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Preface

This report compares numerical results obtained from seven proposed subcycling algo-
rithms used to solve three test problems. The numerical results show that three subcycling
algorithms — TRANAL, and the linear and quadratic nodal interpolation schemes — pro-
duced accurate and stable results. While the subcycling algorithms achieved stability,
the natural structure of the finite element assembly process was lost. To be competitive
with fixed time-step explicit algorithms currently implemented on vector machines, a new
subcycling algorithm will be needed.

This work was supported by the Defense Nuclear Agency under contract number
DNAO001-84-C-0306. T. J. R. Hughes is a Professor and Chairman of the Mechanical

Engineering Department while G. M. Hulbert is a Graduate Research Assistant in the

Division of Applied Mechanics.

i ﬁ’pn e 5] T‘or (":,/[.:
P RCEE TR | E? R
L7is oo
I, sed O N

Digciritationy

Auntiotility Cedes

(Avail and/or

Dist Special

Al

iii




TABLE OF CONTENTS

Preface . . . . . . Lo iii
List of Illustrations . . . . . . . . . . . ... ..o v

1 INTRODUCTION . . . . . . . . o o o0 s et e e e s 1
2 DESCRIPTION OF SUBCYCLING ALGORITHMS . . . . . . . . .. .. 2
2.1 Nodal Partition Algorithms . . . . . . . . . . . . . . ... ... .. 3
2.1.1 Nodal Partition Algorithm 1 . . . . . . . . . . . . . ... .... 3
2.1.2 Nodal Partition Algorithm 2 . . . . . . . . . . .. . . ... ... 4
2.1.3 Nodal Partition Algorithm 3 . . . . . . . . . . .. .. ... 4
2.1.4 Nodal Partition Algorithm4 . . . . . . . . . . . . . .. . .. .. 5

2.2 Element Partition Algorithms . . . . . . . . . .00 o000 L. 5
2.2.1 Element Partition Algorithm 1 . . . . . . . . . . . . . . ... .. 6
2.2.2 Element Partition Algorithm 2 . . . . . . .. . .0 0000 L. 6
2.2.3 Element Partition Algorithm 3 . . . . . . . . . ... .00 L. T

3 NUMERICAL RESULTS AND DISCUSSION . . . . . . . . . . ... .. 9
4 CONCLUSIONS . . . . . o o o e e s e e e e e s 19
5 List of References . . . . . . . . . . . . . . ..o oo 21

iv



LIST OF ILLUSTRATIONS

Figure Page
1 Example problem — one dimensional bar. . . . . . . . . . . ... .0 022

2 Timing diagrams for constant displacement nodal partition algorithm. . . . . . 23

3 Timing diagrams for constant displacement nodal partition algorithm. . . . . . 24

4 Timing diagrams for linear nodal interpolation algorithm. . . . . . . . . . . 25

5 Timing diagrams for linear nodal interpolation algorithm. . . . . . . .. . .26

6 Timing diagrams for extrapolated nodal partition algorithm. . . . . . . . . .27

7 Timing diagrams for extrapolated nodal partition algorithm. . . . . . . . . . 28

8 Timing diagrams for “free” element partition algorithm. . . . . . . . . . . .29

9 QTiming diagrams for “free” element partition algorithm. . . . . . . . . . . .30
10 Timing diagrams for constant stress element partition algorithm. . . . . . . . 31
11 Timing diagrams for constant stress element partition algorithm. . . . . . . . 32
12 Timing diagrams for TRANAL element partition algorithm. . . . . . . . . . 33
13 Timing diagrams for TRANAL element partition algorithm. . . . . . . . . . 34
14. Timing diagrams for TRANAL element partition algorithm. . . . . . . . . . 35
15 Three one-dimensional test problems. . . . . . . . . . . . ... ... . .36
16 Results legend for test problems 1-3. . . . . . . . . . . .. ... ... .37
17a Problem 1 — comparison of central difference algorithm solutions. T 1
17b Problem 1 — comparison of nodal partition algorithm solutions. . . . . . . . 39
17c Problem 1 — comparison of element partition algorithm solutions. . . . . . . 40

18a Problem 2 — comparison of nodal partition algorithm

solutions —m=2,At. =10. . . . . . . . . . . ... ... 4l




Figure
18b

18c

18d

18e

18f

18¢g

18h

181

18j

18k

181

18m

18n

LIST OF ILLUSTRATIONS (Continued)

Problem 1 — comparison of element partition algorithm

solutions — m = 2,At. =1.0.

Problem 2 — comparison of nodal partition algorithm

solutions — m = 4,At. =1.0.

Problem 2 — comparison of element partition algorithm
solutions — m =4, At. =1.0.

Problem 2 — comparison of nodal partition algorithm
solutions — m = 4, At. =1/2.

Problem 2 — comparison of element partition algorithm
solutions — m =4, At. =1/2.

Problem 2 — comparison of nodal partition algorithm
solutions — m = 8,At. =1.0.

Problem 2 — comparison of element partition algorithm

solutions — m = 8, At, = 1.0.

Problem 2 — comparison of TRANAL element partition algorithm

solutions — m = 8,At. =1.0.

Problem 2 — comparison of nodal partition algorithm

solutions — m = 8, At =1/2.

Problem 2 — comparison of element partition algorithm

solutions — m = 8, At. =1/2. .

Problem 2 — comparison of nodal partition algorithm

solutions — m = 16, At, = 1/2.

Problem 2 — comparison of element partition algorithm

solutions — m = 16, At = 1/2.

Problem 2 — comparison of TRANAL element partition algorithm

solutions — m = 16,At. = 1/2.

vi

Page

43

45

47

49

54




Figure
19a

19b

19¢

19d

19%e

19f

19g

19h

20d

LIST OF ILLUSTRATIONS (Concluded)

Problem 3 — comparison of nodal partition algorithm

solutions — m =2, At. = 1.0.

Problem 3 — comparison of element partition algorithm
solutions — m = 2,At. =1.0.

Problem 3 — comparison of nodal partition algorithm
solutions — m =2, At. =1/2.

Problem 3 — comparison of element partition algorithm
solutions — m = 2, At = 1/2.

Problem 3 — comparison of nodal partition algorithm
solutions — m = 4, At. == 1.0.

Problem 3 — comparison of element partition algorithm

solutions — m =4, At. =1.0.

Problem 3 — comparison of nodal partition algorithm

solutions — m = 8, A¢. = 1.0.

Problem 3 — comparison of element partition algorithm

solutions — m = 8, A¢t. = 1.0.
Test Problem 4.

Results legend for test problem 4.

Problem 4 — comparison of central difference algorithm and

TRANAL algorithm solutions — m = 8.

Problem 4+ — comparison of central difference algorithm and

linear nodal interpolation algorithm solutions — m = 8.

vii

Page

56

-1

n

59

60

61

66




SECTION 1
INTRODUCTION

Numerous explicit subcycling algorithms for structural dynamics have been proposed and
implemented in specialized finite element codes. While numerical evaluations of several sub-
cycling algorithms have been published, no comparison of the various proposed algorithms
has been reported. Nor does there exist a rigorous analysis of subcycling algorithms to prove

stability and convergence for structural dynamics problems.

This report compares numerical results obtained from seven proposed subcycling algo-
rithms which were used to solve three test problems. The numerical results show that three
of the subeycling algorithms — TRANAL, and the linear and quadratic nodal interpolation
schemes — produced accurate and stable solutions. The “free” element partition algorithm
produced stable but significantly inaccurate results for two of the three test problems. Sub-
sequently, the two best algorithms — TRANAL and the linear nodal interpolation algorithm

— were used to solve a larger test problem.

The results presented in this study do not ensure that the algorithms are convergent
for other structural dynamics problems. Even for the simple test problems studied, devi-
ation from the “natural” subcycle-zone partitioning was required for stable solutions when
using solution time steps equal to the critical subcycle-zone time steps. Thus, the subcycling
algorithms achieved stability, but sacrificed exploiting the “natural” structure of the finite el-
ement assembly process. To be competitive with fixed time-step explicit algorithms currently

implemented on vector machines, a new subcycling algorithm will need to be developed.

The next section describes the seven subcycling algorithms studied. Numerical results
and discussion of the results are then presented. A brief summary of the performance of the

subcycling algorithms concludes this report.




SECTION 2
DESCRIPTION OF SUBCYCLING ALGORITHMS

To facilitate description of the different subcycling algorithms, a simple one dimensional
bar problem is presented. Figure 1 shows the bar which is composed of two different materials;
the material on the right half of the bar has a modulus of elasticity four times that of the
left half. Both materials have the same density. Thus, the minimum critical time step for the

problem is governed by the stiffer material on the right.

A subcycle zone is defined as a group of elements or nodes for which a solution is to be
calculated using the same time step. The elements or nodes in a given subcycle zone do not
need to be contiguous. The example problem is divided into two subcycle zones. The major
cycle zone is associated with the softer material while the minor cycle zone is associated with

the stiffer material.

Time step values must be chosen for each subcycle zone. To minimize computation, it is
desirable to select as large a time step as possible for each subcycle zone. As the subcycling
algorithms studied in this report are adaptations of the central difference algorithm, critical
time steps are imposed on each subcycle zone to maintain stability. An upper bound on a
subcycle zone critical time step can de determined from the maximum element eigenvalue of

the elements in the subcycle zone.

Subcycling algorithms may be classified as either nodal or element partition algorithms.
In an element partition algorithm, different element groups are assigned to different subcycle
zones. This partitions the global stiffness matrix into subcycle element groups which can be
easily formed using the standard finite element assembly algorithms. In a nodal partition
algorithm, different nodes are assigned to different subcycle zones. This approach partitions
the global stiffness matrix into nodal blocks. Such a split of the global stiffness matrix requires
addiiional assembly algorithms in a finite element code and thus nodal partition algorithms

are somewhat more cumbersome than element partition algorithms.

2




2.1 Nodal Partition Algorithms,

Four nodal partition algorithms were evaluated. Three of these algorithms were firs
proposed by Belytshcko, Yen, and Mullen(l]. The fourth nodal partition algorithm was
proposed by Liu and Belytschko[2]. These algorithms differ only in the method used to
estimate the displacement of major cycle nodes during minor cycle updates. Displacement
estimates are required only for the major cycle nodes which are connected to minor cycle

nodes.

Let m denote the integer ratio of the major time step to minor time step (m = 2 in the
example problem), k denotes the number of major cycle time steps processed and n denotes

the number of minor cycle steps processed.

2.1.1 Nodal Partition Algorithm 1

Figures 2 and 3 depict the calculation procedure for the first of the nodal partition algo-
rithms. In Figure 2a, all nodal displacements and element stresses are known at time step
n = mk. Nodal velocities for the minor cycle nodes are known at time step n — 1/2 while
the major cycle nodal velocities are known at time step m(k — 1/2). Note that the interface
node, that is, the node which connects the major and minor cycle zone elements, is grouped
with the minor cycle nodes. The interface node is associated with the minor cycle zone in all
the subcycling algorithms to satisfy time step restrictions imposed by the central difference
algorithm.

Using the known stresses, the equations of motion are solved for all nodal accelerations
at time step n = mk. The nodal velocities are then updated; the minor cycle velocities are
updated to time step n + 1/2 while the major cycle nodal velocities are updated to time step
m(k + 1/2). Nodal displacements are updated, with the minor cycle values updated to time

step n + 1 while the major cycle displacements are updated to time step m(k + 1).

Processing of only the minor cycle zone then occurs. As shown in Figure 2b, minor cycle
stresses are calculated at time step n + 1. Note that calculation of these stresses also includes

3




calculating stresses in one element of the major cycle zone. To calculate stresses in this
element requires a displacement value for a major cycle zone node. The first nodal partition
algorithm assumes that the major cycle node displacement remains constant at the value
calculated at time step mk. This assumption is physically equivalent to fizing the bar at this

major cycle node during the minor cycle updates.

Once the minor cycle stresses are calculated, the minor cycle accelerations can be com-
puted at time step n + 1 (Figure 3a). Subsequently, the minor cycle velocities are updated
to time step (n + 1) + 1/2, and then the displacements are updated to time step n + 2. As
n + 2 = m(k + 1), all nodal displacements are known at time step m(k + 1) and thus all
stresses can be calculated (Figure 3b). The entire process is then repeated until the entire

transient response is calculated.

2.1.2 Nodal Partition Algorithm 2,

In the second nodal partition algorithm (Figures 4 and 5), the same procedure is per-
formed as in the first algorithm with the exception of the major cycle node displacement
assumption. In the second method, this displacement value is assumed to vary linearly with
time between time steps mk and m(k + 1). This is equivalent to a constant velocity assump-
tion during the minor cycle updates. While the second nodal partition, called the linear
nodal interpolation partition, requires nominally more computation than the first algorithm,
it might be expected to provide a better solution as the linear variation assumption should
more closely approximate the actual displacement variation than the constant displacement
assumption. The improved performance of the linear nodal interpolation algorithm is clearly

evident from the test problem solutions.

2.1.3 Nodal Partition Algorithm 3,

The third nodal partition algorithm (Figures 6 and T), called the extrapolated nodal par-

tition algorithm, is identical to the first algorithm except that the constant displacement




value of the major cycle node is the known value at time step m(k + 1) rather than the value

at time step mk.

2.1.4 Nodal Partition Algorithm 4.

The final nodal partition algorithm assumes a quadratic variation of the major cycle node
displacement between time steps mk and m(k +1). A quadratic variation is the highest order
variation with respect to time that can be assumed using only the known nodal displacement
and acceleration values at time step mk and the nodal velocity value at time step m(k+1/2).
Since the major cycle node displacement and acceleration values are known at time step mk
while its velocity value is known at time step m(k+1/2), the quadratic displacement variation

is calculated using:
. 1 1,....2 .

where At is the time step used to update the minor cycle zone. This quadratic variation
requires slightly more computation than the linear nodal interpolation algorithm, but it might
also be expected to provide a better solution. However, the test problems show only a minor

improvement in calculated response.

2.2 Element Partition Algorithms,

Three element partition algorithms were evaluated. The first element partition algorithm
is an extension to the structural dynamics problem of an element partition algorithm proposed
in Liu and Lin (3] for the heat conduction problem. This subcycling algorithm, applied to
the heat conduction problem, is the only one for which stability and convergence proofs exist
[4-3). The second element partition algorithm was proposed by Key but not published due
its poor behavior. The final element partition algorithm studied is the subcycling algorithm
implemented in the TRANAL finite element code. This algorithm is also unpublished but was
described by John Baylor and Joseph Wright at Weidlinger Associates during many helpful

conversations.




2.2.1 Element Partition Algorithm 1,

Figures 8 and 9 depict the first element partition subcycling algorithm applied to the
example problem. As with the nodal partition algorithms, all stresses and displacements are
known at time step n = mk, while major cycle velocities are known at time step m(k — 1/2)
and minor cycle velocities are known at time step n—1/2. The acceleration values are obtained
by solving the equation of motion at time step n. The velocities and displacements are then

updated for all nodes.

Processing of only the minor cycle zone then occurs. As with the nodal partition algo-
rithms, the stresses in the major cycle element adjacent to the minor cycle zone must be
estimated during the minor cycle updates. The element partition algorithms, however, do
not require an estimate for the displacement of the major cycle node associated with this

inteface element.

As shown in Figure 8b, the first element partition algorithm assumes that the stresses in
the interface element are zero during the minor cycle updates. This is physically equivalent
to a free boundary condition on the left end of the minor cycle zone. The remaining minor

cycle stresses are computed at time step n + 1 in the standard manner.

Once the stresses are known, the minor cycle acceleration values at time step n + 1 are
computed. Next, as shown in Figure 9a, the minor cycle velocities are updated to time
step (n + 1) + 1/2 and the minor cycle displacements are updated to time step (n + 2). As
n + 2 = m(k + 1), all nodal displacements are known at time step m(k + 1) and thus all
stresses can be calculated (Figure 9b). The entire process is then repeated until the entire

transient response is calculated.

2.2.2 Element Partition Algorithm 2.

The second element partition algorithm (Figures 10 and 11), is identical to the first except
that the interface element stresses are assumed to remain constant at the values computed at
the previous major cycle time step n = mk during the minor cycle updates (Figure 10b). This

6




is physically equivalent to a constant force being applied to the left end of the minor cycle
zone elements. The second element partition algorithm, called the constant stress algorithm,
can be considered as the element equivalent of the first nodal partition algorithm. However,
it may be expected that the element partition version will result in poorer solutions because

less information is being included during the minor cycle updates.

2.2.3 Element Partition Algorithm 3.

The third element partition algorithm — the TRANAL subcycling scheme — is imple-
mented in a form different than the previously described subcycling schemes. Instead of
displacements and stresses being brought to the same time level, the TRANAL algorithm
brings the subcycle velocities to the same time level while the displacements and stresses are

staggered in time. Figures 12 - 14 depict the TRANAL subcycling algorithm.

As shown in Figure 12a, all nodal velocities are known at time step n = mk. The minor
cycle stresses and displacements are known at time step (n —1/2) while the major cycle stress
and displacement values are known at time step m(k — 1/2). The current displacement value
associated with the interface node was last updated at tims step n — 1/2, that is, it was
updated with the minor cycle zone. Stresses in the major cycle zone element adjacent to the

minor cycle zone are always updated with the major cycle time step.

The major cycle displacements are next updated to time step m(k + 1/2), excluding
the interface node displacement. Next, the major cycle stresses are updated to time step
m(k + 1/2) (Figure 12a). The updated stresses are obtained by adding to the old stress

values the incremental stresses calculated by using the velocities at time step mk. That is,
am(k+i-) = am(k—é-) + AtDvak (2)

where D is the constitutive matrix, B is the discrete gradient matrix, and At is the time step
used to update the minor cycle zone. As shown in Figure 12b, the major cycle acceleration
values are calculated at time step m(k +1/2) and the major cycle velocities are then updated
to time step m(k + 1). Note that the interface node kinematic quantities are not updated

=




with the major cycle zone.

Processing of only the minor cycle zone is now performed. The minor cycle displacements
are updated to time step n +1/2, including the interface node displacement. Next, the minor
cycle stresses are updated to time step n + 1/2 (Figure 13a). The equation of motion is to
be solved at time step n + 1/2, which requires specifying stresses in the major cycle element
adjacent to the minor cycle zone. The TRANAL algorithm uses the most recently calculated
stresses for this element. As shown in Figure 13b, these stresses were last updated to time
step m(k + 1/2), so for this minor cycle update, an advanced stress solution is being used in
the interface element. After solving for the minor cycle accelerations at time step n + 1/2,

the minor cycle velocities are updated to time step n + 1.

The next step in the TRANAL algorithm is to update the minor cycle displacements and
stresses to time step (n + 1) + 1/2, as shown in Figure 14a. The equation of motion is to
be solved for the minor cycle accelerations at time step (n + 1) + 1/2, which again requires
specifying the stresses in the adjacent major cycle element. As with the previous minor
cycle update, the most recently calculated stresses for this element are used. The calculated
stresses in the interface element now lag the calculated stresses in the minor cycle zone. Once
the acceleration values for the minor cycle zone are calculated at time step (n + 1) + 1/2,
the minor cycle velocities are updated to time step n + 2. Thus, all velocities are specified at

time step n + 2 = m(k + 1). The process repeats until the entire transient response has been

solved.

It is difficult to interpret the TRANAL algorithm physically. The method in which the
interface element stresses are used in the minor cycle calculations seems somewhat similar to
using an average stress solution, which might imply relatively good solutions when using the

algorithm. Good results from the TRANAL algorithm are observed in the test problems .




SECTION 3
NUMERICAL RESULTS AND DISCUSSION

To study the behavior of the seven proposed subcycling algorithms, three one dimensional
test problems were analyzed. The test problems are shown in Figure 15. The bar was divided
into two subcycle zones, each zone containing three elements. A unit value Heaviside step
force was applied to the right end of the bar. The only difference between the test problems
was specification of the elastic moduli for the two element groups. The transient response
calculated using the various subcycling algorithms is compared to the transient response
calculated using the standard central difference explicit algorithm with a time step equal to
0.495 of the critical time step in problem 1 and 0.496 of the critical time step in problems 2
and 3.

Not shown are results from the quadratic nodal interpolation algorithm as the solutions

obtained were virtually identical to the linear nodal interpolation algorithm solutions.

a. Test Problem 1,

In the first test problem, the elastic moduli for the two element groups are equal. While
subcycling is not beneficial for this problem, it was felt that the problem would be a fair
comparison of the subcycling algorithms because the interface between the two element groups
transmits the elastic wave with no reflections. Thus, the interface condition does not favor

any particular subcycling algorithm.

An exact solution for this problem can be obtained using the standard central difference
method with a time step equal to the critical time step. The exact solution is shown in Figure
17a.i. Also shown in Figure 17a are results from the central difference algorithm with a time
step of 0.990 of the critical time step (Figure 17a.ii) and 0.495 of the critical value (Figure
17a.iii). As can be seen, the error in the calculated response increases as the time step is

reduced, due to resolving the response of the undesirable high frequency modes.

For comparison with the subcycling algorithm solutions, it is appropriate to use Figure
17a.iii because the minor cycle time step used in the subcycling calculations was 0.495 of

9




the critical time step, while the major cycle time step was 0.990 of the critical value. Thus,

m = 2 for problem 1. The group 1 elements were selected as the minor cycle elements.

Figure 17b presents results from three of the nodal partition algorithms. As can be seen
from Figures 17b.ii and 17b.iv, the constant displacement algorithms produced unstable so-
lutions. The observed instability is not the typical explosive growth associated with violating
the critical time step criterion for explicit algorithms. Instead, the instability more closely
resembles linear growth. Linear instability is the typical mode of instability observed in

the subcycling algorithms, once the central difference algorithm time step restrictions are

satisfied.

The linear nodal interpolation algorithm produced excellent results (Figure 17b.iii) when
compared to the central difference algorithm (Figure 17b.i).

Figure 17c compares results from the central difference and the element partition algo-
rithms. The “free” element partition algorithm (Figure 17c.ii) produced a stable solution but
very poor accuracy as the free boundary condition during the minor cycle updates results in a
significantly softer response exhibited by elongation of the period of vibration and increased
displacement. Figure 17c.ili shows that the constant stress algorithm is unstable for this
problem. Note that the magnitude of instability is much larger than observed in its nodal
partition counterpart (Figure 17b.ii). This is the result of including less information in the
minor cycle zone updates. Finally, the TRANAL algorithm results, shown in Figure 17c.iv,

are in excellent agreement with the central difference algorithm solution.

It can be concluded from the first test problem that only the linear and quadratic nodal
interpolation and the TRANAL element partition algorithms produced results of equal quality

compared to the central difference algorithm.

10




b. Test Problem 2,

In the second test problem, the elastic modulus of the left element group was 64 times
greater than that of the right element group. This problem is a more realistic application of
the subcycling schemes and is representative of a soft structure mounted on a stiff foundation.
The critical time step for group 1 is 8 times smaller than the critical time step for group 2,

thus element group 1 is the minor cycle element group.

To determine how well the algorithms responded to different degrees of problem difficulty,
the time step ratio, m, was varied. Typically the problem difficulty increased as m increased.
The most difficult condition for the subcycling algorithms is when the solution time steps are
equal to the critical subcycle zone time steps. With the minor cycle time step chosen as 0.992
times the critical minor zone time step, the major cycle time step was varied such that m
equaled 2, 4, and 8. With the minor cycle time step chosen as 0.496 times the critical value,

the major cycle time step was varied such that m equaled 4, 8, and 16.

For notational convenience, At, represents a time step of 0.992 times the critical minor

zone time step.

Figure 18a compares results from the central difference algorithm and nodal partition
subcycling algorithms for m = 2 and At, = 1.0. All the algorithms produced excellent

results.

Figure 18b compares results from the element partition algorithms for m = 2 and At, =
1.0. Again, all algorithms show excellent agreement with the central difference solution. The
interface condition in this problem is similar to a free boundary condition, hence good results

were obtained by the “free” element partition algorithm.

Figure 18c compares results from the nodal partition algorithms for m = 4 and At¢. = 1.0.
General comparisions are quite good, although some deviation in response is noted. Similar
results are observed in the element partition algorithms as shown in Figure 18d.

By halving both major and minor cycle time steps, while keeping m = 4 (thus At, = 1/2),
Figures 18e and 18f show the results from the subcycling algorithms are nearly identical to
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the central difference algorithm response.

Figure 18g shows results from the nodal partition algorithms when both subcycle zones
were run at nearly critical time steps (m = 8, At. = 1.0). Figure 18g.i shows results obtained
by using the central difference algorithm with a time step equal to the minor cycle zone
critical time step. While the first several cycles of response are in general agreement with
the central difference solution, there is noticeable oscillation in the displacements of several
nodes by the fifth vibration cycle. The solutions were continued and all of the subcycling
algorithms exhibited unstable solutions, although the linear and quadratic nodal interpolation
algorithms required more cycles to reach the same level of instability compared to the constant

displacement nodal partition algorithm.

During the first several vibration cycles before the instabilities corrupted the solutions,
the subcycling algorithms produced results which are closer to the expected exact solution of
the partial differential equation than the central difference algorithm. The exact solution is
expected to appear as step or triangular waves as seen in the exact solution to problem 1 with
some perturbations due to reflections from the material discontinuity interface. The central
difference algorithm allows optimal selection of the time step for the minor cycle zone, but

also arouses the undesirable higher frequency modes of the system.

Figure 18h shows results for the element partition algorithms for the same parameter
values (m = 8, At. = 1.0). Figure 18h.i shows results obtained by using the central differ-
ence algorithm with a time step equal to the minor cycle zone critical time step. The “free”
element partition algorithm solution, Figure 18h.ii, is in general agreement with the central
difference solution and appears to more accurately portray the exact solution to the problem.
Continuation of the solution showed the “free” element partition algorithm remained stable.
The constant stress and TRANAL algorithms, Figures 18h.iii and 18h.iv, respectively, re-
sulted in unstable solutions. The TRANAL algorithm shows particularly large instability by
the end of the fifth vibration cycle.

This instability in the TRANAL algorithm has been noted by Wright and Baylor. In
12




the results shown so far, the TRANAL algorithm was implemented by splitting the subcycle
zones directly at the material discontinuity. As described by Baylor, the following procedure
is used in all subcycle calculations at Weidlinger Associates using the TRANAL algorithm.
At each subcycle-zone interface, at least one element from the less critical element group is
included in the more critical time step group. Thus, the subcycle-zone splits are not at the
“natural” splits which result from the material discontinuities. Baylor also noted that for
linear problems, the TRANAL code automatically selects a time step for a subcycle zone

equal to 0.8 times the minimum critical time step for the elements in the zone.

Figure 18i compares results from the central difference algorithm using the critical mi-
nor zone time step (Figure 18i.i), TRANAL with the natural element split (Figure 18i.ii),
and TRANAL with the recommended element split (Figure 18i.iii). Clearly, the solution
is greatly improved by including one of the softer elements into the minor cycle zone. Ex-
tended calculations show that the TRANAL algorithm was stable when the element shift was

performed.

With m = 8 and At. = 1/2, results from the nodal and element partition subcycling
algorithms, shown in Figures 18] and 18k, respectively, are again in good agreement with the
central difference algorithm solution. These results are virtually identical to those shown in
Figures 18c and 18d. The major time step value is the same in both sets of results. These
results, coupled with the instabilities observed when m = 8 and At¢, = 1.0, imply that the
critical time step in subcycling algorithms, once the minor time time has been chosen properly,

may be the major time step.

To substantiate this idea, the subcycling algorithms were run with At, = 1/2 and m = 16.
Thus, the major cycle time step was again nearly equal to the critical major zone time step.
The results are shown in Figures 18] and 18m for the nodal and element partition algorithms,
respectively. The central difference algorithm solution was obtained using the minor cycle
zone critical time step. With the exception of the “free” element partition algorithm, the
subcycling algorithms exhibit linear instability. In this case, the TRANAL algorithm was
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run using the “natural” element split. Thus, the linear instability seems to be attributable
to the choice of major zone time step while explosive instability is attributable primarily to

the minor zone time step.

Figure 18n compares results obtained from the TRANAL algorithm, for m = 16 and
At. = 1/2, when using the different element split criteria. The recommended element split,
(Figure 18n.iii) compares favorably with the central difference algorithm solution obtained
using the critical minor cycle zone time step (Figure 18n.1), while the natural element split

solution (Figure 18n.ii) exhibits linear instability.

Additional calculations were performed by selecting m = 8 and reducing the ratio of
the solution time step to subcycle-zone critical time step. Stable solutions were obtained
when a time step ratio of 0.96 was used for the quadratic interpolation nodal algorithm, 0.95
for the linear nodal interpolation algorithm, 0.94 for the TRANAL algorithm, and 0.90 for
the remaining algorithms. These values are certainly problem dependent and emphasize the

uncertainty in selecting subcycle time steps to obtain accurate and stable solutions.

It can be concluded from the problem 2 results that only the “free” element partition
algorithm produced stable results in all cases tested. For this problem, unlike problem 1, the
“free” element partition algorithm also produced accurate results. The remaining algorithms
produced good solutions unless the major time step was chosen to be nearly equal to the
major zone critical time step. Linear instability resulted when the major time step value was
chosen to be equal to 0.992 times its critical time step value. For the TRANAL algorithm,
however, by following the more restrictive Weidlinger Associates recommendations, a stable

solution was obtained.

c. Test Problem 3.

In the third test problem, the elastic modulus of the right element group was 64 times
greater than that of the left element group. This problem is representative of a stiff structure
mounted on a soft foundation. The critical time step for group 2 elements is 8 times smaller
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than the critical time step for group 1 elements, thus element group 2 is the minor cycle

element group.

Figure 19a compares results obtained from the central difference algorithm and the nodal
partition algorithms for m = 2 and At. = 1.0. The first constant displacement algorithm,
Figure 19a.ii, seemingly exhibits dissipative properties. However, continued solution of the
problem showed linear instability. The linear nodal interpolation algorithm, Figure 19a.iii,
is in excellent agreement with the central difference algorithm solution. The extrapolated
displacement nodal algorithm solution, Figure 19a.iv, shows linear growth. The solution was

continued and was observed to increase without bound.

Figure 19b shows results obtained from the element partition algorithms for the same
parameter values (m = 2, At. = 1.0). The “free” element partition algorithm, Figure 19b.ii,
produced a stable solution but, like problem 1, the period and amplitude of response are very
poor compared to the central difference algorithm solution. The constant stress algorithm,
Figure 19b.iii, exhibits a linear growth in the displacement response which continued to
increase as the solution was extended. Finally, the TRANAL algorithm, Figure 19b.iv, with
a “natural” element split, is shown to be in excellent agreement with the central difference

algorithm solution.

Since reducing the time step ratio to At = 1/2 in problem 2 greatly improved the
subcycling algorithm solutions, provided that the major time step was not at its critical
value, the same reduction was performed for problem 3 with m = 2. The results are shown in
Figures 19¢ and 19d for the nodal and element partition a.gorithms, respectively. The linear
nodal interpolation and TRANAL algorithms already provided excellent results for At, = 1.0,
and their solutions are equally good for At. = 1/2 (Figures 19c.iii and 19d.iv, respectively).
The dissipative behavior of the constant displacement algorithm, Figure 19c¢.ii, is less than
observed for At, = 1.0, but an extension of the solution showed that the algorithm was
still unstable. As would be expected, the magnitude of the instability was less at the same
time value when At. = 1/2. Similarly, the solution growth observed for the extrapolated
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displacement algorithm was less when At. = 1/2, but also continued to increase without

bound as the solution was extended.

The “free” element algorithm response, Figure 19d.ii, did not improve greatly by using
At. = 1/2 rather than At, = 1.0. The constant stress algorithm, Figure 19d.iii, like the
extrapolated displacement algorithm, showed improved response, but continued its linear
growth with time. Thus, the reduction in the time step ratio did not appreciably improve

the behavior of the subcycling algorithms for problem 3.

Figure 19e shows results obtained for m = 4, At. = 1.0, when using the nodal partition
algorithms. While the linear nodal interpolation algorithm, Figure 19e.iii, is in excellent
agreement with the central difference algorithm, the onset of instability is easily seen in both

constant displacement algorithms (Figures 19e.ii and 19e.iv).

Results obtained from the element partition algorithms for m = 4 and At = 1.0 are
shown in Figure 19f. The “free” element algorithm solution, Figure 19f.ii, while stable, is
greatly inaccurate. The onset of linear instability is clearly evident in the constant displace-
ment algorithm solution, Figure 19f.iii. Like the linear nodalinterpolation algorithm, the
TRANAL algorithm, with “natural” element split, Figure 19f.iv, agrees very well with the
central difference algorithm.

The final set of results for problem 3 are shown in Figures 19g and 19h for m = 8 and
At. = 1.0. Linear instability is evident in the constant displacement algorithms, Figures
19g.ii and 19g.iv and also in the constant stress algorithm, Figure 19h.iii. The degradation of
accuracy in the “free” element algorithm solution has continued, as shown in Figure 19h.ii.
Only the linear nodal interpolation algorithm and the TRANAL algorithm, Figures 19g.ii1

and 19h.iv, respectively, are in agreement with the central difference algorithm.

It can be concluded from the problem 3 results that only the linear and quadratic nodal
interpolation algorithms and the TRANAL algorithm produced stable and accurate results.
The constant displacement and constant stress algorithms were not stable for any of the
chosen parameter values. The “free” element algorithm , while stable, was not accurate.
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d. Test Problem 4.

The results from the first three test problems show that the most viable subcycling al-
gorithms are the linear and quadratic nodal interpolation algorithms and the TRANAL al-
gorithm. As noted above, the recommended implementation of the TRANAL algorithm is
to include at least one element from the less critical time step zone into the more critical
time step zone when partitioning a problem. Also, in the TRANAL finite element code, a
time step of 0.8 times the critical element time step is used in each subcycle zone for linear
problems. The shifted element split was used in problem 2 and was shown to stabilize the
TRANAL algorithm compared to the “natural” element split. However, due to the small
problem size, this element shift left only one node in the major cycle zone. To determine the

effectiveness of the element shift procedure, a 20 element version of problem 2 was evaluated.

Figure 20a shows the problem mesh and parameter values. The critical time steps for

both element groups are identical to problem 2.

Figure 20c compares results obtained from the central difference algorithm using the
critical minor cycle zone time step (Figure 20c.i), and various TRANAL algorithm imple-
mentations. The results shown in Figure 20c.ii were calculated with At. = 0.8, m = 8, and
the “natural” element split. The instability is evident by the end of the third vibration cycle.
Thus, it is not sufficient to only reduce the time step to 0.8 times the critical time step. The
sensitivity of solution stability to the chosen subcycle time steps and problem specification
is apparent when the results from this problem are compared to the problem 2 results. In
problem 2 , the TRANAL algorithm was stable with time step ratios less than or equal to
0.94.

Next, the time step ratios were maintained in both subcycle zones at 0.8 times the critical
values while one of the major cycle elements was shifted into the minor cycle zone. The
results in Figure 20c.iii show that the element shift and the reduced time step ratio were
sufficient to stabilize the algorithm. Finally, the time step ratios in both subcycle zones were
set equal to their critical time steps and one of the major cycle elements was shifted to the
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minor cycle zone. Figure 20c.iv shows that the element shift alone is sufficient to stabilize the
algorithm. These results imply that the combination of reduced time step and element shift
provides some margin of stability for the TRANAL algorithm. However, it is not possible to

define a definite stability criterion based on the results of these simple test problems.

Since the element shift greatly improved the stability of the TRANAL algorithm, it is
natural to apply the same technique to the linear interpolation nodal algorithm. Figure 20d
compares results from the central difference algorithm using the critical minor cycle zone
time step and two linear nodal interpolation algorithm implementations with m = 8. With
the time step values equal to 0.8 times the critical values and the standard nodal split,
Figure 20d.ii shows the linear nodal interpolation algorithm is in excellent agreement with
the central difference algorithm. Unlike the TRANAL algorithm, this reduction in time step
was sufficient to stabilize the algorithm. Thus, there was no need to run the linear nodal
interpolation algorithm with the reduced time step and the element shift (hence, no Figure
20d.ii1). With both time steps equal to their critical values and one major cycle zone element
shifted into the minor cycle zone, the linear nodal interpolation algorithm is stable and agrees

well with the central difference algorithm (Figure 20d.iv).

It can be concluded that the linear nodal interpolation algorithm is more stable than the
TRANAL algorithm for problem 4. Stability in both algorithms was acheived by shifting one

major cycle element into the minor cycle zone.

18




SECTION 4
CONCLUSIONS

Of the seven subcycling algorithms evaluated, only the TRANAL algorithm and the linear
and quadratic nodal interpolation algorithms provided stable and accurate solutions for the
problems studied. However, when partitioning the problem into subcycle zones by using
“natural” material partitions, time step restrictions more severe than time step restrictions
based on the minimum time step in a subcycle zone were obser—-ed. This time step restriction
was eliminated by shifting one element from the major cycle zone in the minor cycle zone.
However, the ability to implement the subcycling algorithms on vector and parallel computers

is lost when the “natural” eiement split is not used.

The only other stable algorithm for all test problems was the “free” element algorithm.
However, the loss of accuracy when using this algorithm was severe in two of the three test

problems. It can not be considered a viable algorithm for general problems.

The results from this study are not sufficient to specify a definite set of stability criteria for
subcycling algorithms. To define such a set of stability criteria requires a rigorous analysis of
the subcycling algorithms. However, the algorithms evaluated in this study are not amenable

to analysis using standard techniques.

The evaluation of the different proposed subcycling algorithms in this report has shown
that these algorithms must be used with considerable caution. The reduction in the critical
time step for stable solutions, without the element shift, introduces an undesirable variable in
the subcycling algorithms, particularly when applying these algorithms to nonlinear problems
where plasticity of the material may absorb energy produced by algorithmic instabilities. In

such cases, the numerical solution would be stable but would exhibit excessive plasticity.

Further work is necessary to establish stability criteria for subcycling algorithms. The de-
velopment of a new subcycling algorithm is also highly desirable. Such an algorithm should be
amenable to stability and accuracy analysis. Effective implementation of any new subcycling
algorithms should also be possible for vector and parallel computers. This is a crucial point.
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It seems to us that current subcycling algorithms, due to restrictions on their use which are
unnatural from a finite-element data-structure standpoint, will only perform in a superior
way in a totally sequential computing environment. The state-of-the-art is already beyond
this point. In fact, fully vectorized explicit schemes (as well as implicit) are in current use.
Unless a new class of vectorizable/parallelizable subcycling schemes is developed, the current

subcycling schemes will not be able to compete with existing vectorized explicit schemes.
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Figure 2. Timing diagrams for constant displacement nodal partition algorithm.
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Figure 4. Timing diagrams for linear nodal interpolation algorithm.
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Figure 9. Timing diagrams for “free” element partition algorithm.
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Figure 11. Timing diagrams for constant stress element partition algorithm.
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Figure 15. Three one-dimensional test problems.
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Figure 16. Results legend for test problems 1-3.
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Group | Elements Group 2 Elements
E;= 64.0 E2= 1.0
A1= h1= 1.0 A2= h2= 1.0

SUBCYCLING PROBLEM NO. 4

Figure 20a. Test Problem 4.

CURVE LEGEND

O =node 1

O=node 3
A=node 5
o =node 7

vV =node 9
O =node 1
% =node 13

Figure 20b. Results legend for test problem 4.
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