactions on Automatic Control. vol. Vol. AC-2S. June

*co:=Oeco -co - ccp (81) 1980.
'0G:= )GO- (GO CG0P 82) 9. H. L. Van Trees, Detection, Estimation, and Modulation

~GO = 0 G -=Cc~p(82) Theory, John Wiley and Sons, 1%8.
vi :=W -W*. (83)

Equations (8a) and (16a) imply e9T0 w7 - d. (84)

Equations (81) and (16b) imply elow +*J = 0. (85)

Equations (8b) andi (85) imply ()lob; + 4,10= 0. (86)
Equation (16c) implies 191 0w + *lo - o. (87)-4

~uations (8c) and (97) imply erOW~ + 0Gw e (88) -

Multiplying (88) by c' from (14c) yields I
c'0e~ov,+ c '*ow ce . (89)

Note that

where d p =up -up, 17p = yp -yp, r = -r( 0), so equa-
tion (15) applies to v;. Therefore, applying (15) to the first term
Of (89) yields

a'pO;+ b"low?0  + c'*jOw = c'efr (90)

Applying (84) andl (86) to (90) yields 4 /L _
a'd - b',Vow + c'~l0 w = c'e0 . (91)

The usual error augmentation ([7], [51) is based on the manipula-
tion: f ow =f Ow - f w a fOw - efw (since constants com-
mute with LIn filters), henc f#w-+6fw-f Ow = *f 0 where the
left hand side of this last expression is the "augmented" version of
f #w. Now, incorporating the filter f, and applying the usual
error augmentation procedure above to move the time varying
quantities #c0 and $GO to the left of the scalar transfer functions,
(91) becomes

fj c'e0 + 9j 0(-fj h-) + fb'(910w) + 0GTO(fC'W) -f'(8 0 w)

- *p (-fj b'Cjw + f c'Cjw). (92)

N ow0w = eo from (1 6a) leads to a cancellation of two terms
on the left hand side of (92). 9o0w - 0 from equation (16b)
Causes another term to drop OUL The reult is die statement of the
Theorem, which was to be proved.


