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S’I‘RUCTURAL LIMITATIONS OF MODEL REFERENCE ADAPTIVE CONTROLLERS
James Krause and Gunter Stein

Honeywell Systems and Research Center
Minneapolis, Minnesota

ABSTRACT

A general framework is developed for the analysis of perfor-
mance and robustness properties of tuned adaptive control
systems. The analysis is specialized to the case of Model
Reference Adaptive Control. It is shown that certain combi-
nations of performance objectives and a priori uncerminty
lead to unsolvable MRAC design problems, while other com-
binations lead to problems which can be solved only by care-
ful choice of the reference model.

I. INTRODUCTION

Much attention has been paid to the questions of stabil-
ity and parameter convergence of Model Reference Adaptive
Controllers (MRAC’s). Under certain idealized assumptions,
powerful results in these areas have been obtained. More
recently, considerable effort has been devoted to these same
two questions under weakened assumptions, including the
assumption of neglected or "unstructured” plant dynamics and
disturbances. Rescarch in this area, under the banner of
"robust adaptive control,” is extensive.

In spite of this activity, certain other issues of model
reference adaptive control have been neglected. Even ignor-
ing the difficulty of achieving a robust adaptation process, the
Model Reference approach has certain inherent structural lim-
itations. That is, the "tuned system” to which MRACs con-
verge under a model matching design rule may not have an
acceptable level of stability robustness or an acceptable sensi-
tivity function.

This paper is devoted to the study of the “design rule”
which calculates controller parameters from (sometimes
implicit) plant parameters. A general evaluation framework is
formulated, and is applied to the explicit evaluation of a
model reference design rule. The specific detign rule studied
cotresponds exactly to the Narendra-Lin-Valavani coatroller
in reference [3)for plants with (nominal) relative degree equal
to one.

The paper does not deal with questions of robust
identification. Rather, we assume that adaptation is complete,
that a plant description has been obtained which is accurate
to within a certain tolerance, and that the design rule has
been applied to0 construct the controller. Under these
assumptions, we examine the questions of robust stability,
nominal performance, and the more advanced question of
robust performance. In addition, we illuminate the impor-

This research has been supporsed by AFATL under Conyract Number
FOB635-86-C-0138.
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tance of a priori knowledge of the plant description parame-
ters, or "structured uncentainty,” The role of the model choice
in determining performance and robustness is also exposed.

Structured singular value analysis proves to be a useful
ol in studying these questions. Originally developed for
multivariable control performance and robustness analysis in
the presence of multiple perturbations [2] , the structured
singular value allows one to probe the performance of a
tuned adaptive system with perturbations included which
represent @ priori structured uncertainty as well as post-
adaptation residual or unstructured uncertainty. The utility of
this tool is illustrated through specific examples.

Our analyses show that certain levels of structured and
unstructured uncertainty preclude successful solution of the
design problem via MRAC methods. For these levels, perfor-
mance and robustness goals cannot be guaranteed under a
model matching design rule regardiess of the choice of refer-
ence model. Alternatively, other levels of uncertainty lead to
tractable problems, with performance and robustness goals
achicvable through careful choice of the model. These
mnlumuubhshedbothwummghmm
ples..

Thepaperisugmizedufollm In section II, we
develop a formal evaluation framework for a general class of
design sules. In section I, an MRAC structure is given, and
certain manipulations are performed to facilitate its analysis.
Section IV provides several theoretical results revealing the
importance of of a priori information in determining achiev-
able levels of nominal performance and robust stability in
tuned MRAC systems. Section IV addresses these questions
as well as the more advanced question of performance-
robustness through the use of structured singular value
analysis. Examples are given showing both an unsolvable
design problem, and a design problem which is solvable
through careful choice of the reference model.

—

I. FORMAL DEFINITION OF EVALUATION CRITERIA

.Dis*

A. Partitioning of Uncertainty

The true system P will be assumed to have both struc-
tured and unstructured uncertainty. A simple parameterized
description of the plant will be assumed. In adaptive control,
an on-line identification process determines the parameters of
the description, either explicitly or implicitly. The a priori
uncertainty in the parameter values will be called structured
uncertainty. It is recognized that regardiess of the choice of
the parameters, the plant description will not completely des-
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cibe the plant dynamics. The residual error will be called
unstructured uncertainty.

The relative amounts of structured and unstructured
uncertainty depend not only upon a priori knowledge of the
system, but also upon the system excitation and the perfor-
mance of the identification mechanism. These issues are
quite complex and problem-dependent, and will not be
treated here. Instead, we take as a starting point an a priori
set description of the possible levels of structured and
unstructured uncertainty, without regard for its origin, and we
study the consequences of various control design rules under
the given levels of uncertainty, That is, we will assume

P = Pg(c)Py
where Pg(c)eIPs
and Puﬁpu

and P and Py are known sets describing the possible struc-
tured plant descriptions Pg and the residual unstructured plant
dynamics Py, respectively. Note that the dependence of the
plant description on a parameter vector ¢ has been made
explicit.

A variety of uncertainty set characterizations may be
chosen. We shall assume a cone of unstructured uncertainty
given by
Py = {1 + Eys): P and Pg have same number of poles in C*

IEgtjo)i S Eyflj) ¥ o,
Ejw) is known a priori }
This choice is popular in non-adaptive robustness analysis.

For the case of structured uncertainty, we will study
multiple characterization options. All are based on the struc-
wre Pglc) = kpNp(s)/Dp(s) where Np and D, are coprime
monic polynomials of known degree m and n respectively,
with Np Hurwitz. kp is a gain of known sign. The parame-
ter vector ¢ represents the value of kp and the coefficients of
Np and Dp. Global unceriainty will be taken to mean no
further a priori knowledge of c. We will also study the case
in which additional a priori knowledge exists in the form of
a estimate of Dp, denoted Dpg, and a known set of possible
deviations {Eg(jw)} where Eg is defined implicitly by

Dp(s) = Dpo(s)(1 + Eg(s)) ¢))
Since Eg represents polynomial uncertainty rather than
rational transfer function uncertainty, a comic representation
of {Es(jw)} is pot natural. Instesd we will study two
representations — one which contains the set {Eg(jw)}, and a
second smaller representation which is contained entirely
within {Eg(jw)}. That is, we shall study the two cones
{Es(jo) : |Es(jo)l S Es(jw)} © {Eg(jw)} )
{Es(w) : EsGo)l s Es(j0)} ¥ w. > (Egjw)}  (3)
where E; and Eg are nonnegative and known @ priori. An
example of the set {Eg(jw)} and the two cones are illustrated
in Figure 0. The amorphous depiction of {Es(jw)} illustrates
that within the above framework lic many characterizations
of a priori knowledge of Dp. .

B. Design Rule

The control design rule is the law governing the choice
of the feedback compensator given the parameters of the

plant description. The feedback compensator may be
described by an operator K

e

where up is the plant input, yp is the output, and r is and
external command input. X is determined by a design rule
Ix:

K = flc,))

where ¢ is the vector of plant parameters, and ! is & vector of
designer-selectable parameters (for example, the "model”
choice in a model reference scheme). Since the goal is to
characterize the post-adaptation or “tuned” system, X may be
thought of as a two-input, one-output linear time-invariant
transfer function.

We will describe an analysis of various design rules
under the uncertainty partitioning shown above. We well also
analyze an MRAC design rule explicitly.

C. Control Design Quality Measures

We will adopt two important and popular indicators of
control system quality, namely the sensitivity and comple-
mentry sensitivity functions. Classically, these functions are
examined in the frequency domain. We will examine them
more formally in the weighted H,_ seminorm suggested in
[5], which is a currently well-accepted approach.

For the system of Figure 1, the sensitivity, denoted
S(c.l.5), is the transfer function from u; to ¢, under the design
rule X = fy{c,)), assuming Ei{s) = 0. The sensitivity of a
feedback loop is 8 measure of how its command tracking per-
formance changes under perturbations of the mathematical
description. Small sensitivity means that the effect of exter-
nal disturbances and small plant perturbations on the com-
mand tracking accuracy is small, and that minor errors in the
plant description also have a small effect on the closed loop
respoase to commands.

We define desired sensitivity properties under a design
rule as follows.

Eq

U, Es
pp

— {Eg)

Figure 0
Conic Cover and Conic Subset of
Structured Uncertainty




Definition 1: For a given choice of the parameter vector /, &
design rule fy is desensirizing if and only if

‘o e Prep; SCloEGa)} <1

where Ep(jw) is a chosen insenstivity spec, i.c., the inverse
of the maximum tolerable sensitivity.

Definition 2: For a given Py, the design rule fy{c.)) is poten-
dally desensitizing if, given Pg, there exists a parameter vec-
tor / such that the design rule is desensitizing.

Note that for a particular fixed value of ¢ and /, the
definition of "desensitizing” is the usual small sensitivity
requirement as measured by the M, seminorm. We have
generalized this requirement to allow for a set of plant
descriptions, and a design rule as opposed 1o 2 single particu-
lar design.

Similarly, one can genenalize a small complementary
sensitivity requirement. The complementary sensitivity,
denoted T(c,l,5), is the transfer function from ¥, to v, in Fig-
ure 1, under the design rule X = fx(c,)). It is an important
measure of stability robustness. Small complementary sensi-
tivity means that stability can be guaranteed even when errors
in the plant description are quite large.

We define desired stability robustness propertics under a
design rule as follows.

Definition 3: For a given choice of the parameter vector I, &
design rule is robustly siabilizing if and only if
(i) the system is stable when Ey = 0
- 4
@°F {: peg g (TEIEG)} } <1

Definition 4: For a given Py the design rule is
posensially robustly siwabilizing if, given WPg, there exists a the
parameter vector [ such that the design rule is robustly stabil-
izing.

The following lemma indicates how a design rule can be
provea to fail regardiess of the choice of the parameter vector
L —_—

Lemme 1: For a design mie to be
potensially robusily swabilizing it is necessary (but not
sufficient) that

7 {;—. F54°% {mc.l.im)lfwm))}< 1 Yo

i |

Ey(s)

K (s) Ps | =

& Figure 1

A Generic Feedback System

The proof follows directly from the definitions, and a com-
pletely analogous lemma holds for "potentially desensitizing.”
Note that the above definitions apply to adaptive and
non-adaptive systems alike, provided that the adaptive con-
troller converges o an LTI controller K(s). Such conver-
gence is assumed to hold throughout the paper. To achieve
convergence is, of course, a major difficulty in itself.
IOL ANALYSIS OF AN MRAC STRUCTURE
A. The Structure

A mode! reference adaptive control structure is shown in
Figure 2. In the figure, Np, Up are coprime monic plant
polynomisls of degree m and n respectively, with N,
Hurwitz. kp is a gain. Ey represents the unstructured
dynamics, as desribed earlier. Ay (s) is a designer-chosen
strictly-stable monic polynomial of degree m-m—1. The last
coefficient of A; is chosen 10 be 1 so that A;(jw) =1 over
frequencies of interest. The reference model is kyNy/Dyy
where Ny, and D), are monic Hurwitz polynomials of degree
m and n respectively. 6, and 6, are vectors of adjustable
parameters of dimension m and a respectively.

Remark: This structure is the same as that of Narendra,
Lin, and Valavani [3] except that the dimension of 6, has
been reduced from n-1 to m, and the filter preceeding @, has
a reduced numerator and denominator degree. For the spe-
cial casc of a relative degree one plant, ie, for m = a1,
these differences disappear, and the structure is exactly that
of [3).

Figure 3 is a post-adaptation representation of the struc-
ture. That is, it is a valid representation when the adjustable
guins are beld constant. This is appropriate for our tuned-
system analysis. In Figure 3, C(s), D(s), ¢, are polynomials
of degree n-2, n—1, 0 respectively.

T

| Figure 2
An MRAC Structure
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Figure 3

A Tuned MRAC Structure Representation




B. The Design Rule

Since we explicitly allow for perturbations in our
analysis, we may define the ideal system by assuming
Ey = 0and A; = 1. We shall define the tuned system under
these assumptions, and later include Ey and A, as perturba-
tions in the analysis of the system. (Note: in the case of
relative degree 1 nominal plant descriptions, A, is identically
1, and only Ej is negiected.)

Under the assumptions Ey = 0 and A, = 1, the MRAC
design rule enforces a model-matching criterion given by

eVl Wads) _ bude)

DASYNMASHCEy*pNp(XD() ~  Dyels)
The design rule fx is defined implicitly by this equation.

O

C. Algebraic Implications of the Design Rule

It can be proven (e.g. in {4] ) that the model-matching
criterion uniquely defines ¢, C(s) and D(s) in terms of the
plant and model parameters. Unfortunately, the relationship
of ¢, C, and D to the plant and model is not very tran-
sparent. In order to perform a study of the implications of
the design rule on performance and robustness, some
simplifications are required. This section describes the alge-
braic manipulations which accomplish this simplification.

First, note that the numerator and denominator of the
left-hand-side of (4) have degree greater than the numerator
and denominator of the right hand side. It follows that m
pole-zero cancellations occur. [Equating the numerators
reveals that the cancellations involve the roots of Np. One
finds that the design rule is equivalent to the following rules:

ckp = ky ®)

Dp(s)XNyy(s) + C(s)) = kpNp(s)D(s) = Np(s)D,((s) ()

Equation (6) is a polynomial equality valid for all s.

One can simplify the equations by examining interesting

choices of 5. In particular, let s; be & zero of Np(s). Then
equation (6) becomes

Dp(s)Npdsp + C(s)) = 0 )
Since Np and D, are coprime, Dp(s)) is not zero, hence
NyGs) +C(sp) =0 )

Since this is true for all m zeros of Np, and since Ny + C has
exactly m zeros,

Nyfs) + C(s) = Np(s) )
Substituting (9) into (6) and dividing by N one obtains
kpD(s) = Dp(s) — D(s) (10)

Examination of Figure 3 in light of equations (9) and
(10) reveals the sensitivity, complementary sensitivity, and
loop transfer functions:

Dp(s)A(s)

S6) = DreXAys) = 1) + Dys) an
Dp(s) ~D

Tt = P MO a2

Dp(s)(Ay(s) = 1) + Dyds)

Dpls) = Dys)
Dp(s)A\(s)

Note that further simplification occurs in the case of
relstive degrece 1 nominal plants, since then A) = 1.

L(s) = 13)

IV. EVALUATION OF THE MRAC STRUCTURE
A. Conditions for Robust Stability

1. Robustness Under Global Uncertainty

In [3) a design rule similar the one studied bere
(cxactly the same when n—-m=1) was proven to be globally
stable. That ig, the closed loop system was stable for any
value of the coefficients of Np(s) and Dp(s), subject to a
minimum phase requirement on Np. Taking this same struc-
tured uncertainty as Pg in our analysis, we find that the
robustness marging with this design rule are extremely small.

Theorem-'1: Under global structured uncertainty, if the
unstructured uncertainty bound Ey{jw) is strictly greater than
(A (o) - 1) for any @, the MRAC design rule is not poten-
dally robustly stabilizing.

Proof: Examination of (12) reveals that as one allows
the magnitude of Dp(s) approach infinity, keeping other
coefﬁcien};uﬁg;ed. IT¢w)|— Thus

- | 1 [
sup . . - .
c Pﬁps{lT(cJ.lw)lEu(JQ)} E——Al(jm) -1 {EU("‘))

A(o) =17

Since this is true for each /,

; = | 1 I

Sup . « - s
",’{a Pse ,:g{F‘(cJJw)lEuom)}} {_——Al Ga) =1 llEu(ﬂm
Lemma | completes the proof, o

Since A; is approximately 1 over the frequency range of
interest in: the control problem, the stability margin is small.
Moreover,: we have as & corollary that the margin is zero in
the case of relative degree one plants:

Corollary: For relative degree one plants, the MRAC design
rule is not potentially robustly stabilizing under global struc-
tured uncertainty unless the unstructured dynamics are
assumed to be exactly zero.

2. Robustness Under Bounded Uncertainty

Even when the structured uncertainty is not global, there
may be no choice of the reference model which results in
robust stability.

Consider the case of 2 relative-degree-one plant with
denominator uncertainty including a known cone, as given by
@).

Theorem 2: Under these conditions, a necessary condition
for potential robust stabiliry is:

Ejm)Ey(jw) < 1 for all @ where Eyjo) > 1




e

Proof: Regardless of D, extremizing equation (12) subject
w [Eg(jo)| < Es yields

v {a ,‘,‘;,,Smcmmom}

2

Pro-Did + EdDrpol
DpeDyDpol  °
Pro-Dud + EsDpd -
Dpo-Dsd + Dpd  *
Now, by the methods of calculus one can infemize this last

quantity over all D (jw) with the result that at the infemum,
the inequality becomes an equality, and one has

' . Lo ] e i EGe) 21
I |e: Pre TN [ = Ve Gy ) i B <1
which is logically equivalent to the theorem. o

This thcorem implies that for some combinations of
structured and unstructured uncertainty one cannot guarantee
stability by choice of the model. Furthermore, as a minimal
requirement for stability guarantees, one must know the
structured plant denominator well a priori in those frequency
ranges where large robustness margins are desired.

The theorem only provides a necessary condition for
two reasons. First, an optimization was performed pointwise
at cach frequency to determine (or at least limit) D,(jc).
However there is no guarantee that there exists a Hurwitz
polynomial of degree n which has exactly this frequency
response. Since the only allowable choices for Dy in the
MRAC structure are Hurwitz and degree n, there is perhaps
no model which provides robust stability even when Theorem
2 is satisfied. Second, the lower bound in (2) need not
represent the complete family of possible plants.

Somewhat monger eondluons are actually sufficient for
- robust stability.

Theorem 3: For a relative degree one plant and a conic
bounded structured uncertaitty ball Dp = Dpofl + Eg), a
sufficient condition for pocential robusr stabilisy is:
Dpofs) is Hurwitz, and
EGo)Eyjo) <1 ¥ o
Proof: Choosing D,,-D,o and applying equation (12)
yields
e: Pea PTUREDIENGW) = Eso)Ey(o)
The theorem then follows from the definition of robust stabil-
ity. (@]
It is worth noting the sacrifice that was made in achiev-
ing robust stability in this theorem. A consequence of choos-
ing the model poles to be the a priori nominal plant poles is
poor scusitivity. For example, when the plant happens to be
exactly the a priori estimate, the sensitivity is onc at all fre-
quencies (equation (11) with Ay = 1, Dp = Dy = Dpp. Such
issues motivate the study of simultaneous pezfomnnoe and

robustness through a single model choice, which is treated
later.

—__—_
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B. Conditions for Desensitivity
1. Deseansitivity Under Global Uncertainty

Theorem 4: If the sensitivity specification JEp(jw)] is strictly
greater than (A,(jw) - 1VA,(jw) for any @, then for any
choice of the model, the system is not desensinzing under
global uncertainty.

Proof: Using the sensitivity expression (11), the definition of
desensitivity becomes

l Dp(j)A ()
'uP 1 <1 ¥ o©
DM){ Dp(jo)A,(j@)-1) + Do) {E’(’“’
The theorem follows by letting {Dp approach infinity. a

Corollary: For relative degree one plants, no design is desen-
sitizing when Ep(j®) > 0 for any @.
2. Desensitivity Under Bounded Uncertainty
Theorem S: For the case of a relative degree one plant and a
conic bounded structured denominator uncertainty, the
MRAC design rule is always potensially desensitizing, pro-
vided that (1+Es(jw))Ep(jw) <1 for sufficiently large .
(This is a very reasonable requirement.) Moreover, a
Sufficient condition for a given model choice to be desensitiz-
ing is
Dpof joo) |
1+ E; <l ¥aoa
:—D—— [ + EstienErGie)
Proof: Applying the seasitivity expression (11) and the conic
bound on Dp to the definition of desensitivity, onc finds
dewnnnvuy is implied by

| Do
lEsU‘DM<EsU(°){| "“E‘w’}“”"

The fact that the structure is always potentislly desensi-
tizing, i.c., that there always exists some model satisfying the
condmonoftbc:heorem,followsbynmplylemngw,d
approach ee,

Iv. COMRINED PERFORMANCE AND ROBUSTNESS

While previous sections have examined :questions of
desensitivity and stability robustness, in practice one is not
satisfied with a controller that has only onc of these proper-
ties ~ it must have both.

In this section, we describe a general analysis technique
for tuned adaptive systems. The technique is sppropriste for
addressing the separate questions of stability robustness and
desensitivity, as well as the more advanced question of robust
performance. Robust performance implies not only a guaran-
tec of stability under all structured and unstructured uncer-
tainty, but also a guarantee of a cerain level of desensitivity
under the entire set of uncertainty.

The theoretical foundation both for the definition of
robust performance and its evaluation, is the structured singu-

lar value theory ( [1) ,[2] ).




A. The Design Specification

The question of whether a desensitivity specification is
satisfied under system uncertainty may be transformed into a
robust stability analysis problem ( {1] ). The technique
involves introducing an additional unstructured uncertsinty
Ep(s) into the system, with the input to Ep being e, of Figure
1, and the output being the y» node of Figure 1. One assumes
that the perturbation E, is stable but unknown except for the
bound |Ep(jw)i < Ep(jo) ¥ w. Here Ep is the desensitivity
specification which appears in definition 1. If the system is
robustly stable under all uncertainties including this added
(fictitious) uncertainty, then the actual system satisfies the
desensitivity spec (definition 1) under the eatire set of actual
uncertainty ( [1] ).

For the special case of the structure at hand, one may
use the algebraic results of section IIT to manipulate the tuned
system representation, obmining the equivalent representation
of Figure 4. In Figure 4, the added uncertainty block Ep has
been included as described above. In addition, we have
defined the structured uncertinty Eg in the figure implicitly
by Dp(s) = Dp(sX1 + Eg(s)), as desribed previously.

One specifies the control system objectives by specify-
ing the size of the uncertainties, and the desired performance
under these uncertainties.

Definition §: The Design Specification is formed by the sets
describing Eg, Ey, and Ep, with the interpretation that one
requires the desensitivity indicated by Ep be guaranteed
under the uncertainty indicated by Eg and Ey.

Definition 6: The Design Measure is the inverse of the larg-
est factor by which all of the uncertainty sets in Figure 4 can
be scaled while retaining a guarantee of stability of the sys-
tem of Figure 4.

By the above discussion, "Design Measure < 1" indi-
cates that the Design Specification is met. "Design Measure
> 1" indicates that the Design Specification is not met.

B. Structured Singular Value Analysis

Structured singular value analysis was originally
developed for the evaluation of multivariable control system
robustness. As we shall show in examples to follow, the
structured singular value has importance in analysis of tuned
adsptive control systems as well

)

O
D ¥

Figure 4
An Alternate Tuned MRAC Representation

Evaluation of the Design Mecasure is aided by existing
structured singular value analysis software. Cumrently, the
software can efficiently evaluate the stability of the general
system of Figure 5, where M(s) is a known transfer function,
and the A;:C—C are both analytic and bounded by one in the
right half plane, but otherwise unknown. For perturbations of
size other than one, the uncertainties may be factored into a
unity-bounded parts and known scaling factors. The scaling
factors may then be absorbed into the system M(s). Such
operations are routine in multivariable control.

The output of the software is a real number i for each
frequency m, equal to the reciprocal of the largest factor by
which all the A/’s can be scaled before
det[] - diag(A(j))M(jw)] vanishes. Thus, if the maximum
of yu over all frequencies is less that unity, the system
remains stable, while if the maximum exceeds umity, it will
be unstable for some value of the A’s. It foliows that i pro-
vides a direct evaluation of our Design Measure, provided
only that the three uncertainty blocks in Figure 4 are unstruc-
tured.

Of course, Eg is not unstructured. Nevertheless, the
structured singular value analysis may still be applied to the
tuned MRAC through a two-step procedure,

First, the cone covering {Eg(jw)} (radivs = Eg) is used.
The structured singular value analysis then determines if the
system of Figure 4 is stable with this cone of uncertainty. If
30, it is also stable with the smaller set {Eg}, which implies
that the Design Specification is met. Letting [T represent the
output of this structured singular value analysis, 0P [ is an
upper bound on the Design Measure.

Second, & cone within {Eg(jw)} (radius = E) is used. It
is a minimal requirement that this smaller uncertainty be
tolerable. Performing a structured singular value analysis and
denoting the output |, ‘:,pgis 2 lower bound on the Design
Measure. Clearly, the Design Specification is violated if 1 is
greater than one at any frequency.

M(s)

Figure 5

The Structured Singular Value Problem Setting




C. Examples
1. A Solvable MRAC Design Problem

Consider a nominal plant with degree(Dp) = 2, and
degree(N,) = 1, and, thus, a relative degree of 1. Let the
model denominator be Dy = 52 + 20s + 100, Since the plant
and model numerstors do not enter into our analysis, we need
only assume that both have roots in the open left half plane.
Let an a priori estimate of the plant denominator be
Dpg = 52 + & + 16 with the a priori error bound:
Dp(sy-Dpols) = 8;s + 5, where 1008 + 8 < 400. (14)
Defining Eg implicitly by Dp(s) = Dpo(sX1 + Eg(s)) yields
Eg(s) = (5ys + 8)/(s* + 8 + 16). Then for each 0, the set
of structured uncertainty {E(jo)} implied by equation (14) is
an ellipge with major (minor, respectively) radii
Eg(jow) (Es(jo)) =
. | 2s Y |
max (min, )1 | b | |
¢ mp){ié«»sumi |2+ 85+ 16]
Here Eg and E serve as radii for a conic cover and a conic
subset, as described in section I Thus one can describe an
inscribed cone and a conic bound by
As the Design Specification, let the size of the unstruc-
tured dynamics to be tolerated, and the desired desensitivity
be given by:
5s + 20

Eifs) = Ay(s)WAs), WiAfs) = m

EXs) = Ay(SIWp(s), Wp(s) = 25EE3)

s+1

Using the conic cover Eg, and performing a structured
singular value analysis, we obtain an upper bound on the
Design Measure, shown in Figure 6. Since the Design Meas-
ure is less than one everywhere, the MRAC controller
designed for the specified D, will satisfy the Design
Specification (if it converges).
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Figure 6
An Upper Bound on the Design Measure
For a Successful Design '

It is worth noting that this analysis is an entirely a
priori analysis of the full set of possible post-adaptation sys-
fems.

One may perform this a priori analysis for a variety of
designs. It is reasonable to assume that the desensitivity
requirements as well as the size of the structured and unstruc-
tured uncertainty sets are fixed features of a design task. The
design parameter which may be chosen is the reference
model, through which the tuned controller is implicity
designed.

The separate performance and robustness properties stu-
died in section IV, as well as the requirement that the model
be stable, provide limits on the choice of models that need be
considered. Within these limits, a mcel choice may or may
not satisfy the more challenging and more important goal of
robust performance under the full set of uncertainty. For
each choice of the model, one may use the structured singu-
lar value analysis to classify the design as either (1) satisfy-
ing the design specification, (2) violating the design
specification, or (3) indeterminate through the structurcd
singular value analysis.

Keeping all but the model choice the same as above, a
classification of the design has been performed for a grid of
possible model choices, with the results shown in Figure 7.
The figure illustrates the fact that standard tuned model refer-
ence systems can satisfy control objectives in some problem
settings, provided that the model is carefully chosen.

2. An Unsolvable MRAC Design Problem

With precisely the same performance objective and the
same set of unstructured uncertainty as in the previous exam-
ple, the design task becomes intractable when the a priori
uncertainty becomes too large. Let the size of {Eg(jw)}
become larger by a factor of 10. This corresponds to the o
priori information

10087 + 5% < 40000. (15)

Repeating the procedure of the first example, but using the
inscribed uncerzinty cooe in the structured singular value
analysis 1o obtain a lower bound on the design margin, one
obtains the result shown in Figure 8. Since p> 1 at some
Specification. v

Exploration of altemate model choices indicates that one
cannot meet the Design Specification through choice of the
design parameter. The corresponding figure to Figure 7
would show all designs to be classified as violating the spec.

This example illustrates that the standard model refer-
ence adaptive control structure cannot solve certain practical
control design tasks, even under the greatly simplifying
assumption that successful identification/adaptation does take
place.




V. CONCLUSIONS,

When ooe takes into consideration the usual perfor-
mance and robustness requirements of a control system, a
model reference adaptive control problem may be ill-posed in
the sense that the tuned system indicated by the model
matching design rule may not be acceptable. However,
through the analysis framework of this paper, one can deter-
mine whether a design rule will lead to an acceptable system,
assuming convergence is achicved. Only is such cases need
one be concerned with the (formidable) question of robust
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