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ABSTRACT

This represents the final report on our recent 4 year effort. We briefly review our

Iprior feature space and distortion-invariant processors. We then highlight several of our

optical Al processor concepts. Emphasis is given to new associative processor and

directed graph optical systems for large knowledge base processing.I
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CHAPTER 1:

INTRODUCTION

This final report provides a comprehensive review of the past 4 years of our

3 research. Chapter 2 summarizes various possible optical feature spaces that can be

optically generated with emphasis on the use of computer generated holograms [1].

These operations demonstrate the growing flexibility and variety of operations possible on

a fixed optical processor. Chapter 3 summarizes much of our distortion-invariant pattern

recognition work [21. This work has resulted in major and widely used techniques for 3-D

aspect-Invariant target recognition. In the course of years 2 and 3 of this program, we

devised various optical Al processors. These include: a model-based processor [3,4], a

symbolic processor [5,6], a rule-based processor [7], and a hierarchical processor [5],

among others. Chapter 4 summarizes this work [8-11).

3 Our most recent efforts have concentrated on associative processors and directed

graphs. Chapter 5 provIdes our optical directed graph large knowledge base Initial

I concepts [ 12]. Chapter 6 includes our most recent directed graph large class work [ 13).

Chapters 7-10 detail our associative processor progress [ 14-17]. This Includes attention

to heteroassociative processors, new performance measures, improved encoding

3 techniques, and storage capacity analyses of various associative processors (Chapter 7).

It also Involves new update techniques for adaptive and learning associative processors

(Chapter 8). Our work also concerns the use of new key vector representation spaces

such as feature spaces and symbolic data (Chapter 9), and initial Ideas on new high

capacity Ho-Kashyap associative processors for operation on linearly-dependent key

I vectors and improved performance (Chapter 10).

I Chapter 11 lists all 82 papers published under this grant and all presentations and

3 degrees granted under support of this AFOSR grant.
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Computer generated holograms in pattern recognition: a review

David Cassent Abstract. Holographic optical elements and computer-generated holograms
Carnegie-Mellon University (CGHs) offer many attractive properties and uses. In this review, we consider
Department of Electrical and the use of holography in pattern recognition, with specific attention to recent

Computer Engineering work with CGH elements.Pittsburgh, Pennsylvania 15213
Subject termn holography; chorddistributiom" comp ter-generatedholograi; coordinate
transformatior" correlator; feature extractor; Fourier coefficient, holographic optical ale-
men" moment" optical pattern recognition, Sobel transform space-variant transform.

Optical Engineering 24(5), 724- 730 (September/October 1985).

CONTENTS the large amount of work in this area. The classic optical Fourier
I. Introduction transform (FT), image multiplication, and frequency plane correla-
2. Basic optical processing architectures tor(FPC) architectures are discussed. The basic elements of a pattern3. Feature extraction concepts recognition system are then presented (Sec. 3) in general form. Image
43. Fo ereerat coepts inprocessing (Sec. 4), feature space generation (Sec. 5), recent optical
4. Computer-generated holograms (CGHs) in image processing correlator research (Sec. 6), and new filter functions to provide more

5.1. CGH-produced wedge-ring sampled Fourier coefficient practical optical correlators and to greatly aid in fabrication of
feature space small-sized optical correlator architectures (Sec. 7) are then

ofeature space advanced. In Secs. 3 through 7, emphasis is given to the use of CGHs5.2. CGH-produced chord distribution feature space in the realizations of difftrent OPR architectures, processing func-
5.3. S prducediat m feature space ntions, and their fabrication. The examples chosen are those for which
5.4. Space-variant CGH feature space generation CGHs thus far have been demonstrated to have use.

6. Recent optical correlator research using CGHs Gstufahvebndmotredohves.7. Distortion-invariant optical correlators Many of the image processing basics required (Sec. 4) are detailed
8. Summary and conclusion in Ref. 13. Edge enhancement is a particularly necessary operation
9. Acknowledgments for multisensor and other object identification applications. These

10. References operations are best detailed in Ref. 14. The optical CGH architec-
tures to achieve these functions are based on the work in Refs. 15 and

1. INTRODUCTION 16 and follow the basic concepts first addressed in Ref. 4. The
optically generated feature spaces (Sec. 5) include Fourier coeffi-Holography has many uses, roles, and applications in pattern recog- cients,'7- 22 moments, 23 -2 7 chord distributions,9.29 and space-variant

nition.'-3 Several recent reviews and journal special issues address transform feature spaces. 36-41 The optical feature extraction archi-
optical pattern recognition (OPR)2 and holography in pattern tecture (Sec. 5) and concepts (Sec. 2) are reviewed elsewhere"S.30and
recognition.2-3 In this present review, we consider recent work with their optical CGH realization is fully detailed elsewhere. 14-41 The
emphasis on holographic optical element (HOE) and computer- recent optical correlator research using CGHs (Sec. 6) follows Refs.
generated hologram (CGH) holographic elements for pattern recog- 43 through 53 with the synthetic discrimination function correlator
nition. The basic CGH and HOE concepts were initially advanced by research in Sec. 7 based on Refs. 54 through 61. The fabricated
Lohmann and Paris.' An excellent review of implementations by architectures discussed are detailed in Refs. 42, 62, 63, and 65.
W. Lee exists,5 together with the proceedings of a recent inter-
national SPIE conference.b It clearly notes the wide versatility of 2. BASIC OPTICAL PROCESSING ARCHITECTURES
these elements and the considerable interests in their use. A particu-
larly attractive use of CGH for pattern recognition, as well as for Many different optical architectures exist that are suitable for pat-
optical interconnections, is based on the original work of Bryngdahl tern recognition using CGHs. The basic coherent optical processor is
in CGHs for coordinate mapping. 7-8 The kinoform phase CGH" is the Fourier transform (Ftr) architecture (Fig. I) that produces at P2
also most attractive for light efficiency. OPR covers many architec- th anothe inut paerat architecture ofsFig.e9 sec. 5.3)
tures, algorithms, and techniques. The details of many of the optical is another useful general architecture that demonstrates several pat-
algorithms and architectures are provided in several recent tern recognition and data processing features of optical systems.
reviews. 9-" The associated digital realization of the basic feature Figure 9 shows plane P, imaged onto plane P2. This yields the
extraction algorithms noted can be found in Ref. 12. product of the 2-D distributions in each plane. The output lens in the

In Sec. 2, we review the basic coherent optical processing architec- system achieves the integration or point-by-point summation of
tures. We restrict attention to coherent architectures in general since these 2-D product data. Thus the integrated product of the two
suitable sources for these systems are readily available and because of functions is formed at the output plane P3. The classic frequency

plane correlator' of Fig. 2 realizes the correlations of g and h at P3with g entered at P, and the conjugate transform H* of h at the Fr
Invited Paper HO-101 received Feb. 9, 195; revised manuscript received March 29, plane P2 as a matched spatial filter (MSF). The output at P3 is the
195; accepted for publication March 29. 1985; received by Managing Editor May 31. 2-D correlation function
1915. This paper is a revision of Paper 532-10 which was presented at the SPIE
conference on Holopraphy: Critical Review of Technology, Jan. 24-25, 1915, Los
Angeles, Calif. The paper presented there appears (unrefereed) in SPIE ProceedingsVol. 532. ,IJ[FG*] = g(x,y)h(x - r! ,y - r2)dxdy , (I)
* 19185 Society of Photo-Optical Instrumentation Engineers. JJ
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COMPUTER GENERATED HOLOGRAMS IN PATTERN RECOGNITION: A REVIEW
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INPUT PLANE

Fig. 1. Coherent optical Fourier transform processor. Fig. 2. Coherent optical matched spatial filter (MSF) frequency plane
correlator.

INPUT PREPROCESSING FEATUkE DIMENSIONALITY FEATURE DIGITAL -4ORIENTATION I
IMAGE (EDGE ENHANCEMENT) GENERATION REDUCTION EXTRACTION POST-PROCESSOR /LOCATIONEXTRACTON a /OCAIN

CGH FILTER CGH/HOE CGH SAMPLING LDF PROJECTION
MASKS, CT COMBINING AND VIP

SUMMAT ION
CGH OR DIGITAL

Fig. 3. Block diagram of a general feature extractor pattern recognition system with emphasis on the use of CGHs.

where J denotes the FT operator and r i and T2 the correlation plane
shift variables.FETR VI 0 I ,H ,H1A1

FEATURHEAR CLASS

P L N L E RC S I O N O R I N T A T I O N
3. FEATURE EXTRACTION CONCEPTS 'lAI I CONFIDNC

rGM

In Fig. 3, the basic feature extractor approach to pattern recognition (a)
is outlined in block diagram form. The blocks are selected to separ-
ately identify the different CGH and other units in the feature extrac- - "SHR"' CLASS
tion pattern recognition systems to be discussed in subsequent INPA CI OILTRIEATOsections. The CGH roles within each block are noted beneath the -- ,,s I CORRELATOR ''- ER E -

corresponding block. The preprocessor performs noise reduction, RANDOM CODED
edge enhancement, and other functions by local operation such as t-PHASE PLATES--
median filtering, Sobel operators, etc., as detailed in Sec. 4. The (bi
feature generators (Sec. 5) produce scalars that describe the input Fig 4. Two approachstotheueof optial CGHs forfeatureextrction
image as the elements of a feature vector. Five different optical in (a) feature apace and (b) image space.
feature generators using CG Hs are detailed in Sec. 5. Dimensionality
reduction refers to reducing the dimensionality of the feature space
used (to simplify post-processing requirements). An optical wedge details of these feature extractors in pattern recognition are provided
ring detector (WRD) simulated by a CGH has considerable use in elsewhere. 2

dimensionality reduction, as discussed in Sec. 5.1 in conjunction with
a Fourier coefficient feature space. This WRD is also useful in the 4. CGHs IN IMAGE PROCESSING 13-16

generation of a chord feature space. By the term image processing we generally refer to the production of
The feature extractor portion of such a processor involves the a better image from the original input image. This is necessary with

projection of the feature vector x onto a linear discriminant function feature extractors to allow their efficient performance. The classic
(LDF) wi for class i object identification. From the vector inner operations1 include median filtering, edge enhancement, and various
product (VIP) wTx value compared to a threshold T, a decision on histogram operations. One must generally restrict preprocessing
the object class is made. Optical feature extraction using CGHs is operations to such simple ones since they are easily realized in
possible by two general techniques. In Fig. 4(a), a CG H in the feature real time. Herein, we detail and demonstrate the use of CGHs and
space provides the projection of x onto the LDF vector wi for class i multiple MSFs to realize general local operators of any window size.
with the projected vector inner product scalar outputs for each class i We concentrate attention on edge enhancement operations since
formed at different spatial locations in the output plane.3' The they are necessary in multisensor image pattern recognition and
second method [Fig. 4(b)] 32-35 operates on the input image space other similar cases.' 3 '4Oneof the most attractive edge enhancement
directly. All major types of feature extractor algorithms, including operators is the Sobel. This transforms an input image f into an
unitary transformations, can and have been demonstrated on these edge-enhanced image g. It can be realized with f at P, and a CGH of a
systems. These include Fukunaga-Koontz, Foley-Samon, Fisher, filter h at P 2 of Fig. 2. The P3 output is g = f* h, where h is the sum of
least squares, and dominant eigenvector feature extractors. The two 3 X 3 local point operators, as detailed elsewhere. 5 For the Sobel

OPTICAL ENGINEERING / September/October 1985 / Vol. 24 No. 5 / 725
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GENERAL ,

DYNAMICS .
(a)

(a) (b)
Fig. 6. CGH Sobel edge enhancement (b) of . gray-scale aerial image
(als

* C E N ~ f~, 
di

(b)

Fig. 5. CGH Sobel edge enhancement (b) of a binary input image (a).15

(a) (b)
operator case, this filter function is the sum of a number of delta Fig.7. CGH synthesi(a)ofawedge-ringdetectorsamplingsystemand
functions at different spatial locations and with different complex/ the corresponding output plane results (b).1'
bipolar weights. In Ref. 15, we detail how to realize these filters using
multiple-exposed MSFs and using CGHs. The use of CGHs is
superior to conventional holographic filters since they offer more Reference 22 best details the use of such a feature space for pattern
flexibility in the size and type of local operators and in the efficiency recognition and includes comparisons of the performance of various
and dynamic range of the filter function plus considerable ease of feature extractors. Figure 7(a) shows the CGH format to produce a
fabrication. They are also less susceptible to and more easily cor- CGH/WRD. (A grating with different spatial frequencies and angu-
rectable for the t-E curve of the film used. Similar advantages apply lar orientations is present in each P2 region.) Figure 7(b) shows the
to most uses of CGHs. specifically as the MSFs in an optical correla- outputs (wedges on the top and rings on the bottom) from such a
tor. Figures 5 and 6 show examples of the optical Sobel edge CGH after transformation and focusing onto the plane of a rectangu-
enhancement of images with optically produced CGH filters. lar detector array. The design, fabrication, and initial tests on this

WR D CGH are detailed in Ref. 17. The fabrication of such a system
5. CGH FOR FEATURE GENERATION in a 2 in. X4 in. volume has been noted.'7 and the basic concepts have

In all feature extractors, the generation of the features is the most been experimentally verified. Detailed use of this pattern recognition
computationally intensive operation. Herein, we detail four CGH concept in the identification of letters and vehicles using different
optically generated feature space processors and provide references feature extractors has also been reported 22 with promising results.
for the excellent performance possible with such algorithms. 5.2. CGH-produced chord distribution feature spaceMM"

5.1. CGH-produced wedge-ring sampled Fourier coefficient feature For a binary boundary object, a chord of length r and angle 0 can be
space7 -22  drawn between allpairs of points on the boundary. The object can
The optical FT coefficient outputs at P2 in Fig. I are the simplest then be described bythechord transform h(r, 0) plot of thedistribu-
optically generated features. This is also a most useful feature space tion of the length and angle of all chords. This distribution is attrac-
since the radial FT pattern provides scale information, its angular tive because h(r) is invariant to in-plane object rotations and h(o) is
distribution provides rotational information, and its magnitude is invariant to object scale changes. The autocorrelation of the input
translationally invariant. The use of an HOE in place of the FT lens is object is usually achieved optically (using a CGH point hologram,
obvious. An FT space is also attractive because it is well knowr, to be nonlinear crystals, the intensity of the Fourier transform, a joint
very useful for data compression or dimensionality reduction, transform correlator, etc.) and produces the distribution
Sampling of the FT plane with a detector with wedge- and ring-
shaped detector elements (a wedge-ring detector, WRD) is the most h(dx ld g(xy)g(x - dx y - d'dd (2)
obvious technique20 for dimensionality reduction that has been y ,,,, -fxy
widely exploited.2' In Ref. 17, we detail the optical synthesis of such
WR Ds using a CGH. The CGH system in Ref. 19 intended for fluid of the horizontal and vertical projections dX d of all chords.28 To
flow analysis can also achieve such a WRD synthesis, as can the reduce this space further for easier feature extraction, we suggested 28
techniques in Ref. 18 intended for fiber optic coupling applications. WRD sampling of the autocorrelation. This is achieved with the

726 / OPTICAL ENGINEERING / September/October 1985 / Vol. 24 No. 5
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INPUT' NIkWR g:,4., LFATUR EXTRACTION
,".T .AUTOCORRELATI PL (FISHER)osomT "+ I ++ +- lNID CLASSIFPICATIONJ

Fig. 8. Block diagram of an optical CON chord distribution featur, spece pattern retognition syatem.

CGH WRD noted in Sec. 5. 1. This produces separate length h(r) and
angle h(O) chord distributions.

We also 2s ' noted extensions of this generalized chord distribu- Input P Mask
tion for silhouette objects and gray-scaled objects. The optical syn- ICiLY) ot9.yI
thesis technique achieves these general chord distributions at no - -",
increased cost. In both the FT and chord sampling WRD, the use ofan optical CGH achieves all the necessary interpolation directly. 0>--)-V " V '

(Such interpolation operations can be time-consuming digitally, and P, Imaging ps F T Pa
generally a table look-up method is required digitally.) Figure 8 Optics Lens
shows the general block diagram for synthesis of such a chord I
distribution feature space. Reference 28 includes extensive simula- F
tion results on the pattern recognition performance of a chord distri- Fig. 9. Optical CON astem to produce a moment featur apace
bution feature space for ship identification. (Perfect 100% correct
classification is achieved for a two-class problem with 12 training set
images per class in the face of 3-D out-of-plane rotations or aspect I
distortions with tests performed on 36 images per class.) The exten-
sion of this feature space to in-plane scale and rotational distortions M0o +"0
and to the estimation of these orientation parameters of the object 0 0 -
from this feature space w-. e recently discussed."6 M20 H 00 "02

53. CGH-produced moment feature space23-37 , 7  -"1o -"i 'M 1

The moments of an input object are a well-known and used feature (al (b)
space. The moments

p = ff f(x,y)xPyidxdy (3)

of an input object f(x, y) can be calculated on the system of Fig. 9.
This system produces on-axis at P 3

(c) (d)

u3(0,0) = [[f(x,y)g(x,y)dxdy , (4) Fig. 10. Output format (a) and examples (b), (). and (d) of optically
produced moment features using CGH.' 7

as discussed in Sec. 2. With the mask function g being different
monomials xPyq on different spatial frequency carriers, the P 3 out- Figure 10(b) shows the P3 output for a rectangular object with 2:1
puts are the moments in Eq. (3) all generated in parallel and all aspect. From m20/ 4 2, we calculate 2.02 as the aspect ratio, and thus
occurring at spatially separated locations in P 3 where they can be this aspect estimate is quite accurate. Since the + and - parts of ml 0
measured easily by separate detectors. This synthesis concept was and mol are equal, we know the object's location (i.e., it is centered).
initially advanced in Refs. 23 and 24. One can realize the mask g(x, y) In Fig. 10(c), the input object is shifted. The + and - parts of m!!
required using cosine functions 24 or exponential functions 2" for the change, and from these we can determine the object's shift. Figure
carriers with each being formed by CGHs. In the first case, only an 10(d) shows the result when the object is rotated. From the in 1 and
amplitude CGH pattern is necessary. In the second case, a complex- other values obtained, we can determine the amount of rotation of
valued CGH pattern is required. the input object.

The moments computed on the system of Fig. 9 are easily cor-
rected for various mask resolution, system nonlinearity, and mis- 5. Space-varlant CGH feture apace generatlon -'di
focusing errors.2' A full two-level estimator, feature extractor, and If the input object at f(x,y) is coordinate transformed, then the
post-processor architecture using a moment feature space have been magnitude of its FT offers several interesting distortion-invariant
detailed26.27 and ex,.,,sively tested on a large 324 image five-class feature spaces. This class of optical system is referred to as a space-
data base of pipe parts,26 on a large 180 image five-class ship data variant optical processor. The most comprehensive review of this
base,27 on real image data, and with attention to precise distortion type of pattern recognition is in Ref. 36. If the object distortion can
parameter estimation. All of these tests were performed with 3-D be mathematically described as an equation, then, using a general
aspect view distortions present. The system of Fig. 9 with a cosine formula,3' the required coordinate transform (such that the resultant
mask should be capable of optically producing the first 21 moments FT pattern is invariant to this distortion) can be determined. If the
up to fifth order in parallel. An example 67 of ten optically generated dimension of the distortion space is greater than the dimensionality
moments using a complex-valued CGH exponential mask is shown of the processor (e.g., two is the maximum conventionally available),
in Fig. 10. Figure 10(a) shows the output P 3 plane format. (Note that multiple-pass techniques have been detailed. The distortion param-
the + and - parts of mol, ml 0 , and in, are generated separately.) eters of the object can be determined from the phase of the FT or

OPTICAL ENGINEERING / September/October 1985 / Vol. 24 No. 5 / 727
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F, L, P

. (a) (P. (b)

Fig. 12. Exampe. of experimental coordnate- I n efohm kages pro-
f He  H1 due uigCGHs andteyte fFig. I1(b). ,

Ilke

. fz fL - -- , INPUT CT
(b) P2 f(x,y) tn,Polar

Fig. 11. Optical realization of coordinate transforms using CGHs to pro-
duce (a) the FT of the coordinate transformed function and (b) the image
of the coordinat transforned function. MSF

from a space-variant correlation (Sec. 6). Here we concentrate on the 1 (realization of space -variant feature spaces using CGHs to produce
the coordinate transform optically. (Since this is the most time-con- INPUT
suming and computationally intensive operation, attention to its CORREL

optical realization is important.)
The most studied space-variant transformations are the scale- REF - CT

invariant Mellin transform using a In coordinate transform (Refs. 37 t n,Polar
and 38 detail the realization of the required CGH), a polar transform
that is rotationally invariantV4 a combined scale and rotation invar-
iant transform,3' and a coordinate transform for stereo perspective Fig. 13. Optical apace-variant diatorton-Invadnt coneltor using CGHs
distortions. Much attention has recently been given to the realization to Implement the coordinate transformation (CT).
of coordinate transforms with one" or with a cascade 39 of two CGHs
and with attention to the use of faceted multiple-exposure holograms HOE/ MSF at P2, avoids the need for lens L2, and results in simpler
in different spatial locations. Here we review original work on CGH optical component positioning. This architecture has been discussed
coordinate-transformed space-variant systems37.3s that does not and experimentally demonstrated using a laser diode source. 42 An
seem to be generally known. In Fig. 1i, we show the system to realize advanced version of this system using multiple laser diode sources
the FT of a coordinate-transformed function (Fig. I I(a)] or an image and several space-multiplexed MSFs was researched, described, and
plane representation of the coordinate-transformed function (Fig. initially demonstrated at Huntsville, 65 and a compact portable real-

l(b)]. In Fig. 1 1(a), H is a CGH phase function expj,(x, y)]. Fora time system was fabricated and demonstrated by the Environmental
Mellin transform, #(x, y) = xtnx - x + ytny - y. In Fig. I I(b), H0  Research Institute of Michigan (ERIM). 63 This significant advance-
has a quadratic phase function (a lens or a linear frequency grating). ment in optical correlator fabrication used HOEs rather than CGHs.
In the first order at P,, this produces an extended spectrum with Section 7 discusses a recent compact correlator using CGHs and
geometric similarity to the input image (i.e., x = u, y = v) with light advanced MSFs.
from different object points in P0 now spatially separated. The The use of space-variant processing in a correlator (Fig. 13)
second CGH H, placed at the first order in P, achieves the desired produces a distortion-invariant correlator with the location of the
coordinate transform. For a Meilin transform, +F(u,v) = output correlation peak porportional to the distortion parameters.
unu - u - 0.5u 2 + v~nu - v - 0.5v 2. Figures 12(a) and 12(b) Demonstrations of such a system for scale, rotation, and scale/ rota-
show the output P3 patterns for the log-scaled f(expf,expi ) image tion invariance have been published. Such systems can be efficiently
plane representations of a donut and a tilted rectangular input object fabricated using CGHs to implement the coordinate transform oper-
f(x, y) using the CGH noted above. We have also produced the ation (Sec. 5.4) and for fabrication of the MSF.
Mellin transform function with a single CGH36 and have discussed As optical correlators are now becoming more practical, recent
realization of the polar transform using a CGH. 37 For feature extrac- attention has again been given to the importance of optical efficiency
tion, the FT space for the coordinate-transformed function is most of the MSF and the light budget of such optical correlators.43 If the
appropriate, since the magnitude of these coefficients (Mellin trans- MSF is synthesized using a CGH, the advantages of improved flexi-
form coefficients, etc.) are scale or rotationally invariant. bility, better linearity, and more flexible synthesis procedures, as well

.RECENT OPTICAL CORRELATOR RESEARCH as higher efficiency using phase filters, are possible.' 3-" Similarly,
6. RCGHs can be used to improve noncoherent correlators (however,
USING CGHs shift-invariance can only be achieved at a significant increase in space
The use of CGHs has offered significant practical advantages for bandwidth product).". 50 An attractive laboratory experiment worth
optical correlators and for their fabrication. Several examples of noting is the recent use of a Litton magneto-optic device (MOD) as a
recent work in this area are now discussed. real-time spatial light modulator for correlation using a CGH. An

During MSF synthesis of a reference function at P2 of Fig. 2, one example of this is shown in Fig. 14, where the input pattern, the
can use a converging reference beam. This forms a combined binary CGH, and the output correlation plane pattern are shown.
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COMPUTER GENERATED HOLOGRAMS IN PATTERN RECOGNITION: A REVIEW

IOS~I

(a)(b) (c)
Fig. 14. Real-time optical binary correlation with a CGH of the letterO using the Litton MOD: (a) input image, (b) CGH, (c) output correlation plane pattern. 2

The CGH was formed to recognize the letter 0, and peaks are low number), we have obtained excellent SDF CGH correlation
apparent in the output at the location of all O's in the input image. results, excellent performance on real imagery, excellent discrimina-
The binary nature of the MOD required a binary CGH to be used. tion, and intraclass recognition on large data bases. Thus, an SDF-
The space bandwidth product of the present device is low (128 X 128 based optical correlator appears to provide an excellent solution to
for the demonstration shown), and its light transmittance is presently distortion-invariant, multiclass, shift-invariant object pattern recog-
only several percent. However, research in these areas is now in nition in clutter.
progress. Recently, an advanced and most compact real-time optical corre-

lator was fabricated by General Dynamics-Pomona. The system is
7. DISTORTION-INVARIANT OPTICAL shown in Fig. 16. It is less than 5 in. in diameter and approximately
CORRELATORS 12 in. long and is thus suitable for use in a 5 in. missile. It is a real-time

The major shortcoming of the classic optical correlator is its lack of processor presently using a liquid crystal input light valve. It employs
dstmorn inarcian. Oe casntesize ial w ehtd is 69 -and o advanced correlation SDFs to achieve multiclass 3-D distortion-
distortion invariance. One can synthesize a weighted MSF 9.? and invariant pattern recognition. Multiple CGHs of SDF MSFs are
CGHs allow better control of these or any M SFs. This can reduce the recorded in the system. The system has performed well in initial tests.
sensitivity of an MSF to within-class object distortions. One tech- It is scheduled for tower tests and captive helicopter tests in 1985.
nique for full distortion invariance is to use multiple MSFs at spa- This advancement is presently the most powerful and most compact
tiaily different locations in P2 (each being an MSF of the reference optical correlator produced. It unifies the major research in optical
object with a different scale, rotation, or aspect view). The differ- pattern recognition, CGHs, correlators, and fabrication techniques.ences between these views are determined by the sensitivity of the The use of SDFs allows distortion-invariant operation The use of

weighted MSF used. To access these multiple MSFs in parallel, the CGHs and SDFs provides flexibility together with fabrication in a

FT of the input object must be replicated. A CGH of multiple delta compand sys proie eit toth er i siation .

functions can achieve this. The architecture bhown in Fig. i5 achieves compact system with low size, weight, cost, and power dissipation.

this. The output is the correlation of the input with all references 8. SUMMARY AND CONCLUSION
superimposed. Researchers at Huntsville65 and Grumman 6s have
used this technique in several optical MSF correlators. Computer-generated holograms have been shown to have many

The most attractive recent approach to a 3-D distortion-invariant attractive possibilities for pattern recognition. The proper use of
optical correlator uses a synthetic discriminant function (SDF) filter CGHs appears to be for operations not easy with conventional
at P2 of Fig. 2. This SDF is a linear combination of several training optics, for maintaining small size and cost, as well as for use in
set images of the objects to be identified or rejected. It can be performing the more computationally intensive operations required
designed for intraclass recognition and two-class to multiclass in a given pattern recognition algorithm. As we have shown and
recognition.54 These filters have provided excellent initial results on detailed, CGHs allow many operations and functions required in
large ship"5 and automatic target recognition (ATR) target 5' test pattern recognition to be performed faster and in a system of lower
data. 57 The attractive performance of SDF correlators has caused cost, size, volume, and power dissipation than other technologies can
much interest in them and an entire recent conference session on their provide. The CGH ftature extraction pattern recognition methods
realization using phase-only filters and CGHs.6n Riggins and Butler discussed included special detection/sampling (e.g., a wedge-ring
simulated a projection intraclass SDF using a CGH58 and distin- detector), coordinate transformation operations for space-variant
guished between several types of SDF CGHs such as phase-only, processors, nonlinear local operations for image preprocessing,
bleached, etc.59 Gianino and Homer" noted that phase-only filters parallel feature extraction and transformation, chord distribution
appear to be more sensitive to distortions. Thus, the use of SDF generation, and as the monomial masks required for a moment
phase-only CGHs should be a quite attractive implementation. feature space generation. CGHs also have many attractive uses in
Initial tests 60 seem to yield good results. However, all of the above correlators. CGHs permit flexible MSF synthesis with many neces-
tests have been performed only on limited data and not using the sary weighting parameters quite easily variable and with phase filters
newest correlation filters, and have not yet considered intraclass possible to yield high efficiency systems. CGHs can also be used for
recognition and discrimination. At Carnegie-Mellon University object replication with multiple matched spatial filters and for the
(CMU), recent tests were performed with phase-only SDFs, SDFs realization of synthetic discriminant functions. CGHs and synthetic
with various quantized amplitude and phase levels, and other CGH discriminant functions have made fabrication and realization of
SDFs. With the proper number of amplitude and phase levels (a very practical distortion-invariant optical correlators most attractive. A
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CASASENT

SIGNAL HOLOGRAPHIC MATCHED
INPUJT LENS FILTER PHOTOOETECTION

PLANE MATRIX MEMORY PLANE

ELECTRICAL OUTPUT
TRANSIT TIME THROUGH OPTICS
APPROX. 2 NANOSEC

Fig. IS. Optical cortelator with apace-multiplexed MSFs using a CON
point hologram to replicate the Fourier transform of the input objse."

powerful distortion-invariant correlator in a 5 in. package suitable Fg.6.Ptrphoacmat irl-meSFC -aed ut-
for missile guidance is now possible and under testing. channel correlator (courtesy D. Fetterly. General Dynamice-Pomona).
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Correlation synthetic discriminant functions

David Casasent and Wen-Thong Chan

Advanced filters are described for distortion-invariant space-invariant object identification and location in
clutter using correlators. These correlation synthetic discriminant functions (SDFs) are extensions of earlier
projection SDFs. They provide control of the sidelobe levels and the shape of the output correlation function
as well as its peak intensity. The theory for synthesis of three such SDFs and a discussion of correlation plane
detection criteria for use with these filters are presented.

I. Introduction invariance, but this filter cannot prevent large sidelobe
Correlators are one of the most powerful techniques levels from occurring in the correlation plane for the

for locating multiple objects in clutter without the case of false (or true) targets.
need for segmentation. The realization of correlators In this paper, we review projection SDF synthesis
by optical systems is obvious and well documented",2  and demonstrate its shortcomings by example (Sec.
as is the shift-invariant and processing gain features of II). Synthesis of a correlation SDF which provides
such processors. In the presence of white Gaussian control of the shape of the correlation function is then
noise, correlators with a matched spatial filter (MSF) detailed in See. III. In Sec. IV, examples of the superi-
of the reference object being searched for are optimal. or correlation plane output response of these new
However, they also perform well in colored noise or SDFs are provided, and various correlation plane clas-
structured clutter, as recently quantified.3 Their ma- sification measures are discussed.
jor shortcoming has been their poor sensitivity to geo-
metrical distortions between the input and reference II. Projection SOF46

object. The use of various feature spaces (geometrical We can state the requirements for a two-class pat-
moments, Mellin coefficients, chord distributions, tern recognition system to be the recognition of objects
sampled Fourier coefficients) in conjunction with vari- f in one class (true targets) and the discrimination of
ous linear discriminant function feature extractors has objects {g1 in a second class (false targets) in terms of
been the major approach taken to achieve distortion- the inner product operator ( ) as
invariant pattern recognition.2 However, segmenta-
tion and noise reduction are necessary preprocessing (. h) = 1 (true targets), (is)
functions before feature extraction can be applied. (g. h) = 0 (false targets). (lb)

Thus, in this paper, we discuss a method to achieve
distortion-invariant recognition while retaining the The filter function h is required to satisfy Eq. (la) for
shift-invariant and processing gain advantages of cor- any input function that is a member of class 1 and to
relators. The optical processing community has led satisfy condition (1b) for any input function that is a
and pioneered such research. However, many optical member of image class 2. This corresponds to the
systems such as the space-invariant 4 and coded-phase 5  recognition of various distorted versions of f (members
correlators are not shift-invariant and cannot handle of the set VI) and rejection or discrimination of all
multiple objects. Synthesis of the MSF in an optical distorted views of a second class of object Ig}. This
correlator from a projection SDF6 algorithm has been situation arises when the object classes tA and Igi are
shown to achieve distortion invariance and retain shift similar. The distorted object views included in these

two data sets and the application determine the specif-
ic geometrical distortions for which the resultant filter
function h is invariant.

When this work was done both authors were with Carnegie-Mellon The images and filter function h are all 2-D image
University, Department of Electrical & Computer Engineering, functions of the coordinates (xy), but their spatial
Pittsburgh, Pennsylvania 15213; W. T. Chang is now with Eastman variables will generally be suppressed for simplicity in
Kodak Research Laboratories, Rochester, New York 14650. our system and filter synthesis description. Other

Received 2 December 1985. constant constraints besides the 1 and 0 values noted
0003-6935/86/142343-08$02.00/0. in Eqs. (1) can be employed with no loss of generaliza-
© 1986 Optical Society of America. tion. To obtain a specific solution h to Eqs. (1), we
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restrict h to be a linear combination of the training set tion in Eq. (1a) is adequate. However, there is no
images ff(xy)} and g(xy)l or an orthonormal set of 2-D restriction on the response of h(xy) to false targets Igi
basis functions O(x~y), i.e., at locations away fro,- *ie central value of the false

target correlation. Stuaeobes in the correlation output
h = Zbj + Tbg. (2a) for false targets can thus occur and achieve any level.

or These false targets sidelobe correlation levels can easi-
ly exceed any threshold devised for the central correla-

h f xano .  (2b) tion peak value (as obtained with the present training
set synthesis methods). Thus, for false targets withThe basis functions 101 are linear combinations of all f intensity or modulation variations much larger than

and Igj training set images and can be obtained by those present in the training set, we observed correla-
Karhunen-Loeve or Gram-Schmidt techniques. 7  tion peaks displaced from the central correlation plane
Both filter descriptions in Eqs. (2) are equivalent, value that were above our threshold. Similar prob-
Equation (2a) is used in the synthesis of h from the lems with sidelobe peaks in the correlation plane can
training set images, and Eq. (2b) is attractive from arise for the case of true targets. However, such prob-
general pattern recognition theory. lems are generally of less concern.

To solve for h given a training set of N1 images $11 and In some sets of imagery, projection SDFs yield ade-
N2 images fg} in class 2, we must determine the coeffi- quate response (i.e., no peaks above the threshold Tt)
cients a, or bn in Eqs. (2). We can achieve this by occurring anywhere on a false target. However, in
solving for the coefficients a, as the vector solution a general, we cannot guarantee such performance. Fig-
to 6  ure 1 shows an example of this. A projection SDF was

Ta[= = ,(3a) designed to produce 1 outputs for all class 1 objects f) I
T N N23a and 0 outputs for all class 2 objects. Twelve objects

per class were used to synthesize this filter (N1 = N 2 =
where T is the target matrix (its elements are the 12). All images were different aspect views of the
coefficients of each image in terms of b,), a is a vector objects from a 200 depression angle. The twelve train-
whose elements are an coefficients in Eq. (2b), and u is ing images per class were each different aspect views
the control vector with N1 ones and N 2 zeroes. The 300 apart. The correlation plane response for a class 1
choice of u is the key to SDF synthesis. With the first object (sot in the training set) is shown in Fig. 1(a).
N1 images members of V1) and the last N 2 images mem- This is typical of all similar response data. The peak
bers of 1g), the given u forces the output for all Ni value for the true class filter in Fig. 1(a) shows a peak
images [f) to be 1 and the output for all N 2 images 1g) to
be 0 as required by Eq. (1). The filter in Eq. (2a) can
be similarly described by the coefficient vector solu-
tion b to 6

Vb u 1= , 0.21, (3b)N, N2

where V is the N, + N 2 dimensionality vector inner
product (VIP) matrix of the training set data. (Its
elements are the VIPs fTfj, fTgj, etc. of the training set
with each image represented as an N 2 = N X N element
vector, where N 2 denotes the number of pixels in the
input image.) Many other variants beyond the SDF
filter in Eqs. (1) and (2) exist.6 These include the use
of multiple levels in the u vector and the use of several (a)
filters. We consider only the two-class filter function
solution in our present work. Extensions to other
projection SDFs follow directly.

These filters perform quite well with central output
peak values close to unity for class 1 objects and close
to zero values for class 2 objects. However, the filter
requirements in Eq. (1) only restrict the projection
values (the correlation plane value at the central point)
of an MSF of this SDF. When these filters are formed
and used in an optical correlator this can present prob-
lems. This system is still shift invariant and hence

provides the proper correlation plane values at the
center of the target regardless of the target's location. (b)
For true targets, the largest correlation plane value Fig. 1. True (a) and false (b) class correlation plane outputs for a I
occurs in the center of the target and hence the condi- projection SDF.
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correlation plane value in the central pixel location training set image or N,3  5 total shifted and nonshift-
(65,33) of 0.93. The largest peak value anywhere in ed training set images per class are used in correlation
this plane was 1.09 at location (66,41), which was dis- SDF synthesis. We retain our VIP matrix synthesis
placed slightly from this central location (by 8 pixels). formulation by restricting the training set of data to
Thus the proper output results were as expected. A include shifted and nonshifted versions of all imagery.
peak of -1.0 (although shifted somewhat from the We restrict the VIP projection output for shifted im-
exact central location of the object) was obtained with ages to be zero or small for both the true and false class
this filter (even in the face of geometric distortions shifted training set imagery. This is equivalent to
tested on imagery or object orientations not contained requiring the value of the correlation plane output (at
in the training set). In Fig. 1(b), we show the correla- ±d, pixel shifts in x and y from the center of the target)
tion plane response for a class 2 nontraining set object. to be zero. We discuss this further. We refer to these
Its central value at pixel location (65,33) is 0.1 (as filters as correlation SDFs.
desired, this is nearly 0.0, as specified by the filter).
This specific central correlation plane value is not A. Exact Correlation SDF- 1 Synthesis
easily visible in the pseudo 3-D correlation plane view The filter h requirements in Eq. (1) for the case of
shown, but it is clearly evident from this plot that the correlation SDFs thus becomes
central region of the correlation plane output has a low (, h) = 1, (4a)
value. However, the largest peak value in the correla-
tion plane is quite large (0.98) at pixel location (68,39). (f . h) = 0, (4b)
Large values thus exist around the central correlation (g. h) = 0, (4c)
peak for false targets as shown. These results are
typical for many image data base cross-correlations for (g' . h) = 0. (4d)
the target considered in these tests. Clearly, the full Conditions (4a) and (4c) are equivalent to Eqs. (la)
correlation plane response of this filter is poor for false and (1b) as before. The new conditions (4b) and (4d)
class objects, and advanced versions of this filter func- restrict the correlation value ±d, pixels from the cen-
tion are needed to address such problems. We address tral correlation point to be zero. Let us now discuss
these issues in Sec. III. the correlation plane pattern these filter requirements

N. Cweatlon SOF s is in Eqs. (4) yield. For a true class 1 target [A, this yields
a well-shaped correlation peak with a value of unity atWe chose to control the correlation plane sidelobe the center of the object and 0 value d, pixels away in ±x

response for false targets (and true targets) by modify- and ±y. For a false class 2 objects, this filter synthesis
ing the filter's requirements by specifying the correla- produces zero values at the center of the object and ±d,
tion plane outputs at more than just the central loca- pixels away horizontally and vertically. For the true
tion of the target in the correlation plane. To achieve class 1 objects, this yields a well-shaped correlation
this and retain the simple VIP matrix formulation in peak. Suppression of the response away from the
Eq. (3b), we increase the size of our image training set center of the object tends to insure that the largest
to include shifted versions of each training set image. peak in the correlation plane lies at or near the center
We denote the shifted image versions for the true class of the object. With the response away from the center
object by {ff and for the false target by g'1. These of the false class 2 objects suppressed as noted, their
images are shifted by d. pixels with respect to the correlation response is generally low over the full cor-
unshifted [A and Ig} training set images. Our notation relation plane. Many additional variations to this
is summarized in Table I. For our specific tests, we basic algorithm exist. The most obvious one is to
generally employed N1 = N 2 = 6 training set images require that a zero response is obtained at 2d, pixels
per object class with pixel shifts chosen as d, = ±5 away from the central correlation peak in the horizon-
pixels horizontally and vertically. This corresponds tal and vertical directions, respectively. This exten-
to reference image pixel shifts of (-d,,0) and (0,±d) sion is generally not needed in the test cases we have
pixels. Thus N - 1 = 4 shifted versions of each investigated thus far. The choice of the shift d. is

made from analysis of the width of the autocorrelation
function of the training set imagery.

Thus, to synthesize the filter h to satisfy Eqs. (4), we
Table I. Notation and Parameters Associated with Correlation SDF write h as a linear combination of all training set imag-

Synthesis ery
f Object in the class to be recognized (true target) h(x,y) = Zaf/i(Xy) + Zaffi(x,y)
f* Shifted version off
I Object in the class to be rejected (false target) + Zaggi(xy) + Zagg'(x,Y) (5)
g Shifted version ofg We denote the full set of NT training imagery by {zI and
d Amount of shift in pixels the individual correlation images by z,. The filter h
N1  Number of training set images JA in class I
N2  Number of training set images It} in class 2 required is then defined by the coefficient vector a that
N, - 1 Number of shifted versions of each image solves
NT = N(NI + N2 ) Total training set size 11, 01, 
h MSF SDF filter function Va=u= N NT NI (6)
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where V is the NT dimensionality VIP matrix for z, and eigenvectors by operating on subsets of the data as we
U2 contains N1 ones to satisfy Eq. (4a) and NT - N1  now detail.
zeroes to satisfy Eq. (4b)-(4d). We refer to this solu- The eigenvectors are conventionally calculated from
tion in Eq. (6) as SDF-1 [An exact correlation SDF, the correlation matrix, which is of size N2 . It is corn-
since it exactly satisfies Eq. (4)]. putationally much more efficient 9 to compute the ei-

genvectors from the VIP matrix of size NT << N2.
B. Dimensionality Reduction These eigenvectors are of dimensionality NT and are

The solution for h in Eq. (6) requires the solution of expressed in terms of the training set images. The
NT linear algebraic equations for the NT unknowns a,. eigenimages themselves (with dimensionality N2) are
Since {fA and {g} are generally composed of different easily obtained as a linear combination of the eigenvec-
views or different distorted versions of one object or tors.
different types of object in one class and since such To avoid calculation of the eigenvectors of even the
objects are not necessarily independent, the rank of V NT dimensionality VIP matrix and insure better
in Eq. (6) may not be full, the dimensionality of the representation of the different object types, we consid-
problem can and must be included to solve the resul- er the eigenvectors of only the unshifted images in each
tant linear algebraic equation in Eq. (3b) or (6). In class. For class 1, we form the N, rank VIP matrix V,
addition, as various constraints (such as rotation, JN1 is typically 6 and thus much less than NT = N8(NI
scale, aspect) are included, more training set imagery + N2), which is typically 5(6 + 6) = 60]. We compute
must be included, and thus NT can increase signifi- this V, matrix for unshifted class 1 objects and then
cantly and so does the condition number (the maxi- compute its eigenvectors. We then form the N 2 di-
mum-to-minimum eigenvalue ratio) for the matrix V. mensionality VIP matrix V2 for class 2 objects (with N,
This makes the solution of Eq. (6) for a difficult and = N 2 = 6; this matrix is also quite small, 6 X 6). For
thus requires advanced linear algebraic solution meth- each of these VIP matrices, there are six eigenvectors.
ods. One can reduce the size NT of the training set to We retain the dominant three eigenvectors of each
alleviate this problem. However, if we reduce NI or matrix, since these typically contain 93% of the infor-
N2, the image representation degrades. If we reduce mation. (More eigenvectors can be retained if needed,
N,,, the shape of the correlation function degrades. and this can be determined from the eigenvalues.)
Necessary solution methods to the general Ae = p Our tests show that in general the two or three (k value)
matrix-vector problem for the vector e that determines dominant eigenvectors per VIP matrix are generally
the weighting coefficients of the training set data for adequate. Another attractive feature of these two
selected exogenous vectors p (analogous to the u, vec- subset VIP matrices (one per class for the unshifted
tors in prior equations) will be discussed. Our ap- images in each class) is that the VIP matrices for
proach involves a reduction in the dimensionality of shifted image subsets (i.e., all images in class 1 with a
the problem with minimal loss in information and an shift d,) are the same as those for the original VIP
approximate solution of the resultant linear algebraic matrix for the unshifted images. Hence the corre-
equation (LAE) Ae = p. sponding eigenvectors and eigenvalues of their VIP

To reduce the dimensionality of the matrix and matrix are the same, as are the associated weighting
hence the problem to be solved, we can represent the coefficients used to obtain the eigenimages. Finally,
entire training set in a reduced dimensionality orthog- the eigenimages are simply shifted versions of the ei-
onal basis function hyperspace. This can be achieved genimages of the unshifted subset.
by computing the eigenvectors of the full training set. The steps in our dimensionality reduction proce-
(These form our orthogonal basis function set.) We dure thus follow directly:
can then represent each image in this new space. Step 1: For the N, X N1 and N2 X N2 VIP matrices
However, the size of this space will generally be the size V 1 and V2 for the unshifted class 1 and class 2 images
NT of the training set, and hence the associated matrix compute the ui tec ass W and tese 2iges
size will not be reduced. Furthermore, computing the compute their eigenvectors. We denote these eigen-
associated eigenvectors of this matrix is more compli- vectors by t } and {v} for each subset, respectively.
cated than solving the associated LAE. However, the These eigenvectors are of dimensionality N1 and N2,
optimum method (mean square error) to compress respectively. We retain the dominant k eigenvectors
data into reduced dimensionality is by Karhunen- from Vl and V2. Typically, we use k 3.
Loeve techniques on the eigenvectors.8 If we compute Step 2: Synthesize the eigenimages 1I} and {K1.
the eigenvectors of the entire data set, we can retain Each of these eigenimages is bf dimensionality N2, and
only the most dominant ones (those with the largest they are linear combinations (with coefficients that are
eigenvalues) and use these as a reduced dimensionality the elements of IjsI and {vJ) of the training set images 1f
space in which to represent all the training set images. and Igi, respectively.
However, these calculations for the full N2-dimension- I
ality correlation matrix (N2 is the number of image Step 3: Generate the eigenimages 1x'1 and IK'J for
pixels, whereas the rank of the associated correlation the shifted image subsets. There are four shifted sub-
matrix is NT) or for the VIP matrix of dimensionality sets per object class for our case. This yields a total of
NT are generally more difficult than the solution of the d = 10 subclasses and k eigenimages per subclass. Weoriginal LAE. We thus simplify calculation of the denote these eigenimages by set 101.
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Step 4: Convert this set 101 of 10k eigenimages into viewing the projection of h on class 1 data lf} as a signal
an orthogonal set 14,1 by Gram-Schmidt 7 or other 0  and the projections on Ig}, If}, and Ig') data as noise.
techniques. We refer to this as the peak-to-sidelobe ratio (PSR)

maximized correlation SDF-3 or simply SDF-3. The
C. Least-Squares SDF-2 Synthesis mean square value of (f. h) for all images in {JA is

This procedure yields an orthonormal basis function computed as
set of d' = 10k = 30 (with k = 3) eigenimages. This is (12)
considerably reduced from NT. Next, we project all
NT images onto this {4'} space and describe each train- where
ing set image as a d' dimensionality vector in terms of
these new 14,1 basis functions. We hereafter denote the R/= (N1)- 1  aia r  

(13)

entire NT set of training images by the vectors zi, and
we refer to the images fj, gi, i, gi, and the desired h is the correlation matrix of the images {/i, and summa-
discriminant function by their decomposition vectors tion in Eq. (13) is over the N1 training set images in Vf.
a, b, c, d, and e, respectively, in 41 space, i.e., The mean square value of the projections onto {g}, tfi,

fi = Za,,, ,,gi = l = , c, ., and {g'J are similarly found, and their sum is
)= and h = e EI(eT. b)21 + EI(eT. c) 21 + EI(eT. d)21 = eTRne, (14)

where R0 is the sum of the correlation matrices for eachThe desired filter h, denoted by e, is thus given by the of these three image sets, which we view as noise, i.e.,solution of
N2  4N,

[1, 0- 
,  

R = (N2)-' b. bT 
+ (4N,

) - I c
i - c

Ae = p= N, NTN (8) 2

where A is NT X d" with each row being one of the NT 4N2
training images in the d' dimensionality 14] space. For h (4' 2)

-
' d dT. (15)

our case, A is 60 X 30 (assuming six training set images
per class, Ns = 5 and two classes), p is a NT dimension-
ality vector that specifies the constraints in Eq. (4), In Eqs. (13) and (15), each R is of sized'X d'(d'= 30 in
and the desired e is a d' dimensionality vector. This our example).
leaves us with NT constraints or equations to be satis- There are actually nine separate noise terms, those
fied by e (which defines h), which has only d' variables, due to {g} and those due to each of the four shifted If'

With NT > d', the matrix ATA is d' X d' and of rank and four shifted $g'} image subsets. Each of these noise
d' and thus invertible. Thus we can apply a least- terms has a mean square projection with h of the form
squares solution for this overdetermined problem. In of Eq. (12). We desir- to maximize the PSR of Eq. (12)
this reduced dimensionality space 10}, we can now de- with respect to each of these nine terms. The simulta-
scribe synthesis of SDF-2 (our least-squares approxi- neous maximization of these nine PSRs is not possible.
mation to SDF-1). The filter h (described bye) in this Thus we consider maximizing the peak (12) with re-
case minimizes spect to the sum of the nine noise terms as in Eq. (14).

This does not maximize each PSR, but it results in a

J(e) = e - pi)2 , (9) problem that one carsolve.
With the above preliminaries, the SNR or PSR to be

where the summation is over NT and where the maximized is the ratio of the signal or peak correlation
tion value pi = r for (A and is zero otherwise. Setting value in Eq. (12) to the noise or sidelobe values in Eq.

MJ/Oe = 0, the filter solution is found to be (14):

e = (NT) 1 R -' bizi, (10) PSR = mean square signal or correct peak valuee ) sum of the mean square false peak and sidelobe values

where R is the d' X d' (30 X 30) correlation matrix for (16)

the full Izi training set, From Eqs. (12) and (14), this is equivalent to the

R = (Nr)-  - ,z,. maximization of
PSR =e-R (17)

This SDF-2 is thus a least-squares approximation to eTReE the exact SDF-1, since its projection values will be as The solution for e that maximizes Eq. (17) can be
close to 1 and 0 as possible. obtained by use of Lagrange multipliers and is well

known to be the dominant eigenvector solution to the
D. Peak-to-Sidelobe Ratio Maximized Correlation SDF-3 generalized eigenvalue problem:
Synthesis

A considerably different correlation SDF that maxi- R/e = tRe.
mizes the correlation plane SNR can be synthesized by Our SDF-3 synthesis thus operates on the same re-
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duced eigenimage hyperspace {i} of dimensionality d' The true class 1 correlation patterns generally consist-
= 30 (for our example) as used in SDF-2 synthesis but ed of a broad peak above threshold and with false class
with the different SDF-3 maximization criteria of Eq. 2 object correlations having various peaks of large val-
(17). ue above threshold displaced from the origin. In Figs.

This SDF-3 is related to other modified MSFs and 2 and 3, we show the correlation SDF-1 and correlation
statistical correlation filters. In earlier work," the SDF-3 outputs, respectively, for the same two test
optimal filter for a two-class problem (with the second images with the filters synthesized from the same
class modeled as white noise) was considered. The training set images (but using our new correlation SDF
mean square central correlation peak for class one algorithms). As Fig. 2(a) shows, the correlation re-
images with respect to white noise was maximized (i.e., sponse for a true class 1 object has a very dominant and
subject to a constant filter energy). The solution was sharp correlation peak with zero values d, pixels away
the principal component of the class one images. Lat- (as specified by the algorithm) and peaks of negligible
er work 12 extended this concept to filter synthesis by height elsewhere in the correlation plane. Comparing
maximizing the ratio of the mean square central corre- Fig. 2(a) with 1(a), the correlation peak obtained with
lation peak for one class to the sum of the mean square SDF-1 is much sharper and better defined. The re-
central peaks for the second class and white noise. In sponse in Fig. 3(a) for SDF-3 is even better (as expect-
the system designed, 12 the eigenimages of class 1 and ed, since this SDF algorithm maximizes the correlation
class 2 were used, but no composite basis set was em- plane PSR). We thus expect better true class 1 target
ployed. Our work includes a completely orthogonal detection with correlation SDFs. In SDF-1, the cor-
basis function set as well as use of shifted imagery with rect peak is 0.75, and the largest other peak is 0.36 in
attention to correlation peak shape. height. In SDF-3, the central peak is much larger

(3.62) than with SDF-1, and the largest peak anywhere
IV. Initial Results and New Cassifcaton Parameter in the correlation plane (3.68) is only one pixel away
See fm Cr16da from the central value.

Before discussing several details of correlation Figures 2(b) and 3(b) show data for these correlation
SDFs, we show typical output correlation plane data SDFs vs the same false class test input used in obtain-
obtained. This is intended to provide motivation for ing Fig. 1(b). In both figures, we see that the entire
the parameters used. correlation plane has no significant peak, and we find

that the center of the plane and four points d, pixels
A. Representative Output Correlation Plane for away have especially low values (as specified by both
Correibtion SDFs correlation plane SDF algorithms). The largest peak

In Fig. 1, we show representative true and false class value anywhere in Fig. 2(b) is 0.49 and considerably
correlation patterns obtained with projection SDFs. below the true class peak value. In Fig. 3(b), the

Is)

(a)I
(a)

(b) (b)

Fig. 2. True (a) and false (b) class correlation peak outputs for the Fig. 3. True (a) and false (b) class correlation peak outputs for the
exact correlation SDF-1 filter (using the same training set and test PSR-maximized SDF-3 (using the same training set and test set

set as in Fig. 1). images as in Fig. 1).
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largest peak value anywhere is 1.89 and is again consid- olds and our specific classification correlation plane
erably below the 3.62 true peak value. Thus, in both parameter selection in the following subsection.
cases, true class peaks are much more easily detected,
and the full correlation plane response for false targets C. Correlation Classification Parameter Selection
is greatly suppressed. Hence we expect correlation For the fixed threshold TT, we form the SDF and test
SDFs to provide much fewer false alarms for class 2 it on the training set images in each class and measure
objects, and we expect SDF-3 to yield the most easily the means m and m of the highest correlation
detected output peaks. SDF-1 still has distinct ad- peaks for the class 1 and class 2 training set images.
vantages (in terms of its extension to multilevel filters) The peak threshold is then set at a linear combination
because its output peak value can be specified. Con- of these mean peak values as
versely, the peak value for SDF-3 is not specified by
the algorithm. (Thus this filter is not easily extended 7T =- amT + B 7.n72, (21a)

to multilevel concepts.) where

aT + T=. (21b)

B. Correlation Plane Classification Parameters By adjusting aT and #3T, we can detect more true class
The entire correlation SDF formulation can also be targets or reject more false class targets (as a specific

described in terms of producing more meaningful and scenario requires). This means mci and mC2 for the C
useful output classification parameters and statistics. ratio for the class 1 and class 2 training set images are
In the projection SDF, a simple correlation plane also measured, and the C threshold (CTI or Cr2) is set
threshold TT was the parameter used to determine if a at a linear combination of these means as
true correlation (class 1 object) was present. In a CT = CcmcI + 0cmc2, (22a)
correlation SDF, the output correlation plane require-
ments of zero (for SDF-1 and SDF-2) or low (for SDF- where
3) correlation plane values d, pixels from the central ac + 0c (22b)
peak were used to suppress sidelobe peaks (especially C + for t
with false class 2 objects). However, these design rules The choices for the a and3 coefficients in Eqs. (22)
can equally be viewed as placing requirements on the again depend on the performance desired.
shape of a true correlation function. Nontraining set images have (as expected) lower

With this viewpoint in mind, we can then consider peak values and C values than those obtained from
measuring the PSR = C for candidate regions of the training set images. Thus in general we select a </3 in
correlation plane (where a peak above threshold or a all thresholds. This insures that nontraining set true
large peak value) occurs. We can then compare this C class 1 images will be detected. The variation of the
measure to several CT thresholds to determine if a peak and C data, the number of training set images
candidate correlation peak is a true correlation peak or used, and any overlap of the training set data also
a noise spike. The two C measures we consider are affect the a and # choices. In general, we use a > 0.25

to reduce the nurnber of false targets detected and the
C -eag value (19) number of points for which C tests must be performed.

average value in a window (excluding the peak) In cases where high noise is expected, a is adjusted
average value of the peak and its four neighbors accordingly. If the training set is large, our confidence

C2 = average value in a window (excluding peak and its neighbors) in the mean estimates for mc and mC2 improves, and a
(20) can be increased with high confidence.

In many cases, the intensity and modulation level of
The window in Eqs. (19) and (20) is the (d, + 1) X (d, + the image may vary significantly in testing and among
1) region about the peak. The PSR measure C1 is the the training set. In this case, a reliable fixed TT
classic PSR defined with a specific window region de- threshold may not exist. (The variation of mT1 and
noted by the algorithm. The measure C2 accounts for mm and overlap of the two classes of data will denote
the observed fact that many noise points in the correla- this case.) When this occurs or in situations where
tion plane are a single isolated spike, whereas true high noise levels are expected, the mean m and vari-
target correlations have significant values adjacent to ance a of the entire correlation plane are computed for
the peak point (hence the modified form of the numer- each training set image and an adaptive threshold
ator in C2). The combination of a TT peak threshold
and a PSR threshold CT should thus provide improved TA = m + Nc (23)
confidence in selection of true correlation peaks. is used, where N is chosen from training set data.
These TT and CT thresholds can be determined from During tests, m and a for each full output correlation
training set image tests and the noise expected in a plane for each test image are computed, and the
given application. In applications with more variation threshold level in Eq. (23) is set adaptively at N stan-
in the modulation and intensity level of the data, adap- dard deviations above the measured mean for the given
tive TA thresholds are needed. These thresholds are test image and its variance o.
functions of the mean m and variance a of the correla- The C ratio is not affected by variations in the inten-
tion plane pattern obtained. We discuss these thresh- sity and modulation of the data. However, spatially
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varying modulation (as can occur with IR imagery) can objects provided by these new correlation SDFs, new
cause variations in the shape of the correlation peak classification measures considering the mean, vari-
and hence in the C values. An adaptive CA threshold ance, and shape of the output correlation pattern are
can also be considered, but we have not found this advanced to allow true correlation peaks to be dis-
necessary. criminated from erroneous noise spikes. Initial dem-

The SDF-3 algorithm does not specify a peak value, onstrations of these new filters show the significantly
and thus a C test is generally best for this SDF. Since better correlation patterns that result.
we expect this C ratio to be much better than that for
SDF-1 and SDF-2 (since SDF-3 optimizes PSR), this References
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-OPTICAL ARTIFICIAL INTELLIGENCE PROCESSORS"

I David Casasent

Carnegie Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, PA 15213 (USA)I
ABSTRACT

We briefly highlight recent CMU (Carnegie Mellon University) research on optical Artificial Intelligence (Al)
processors for scene analysis. This work includes new shift-invariant Al correlators, plus symbolic, model-based,
associative memory, knowledge-based, relational-graph, and neural optical processor results.

1. INTRODUCTION

Optical AI has received major attention during the past year. In Sections 2-7, we review recent CMU research on
I seven aspects of this topic.

2. KNOWLEDGE ORGANIZATIONAL BASE [I]

I Advanced computers must use declarative and rule-based knowledge. We have distinguished between explicit and
implicit declarative (facts) and procedural knowledge (rules) and their use and role in optical symbolic and other
processors. We have also emphasized the importance of and the preference for shift-invariant processors and pattern
recognition (rather than logical) applications. Figure 1 shows the general diagram of the system which distinguishes
pattern recognition from logical symbolic processors. This distinction, plus the need for shift-invariance has not
appeared to be fully appreciated within the optical AI community. The separate blocks in Figure 1 note the role of
an optical pattern recognition processor and an optical logical processor within a symbolic optical data processor
environment. A projection or correlation processor is considered with different symbol inputs as filters to the
pattern recognition system. The outputs are then operated upon by a symbolic logic processor to derive new filter
inputs or to invoke final decisions.

3. RELATIONAL GRAPH AND DECISION NET OPTIC XL PROCESSING [21

I We have recently advanced the concept and use of a high-dimensionality optically-generated feature space for
pattern recognition. Figure 2 shows this system. At P, the input object is fed to the system. Its Fourier transform

magnitude is produced at P2 ' where a Coordinate Transformation (CT) mask is also provided. The CT of the input

image is provided at P 3. The magnitude Fourier transform of P3 is produced at P 4. At this plane we also

incorporate Linear Discriminant Function (LDF) filters. The specific CT performed is a polar-log CT on the input
P2 data. We note that the optical feature space produced at P 4 is performed and implemented in parallel. The

Computer Generated Hologram (CGH) included at P 4 forms several linear combinations of these features, from which

I the object class identification is possible. The P4 to P. system is the relational graph processor. Attractive features

of this system are its full parallelism, the ability to use different features at different nodes of the relational graph
and the significant reduced number of output detectors possible (especially with multi-level filter encoding).
Associated with this effort, we have devised automated techniques to arrange a fact-based database into a rule-based

I



one and to automate selection of the proper decisions to be made at each node and the features to be employed at
each node of our relational graph. We have also distinguished between graph designs based upon structural features,
rather than functional attributes of the objects. Both multi-decision and binary relational graph designs have been
achieved and tested with excellent initial results for the specific case of a polar-log CT of the magnitude Fourier
transform feature space input. Another type of decision net processor that operates on the output projections from
the pattern recognition unit in Figure 1 has also been devised (Figure 3) [1].

I 4. MODEL-BASED PROCESSORS [31

An efficient representation of a 3-D object as a set of polygon vertices in an object-centered coordinate system has
been developed. From this, we can produce on-line binary and range images of the object at any 3-D orientation and
scale. This allows on-line smart filter synthesis and the use of reference imagery, which is much preferable to
processing lists of lines and vertices in an input image (since it allows real time processing on realistic input imagery).
This model-based optical processor also provides very efficient image storage with only one reference object per
object class required. The use of this technique in model-based associative and symbolic processors is discussed later
and has been detailed elsewhere [31.

U 5. OPTICAL NEURAL PROCESSORS [41

We have recently studied the optical Hopfield neural processor and found many deficiencies associated with one
version of this matrix system. These include: only one stable state for general vector inputs, a non-binary matrix
required, the need for iterative processing of this matrix, the presence of many false memory states, and the major
fact that this processor does not necessarily converge to the nearest neighbor. Alternate Hopfield memory matrices
and the use of input vectors with few ones appear to perform adequately. We have devised a direct storage nearest
neighbor associative processor. The matrix for this case is binary by design, the matrix size is significantly reduced,
it can accommodate many stable states, it is a true nearest neighbor processor, it provides the Hamming distance and
such processors can be cascaded. This memory matrix is used in some of our associative, symbolic, and decision net
optical system work.

I 6. ASSOCIATIVE PROCESSORS [3,51

Our associative memory work has involved distortion-invariant multi-class pattern recognition. We have devised
new and efficient techniques to employ associative processors to achieve these goals. These include new memory
synthesis methods, the use of dual auto and hetero associative processors, a vector inner product associative processorI (Figure 4) and efficient matrix update and synthesis techniques, plus quantitative data on the use of each system for
distortion-invariant pattern recognition. In the system of Figure 4, the input vector u at P1 is provided. The key
recollection vectors Uk are encoded on separate channels at P 2 and the recollection vectors vk are similarly encoded

I on separate channels at P4. The scalar outputs at P 3 are the projection of the input vector onto the various key
vectors at P 2. These scalar P3 outputs can be thresholded if desired. These scalar P. outputs are then multiplied by
the recollection vectors Yk encoded on separate channels at P 4. The results of these P 4 projections are then summedI along vertical elements onto detectors at P.. The P. position(s) with peak values denote the encoded input object
class. Both auto and hetero associative versions of this system are possible as well as the use of nonlinear operations
at P3 and P. The incorporation of such nonlinear operations can significantly enhance the versatility of the systemH and improve its performance. This vector inner product architecture allows much easier updating of the processor
than is possible in the conventional vector outer product formulation of such associative memory matrices.

7. SYMBOLIC CORRELATION PROCESSORS [1,61

A hierarchical optical symbolic processor using correlation, smart filters, encoded outputs, and our model-basedI knowledge base is shown in Figure 5. This figure employs a smart activity-filter at P 2 of Figure 5. The correlation
output of this smart oPeak-to-Sidelobe Ratio" (PSR) filter or activity filter at P 2 denotes where regions of activity

I



I
exist in the input P1 scene. These peak locations denote which points the P. multiple correlation plane outputI analysis system should investigate. The multiple frequency correlation planes at P. employing smart filters at P 4
can also be encoded to designate L output correlation levels with F output filters. This provides the ability to
recognize a large LF number of input object classes. Both correlation and projection filters are employed at P 4 to
achieve this P. output. With only F = 4 filters and L = 10 levels, a 10,000 class problem can potentially be solved
on such a processor, with high probability of detection and low error rates. The orientation of the objects in the
scene as well as their class can also be obtained from this system output.

This research has been supported by grants from the Defense Advanced Research Project Agency and the Air
Force Office of Scientific Research. We gratefully acknowledge their support of this research.
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Directed graph for adaptive organization and learning of
a knowledge base

David Casasent and Edward Baranoski

A directed graph is considered for organization of a knowledge base for neural, associative, model-based, and
other advanced processors. Its ability to self-organize itself, delete old information, and add new information
and its many interconnections make it most suitable for optical realization and use in advanced neural and
adaptive optical processors. An alphanumeric image space example is used as a case study, and an optical
processor architecture to achieve this with impressive performance is discussed.

I. Introduc wt widely known hierarchical decision technique5 and
Considerable attention1 ,2 has recently been given to have many variations.6,7  However, all hierarchical

knowledge bases, model bases, neural networks, and techniques have significant problems,8 ,9 such as the
their optical realization. All these architectures and need for backtracking when an error is made at a high-
algorithms require and demand some method for orga- level node. The origin of this problem is the rigid
nizing data. Toward this end, we advance the concept structure of a tree classifier, its lack of interconnec-
of a directed graph 3 with attention to its self-organiz- tions, and the inability to reach all nodes from a given
ing and adaptive properties and its use of interconnec- node without backtracking up the tree and then back
tions. Since it allows multiple processors and a large down it. Adding new classes or data to a tree (adding
number of interconnections, it is most suitable for new nodes) is cumbersome and ad hoc. A directed
optical realization.4 Section II introduces the directed graph (Fig. 1) is quite different, since it exhibits many
graph and terminology. Section III extends these ba- interconnections and each node is reachable from all
sic concepts to general data classification problems. other nodes. Table I lists typical terms used in de-
Section IV discusses its adaptive properties, its use in scribing directed graphs.
knowledge base organization, and its suitability for In the problem we consider, the nodes of the graph
optical realization by interconnection. Section V ad- represent different classes in a pattern recognition
vances optical architectures that achieve the broad- problem, and the problem is to find the node or class of
casting and parallel multiprocessor properties suitable the input object under question. The input data to be
for realization of optical directed graphs. A directed processed by the graph are typically symbolic, al-
graph case study (alphanumeric character recogni- though any object description is possible. In the case
tion) is employed throughout and summarized and study we consider, the input data is an iconic image
detailed in Sec. VI. pixel description of the object to be classified. From

Fig. 1, we immediately see that a directed graph has a
II. Tomknology large number of interconnections (arcs), and this alone

The terminology widely used in graph theory is makes it most attractive for an optical realization.
briefly summarized for completeness, and an introduc- Figure I also shows a disconnected graph (see Table I)
tion to a directed graph is provided. As background, to the right. Such graphs do present some problems,
we note that tree classifier structures are the most which can be handled, as we discuss later.

The adjacency of two nodes (see Table I) is an impor-
tant concept as it describes the connectedness of a
graph (which nodes can be reached from a given node).
Figure 2 shows a typical adjacency matrix A,. For a

The authors are with Carnegie Mellon University, Department of graph with N nodes, A, is N X N. If an entry aij = 1, it
Electrical & Computer Engineering, Center for Excellence in Opti- indicates that an arc or path connects node i to node j.
cal Data Processing, Pittsburgh, Pennsylvania 15213. The ones per row indicate the nodes one can reach from

Received 25 September 1987. the given node. The ones per column indicate which
0003-6935/88/030534-07$02.00/0. nodes can reach the node in question. A set of matri-
C 1988 Optical Society of America. ces JAnJ is used to define those nodes reachable from
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01100000

'U6 00110000

U3 01000000

A= 00011000
+ 'J4 Us01000000

00000010

00000011

Fig. 1. Directed graph example. 00000110

Fig. 2. Example of an adjacency matrix.

each node by a path of length (cardinality) n or less. the connectedness of the graph. This is done in an
Thus A1 describes adjacent vertices or nodes and the organized and automatic fashion. Adjacent vertices
in-degree and out-degree (see Table I) of each node should indicate more similarity or connectedness be-
(i.e., it describes the graph). A2 denotes those nodes tween classes. In using the graph, we want to find the
that one can reach with paths of length 2 or less etc. vertex (node) that best matches the input data vector.
One can easily form An+1 from An by In more general terms, nodes represent knowledge,

A, @ (19 A,), (1) and arcs represent the similarity of knowledge.
We first discuss the use of a directed graph in object

where @ denotes binary matrix multiplication (with classification. Here the graph has been constructed
numerical multiplication and addition replaced by the and exists. By a vector inner product (VIP) or correla-
logic AND and OR operations, respectively), and 0 tion, we compare the input data to be classified with a
denotes a matrix logic OR. For some m, a stable result number of starting nodes in the graph and select the
Am+i = Am occurs, and the resultant extent matrix Am best match. We then compare the input vector and
= E contains the set of vertices reachable from any data vector associated with all nodes adjacent to the
node by any path (i.e., it describes the connectedness best entry node. The node most similar to the input
of the graph). data determines the arc we move along and the next

node we enter. We then compare the input vector to
IIM. Obiect Classfication Example the vectors for all nodes adjacent to the new node.

To demonstrate the use and structure of a graph, we This procedure continues until some vertex is more
consider its use in classifying input data. The input similar to the input data than are any vertices adjacent
data is a vector (an iconic image, feature vector, sym- to it. If this similarity is above threshold, we assign
bolic description, etc.), and each node also has a vector the input to the class represented by that node. If the
associated with it. The example we use is the set of threshold is not exceeded, this node is a local maxi-
sixty-two alphanumeric characters (twenty-six upper mum. We then perturb the system and jump to a new
and lower case letters and ten numbers). Each charac- region of the graph and continue the process. If every
ter is a 5 X 9 dot matrix zero-filled and lexicographical- node has been examined and none exceeds our thresh-
ly ordered and zero-padded to form sixty-four element old, we either add a new node or restructure the graph.
binary iconic vectors. In forming the graph, we want These operations are easily achieved as we detail in
to map each class to a node, determine the outgoing Sec. IV.
and ingoing arcs to and from each node, and maintain Searching through a directed graph is similar to

traversing a tree classifier, except the larger number of
TabMe I. oeted Graph Teminollog1 interconnections in a graph allow much more flexibili-

Nodes (v,) Objects or Classes ty in reaching one node from a given node. If the
graph is fully connected, any vertex can be reached

Arcs =lnterconnections (Uni-directional) from any vertex. We modify the conventional graph
Adjacency . Two Nodes Joined by and Arc by using meta-vertices (which do not represent a class)

Indegree - Number of Arcs Entering Node to connect subgraphs and determine the nodes at
which to enter the graph. We implement the directed

Outdegree . Number of Arcs Leaving Node graph with an M-channel parallel optical processor,

Loop - Arc from Node to Itself and thus we enter the graph initially at M nodes inLOODI
Path - Route from One Node to Another Through Arcs parallel. For our alphanumeric character recognition

problem, we use M = 4, and we use the four meta-
Cardinality - Number of Arcs in a Path vertices masks shown in Fig. 3 as the data vectors for

Circuit - Path with Same Starting and Ending Node the initial input entry nodes. These masks determine
the number of input pixels in each quadrant. From

Disconnected Graph . Graph with Isolated Nodes Unreachable from Other Nodes this, we select one of four initial entry nodes to the
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search time = O[(l1-y)T logmNJ = Q(T logm-yN), (2)

where -y 1 is the graph efficiency. (This measures
the search time of a graph design with respect to the
optimal graph in which every node can be reached by
exactly one path of length logmN or less.) In practice,
one cannot easily achieve such optimal performance

Fig. 3. Data vectors used for the M = 4 meta-vertices in our and should not expect y values above 0.5. We expect-
example. They correspond to counts of the number of pixels in each ed and found -y to decrease as N increased and that

quadrant of the input data image vector, graphs with short circuits had poorer (lower) -values.

For our case study, the optimal search time is 2.74T,
and our design gave an average of 5.27T for a quite

graph. This extends the parallelism of the processor good graph efficiency -y = 0.52. Without our meta-
to the graph entry level also. As we shall quantify, this starting vertices, the average search time was much
significantly reduces the path length to a solution and worse (8.57T).
hence the search time required. We assume a parallel processor with M, channels

Several pitfalls that exist in a directed graph classi- (capable of performing M, vector comparisons in par-
fier are now noted, and the techniques we use to over- allel in a time 7), one can show that if Mi = 1, then M =
come them are addressed. Disconnected subgraphs 2 yields the minimum search time; and if M1 is >1, the
can exist (we handle them with meta-vertices, the use minimum search time is obtained when we choose M =
of multiple starting nodes, and perturbation jumps). M, (i.e., when the out-degree per node in the graph
Several vertices may have an in-degree of zero (they matches the parallelism of the processor being used).
are not reachable from any vertex); our graph synthesis In the multiprocessor case, the number of nodes to be
technique ensures that such cases do not arise. Local searched is still O[(1/-y) logMN], and the search time
maxima can occur in the maximum-ascent search per- given by Eq. (2) is reduced as M increases. A similar
formed. We avoid becoming trapped in local maxima analysis shows that the same value of M also represents
by perturbation jumps rather than backtracking or the optimal number of starting or initial nodes.
simulated annealing ° (which allows one to move to We now discuss how the M nearest neighbors of a
less optimal nodes with finite probability). We found node are selected during synthesis of the graph (i.e.,
that perturbation jumps and hard decisions were pref- how the M nonzero entries per row of the adjacency
erable in our study. Cyclic paths (circuits in Table I) matrix A, are selected). This is achieved by forming
can exist when a diagonal element of the extent matrix the VIP matrix R for the N input data vectors xi,
E is nonzero. This corresponds to the case when a normalizing R to produce unit diagonal elements.
node is reachable from itself. The maximum ascent (This keeps R positive-definite and prevents a vector
algorithm cannot return to the same point, and thus with a high magnitude from dominating compari-
such circuits will not be traversed in practice. Howev- sons.)" Entry aij (with i 5 j) in Ai is 1 if element rij of
er, they are redundant structures that can reduce the the normalized R is one of the M largest elements and
processing search speed. However, for a completely is zero otherwise. Subsequent adjacency matrices A,
connected graph, circuits exist. Since circuits are un- and the extent matrix E can then be obtained using Eq.
avoidable, our graph design ensures that circuits are as (1). We use R to determine outgoing arcs only.
long as possible (since this improves search speed by We found that a more detailed procedure is neces-
making useful paths shorter). Our system includes a sary to assign incoming nodes and that if R is used for
small working memory that keeps track of the next this, the graph will have many subgraphs and not be
best single node previously checked but not chosen and well connected. The procedure we use to determine
the next best initial input node. This allows us to which nodes have incoming arcs to the node in equa-
achieve backtracking by perturbation jumps to these tion is detailed elsewhere 4 and is thus only highlighted
nodes. below. We form matrices R' and A, that are reduced

versions of R and A1 containing only the largest ele-
IV. DIreded Graph Autonomous Sylhels ments of R and the columns of A with nonzero entries.

We now detail the design and construction of our (This reduces storage by a factor of NIM.) We also
directed graph. We note that the procedure is auto- form an N + 1 element working vector array z whose
matic and does not require human intervention. The elements are the comparisons of the input vector x (to
first issue is to select the out-degree M of each node. be added to the graph and knowledge base) with the
This is a function of the number of parallel processor previously chosen input class vectors. We note that
channels available M, (i.e., how many adjacent nodes the outgoing connections using R have established
can we check in parallel). If M = 1, the search through some ingoing arcs into some nodes. For the node
the graph is sequential, and for a graph with N nodes associated with the newest input vector, we check all
(with the time for one comparison at a node being T), prior nodes to see which have high-comparison agree-
the search time through the graph is O(NT), where the ment with the new node. We also check all prior nodes
operator 0 denotes order of. If we search M nodes in to see which outgoing arc from them has the smallest
parallel at each level, one can show that weight or agreement with another node. We check
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whether the prior nodes which have high comparison
agreement with the new node are also connected to
other nodes, which also have high agreement with the
new node in question. Simple manipulations of z, A1 ,
and R' allow us to determine which previous nodes
should have arcs into the new node and which old arcs
to break. When an old arc is broken, we reroute the
old connection through the new node. The new A,,
matrices are used to indicate the reachable extent of
nodes whose arcs have been altered. The rows of R'
and Ai are now recorded with these new data. If no
ingoing arcs to the new node result (i.e., if arcs to be D )
broken to allow arcs into the new node have greater
strength than the new arc added), we force a connec- Fig. 4. Directed graph for the first five characters in the alphabet.
tion into the new node. (This is essential to maintain
the connectedness of the graph.) We do this by adding
an arc from the new node to the node (node A) with the
largest agreement with the new node and breaking the
weakest arc from node A (which we assume goes to
node B). We then insure that node B is connected to
the graph. (This is generally the case since the new
node will have node B as one of its adjacent nodes.)

An example will best demonstrate several aspects of
the above procedure. In Fig. 4, we show the graph that
resulted when the first five letters (A-E) were shown to
the system. We restricted this graph to M = 4 outgo-
ing arcs per node. When the sixth input letter F was
fed to the system, the graph that resulted is shown in
Fig. 5. The modifications produced are automatic and
follow the rules noted above. We now discuss and
compare the graph structures in Figs. 4 and 5 to gain Fig. 5. Directed graph when F the sixth letter of the alphabet is
insight. We note that node F is connected (by outgo- added to the knowledge base.
ing arcs) to nodes A, B, E, as well as D. Visual compar-
ison of the letters shows that these are the four letters the lowest VIP value. (This node vector is stored in
to which F is most similar. Let us now consider the the first column of R' in the ordering procedure we
ingoing arcs into node F and how they are determined, employ.) A new data vector representative of the two
We note that in Fig. 4 an arc from E to D existed and nodes to be merged is formed by averaging their vec-
that in Fig. 5 this arc is broken and replaced by arcs tors. All arcs into these two nodes are broken and
from E to F and F to D. This choice was made since F replaced by arcs to other nodes (those with the largest
is more similar to D than is E, and F is more similar to E R' entries). This is equivalent to removing two col-
than to D. The arcs from A to D and from B to D in umns from A and R. We also remove all outputs arcs
Fig. 4 are also rerouted through node Fas seen in Fig. 5. from these nodes. (These are determined from the

During synthesis of the graph (and during its use in rows of A1.) This removes two rows of A and R. After
classification), if a new input class is sufficiently close the aforementioned procedure, these nodes have now
to a previously introduced data vector or class vector, been removed from A1, R and from the graph itself.
the new input class can be assigned to a prior node or The merged node is then added to the graph as a new
the threshold can be increased and a new node added node using the techniques noted above and demon-
(as described above). This rule is under control of the strated in Figs. 4 and 5.
user. We now address how to restructure the graph.
This arises in the design of the graph and in the use of V. Optioal Realization
the graph during classification of input data and We now discuss the optical realization of a directed
knowledge. This case arises when we have reached the graph processor. We note that small working memo-
maximum number of nodes N allowed in the graph ries are sufficient to handle the updating and restruc-
(e.g., for memory reasons, we cannot add another node, turing of the graph. We note that these memory ma-
but yet the input data do not agree sufficiently with the trices have either binary entries or analog entries (that
vector data at any existing node). In this case, we do not require high accuracy) because of the nature of
must merge two nodes of the graph into one node, our search procedure and the interconnectedness of
rearrange their interconnections, and add a new node the graph (which allows errors at one node to be subse-
(the new input vector). This is easily achieved by quently corrected later since a given node can be
reducing the threshold and from the reduced size R' reached by many paths). Thus these operations
matrix noting which node to merge with the node with should be able to be implemented with simple analog
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output detectors. In the case of symbolic vectors or
optical matrix processors. 12 Since the directed graph feature vectors, shift invariance is not required, and M
has many interconnections (outgoing arcs from each vectors inner product comparisons are sufficient. In
node), it is most suitable for an optical realization, this case, we only require one detector per row at P3
since optical systems can easily achieve broadcasting (rather than a linear detector array at each vertical
(one-to-many connections) and massive interconnec- location in P3), since the alignment of the vectors is
tions with no crosstalk between the connection assumed to be known.
lines.13,' 4  A final architecture to implement a directed graph

Figure 6 shows one realization of an M-channel par- processor could employ optical (holographic etc.) stor-
allel processor system to perform the M comparisons age of the M outgoing node vectors associated with
necessary per node in the directed graph. In Fig. 6, the each of the N nodes in the graph (in various space and
input vector to be classified is fed to an acoustooptic frequency multiplexing arrangements). One could ac-
(AO) cell, and the M vectors corresponding to the cess the appropriate M data vectors with an optical
nodes adjacent to the node being searched are entered beam deflector and perform the comparison directly,
into the M rows of a 2-D spatial light modulator or one could readout these M vectors and write them
(SLM), preferably an M-channel AO cell. The con- on an optically addressed material in the plane of the
tents of the input AO cell are broadcast in parallel to 2-D SLM in Fig. 6. Optically addressed SLMs and
the M rows of a SLM by lens L1. They pass through materials for optical storage are not as developed and
the SLM forming the point-by-point product of the mature as are LEDs, LDs, and AO devices. Thus we
elements of the input vector and the M reference vec- restrict our present attention to the architectures of
tors. Lens L2 then sums each product onto a separate Figs. 6 and 7.
detector in the output plane. The M output detectors We now discuss the search time possible with these
thus contain the M vector inner products of the input architectures. We consider a sixteen-channel AO cell
data and the M outgoing node data vectors. By moni- for the SLM in Figs. 6 and 16 laser diodes at P, in Fig. 7.
toring the time history output from the detectors, the Thus we consider a directed graph with M = 16 parallel
system can achieve correlations of the input vector processors or outgoing arcs per node. We assume a
with each of M reference vectors. (This can be a shift- quite modest 1 MHz = 1-Mbit/s input data rate to each
invariant comparison of the vectors, should this be AO cell and to the laser diodes. We consider the case
required.) The AO cell can be replaced by a linear of fifty-element vectors and even include the fact that
array of LEDs or laser diodes (LDs) (should the vector they will be encoded to eight-bit accuracy; i.e., each
data be available in parallel), vector will be a 50 X 8 = 400-element binary vector. In

A multichannel time integrating correlator can also this case, new vectors can be input each 0.4 ins, and the
be used (see Fig. 7) if the vector data are long, or if its processing time required for parallel comparisons per
data rate is slow. In this well-known architecture, the node will be T = 0.4 ms. This length T necessitates use
M reference vectors are fed to separate point modula- of the time integrating architecture of Fig. 7. We
tors (LDs or LEDs) at P1 and the vector x to be classi- consider a knowledge base with N = 212 = 4096 classes.
fied is fed to an AO cell at P2. This light leaving each With a graph efficiency of one, the average time for
point modulator is broadcast to illuminate uniformly classification of the input data (the search time for this
P2 with different angles of incidence. Plane P2 is knowledge base) is O(T logMN) = 1.2 ins, and the
imaged onto plane P3. Since the data from each P, digital memory requirements are modest (only -0.5-
point modulator enter P2 at a different angle, it ap- Mbits). Thus, even with very modest device require-
pears at a different vertical location in P3. Thus the ments, the architectures of Figs. 6 and 7 are quite
product of each PI input and the contents of P2 appear attractive. AO cells with sixty-four channels and LD
on separate P3 detectors. These detectors time inte- arrays with sixty-four elements are realistic, as are
grate this input signal data for the duration of the data rates of 1 GHz; thus very fast searches of very
input signals (vectors). The P3 outputs are the corre- large knowledge bases are possible with this architec-
lation of the x and the M references wm on the M ture.
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Table II. Adjaceicy Matrix A for the N = 62 Node Alphanumeric Case sign of the graph and the organization of such a knowl-
Study Dictd Ga edge base and to quantify the efficiency of the graph

,Al J=J0,WeftTUVWYZ&b9d.f 59Ik .Iaopqrt,"a xo z234678 designed. As noted earlier, the optimum number of
9 A nodes that a graph would examine (on the average) to

Q r 0 a a search the full knowledge base is logMN = 2.74 for our
CE] PG L case. We calculated the number of nodes searched for
i(} C E o all sixty-two inputs (the cardinality of the path from
C" C T 78 entering the graph to the final node selected) and
(K] 234 7 found that our graph required an average of only 5.27[K] M N R

ILI DE U node searches to classify all sixty-two input vectors.
M] N W h
tMU] This represents a most respectable graph efficiency
Co C C o = 0.52.
Ca] D U 0
(I] A F P
Cs, c a 89 VII. Summary and Conclusion
[T] I Y 1
cV 0 " b We have advanced an autonomous technique to or-
C11 H N U ganize a knowledge base and allow an efficient search
IX] H N y k
cT3 T through a large knowledge base. Borrowing and modi-
CZ] E 0 5 fying techniques from directed graphs, we devisedC.] de a S

1b] C a h n automatic and efficient procedures to determine the
(d] u .b q interconnections of the nodes, and new techniques to
Cl] a . add new nodes to the graph and restructure the graph
[5] d o q y as new knowledge are learned. This provides us with a
I I N b I technique that adapts to new knowledge and automat-
C]] H q ically restructures its knowledge as new data enter.
19] 9

C1] I T 1 1 Data classes are stored as nodes, and associations are
m] n r
Cv) b h m r stored as arcs or interconnections. The organization
cP] b no proposed allows use of parallel multiple processors to

] U y reduce search time by employing many interconnec-
[r}h c. e tions. It is thus quite suitable for optical implementa-

€u] P q S tion. This graph technique is preferable to tree struc-
C,] -y tures and hierarchical relational graph processors (by

] a
x] B H H virtue of its use of interconnections, parallel proces-

(z]a9 . 2 sors, and the ability to reach any node from any node I
(]o c 

0 
Q by a number of paths).

12icT] .We detailed several optical designs for this adaptive
C31 G S s learning processor. We quantified its efficiency for a
C4 C 3 case study, and quantified how large data bases can be
(7) J T Z 0 searched quite fast employing it. Our case study

] o 0 showed the ability of such a knowledge base processorto classify correctly all sixty-two upper and lower case
-- alphanumeric characters.
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I
ABSTRACT

I The use of a decision net (hierarchical classifier and a multiple directed graph processor) is detailed
and demonstrated for an imaging spectrometer identification problem.

I 1. Introduction

Section 2 briefly reviews the imaging spectrometer problem we consider. Section 3 reviews our

hierarchical classifier with its automated and not ad hoc tree structure and linear discriminant

function (LDF) design. Section 4 presents our new multiple directed graphs and new directed graph

design concepts. Section 5 presents our initial data. Our conclusions are advanced in section 6.

* 2. Imaging Spectrometer Processing Problem Definition

Imaging spectrometer sensors such as the airbone imaging spectrometer (AIS), the airbone
visible/infrared imaging spectrometer (AVIRIS), and the planned high resolution imaging spectrometer

(HIRIS) systems 13 offer the ability to provide spectral reflectance data (responses at wavelength Xl,

1=1, .., L) for each (x,y) image pixel. This 3-D (x,y,X) data rate can approach 1 Gbyte/sec with the

number of operations per second being much higher. We use L= 128 wavelength reflectances for

E=500 mineral elements as our reference database (these include different color and grain size

samples per mineral as separate classes in our E= 500 class reference database). For cases when the

recorded spectra are mixtures of several spectra, a neural net processor is required" . This paper

considers cases when the wavelength response ke of a reference element e for different wavelengths 1 is
available as reference data to process the received signal at each pixel. The problem is to determine

which element e is present in the input data from the input spectrum, when one element e is assumed
to be presented in each input imaging spectrometer pixel.

U 3. Hierarchical Classifier

I To determine the class of an unknown input, we must compare its spectrum with the E= 500

references. We consider this as a large class problem or large knowledge base search for which we nowI
I
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I
review our previously detailed 7 hierarchical classifier. This consists of a binary tree with PC= 100%

I correct classification with high confidence (measured by the Fisher ratio of the designed LDF at each

node). We consider a binary classifier since it provides better performance 8. To provide an automatic

design of the structure of the classifier, we use a new iterative Fisher/minimum-variance algorithm 7

to select the two clusters of the data to be used at each node. In this algorithm, we first perform a
minimum-variance clustering of the data at each node (e.g. E=500 classes at node 1 of Figure 1). We
then compute the Fisher LDF for these initial clusters, project the data onto this Fisher LDF, and
measure its PC for the training set data. If Pc is not 100%, we perform minimum-variance clustering

(in Fisher projection space now) to obtain a new partition of the training data. We then calculate a
new Fisher LDF for this new pair of clusters and compute PC for it. This iterative procedure is

repeated until PC= 100% is obtained. The Fisher ratio increases (and hence our confidence) at

successive iterations. This iterative procedure is performed for each node in the tree. Thus, this
algorithm maximizes the Fisher ratio (our high confidence performance measure) and provides PC=

100% (which a Fisher LDF does not normally achieve). The design tree structure (the best pair of
clusters to be separated per node) is automated as is the design of the Fisher LDF used at each node.
At successive nodes, the number of wavelengths L used is reduced to allow the inversion of the
covariance matrix in the calculation of the Fisher LDF. We terminate the hierarchical classifier after
4 levels (as shown in Figure 2) either because the Fisher ratio (our confidence measure) is small or
because the number of classes at that node (and thus the number of features used) is few. Figure 2
shows the number of classes at each node and the Fisher ratio for the LDF at each node. As shown,
this hierarchical classifier yields 7 final clusters (with 30-155 elements per cluster). We plan to use this
hierarchical classifier to feed several directed graphs (one for each of the seven clusters) to determine
the class of Lhe input data (Figure 3). Our data presented here used unnormalized data to produce
the data clusters (hierarchical classifier) and zero-mean and normalized data for the VIP per node in
the directed graphs.

4. New Multiple Directed Graph Design

Directed graphs 9 (e.g. Figure 4) are quite useful in organizing and searching a large knowledge
base.10 . Since they have many interconnections (with outdegree M per node), they are highly
interconnected and can be designed to allow any node (class) to be reached from any other node (thus
allowing errors obtained in earlier classifications to be overcomed without the need for backtracking
with its associated problems). Thus directed graphs allow problems 11 in conventional sequential

classifiers 12"14 to be overcome.

I Our new Pc = 100% high confidence hierarchical classifier (for clustering only) and the use of

multiple directed graphs for final class decisions combine the best features of both into a new decision
I net for large class problems. Directed graphs allow new nodes to be added to the graph and the graph

to be restructured and are thus also adaptive. However, the standard directed graph design

techniques 9 - 10 have several shortcomings. These include: many connections are forced (to improve the
connectivity of the graph), these forced nodes and nodes with few ingoing arcs resulted in local
maximum, which require perturbations in the graph search and full connectivity is still not achieved,
and different directed graphs result for a different order with which the training set vectors are

I



-3-

I
presented.

Our new directed graph design overcomes these problems with new graph design rules. These rules
include: use of only natural arc connections obtained from the VIP matrix (this reduced the number of
perturbations required and improves the graph search time), use of multiple graphs (whose clusters are
obtained from our hierachical classifier), and new starting node rules. The need for new starting node
rules arises since the use of only natural arcs results in disjoint subgraphs (where a subgraph is a
collection of nodes which one cannot enter and leave), fully connected or not (where a fully connected
subgraph allows any node to be reached from any other node in the graph). These subgraphs can
easily be located from the extent matrix. Several subgraphs can exist within each of the multiple
graphs. We use the hierarchical classifier to determine the elements to cluster within each multiple
graph. We must also determine which starting nodes to enter in each graph. Nodes with a large
number of ingoing arcs will be visited often, while nodes with few ingoing arcs will be visited seldom.
Thus, the input corresponding to such seldom visited nodes are those for which we expect to

encounter local maximum since there is only one or a few paths (arcs) into the proper final node.
Local maxima are nodes for which a test input yields smaller VIPs with all M neighbors of the present
node than the VIP at the present node. In such cases, we perturb the directed graph. Thus, we use
nodes with few ingoing arcs as starting nodes to reduce the number of local maxima that occur. Local

maxima occur in all directed graphs (even in our new algorithm). One can locate these only by
exhastive test and it is unrealistic to try to eliminate all of them. Our use of only natural arc
connections reduces the number of local maxima and our starting node selection rules reduces the
problem of encountering local maxima. Our use of VIP data (and natural, not forced arcs) to design
the graph results in the same graph design regardless of the ordering of the training set data.

The connectivity and reachability will be worse with our graph design since disjoint subgraphs
result. We solve this by using our hierarchical classifier to determine the clusters for the multiple
graphs and by using multiple starting nodes. We determine which graph to enter using the
hierarchical classifier. We determine how to enter the graph for each cluster using new starting node
rules (to ensure full reachability and a fast search of the directed graphs). Our new graph design
procedure produces fewer local maxima and fewer perturbations (to reduce the average search time).
Our use of multiple graphs and new starting node rules is attractive since as the size of any graph
grows, its efficiency -1 decreases. In determining the class (node assignment) of input test data, we
first perform VIPs of the input vector with the LDFs at different nodes. We could also use this to
determine which of the multiple directed graphs to enter. We then perform VIPs with the data at the
starting nodes of that graph, select the node with the largest VIP output and then perform VIPs with
its M neighbors. We continue this process until the VIP at the current node node is larger than the
VIPs with its M neighbors and then we check to see if the VIP exceeds our threshold r. If not, we
perturb or jump to the previously checked (but not used) node with the largest VIP value (this data is
easily stored). The threshold r is selected as halfway between the VIP with the correct node (always 1)
and the next largest VIP in the VIP matrix. We use an outdegree of M for all nodes (where M is the
number of parallel or multiple processors available). Similarily, we use a number of starting nodes
that is an integer multiple of M.

We now detail our starting rules. These include: select one starting node per subgraph, pick nodes
with the fewest ingoing arcs (these correspond to inputs with the largest probability of being trapped

I
I
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in a local maximum), pick nodes that reach the most nodes (thus larger subgraphs generally posseses
more starting nodes than smaller ones), pick additional starting nodes such that they reach nodes not
reached from the initial starting nodes, and pick the nodes which are hardest to be reached from the
initial starting nodes. In all of our standard and new directed graphs, we perturb by jumping to the
node (previously checked) with the largest VIP. This procedure does not always (by luck) yield the
best performance, but it is a rational criterion. An alternative choice for perturbations is to jump to a
node in an unused region of the graph (this is a topic for future research).

1 To add a new node or restructure (without increasing the number of nodes) a graph (this is
necessary if no VIPs with the input data exceed the threshold r), we use the new VIP matrix (it has
only one additive row and column) to combine two nodes (those with the largest VIP with each other)
and then add the present input as a new node (class). We generally merge two nodes whose VIPs are
close to each other to improve noise performance. These graph design and starting node rules are3 easily controlled by the VIP, adjacency, and extent matrices.

The starting nodes may not need to be altered when a new node is added or when the directed
graph is restructured. When adding a node, we look at the added node and all nodes with broken
ingoing arcs and the reachability of these nodes. If the reachability is adequate, we make no change in
the prior starting nodes. When the VIP entries for the new node (the new VIP column and row) areU larger than some of the M arcs used already, we must include the new node as the end of one of the M
arcs from a prior node. We do this by breaking old weak arcs and adding the new arcs needed.

* 5. Test Data

In all of our tests of standard and our new directed graphs, the same perturbation rules were used
(i.e. we jump to the previously checked node with the largest VIP). For our new directed graphs, the
starting nodes used were chosen as fioted in Section 4. For the starting nodes for the standard directed
graph, we calculated the total number of perturbations that would be required (for all data in the
graph) for each possible starting node and we selected the starting nodes as the nodes that required
the fewest perturbations. In all cases, Pc=100% recognition was obtained.

U Table 1 shows the performance of the standard directed graph (one directed graph for the E=500
class problem) for two different choices of M, using both standard and new (without the multiple3 graph structure) direct graph design algorithms. Their efficiencies are low since many perturbations
are required. From this, we see that the use of our new graph design rules (without multiple graphs)
produces an improvement in search time (of 20-27%) and in graph efficiency (of 17%-38%). If we
solve the same problem with seven separate directed graphs (using standard graphs and our new
graph rules), we obtained an improvement in search time by a factor of 5 (Table 2). Most of the
improvement is thus due to the use of multiple graphs. (Note, however, that the exhaustive starting
node search used for the standard directed graph is not suitable for very large class problems and
when the directed graph is changed adaptively). In Table 3, we show the average search time for each
of the seven standard and new directed graph rules for the same set of seven clusters. As seen, our
new directed graph rules improved performances in general (up to a maximum of 33%), with a general
(and encouraging) trend to better performance for larger directed graphs (e.g. cluster C155), and with
poorer performance (by luck) for several cases. Table 4 lists the graph efficiencies for the seven

I
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directed graphs in Table 3 using both algorithms. As seen, our new algorithm performs better than
the standard one or nearly the same for all cases with a general trend to better performance for
clusters with more elements. Note that the graph efficiency 'y measures how close the graph comes to
the ideal average search time for N nodes, Of(1/-t)logMNJ where the ideal y=l is never achieved. The

threshold value used in all data tests was -1-0.99. The value is high, but has a valid range when noise
is not present.

Table 5 lists various parameters from our seven new directed graphs in Tables 3 and 4. For M=4,
the number of starting nodes is always less than the number of fully connected subgraphs (and is an
integer multiple of 4). For M=8, the number of starting nodes is always 8. We do not need 8
starting nodes to make all the nodes reachable, but we use 8 to fully utilize the parallelism in the
processor (M is the number of parallel processors available). We do not need to choose one starting
node for each fully connected subgraph in a cluster to make all nodes in a cluster reachable. Note that
several nodes are in several fully connected subgraphs. This can be seen from the fact that there are
more fully connected subgraphs (each node can be reached from any node) than standard subgraphs
(no path both in and out). In all the clusters, all nodes are reachable from one of the starting nodes.

I In the standard directed graphs design, the rule we used when adding a new node and ingoing arcs
to it was as follows. We added outgoing arcs to the M nodes (in the present graph, not in the full
graph) with the largest VIPs. We added ingoing arcs to the new node from nodes whose VIPs (with
the new node) are larger than one or more of their prior neighbors. These are referred to as natural
arcs. However, since all nodes have only M outgoing arcs, we must break a prior arc to provide an
ingoing arc to the new node. This was done only if the node with the broken ingoing arc can still be
reached from the node with the broken outgoing arc through some other path (i.e. the graph must
remain fully connected). If no such natural ingoing arcs can be made, then a forced arc is necessary
(i.e. the new node has no ingoing arcs). If there is a direct connection (of length one) between the
nearest neighbors of the new node, then we break the weakest such connection and connect that
outgoing arc to the new node. If no such connection exists, then none is made and a fully connectedE graph does not result (at this stage of graph synthesis). A major problem with standard directed
graph design is that the training node data is fed sequentially to the directed graph synthesis stage
and that we must force arcs to maintain connectivity. However, we can only connect to the nodes
present thus far. Later in graph synthesis, new nodes are added and these have natural arcs into a
prior node with a forced ingoing arc. In this case, the natural arc that was broken to force an earlier
ingoing arc should and could often be replaced (but the bookkeeping for this is not realistic for a largeE database).

In other data for the standard single E=500 (M 4) directed graph, we found 64 forced arcs (64
nodes with forced ingoing arcs). For those nodes with a forced ingoing arc, we found 23 nodes with
one final ingoing arc, 17 nodes with 2, 13 nodes with 3, and 11 nodes with 4 to 6 final ingoing arcs.
For the standard single E=-500 M=8 directed graph, we found 26 forced arcs. Of the 26 nodes with
forced ingoing arcs, 10 nodes had one final ingoing arc, 2 had 2 ingoing arcs, and 6 had 3-5 ingoing
arcs. By comparison, our new graph construction yields more nodes with only 1, 2 etc. ingoing arcs
(and several nodes with no ingoing arcs). However, our use of several starting nodes solves these
problems for our directed graphs. (We still employ M starting nodes in our comparisions of the
standard and our new directed graphs). For the two standard M=4 and 8 directed graphs for the

I
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E=500 class problem, we measured the search time for the 23 and 10 inputs corresponding to nodes
with only one ingoing arc and compared this to the average search time for each graph, we found a
search time of 129 v.s. 66 and 92 v.s. 33 for the M=4 and 8 cases. Standard starting nodes selection
(described earlier) and perturbation rules (perturb to the previously checked node with the largest
VIP) were employed. These data show that these nodes with few ingoing arcs definitely require longer
search time (by factors of 2 to 3), and thus our new starting nodes, multiple graphs, and graph design
techniques should be most attractive. The fact that our graph design results in the same directed
graph for all orders of training vectors is a vital issue, whose importance is not apparent from the
present data (since all various possible directed graphs with different orders of training vectors were
not tested). Our new directed graph is better, primarily due to the use of multiple graphs and our
choice of starting nodes (not due to the graph design itself).

6. Summary and Conclusions

A new clustering method for the design of a hierarchical classifier has been reviewed. Its use with
multiple directed graphs represents a new and efficient decision net. We select the clusters for the
multiple graphs from this hierarchical classifier and use the hierarchical classifier to determine which
directed graph to enter. New directed graph rules (to reduce local maxima and number of
perturbations required) and new starting node rules (to extend the reachability and to reduce the
seach time of the graphs) were advanced. Initial test results on a 500 class imaging spectrometer
problem were very successful with Pc=--100% and an improvement factor of over 5.
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Ig. Average search time Efficiencies( '7)

M Standard New Standard New

4 65.7 50.12 0.08 0.11

8 32.7 27.78 0.12 0.14

Table 1: Average search time and efficiencies of the standard graph and new directed graph
(without the multiple graph structure) using only one graph for the E=500 class problem.

Mg One graph Multiple graph

Standard New Standard New

I 4 65.7 50.12 12.53 9.54

8 32.7 27.78 5.16 4.58

Table 2: Average search time for one graph vs multiple graphs using standard and new algorithms.

cluster Average search time of the seven directed graphs

M aCg. 030 C37 C39 C61 C78 C100 C155

Standard atg. 3.43 4.08 4.10 6.26 18.77 14.01 16.81
New alg. 3.57 4.09 3.85 5.20 6.53 13.96 11.92

Standard aig. 2.93 3.22 2.92 3.66 4.05 5.96 6.62

New alg. 2.73 '2.78 2.79 3.31 3.78 488 6.53

3 Table 3: Average search time of the seven graphs using both standard and new algorithms.
The directed graphs are denote by cluster (c) followed by the No. of elements per cluster.

I
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Scluster Efficiencies of the seven directed graphs
M ag. C30 C37 C39 C61 C78 C100 C155

Standard alg. 0.99 0.85 0.85 0.56 0.17 0.25 0.23
New aig. 0.99 0.85 0.92 0.69 0.57 0.25 0.33

8 Standard alg. 0.84 0.78 0.99 0.74 0.60 0.45 0.44

New alg. 0.95 0.97 0.99 0.85 0.74 0.57 0.45I

Table 4: Graph efficiencies of the 7 graphs in Table 3 tests using both standard and new algorithms

M Numbers C30 C37 C39 C61 C78 C100 C 155

No. of starting nodes 4 4 4 8 8 4 12

4 No. of subgraphs 1 1 2 1 1 1 1
No. of fully connected 1 7 4 11 10 24 23
subqraphs

No. of starting nodes 8 8 8 8 8 8 8

8 No. of subgraphs 1 1 1 1 1 1 1
No. of fully connected 1 2 1 4 1 9
subgraphs _

Table 5: Number of starting nodes, subgraphs, and fully connected subgraphs
in the 7 directed graphs using our new design algorithm.
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Key and recollection vector effects on heteroassociative
memory performance

David Casasent and Brian Telfer

Most associative memory work has concentrated on autoassociative memories (AAMs). These associative

processors provide reduced noise and error correction in their output data. We will consider heteroassocia-
tive memories (HAMs), which are needed to provide decisions on the class of the input data and inferences for
subsequent processing. We derive new equations for the storage capacity and noise performance of HAMs,
emphasize how they differ from those derived for AAMs, suggest new performance measures to be used, and
show how different recollection vector encodings can improve HAM performance.

I
I. Introduction ciative memories (Sec. II.B) and note new recollection

Much has been written" about associative memory vector encodings possible for HAM associative proces-
storage capacity and the recollection and error correct- sors (Sec. II.C). Initial demonstration data (including
ing properties of autoassociative memories (AAMs). associative recall of nonreference or training set im-
However, little attention3.6 8 has been given to heter- ages) is then included (Sec. II.D). Section II.E reviews
oassociative memories (HAMs). Our work discusses the optical matrix-vector multiplier system that is
both types of associative memory and notes the differ- attractive for pseudoinverse recall and discusses the
ences in performance between each. Section II re- importance of HAM capacity analysis and recollection
views pseudoinverse associative memory synthesis and vector choice in the optical implementation.
recall, linear discriminant function analogies with A. Notation and Pse doinverse Associative Memories
pseudoinverse memories, and optical implementation
of pseudoinverse memories and establishes our nota- We denote the key vectors of dimensionality N by x,
tion. In Sec. III, we introduce two performance mea- and the output recollection vectors of dimension K by
sures for associative memories, and we consider new yk. There are M key/recollection vector pairs (Mis the
theoretical expressions for both pseudoinverse AAM storage capacity of the associative memory) and the
and HAM storage capacity and noise performance. purpose of the associative memory matrix M of dimen-

Quantitative data on noise reduction, SNR perfor- sionality K x N is to recall the recollection vector YR
mance, and the probability of correct recognition for that is associated with the input key vector zK. Thus
pseudoinverse AAMs and HAMs (with different recol- we desire Mxk = yk for all k - 1 to M, where boldfaced
lection vectors) are then included in Sec. IV. upper case letters denote matrices and boldfaced lower

case letters denote vectors. In terms of the key vector
9. Assocatve Memory Sy hesh and Recall matrix X of size N X M (with the xR as its columns) and

We review the types of associative memory and their the recollection vector matrix Y of size K X M (with the

synthesis (Sec. II.A). We then advance new analogies yR as its columns), the associative memory must satisfy
between pattern recognition, linear discriminant func- MX - Y. (1)
tions, and pseudoinverse and mean square error asso- If X is square and nonsingular, we can write the solu-

tion as M = YX - . Generally X is not square, and thus
the pseudoinverse solution

The authors are with Carnegie Mellon University, Department of M = YX (2)
Electrical & Computer Engineering, Center for Excellence in Opti- is used, where
cal Data Processing, Pittsburgh, Pennsylvania 15213

Received 15 Deembjr 1987. X + (Xx lxX (3)

0003-6935/89/020272-12M.00/0.

C 1989 Optical Society of America. and V - XrX is the vector inner product matrix. The
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solution in Eq. (2) with X+ given by Eq. (3) is useful P P2 P3

only when the xk are linearly independent, since then
V is of full rank and can be inverted. In such cases, the
pseudoinverse is an exact solution and is the minimum
norm solution,10 whose outputs y, are least affected by
input perturbations. If the Xk are orthonormal, then
X - X and calculation of M is easy. Minimum
squared error (MSE) solutions for the pseudoinverse
exist when the key vectors are linearly dependent, but , y
all such solutions are approximate. Such methods are Fig. 1. Analog optical matrix-vector multiplier for paeudoinverse
not considered in this paper. asociative memory.

If the x are image domain vectors (i.e., lexicographi-
cally ordered images), and if M << N, often we will find
that the x, are linearly independent, or at least there is ments. Some associative memories use several ma-
a reasonable assurance that this will occur. However, trix-vector iterations' ,7.17- 19 to obtain the final result,
if the x, are feature vectors or if M is large, the key whereas others employ only one pass through the sys-
vectors are generally linearly dependent. Thus there tem. Thus there are a large variety of associative
are many cases in which the assumption of linear inde- memories. In our initial work here, we consider only
pendence is not valid. In such cases, advanced tech- the pseudoinverse associative memory. Our emphasis
niques such as those that produce an orthogonal basis will be on HAMs and how their performance and stor-
from the key vectors (a vector inner product/Gram- age capacity differ from those of AAMs. Our new
Schmidt method 1 or an iterative eigenvector meth- results concern the performance of HAMs and how
od 12) can be used or the associative memory can be new recollection vector choices can improve capacity
assembled using an iterative Widrow-Hoff method.'3  (increase M) and reduce memory size (K x N). Gener-
Several of these methods can be realized in real time. al expressions will be derived for associative memory
The use of the data matrix associative memory M = XT performance with different conditions placed on the
has also been suggested. 4 This memory has been key vectors.
shown to produce better nearest neighbor recollection
than the popular Hopfield memory4 for the cases of B. Pattern Recognition and Unear Discriminant Function
both binary14 and gray scale 12 key vectors. When the Analogies
input vector is not one of the original ones used to form Conventional linear discriminant function (LDF)
M, we desire the output y vector to be the one most synthesis techniques are quite useful for HAM synthe-
closely associated with the input. sis but are generally not employed. To show the anal-

For AAMs, Y - X and the output is an input key ogy between the pseudoinverse solution in Eq. (2) and
vector with reduced noise. For HAMs, the y output LDFs, we consider LDFs intended to recognize differ-
denotes the class of the input vector. In general, ent input objects, discriminate them from other ob-
AAMs are employed for noise reduction and error cor- jects, and recognize different distorted versions of an
rection and HAMs are used to provide decisions. Cas- object. This analogy will also prove useful in discuss-
cades of AAMs and HAMs have also been suggested ing different possible associative memory recollection
and demonstrated" to achieve both goals. There are vectors. The linear combination filter20 is the sum of
many possible algorithms and architectures that can reference or training image vectors x1:
be employed to synthesize and use associative memo- (4)

ries. These include: forming M as a sum of vector h = ax, Xa.
outer products (for a pseudoinverse memory this re- where the elements of the vector a denote the linear
quires orthonormal key vectors); performing the ma- combination coefficients. Each filter h is designed to
trix-vector multiplications by vector inner products output a single element of the recollection vector yk.
(this also requires orthonormal key vectors unless a This is achieved by specifying each h4 as the solution of
nonlinearity is introduced in the central planeS); use a matrix-vector equation Vak = uk. The solution ak =
of the iterative Widrow-Hoff technique 13 (this does V-|uk specifies hk in Eq. (4). When the filter solution
not require linearly independent key vectors); the use is written as a row vector, the LDF solution is
of multiple memories with a voting scheme 16 to in- h - r(XX)-'X T - uX .

crease storage capacity (this is only achieved with an
associated increase in the number of associative mem- When K filters hl to hK with different output codings
ories required); the use of an associative memory syn- uk for each object class are used, the result is analogous
thesized with higher-order correlations 7.9 ' 7 (this in- to the pseudoinverse associative memory with the rows
creases storage capacity, but again at the cost of of M being the different filter functions hk and the
increased associative memory size, at least if the mem- rows of Y being the different uT' control vectors.
ory does not include nonlinear elements). Many asso-
ciative memories are restricted to 0 and ± 1 valued key C. Recollection Vector Encoding
vectors and memory matrix elements. Other associa- The LDF synthesis techniques suggest different rec-
tive memories use zero-valued diagonal matrix ele- ollection vector encodings. In the simplest case, each
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Fig. 2. Autoaseociative memory image recollec-
tion: partial phantom input (a) and output ob-
tained (b); partial DC1O input (c) and output ob-

()) (d) () tained (d); noisy phantom input (e); and output
obtained ().

u* is a unit vector (with a single one in a different ,NPT iMACE 36-LLIMENT OUTPUT \TCTOR
location). In this case, Y - I and the conventional'
HAM results (with unit recollection vectors). Howev- o-
er, consider the case when several key vectors xk are e
assigned the same yk recollection vector. Such cases
arise when the xk are members of the same class (e.g., -
different distorted versions of one object). The out-
put vector y then denotes the class of the input object
(independent of distortions etc.). The size (K X N) of e
M can now be reduced considerably, since the number
of elements K in the recollection vector can be much So

less than M (the total number of x, reference or train-
ing set key vectors). Another possible recollection 6.
vector encoding technique used in LDFs and suitable -

for associative memories is to use binary encoded yk
recollection vectors. In this case, a K element recollec- e
tion vector and a K X N associative memory matrix can
identify 2 K different key vectors or classes of key vec- Qo

tors (when more than one key vector is assigned the
same recollection vector). For the case of M key/ top
recollection vector pairs to be identified, K need only
satisfy 2K > M. The value K required is thus signifi-
catly 2u f_. the K=eMKrequired s t u nit Fig. 3. Unit vector HAM 36-class demonstration. The input ori-
cantly reduced from the K f M required when unit entation is noted on the left, the object is shown in the center, and therecollection vectors are employed. We refer to these output vector obtained is given on the right.
three different recollection vector encodings as (1) unit
vectors, in which each xk is assigned to a unique unitvector Pk and thus Y = I; or (2) when several xk are input removed. The final example [Figs. 2(e) and (f))
assigned to the same unit vector $A,; and (3) binary shows the reconstruction when the input has binarized
encoded recollection vectors (when the K element out- additive bipolar Gaussian noise with a - 0.6. (Thisput vector can now accommodate 2K different codes). results in additional background noise as well as dataOur theoretical and simulation analyses will employ dropout on the object.) These AAM reconstructions

these different recollection vector encodings and ad- show the excellent noise reduction and error correction
dress the performance of the different HAMs that properties of AAMs.
result. Figure 3 shows the results of a HAM object recogni-

tion associative memory employing unit recollection
D. Initial Associative Memory Examples vectors. In this case, a 36 X 1024 element HAM was

Figure 2 shows several examples of the AAM recall of formed from the PH-36 database. The 36 unit recol-partial and noisy input key vector image data. The lection vectors have 36 elements in each. In this case,
left images show the input vector (in 2-D image for- the output vector [1,0,... ,0 ]T denotes that the input is
mat), and the right images show the output vector a Phantom at 0*, the output vector (0,1,0,..., 0 T de-
obtained (in the same 2-D image format). The AAMs notes that the input is a Phantom at 100, etc. Theused 36 key and recollection vectors, each of dimension orientation of each image is indicated at the left of the
N - 322 - 1024 (where the input images are 32 x 32 figure, the input images are shown at the center of the
binary pixels). For the first AAM, the key vectors figure, and the output vector obtained in each case is
were 36 images of a Phantom jet at different yaw shown to the right. As seen, the HAM correctly de-
distortions (every 100). We refer to this data base as notes the reference or training set vector that is closest
PH-36. Figures 2(a) and (b) show the results when the to the input test vector; i.e., the output vector obtained
input [Fig. 2(a)] is a Phantom at 0* with the first twelve for the first five test inputs has a 1 in the first position.
columns of the Phantom removed. The second AAM and the output vectors for the last five inputs have a I
was formed from 36 similarly distorted DC10 aircraft in the next position (indicating orientation within the
images. We refer to this data base as DC10-36. Fig- 100 quantization levels set). The test inputs contain
urea 2(c) and (d) show the results from this AAM when nontraining set image data, and thus the results indi-the input is a DC10 at 00 with twelve columns of the cate distortion-invariant performance of the associa-
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INPUT AND IMAGE OUTPUT matrix-vector product y - Mx. The matrix M will be

PHANTOM OP bipolar. We note that a variety of techniques have
been developed for representing bipolar data.21-24

As mentioned in Secs. I. C and II. D, certain choices
I0 sof recollection vectors result in memory matrices much

smaller than the conventional Y - I memory matrix.
lop Such choices simplify the optical architecture (Fig. 1)

by reducing the size of the spatial light modulator
70 (SLM) needed at P2 and the number of parallel detec-

tor outputs required at P3. On the other hand, differ-

DCIO OP ent recollection vector choices affect memory capacity
and recall accuracy. Thus, we consider the effects of

50 such reduced size recollection vectors on the system's
performance rather than simply choosing recollection
vectors that minimize the optical architecture's size.

lo0  These effects on memory capacity and recall accuracy
are discussed in Sec. III and IV.

700
HI. Noise Performance and Storage Capacity: Theory

After introducing the notation to be used (Sec.
Fig. 4. Binary vector HAM two-c!asa demonstration. The recol- III.A), we summarize prior relevant work on associa-
lection vectors I1,0 T and 10 ,1 ]T denote a Phantom and DC-10, tive memory capacity and noise performance and ad-
respectively. The input orientation is noted on the left, the object is vance four relevant theorems (Sec. III.B). We then
shown in the center, and the output vector obtained is shown to the present new equations for evaluating the performance

right. measure (Sec. I M.D), and we introduce a new perfor-

mance measure and expressions for it (Sec. III.E).

tive processor with simple hyperplane discriminant A. Notation
surfaces used (rather than the piecewise linear dis- The storage capacity M and noise performance of
criminant surfaces that would result from a nearest associative memories must be considered together.
neighbor classifier). Most work has addressed autoassociative memories or

Figure 4 shows the results of a reduced class 2 X 1024 specific neural associative memories, most notably the

HAM formed from the PH-18 and DC10-18 set of key Hopfield memory.4, s Our concern lies with general
vectors with only a K = 2 element recollection vector pseudoinverse associative memories without specific
used. For this HAM, the recollection vector [1, 0 ]T was conditions on the key vectors and with HAMs rather
assigned to all eighteen Phantom key vectors, and the than only AAMs. The noisy input key vectors are
recollection vector [0, 1 ]T was assigned to all eighteen described as x = xk + n, where i, is the key vector and
DC-10 key vectors. The data in Fig. 4 show the ability n is the noise vector of zero-mean Gaussian noise with a
of the memory to classify correctly training and non- covariance matrix E = ai. The variances of the input
training set input vector imagery. As noted earlier, and output noise are denoted by a? and a. where
the memory size and recollection vector dimensional- the variance of a random variable x is a'f - EIx 21 - ExJ2
ity are significantly reduced with this encoding. and for zero-mean data, =Ex2j. Boththeinputand
These data represent one of the first examples of the output noise are zero-mean, since the associative mem-

use of an associative processor for multiclass distor- ory matrix operator M is linear (if no output threshold-
tion-invariant data recognition. ing is employed). We use subscripts to denote specific

vectors in a set and superscripts to denote the elementsE. Optical Implemrnttion of Psetiflnvse Memories of a vector. In this notation, ui - EI(ni)21 and vt n -

We propose implementing pseudoinverse memory E{(y& - y k)21, where y - Mx and where the recollection
recall on the standard optical analog matr.,c-vector vector y, corresponds to the key vector xh and the
multiplier shown in Fig. 1. The optical system is at- expectation is over the elements of the vectors.
tractive for its high-speed parallel computing power.
Analog operation is desirable for speed and simplicity, B. Prior Results
and this is possible since simulations' have shown that The typical associative memory performance mea-
the pseudoinverse memory operates well in low dy- sure used has been a,2/0, where small values of this
namic range systems. The system operates as follows, parameter indicate good performance. Kohoneni
The P input plane contains N point modulators with proved for AAMs that
light outputs proportional to x. Each element of x M/1 (6)uniformly illuminates one column of the memory M, a
transmittance array of K X N elements at P 2, and the and reasoned that the result for HAMs would be about
light leaving P2 is integrated horizontally onto K detec- the same. Other work3 showed this to be incorrect.
tors at P3. The detector output is thus the desired The documentation of this work is very terse, and thus
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it merits more details. We provide these in the Ap- fies the classic AAM result for linearly independent
pendices. These results are now highlighted. Monte key vectors, i.e., that an AAM always reduces the input
Carlo simulations were performed for the AAM case,3  noise (or in the worst case, when M - N, the input noise
with the key vectors chosen from a uniform distribu- is not increased). This also shows that the noise im-
tion between -1 and +1 and with the key vectors provement for an AAM is better as M/N decreases (i.e.,
required to be linearly independent. (This we found as fewer vector pairs M are stored or when larger di-
to be a requirement for the cases when M <. N, al- mensionality-N key vectors are used). For an AAM
though it is not noted in the original work.3) In other design, when the expected amount of input noise a, is
tests3 of these associative memories, the input test specified, this expression shows that MIN determines
vectors were formed by adding a zero-mean random the output noise o2 that one will have to contend with.
variable (with uniform distribution over -I to +1) to Theorem 4 is quite significant, since it shows that the
each element of one of the random key vectors. For amount of noise reduction in an HAM depends on the
each associative memory matrix, ten input vectors key vectors [this occurs through the Tr(V-1) term] and
(each of length N) were tested using one key vector that it also depends on the recollection vector choices
with ten different added realizations of noise with the made (this occurs through the yi8 term) and that its
same level vi. Different MIN ratios were tested by performance does not depend on simply M and N as
fixing N - 50 and by varying M (with ten different was the case for an AAM. In deriving Theorem 4, it
input vectors used to test each memory matrix M). was assumed that all recollection vectors had the same
For the case of an HAM, each element of the N-ele- energy, but that the energy of the recollection vectors
ment recollection vector was chosen from a uniform need not equal that of the key vectors.
distribution between -1 and +1. (These recollection The ensemble averages in Eq. (8) make evaluation of
vectors had more than one 1 and are thus not unit the performance measure impossible, except by Monte
vectors.) Carlo techniques. In these Monte Carlo techniques,

We define the signal power of a vector to be El (xi)21 - one computes the performance measures v~/u by av-
Ejxi}2. This definition subtracts the vector's mean eraging over a number of different associative memo-
from all elements and then calculates the average ries (with different key and recollection vector pairs).
squared element value for each vector. Since the key These results3 are not a good estimate of the perfor-
and recollection vectors were chosen in the same man- mance for specific associative memories. These prior
ner in these earlier tests,3 their signal powers are equal, results3 used recollection vectors that were random
and u/2 is equivalent to the input-to-output SNR. (containing more than a single 1) and used recollection
We now state four theorems. 3 Proofs of each are pro- vectors whose energy was equal to that of the key
vided in the Appendices. vectors. Thus these results are appropriate for an

Theorem 1: For any matrix recollection y = Mx, we AAM but not for the conventional types of HAM. In
find 41a/ = NEjm2j}, where mij is an element of M and addition, if the dimensionality of the key and recollec-
the expectation is over all elements of M. tion vectors are different, the prior results3 are not of

Theorem 2: For an AAM with linearly independent use. Thus other 4/a1 expressions are desirable.
key vectors, we find Ejm2 .} = MIN 2. These are provided in Section III.D.

Theorem 3: For AAMs with linearly independent
key vectors, combining Theorems 1 and 2, we immedi- D. More General or/4 Expressions
ately find Alternate oV/o2 expressions can be obtained in the

M/N. (7) case of unit recollection vectors T - cI, where c is aJ M/N (7) constant. In this case of HAMs, we find-

Theorem 4: For HAMs, we find = (C2f/(fl'V-f'. (9)

V2 - Eb',2E4Tr(V-')I, (8) The second case in which an equation without all ex-
where yij is an element of Y, V = XTX, and the trace pected value operators is possible occurs for the case of
(Tr) is the sum of the diagonal elements of the matrix orthogonal key vectors. In this case of HAMs with

noted in parentheses following this operator. The orthogonal key vectors,

first expected value operator is taken over all elements e.4- ElY, lr[v-'J, (10)
of Y, and both expectation operators are taken over the
entire ensemble of possible key and recollection vec- where the expectation operator is the average over all
tors. squared elements of . Since c2/K in Eq. (9) equals

iapis for T - cI, Eq. (10) is equivalent to Eq. (9).
C. D ion of Prior Resuts Thus, in terms of performance, assuming unit recollec-

Theorem 1 is useful, since it applies for any matrix, tion vectors are analogous to using orthogonal key
with no key or recollection vector assumptions. We vectors. This is a noteworthy new result, since one

will use it in Sec. III.D to develop more general and might feel that orthogonal key vectors would yield
more easily evaluated expressions of associative mem- better performance. This result follbws from linear
ory performance. The result in Theorem 3 agrees with algebra, since V (and V-)are then diagonal if the key
that of Kohonen,' who obtained his result by quite vectors are orthogonal, thus yielding only the trace
different techniques. This result shows and quanti- elements of the matrix.
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For cases when no conditions on the recollection unit or other possible recollection vector encoding

vectors yk (such as unit recollection vectors) are made schemes, the need exists for a different performance
and similarly when no conditions on the xk key vectors measure.
are made, Theorem 1 can be used. An alternate o/0 The performance measure we introduce is the out-
expression can then be found by substituting Eqs. (D3) put-to-input SNR, SNRQ/SNR. The larger this ratio,
and (D6) in the Appendices into Theorem 1 to obtain the better the performance. For equal key and recol-

lection vector energies, this measure and / are reci-
/ (I/K) ' ' v;,y,, (11) procals. We define the signal powers as the expected

-value of the square of the elements minus the square of
where v-, is the mkth element of V-1. Equation (11) the expected value of the elements; i.e., we subtract off
is equivalent to Theorem 1. However, calculations the average or bias energy from our calculations of
using Eq. (11) are preferred since it provides the result signal energy. Thus the signal energies we use are
without the need to first explicitly compute M.In our quantitative test data, we will use Eqs. (7), (9), aEtl] 21 - k1412, (12*)
and (11) for different cases. Equation (7) applies for S = -E (12b)
AAMs with linearly independent key vectors, and Eq.

(9) applies for HAMs with linearly independent key where the energy values are averages over all elements i
vectors and with unit recollection vectors. Equation of all vectors k. The resultant SNR performance ratio
(10) applies for orthogonal key vectors, and Eq. (11) is then
has no conditions on the recollection vectors or the key SNR. .2vc s (13)SNR, slo!

E. Preferred SW Associative Memory Permnce For AAMs (with so = s?), Eq. (13) reduces to NIM
Measure (from Theorem 3), which is the reciprocal of Theorem

With one exception, 8 all prior theoretical studies1 3  3. Our concern lies with HAMs. For HAMs with unre-
of pseudoinverse associative memory noise perfor- stricted key vectors, we combine Eqs. (11) and (13) to
mance have used the a./ performance measure. obtain
O'her work on associative memory capacity either does
not consider HAMs, yields bounds (not exact expres. SNR- s!K
sions), or does not consider noise. The 2/a? perfor- - "s 2

______ _ (14)
mance measure is valid for AAMs, but not for HAMs, SNR,

since its resultant value can be reduced (improved) -i k

artifically by merely reducing the energy of the recol-
lection vectors (i.e., by using unit rather than binary- For HAMs, with Y = cI (or for the case of orthogonal
encoded recollection vectors). Our o!/4 data verify key vectors), we combine Eqs. (10) and (13) to obtain
that unit recollection vectors perform better than bi-
nary encoded ones. To see the problem with the 4/a2 SNR 82

measure, consider Theorem I for the case of an HAM. SNR,2 V
If we scale each Zk by a constant c, and each Yk by a For zero-mean key and recollection vectors, s= - ELy,2
constant cy, the new associative memory matrix is M' = and zr - Exn = (1/M)TrV. Under these assump-
(cy/c.)M, where M is the original associative memory tions, HAMs with Y = cl (or HAMs with orthogonal
matrix. The new expected value (denoted by an apos- key vectors) yield
trophe) is related to the expected value for the original
matrix (denoted by no apostrophe) by Elm?.I' = (c/ SNRo M (
c.)Emi. The new and old performance ratios are SNR, Tr[V1Tr[v-. . M
thus related by (o/o)' = (c;/c2) ua/of. From this, we

see that increasing cx/cy results in an improved new a'/ where the last equality holds for orthonormal key vec-
I ratio. However, this improvement is artificial. We tors, since V - XTX - I and Tr(V) - Tr(V- 1) = M for
note that this issue does not arise for the case of an this case. We will employ the different performance
AAM (since for this matrix, its recollection and key measures noted in Eqs. (13)-(15) in our quantitative
vectors are the same and thus have the same energy comparison tests of performance in Sec. IV.
and scaling factors). These remarks also do not apply
to earlier results, 3 where equal energy key and recollec- N. Quantitattv Tedt Data
tion vectors were used in the Monte Carlo data ob- Section IV.A details the data bases and associative
tained. This o2/o? performance could be applied to an memories used and our test procedure. Our u/I and
HAM with 7 - I (or to binary-encoded recollection SNR performance measure test results follow in Secs.
vectors or to recollection vectors whose dimensionality IV.B and IV.C. Initial larger class test remarks (Sec.
K < N) by appropriately scaling the recollection vec- IV.D), probability of correct recognition expressions
tors, so that their energy and that of the key vectors are (Sec. IV.E), and a general design procedure (Sec. IV.F)
the same. In general, with arbitrary key vectors and are then provided.
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A. Togtuoedsre performance measure tabulated is uo/uv for the AAM

The data base used for most associative memory and two HAMs constructed. The average of the mea-
tests to verify and quantify the theory advanced in Sec. sured oi/u? values for all 50 noise image tests for each

III consisted of the M - 36 set of key vectors from the associative memory is given in the bottom of the table.

PH-18 and DC10-18 data bases. Our tests on larger The theoretical value for the AAM is calculated as M/
data bases with M = 72 used the PH-36 and DC10-36 N from Eq. (7), and it agrees quite well (within

data bases noted earlier. Three different associative 3%) with the measured average. For both HAMs.

memories were synthesized. We formulated an AAM theory and experiment also agreed quite well (within

(withY - X), a HAM-i (with Y - I, with unit recollec- 1.5and 11%). The theoretical values for HAM-I (with

tions), and a HAM-2 reduced size binary encoded asso- unit recollection vectors) were calculated from the

ciative memory (with two element recollection vectors trace ofV- in Eq. (9) with c - 1 and K - M = 36. For
[1 ,0 ]T and [0,17). All initial associative memories HAM-2 with only K - 2 output elements, we calculat-
were synthesized from both Phantom and DC-10 key ed the theoretical value using Eq. (11). Several initial
vectors (eighteen images of each class). For the AAM, obvious remarks are in order. First, we note general

the conventional matrix would be 1024 X 1024, with good agreement between theory and tests. Second, we

the output vector being 1024 X 1. However, the rank note that HAM-1 performance is 50% better than that

of the matrix is only 36, and the input and output of the AAM. (The lower e2/uI performance measures

vectors can be described in terms of 36 basis functions indicate better performance.) One would not expect
(determined by the Gram-Schmidt technique1 1 ). In HAM performance to be better than that of an AAM.
our AAM tests, we used 1024 X 1 image domain input We investigate this further in Sec. IV.C.
vectors and a 36 X 1024 element matrix with matrix Our final comments concern the performance of the

rows being the basis vectors. The 36-element output two HAMs. The second HAM (with only two distinct

vector thus specifies the linear combinations of the recollection vectors and two recollection vector ele-
1024 X 1 basis functions that yield the final image ments) performed worse. This is unfortunate but will
domain output vector. This basis function matrix is of be overcome in Sec. IV.C and IV.D. This occurs since

significantly reduced size and allows efficient testing this matrix is 2 X 1024 with its first row being a sum of

of the AAM. The purpose of this AAM was to produce the first eighteen rows of the first HAM and its second

a noise free output image (as in Fig. 2). For HAM-1, row being a sum of the second eighteen rows of the first
the key vectors are 1024 X 1, the matrix is 36 X 1024, HAM. Recall that the size of the first HAM-1 is 36 X
and the recollection vectors are 36-element unit vec- 1024. In this case, summing the rows of M increases

tors. The output here denotes the class and the orien- Ejmrn,) and causes an increase in a2/ri (and thus poorer

tation of the input vector data. For HAM-2, the ma- performance). In general, summing the rows of the

trix is 2 X 1024, and the recollection vector is two first HAM will not always increase Elm!, since the

elements long, with the outputs [1,0 ]T and 10 , 1 ]T de- elements of M are bipolar. Here an increase occurred,

noting the object class (a Phantom or a DC-10) inde- because the key vectors corresponding to the added

pendent of the orientation of the input object. rows are members of the same class (rotated yaw views

For noise tests, the 00 Phantom image was used, and of the same aircraft) and are thus similar, causing the
zero-mean Gaussian noise with five different standard added rows to be similar. We will discuss these results

deviations a, was added to the 00 Phantom image. For further after our SNR performance measure data have

each ai noise level, ten different input images (test been presented in Sec. IV.C.
vectors) with the same a; level, but with different seeds
(i.e., different statistical realizations), were used. In
all noise tests, the noisy input images were not rebinar- Ta , L e.fu t U u
ized (to allow better comparison between theory and 2
tests). If binary light modulators were employed in G
the processor, they would rebinarize the input key _ _

vectors. We feel that the performance obtained with _ _

gray level noise is comparable to what would result a. AAM HAM-i HAM-2
with binarized noise. = [1.0j1 0.111

For all memories X + was calculated using the IMSL -= I out".
generalized inverse subroutine. 25 All 36 or 72 key
vectors were found to be linearly independent. This 0.2 0.0352 0.0220 0.0949
was verified from a calculation of the condition num- 0.3 0.0359 0.02)8 0.153
ber of the VIP matrix (X./Xin = 183 for the M = 36 0.4 0.0400 0.0253 0.0949
case), which showed that V was of full rank.

020.5 0.0323 0.0180 .0I ~ ~B. Associative Memory Test Results Using the .o/ 0.5 0.33 008 201
Measose 0.6 0.0387 0.0236 0.0655

Our initial test results are summarized in Table I. avemgi 0.0364 0.0221 0.122Each entry in this table is the average of ten realiza- -hory 0.0352 0.0218 0.136

tions of noise with the standard deviation listed. The -
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I
C. Awoctie Meory Tes Results Usin 9e SNR/ D. Lae Class Problems
SNRI Measue The concern in associative processors should be

We now test and compare our three associative large class problems (M large). We now briefly con-
memories using our SNR performance measure. Our sider how AAM and HAM performance varies with MI
results are shown in Table II. Larger values for this N. We expect the performance to decrease as MIN
performance measure indicate better performance. increases. From Eq. (7), we expect AAM performance
In each case, the data presented are the average of fifty to reduce linearly as M increases. For HAMs, the
runs for five different noise ai values, with the mea- performance variation with M will depend on the spe-
sured data obtained from image domain tests. These cific data. Table III shows initial results. Equations
measured data are then compared to the associated (7), (15), and (14) were used for the three associative
theoretical equations. The AAM results are the reci- memories, respectively. The second database used
procals of those given in Table I. For HAM-I (with thirty-six images of each aircraft at 100 yaw incre-
unit recollection vectors), s/s? is small and for HAM-2 ments and thus represents a larger M - 72 class prob-
(with [I,O]T or [0 ,11T recollection vectors) this ratio is lem. AAM performance is seen to be linear with M
large (since HAM-i has more zeros in each recollection and thus reduces by a factor of 2 as shown. The
vector). Thus the SNR performance of HAM-2 is reduction for the HAMs is data dependent. From
better than for HAM-1 (although its a!/u perfor- these data, we clearly see that HAM performance does
mance was worse). Equation (13) and Table I were not degrade as fast as AAM performance and that at M

used for all theoretical calculations in Table II. From - 72, the performance of HAM-2 and the AAM are
these specific tests, we find AAM noise performance to approaching each other. Again, this result is not a
be better than HAM noise performance (as one would general trend that we can always be assured of (since
expect) and that different HAMs (such as those with K HAM performance is data dependent). However, this

2 output elements, the number of general classes of lends further justification for attention to HAM stor-
the data) are preferred to the conventional HAMs age capacity and noise performance and to different
(with Y - I unit recollection vectors with K = M - 36 recollection vector encoding schemes.
elements and 36 output unit vectors). This represents E. Probabit of Correct Recognition for Different
a new result. These quantitative results in Table II rolit ofcorr
are not necessarily general trends but are data depen- Recollection Vectors
dent as we now discuss. We next consider how the a,, level of the output noise

The performance of an AAM depends solely on the affects the probability of correct recognition of the
M and N values. HAM performance depends on V-1 output vector y. For this case, we add zero-mean
with HAM-1 performance depending only on the diag- Gaussian noise equally distributed to all bit elements
onal elements of V-I (because DC10s are slightly larger of the recollection vector. We consider a sixteen-class
than Phantoms, the diagonal elements are not the (C = 16) problem (M > C) with the recollection vector
same) and with HAM-2 performance depending on all required to distinguish sixteen different classes of key
elements of V- i. Since HAM performance depends vector. We consider four different recollection vector
on the key vectors used, no general conclusion on AAM encodings. These are detailed below, with PC (the
vs HAM performance is possible. Ho -ver, in our probability of correct recognition) derived for each
example, the HAM with a new (binary) recollection case.
vector coding consistently performed better than the The first encoding is a binary encoding with each

HAM with conventional unit recollection vectors, element of the output vector thresholded at 0.5. The
Our theory in Sec. III predicted this (for the SNR ratio probability of a single bit error for zero-mean Gaussian
performance measure). The presence of the elements noise of standard deviation a, is
of Y (recollection vectors) in our equations in Sec. III (17)
confirms this theoretically, and our test data in Table - 0.5 - err(0.51%),
II quantify it. As discussed, s /s is better for HAM-2, where erf denotes the error function. For this encod-
which is the reason our new HAM-2 outperforms
HAM-1.

Table . Asociallve Memory SNRJ . Ploermf e saiM Inhres

Tabl L es. ,UR, tt MA MaNI HAM SNR o / SNR i

SNR o / SNR i  DATA- M AAM HAM-I HAM-2
BASE Y=1 I 1.0]T 10,11

AAM HAM-I HAM-2 outpu
= I,01TI0.Il PH-18/ 36 28.41 9.26 13.75

Y=I outpu DCIO-18 I
averag 27.47 9.14 15.33 PH-36/ 72 14.22 6.56 11.84

theory 28.41 9.26 13.75 DCIO-36
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I
P(T) and the probability that all the other K - I
elements are less than T by 10.5 + erf[T/ao]lK- I.

\Strictly speaking, we cannot evaluate P(T) because
P(T) - 0; thus we will evaluate P(T -5 <x < T + 6).

0.8- \ egend We can evaluate this quantity since T - G(1,ao) for the
0.6 big*-"K an element that should be one with the other output

0 ' \ \\ a mu.4 elements being given by G(O,u), where G(m,v) denotes
Gaussian random variable with mean m and stan-

0.6' \ dard deviation a. Pc is then the integral (over all
possible T values) of the probability that T can occur

0 times the probability that all the other K - I elements
0 \ are less than T, i.e.,

* This equation cannot be evaluated in closed form, even0. 4 - whe Pc' 5 P(T)I0.5 +erlT/IoIK-adT. (19)when a. is specified, and thus in our calculations it is
~evaluated numerically.

0.2\ The final case we consider is an HAM with error
correcting binary recollection vectors. This associa-
tive memory concept 26 uses the Hamming code in
which the n recollection vector bits encode k bits of

0 o 0.- -- data (2k object classes). For a sixteen-class problem,
0 0.2 0.4 0.6 0.8 1 we use (n0) - (7,4), i.e., a K = 7 element recollection

standard dev. of output noise vector rather than only a four-element one. This code
Fig. 5. Probability of correct recognition Pc vs output noise stan- can correct one output bit error, and thus for this case
dard deviation vo for four different recollection vector encoding Pc _ (1 - p)K + Kp(1 - p)K-1, (20)

schemes, where p is given by Eq. (17) and where we assume
ing, Pc for an error in any of the K output vector digits output elements are thresholded at 0.5.
is Figure 5 shows Pc vs co graphically for the four

pC (-)K _ 10.5 Tet erf(0.5/)K. ( recollection vector cases noted using Eqs. (17)-(20).Pc T (I- pK. [.5 er(0.5Oo) K.  18) The data clearly demonstrate that unit vectors with a

The second encoding considered uses unit recollec- 0.5 threshold performed worst of all and that maxi-
tion vectors, with the output threshold set at 0.5. For mum element detection is necessary to make the per-
this case, Pc is also given by Eq. (18). However, K = C formance of unit recollection vectors comparable to
digits are now required (whereas for binary encoded other output encoding schemes. We note that in this
vectors, we require K digits where 2K > C). For binary case, unit vector recollections with maximum element
encoding, the optimum threshold to maximize Pc is 0.5 detection give better Pc performance than binary en-
(assuming all classes are equally likely to occur), since coded recollections. However, the unit vectors have a
the probabilities of zero or one recollection vector ele- higher dimensionality and require a larger matrix. In
ments are equal. However, for unit recollection vec- - addition, maximum element detection requires a more
tors, the probability ofa one occurring is only 1/K, and complicated postprocessor. As expected, error correc-the optimum threshold is larger than 0.5. The opti- tion binary encoding offers the best performance of all.
mum threshold in this case varies with a,. In many (This is achieved at the expense of a more complex
cases, one has an indication of the a value to be expect- decoding output system, which can be achieved with a
ed. Even with the optimum threshold, unit vectors small associative memory as detailed elsewhere.2
with thresholding result in poorer performance than
binary encoded vectors, when the output noise is the F. Designs Combining o',J/o, and Pc Pwerfo e Criteria
same. This occurs since the unit vectors have higher Our prior work (involving the u4/o performance
dimensionality. measure) has shown and quantified the noise reduc-

To provide better performance with unit vector en- tion that an HAM achieves. We have also shown
coding, we consider (as our third type of recollection (through our Pc performance measure) the tolerance
vector) unit vector encoding with the largest element to the output noise that different recollection vectorof the recollection vector detected and set to one. As encodings can provide. We now combine these two
we shall see, this provides significant improvement in performance measures to include the noise reduction
Pc for unit vectors. The output vector in this case will achieved both by the memory itself and by our recol-
be correct if the largest element is in the correct posi- lection vector choice. As a specific example, we con-
tion. To find Pc for this encoding and thresholding, sider an HAM with M - 36 designed to recognize and
we let T be the value of the output element that corre- discriminate thirty-six key vectors in the PH-18 and
sponds to the'one in the correct recollection vector. DC10-18 databases. From Fig. 5, we find that for
We represent the probability that the level T occurs as nearly perfect performance (Pc me 1.0), we can tolerate
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m l --- --..- \ ,mation since the noise power does differ for each out-I put element. For our data, this approximation dif-
fered at most by 2.5% from a more involved exact' \ Leend analysis taking into account the different noise powers

0.8 0 t -- for each output element.I -_ The results are shown in Fig. 6. Our estimate of
nearly perfect recall for a; 5 1.83 (a, < 1.35) with unit
vector recollections and maximum element detection0.6 -is verified by the graph (with Pc = 1 for a, = 1.35). The

unit vector recollections, with either type of detection,
give the best performance. The primary reason for

0 this is the unit vector HAM's large o./f advantage (see
)TableI. The fact that the binary encoded and Ham-0.4- ring vectors have unused states also contributes to

their relatively poor showing but is a secondary factor.
As expected, the Hamming vector recollections per-

.form better than the binary encoded vectors. Since
0.2- 4/v? is data dependent, we hesitate to reach general

conclusions about which recollection vector will havethe best total recall accuracy. However, all four types

perform well. Choosing one type of recollection vector
0 , , _ - - over another will largely depend on the dimensionality

0 1 2 3 4 of the recollection vectors. This makes the binary
standard dev. of input noise encoded and Hamming vectors preferred to unit vec-

Fig. 6. Probability of correct recognition Pr vs input noise stan- tors for large class problems.
dard deviation a, for four different recollection vector encoding

schemes. V. Summary and Coclui

We have detailed several proofs of the noise perfor-
an output noise standard deviation of a. = 0.2 in the mance and storage capacity M for 'HAMs using the
recollection vector. From Table 1, we find that the noise variance reduction ratio 0!/Ci

2 as a performance
HAM-1 with unit vector encoding provides a noise measure. New a2/oi expressions for HAMs were de-reduction of /a2 f= 0.0218. Thus this associative rived that did not require Monte Carlo techniques formemory can tolerate input noise with a variance of evaluation. Quantitative data were obtained on an

# - vV/0.0218 - (0.2)2/0.0218:5 1.83 (21) AAM and two HAMs with different recollection vector
encodings on thirty-six-class distorted images of twoand still achieve nearly perfect (Pc = 1) performance. aircraft. From these data, we give evidence that the

We now consider PC vs e1 for the different recollection performance of an HAM (using the oa2o./ performance
vector encodings. measure) may actually exceed the performance of an

Using the PH-18 and DC10-18 databases as key AAM. A new and preferred SNR ratio performancevectors, we computed the total recall accuracy Pc as a measure was advanced, and new equations for this
function of ai for our four types of recollection vector, performance measure were derived for different
To have a relatively large number of classes, we chose HAMs. Quantitative test data obtained with".his
each key vector to be a separate class. This resulted in measure showed that the type of recollection vector
thirty-six classes, with the unit recollection vectors encoding selected has a significant effect on perfor-
having thirty-six elements. For the binary encoded mance. We found (from this SNR standpoint) that
vectors, we used six-element recollection vectors. The our reduced class HAM (which denotes each object
particular vectors were chosen so that the optimum class by a single recollection vector, independent of
threshold would be 0.5. For the Hamming vectors, a distortions in the key vectors) performed better than
(7,4) code could only represent sixteen classes, so we the more conventional unit recollection vector HAM.
chose the next smallest code, a (15,11) code that can We derived expressions for the probability of correctrepresent 211 classes. Since this has many unused recognition for four different recollection vector en-
states, the particular vectors used were chosen so that codings (unit vectors with 0.5 thresholding and with
the optimum threshold would be 0.5. Although a maximum element detection, binary, and Hamming
(15,11) Hamming code is nominally 15 bits long, only error-correction binary codings) as a function of ao.
10 bits were nonzero for the thirty-six class case, and We found (from this standpoint) that unit vectors with
the Hamming vectors thus contained 10 bits. thresholding at 0.5 gave the worst performance, binary

The total recall accuracy was computed from Eqs. encoded recollections gave better results, and unit vec-
(17)-(20). These equations assume identical noise tors with maximum element detection and Hamming
power for each output element, and to use the equa- vectors gave the best results.
tions we assume that the noise in each element equals We then considered total recall accuracy (as a func-
the average output noise power a.. This is an approxi- tion of vi) and obtained our final conclusions. We
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found that (for a small number of classes), unit vectors Appendix B: Proof of Theorem 2
with maximum element detection are preferred be- For independent key vectors, the solution in Eq. (2)
cause they give excellent performance and because it is with X+ defined by Eq. (3) is valid, and thus for an
relatively simple to detect the largest element with AAM

only a few output elements. For a large number of3 classes, the binary encoded and Hamming recollec- M - XX - X(XX)XT. (BI)
tions become preferable. Even if the unit vector recol- The trace of MMT is
lections offer better recall, their dimensionality (and
that of the matrix) becomes so large that their use Tr(MMr) (MMT) - 2 43- Tr(M), (B2)
becomes impractical. Considering binary encoded vs 4
Hamming recollections, binary encoded vectors are where the last equality follows from the fact that M is
smaller and will allow a smaller memory matrix, idempotent (M - M2) and symmetric (M - M7). The
whereas Hamming vectors will generally offer better eigenvalues of an idempotent matrix are 0 or 1. The
recall but will always require more vector elements, a number of eigenvalues that are 1 is r(M), i.e., the rank
larger memory, and more complicated postprocessing of M, and the trace satisfies Tr(M) - r(M). To deter-
decoding. Regardless of the recollection vector mine r(M) for M - XX + , we frst show that r(X) - M
choice, we have demonstrated that a pseudoinverse and that r(X+) - M. It then follows that r(M) = M =
HAM, with no feedback as in iterative neural systems, Tr(M). Thus
offers impressive performance in the presence of noise.

Our results show the significant differences between M.=M. (B3)
HAMs and AAMs, the need to treat HAMs quite dif- Trim]
ferently, and the importance of the use of proper per-
formance measures. As associative memories become Using Eq. (B3), we prove Theorem 2:
used in image analysis, image understanding and pat-
tern recognition, HAMs must be employed. The new E -I. Tr(M)M (4)
coding techniques advanced here show that such mem- M N'
ories are attractive for these applications.

Appendx C: Pro of Theorem 3
This follows directly by substituting Eq. (4) into

WA).
We acknowledge the support of this work by a grant

from the Air Force Office of Scientific Research. We Appendix D: Proof of Theorem 4
acknowledge the assistance of B.V.K. Vijaya Kumar of We consider Theorem 1, which applies for any ma-
Carnegie Mellon University for assistance in the math- trix and derive an expression for Elm-I for the HAM
ematical proofs included in the Appendices. matrix written as M = YV-IXT. We &nst rewrite Eq.

(B2) for the general HAM case of recollection vectors
of dimension K as

Appendix A: Proof of Theorem 1 Tr[MM . (MT)u, . (D1)

The output vector is
where the summation over i runs from 1 tW'K and the

y,~ + Mn. (Al) summation over j runs from 1 to N. To evaluate the
Substituting Eq. (Al) into the definition of o yields Theorem 1 equation for a HAM, we must obtain an

expression for Elm?-I. Letting the key vectors xk (of
- E1L(Mn)' 2 } = I E1Im,,lElnJn*. (2) dimension N) and the recollection vectors yk (of di-

i h mension K) be random variables, we form the expected
Using the property of uncorrelated noise that Enin} . value of both sides of Eq. (D1) to obtain
E{[n)1216jh, the definition E[n121 = of, and the indepen-
dence of of from the summation indices (q and k), we ElTr[MM I = XX EKmII. (D2)
obtain

v! = ONEIm2I. (W3) The double summation in Eq. (D2) can be rewritten as
Dividing both sides by of, we obtain Theorem 1. This E Tr[MM I - KNEm,. (D3)

result is valid for any matrix whose key vectors are of To evaluate Theorem I for this case and hence Ejm.I,
dimension N and not just for the pseudoinverse matrix we require the trace of MMT.
solution. Writing the squared Euclidean norm of M, To obtain this, we substitute Eqs. (2) and (3) for an
we see' 0 that the minimum norm solution is M = YX +. HAM into MMT and find
It can also be shown that this solution is optimal for MMr - yv-y r .  (D4)
uncorrelated noise, and that it minimizes Elm-I and
also a 2of (i.e., tlfe SNR ratio for the case of uncorrelat- The diagonal elements of the matrix product in Eq.
ed noise). (D4) are
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I Abstract

Selected algorithms for adding to and deleting from optical pseudoinverse associative memories

are presented and compared. New realizations of pseudoinverse updating methods using vector

inner product matrix bordering and reduced-dimensionality Karhunen-Loeve approximations

(which have been used for updating optical filters) are described in the context of associative

I memories. Greville's theorem is reviewed and compared with the Widrow-Hoff algorithm.

Kohonen's gradient projection method is expressed in a different form suitable for optical

implementation. The data matrix memory is also discussed for comparison purposes. Memory

size, speed and ease of updating, and key vector requirements are the comparison criteria used.

I. Introduction

A simple updating method is a desirable attribute of any associative memory (AM) model

I or architecture. By updating, we refer to both adding and deleting key/recollection pairs.

* Researchers primarily inspired by the operations of the brain do not usually consider deleting,

since the brain does not explicitly delete items from its memory. However, deleting unused

* key/recollection pairs allows new pairs to be added without overloading conventional and

realistic memories. Recently the neurally inspired Hopfield memory, based on a sum of vector

outer products (VOP) matrix, has received much attention 1' 2, 3 This model can be updated

relatively easily, but suffers from poor recall accuracy (along with other problems)4 . On the

other hand, the pseudoinverse model of associative memory 5 can store key/recollection pairsI
I
I



I
perfectly (meaning that if a key vector is input, the exact recollection vector is output) when the

key vectors are linearly independent, and also is optimal for inputs that are key vectors distorted

by additive white noise6 .

This paper will concentrate on pseudoinverse associative memories rather than other types

Iof associative processors such as the Hopfield memory and its variations 1' 2, 3, higher-order

correlation memories 7, 8, attentive memories9 , bidirectional memories 10 , 11, holographic

resonator memories12' 13, etc. Our concern is with fast and efficient methods for updating a

I pseudoinverse memory (fast compared to directly recomputing the pseudoinverse). In comparing

pseudoinverse updating algorithms intended for real-time or near real-time problems, speed must

be the critical criterion. For these applications, we propose that the updating take place in

dedicated hardware, either electronic or optical, and that the updated memory matrix then be

loaded into an analog optical processor. An optical system is desirable for its high-speed parallel

I computing power. Simulations have shown that the pseudoinverse AM operates well even in

systems with very low dynamic range14 , and thus an analog processor is sufficient, and

attractive for its speed and simplicity. The amount of storage an updating algorithm requires

and the conditions required on the key vectors in various pseudoinverse algorithms are also

important issues that will be discussed. The accuracy of the final AM matrix is not of major

I concern since we envision using it in an analog optical processor. However, the accuracy of the

operations performed to calculate the memory merit attention, since the final memory matrix

must be useful. We consider updating the AM off-line on a digital processor. Thus, our concern

is the time required to calculate the memory matrix (not the accuracy of the required

* calculations).

In Sec. II, we introduce our notation and briefly review the pseudoinverse memory. The

two types of pseudoinverse memory optical architectures considered for recollection are a vector-

inner-product (VIP) and a matrix-vector processor. These architectures are described in Sec. I.

I The matrices in these systems (especially in the matrix-vector architecture) can be computed by

!2
I



I
various techniques. Our present concern is with methods to update these matrices. Sec. IV

I discusses the data matrix memory for comparison since this has the simplest of all updating

methods. Sec. V presents an efficient and new VIP matrix bordering algorithm. A new reduced-

dimensionality Karhunen-Loeve (KL) approximation to the pseudoinverse is discussed in Sec. VI.

3 Sec. VII reviews Greville's theorem and briefly compares it to the Widrow-Hoff algorithm. A

V ( method that is related to Greville's theorem and which is based on gradient projection is

H considered in Sec. VIII. Sec. X offers a summary and conclusion.

I I1. Pseudoinverse Memory Formation

Denoting the keys and recollections as vectors xk (N-dimensional) and Yk (K-dimensional)

respectively, where k = 1,...,M, the vectors xk and Yk form an associated key/recollection pair

I (there are M such pairs). We desire a K X N matrix M satisfying

Yk = MXk' for k == 1,...,M. (1)

This notation also includes the special case of autoassociative memory (AAM), for which xk sad

I Yk are identical. Defining matrices X (NXM) and Y (KXM) with the key and recollection

vectors as their columns, Eq. (1) can be rewritteu as

Y = NIX. (2)

I The solution of Eq. (2) is

M = Y(3)

where X + is the pseudoinverse6 of X. This solution minimizes the squared error IY-,1XI 2.

When the key vectors are linearly independent, the squared error is zero and Eq. (1) is solved

exactly. Thus, when a key vector is input, the exact recollection is output. For the case of

linearly independent keys,

---= (XTx)-IxT, (4)

I 3
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where the matrix xTX is the VIP matrix, since its ij-th element is the inner product XiTXj .

When the key vectors are orthonormal, xTX = I, and X +  - XT. In this case, the

pseudoinverse AM simplifies to the VOP matrix M - YXT.

In this paper, we will mainly be concerned with the case when the keys are linearly

independent (a looser restriction than orthogonality). Thus, we require M < N, although it is

possible for the keys to be linearly dependent even if M < N. In this case the minimum squared

error (MSE) nature of the pseudoinverse solution is advantageous because the pseudoinverse

yields (automatically) an approximate solution if an exact one does not exist. We are also

primarily interested in applying heteroassociative memories to pattern recognition problems, in

I which case the recollection vectors are class labels and we can assume K<ZM.

Ell. Basic Optical Pseudoinverse Associative Memory

Architectures

The simplest optical A.M architecture is the standard optical matrix-vector multiplier

shown in Fig. 1. The P1 input plane contains N point modulators with light outputs

proportional to the input x. Each element of x uniformly illuminates one column of the matrix

I M, a transmittance array of KXN elements at P2, and the light leaving P2 is integrated

horizontally onto K separate detectors at P3. The detector output is thus the matrix-vector

product y = Mx. The memory matrix at P2 is given by Eq. (3), where X+ can be obtained

from Eq. (4) or by other algorithms to be discussed (Secs. V-VIII).

Although the key vectors are not orthonormal in general, the VIP optical architecture 15 of

I Fig. 2 represents an attractive implementation of the recall process when X* . xT. The

architecture consists of two cascaded matrix-vector multipliers, the first from P1 -P3 and the

second from P3-P5 . The input x is loaded into point modulators at P1 which illuminate the

I matrix X stored at P2. The light leaving a slit placed at P 3 is the matrix-vector product kTx.

The P3 output illuminates the matrix Y stored at P4 and the output is the matrix-matrix-vector

I4
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multiplication y = YXTx, as desired. This architecture is attractive since the key/recollection

vector pairs can be easily added or deleted by adding or deleting columns of X and Y at P2 and

P4. In Sec. IV, we present a data matrix description of Fig. 2 and note that, with a maximum

element selector at P 3? this system has no restrictions on the key vectors. In Sec. VIII, we

discuss techniques for preprocessing key vectors so that the new transformed key vectors applied

to the associative processor are orthonormal. With such preprocessing, the VIP architecture of

Fig. 2 is attractive.

The VIP architecture requires storage of NM + KM matrix elements, whereas the standard

matrix-vector processor requires one matrix with KN elements. The matrix-vector processor

(with a pseudoinverse memory M) requires fewer active matrix elements when K < (NM)/(N-M).

This condition is generally satisfied. For distortion-invariant AMs, it is often the case that a

class of data is represented by several distorted (or other) versions, and that these key vectors all

have the same recollection vectors. In this case, KCM. For iconic keys, we assume that

M < N. Thus, we will assume throughout that KZM < N. In this case, the number of active

memory elements required by the matrix-vector processor (Fig. 1) is much less than in the VIP

architecture (Fig. 2). Thus, the ease of updating the VIP architecture must be weighed against

its significantly larger spatial light modulator (SLM) space bandwidth product (SBWP)

H requirements. This provides motivation for attention to fast and efficient updating techniques

for the pseudoinverse matrix-vector processor of Fig. 1.

For the case of an autoassociative memory (Y = X) with orthonormal key vectors (X+"

xT), the optical architecture of Fig. 2 can be reduced to a single matrix-vector system (Fig. 3)

with optical flow from both left to right and right to left. In this bidirectional VIP architecture,

P 2 stores X, and PI and P3 contain both detectors and point rmodulators. The input x is loaded

into the N point modulators at Pp, and the matrix-vector product ]Jx is detected at P3 . This

product is also the output from the point modulators at P3 and is used to reilluminate P2 (from

I5
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right to left). The final P1 output x1 = XXTx is read by the P1 detectors. The same

architecture has been proposed" 1 ' 16, 17 for a bidirectional AM using a VOP matrix M = YxT

with iterations in recall mode. Our realization is new since it implements a true pseudoinverse

AM. Sec. VIII describes a technique to process nonorthogonal keys so that they can be stored in

* this architecture.

I The final pseudoinverse memory architecture to be discussed follows from the formulation

of M for the case of orthonormal key vectors. In this case M = Y3J is the VOP AM and can

be synthesized on-line optically 18' 19 on the system of Fig. 4. The architecture of Fig. 4 uses

two crossed input transducers at P1 and P2 imaged onto a time integrating 2-D detector array at

P31 which can sum several VOP matrices. This is achieved by consecutively loading the yk into

P1 and xk into P 2 and summing their VOPs which form at P 3. This architecture is attractive

since it achieves the memory synthesis optically. If P 3 in Fig. 4 is an optically addressed time-

I integrating SLM, then the VOP architecture of Fig. 4 can be combined with the matrix-vector

system of Fig. 1 (where the P3 SLM of Fig. 4 and the P 2 SLM of Fig. 1 are the same). With this

combined system 19 , memory synthesis and recall can both be achieved on-line optically. Sec.

VIII considers preprocessing techniques that allow the architecture of Fig. 4 to be updated and to

operate with nonorthogonal keys.

IV. Data Matrix

I Before considering methods of updating the pseudoinverse memory, we consider the data

matrix4 as an associative memory because it can be updated very simply. The simplest data

matrix memory is M - X T . In recall mode, the output y is related to the input x by

¥Y = XTX, (5)

where the i-th element of y is the inner product of x and the key x i. Finding the maximum

element of y identifies the key that is the nearest neighbor (in the Euclidean metric) of the
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input, assuming the keys are normalized. General heteroassociative recall can be expressed as a

data matrix memory such that

- = Y (kxX), (6)

where 0(.) is a nonlinear operation that sets the maximum element of (.) to 1 and the other

Ielements to 0. The single nonzero element causes the corresponding recollection to be output.

No restrictions on the key vectors are necessary. Autoassociative operation can be achieved by

setting Y = X in Eq. (6).

The operation in Eq. (6) can be implemented by the VIP architecture of Fig. 2 with the

nonlinearity XTx) occurring at P3. This nonlinearity can be realized by M detectors, followed

by a maximum element selector, followed by M point modulators, one of which is selected to

illuminate P4. The maximum element selection can be implemented with a cascade of electronic

comparators, or by a single stage of comparators with a varying threshold 19 . Winner-take-all

I networks 20 , 21 can also be used to identify maximum elements, and it has been proposed21 that

a winner-take-all network be used at P 3 in the VIP architecture. With a maximum element

selector at P 3 of Fig. 2, there are no restrictions on the key vectors. For an AAM, the single

bidirectional matrix-vector system of Fig. 3 is sufficient, with the addition of the maximum

selection nonlinearity O(XTx) at P3.

I Thus, this data matrix description of the architectures of Figs. 2 and 3 is most attractive,

since with a maximum element selector at P3, these systems do not have any key vector

restrictions. In addition, it is obvious that the data matrix memory can be easily updated. To

add or delete key/recollection pairs, we simply add or delete columns of X and Y at P2 and P4

in Fig. 2, or for an AAM, add or delete columns of X at P2 in Fig. 3. It is difficult to imagine a

simpler updating scheme.

Although the pseudoinverse memory is more difficult to update than the data matrix, it

does have several advantages. Among these are the facts that the pseudoinverse matrix-vector
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architecture of Fig. 1 does not require a maximum element selector and that it requires only a

small percentage of the active memory elements needed in the data matrix VIP architecture of

Fig. 2, as shown in Sec. III. These remarks provide motivation for our attention to fast and

efficient pseudoinverse memory update techniques.

V. Bordering Update Algorithm for Pseudoinverse Matrix

We first consider a method for updating the inverse VIP matrix in the pseudoinverse

matrix expression in Eq. (4) using a bordering algorithm2 2 . Once the inverse VIP matrix is

updated, the memory matrix at P2 of the simple matrix-vector processor of Fig. 1 can be quickly

updated, as we will show. We rewrite Eq. (4) as MM = YMVM'XMT , where V - XTX is the

VIP matrix and where the subscript M indicates that the matrices are constructed from M

key/recollection pairs. To update the memory by adding a new key/recollection pair (XM+1 and

YM+1)' we efficiently calculate VM+ 1 from the prior VM1 without inverting a matrix. The

algorithm is

- 1 1
VM - -V

b a l1-m (7)
1 1

-I Ml T T~~M~ -~ XM+1TXMv. Then the new memory can

I be calculated from Eqs. (3) and (4), given the new inverse VIP matrix in Eq. (7).

This is the standard bordering algorithm. When its computational load is evaluated, we

find that the faster time to calculate V-1 yields only a small improvement in the overall time to

update M (whose computation is still dominated by the required matrix-matrix multiplications).

Thus, we devised a new implementation that is much faster. We now detail this



implementation. We first partition X,+, and YM+j as

= [XM XM+1] (8)

Oand

IYM+I = [YM YM+IJ" (9)

Using Eqs. (4), (7), and (8), we rewrite XM+I+ as

XM++1 -VT T_1v IT

XM+I - (10)

T XM + X M+ I T

Then using Eqs. (3), (9) and (10), the new memory is expressed as

M M +1 YvTX T 1T

MM+ I M Ce YMV M - ~"~

1 + X TY1YM+IXM+I T (

;YM+lV T+ 1a (

This new algorithm does not form the new VM+ 1 , rather it uses only v and a to compute the

new MM+ 1. The updating steps are summarized in the flowchart of Fig. 5.

Prior bordering algorithms only considered adding a new vector pair. We now detail a new

I algorithm by which the bordering technique can be used to delete a key/recollection pair from

the memory. Consider the original memory containing M+I vector pairs. The key step is to

compute VM' from VM+I 1 . We first consider how to delete the (M+i)-th pair, and then

extend the algorithm to deleting any vector pair. First, we rewrite VM+ "
1' as the four

partitions

A b]
V M+I- =KT(2I

I
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where A is MXM, b is MXI and c is a scalar. By comparing Eqs. (7) and (12), it is apparent

that A = VM + (1/a)vvT , b = -(1/a)v, and c = 1/a. From these expressions, we find our

desired result to be

1b TVM'I = A- -bb (13)

The new memory will then be MM = YMVMNIXM T . To delete the k-th vector pair, where

k 3 M+I, we first make it the (M+1)-th pair, so we can use the deletion bordering expressions

I in Eqs. (12) and (13). It is easy to show that this is achieved by moving the k-th row and

column of VM+I "1 to the (M+i)-th row and column. We then partition VM+l 1 as in Eq. (12)

and compute VM'1 from Eq. (13). These steps are summarized in the flowchart of Fig. 6.

Note that both the adding and deleting algorithms require storage of the matrices X, Y,

and V. We also note that both bordering updating methods require the key vectors to be

I linearly independent. We now consider the number of operations required by these updating

i algorithms.

The number of floating point multiplications needed to add a vector pair to the

pseudoinverse memory using our improved bordering algorithm is given in Table I. Table I

includes only those operations that, depending on the value of K, can contribute significantly to

I the total computational load. The dominant terms under the assumption K-CM<N are denoted

by an asterisk in Table I and in subsequent tables. From Table I, we find that our new

algorithm requires only 2NM + M2 multiplications. To compute MM+l directly from Eqs. (3)

and (4), without using bordering, requires approximately NM 2 + KNM + (1/2)M$

multiplications (with the last term 23 due to the direct inversion of V). From Table I, it is clear

that our version of the bordering algorithm is much faster. Most of this speed improvement is

* due to our new partitioning technique for the key and recollection matrices and not to the

bordering method for computing the new V-1. To see this, we note that the number of

I multiplications required to update V- 1 by the bordering algorithm in Eq. (7) is O(M2) compared
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to O(M3 ) for direct inversion. If the new memory matrix were computed by first obtaining V-1

in Eq. (7) and then performing the multiplication yV'1XT ,the second matrix-matrix

multiplication is seen to require NM2 multiplications. This equals over half the total number of

multiplications required for direct computation. Thus, obtaining V-1 from Eq. (7) and then

computing the new M will still result in O(NM2 ) multiplications. This is a factor of M more

multiplications than we require in our technique. Thus, our algorithm for partitioning the key

and recollection matrices is essential. Numerical values for the speed differences between the

I various algorithms are given in Sec. IX.

To delete a vector pair requires NM 2 + KNM + 2M 2 multiplications, which is much more

than our new algorithm requires for adding a vector, but is less than that for directly

3 recomputing the memory. The speed difference between adding and deleting vector pairs exists

because we have not found a partitioning approach to compute MM from the elements of VM 1

I for the case of deleting vector pairs.

If a highly parallel architecture such as the PRIMO analog optical processor 24 were fully

developed, then it might be attractive to directly compute MM+ 1 by using Faddeev's

algorithm 2 2 which computes VM+ 1 and the two matrix-matrix multiplications in the
expression MM+ 1 ! YM+ VM+ TXM+1  The PRIMO processor completes these

computations in 4(N+M) clock cycles 24. The usefulness of the result obtained with such an

3 analog optical processor remains to be addressed. Since a survey of all parallel processors is

beyond the scope of this paper, we use the number of multiplications as a useful comparison

I measure for different algorithms.

I
I
I
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I
VI. KL Pseudoinverse Approximation and Updating

In applications such as pattern recognition, we are concerned with distortion-invariant

HAMs. In such cases, the key vectors can be grouped into classes (with the key vectors within

each class being distorted versions of each other, or different types of the same class). In the

usual case, all key vectors of the same class will have the same recollection vectors (but this is

not a requirement for the following method). In such applications, we can adapt a near real-time

pattern recognition algorithm25 to calculate the memory matrix. In this method, computations

Iare performed in a reduced dimensionality hyperspace (hence the algorithm is near real-time)

produced by the Karhunen-Loeve (KL) transform26 . Hence, we refer to this as a KL

approximation and update method. The result is then transformed to the full dimensionality

* space to obtain the memory M.

The key step in this algorithm is the calculation of the eigenvectors of the correlation

I matrix from the eigenvectors of the VIP matrix. We first show how this is achieved and how it

is faster than computing the eigenvectors of the correlation matrix when M1 < N (where the

subscript 1 denotes that this is the correlation matrix of the key vectors for a single clas of

I data). The correlation matrix R 1 = (1/MI)XIXI T is NXN, but its rank is only M1 (or less, if

the keys are dependent). A large effort is required to calculate the eigenvectors of R1 . However,

it has been shown 27 that the eigenvectors of R, can be computed from the eigenvectors of the

scaled VIP matrix V1 = (1/M 1 )X1 TX1 . This is much easier, since V1 is only of size M1 XM 1 .

Once we have calculated the M1 eigenvectors #k of V,, we can obtain the M1 eigenvectors #k of

IR, from the scalar-vector sum

M, izig(14)

where the subscripts k denote specific eigenvectors, the superscript denotes a particular element

within the vector #k' and the x i are the key vectors. Each ok (of size NXI) is thus a linear
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combination of the key vectors xi with the weighting coefficients determined by the elements of

I each Ok. The M1 eigenvectors of R 1 that have nonzero eigenvalues (or fewer if there are linearly

dependent keys) can be calculated in this way. The remaining N - M1 eigenvectors of R1 (or

more if there are linearly dependent keys) have zero eigenvalues and are not needed. The # can

be normalized by dividing them by v 1MXk# T~k (where Xk are the eigenvalues of the #k' which

are the same as the eigenvalues of the 00)

To use this VIP eigenvector algorithm, we first compute the VIP matrix for each class and

the eigenvectors of the R for each class. In order to reduce dimensionality, we retain only the q

dominant eigenvectors from each class. This is the KL approximation. Only the few most

I dominant eigenvectors from each class are needed to accurately represent each class. The total

number of retained eigenvectors is then YIC, where C is the number of classes, and fC<M (M is

the total number of key vectors for all classes). In the original algorithm25 , the Ok were

orthogonalized by the Gram-Schmidt technique. However, this is not necessary. We now discuss

how to obtain M from the Ok' where k = 1,...,nC.

We form the NXnC matrix X which has the eigenvectors O as its columns. Then X is

transformed into the reduced dimensionality space by

A= XTX, (15)

where A is of size ICXM. We first formulate the associative memory as a KXVpC matrix E in

* this reduced space satisfying

EA = Y. (16)

This E is the reduced dimensionality space representation of the full M (of size KXN). We then

I solve for E by

E = YA+ . (17)

Since A is of size YCXM and i7C4ZM, it is reasonable to assume that its rows are independent.
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This allows us to obtain A+ by the formula 5

A + = AT(AAT)Y'. (18)

It may be possible to update A+ in Eq. (18) rather than directly computing it. We have not

U considered such methods, because the main computational load for this method is the matrix-

matrix multiplication in Eq. (15) and the matrix inversion in Eq. (18) is simple since A T is a

small matrix. Using Eq. (18), we obtain E in Eq. (17) and then obtain the final M (in terms of

the key vectors in the original space) using

* M M T . (19)

The resulting M will not be the exact pseudoinverse memory, but will be a very close and

I useful approximation to it. The close approximation is due to the fact that the KL transform is

the optimum (MSE) method of representing a single class in a reduced dimension26 . We KL

transform each class separately, because the KL transform is not expected to accurately

represent more than one class with a small number of eigenvectors. Because the KL transform's

eigenvector representation is used, this algorithm and solution can be applied in cases when the

I key vectors are linearly dependent. This makes it quite general and attractive.

3 Next, we summarize an iterative procedure27 to compute the best q/ eigenvectors for each

class. This procedure is even more efficient than the VIP matrix method discussed above, and

can also be used for updating M.

We first form the scaled VIP matrix (scaled, because it is divided by the number of vectors

forming it) for the first V+1 key vectors of one class. We calculate its dominant q eigenvectors,

using the method discussed above. This is simple, since qi is typically 27 less than 10 and the VIP

matrix is thus less than lX11. The remaining key vectors of the same class are input

I sequentially, one per iteration. The iteration index k is initially q/+2. In the following

description, we use two subscripts. The first denotes the iteration number and the second

114
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denotes the number of a vector within a set. At iteration k, the previous V of size (i,+l)X(i+l)

is updated using the new key vector x k and the tj eigenvectors Ok-l'i (i = 1,...,7) from the

I. previous k-i iteration. The update algorithm for the elements (i, j) of Vk at the k-th iteration

* is:

k- 1
(Vk)i,, = -("k I's k-1,)'6j i

(Vk)i,q+1 = (vk)q+l,i == kk-_,i xk I ... ,7

1 (Vk)T+l+i (20)

Ij?' k k

For ij - 1,...,17, (Vk)ij is a scaled version of the ViP Tk-l,i .k-l,j" Since these eigenvectors are

orthogonal, the nondiagonal elements of Vk for ij = 1,...'7 are zero, as indicated by the first

line of Eq. (20). The first qj elements of the last row and column of Vk are scaled VIPs of the

eigenvectors Ok-l# i and the new key xk. The element (Vk)q+l,,+ 1 is a scaled version of the VIP

of the new key with itself. These elements are expressed in the second and third lines of Eq.

I (20). At each iteration, Vk remains (7+i)X(i7+1) and incorporates the best q7 components of

the previous k-i key vectors with the new key. The q7 newest and best eigenvectors *k,i (i =

1,...,17) (in terms of the original key vector space) and their eigenvalues \k,i are found from the

3 eigenvectors #k,i and eigenvalues Xki of Vk and the new key vector xk using the recursive

formula

Ok,i = Ok,i kk-ij + lk,i 2k-i,2 + .. k,i70k.I,7 -+ Ok,i+xk (21)

I where

=k kXk,i, kk,i,i =1. (22)

The new 40k are orthogonal and are a linear combination of all key vectors xk through the

present iteration.

Eq. (21) approximates 0k,i by a linear combination with only 17+1 coefficients. This is less

I
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than the k coefficients that are needed for an exact representation, but the approximation error

I is small, as stated earlier. Recall that q is a fixed constant and k is the total number of key

5 vectors seen thus far. The algorithm iterates until k = M, (the number of key vectors in a

single class) and the output is the best q eigenvectors. These eigenvectors are then normalized

using Eq. (22). This procedure is performed for each class, and then the memory M is

calculated using Eqs. (15) - (19), with the 40k now being determined by the algorithm in Eqs.

(20)- (22).

To use this iterative technique for updating the pseudoinverse memory matrix (i.e., if we

want to add a new key vector XM+1 to an already existing class), we input the new XM+1,

I update the eigenvectors for that class using Eqs. (20) - (22) and then recalculate M using Eqs.

(15) - (19). Since only the eigenvectors of one class have changed, we can use the projection

values previously calculated in Eq. (15) for the projections of the xk in XM onto the unchanged

I (q-I)C eigenvectors 4k in X. Also, the matrix AAT in Eq. (18) needs to be modified using only

the new elements of A (a small percentage of the total matrix). In this new realization of the

I KL updating algorithm, the computation time is considerably reduced by using these

5 observations. The algorithm requires storage of the i7C eigenvalues (where i7C 4< M), and the

matrices A, AAT , X, X and Y. Because this method does not store the entire MXM VIP

3 matrix as is required in the bordering method, it uses less storage than the bordering method.

The KL algorithm also has the major practical advantage over the bordering algorithm that it

I can operate on dependent keys.

The number of multiplications needed to add a vector pair (assuming it is a member of a

class already stored in the memory) using the iterative KL algorithm is given in Table U1. The

major computational load in Table II is the two terms VNM and ,1CKN. The term qNM arises

from transforming X into the reduced dimensional space in Eq. (18). If the existing projection

values were not used, this operation would require qCNM multiplications. Thus, using the

existing projection values, as we suggest, results in a considerable reduction in computation time.
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The two dominant terms in Table II will normally be larger (by a factor of about 3) than the

bordering algorithm's two dominant terms 2NM and M2 (from Table I). However, the KL

algorithm and all other algorithms that we address are roughly of O(NM) in complexity, when

their implementations are optimized by the methods we advance. Quantitative numerical

I comparisons are provided in Sec. IX.

To delete a vector pair, we need to recompute the q7 eigenvectors Ok for that clas and then

recompute M using Eqs. (15) - (19). This procedure requires the same number of multiplications

I as for adding a vector pair, plus (1/C)q2 NM (to recompute the q7 eigenvectors). This additional

term is nonnegligible, but the computation time is of the same order of magnitude as required to

add a vector pair using the KL algorithm.

I VII. Pseudoinverse Matrix Updating Using Greville and

Widrow-Hoff Algorithms

This section reviews Greville's theorem 5 and briefly compares it with the matrix form of

I the Widrow-Hoff algorithm1 8 . Sec. VIII then discusses the related gradient projection method5 .

Greville's theorem for updating a pseudoinverse matrix is

[XM+(I - XM+P )

3 =MI j-- , (23)

1! T

w h e r e t h e v e c t o r ( I XM + ) X M + I if t h e n u m e r a to r 0,

I II(1- XMXXM+)xM+112

p ffi(24)

( + x M XM+ XM+ll otherwise.

1 + 11 X M +XM+ II2

I
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I
Greville's theorem can be used for linearly dependent keys, in which case the second definition of

p applies. Once p has been calculated, the memory matrix is updated by 5

I MM+l - MM + (YM+i - MM'M+)7" (25)

Although Eq. (23) is not needed to compute the new memory matrix, it is needed to update

XM+ to XM+I+, which is required for the next vector pair being added.

The iterative Widrow-Hoff algorithm is

Mn+l -- +Mn + a (y n + I - M nxn+l)xn +
l  (26)

3 where a is a scale factor and the subscript denotes the iteration. This is similar to the form of

the Greville algorithm in Eq. (25) with the exception that pT in Eq. (25) is a matrix times

XM+1 T, where the matrix has been chosen to produce the solution MM+ 1 = YM+lXM+l + in a

single step. Conversely, the Widrow-Hoff algorithm normally uses a predetermined scale factor

I a and iterates until a solution is reached. To compare the speed of these two algorithms, we

observe that Greville's theorem requires roughly 3NM multiplications to compute i and XM+1+

(for linearly independent keys), while Widrow-Hoff requires 2KN multiplications per iteration.

Therefore Widrow-Hoff requires more multiplications than Greville's theorem if there are more

than (3NM)/(2KN) = 3M/2K Widrow-Hoff iterations. Widrow-Hoff must iterate through each

of the M+1 vector pairs at least once (i.e. a minimum of M iterations). This is more than

I 3M/2K (when K > 2, which is normally the case). Thus, we expect Widrow-Hoff to require at

least 2K/3 times the number of multiplications needed in Greville's theorem, although the exact

I speed difference is not easily quantified. An analog optical updating architecture that uses the

Widrow-Hoff algorithm is being developed 18 . We note that the above speed argument on

whether the Greville algorithm is faster than the Widrow-Hoff algorithm (in terms of the

multiplications required, not cycles of the system) does not apply directly to this optical

architecture, which is parallel.

Table III lists the number of multiplications for Greville's theorem to add a vector pair to

I
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I
the pseudoinverse memory. The result from Table III (dominant terms only) is either 3NM or

4NM operations (depending on whether the key vectors are linearly independent or dependent).

Both terms are likely to be smaller than the term i1NM in the KL algorithm (since 1>4). Thus,

we expect Greville's theorem will be faster than the KL algorithm, although both will be of the

I same order of magnitude. Because the bordering algorithm's dominant terms are 2NM and M2 ,

it is faster than Greville's theorem. There does not exist an efficient method for deleting vector

pairs with Greville's theorem. Thus it is slightly less attractive. Greville's method requires that

the matrices X, Y, X+ and M be stored. Since the matrix x+ contains NM elements, Greville's

theorem requires about twice the storage of the bordering and KL methods. Numerical values

for the speed differences between the various algorithms are given in Sec. IX.

The Widrow-Hoff algorithm requires storage of the matrices X, Y, and M. This is the

smallest amount of storage for the five updating algorithms that we consider (the savings is very

I small however). With Widrow-Hoff, it is trivial to delete a vector pair from X and Y, but

deleting a pair from the memory matrix only occurs gradually as more vector pairs are added to

the memory (this has been referred to as the "forgetting" effect 18).

U VIII. Updating Using Gradient Projection AMs

3 Kohonen 5 developed the gradient projection method from Greville's theorem as a

"computational scheme" for finding the pseudoinverse memory output without explicitly

I computing a memory matrix. We first detail the algorithm and then discuss new

* implementation considerations for forming a memory matrix so that the recall operation can be

realized on an optical matrix-vector processor.

For the case of an AAM, the new algorithm we developed fcr VIP implementation first

orthogonalizes the key vectors using the Gram-Schmidt (GS) algorithm 28 . This generates

I orthonormal vectors ik from the key vectors xk. Thus, this algorithm is suitable for any key

ve- tors (not necessarily even linearly independent key vectors). The first orthonormal vector, i,

I



I
is formed as

il = Xj/llxlll. (27)

Thereafter, the k-th orthonormal vector Xk is obtained from the prior k-1 orthonormal vectors ii

and the new xk key vector using

k-i k-IIk- {Xk - 3 (xk i;)ci} / IIxk k- x (Xki,)iIjl. (28)

Eqs. (27) and (28) are used only for those fck with nonzero norms. If any ik equals 0 (which will

occur if xk is linearly dependent), it is discarded. Eqs. (27) and (28) differ from the expressions

given by Kohonen 5 in that we normalize the vectors kk as they are produced. This reduces the

number of computations required. To use these i, the AAM output i due to input x is

£ 7 (,i=)i (29)

We rewrite Eq. (29) as

AAT X_ X, (30)

where has the ik, k = 1,...,M, as its columns. From this new description in Eq. (30) in terms

of orthonormalized key vectors, it is clear that the AAM matrix used is M = XT. We derived
A

this new form in Eq. (30) to show that this computed X can be stored at P2 of Fig. 3. Because

the key vectors have been orthogonalized by preprocessing, the original key vectors are no longer

required to be orthonormal. Thus, no maximum element selector is necessary, significantly

simplifying this architecture. From our new form in Eq. (30), the matrix M can also be stored

in a single matrix-vector multiplication architecture (Fig. 1) as the sum of VOPs M =

k- xkXk T computed on the system of Fig. 4 (without the prior requirement of orthonormal

key vectors). Thus, this algorithm realistically and significantly simplifies all possible optical

architectures. Note that since the updating methods in Secs. V-VII have also been formulated

I as VOP operations, they can also be implemented on the system of Fig. 4. For an AAM, the

I
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VOP architecture requires a larger matrix than the bidirectional VIP architecture of Fig. 3

(NXN vs. NXM, where M<N for a pseudoinverse AAM). Since the same gradient projection

updating method can be used on the architectures of Figs. 1 and 3, the VIP architecture is

preferable for a pseudoinverse AAM.

We now consider an HAM. For this, Kohonen 5 showed that theik are calculated as before

in Eqs. (27) and (28) with the additional calculation of modified recollection vectors k'k given by

k-i (31)

1k-

Ik Yk (Xk Xi)ki" (32)

The output y for an input x is then

M

Y= (XTi~)ki. (33)
i=1

We now rewrite this equation as a new matrix-matrix-vector multiplication

y = AATX (34)

IA A
where Y and X have the ii and k'i respectively as their columns. This new form in Eq. (34) is

suitable for realization on the matrix-vector VIP architecture of Fig. 2 or on the VOP

architecture of Fig. 4. This rewritten algorithm is attractive because it places no restriction on

the key vectors. However, if a key vector is linearly dependent, its recollection vector must be

the corresponding linear combination of the other recollection vectors. This requirement is met

automatically by AAMs.

i We now detail how to update this memory (i.e. how to add or delete a key/recollection

vector pair, or substitute one vector pair for another). The following discussion considers how to

update an HAM (updating an AAM is simpler, because only the ik and not the 4 need to be

recomputed). We first discuss how t. add a vector pair. The new vectors wM+l and kM+I are

computed from XM+l and yM+l by Eqs. (28) and (32) with the substitution k=M+1. Then the

outer product ,M+iM+IT is added to the VOP memory optically or the new iM+1 and Y^M+1

I
21I



I
column vectors are added to P2 and P4 in the VIP architecture of Fig. 2. To delete a vector

pair, Xk and Yk' from the memory, all vectors £k+,...,XM and 'k+,..., 'M following the vector

to be deleted must be recomputed by Eqs. (28) and (32) (since they are no longer required to be

orthonormal to ik and k'k). The old vectors Xk+l,...,XM and kk+l,... M in M are replaced by

the recomputed vectors. The first k-i vectors il,...,ik-l and do not need to be

altered since ik and k were not used in calculating them. The computational complexity to

delete a vector thus ranges from no calculations to delete the last vector pair (xM,YM) to

I rerunning the entire Gram-Schmidt algorithm to delete the first vector pair (x1 ,Y1 ). To

substitute the k-th vector pair with another pair: the old pair is first discarded, xk and kk are

computed for the new pair, then ik±1,...,iM and ,k+,...,k'M are recomputed so they will be

orthonormal to the new Xk,yk. The steps required for adding and deleting a key/recollection

pair using the above algorithm are summarized in Figs. 7 and 8. The instruction madd Xk, kk to

I the memory" means that the outer product SkikT should be added to P 3 in Fig. 4 (for the VOP

memory), or that kk and kk should be made new columns in P 2 and P4 of Fig. 2 (for the VIP

memory). Likewise, the instruction "delete Xk, ,k from the memory* means that the outer

product should be subtracted from the VOP memory, or that the appropriate columns should be

removed from the VIP memory.I A A
For updating, this algorithm requires that we store X, Y, X, and Y. The four matrices

contain roughly the same number of elements as the matrices needed for Greville's theorem.

Since the gradient projection algorithm is the same for either architecture, the key vector

I restrictions are the same. A major advantage of the VOP architecture is that its matrix size is

much smaller than the VIP architecture's.

The number of multiplications needed in each step using the gradient projection algorithm

to add a vector pair to the memory using this algorithm is given in Table IV. Table IV includes

the computation of the VOPs, even though this can be performed optically on the architecture of

I Fig. 4, and is not required at all in the VIP architecture of Fig. 2. These are not major elements

I22
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in the computations, and are included for completeness. Under the assumptions K-CM < N, the

gradient projection algorithm is the fastest of those discussed in this paper. Its computational

load is dominated by the term 2NM (from Table IV). For the next fastest method, bordering,

the dominant terms are 2NM and M2 (from Table 3). Therefore gradient projection is faster

I than bordering, and is an attractive updating method. To delete a vector pair using the gradient

projection algorithm requires between 0 (for the last vector pair) and roughly N14 2 (for the first

vector pair). Numerical values for the speed differences between the various algorithms are

I given in Sec. DC.

I X. Conclusion

Under the realistic assumption (for pattern recognition) that K-CM<N, we have shown

that the pseudoinverse heteroassociative memory implemented on the optical matrix-vector

multiplier of Fig. 1 has a much smaller number of active elements than the data matrix

heteroassociative memory, which must be implemented on the system of Fig. 2. Although the

SI data matrix is trivial to update and has no key vector restrictions, the much smaller size of the

pseudoinverse memory and the need for a maximum element selection device at P3 of the data

matrix processor has motivated our search for fast and efficient pseudoinverse updating

algorithms. For updating, we have given attention to both adding and deleting vector pairs.

Deleting has not been previously considered.

I Five selected algorithms have been described and compared with attention to the number

of multiplications required, storage, and key vector restrictions. The speed of the different

algorithms on the many possible optical linear algebra architectures is another criterion, but is

beyond the scope of our present effort. The five algorithms we considered are: bordering, KL,

Greville, Widrow-Hoff, and gradient projection. The comparison of these algorithms for

associative memories is new and important. In addition, three of the five algorithms are new

formulations, optimized for fast updating. The bordering algorithm's speed has been greatly

23
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increased with a new method that partitions the key and recollection matrices. A new bordering

method has also been described for deleting vector pairs. The KL algorithm has been adapted

U for use in an associative memory and its speed has been greatly increased with a new realization

that omits unnecessary coxaputations. The gradient projection algorithm has been modified for

implementation on VIP and VOP optical processors.

Our comparison results are now summarized with the speed and storage considerations

compared quantitatively for a specific example. The qualitative differences found for this

example tend to hold true for other values of K, M, and N and the differences for this example

agree with our qualitative comparisons at the ends of Secs. V-VIII. We consider an HAM with N

1000, M = 500, C =- 10 and K = 10 and assume linearly independent keys for the sake of

comparison. For the KL algorithm, we let q = 6. The number of floating point multiplications

needed to add a vector pair to this AM using direct computation, bordering, KL, Greville,

Widrow-Hoff (best case), and gradient projection are 3.2X10 8, 1.3X106, 4.1X10 6, 1.5X108,

1.0X10 7 , and 1.0X10 6 respectively. In Sec. VII, we discussed why the Widrow-Hoff algorithm

is slower at adding a vector pair than the other four updating algorithms. We note that the four

I updating algorithms' computation times are all of the same order of magnitude O(NM) and two

orders of magnitude less than direct calculation. The number of multiplications needed to delete

a vector pair from this associative memory using direct computation, bordering, KL, Greville,

Widrow-Hoff, and gradient projection (average number) are 3.2X10 8 , 2.6X10 8, 5.9X106 ,

3.2X108, 0, and 1.3X108 respectively. Since an efficient updating method does not exist for

I Greville's ,lgorithm, a vector pair must be deleted by direct computation in this case. The

3 number of matrix elements that must be stored externally for direct computation and the same

five algorithms are 5.1X105 , 6.4X10 5, 6.0X105 , 5.3X10 5 , 1.0X106, and 1.0X10 6 . We have

considered the storage requirement to be the least important criterion for the updating

algorithms (the storage requirements only differ by a factor of two for all of the algorithms).

From the standpoint of the speed of adding a vector pair, all algorithms are comparable (except

I
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for KL, which is over two times slower, and Widrow-Hoff, which is slower still).

Another comparison criterion is the algorithms' restrictions on the key vectors. The

bordering algorithm requires linearly independent keys. For the gradient projection algorithm, if

a key vector is linearly dependent, its recollection vector must be the corresponding linear

I combination of the other recollections. The other three algorithms have no restrictions on the

* key vectors and are thus preferable.

Each of the five algorithms has an advantage. To select the preferable updating algorithm

for a particular application, one must decide on the relative importance of adding vector pairs,

deleting vector pairs, and the likelihood of linearly independent key vectors. For pattern

recognition applications, we expect adding to be more important than deleting, and we must

allow for linearly dependent keys. The need to handle linearly dependent key vectors omits

bordering and gradient projection from consideration. From speed considerations, the Greville

I algorithm is the fastest of the remaining algorithms. Thus, we conclude that Greville's

i algorithm is preferable.
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ABSTRACT

We consider various associative processor modifications required to allow these systems to be used
for visual perception, scene analysis, and object recognition. For these applications, decisions on theI class of the objects present in the input image are required and thus heteroassociative memories are
necessary (rather than the autoassociative memories that have been given most attention). We analyze
the performance of both associative processors and note that there is considerable difference between
heteroassociative and autoassociative memories. We describe associative processors suitable for realizing
functions such as: distortion invariance (using linear discriminant function memory synthesis
techniques), noise and image processing pcrformance (using autoassociative memories in cascade with
with a heteroassociative processor and with a finite number of autoassociative memory iterations
employed), shift invariance (achieved through the use of associative processors operating on feature
space data), and the analysis of multiple objects in high noise (which is achieved using associative
processing of the output from symbolic correlators). We detail and provide initial demonstrations of the
use of associative processors operating on iconic, feature space and symbolic data, as well as adaptive
associative processors.

1. INTRODUCTIONI
Optical neural networks offer the promise of adaptive pattern recognition. In this paper, we discuss

optical associative processors and their role in scene analysis and visual perception. Specific issues arise
in this problem that require new associative processors that we will address:

1. We require classification of objects in the scene and thus require heteroassociative memories
(HAMs) rather than the autoassociative memories (AAMs) discussed in the majority of the
literature [1]. In Section 2, we summarize results [2,3] that indicate how the performance of
HAM architectures significantly differ from that of AAMs.

2. For adaptive associative processors, we require techniques to update (add, delete, and
substitute) new key and recollection vector pairs. This is discussed and detailed in Section 3.

3. Distortion-invariance is needed for object recognition. To achieve this, we incorporate linear
discriminant function (LDF) synthesis techniques into the formation of associative processors
[2]. These associative processors will be shown to have significantly reduced size and storage
requirements (Section 4).

I
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4. Operation in noise and with partial occluded inputs is also required. We achieve this with

AAM/HAM cascades (Section 5) and with symbolic correlators (Section 7).

5. Shift invariance is also required for image analysis (i.e., the location of the object in the field
of view must not affect performance). We achieve this by a feature space image
representation key input to an associative processor (Section 6).

6. Multiple objects and objects in clutter must also be considered. Ve address this by a
symbolic correlator with an output associative processor operating on symbolic word objectg descriptions (Section 7).

This paper denotes several new associative processors operating on iconic, feature space and symbolic
data, as well as adaptive processors and the use of such systems for scene analysis and visual perception.

We denote the input key vectors to our optical associative processor by {Xk}. These vectors are of

dimension N. The output recollection vectors {k} are of dimension K and the memory matrix M is thus

KXN. Figure 1 shows one simple realization of such an associative processor. Holographic, phase
conjugation, and other techniques can also be employed to realize such processors. The storage capacity
of such a processor is given by the number of key/recollection vector pairs (M) that the system can
accommodate. We group the different key and recollection vectors into columns and form key and
recollection matrices X and Y respectively. The matrix M must satisfy M Xk Yk for all {lk} and

yk}" Thus, M must solve M X = Y. If xk = then X = Y and an autoassociative memory results.

These memories are useful to reduce noise in the input xk data and to restore missing parts in the input

data. If Yk is an encoded bit pattern (such as a unit vector or a binary-encoded word), then a

heteroassociative memory results and the output recollection vector code {k} denotes the object class,

orientation, etc. Examples of these systems are provided in Section 4.

R* P2 3

T
X M y

FIGURE 1:
Basic Optical Matrix-Vector Realization of an Associative Processor
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I 2. HAM PERFORMANCE

We recently 12] detailed that the conventional AAM performance measure (output to input noise
variance tor0

2 /0,i 2 ) is a useful measure for an AAM, but is not suitable for HAM performance. We

showed that the recollection vector choice affects this performance measure and that HAM performance

is not simply % 2/i = M/N, where N is the dimension of the input key vectors and M is the number

of key/recollection vector pairs stored. We also noted that different choices for the recollection vector
can and do affect this performance measure for the case of HAMs. We derived analytic expressions for

ro /a i" for AAMs and for several types of HAMs. We have also noted and quantified AAM and HAM

performance for different types of HAMs (with different recollection vector encodings). These tests
indicated that HAM performance requires a new performance measure. We introduced [21 the output to
input SNR (SNRo/SNRi) as such a measure, whose performance cannot be arbitrarily scaled to

artificially increase results, as is the case when oo 2/ri2 is used. In this recent work, we quantified HAM
I SNR performance (i.e. the error correction ability of the associative memory itself), we then related PC

(the probability of correct recognition) to the output noise standard deviation Oo (i.e. the noise tolerance
of the recollection vector encoding). We quantified and showed that the SNR ratio performance of an
HAM with binary encoded rather than unit recollection vectors was preferable, that conventionally
encoded HAMs need maximum element detectors, and that binary encoded output recollection vectors
yield proportionally better performance (i.e. less loss in noise reduction) than do unit recollection vectors
as M increases. The reduced size of the HAM memory that results when such recollection vector
encodings are used is another motivation for their use.

3. ASSOCIATIVE MEMORY UPDATING FOR ADAPTIVE PROCESSING

Adaptive processing requires updating of the associative memory (adding new key/recollection pair-
deleting old key/recollection pairs, or substituting for a prior vector pair). The techniques used to
achieve this depend on how the associative memory is synthesized. The matrix M must satisfy M X =
Y. For the pseudoinverse solution M = Y X+ , where X+ - (xTX )IXT, and where XTX = V is the
vector inner product (VIP) matrix. For the case of M key/recollection pairs, we find

I R{ Mj' = YMV " 1XMT , 1

1 ~~~ N :2MYMM

where the subscripts indicate the number of stored key/recollection pairs. If the key vectors are
orthonormal, then VM = I, and X+ - XT and the matrix calculation simplifies to

I MM XM T .  (2)

I
If we use the matrix-vector architecture of Figure 1 with M given by Eq.(1), then we require linearly

independent key vectors (this generally occurs when the input data are iconic image representations that
are significantly different; however, this property is not necessarily always satisfied). We update MM to

I
I



3 MM+ 1 by adding new AM+, and YM+1 vectors as columns to XM and YM and by updating . to

YM+1 by the bordering algorithm

I = [V ±( / -(/-,+ ]T (3)S[-(l/a)ZM+,T e(/a)

where v = -- M x and a = XM+I X TXV = scaiar. This calculation of
Vhr M ±I21' 4112M+f aM+1 ;=M- 1 -

the inverse of the new V from the inverse of the old V is much simpler than computing the inverse of
the new V matrix. To delete the k-th vector pair from VM+1' to produce M', we move the k-th row

and column of VM± 1 to the last row and column. This yields a partitioned matrix

I !M+1 [ A b (4)

bT  (1/a)

Comparing Eqs.(3) and (4), we find that VM-1 is given by the new result

I V A- a bbT. (5)

With orthonormal key vectors, the vector outer product (VOP) realization of an associative memory

follows, since M = Y XT = YkikT= E VOPs. The VOP optical architecture is shown in Figure 2.
A VIP architecture can be realized for an input key x to yield an output recollection vector Y, since M x

Y XTx = y. The VIP architecture 15] is shown in Figure 3.

With a nonlinear operation performed at P3 of Figure 3, orthonormal key vectors are not required in

the VIP architecture. If the P3 nonlinearity is a maximum selector, the P1 to P3 portion of Figure 3 is a
data matrix associative processor. Such an architecture has been shown [6] to be a preferable neural3 network processor to the more widely known and used Hopfield memory.

Orthogonal key vectors xk are calculated from the xk by Gram-Schmidt techniques and the

I associated 3k recollection vectors are similarly determined from the Yk,lk and xk. These Gram-
Schmidt steps required on each new input vector can be achieved on-line using dedicated hardware. To
update or add a new (2M+,'YM+I) vector pair to the system, we compute the new portion xM+i of

XM+1 and the associated yM+I" We add this to the VOP system by adding the VOP xM+1yM+ T to
the memory matrix. For the VIP system, we add aM+i and yM+1 as columns to XM and YM" To

delete the vector pair (Xk) we must remove all vector pairs k, k+1, etc. and recalculate all vector
pairs k+1 etc. This is necessary, since the subsequent key vectors after the k-th vector no longer need
to be orthogonal to the k-th key vector. To substitute a new (Xk,yk) pair for an old pair, we delete the

old pair (and subsequent pairs), we then calculate the new (2Ek'k) pair and all subsequent pairs and addI
I
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FIGURE 2:
I Vector Outer Product Optical Associative Memory Architecture

I

I Yl "

FIGURE 3:

Vector Inner Product Optical Associative Memory Architecture

these new pairs to the matrix.

I 4. DISTORTION-INVARIANT ASSOCIATIVE PROCESSORS AND LDF

I ASSOCIATIVE PROCESSOR SYNTHESIS

I
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I
amount of distortion-invariance). We achieve this by using LDFs in the synthesis of the memory matrix
[4]. Specifically, for a two-class problem with in-plane rotations as the distortions to be handled, the
matrix used is only 2Xd (where the number of pixels on the object is d) and the two element output
recollection vector is [1,01T or 10,11] " to denote the two classes independent of object distortions. The
input key vector is dXl (lexicographically ordered iconic or pixel-based image). In synthesis of this
memory matrix, we specify the same output recollection vectors 11,0 1T or 10 , 11T for different distorted
input key vectors. The discriminant vectors are linear combinations of distorted versions of the two
objects. Figure 4 shows an example of such an associative processor. We used 18 Phantom and 18
DC-10 aircraft images, 32X32 pixels, rotated in yaw every 200. From these, two discriminant vectors
were formed and the 2XI024 memory was produced. Figure 4 shows the Phantom and DC-10 test
images at several different orientations (the system has only seen the 0" image before and none of the
other test images), and the two element recollection vector obtained. As seen, the system correctly
classifies the Phantom inputs with a [1, 0 ]T output and DC-10 inputs with a [0,1 1T output.

I INPUT AND 0 IMAGE OUTPUT INPUT AND 0 IMAGE OUTPUT

I PHANTOM 00 DC1O 00

50 50

100 100

700 700

FIGURE 4:
Demonstration of In-Plane Distortion-Invariant Associative Processing

In many cases, the class of the input object is sufficient (as in Figure 4) for a given problem. After
such an analysis, further scene interpretation often requires determination of the orientation of the
object. This is also necessary in robotic applications, when the object must be grasped. We achieve
designation of the class of the input object by a different associative processor. Instead of assigning the
same key vectors to all distorted versions of one input object, we can assign different unit recollection
vectors to the different object orientations, i.e. the location of the single "I" in the output vector
denotes the class of the object. Figure 5 shows the resultant object orientation estimates obtained from
such an associative processor. In this case, 10 LDF vectors were formed (the 10 rows of the matrix M)
as linear combinations of 10 images of the Phantom aircraft at 36 * increments in yaw. The input
vectors are 1024X1, the memory matrix is loX1024, and the 10X1 recollection vectors were the 10
different unit vectors (for the 10 different yaw rotated key images). Figure 5 shows the input image, its
orientation, and the output recollection vector obtained in tests. The system has not previously seen
any views between 0* and 36". The output vectors obtained for the 4", 8", 12" and 16 rotated
input images have a "1" in the first location (indicating that these images are most closely associatedI
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3 with the 0 * oriented Phantom). The inputs from 20 to 32 gave output recollection vectors with a

1 ' in the second element (since they are closest to the 36 oriented Phantom), etc.

THRESHOLDED THRESHOLDED
INPUT 0 IMAGE OUTPUT INPUT a IMAGE OUTPUT

00 200

I 40 240

so 280

I 120 320

I 160 360

I FIGURE 5:
Object Orientation Determination from an Associative Processor

5. ASSOCIATIVE PROCESSORS WITH NOISY INPUTS AND OCCLUDED OBJECTS

I When input noise is present or when only apart of the input object is visible (due to occlusion, etc.),
HAM performance will degrade. In such cases, AAMs are of use. Their output recollection vectors are
of the same type as the input key vector, i.e. iconic image patterns (of improved quality) . Figure 6
shows the inputs and outputs for an associative memory (1024 X1024) for input objects with parts
missing (Figures 6a to 6d) and with significant noise present (Figures 6e and 6f). With severe noise and
occlusion, several iterations through an AAM are found to improve results. This is analogous to neural
processors, whose outputs are thresholded and fed back to the input. We have found it useful and
necessary to restrict the number of iterations to typically 2 or 3. Following this AAM preprocessing, the

I resultant input vector is significantly improved (as in Figure 6) and is then fed to an HAM for a decision
on the class, orientation, etc. of the object as shown in the block diagram of Figure 7.

3 6. SHIFT INVARIANT ASSOCIATIVE PROCESSORS WITH
INPUT FEATURE VECTORS AS KEY VECTORS

I For image and scene analysis, one cannot rely on the fact that the object to be classified will be in
the center of the field of view. Thus, associative processors must be able to accommodate objects in any
position (i.e. a shift invariant processor is required). With conventional associative processors operating
on iconic data, we would require the memory to be synthesized for all possible different shifted locations
of the object. This will significantly affect memory storage capacity and dynamic range requirements.I

I
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(a) (b) (C) (d) (e) ()

FIGURE 6:
Autoassociative Memory Image Recollection. Partial Phantom Input (a) and Output Obtained (b).

Partial DC10 Input (c) and Output Obtained (d). Noisy Phantom Input (e) and Output Obtained (f).I
Anto no- Auo- Non- Hetero- Non- Object

Input Associative Linearity Associative Linearity Associative Linearity Class
Processor Ti Processor T2 L Processor T3

FIGURE 7:
Three-Stage Nonlinear Associative Processor with More Improved

Distortion-Invariant Pattern Recognition

Alternatively, one can employ a correlator architecture which automatically checks the input for every
possible shifted location of an object. These correlation filters can be formed from smart filters to
achieve distortion invariance. If the output from a correlation filter is thresholded and the filter is

readout then some reconstruction of objects with occluded parts is possible. However, before achieving
this, the class of the object must typically be assessed (and this is often the major problem). With

phase conjugate mirror readout, better associative performance is possible. In general, a correlation
smart filter that achieves object recognition does not function well in producing restored noise-free
object images.

I To achieve shift invariance, we use a feature space object description as the input key to the
associative processor. The specific feature space we chose is the well known wedge-ring sampled Fourier
transform feature space [7]. It is translation invariant (as well as scale and rotation invariant). It is

also significantly reduced in dimensionality. The wedge outputs are invariant to scale changes in the
input object and the wedge feature vector pattern rotates cyclically as the input object rotates. The
magnitude Fourier transform detected provides the shift invariance. We used only wedge-sampled
magnitude Fourier transform elements as our feature vector with 32 wedge samples in 180 (i.e. half of
the Fourier transform plane is chosen).

U Thus, our input key vectors are of dimension 32. As our associative memory matrix, we use the data

matrix. We form the matrix from the wedge Fourier transform samples of 9 training images of
Phantom jets and 9 of the DC-10 aircraft with the aircraft in different in-plane yaw rotations
(specifically 20 intervals in yaw over 180 ). Since the magnitude Fourier transform is symmetric, we
need only consider 180 * coverage or hair of the Fourier transform plane. The 32 element input vector is
significantly smaller than the 1024 clement input vector required for even a small 32X32 resolution

input object. The associative memory matrix is likewise much smaller (18X32 in this case). The
output recollection vector is of dimension 18, with a single 111" expected. If the single "1" occurs in oneI

I



I
of the first 9 elements, this indicates a Phantom jet input at different yaw orientations at 20 intervals.
If the "I" output occurs in one of the last 9 elements of the recollection vector, this indicates a DO-10
input at different yaw orientations at 20 * intervals.

I Figure 8 shows the Fourier transform of a Phantom jet at 0 * yaw orientation. The FT pattern has
lines at different angles. These correspond to the different lines in the aircraft image with the length
(energy) of each Fourier transform line proportional to the length of the wing etc. lines in the input
object. The orientation of these Fourier transform lines is normal to the orientation of the wing etc.
lines in the input image. Figure 9 shows the DC-10 image at. 0° orientation.I

I

I FIGURE 8: FIGURE g:
(a) Phantom Jet at 0 * and DC-10 aircraft at 0

(b) its Fourier Transform orientation

We now show various associative processor data for input feature key vectors. In Figure 10, the
input was a Phantom at 0 . The 18 analog recollection vector outputs from the associative processor
are shown in Figure 10a and the thresholded 18 element output vector is shown in Figure 10b. The
peak value of 1.0 occurs in the first element of the output recollection vector, indicating that the input
is a Phantom jet oriented at 00. For a DC-10 input at 00, Figure 11 shows analogous data. The peak
in the tenth output recollection vector element indicates that the input is a DC-10 at an orientation of
0 . Figures 12 and 13 show test results for non-training set images. In Figure 12, the input was aS Phantom at 10 *. The peak in the third output element correctly classifies the input as a Phantom,
although it does not indicate the correct orientation. In Figure 13, the input was a DC-10 at 10.i Again the output peak identifies the correct class, but not the orientation.

7. ASSOCIATIVE PROCESSORS FOR MULTIPLE OBJECTS IN HIGH CLUTTER
(SYMBOLIC KEY INPUT VECTORS)

To develop associative processors suitable for recognizing multiple objeets ;n high cIlitter with
occluded objects and with the ability to update new object models requires advanced choices for the
input key vector. To achieve this, we employ a correlator with multiple filters for the object parts in
different pattern locations. A correlator with three frequency-multiplexed filters is used. Each matched3 spatial filter is designed to output a specific 4X4 pattern for different input objects. The location of
this 4X.I pattern in each output correlation plane indicates the location of an object in the input field

I
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I FIGURE 10:

Feature Space Key Vectors Associatively Processed for a Phantom at 10 as the Input.

of view and the specific 4X4 pattern produced indicates the class of the input object. From the same
locations in the different output correlation planes, we thus obtain three words (16 digit symbolic words)
and from the full output we obtain a three word 48 digit symbolic description of the input object. For
multiple objects, three different symbolic words occur (these are separated for the different objects by
the correlator). The initial rule-based processor 18] used for this system was not able to handle input
objects with occluded parts with high confidence. Figure 14 shows the results of the output symbolicI data from such a system when the input had missing occluded object parts. The initial output symbolic
data had 13 errors. After processing by an AAM, the number of errors was reduced to 9 and the rule-
based processor properly classified the input object with improved confidence.

For the case when the input object cannot be classified with high confidence (i.e. it is a new type of
object) even with the ALM image improvement, we update our model with this input or with parts of
it. To estimate the object class of this new input object, we feed the three symbolic output wordsdescribing it to a HAM and perform a majority vote on the outputs. Figure 15 shows this concept. Forthe case given, this resulted in the proper classification of the input object.

8. SUMMARY AND CONCLUSION

I We have addressed associative processors for vision and object recognition. We noted the need for
heteroassociative processors for making decisions. Autoassociative memories, cascades of AAMs, as wellI
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FIGURE 11:

Feature Space Key Vectors Associatively Processed for a DC-10 at 10"- as the Input.

FIGURE 12: FIGURE 13:
iFeature Space Key Vector Output Recollection Feature Space Key Vector Output Recollection

Vector Data for a Phantom Input at 10 °  Recollection Vector Data for a DC-10 Input at 10"

as iterative AAMs, and AAMs in conjunction with HANs in a cascade were found useful to reduce noise
Iand improve input image quality. For vision processing, we require: distortion invariance, shift

invariance, adaptive updating, processing multiple objects, high clutter performance, etc. We achieve
these goals with various new associative memory processors operating on: iconic, feature and symbolic

I input data. Very successful initial results have been obtained.
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I FIGURE 15:
Heteroassociative Memory Processing of Symbolic Object Data for Class Estimation and Updating
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*i Abstract

A Ho-Kashyap (H-K) associative processor (AP) is demonstrated to have a larger storage capacity than the

pseudoinverse AP and to allow linearly dependent key vectors to be accurately stored. A new Robust H-K AP

is shown to perform well over all M/N (where M is the number of keys and N is their dimension), specifically

when M -- N, where the standard pseudoinverse and H-K APs perform poorly. Also considered are variable

thresholds, an error-correcting algorithm to allow analog synthesis of the H-K AP, and the different reliabilities of

the recollection elements.

S 1 Introduction

The storage capacity and noise performance of APs are of major concern [13 as are key vector requirements [2,3].

It is important to distinguish between general memory and pattern recognition (PR) applications. In a general

memory application, APs store arbitrary data and it is fair to assume that the keys and recollections are drawn

from random distributions (this allows APs to be tested with Monte Carlo methods). In PR problems, an AP
has many key vectors associated with the same recollection vector (a class label), and must generally operate on
shifted and distorted input patterns.

In Section 2, we review the pseudoinverse AP and establish our notation. The section also briefly considers the
popular class of correlation memories [1], including the Hopfield memory [4] and its variants. Section 3 advances
our H-K algorithms. Section 4 gives theoretical and simulation results for the general memory application. A case

study of distortion invariant aircraft recognition is presented in Section 5. In Section 6, we offer a summary and
conclusion.

2 Pseudoinverse Associative Processor Formulation

Two major APs are the pseudoinverse memory and the broad class of correlation memories, which includes the

Hopfield memory. We briefly consider correlation APs, and then review pseudoinverse AP formulation.

Denoting the keys and recollections as vectors xk (N-dimensional) and y,. (K-dimensional) respectively, where
k 1 ... , M, the vectors xk and yk form an associated key/recollection pair (there are M such pairs). We desire
a K x N matrix M satisfying

Yk =MXk, fork=l,...,M. (1)

Defining matrices X (N x M) and Y (K x M) with the key and recollection vectors as their columns, (1) can be
rewritten as

Y = MX. (2)

It is useful to distinguish between autoassociative processors (AAPs), in which Y = X, and heteroassociative

processors (HAPs). Autoassociative processors are used for restoring partial or noisy inputs. Our major concern
is HAPs since they are useful for decisions and PR.

|1
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I The correlation memory is given as M = YX T ,  (3)

which is an exact solution of (2) only when the keys are orthonormal. The Hopfield memory is a particular
correlation AAP that stores binary keys. It is characterized by iterative recall in which the output vector is passed
through a threshold and fed back to the input until it converges. As originally proposed [41, the memory matrix
has a zero diagonal. Many variants have been proposed, e.g. [5,6]. The Hopfield memory has been shown [4]
empirically to have a capacity of M ; 0.15N. Theoretically, an asymptotic (N - oo) capacity of M = N/(41o9 2 N)
has been shown [7]. Because of its very low capacity, we do not further consider this or similar APs.

A more general solution of (2) is [1]IM -YX
+ , (4)

where X+ is the pseudoinverse of X. This solution minimizes the squared error IIY-MXIP2. When the key vectors
are linearly independent, the squared error is zero and (4) solves (1). Thus, when a key vector is input, the exact
recollection is output. We find orthogonal and linearly independent key vector requirements to be unrealistic.
When the key vectors are linearly dependent, the solution in (4) is approximate. Because perfect recall is desired,
the pseudoinverse AP in (4) is often restricted to the case M < N (since when M > N, the keys are guaranteed
to be linearly dependent). However, the approximate solutions are also useful and allow a larger storage capacity.
They have generally not been considered. We will refer to (4) as an exact pseudoinverse AP (when M < N and
the keys are linearly independent) and as an approximate pseudoinverse AP (when M > N).

The maximum storage capacity of the exact pseudoinverse AP is limited by definition to M = N for both
general memory (random keys and recollections) and PR (many keys associated with the same recollection)
applications. The maximum storage capacity of the approximate pseudoinverse AP is difficult to quantify for the
general memory application, but only exceeds M = N by a small margin. The maximum storage capacity of the
H-K AP is M = 2N for general memory applications, as will be discussed in Section 4. The storage capacity for
PR is quite different than for a general memory. A PR HAP can have M > N and the issue is that the key vectors
should represent the distortions of the different classes. In PR APs, recall accuracy for a specific application is
important rather than storage capacity.

A variety of algorithms exist for computing the pseudoinverse [1,8]. In this paper we use the singular value
decomposition (SVD) approach [9] because it can be used for either linearly independent or dependent keys and
because it allows us to improve the AM's noise performance by a method that will be explained below. If M < N,
the decomposition of X is given as

X = UEV T, (5)
where U is an N x M matrix with orthonormal columns, V is an M x M orthogonal matrix, and E is an M x M
diagonal matrix that contains the singular values pi, i = 1, ... , M. If M > N, the decomposition of Eq. 5 still
holds, but U is now an N x N orthogonal matrix, V is an M x N matrix with orthonormal columns, and E is an
N x N diagonal matrix that contains the singular values pi, i = 1, ... , N. The pseudoinverse of X is expressed as

X+ = V +UT, (6)

where E = diag(pt) and
/i forp,=0O

f+ 0 for Pi = 0.

9The conventional pseudoinverse HAP recalls noisy key vectors poorly when M - N (with much better perfor-
mance occurring when M < N and M > N) [10]. A recent paper [11] explains this phenomemon and shows that9to optimize recall accuracy for a particular noise variance a2, all singular values pi such that

Ai< VM-a(7)

should be set to zero. Then the memory matrix is computed by [11]

M = YX+, (8)I
I.



I where X is the modified key matrix with small singular values set to zero. For realistic a values, this method
causes only a small decrease in the recall accuracy for exact key vector inputs, and significantly improves recall
accuracy when noise is present (especially for M t N). The method does not alter the pseudoinverse HAP's
performance for M <g N and M > N. We use this approach in our simulations described in Sec. 4. We note that
it is well known [9] that very small singular values (e.g. 10- 4 ) should always be set to zero to avoid numerical
instability. The method explained above differs from this, in that the threshold for zeroing the singular values is
given as a function of M and ar (as opposed to selecting it arbitrarily) and that the singular values zeroed out can
exceed 10- 4 by orders of magnitude (e.g., if M = 50 and a = 0.1, the threshold forp is 0.71).

3 Ho-Kashyap (H-K) Associative Processors (APs)

The H-K AP has a larger storage capacity than the pseudoinverse AP because it requires that the key vectors be
only linearly separable for perfect recall, rather than linearly independent, as is the pseudoinverse AP requires.
Since linear separability is a looser restriction than linear independence, the H-K AP in many cases can perfectly
store linearly dependent keys. Before presenting the H-K algorithm, we first describe how linear separability
applies to APs.

p 3.1 Linear Separability and the H-K Algorithm

We consider the case where Y is bipolar binary. The columns of Y are the recollection vectors for the different
key vectors and row i of Y gives the desired values of the i-th output element for the different key vectors. With
binary recollection elements, the output vector is passed through a threshold. If an input is a distorted key, or if
the keys are linearly dependent, then the pre-threshold analog output of the pseudoinverse AP is likely to differ
from the desired result, but it is still possible for the post-threshold binary output to be correct. Each row of the
AP matrix, with its threshold value, forms a linear discriminant function (LDF) that separates the N-dimensional
input space with a hyperplane into two classes, those key vectors for which element i of the recollection vector
is -1 and those for which it is +1. The locations of the ± 1 elements in row i of Y denote these two classes for
that row. If these two classes can be separated with a hyperplane, then they are linearly separable and there
exists an LDF that will give perfect recall for that output recollection element. The pseudoinverse AP minimizes
the squared error, but is not guaranteed to give perfect recall even if the K class groupings (one for each output
recollection vector element) are all linearly separable [12]. The Ho-Kashyap algorithm iteratively computes an
LDF (i.e. one row of M) that will correctly classify two classes if they are linearly separable [12]. If they are not
linearly separable, the algorithm will still converge to a minimum squared error solution, and will indicate that9 the classes are not linearly separable.

j 3.2 H-K APs

The H-K algorithm is noted in Table 1 as a new matrix version for AP synthesis. We begin with an estimate of
M from the pseudoinverse (step 1). We modify Y (step 4) and M (step 1) in successive iterations. In Table 1,
S contains the signs of the Y elements, 0 denotes Hadamard (pointwise) multiplication, and the subscript n is
the iteration index. If the pseudoinverse is exact (i.e., the keys are linearly independent) then no modifications
will be made. The H-K algorithm improves the pseudoinverse memory when the keys are linearly dependent. In

step 2, we calculate the error matrix E, which gives the errors between the actual and desired outputs. In step
3, we form a modified error matrix E'. This matrix equals E except that all E elements that differ in sign from
the corresponding elements in Y are set to 0. This ensures that none of the Y elements change sign (we assume
initial bipolar binary Y values) when E' is added to Y in step 4 to produce an updated Y. Step 5 then returns
the algorithm to step 1 where M is updated.

Once El = 0, the algorithm has converged (convergence is guaranteed). If a row of En equals 0 then that

I
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Step Operation
1 M = YX+
2 E,, = Y, - MnX
3 E' = S®0 [(S®E.)+IS®E. ]
4 Yn+1  = Y,+2pE,, O<p<l
5 If E'n $ 0 go to 1.

Table 1: Ho-Kashyap AP Algorithm

row's dichotomy (grouping into two classes) is linearly separable; otherwise it is not. In actual application, the
algorithm can also be stopped if M correctly recalls all of the key vectors.

Other AP work [13-15] used the H-K algorithm for computing APs, but limited the number of key vectors to be
substantially less- than their dimensionality. (An overdetermined problem was created by adding key/recollection
vector constrains to map unit vectors (with a single 1) to all-zero vectors, in addition to storing the key vectors.)
A major emphasis of this paper is that the advantage of the H-K AP over the pseudoinverse AP occurs when
the number of key vectors exceeds their dimensionality and that the H-K AP can handle linearly dependent key
vectors (i.e. M > N). Our memory matrices are overdetermined by the large number of keys that we store, and
we do not need additional constraints (as used in other work) to create an overdetermined solution.

Other H-K AP work also used output thresholding and feedback in recall mode. We do not consider this for
high capacity APs (M > N) for the following reasons. To use feedback in a HAP recall requires a Bidirectional
Associative Memory (BAM) [16]. To use the H-K algorithm to synthesize a BAM [15] requires that both forward
(key -- recollection) and reverse (recollection -- key) mappings be computed, which is a significant computational
increase over the unidirectional processor synthesis. For perfect recall, if the reverse mapping is not linearly
separable, it can introduce errors into the BAM recall. Also, the capacity of the BAM is limited by the minimum
of N and K [16]. When K is small (which is to be expected when the recollections are used for decisions or class
labelling), it will cause the memory's capacity to be less than that for a unidirectional processor.

It is well known that the pseudoinverse AAP degenerates to the identity matrix when the rows of X are linearly
independent [1], which is likely to occur when M > N. Although this is clearly not a useful processor, it does
correctly recall exact key inputs, and the H-K algorithm cannot improve on it. This is another reason why this
paper considers only HAPs.

G3.3 Most Reliable Recollection Vector Elements

Since the final E indicates which output elements give perfect recall for the key vector inputs, the H-K algorithm
automatically provides information about which output elements are the most reliable. If the data are linearlyseparable, E and E' will be all zero (and the new Y and M achieve this linear separation). If E' is all zeroand E is not, at least one row of Y is not linearly separable (but the resultant M is better than the approximate

pseudoinverse solution, in that it has a lower squared error). The rows of E and E' with all zero elements denote the
output elements that are reliable. This allows us to consider the reliable outputs first and then the other elements
with a reduced confidence algorithm. We do not consider this topic further in this paper, but will address it in

*future work.

3.4 Robust H-K AP

Our basic H-K AP (Table 1) uses the exact or approximate pseudoinverse AP as an initial solution and then refines
it. When the pseudoinverse is used, as in the basic Ho-Kashyap algorithm, then the resulting memory will suffer

4.



I from the same recall deficiencies as the pseudoinverse memory when M st N (this will be shown in Sec. 4). We
therefore propose that Y+ be used instead of X + in Table 1. We call this the Robust H-K AP. This combination
of the H-K algorithm and setting small eigenvalues to zero is quite new.

I i3.5 Error Correcting H-K AP Algorithm

We now mention the use of an error correcting H-K algorithm [17] that can be used to produce a new
error correcting H-K AP algorithm, which does not require an initial X + .The algorithm can be applied in cases
where the rows of X are linearly independent, which is likely to occur when M > N. Thus, it is applicable for
linearly dependent key vectors (the columns of X) and the high capacity memories that we consider. Because of
its error correcting nature and the fact that SVD is not used, we expect it to tolerate lower accuracy than the first
H-K algorithm (Table 1). Hence it appears attractive for optical implementation. The algorithm updates Y and
M using

Y.+ 1  Y, + 2pE(9
Mn+l = M, + 2pEX T R, (9)

where R can be any positive definite matri. The simplest choice is R = I. If R = (XXT) - , then this becomes
the first H-K algorithm (since X+ = XT(XXI) - i when the rows of X are linearly independent).

]F 3.6 Augmented APs

In our PR case study (Section 5), we augment each of the key vectors with a "1." This increases the key vector
hyperspace from N to N + I dimensions and does not require the separating hyperplanes to pass through the
origin, as would occur otherwise. This technique is well known [12,18] and in APs is equivalent to varying the' thresholds [13].

* 4 General Memories

We first review theoretical work and then report our simulation results.

4.1 Theoretical Results

9 Classic theoretical results allow us to estimate the storage capacity of the H-K AP. The results assume that the
M N-dimensional key vectors are in general position. For a group of points to be in general position, no subset of
N vectors can be linearly dependent. Thus, restricting points to be in general condition is a looser condition than
linear independence. There are 2 M possible dichotomies of these vectors. The fraction of these that are linearlyseparable is (12,18]

r1 (M<N
f(M, N) - 21_. EN-( M-1 ) M > N. (10)

When the keys cannot be assumed to be in general position, (10) is an upper bound. We extended (10) to an
associative memory formulation (with K-element recollection vectors), by finding the fraction of groups of K
dichotomies that are all linearly separable. This gives the fraction of all possible Y matrices that can be correctly
recalled in an H-K AP. Our fraction is (10) raised to the K-th power:

g(M N, K) = )]K M<N

g(M,N,K) { 2 KMK [N-(M-1 K (11)
i 5 >N.

"" m I II I II 5.
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Figure 1: Fraction of (a) all dichotomies of M N-dimensional points that are linearly separable, and (b) all groups
of K dichotomies of M N-dimensional points that are linearly separable

The asymptotic limit (for K = N) as N -- oo is (modified from [19])

(MNN){1 MN < 2 (12)g(MNN = 0 MIN>.2.

As seen, the maximum storage for an H-K AP in a general memory application (random keys and recollections) is

M = 2N. (13)

This asymptotic limit is not achievable with finite length (N) key vectors. As always, better storage (larger M) is
achieved with larger sized key vectors (larger N).

Fig. la shows (10) vs. MIN. It shows the probability that one row of Y is linearly separable. Fig. lb shows
(11) vs. M/N for K = N. It shows the probability that all K rows of Y are linearly separable. As seen, the
maximum storage capacity of M = 2N cannot be achieved except with infinite N, but (11) allows us to estimate

the storage capacity for finite N.

4.2 H-K and Pseudoinverse General Memory Simulations

We now test random H-K APs for agreement with the above theory and for comparison to pseudoinverse APs. We
use N = 50 element key vectors, K = N = 50 element recollection vectors and vary MIN. When MIN > 1, the
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U key vectors are automatically linearly dependent. All key vectors were randomly chosen and uniformly distributed
over -I to +1. Each bipolar binary recollection vector element was chosen randomly to be -1 or +1. For each MIN
value, one X and one Y matrix were generated. The H-K synthesis algorithm used p = 0.5 and was limited to a
maximum of 1000 iterations. The algorithm was also stopped when the memory perfectly recalled the exact key
inputs or when E' = 0. To test each AP, we used M key vectors with four levels of additive zero-mean Gaussian
noise: a- = 0.0, 0.1, 0.2, 0.4. The recall accuracy (percentage of correct output elements) was computed for eachIll I  noise level. Fig. 2 shows the results for the standard pseudoinverse AP (Fig. 2a) and the results for our H-K

AP (Fig. 2b), with M/N varied from 0.0 to 2.0 in 0.2 increments. These results show improved performance and
storage capacity (with and without noise) for the H-K vs. the pseudoinverse AP. The pseudoinverse AP performs
perfectly for exact key inputs only up to M = N, and degrades for M > N. The H-K AP achieves perfect
recall for M < 1.4N for inputs with no noise. This is a 40% improvement of the H-K over the pseudoinverse AP.
Thus, the H-K AP performs significantly better than the pseudoinverse AP. Its improvement over the Hopfield
AP (M = 0.15N) is a factor of 10 or 1000% better performance. We note that in all cases, noise performance
degrades when M s N (as is typical of pseudoinverse APs).

We now consider th, use of our robust H-K AP to improve noise performance when M - N in Fig. 2. The per-
formance of the robust pseudoinverse AP and the robust H-K AP (both of which have small eigenvalues removed)
are shown in Figs. 3a and 3b respectively, with MIN varied from 0.6 to 1.6 with 0.04 increments. As seen, both
APs avoid the severe drop in performance (when M ; N) in Fig. 2 for noisy inputs. For the modified APs with
exact key inputs, we obtained:

P, = 100% for M < 0.76N for the robust pseudoinverse AP,
Pc = 100% for M < 1.48N, for the robust H-K AP,990% storage improvement with robust H-K AP over robust pseudoinverse AP.

From Table 2, we see that H-K improves the modified pseudoinverse even when M > 0.8N (for M < 0.8N, the
pseudoinverse is exact because no eigenvalues were set to zero). The number of iterations (Table 2) jumped for
M = 1.48N, since here the data became more difficult to linearly separate. For M > 1.6N, the H-K algorithm did
not converge within 1000 iterations, which indicates that at least one row of the memory matrix was probably not
linearly separable. Table 3 notes the rank of the modified X+ (with small eigenvalues set to zero). As seen, five
eigenvalues are omitted at M = N and the matrix is full rank (i.e. no eigenvalues were set to zero) for M > 1.44N.

We note good agreement between theory and tests. In our tests, the transition from a completely linearly
separable memory to an at least partially linearly nonseparable memory occurred from M = 1.48N (completely
separable) to M = 1.52N (partially nonseparable). (These numbers refer to the Robust H-K AP tests, but forM > 1.44N the Robust H-K AP was equivalent to the H-K AP, since X+ was a full rank matrix.) According to (11),for N = K = 50, this same transition theoretically takes place roughly between M = 1.5N and M = 1.7N, with

the probability of a completely linear separable memory for these two capacities being 0.92 and 0.07 respectively
(these values are not shown in Fig. lb but were computed from (11)). The experimental transition occurred at a
slightly lower capacity than the theoretical transition. This is to be expected since the theoretical transition is an
upper bound due to its general position assumption. The two transitions still agree reasonably well. Thus, (11)
allows us to estimate the H-K AP's capacity for finite N.

I MIN 1i 0.60 1 0.64 j 0.68 [ 0.72 I 0.76 J 0.80 J 0.84 [ 0.88 I 0.92 I 0.96 1.00 1.04 -71.08
iterations 0 0 0 0 0 1 _2 2 1 2 4 3 5

I M/N 11 1.12 11.16 1.20 I1.24 1.28I 1.32 1.36 1.40 1.44 1.48 1.52I 1.56 1.60_
iterations 11 5 1 3 1 12 15 64 1 60 1 45 80J 46 566 1000 1000 1000

g Table 2: Number of iterations required by modified Ho-Kashyap algorithm for different M/N
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Figure 2: Recall accuracy vs. MIN for exact and noisy key vector inputs using a) conventional pseudoinverse
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I II 0 0.64 1 0.68 1 0.72 0.76 1 0.80 1 0.84 1 0.88 1 0.92 0.96 1.00 1.04 1.08 I
rank 11 301 321 341 36 381 391 401 411 42 441 451 451 46]

1 MIN 111.12 I 1.16 11.20 11.24 11.28 11.32 11.36 11.40 11.441 1.48 11.52 1.56 11.60
rank 46 48 48 49 49 49 50 49 50] 501 50 50 50

I Table 3: Rank of modified key matrix for different MIN

I 5 Aircraft Recognition Case Study

This section presents a comparison of the pseudoinverse and Ho-Kashyap AP approaches in a two-class aircraft
recognition problem. We consider two classes (Phantom and DC-10) of 128 x 128 pixel aircraft imagery. As our
key vector representation space, we use 32 wedge samples of the Fourier transform (in half of the transform plane).
The wedge feature space provides scale invariance (when the wedge samples are normalized) and shift invariance,
and is easily generated optically [20]. In-plane image rotations cause the wedge samples to circularly shift. We
postulate that the aircraft are moving, and that tracking information provides the location of the aircraft's nose.
This information allows the wedge samples from an unidentified aircraft to be circularly shifted so that they align
properly with the training vectors. Thus, for moving aircraft this feature space is rotation (in-plane), scale and
shift invariant. Thus, we do not test these invariances. We augment each of the key vectors with a "1," as described
in Section 3.6, to improve recall accuracy. The recollection vectors are of dimension K = 1 with values of +1 for

S the Phantom and -I for the DC-10.

Two training sets were tested. The first consists of 882 key vectors produced from the two aircraft rotated in
pitch and roll between 4.50 ° at 5 increments. The second consists of 1250 key vectors produced from the two
aircraft rotated in pitch and roll between ±600 at 50 increments. Thus, we consider APs with

N = 33 dimensional key vectors,
M = 882 and 1250 key/recollection pairs,
K = 1 dimensional recollection vectors.

Both cases represent linearly dependent key vectors, with M = 25N and M = 35N respectively. An H-K AP
was produced using the same stopping criteria as in Section 4 (we did not test the robust H-K algorithm since the
test vector distortions are not easily quantified into an equivalent a for noise). The first case (M = 882) represents
a linearly separable problem, since H-K gives 100% correct classification (after 32 iterations). As shown in Table
4, the H-K AP yields perfect performance on the training set, whereas the pseudoinverse AP does not. The test
data in Table 4 are 800 aircraft (not present in the training set) with pitch and roll varied between ±57.50 at 50
increments (i.e. at least 2.50 different in pitch and roll from the training data). The H-K AP also gives perfect
performance for these inputs. The second case (M = 1250) represents a linearly nonseparable problem, as is shown

in Table 5. The H-K algorithm was stopped at 1000 iterations. The test data in Table 5 are 1152 aircraft with
pitch and roll varied between ±57.50 at 50 increments. We see that H-K gives excellent performance in both cases.

f % Misclassified

Training Set: Pseudoinverse 0.68
SH-K AP 0.00

Test Set: Pseudoinverse 0.25
H-K AP 0.00

Tal :Mslsiicto eut o pseudoinverse adHo-Kashyap memories with ±50° training setatsI
Tal :MslsiiainrslsfrpedivreadH-aha eoiswt 50 tann e
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% MisclassifiedSTraining Set: H-K AP 1.04
Test Set: H-K AP 0.52

-- Table 5: Misclassification results for pseudoinverse and Ho-Kashyap memories with ±60* training set

3 6 Summary and Conclusion

We have shown that the Ho-Kashyap associative processor has a larger storage capacity than the pseudoinverse
processor and that it can handle linearly dependent key vectors. We have detailed a new Robust Ho-Kashyap
processor to improve the noise performance of the H-K AP. These new processors allow operation on linearly
dependent key vctors, achieve much better storage (M ;t 2N for general memory applications), and improved
noise performan:e when M s N. We showed: 100% recall accuracy for our Ho-Kashyap general memories for
M < 1.4N and 99.7% accuracy with M = 1.6N; over 1000% better performance than the Hopfield memory; 40%
better performance than the pseudoinverse memory; and 90% improved noise performance when M ; N. Our
pattern recognition case study showed 3-D distortion invariance and excellent (> 99%) recall accuracy for large
M = 25N and M = 35N cases.
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53. "Rule-Based, Probabilistic, Symbolic Target Classification by ObjectI Segmentation", Topical Meeting on Optical Computing (March 1987),
Technical Digest Series 1987, Vol. 11 (Optical Society of America,
Washington, D.C. 1987), pp. 155-158 (CASASENT, Mahalanobis).

54. "Model-Based Knowledge-Based Optical Processors", Applied Optics, Vol.
26, pp. 1935-1942, 15 May 1987 (CASASENT, Liebowitz).

55. "Hough Space Transformations for Discrimination and Distortion Estimation",
Computer Vision, Graphics, and Image Processing, Vol. 38, pp. 299-316,
June 1987 (Krishnapuram, CASASENT).

56. "Optical Processing Techniques for Inspection and Automation", Proc. MVA
VISION'87, Society of Manufacturing Engineers (SME), pp. 7.1 - 7.8, June
1987, Detroit (CASASENT).

57. "Optical Iconic Filters for Large Class Recognition", Applied Optics, Vol. 26,
pp. 2268-2273, 1 June 1987 (CASASENT, Mahalanobis).

18. "Optical Associative Processor for General Linear Transformations", Applied
Optics, Vol. 26, pp. 3641-3648, 1 September 1987 (Krishnapuram,

I CASASENT).

59. "Minimum Average Correlation Energy (MACE) Filters", Applied Optics, Vol.
26, pp. 3633-3640, 1 September 1987 (Mahalanobis, Kumar, CASASENT).

60. "Multi-Functional Optical Logic, Numerical and Pattern Recognition
Processor", Proc. AIAA Computers In Aerospace VI Conference, October
1987, pp. 213-218, (CASASENT, Botha).

61. "Rule-Based String Code Processor", Proc. SPIE, Vol. 848, pp. 2-12,
November 1987 (CASASENT, Chien).

62. "Optical Feature Extraction for High-Speed Inspection", Proc. SPIE, Vol. 848,
pp. 13-24, November 1987 (Clark, CASASENT).

63. "Associative Memory Synthesis, Performance, Storage Capacity and
Updating: New Heteroassoclative Memory Results", Proc. SPIE, Vol. 848, pp.
313-333, November 1987 (CASASENT, Telfer).

64. "Multi-Sensor Processing: Object Detection and Identification", Proc. SPIE,
Vol. 852, pp. 54-71, November 1987 (CASASENT, Liebowitz).
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65. "Rule-Based Symbolic Processor for Object Recognition", Applied Optics,
Vol. 26, pp. 4795-4802,15 November 1987 (CASASENT, Mahalanobis).

66. Optics in Education - A Guide to Optics Programs in North America, SPIE,
1987-88 Edition.

67. "Adaptive Learning Optical Symbolic Processor", Proc. SPIE, Vol. 882, pp.
30-42, January 1988 (CASASENT, Mahalanobis).

68. "Optical Associative Processors for Visual Perception", Proc. SPIE, Vol. 882,
pp. 47-59, January 1988 (CASASENT, Telfer).

69. "Experimental Comparison of Computer Generated Holograms", Proc. SPIE,
Vol. 884, pp. 72-80, January 1988 (Han, CASASENT).

70. "Directed Graph for Adaptive Organization and Learning of a Knowledge
Base", Applied Optics, Vol. 27, pp. 534-540, 15 February 1988 (CASASENT,
Baranoski).

71. "Optical Laboratory Comparison of Computer Generated Holograms for
Correlation Matched Spatial Filters", Proc. SPIE, Vol. 938, pp. 15-28, April
1988 (CASASENT, Han).

72. "Optical Laboratory Realization of Distortion Invariant Filters", Proc. SPIE,
I Vol. 939, pp. 105-120, April 1988 (CASASENT, Ye).

73. "Multiple Degree of Freedom Object Recognition Using Optical Relational
Graph Decision Nets", Applied Optics, Vol. 27, pp. 1886-1893, 1 May 1988
(CASASENT, Lee).

74. "Hough Transform Projections and Slices for Object Discrimination and
Distortion Estimation", Applied Optics, Vol. 27, pp. 3451-3460, 15 August
1988 (Krishnapuram, CASASENT).

75. "Rule-Based Processing for String Code Identification", Proc. SPIE, Vol. 974,
pp. 224-236, August 1988, San Diego (CASASENT, Chien).

76. "Advanced Optical Processors for Multiple Degree-of-Freedom Object
Recognition", IEEE Trans. Aerospace and Electronic Systems, Vol. 24, No. 5,
pp. 608-617, September 1988 (CASASENT).

77. "Ho-Kashyap Associative Processors", Proc. SPIE, Vol. 1005, November
1988 (Telfer, CASASENT).

78. "Updating Optical Pseudoinverse Associative Memories", Applied Optics,
submitted June 1988 (Telfer, CASASENT).
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3 79. "Correlation Filters for Target Detection In a Markov Model Background
Clutter", Applied Optics, submitted July 1988 (Kumar, CASASENT,
Mahalanobis).

80. "Key and Recollection Vector Effects on Heteroassoclative Memory
Performance", Applied Optics, Vol. 28, pp. 272-283, 15 January 1989)
(CASASENT, Telfer).

81. "Optical Linear Discriminant Functions", Optics Communications, submitted
January 1989 (CASASENT, Song).

82. "A Closure Associative Processor", submitted, IEEE International Conference
on Neural Networks, June 1989, Washington, D.C. (Telfer, CASASENT).

11.2 AFOSR RESEARCH PRESENTATIONS (August 1984-April 1989)

August 1984

1. SPIE Conference - San Diego, California, "Hierarchical Fisher and Moment-
Based Pattern Recognition".

2. SPIE Conference - San Diego, California, "SOF Control of Correlation Plane
Structure for 3-D Object Representation and Recognition".

3. ASME Conference - Nevada, "Hierarchical Pattern Recognition Using Moment
Features".

4. Naval Weapons Center - China Lake, California, "Optical Pattern Recognition
for Autonomous Terminal Homing".

September 1984

I 5. Philips Research Laboratories - Briarcliff, NY - "Optics and Pattern
Recognition in Robotics".

I 6. Optical Society of America - Pittsburgh, PA, "CMU Center for Excellence in
Optical Data Processing".

I 7. Carnegie-Mellon University, ECE Graduate Seminar - Pittsburgh, PA, "Optical
Processing Research in the Center for Excellence in Optical Data3 Processing".

8. Westinghouse Corporation - Baltimore, MD, "Research and Facilities in the3 Center for Excellence in Optical Data Processing".

October 1984

9. Washington, D.C., "Optical Pattern Recognition: Feature Extraction".
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10. Washington, D.C., "Optical Pattern Recognition: Correlators".

11. Washington, D.C., "Synthetic Discriminant Function Case Studies".

I 12. Carnegie-Mellon University, ECE Sophomore Seminar - Pittsburgh,
Pennsylvania, "Research in the Center for Excellence in Optical Data
Processing".

13. University of Pittsburgh, Center for Multivariate Analysis - Pittsburgh, PA,
"Advanced Multi-Class Distortion-invariant Pattern Recognition".

14. Wright Patterson Air Force Base - Ohio, "Multi-Functional Optical Signal
Processor for Electronic Warfare".

15. George Mason University - Washington, D.C., "Optical Information
I Processing".

16. SPIE (IOCC) Conference - Boston, MA, "Optimal Linear Discriminant
Functions".

November 1984

17. SPIE Robotics Conference - Boston, MA, "Chord Distributions in Pattern
Recognition".

January 1985

18. Fairchild Weston - Long Island, NY, "Optical Pattern Recognition and Optical
* Processing".

19. SPIE Conference - Los Angeles, CA, "Hybrid Optical/Digital Image Pattern
* Recognition: A Review".

20. SPIE Conference - Los Angeles, CA, "A Computer Generated Hologram for
Diffraction-Pattern Sampling".

21. SPIE Conference - Los Angeles, CA, "A Recent Review of Holography in
Coherent Optical Pattern Recognition".

22. Sandia National Laboratories - Albuquerque, NM, "Optical Pattern
Recognition and Optical Processing".

March 1985

23. Lockheed Missiles & Space Co. - Sunnyvale, CA, "Advanced Hybrid
Optical/Digital Pattern Recognition"

24. OSA Topical Meeting on Optical Computing - Lake Tahoe, NV, "Fabrication
and Testing of a Space and Frequency-Multiplexed Optical Linear Algebra
Processor".
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25. OSA Topical Meeting on Machine Vision - Lake Tahoe, NV, "Hierarchical
Feature-Based Object Identification".

26. OSA Topical Meeting on Machine Vision - Lake Tahoe, NV, "Correlation
Filters for Distortion-invariance and Discrimination".

27. Texas Instruments - Dallas, TX, "Optical Pattern Recognition".
April1985

1 28. Electro-Com Automation, Inc. - Dallas, TX, "Optical Pattern Recognition".
May 1985

I 29. Carnegie-Mellon University - Board of Trustees, "Optical Data Processing".
August 1985

I 30. Global Holonetics Corporation - Fairfield, IA "Optical Pattern Recognition".

31. SPIE - San Diego, CA, "Correlation Synthetic Discriminant Functions for
Object Recognition and Classification in High Clutter".

September 1985

I 32. Carnegie-Mellon University, ECE Graduate Seminar - Pittsburgh, PA, "Optical
Data Processing at CMU".

33. General Electric Group, Presented at CMU - Pittsburgh, PA, "Optical Data
Processing at CMU".

34. SPIE - Cambridge, MA, "Parameter Estimation and In-Plane Distortion
Invariant Chord Processing".

35. SPIE - Cambridge, MA, "Optical Processing Techniques for Advanced
Intelligent Robots and Computer Vision".

36. SPIE - Cambridge, MA, "High-Dimensionality Feature-Space Processing with
Computer Generated Holograms".

October 1985

37. Martin Marietta - Denver, CO, "Optical Data Processing".

November 1985

38. IEEE Computer Society, Workshop on Computer Architectures for Pattern
Analysis and Image Database Management - Miami Beach, FL, "Optical
Computer Architectures for Pattern Analysis".

January 1986
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I 39. SPIE - Los Angeles, CA, "A Feature Space Rule-Based Optical Relational
Graph Processor".

I 40. SPIE - Los Angeles, CA, "Optical Linear Algebra Processors: Architectures
and Algorithms".

I 41. SPIE - Los Angeles, CA, "Optical Al Symbolic Correlators: Architecture and
Filter Considerations".

1 42. Optical Society of America - Los Angeles, CA, "Optical Computing".

43. Corporate Advisory Group on Optical Information Processing - Los Angeles,
CA, "Optical Computing".

44. Jet Propulsion Laboratory/NASA - Pasadena, CA, "Optical Linear Algebra
and Pattern Recognition Processors".

February 1986

45. Computer Science Department, Carnegie-Mellon University - Pittsburgh, PA,
"Optical Al Pattern Recognition Research in ECE".

March 1986

46. Carnegie-Mellon University, Professional Education Program - Pittsburgh,
I Pennsylvania, "Optical Data Processing".

47. Air Force Institute of Technology - Dayton, Ohio, "Optical Data Processing atU Carnegie-Mellon University".

48. Mars Electronics - Philadelphia, PA, "Optical Pattern Recognition".

49. SPIE Advanced Institute Series on Hybrid and Optical Computers - Leesburg,
Virginia, "Scene Analysis Research: Optical Pattern Recognition and Artificial
Intelligence".

April 1986

50. SPIE - Orlando, FL, "Model-Based System for On-Line Affine Image
Transformations".

51. Robotics Institute - Carnegie-Mellon University - Pittsburgh, PA, "Optical Al
Pattern Recognition Research in ECE".

May 1986

52. IBM, Federal Systems Division - Manassas, VA, "Optical Computing".

I 53. Litton Data Systems - Van Nuys, CA, "Multiple Degree of Freedom Pattern
Recognition".I
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54. NASA Jet Propulsion Laboratory, California Institute of Technology -
Pasadena, CA, "Multiple Degree of Freedom Optical Pattern Recognition".

i ,July 1986

55.10CC Conference - Jerusalem, Israel, "Optical Artificial Intelligence
Processors".I August 1986

56. SPIE Conference - San Diego, CA, "Distortion-Invariant Associative
Processors".

September 1986

I 57. ALCOA - Pittsburgh, PA, "Optical Information Processing".

58. Eikonix Corp. - Boston, MA, "Optical Pattern Recognition for Optical
Character Recognition".

59. Penn State University - State College, PA, "Optical Scene Analysis and
Artificial Intelligence".

October 1986

60. SPIE Conference - Boston, MA, "Hierarchical Processor and Matched Filters
for Range Image Processing".

61. SPIE Conference - Boston, MA, "Large Class Iconic Pattern Recognition: An
OCR Case Study".

62. Carnegie Mellon University, ECE Graduate Seminar - Pittsburgh, PA, "Optical
Computing in ECE: 1986". November 1986

63. ICALEO'86 - Arlington, VA, "Advanced Optical Pattern Recognition and
Artificial Intelligence".

64. Optical Society of America (San Diego Chapter) - San Diego, CA, "Optical
Computing".

January 1987

I 65. SPIE Conference - Los Angeles, CA, "A Directed Graph Optical Processor".

66. SPIE Conference - Los Angeles, CA, "Parameter Selection for Iconic and
Symbolic Pattern Recognition Filters".

67. SPIE Conference - Los Angeles, CA, "Optical Pattern Recognition and
Artificial Intelligence: A Review" (Invited/Keynote Speaker).
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1 68. SPIE Conference - Los Angeles, CA, "Optical Pattern Recognition and Al
Algorithms and Architectures for ATR and Computer Vision" (Invited).

69. SPIE Conference - Los Angeles, CA, "Electro Optic Target Detection and
Object Recognition" (Invited).

70. Workshop on Space Telerobotics - NASA/JPL, Pasadena, CA, "Multiple
Degree of Freedom Optical Pattern Recognition".

71. Hewlett Packard - Palo Alto, CA, "Optical Computing".
February 1987

I 72. ISC Defense Systems, Inc. - Lancaster, PA, "Optical Computing and Signal
Processing".

March 1987

73. OSA Topical Meeting on Optical Computing - Lake Tahoe, NV, "Rule-Based,
Probabilistic, Symbolic Target Classification by Object Segmentation".

May 1987

74. NASA Langley Research Center - Hampton, VA, "Overview of PhotonicsI Technology".

75. NASA Langley Research Center - Hampton, VA, "Machine Vision".
June 1987

76. MVA VISION'87 Conference - Detroit, MI, "Optical Processing Techniques for
Inspection and Automation".

77. Perkin-Elmer - White Plains, NY, "Optical Computing".
July 1987

178. Galileo - Sturbridge, MA, "Optical Computing".

79. Carnegie Mellon University - ECE Department, Presentation to the attendees
of the Fault Tolerant Computing Conference, Pittsburgh, PA.

August 1987

I 80. UCLA Extension Course - Los Angeles, CA, "Optical Computing".

81. Galileo - Sturbridge, MA, "Product Opportunities in Optical Data Processing".

September 1987

1 82. Defense Science Board, Pentagon - Washington, D.C, "Optical Computing for
Automatic Target Recognition".
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November 1987

83. SPIE Robotics Conference - Boston, MA, "Associative Memory Synthesis,
Performance, Storage Capacity and Updating: New Heteroassociative
Memory Results".

84. SPIE Robotics Conference - Boston, MA, "Rule-Based String Code
Processor".

85. SPIE Robotics Conference - Boston, MA, "Multi-Sensor Processing: Object
Detection and Identification".

December 1987

86. National Security Agency - Maryland, "Optical Information Processing".
January 1988

87. SPIE - Los Angeles, CA, "Adaptive Learning Optical Symbolic Processor".

I 88. SPIE - Los Angeles, CA, "Optical Associative Processors for Visual
Perception".

I 89. SPIE - Los Angeles, CA, "Optical Linear Heterodyne Matrix-Vector
Processor".

I 90. SPIE - Los Angeles, CA, "Experimental Comparison of Computer Generated

Holograms".

I 91. Ovionic Imaging Systems - Detroit, MI, "Optical Computing"

92. Hughes - CA, Optical Information Processing.

93. Ford Motor Company - Palo ALto, CA, "Optical Processing"

March 1988

94. E.I. duPont de Nemours and Co. - Wilmington, DE, "Optical Information
* Processing".

95. Carnegie-Mellon University, Professional Education Program - Pittsburgh,
Pennsylvania, "Optical Data Processing".

April1988

96. SUNY at Binghamton, Photonics Symposium - Binghamton, NY, "Optical
Computing: A Review".

97. SPIE - Orlando, FL, "Optical Laboratory Comparison of Computer Generated
Holograms for Correlation Matched Spatial Filters".
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I May 1988

I 98. Ford Aerospace - Palo Alto, CA, "Optical Information Processing".

June 1988

99. Air Force Office of Scientific Research - Washington, D.C., "Optical Directed
Graphs and Associative Processors".

July 1988

100. San Diego International Conference on Neural Networks - San Diego, CA,
I "Review of Pattern Recognition" (invited tutorial)

August 1988

I 101. SPIE Conference - San Diego, CA, "Rule-Based Processing for String Code
Identification".

November 1988

102. SPIE Conference - Boston, MA, "Ho-Kashyap Associative Processors".

I 103. Amoco Corporation - CMU, "Optical Computing".

December 1988

104. Itran Corporation - CMU, "Optical Computing".

105. Amoco Corporation - Naperville, IL, "Optical Computing".

11.3 STUDENTS SUPPORTED AND DEGREES AWARDED UNDER AFOSR
3 SUPPORT

1. Eugene Pochapsky, M.S. Dissertation, "The Simulation of Optical Pattern
Recognition Systems", September 1984.

2. William Rozzi, M.S. Dissertation, "Advanced Quantitative Synthetic3 Discriminant Function Tests on Ship Imagery", December 1984.

3. James Fisher, M.S. Dissertation, "Extended Kalman Filter Algorithms for
Implementation on a High-Accuracy Optical Processor", December 1984.

4. W.T. Chang, Ph.D. Dissertation, "Chord Distributions and Correlation SDFs in3 Pattern Recognition", March 1985.

5. Abhijit Mahalanobis, M.S. Dissertation, "Application of Synthetic Discriminant
Functions for Optical Character Recognition", September 1985.
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6. Suzanne A. Liebowitz, M.S. Dissertation, "Techniques for Multiple-Degree-
of-Freedom Processing Using Range Imagery", October 1985.

7. Andrew J. Lee, M S. Dissertation, "High-Dimensionality Feature Space
Pattern Recognition Using Computer Generated Holograms", January 1986.

8. Jeffrey Richards, M.S. Dissertation, "Optical Processing for Product
Inspection", November 1986.

9. Brian Telfer, M.S. Dissertation, "Optical Associative Memories for Distortion-
Invariant Pattern Recognition", February 1987.

10. Chien-Wei Han, M.S. Dissertation, "Experimental Analysis of Error Effects on
Computer Generated Hologram Performance", June 1987.

11. Raghuram Krishnapuram, Ph.D. Dissertation, "Hough-Space Associative-
Processor for Pattern Recognition", August 1987.

12. Abhijit Mahalanobis, Ph.D. Dissertation, "New Correlation Filters for Symbolic
Rule-Based Pattern Recognition", August 1987.

13. Sung-i Chien, Ph.D. Dissertation "Optical String Code Rule Based and
Associative Processors", August 1988.
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