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Various extensions of the transmission line model are introduced to find
the resistance for current flow in MOSFET source/drain regions. The ge-
ometry is taken to be a rectangular box with a rectangular contact on the
upper surface. Explicit formula are derived by assuming that the current
flow is restricted to various geometrical planes. Comparison of basic re-
sults with simulation and experimental data is good. Comparison with
simulation results for misalignment is less good.
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1. Inrodution

Various models have been suggested in attempts to find resistance formulae for cur-

rent flow in source/drain regions of metal-oxide-semi conductor field-effect transistors

(MOSFET's). This parasitic resistance becomes relatively more important under de-

vice miniaturization, and its dependence on geometrical and physical parameters is

sought. Measurement of resistance across single contacts ([1],[2]) indicate large vari-

ability neighbor to neighbor. This portends the use of statistics in estimating the

yield of a device, [3], and it has implications for the quality control of the fabrica-

tion process. Some of the variability is random, due, say, to the imperfect removal

of photo-resist, but some has global features. Chief of the latter derive from mis-

alignment: contact regions have been etched in non-symmetrical locations. In order

to estimate the effects of contact size and location some two and three dimensional

models are constructed here, resulting in resistance formulae of varying complexity.

Results for typical parameter ranges are compared with simulation and with test

data.

The simplest model, the transmission line model (TLM), [4], [5], is one-dimensional

as it neglects both width and depth variations. Improvements on the TLM have

been provided in [6], where depth dependence was included, and in [7]-[9], where

modelling of contact width and side tabb was presented.
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The physical set-up is shown in Figure 1. The source/drain region is taken to be a

rectangular block of width w, depth t. The contact is rectangular of length b, width

wc, and has flange distances w1, w2, c from the source/drain boundary, as shown.

Current, uniformly distributed across the end surface S, flows along the block and

exits across the contact. The electrostatic potential, 0, satisfies a zero normal deriva-

tive boundary condition on bounding surfaces except on S, and except on the contact

where an ohmic interfacial resistance holds. This gives rise to the boundary condition

(1.1) 0-re -.O on the contact

where r = 1/(o'p ).

Here a is the material conductivity and pc the contact resistivity.

The models developed in this paper are extensions of the TLM, and of the work

done in [6]. Model 0 assumes that current enters the contact only from a region

directly upstream of the contact, and uses the TLM formula. Model I adds to this

the contribution of the flanges. Model II is fully three-dimensional, extending the

analysis in [6]. The key assumption is to prescribe that current lines remain on

planes parallel to the edges of the box. Current flow between two adjacent planes

is then two-dimensional, and the full result is achieved by integration in the third

direction. Models III and IV are variants of II taking into account different current

distributions.
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II. Models for contact resistance

Model 0 For a contact of width w. the series or front resistance, RF, is given by the TLM

(2.1) as R,/RF = (w./L) tanh(b/L), where L = (tp )'1/2

and R, = p,/L 2 is the sheet resistance of the material. Substitution of sinh

for tanh in (2.1) yeilds the end resistance, REND. Model 0 involves neither the

flange widths w1 , w2 nor the depth t (except as in L). The models introduced

below account for these thickness and flange effects. As a result, Model 0 cannot

be compared properly in the graphs presented. It is quoted only to introduce

the formula (2.1).

Model The flanges are assumed to generate additional (parallel) resistance, computed

by viewing the flange regions as having width t and depths w1 , w 2. However,

poor results from this at small values of w, (where RF - w- 2 is expected) made

us reflect on the current flow interactions. The current lines squeezing in from

the flange regions are competing with the center current lines which have depth

t. Details of the current flowing in from the sides will not be felt by the contact

until that current is at a similar distance from the side edge of the contact.

Consequently (and after some experimentation) the flange regions were taken

to have depths t 1 , t 2 where

(2.2) tj = min(wl, t) , t2 = min(w2, t).

3



The front resistance is then given by

R,/RF = (w,/L) tanh(b/L) + (wI/Li) tanh(w,/L1 ) + (w 2 /L 2 ) tanh(w,/L 2 )

(2.3) where Li = (tap,)1 /2 , i = 1,2.

Model I This is an attempt to construct a three-dimensional approximation to current

flow in the complicated geometry of Figure 1. The main assumption is that

current lines remain on planes parallel to the x-axis (the planes are not par-

allel to each other). The planes, and the reduction of the three-dimensional

problem to a sequence of two-dimensional ones, are found by the following two

prescriptions.

Prescription (1): Consider the end surface S and a line through z = r. The line divides S

into two areas. See Figure 2. Consider the plane defined by extending this

line parallel to the x-axis. The assumption that current lines do not cross

such planes implies that current entering area A exits on the portion of the

contact on w, < z < r. The geometrical relation

(2.4) (r - wl)/w, = A/area of S = Aftw

is taken to define the plane through z = r. It follows that there is a point r0

where the area A becomes rectangular, of area A = rot. Hence (2.4) gives

(2.5) = ww/(w - WC).

4



It is now permissible to concentrate only on the portion of the source/drain

region defined by 0 < r < r0 , as the remaining portion will have the same

characteristics under this model, and its resistance can be found by appro-

priate substitutions. For the rectangle defined by 0 < r < r0 the plane

passing through the corner y = t, z = 0, occurs at r = r*, say, where

(2.6) r- 2wwl/(2w - w,).

(See Figure 3). Planes through z = r for r* < r < ro intersect the bottom

of the region, giving an intercept h(r) and a plane depth el(r) where

(2.7) h = [r(2w - w.) - 2wwll/w,,

(2.8) 2 = t2 + 4[wwl - r(w - W.)]2/w,

whilst planes through z = r for w, < r < r* intersect the side of the region

with intercept p(r) and plane depth e2(r) given by

(2.9) p = 2tw(r- w)/(rwc),

(2.10) = r2 + 4 2 2 1 - w/ 2/w .

Prescription (2): Consider an area element formed between the planes z = r and z = r + dr.

These are shown in Figure 4 for the cases r* < r < ro and w, < r < r*.
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The area elements are replaced by the sector area element shown in Figure

4(c), of equal area. Note that. from (2.4),

(2.11) dA = (wt/w,)dr.

The current flow in an area element is now assumed to take place in the

sector element of Figure 4(c), and the equation to be solved is Laplace's

equation in cylindrical coordinates, assuming angular independence. The

analysis for this is given in the Appendix. The resistance for the element

dA given in (A.37) is integrated over S to give RF as

(2.12) R,/RF = Fth( I I F-. dr
L W W I )

+ .. .. .rdrt,
w .- -tanh ±*)wt bdr}

r 62 Wc r C2

where el, e-2 are given in (2.8). Note that the result (2.12) is for resistance

in the region 0 < r < r0 . If the contact is symmetrically placed, r0 = w/2,

and R,/RF for the whole device will be twice that of (2.12); if not, the

expression (2.12) has to include a similar expression obtained by replacing

w, by w2 -.

Model III Prescription (1) of Model II implies that an element dr of the contact width

is proportional to dA, an element of S, see (2.11). Since current is uniformly

distributed across S this means that equal elements of the contact receive equal

6



amounts of current; that is, the currrent density is uniform across the contact

width. However a non-uniform distribution is expected as current entering from

the flanges will be confined to a layer close to the sides. An estimate of the non-

uniformity is provided by the TLM. that is by Model I. The current density

for the region defined the contact, i.e., w1 < r < r0 , is taken as uniform. The

current coming from the flange, 0 < r < wl, is estimated by the TLM. as

proportional to

(2.13) Lwcosh ( rj- r) sinh (ro - ) } for w, < r < ro

Combining these yields the replacement

(2.14) dA =t [I + .cosh (rr)f sinh (roL - ) ], dr

for (2.11), and an appropriate change in the formula for RF in (2.12). Also the

calculation for r" is changed to the solution to

(2.15) r' = 2wK(r*)

_ 0____ r - 1

where K(r) = sinh(- r r° -
L1 ){sinh L

Similar changes are made for the current contribution from the flange w2.

Model IV The introduction in Model III of a relation between dA and dr which is non-

uniform also gives A as a function of r (by integrating (2.14) ) different from

7



(2.4). There follows new formulae for e6, 62 Viz.

S= t 2 + 4w 2 2(r) , e = r 2 +4t _t2{1 -
r

which are incorporated in Model IV.

III. Results Various results derived from the formula (2.12) and the corresponding ones

from Models III and IV are shown in Figures 7 to 10. In the TLM the thickness t

is parametrically involved only in the definition of L and this carries over to most

simulations as the latter are derived from the numerical solution of two-dimensional

partial differential equations (in z = 0). Loh et al, (9], have carried out some three-

dimensional simulations and show differences between 1-D, 2-D, and 3-D results

for Rk, the Kelvin resistance, which is not appropriate for the model constructed

here. There are more simulations for the 2-D case and we use these for comparison.

However we note that

(1) we are comparing different models, and

(2) as is evident from formula (2.12), and as noted in [9], Appendix, the thickness

t enters the 3-D models as a parameter to be chosen in relation to the other

length scales wl, w,, L. As a consequence we can vary t to see its effect on the

results.
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Figures 7 (a) - (d) show log(RF/R,) versus log(w/wi) for L/w, = .358 for

Models I-IV for t/w, = .1, .5, 1, 10 respectively. Simulation data from [9], Figure

12. is also shown. It is noted that t/w, = .5,1,10 give good comparisons,

indicating some insensitivity to t over this range. As above we note that we are

comparing different models. Figures 8 (a) - (d) repeat the same results for the

case L/wl = .567.

Figure 9 shows log(RE/R,) versus log(w,/w) plus simulations from [9], Figure

11, for t/wi = 1 and for L/wi = .567 (upper curve), L/wi = .358 (lower curve).

These show reasonable comparisons.

Results relevant to misalignment estimates are shown in Figure 10, where also

are drawn the simulation data of [10].

IV. Comment

There are small differences between the results presented here and the simula-

tions in Figures 7,8,9 and substantial ones in those of Figure 10. Apart from

the fact that REND is more volatile than RF, there are significant differences in

the approaches, which bear comment.
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The 2-D simulations are based on solving

L2V0 = on the contact,
(4.1)

1720 = 0 off it

by numerical methods over the plane z = 0, imposing a constant voltage up-

stream at a station such as S. This turns out to be equivalent to the TLM.

A derivation of (4.1) based on averages across a thin layer is given in [9]. An

alternative is as follows. Note that the boundary-value problem posed by (1.1)

is equivalent to minimizing the integral

(4.2) IvOlume IV02dv + r Iotat &dS.

Now assume at small t that the volume integral may be approximated by t times

the surface integral and assume that the r term applies only on the contact. The

zero variation of J yields (4.1). We remark in passing that numerical simulations

based on (4.2) may be more efficient than 3-D finite difference schemes.

The work in [6] improved the TLM to account for depth effect (to first order).

It showed

(a) that (4.1) must be supplemented by a transition layer of width L on either

side of the contact boundary. A more complicated boundary value problem

holds in this layer.

(b) that the effect of including depth is substantial on REND, less so on RF.
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The formulae presented in Section II do not include the depth effects calculated

in [6]. The latter could be included: easily in Model I; approximately, and at

the expense only of more complicated formula, in Models II-IV. However the

models presented do take into account the fact that current lines have a three-

dimensional trajectory, and it is argued that they may be more realistic than

simulations based on (4.1) which is a two-dimensional approximation.

The divergences between the two approaches as seen in Figure 10 suggest that

the modeling is inappropriate for misalignment effects in one or both the ap-

proaches. The modelling here assumes current flow along planes parallel to the

x-axis. As a consequence the formulae derived involve the contact length b as

an argument. In practice, current lines, on approach to a square contact, may

react to the proximity of contact side edges as well as the rear edge, thereby

reducing b in the argument. This effect shows more dramatically in REND which

evaluates sinh of arguments than in RF which evaluates tanh.
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APPENDIX

We wish to solve Laplace's equation in cylindrical coordinates, with no angular varia-

tion. That is

(A..1) a¢l/,r -2 + (1/r)o¢/or + 6)'O/&x = 0

for the boundary value problem shown in Figure 5. The sector occupies the region

r, < r < r2 and -co < x < oo. (The source/drain boundary at x = -(6 + c) is removed in

this analysis as its effect on the results is assumed to be weak. An approximation which

corrects for this omission can be introduced without difficulty). The sector depth

(A.2) e = r2 - ri

is assumed to be small, and an asymptotic result based on - < 1 similar to the analysis for

the plane case presented in [6] is obtained. That analysis was predicated on the existence

of boundary layer solutions in regions close to the ends of the contact, i.e. on planes x = 0

and x = -b. Consequently there are five regions where separate solutions are found (see

Figure 6), and these solutions are joined in the conventional approach of the method of

matched asymptotic expansions ([11] or [12]). Solutions for the five regions are as follows:

Region I: This region contains no current lines and the potential is constant. Hence

(A.3) 0 = a + er 3+.-.,

where a, 3 are constants to be found subsequently.
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Region II: In terms of scaled variables for the region near the contact end

(A.4) m = (x + b)/e , n = (r - ,.)/e,

an asymptotic expansion for the solution is

(A.5) = + e-r[ + ao,(m. n)] +...

The perturbation potential, 01, satisfies boundary conditions

0on n =o, m <0
(A.6) &61/&n=0

on n =1, all m

and a~i/&n = 1 on n = 0, m > 0.

In the plane case, [6], an explicit integral expression was found for 01; here a series expan-

sion is obtained.

I nm<0

(A.7) 01= Ze 'F(s) where s = n + r,/e,
N

(A.8) and where F17 + (1/s)F, + N 2Fv = 0.

Hence

(A.9) F.v = AvJo(Ns) + BNYo(Ns).

The boundary conditions that Fv = 0 on n = 0 and n = 1 determine the eigenvalues N

and the ratios AN : Bin. The purposes for which we require the solution do not require us

13



to complete this part of the calculation.

Into>0

The condition that the boundary condition (A.6) yields the correct current exiting the

contact implies that 01 is 0(m 2) as rn ---+ o, and that

(A.10) -1 = k [in 2 - 82/2] + k21ns + k3 + E e-'VmGv(s),
N

(A.11) where k, = erl/(r2 - r2), k2 = rir'/e(r' - r2).

The solution for the eigenfunctions GN is as in (A.9) with constants again determined (in

ratio) by the boundary conditions. The continuity of (01 and 01,, across rn = 0 is required

to supply sufficient conditions to fix the constants in (A.9) and similar ones in (A.10).

There remains the constant k3 in (A.10) to be determined. In the plane case, [6], this

constant was determined as a consequence of the availability of an exact result. However

it was noticed there that the constant could also be determined from the physical principal

that the average potential increase in the x-direction is a consequence of current flow across

the contact. This latter condition is invoked here and gives

(..2) k3 = (r1 /4el ' ) {(1 + ri/e)' - (ri/e) }

-2(1 + r1/e)2 [2(1 + ru/e)2 ln(1 + ri/e) - 2(ri/e)lrn(rj/e) - Al}

(A.13) where A = (I + ri/e)2 - (rile)2

14



Note that the series terms in (A.10) are exponentially decreasing as z increases into the

contact region, and the non-series terms carry the dominant information concerning the

current flow to be matched with the solution in Region III.

Region III: The scaling relevant here is

(A.14) = 77 = (r - r)/e.

The analysis is a little more sophisticated than that for Region II, so we present more of

the details. The differential equation (A.1) becomes

(A.15) 0, + 0,7/(r + r/e) = -r ,

and the boundary condition (2.1) becomes

(A. 16) = rep.

The asymptotic series is taken as

(A.17) 0 = 40 + freo + e 2 r 2 +

so that the first two terms satisfy

(A.18) €0,, + ao,/(q + ri/e) = 0

with boundary conditions

(A.19) O0,-=0 ati7= 0 and = ,

15



(A.2 O) and € + 01,/(17 + r1 /e) -

with boundary conditions

(A.21) 01,,= O0 at 77 =0, and 01,7 = 0 at i7=1.

The solution of (A.17) and (A.18) is

(A.22) 00 = M()

and that of (A.19)

(A.23) = i=M"(r + ri/e)2 /4 + N( )ln(q + ri/e) + P( ),

with boundary conditions (A.21) giving

(A.24) Ne/r - M"ri/2e = M

and N/(1 + ri/e) - M"(1 + ri/e)/2 = 0

Hence, eliminating N,

(A.25) M"A = M2r1 /e

The solution of (A.25) which matches with the leading term from (A.10) for Region II

gives

(A.26) O0 = a cosh[p( + F)1

16



(A.27) where r = (,r/) 12 b, i = (2r,/eA) ' /2 .

The solution for 01 is found in similar fashion:

(A.28) 01 = (1/2)cep 2 {(1 + re)2 1n(q + r,/e) - (7 + r,/e)2 /2} coshki( + r)

+k4 Q( + F) sinh A( + r) + (g + ak3) cosh(ji( + r),

where

Ak4 = /L'[(1 + ri/E)4 - (r 1 /C) 4 1/16 - /(ri/C) 3 /4

(A.29) -1s 3 (1 + ri/e)2[(1 + ri/E)2 1n(1 + r,/e) - rj/6)21n(r 1 /e) - A/214

+(1/kzA)(r,/e) 2 (1 + ri/e)2 n(r,/e)

Region IV: The scaling used near the contact leading edge is

(A.30) p=xl/, q=(r-rl)/e.

Matching with the solution from Region III indicates that a series in powers of (e)1/2 is

required, and the solution is developed as

(A.31) 0 = a coshaF + (re)i/2 Cap sinh lJ? + reO2(p, q) +.-

Here 02 is harmonic and satisfies the boundary conditions

on q =0, p> 0
(A.32) a02/8q = 0

on q = 1, all p,

and a0 2/Oq=acosh Ix onq=0, p<0.

17



The solution for 02 is

(.4.33) 02 = ak 4r sinh r + + &k3 + &Qs[p2/2 - (q + r1 /e) 2 /4

+(1/2)(1 + rl/E)21n(q + r1 /e)} cosh r + a: epV ,I(q + ri/e) for p < 0,
N

and

2= ( + ak 3) cosh /- + k4ar sinh jr + a Z e-'vPrv(q + ri /e) for p > 0.
N

The terms HN, Lv in the infinite series above are linear combinations of Bessel functions

and are evaluated in a similar fashion to those in the Region II solutions. However, their

exact nature is not required.

Region V: The asymptotic behaviour of the Region IV solution as p o-+ o provides the

solution here. This is found to be

(A.34) 6 = (r/e)1/2xar sinhpr + a cosh pr+

7e[( 3 + ak3) coshLr + (1/2)k 4ar sinharJ +

The first term in (A.34) represents the uniformly distributed current.

This completes the analysis for generating and matching the solutions in Regions I-

V. The constants a,,3 assumed for the solution in Region I, equation (A.3), may now be

specified. If the total current in Region V is I, and the cross-sectional area is S, the current

density is I/S. Equating this with aO/Ox from (A.34) yields

(A.35) a = (I/S){o(r/)'/2'p sinh ur}-.

18



(A.36) 3 = I + pF coth 11 )

The resistance of an element dS may now be calculated. The end resistance is related

to the potential at x = -b, and the front resistance to that at x = 0. Hence

REND = (Q + E73 +...)/(LdS)
(A.37)

= {(r/e) 2 .sinhjrdS}-'

to first order. Likewise RF has a similar form, replacing sinh by tanh.
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Leg~end

Figures 7 (a) - (d) Graphs of log(RF/R,) versus log(w,/w 1 ) for Models I, II, III, IV,

for t/wi = .1. .5. 1, 10, respectively, plus simulation data from (9]. The graphs may

be interpreted as keeping t and w, fixed and varying w,.

Figures S(a) - (d) Same as Figure 7 with L/w 1 = .567.

Figure 9 Graph of log(REVD/R,) versus log(w,/w 1 ) for t/w1 = 1 and for L/wi = .567

(upper curve), L/wi = .358 (lower curve).

Figure 10 Graph of RE versus w, to show the effect of misalignment. The results

are for a square contact with w, = 5/m and R, = 20f!/O and for t = .5, 1pm. The

simulation data is taken from [10], Figure 4.
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