
AD-A206 664
RADC-TR,.8-1 67
Final Technlil ReportJuty 1m

ALGEBRAIC INTEGER QUANTIZATION
AND CONVERSION

The MITRE Corporation

Richard A. Ganes Sean D. O'Ne and Joeph J. RuhMnan

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC
-1/ LECTE !

APR 10 19830
1)D

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

GrIfflas Air Force Base, NY 13441-5700

o1 10 0 1
: == = -. • =. =wa m m mmm m m0

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Service (NTIS). At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-88-167 has been reviewed and is approved for publication.

APP4ED2

ARNOLD E. ARGENZIA
Project Engineer

APPROVED: ZY7Ctc
J D. KELLY
ti g Technical Director

Directorate of Communications

FOR THE COANDER:

- JAMES W. HYDE IlII

Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your organization,

please notify RADC (DCCR) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucment require that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE FOMN'n A70pr01e

Is. REPORT SECURITY CLASSIFICATION A ETITV MARKINGS
UNCLASSIFIEDNA

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.
N/A ____________________

4. PE RFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MTR - 10337 RADC-TR-88-167

6s. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

The MITRE Corporation (if applicable) Rome Air Development Center (DCCR)

b ADDRS4t St7,adZI oeb. ADDRESS (City, State, anid ZIP Code)
ep" (''Sae r lc* Griffiss AFB NY 13441-5700

Burlington Road
Bedford MA 01730

&a. NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Rome Air Development Center M&C 168-6C00

Bc. ADORE SS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Griff iss AFB NY 13441-5700 ELEMENT NO0. NO. NO ACCESSION NO.

1?. TITLE (Include Security 0Cindkation)10000
MI760

ALCEBRAIC INTEGER QUANTIZATION AND CONVERSION

V ER!LA UTea.9RSSJ Sean D. O'Neil, and Joseph J. Rushanan

"inlaT IE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Montit, Dy S. PAGE COUNT
IFROM c 86To.Q9.L871 July 1988 37 142

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES I18B. SUBJECT TERMS (Coninue on reverse if necefary and ioantify by block number)
FIELD GROUP SUB-GROUP Residue Number System

UJ.I Algebraic -Integer Number System

19. ABTRC (Cni nrvrei ee~yd Sidenaif bPrbocessnger

19T C alebCineg eerni nmenry rarn a tibyo, nm ihthbinaeaplrsrersntdb

Sset oflg(tyicalyfu-oeih)saintegersnmeereetto, whcombinesitha rsidule numbereseste (by
proessifg(toprce poroesorsm omposedsl parlllbhane hrsdu Thmeraao smples
mucstn rto berovereinor theose olgbricipge rpralesettin cands The finalo aeic
instgerrst converted back toe angeanaogor-intgita rm.sethesen arde unalalneprblems
Scnheagbacinteger rereenaioulstb converted inckto andaao rdiiaom outs ore qatwton leves.
RSod paal.Tebarine reprconversion olms. Thi papverte prtoid praticaltolvlutios
whic canbeismplTeete with curvrn techolgy, Thsper purntiteo priand conlerions

20. DISTRIBUTION/I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
GDUNCLASSIFIEDIUNLIMITED E0 SAME AS RPT. C OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (inchude Area Code) 22c OFFICE SYMBOL
Arnold E. Argenzia (315) 330-3091 1R.ADC (DCCR)

00 Form 1473. JUN 86 Previous editions are obsolete. SECURITY R81;RiTIC~O OF THIS PAGE_

ACKNOWLEDGMENTS

The authors would like to thank Carol L. Nowacki, who designed the mixed-radix
converter referred to in section 4.3.1, and John J. Vaccaro for their help in completing
the area comparisons of section 4.3. Steve J. Meehan is responsible for the fractional-
representation converter design referred to in section 4.3.2. Also, thanks to Mike G.
Butler and John J. Sawyer for their contributions to the VLSI aspects of the work in
sections 4 and 5, and to Daniel Moulin for keeping the hardware concerns honest. The
design of the A + BC cell of section 5.4.2 follows that of the chip called MULTISCALE,
a programmable modulo multiplier chip, designed by Gary Doodlesack. Stephen C.
Atkins, Curtis P. Brown, and Stephen C. Lee provided programming support for the
project. Also, thanks to Dean 0. Carhoun and Edwin L. Key for their continued interest
and support of this work. Finally, the authors wish to acknowledge both Michael F.
Bridgland and Michael D. Houle for their help in typesetting this document.

Accesion For

NTIS MA&I
DTIC TAB 0
Unannounced Q
Justification

By.
DistributionI

Availability Codes

Avaik did / or
Dist special

I°°11

TABLE OF CONTENTS

SECTION PAGE
1. Introduction I
2. The Algebraic-Integer Number Representation and Residue Number

System Processing 5
2.1 Algebraic-Integer Extensions 5

2.1.1 Adjoining v2..... 5
2.1.2 Adjoining e2 / 7

2.1.3 Adjoining V2 + v 11
2.1.4 Adjoining e2 ./16 12

2.2 Residue Number System Processing with Algebraic Integers . 14
2.2.1 Integer RNS Processing 14
2.2.2 Algebraic-Integer RNS Processing 15

2.3 History of Algebraic-Integer Processing 16
2.4 Conclusion 17

3. Analog-to-Algebraic-Integer Conversion 19
3.1 Direct Analog-to-Algebraic-Integer Conversion 19

3.1.1 Compressor Characteristic Method 19
3.1.2 Successive Approximation Method 21

3.2 Two-Stage Analog-to-Algebraic-Integer Conversion 25
3.3 Complex Algebraic-Integer Quantization 27

3.4 Quantization Performance for Z[tv + v. 28
3.4.1 Uniform Inputs 29
3.4.2 Gaussian Inputs 33

3.5 Conclusion 35

4. Integer RNS Conversion: The Outer Level of Parallelism 39
4.1 Full-Precision Output Conversion 40

4.1.1 Fractional Representation 41
4.1.2 Modified Fractional Representation 43

4.2 Adjustable Precision Output Conversion 45
4.2.1 Fractional Representation 45
4.2.2 Modified Fractional Representation 47

4.3 Comparison of Conversion Methods 48
4.3.1 Mixed Radix vs. Fractional 'Representation 49
4.3.2 Advantages of Modified Fractional Representation . 51

V

SECTION PAGE

4.4 Conclusion 52

5. Polynomial RNS Conversion: The Inner Level of Parallelism 53
5.1 Conversion as Matrix Multiplication 53

5.1.1 Description of the Conversion 53
5.1.2 LU Decomposition of the Vandermonde Matrix . . 55

5.1.3 An Example: Z[v +V2]1, p = 31 57
5.1.4 Change of Basis 58

5.2 The LU Architecture 59
5.2.1 Data Flow 60
5.2.2 The A + BC Cell 64
5.2.3 The C(A - B) Cell 71

5.3 Systolic Conversion 72
5.3.1 The Systolic Architecture 73
5.3.2 Comparison with LU Architecture 76

5.4 VLSI Implementation 76
5.4.1 Chip Layout Limitation 77
5.4.2 Algorithms for the A + BC Cell 77
5.4.3 Layout and Testing 81

5.5 Conclusion 81

6. Algebraic-Integer-to-Analog (or Digital) Conversion 87
6.1 Algebraic-Integer Requantization Performance 88
6.2 An Error Analysis 92
6.3 Complex Algebraic-Integer Requantization 95
6.4 Implementation Issues 96
6.5 Conclusion 97

7. Future Work and Conclusion 99
7.1 Algebraic-Integer Brassboard 99
7.2 Performance of an Algebraic-Integer FIR Filter 100
7.3 Conclusion 105

Appendix A LU Decomposition 109

Appendix B Some Algebraic Integers 113

List of References 127

vi

LIST OF ILLUSTRATIONS

FIGURE PAGE

1. RNS Processing with Algebraic Integers 2
2. Z[V] 4. 7
3. Basis Vectors for Z[w] 8
4. Z[e"/ 8] 10
5. Z[e 2ri/16]2 13
6. Compressor Characteristics for Real Algebraic Integers 20
7. Analog-to-Z[vf/]{_. 2 _1 ,0,1} Converter 23

8. Z(V{.- 2,- 1,0,1} Converter Functions 26

9. Uniform Inputs; Z(V2 +V2 12M, 2 < A1 < 12; Nonpolynomial Basis;
Direct Quantizer 30

10. Uniform Inputs; Z[V / 2 + vr2]m, < M < 12; Nonpolynomial Basis;
Two-Stage Quantizer 31

11. Gaussian Inputs; Z[V/ 2+ V]M, 2 < M < 12; Nonpolynomial Basis;
Direct Quantizer 35

12. Gaussian Inputs; Z[v/2+ V2]M, 2 <M < 12; Nonpolynomial Basis;
Two-Stage Quantizer 36

13. Residue Decoding by the Chinese Remainder Theorem 40
14. Four-Modulus Mixed-Radix Converter 50
15. Four-Modulus Fractional-Representation Converter 51
16. Flow of Variables in LU Grid (n = 4) 62
17. Flow of Variables in UL Grid (n = 4) 63
18. The A+ BC Cell 64
19. Grid for LU Computation with A + BC Cell 66
20. A Specific Example of LU Computation 67
21. Grid for UL Computation with A + BC Cell 69
22. A Specific Example of UL Computation 70
23. The C(A- B) Cell 71
24. Data Flow in the Systolic Architecture 74
25. The Systolic Architecture with A + BC Cells 75
26. A Modulo Reduction Example (16-bit Adders) 79
27. A Modulo Reduction Example (8-bit Adders) 80
28. The Multiplier/Accumulator 83

vii

FIGURE PAGE

29. The Modulo Reduction. 84
30. TheA +BC Cell. 85
31. The LU Architecture Chip 86

viii

LIST OF TABLES

TABLE PAGE

1. Elements of Z[v /] with Decreasing Magnitude 6
2. Binary Codes for Z[v2]{.- 2,-1,0, 1 22

3. Comparison of Direct and Two-Stage Z[/1+ Vr]M Quantizers,
2 < M < 12; Nonpolynomial Basis; Uniform Inputs 31

4. Efficiency of Z[V/'2+V27]M, 2 < M < 12; Uniform Inputs; Direct
Quantizer . 32

5. Efficiency of Z[V/ TV'2 M, 2 < M < 12; Uniform Inputs; Direct
Quantizer; Variance Mismatch of 1/4 33

6. SNR of Optimal Uniform Quantizer; Gaussian Input 34

7. Comparison of Direct and Two-Stage Z[v'2 + V'2]M Quantizers,
2 < M < 12; Nonpolynomial Basis; Gaussian Inputs 36

8. Efficiency of Z[V',2+V2]M, 2 < M < 12; Gaussian Inputs; Direct
Quantizer 37

9. Optimal Approximations for b-bit Requantization for Z[V2 + vr] . 90
10. SNR Degradation for b-bit Polynomial Evaluation 91
11. Range vs. SNR for Algebraic Integers 103
12. Range vs. SNR for Integers 103
13. Summary of Largest Ranges 104

ix

SECTION 1

INTRODUCTION

A requirement of digital signal processing is that analog (voltage) signals are sam-
pled and then converted to sequences of numbers. In the conventional quantization
methods, a given signal-sample is converted (by scaling and rounding) to a single in-
teger whose value is proportional to the signal's voltage; the subsequent processing
manipulates these integers, and produces a final result (another integer) that again is
-roportional to the corresponding analog output.

Modern algebra and number theory offer many alternatives to this simple way
of digitally representing numbers, and some alternatives lead to processors that are
simpler, faster, and easier to design and test. In the residue number system (RNS)
approach, for example, each integer is replaced by a set of smaller integers, and then
processing (consisting of additions and multiplications) is performed by manipulating
these smaller integers independently in parallel.

Processing with algebraic integers, in which the signal sample is represented by a
set of (typically four to eight) small integers, was introduced in [3] . This approach,
when combined with RNS processing, leads naturally to processors composed of simple
parallel processing channels, and is especially well suited to situations involving infor-
mation with both amplitude and phase. Roughly speaking, algebraic integers can be
used to add a second level of parallelism to. integer RNS processing. RNS processing
with algebraic integers is depicted schematically in figure 1.

Two types of problems must be resolved before the method can be used in practice.
First, the analog samples must be converted into the algebraic-integer representation,
and the final algebraic-integer result converted back to an analog output. These are
quantization problems. Second, the algebraic-integer representation must be converted
into and out of the two levels of RNS parallelism, corresponding to the outer and inner
channels in figure 1. These are RNS conversion problems.

This paper addresses these quantization and conversion problems and proposes
solutions that can be implemented with current technology. The solutions can be pro-
grammed for various choices of algebraic integers and RNSs. Once the quantization
and conversion structures/designs that are contained in this paper are implemented,
subsequent algebraic-integer RNS processing can be completed by merely developing
the RNS processing channels. These channels are the same as in integer RNSs, and
the possibility exists, with some restrictions, of utilizing processing channels that were
developed previously.

Analog to Algebraic Integer

mod pmod P2 Canl mod Prm
Channels

r F

c n!e c Inner
s t Channels
Si
1 0

g 1---

[modl p, mod p, modl pm

Algebraic Integer to Analog

Figure 1. RNS Processing with Algebraic Integers

2

One objective of this work was to obtain results that were independent of a particu-
lar processing function or application. Thus, for example, the performance of quantizers
derived from the algebraic integers are characterized, as is common, in terms of signal-
to-noise ratios assuming particular probability distributions on the inputs. On the other
hand, the impact on overall performance of the requantization from algebraic integers
back to analog or digital form is expected to be application and processing function de-
pendent. This paper considers the effects of requantization in the case of a processing
function consisting of a sum of products, and illustrates the issues involved for a 55-tap
finite impulse response filter.

The next section introduces the algebraic-integer and RNS concepts and notations
that are needed in this paper. Section 3 treats the problem of analog-to-algebraic-
integer conversion. Sections 4 and 5 deal with the two kinds of RNS conversions, which
involve, respectively, integer and polynomial RNSs. Section 6 treats the problem of
converting back to digital or analog form. Finally, section 7 contains a description of
future work and the conclusion.

3

SECTION 2

THE ALGEBRAIC-INTEGER NUMBER REPRESENTATION
AND RESIDUE NUMBER SYSTEM PROCESSING

The idea of using algebraic integers to represent numbers in RNS signal process-
ing can be viewed as a generalization of the quadratic residue number system (QRNS)
concept [5] , [9] . In this section, the algebraic-integer number representation is intro-
duced. RNS processing is reviewed and combined with the algebraic-integer number
representation. A short history of algebraic-integer processing is included.

2.1 ALGEBRAIC-INTEGER EXTENSIONS

Algebraic integers are roots of polynomials that have integer coefficients with the
leading coefficient equal to one. For example, v'2 is an algebraic integer since it is a
root of the polynomial x2 - 2. For the present purpose, a general algebraic integer
can be viewed as an integer linear combination of certain fixed irrational or imaginary
numbers. The introduction that follows uses a sequence of examples; a formal treatment
can be found in [81 . The examples involve both real and complex algebraic integers.
The real and complex examples are related, and this relationship will be used to reduce
the complexity of implementations involving in-phase (I) and quadrature (Q) processing
channels. In the following, Z, Q, R, and C denote, respectively, the integers, the rational
numbers, the real numbers, and the complex numbers. The imaginary number V-_'T is
denoted by i.

.The example of the Gaussian integers {a + bi : a, b E Z}, which are denoted by
Z[i] and form the basis of QRNS, should be kept in mind. They can be viewed as being
constructed by adjoining i to the integers. The fact that i satisfies i2 = -1, equivalently
that i is a root of x2 + 1, is used to reduce higher powers of i when multiplying elements
of Z[i]. This theme is repeated in each of the examples of this section.

2.1.1 Adjoining 'fi

The first example involves real algebraic integers. If v'_ is adjoined to the field
Q, the field Q(v(2) = {a + bvy: a, b E Q} results. The subset of Q(V') of interest is
Z[V2]= {a+b/'2 : a, b E Z}. The set i[v/'2 is closed under addition and multiplication:

(a + bvi) + (c + dV2-) = (a + b) + (c + d)v'2, (2.1)

(a + bV/2)(c + dV/2) = (ac + 2bd) + (ad + bc)V/2. (2.2)

5

With these operations, Z[v/2] forms a ring. The elements of Z[v/2] are algebraic
integers (they are roots of quadratic or linear polynomials with integer coefficients and
leading coefficient equal to one). For this example, Z[v'2] contains all the algebraic
integers of Q(v/'2) and is referred to as the ring of algebraic integers for Q(v2). The
analogy to keep in mind is that Z[V] is to Q(V2) as the ring Z is to the field Q.

Q(v2) is a second-degree extension of Q since the adjoined element, V/?., is a root
of an irreducible polynomial of degree two over Q, called its minimum polynomial. This
relation for vF/ is actually used in (2.2) to obtain an element of the form a + bV/2 (in
the same way the relation i2 = -1 for i is used in complex arithmetic).

The elements 1 and V2 form a basis for Q(v2) as a vector space over Q. In
other words, the elements of Q(v'2) are uniquely represented by the form a + bv2.
Consequently, the elements of Z[v'/] are also represented uniquely as integer linear
combinations of 1 and v'2.

The ring Z[/2] is in fact a dense subset of R, meaning that any real number x
can be approximated to any desired degree of accuracy by elements of Z[V2]. How-
ever, to obtain increasing accuracy, the coefficients a and b grow in size. For example,
table 1 lists elements of Z[v'2] with decreasing magnitude and increasing coefficient
sizes. Integer multiples of these points can be used to obtain finer and finer grids for
approximating elements of R. These approximations come from the convergents of the
continued fraction expansion of v'2, and the list can be continued to obtain any desi, ed
degree of accuracy.

Table 1. Elements of Z[V2/] with
Decreasing Magnitude

a b a_+bV_i

-1 1 .4142
3 -2 .1716

-7 5 .0711
17 -12 .0294

-41 29 .0122
99 -70 .0051

-239 169 .0021

Algebraic integers can be used to represent the numerical quantities in finite
wordlength implementations of signal processing functions. For example, elements of

6

R could be represented by ordered pairs (a, b) of integers that correspond to elements
a+ bV2 E Z[v1. Equations (2.1) and (2.2) give the rules of addition and multiplication
for the ordered-pair representation.

In a practical implementation, the sizes of these coefficients must be constrained.
In particular, for an integer M, define the set Z[V2 {m = {a + b'2 : a, b E Z, jai <
M/2, bi < M/2}. Z[/f]M is a finite set. Figure 2 displays the 25 elements of Z[V'_] 4.
This case is indicative of the general situation that such finite collections of algebraic
integers form nonuniform quantizers, as compared to the usual uniformly spaced quan-
tizers.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2." Z[v2]4

2.1.2 Adjoining e21r i/8

Whereas the last section involved a real extension, this section develops a complex
extension, applicable in the case of signal processing with I and Q channels. This
example can be viewed as a generalization of the Gaussian integers Z[i], the ring of
algebraic integers for Q(i) = {a + bi : a, b E Q}. Let w = e2"'/ 8 denote the primitive
complex eighth root of unity. Since w 4 = 1, w is a root of x 4 + 1, its minimum
polynomial, and w is an algebraic integer.

If w is adjoined to Q, the field (4(w) = {ao+alw+a2W 2+a3w3 :ai E Q, i = 0, 1,2,3}
results. The representation subset is Z[w] = {ao + aiw + a2w2 + a 3 W 3 : ai E Z, i =

0, 1,2,3}. Z[w] can be viewed geometrically as in figure 3 as containing integer linear
combinations of the basis vectors 1, w, w2 , and w3 . These four vectors do, in fact, form

7

eO = 2 n i/8

,1+ W + W 2 + W3

W 2

3 3

: '/" --W + W 2 -- 3

Figure 3. Basis Vectors for Z[w]

a vector space basis when the coefficients are restricted to lie in Q; that is, the elements
of Z[] are represented uniquely.

Elements of Z[w] can also be viewed as polynomials in indeterminate w with the
additional relation that w satisfies the equation w4 = -1. Elements of Z[w] are added
and multiplied like polynomials, except, in the case of multiplication, higher powers of
w are reduced using the relation w4 = -1.

It is convenient to represent the multiplication of elements of Z[w1 in terms of matri-
ces and vectors. Denote the element ao + alw + a2w2 +a3W 3 by the vector (ao, al, a2, a3),
and consider the product

(ao, al, a2, a3) * (bo, bi, b2 , b3) = (CO, cI, c2, c3).

8

The constant term co is computed by the following cyclic convolution:

co = aobo - ajb3 - a2b2 - asbl,

which in matrix form is

Co = (ao, al, a2, a3) (2 0 -) b((2.3)010 -1 0 b2
(-1 0 0 b3

The matrices, which will be called coefficient forms, for the coefficients c1 ,c2, and
c3 are, respectively,

01 00 0 0 10 0 00 1
(0 0 1 00) 0 0 1 0 (2.4)

0 01 -1 1 0 0 01 0 1 0 0
S0 -1 0 0 0 0 -1 1 0 0 0

With addition and multiplication defined as above, Z[w] forms a ring and is, in fact, the
ring of algebraic integers for Q(w).

Z[w] is a dense subset of C, and so any complex number x +yi can be approximated
arbitrarily well by elements of Z[w]. As in the first example, for an integer M, define
Z[WIM =_ {ao + alw + a2w2 + a3w3 : ai E Z,jail :5 M/2,i = 0,1,2,3}. Z(w]M is a
finite set and forms a (nonuniform) quantizer of C. The representatives in Z[WIM are
regarded as vectors (ao, a,, a2, a3) and are added using ordinary vector addition and are
multiplied using (2.3) and (2.4).

It is possible to picture Z[w]M in R2 . If x + yi = (ao, al, a2, a3), then since w -

v2/2 + iV2/2,

x = ao + -(al - a3), (2.5)
2

y = a2 + -(al + a3). (2.6)
2

Figure 4 shows the 81 points of Z[w]2 . These points display eight-fold rotational sym-
metry since if (ao,al,a2,a3) E Z[W]M, then

w(ao, al,a2,a3) = (-a 3 ,ao, al,a2)

9

Figure 4. Z[e 2ri/8 12

is in Z[W]M.

Finally, there is a relationship between Z[V2-] and Z[w]. Consider an element
x + yi = (ao,al,a2,a3) E Z[w] n R. Since al, a2, and a3 are integers, (2.6) implies that
a point with y = 0 must have a2 = 0 and al = -a3. The expression (2.5) for x becomes

x = a0 - V/2a3.

Thus, Z[V/2] corresponds to the real numbers of Zfe2"i/ 8].

10

2.1.3 Adjoining v'2 + '2_

This section develops a 4th degree real extension. Let 0 = V + v'. The mini-
mum polynomial for 0 is X4 - 4x 2 + 2. Integer linear combinations of the basis vectors 1,
0, 02, and 03 yield l[0] = {ao+aiO+a 202 +a 30 3 : ai E Z,i = 0, 1,2,3}. Elements of Z[0]
can be viewed as polynomials, and ao + a10 + a202 + a30 3 is denoted by (ao, a1 , a2 , a3).

When elements of Z[0] are multiplied, the relation 04 = 402 - 2 is used to re-
duce powers of 0 above three. The coefficient forms for a product (co, C1, c2, c3) are,
respectively,

0 0 0 -2 10 0 0

0 -2 0 2 0 0 '
-2 0 -8 (0 -2

(01 0 0 0 0 1 (2.7)
10 4 0 '0 1 0 4
0 4 0 14 (1 0 4 0/

For example,
(0,0,0, 1) * (0,0,0, 1) = (-8,0, 14,0). (2.8)

For an integer M, define the set Z[O]M ={ ao + a1 O + a2 02 + a303 ai E Z, Jail _
M1/2, i = 0, 1,2,31. Z[OIM is a finite set and forms a nonuniform quantizer for R.

An algebraic integer can often be represented using more than one basis. This is
demonstrated for Z[0]. The usual polynomial basis, {1,0,02, 03} will be denoted by B 1 .
The number v'2- V2 is in Z[0] since

V'27 -V 3 V2 + (Vr2T7 2

Let B 2 = {1, 2 -+V2, /2, v/2 - V}; then Z [01 can be represented also in terms of
the elements of B 2.

This is most easily seen in terms of the change of basis matrix. Let (ao, al, a2, a3)
correspond to ao+alO+a20 2 +a 303 , and let (bo, bl, b2 , b3) correspond to bo+bl V/ + ,+
b2 / + b3 V'2- v2. The two representations are then related by:

(bo, bl, b2, b3) 0 1 00 (ao,al,a2, a3),
-00

11

1 0 0 01

(bo, b1 b2, b3) = (aOal,a2,a3) 0 1 0 0 (2.9)' 2 0 1 0 "
(0 3 0 1)

In general, an invertible integer matrix corresponds to a suitable change of basis matrix
exactly when the inverse matrix contains only integers.

There are two general remarks that apply to representing algebraic integers using
different bases. When coefficient sizes are restricted, the finite set Z[OIM obtained
depends on the choice of basis. In this example, since the elements of B2 are closer
together in magnitude than the elements of B 1, there are more points clustered around
zero for the B2 basis. This may be an advantage depending on the density of the inputs
being quantized.

Secondly, the dynamic range growth that results when two elements of Z(0J are
multiplied depends on the basis representation. In this example, the coefficient forms
for a product (co, Cl, c2, c3) expressed using the B 2 basis are, respectively,

(100 0 01 0 00 0010 00 0 1
0 2 0 0 1 0 1 0 0 1 0 1 0 0 1 0
0 0 2 0 '0 1 0 1 1 0 000 '0 1 0 -1 "
0 0 0 2) (0 0 1 0) (0 1 0 -1 (1 0 -1 0

Now, for example, (comparing to (2.8))

(0,0,0, 1) *(0,0,0, 1) =(2,0,-1,0), (2.11)

and B2 yields the preferred representation from this standpoint.

2.1.4 Adjoining e2 'r'/ 6

This final example involves an 8th degree complex extension that will turn out to
intersect R at Z[/2 + v(2]. Let W = e2r i /16 denote the primitive complex 16th root of
unity. The minimum polynomial of w is x8 + 1. This example is very similar to the
previous Z[e 2t i/s] example.

Z[w] can be regarded as consisting of polynomials of degree seven with integer
coefficients. The rule w8 = -1 is used in the product to reduce the degree of powers of
wabove seven. If z+yi = (ao,al,..., a7) E Z[w], sincew = V2 +V27/2+(v/2 -vr2/2)i,
then

x = ao + (Vr2 + v/2)(a, - a7) + (V2-/2)(a2 - a6)

+ (V2 - - V2/2)(a 3 - as), (2.12)

12

y = a4 + N12 v'-/2)(a 3 + a5) + (V'2_/2)(a2 + a6)

+ (i 2/7V2/2)(al + a7). (2.13)

Figure 5 shows the 6,561 points Of Z[WJ2. These points have 16-fold rotational symmetry.

Finally,~ conide aneeetx+i=(l........... ine h cefiiet

are integers, (2.13) implies a point with y = 0 must have a4 = 0, a7 = -al, a6 = -a 2 ,
and a5 = -a3. The expression (2.12) for x becomes

x = a o + v/2 +V2_a I + v/2-a 2 + \/Y T 7V2_a 3. (2.14)

Thus, Z[V2+ V21, expressed using the B2 = 11, v/"2+ /2, V(2-, \/2 -v/2} basis, cor-
responds to the real numbers of Zfe 2:u/16 1-

13

2.2 RESIDUE NUMBER SYSTEM PROCESSING WITH
ALGEBRAIC INTEGERS

In most digital arithmetic circuits there is an inherent trade-off between speed
and precision of calculation due to factors such as carry propagation, for example.
One way around this problem is to perform the computations using a residue number
system (RNS). In this approach, high-dynamic-range integer processing is performed in
a number of parallel low-dynamic-range channels. For a comprehensive introduction to
RNS digital signal processing, including reprints of certain key papers, see [19] . This
section briefly introduces ordinary integer RNS and shows how these ideas extend to
the algebraic-integer representation.

2.2.1 Integer RNS Processing

A residue number system is defined by n positive integers m, that are all relatively
prime (that is, the greatest common divisor of any pair of them is one). The integers
m are referred to as the system moduli, and the number M,

mi,

is called the system range. Given an RNS and an irteger X, the Chinese Remainder
Theorem (CRT) states that X is represented uniquely up to a multiple of M by its
residues xi,

Xi = (X)m,, i = 1,2,...,n,

where the operation (X), read X modulo m, indicates taking the nonnegative remain-
der of the quantity X divided by m. As a consequence of the CRT, then any integer X
between 0 and M - 1, inclusive, can be reconstructed from its residues xi.

For an integer m, the residues modulo m form the set {0, 1, ... , m - 1}, which is
denoted by Z,. Zn forms a ring with addition and multiplication defined for a, b E Zm
by:

a + b = (a + b),

ab = (ab) ,.

Some other notation: for an integer X and a E Zp, X - a (mod m) means (X)m = a.

In integer RNS processing, the numerical quantities are quantized to integers,
perhaps by scaling and rounding, and reduced modulo the system moduli. The same
calculation, consisting of additions and multiplications, is performed independently
in parallel channels, one for each of the system moduli. The CRT is then used to
reconstruct the result, which is correct provided the actual answer is smaller than the

14

system range. The limiting factors on speed are usually the input and output conversion
processes, where the system goes into and comes out of the residue representation.

2.2.2 Algebraic-Integer RNS Processing

An algebraic integer may be naturally represented in several ways. The choice of
representation depends on a number of factors, for example, on the analog signals being
quantized, or on the need to minimize the dynamic ralige growth due to multiplication.
In order to make this discussion more concrete, it is assumed that the algebraic integers
are of the form

ao + a10 + a20 2 + + an-lO n- l, (2.15)

where 0 has a minimum polynomial f(x) of degree n. Other algebraic-integer represen-
tations are considered in section 5.

Let the RNS consist of the primes pl,p2, ... , pn. This restriction is being made
to ease the exposition; generalizations to arbitrary relatively prime moduli are pointed
out in section 5. RNS processing with algebraic integers was depicted schematically
in figure 1. After analog signals are converted to algebraic integers, each coefficient of
the algebraic integer is reduced modulo the primes in the RNS. Since the coefficients
of the algebraic-integer representations are likely to be smaller than the primes in the
RNS, the reduction modulo pi will usually just amount to changing the negative coeffi-
cients from, say, 2's-complement to pi's-complement form. This first modulo reduction,
corresponding to integer RNS, yields the so-called outer level of parallelism.

In each modulo p outer channel, the algebraic integer (2.15) is represented by the
vector of residues

((a0)p, (al)p,. .. (a,_,)p). (2.16)

While addition of these representatives is performed coefficient-by-coefficient in n inde-
pendent parallel channels, the multiplication involves a convolution that requires cross-
talk between the channels (see the coefficient forms of the examples in section 2.1).
It is possible, however, to choose the prime p so that there exists what amounts to
a number-theoretic transform that can be applied to (2.16) to produce a vector of n
residues modulo p. These transformed representatives can now be added and multiplied
by considering each coefficient independently, and processing is accomplished by n in-
dependent modulo p channels; this is the inner level of parallelism, which is depicted
in figure 1.

The polynomial version of the CRT provides the theoretical basis for the inner
level of parallelism in algebraic-integer RNS. The representative (2.16) is viewed as
a polynomial over Zp; that is, an element of the ring Zp[x]. But more is true: the
indeterminate 0 satisfies the relation f(O) = 0, so that (2.16) can be regarded as an

15

element of the residue ring Zp[xI modulo f(x), which is denoted by Zpfx]lf(x). Now
the polynomial version of the CRT involving the factors of f(x) can be applied; section
5 gives the complete treatment.

It is useful to state here the condition on the prime p that guarantees the existence
of the inner level of parallelism, namely, that the prime p should be chosen so that the
polynomial f(x) factors completely into linear factors over Zp. For example, for Z[V2],
f(x) = X - 2 and ZP should contain a "vF2". It can easily be checked that p = 7,
17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 119, and 127 are the suitable primes
with seven bits or less. For Z[e 2 r i /sI and Z[e2ri/16], the condition on p is, respectively,
p = 1 (mod 8) and p = 1 (mod 16). For Gaussian integers Z[i], the condition is p - I
(mod 4), corresponding to the familiar case of QRNS.

2.3 HISTORY OF ALGEBRAIC-INTEGER PROCESSING

The idea of using algebraic integers in RNS signal processing can be traced to eat-
lier work on QRNS. Motivated by work on QRNS, which was eventually published in [5]
, Cozzens and Finkelstein, in January 1983, generalized this idea to higher-degree cy-
clotomic extensions. Their paper [3] focused on using Z[e21i/2"], cyclotomic extensions
of degree a power of two, to compute the discrete Fourier transform. A subsequent
paper (4) gave a more complete error and range analysis for this case, including a
methodology for computing an achievable upper bound, called the exac sound, on the
range of the coefficients in the case of a two-stage quantization scheme. vhich is given
in detail in section 3.2.

It was clear from the outset that, in addition to having nice algebraic properties.
the algebraic integers possessed a rich quantization structure. The paper [6] considered
the algebraic-integer approximation problem, deriving error estimates for the case of
Z[e 2 r s/8] in a region near the origin. A subsequent paper, [7] , outlined an approxi-
mation algorithm that was implicit in the proofs in [6] . Both papers made the point
that to obtain efficient algebraic-integer approximations, scaling, as in the conventional
approach, and direct algebraic-integer approximations had to be combined. The paper
[14] developed an approximation routine for Z[e 2 ru/s] by treating real and imaginary
parts separately, an approach similar to the one in section 3.3.

Algebraic-integer number representations were used in [1] (Z[V2]) to design a two-
dimensional discrete cosine transform, and in [21 (Z[e2r/1 6]) to compute the numerically
approximate inverse of a square matrix defined over the complex numbers. The paper
[1] also independently derived the exact bound methodology.

16

2.4 CONCLUSION

The algebraic-integer number system was introduced using four examples: Z[V/2],
Z[e 2 r'/ 8], Z[V/2 + V2], and Z[e 2 ri/ 16]. In general, the cyclotomic extensions Z[e2ri/ 2r]M
have rotational symmetries not enjoyed by other complex extensions, small multiplica-
tive dynamic range growth, and representatives with 2-1 coefficients-all features that
make these extensions attractive for signal processing applications involving I and Q
channels. The real extensions Z[v/'2 and Z[V/2 + V2] can be obtained from Z[e2" i/sI
and Z[ie2 r i /16] by restricting to the real line, a fact that will prove useful in section 3. Al-
though many other extensions are possible, the four examples introduced are expected
to play an important role in future algebraic-integer implementations.

The algebraic-integer representation was combined with RNS processing. For each
prime p of a suitably chosen RNS, the ordinary outer channel corresponding to p splits
into parallel modulo p inner channels, one for each coefficient in the algebraic-integer
representation. Besides yielding an increase in RNS parallelism, this further splitting
makes the complicated algebraic-integer multiplication easy to compute in parallel.

17

SECTION 3
ANALOG-TO-ALGEBRAIC-INTEGER CONVERSION

This section considers the problem of representing analog values in terms of alge-
braic integers. There are two types of values that need to be represented: constants
that are known beforehand, such as the coefficients of a time-invariant filter, and the
varying inputs to a real-time processor. The former do not present as much of a problem
since they can be approximated beforehand using exhaustive computer routines. The
problem involving the latter type is the subject of this section.

Two approaches are considered. The first is a direct analog-to-algebraic-integer
conversion for real algebraic integers. This approach (actually two methods are sug-
gested) uses nonlinear functions, making actual hardware implementations difficult.
The second approach, which also applies in the case of real algebraic integers and repre-
sents an engineering compromise, uses a (conventional) uniform analog-to-digital (A/D)
converter followed by a precomputed approximation table, which performs a digital-to-
algebraic-integer conversion. (The digital-to-algebraic-integer conversion may be all
that is required of an algebraic-integer processor that is embedded in a conventional
digital processor.)

The complexity of the problem grows if the inputs are complex, and a strategy
that treats separate I (real) and Q (imaginary) channels is described. Finally, the
performance of the different algebraic-integer quantizers is evaluated for the case of
z[v +VI.

3.1 DIRECT ANALOG-TO-ALGEBRAIC-INTEGER
CONVERSION

In this section, all algebraic integers considered are real. Two methods for di-
rect analog-to-algebraic-integer conversion are presented. The first uses the compressor
characteristic of the nonuniform algebraic-integer quantizer. The second is similar to a
conventional successive approximation A/D converter.

3.1.1 Compressor Characteristic Method

Finite sets of real algebraic integers with bounded coefficient sizes generally cor-
respond to nonuniform quantizers of R. In general, nonuniform quantization can be
achieved by compressing the signal by a nonuniform compressor characteristic c, by
quantizing the compressed signal with a uniform quantizer, and then applying the in-
verse c- 1 to the quantized signal. The compressor characteristic c is also called the
companding law (for compressing and expanding) [10]

19

Figure 6 shows the limiting values of the compressor characteristic for the sets
Ziv'r2]M and Z[vX /+V2m (using the nonpolynomial B 2 basis) as the value of M
tends toward infinity. Only the positive values are shown (scaled to the interval [0,11);
the negative values are obtained by reflection through the origin. The curve for Z[V/2]
was obtained analytically by considering the density of points in Z[vf/]. It consists of
a linear part near the origin and a quadratic part beginning at the point (v's - 1)2.
The curve for Z[v'2 +lv] was obtained by computer (a similar analysis for this case
is possible but is much more complicated).

8 4'[2- 21

6

CQX)iXMA

4- UNIFORM

2

0
2 4 6 8

Figure 6. Compressor Characteristics for Real Algebraic Integers

20

The compressor characteristic can be used to obtain a direct analog-to-algebraic-
integer converter. The converter is based on the following property: if the points
of Z[V/2]M, for instance, are scaled so that the largest value becomes 1, then the
compressor characteristic for Z[V2] maps these points to (nearly) uniformly spaced
points between -1 and 1 on the y-axis. A uniform A/D converter is constructed using
these representation levels, except, instead of associating the usual digital code with
each level, the corresponding algebraic-integer code is used. An analog input, scaled to
lie in the interval [-1, 1], is quantized by first applying the compressor characteristic
to it and then using the uniform A/D converter on the compressed signal.

Although a nonlinear function has been applied to the signal, linear signal pro-
cessing (without undesirable intermodulation products beyond those that result from
the quantization error) is still possible. This is because the algebraic-integer codes are
being used, which has the same effect as applying the inverse of the nonlinearity to
the signal. This is in contrast to the situation where a nonlinear function is applied to
the signal, such as the p-law companders used in speech, and the binary codes from
the uniform A/D converter are used directly. In this case, linear signal processing with
these codes would produce unacceptable intermodulation products.

Implementing accurately in hardware such nonlinear compressor functions is diffi-
cult, and it is now more common to use a piecewise linear approximation [10]. The next
section gives another strategy for direct analog-to-algebraic-integer conversion that also
uses nonlinear functions, but in this case all that is required is that the zero-crossings
are located correctly. This may prove to be easier.

3.1.2 Successive Approximation Method

It is possible to translate the real algebraic-integer quantization problem into a
form that more closely resembles conventional quantization. For simplicity, this is
demonstrated in the case of Z[tV . Suppose, for example, the coefficients a and b of
a + by/2 E Z[v/21 are 2-bit integers in 2's-complement form; that is, a = -2Val + V0
and b = -2V1 + V0, where Vi = 0, 1 (so -2, -1, 0, and 1 are represented respectively
by V 1Vo = 10, 11, 00, and 01). Note that the 2's-complement form for the coefficients
yields an asymmetric representation set, which is denoted by Z[v'-]{.- 2,- 1,0, 1}.

Then a + bV2/ can be rewritten as

-2V 4I+ Vo- 2v2 Vb I" V2 Vbo. (3.1)

Arranging the constants in descending magnitude, and defining V3 , V2, V, and V
appropriately, (3.1) becomes

-2V2 V3 - 2V2 + V2 V, + V. (3.2)

21

Table 2. Binary Codes for Z[V2]{_ 2,_1,, 1 }

Binary Decimal Decision Thresholds

0011 1 + V'/z 2.414 (1 + 2v)/2,oo
0010 V2 1.414 (1 + V2-)/2,(1 + 2v")/2
0001 1 V /2, (1 + V)/2
0111 -1 + -vf2 .414 (--1 + /2)/2, v/2/2
0000 0 (1 - V)2,(-1+ V)/2

1011 1 - V2 --.414 -1/2, (1 - V'2)/2
0110 -2 + v 2 z- -.586 (-3 + V'2)/2, -1/2
0101 -1 (-1 - v'2)/2,(-3 + vf2)/2
1010 -V2' : -1.414 (1 - 3V2-)/2, (-1 - v/2)/2

1001 1 - 2v 'f--1.828 (-1 - 2V2)/2, (1 -- 3V)/2
0100 -2 (-3 - V2)2, (-1 - 2vf2)/2

1111 -1- V2 : -2.414 (-1 - 3v'2)/2,(-3 - /2)/2
1000 -2V'2 -2.828 (-2- 3v2)/2,(-1- 3V2)/2
1110 -2 - V 2 -3.414 (-3 - 3VF)/2, (-2 - 3V)/2
1101 -1 - 2v/2 -3.828 (-3 - 4,/2)/2,(-3 - 3V2-)12
1100 -2 - 2vf2 z -4.828 -oo, (-3 - 4v2)/2

Table 2 lists the 16 possible codes for V3 V2 V1 Vo, the respective decimal values, and
the respective decision thresholds (which occur at the midpoints between successive
representation values-the optimal placement [10]).

It is useful to compare the representation in (3.2) with the 4-bit 2's-complement
representation

-2 + 22/2 + 2V1 + V. (3.3)

The magnitude of the weights in (3.2) and (3.3) are respectively {2v/2, 2, v/2, 11 and
{ 23, 22,2, 1). Whereas the absolute values of the weights in (3.3) are superincreasing
(2 > 1, 22 > 2+ 1, and 23 > 22 +2+ 1), the weights in (3.2) are not. This fact accounts
for the density of the elements in Z[\2]1{2,_1,0,1.

The structure that performs the conversion for Z[v]{._.2,_1,0,1} is shown in figure 7.
The analog input voltage x enters at the top and is applied to each of the four columns.
In the offset level, the voltage is offset as a function of the 0-1 values of V3, 2, V1, and
V0 by the weights indicated. For example, if (V3, V2, V, Vo) = (1,0,0,0), then x + 2v/2
is input into the next level, called the functional level. The values of the functions g3,
g2, gj, and go will be derived subsequently. Each device in the functional level evaluates

")9

the indicated function at the input voltage and outputs the result to the threshold level.
Each device in the threshold level outputs the value 0 or 1 depending on whether the
input is negative or not. These values, which correspond to the Vi, are fed back to the
offset level.

2,- 2,- 2(-1

93 9 91FUNCTIOMA LEVEL.

ThRESHOLD LEVEL

V, V2 V, V,

Figure 7. Analog-to-Z[2_-2_],0,1} Converter

The converter operates like a conventional successive approximation A/D con-
verter, except that the threshold decisions are complicated by the fact that the weights
are not superincreasing. This complication is embodied in the functions gi, which are
now derived. The V3 output only depends on the values of the function g3. Thus, the
function g3 should be positive on those intervals where V3 = 1 and negative on those
intervals where V3 = 0. The following 5th degree polynomial with this property can be

23

obtained by inspecting table 2:

93(X) = -(x - (-3 - v'2)/2)(x - (-1 - 2v2-)/2)
(x -(-1 - v2)l2)(x -(-112))(x -(I1- V2-)12). (3.4)

The roots of g3 correspond to decision thresholds where V3 changes value.

Once the value of V3 is determined, then a 3-bit representation for x + 2V/2 V3
involving the weights -2, v'2, and 1 needs to be determined. If V3 = 0, then the input
x is passed unaffected to the 3-bit converter (the part in figure 7 corresponding to V2,
V1, and VO). If, on the other hand, V3 = 1, then x +2v'2 is passed to the 3-bit converter.
In any case, the 3-bit converter determines V2, V1, and V so that

x + 2V =V3 -2V 2 + V2 V1 + V, (3.5)

determining the element of Z[V/2]{_2,_1,0,1}.

The 3-bit converter is constructed in a similar fashion using the weights -2, v'2,
and-I. Again, these weights are not superincreasing and the function 92 is nonlinear.
The polynomial

g2(x) = -(x - (-2 + vt2)/2)(x - (-1 + V2/)/2)(x - V/2/2) (3.6)

has the correct properties; that is, 92(x) is positive when V2 = 1, and 92(x) is negative
when V2 = 0. It was derived in the same way g3 was, except that only the weights
-2, v/2, and 1 were used. Now the offset to the 2-bit converter is 0 or 2 depending on
whether V2 = 0 or 1.

Continuing in this fashion, gl and 92 are determined to be:

gl(x)-= 2x -(1 + v/'2), (3.7)

go(x) = 2x - 1, (3.8)

with an offset of -v2- from the 2-bit to the 1-bit converter.

With these definitions of g3, 92, g, and go, the converter in figure 7 obtains the
correct Z[V/2]{_ 2,_1 ,0,1} representative for any analog input x. The structure can be
clocked or run asynchronously-the analog input is applied and the network is allowed
to settle.

The accuracy of the converter does not depend on implementing the exact shape
of the functions g,; it depends just on implementing the zero-crossings of the functions
correctly. Thus, the values of the gi can be driven to the rails and be replaced with
±C, for a constant C. Consequently, the accuracy would depend in large part on the

24

ability to accurately implement these characteristic functions. One possible approach
would be to use circuits similar to those used in a window comparator. Figure 8 plots

93, 92, g1, and go after hard-limiting for the Z1V'2]{2,_li} example.

Although the successive approximation method was illustrated for the set
Z1V'2]{_2_l,0,1}, it can be applied to other cases. However, the complexity grows
rapidly as either the number of bits or the degree of the extension is increased. The
number of zero-crossings required by each function in the functional level is a good
measure of the complexity of the method. The example had complexity (5, 3, 1, 1). No
attempt was made to evaluate the complexity of the method in general.

3.2 £WO-STAGE ANALOG-TO-ALGEBRAIC-INTEGER
CONVERSION

An analog-to-algebraic-integer converter can be constructed using a conventional
A/D converter that is followed by a table of real algebraic-integer approximations. A
conventional A/D converter is selected that meets the speed requirements of the proces-
sor, and that has more accuracy than the processor would ever require. The uniformly
spaced representation values, corresponding to the digital codes, are approximated by
algebraic integers beforehand, using exhaustive computer routines. These approxima-
tions are stored in tables, which are accessed by the digital codes.

Let Z[01 denote the set of algebraic-integer representatives. Increasing levels of
accuracy are achieved by approximating the uniform representation values using the
points of Z[0IM for increasing values of the integer M. Each element of Z[OIM could be
associated with many digital codes (if M is small) or none at all (for larger M). The
ultimate accuracy is of course limited by the accuracy of the A/D converter.

This approach is straightforward, but yields suboptimal quantization-error per-
formance. For a fixed integer M, the representation values of a two-step quantizer
form a subset of Z[O]M. The decision thresholds of the quantizer, however, are those
of the uniform quantizer implemented by the A/D converter. These decision thresh-
olds will certainly not be located at the midpoints of the intervals between successive
representation values, which is a necessary condition for optimality. Compare this to
the direct algebraic-integer quantizer, where the representation values consist of all the
elements of Z[O]M, and the decision thresholds are set at the midpoints between succes-
sive representation values. Section 3.4 quantifies the loss in performance for the case of

25

00
C-

P,0
00

0,0

NN

CY

o 0 0d0

Fiue8 [fN-,101 ovre ~cin

02

3.3 COMPLEX ALGEBRAIC-INTEGER QUANTIZATION

Complex algebraic-integer quantizers correspond to two-dimensional vector quan-
tizers in R2 . As such, the encoding problem becomes much more difficult. One obvious
approach is to quantize the real and imaginary parts of the complex number separately,
combining these representations to form the complex algebraic-integer representative.
This approach will be illustrated for the ring Z[e 2 ri/16], the real numbers of which form

the ring Z[V2 + 2]. Let w = e

Suppose z = x+yi is a complex number to be approximated. First, approximations
for the real numbers x and y in Z[v"2 7+V2M (represented using the nonpolynomial
basis) are computed:

-- a0 + aIV2 + v + a 2 V/2 + a 3 V2 - , (3.9)

=b + bt V/2+ 12 + b2 V2 + b3V/2 - V2. (3.10)

Then i _ i + i is an approximation of z in Z[w].

However, i is represented in terms of the basis

B 2 = {1, v'T+iV2, v2, V 2- vr,i, vi2 + V2i, v/2i, V/2--i} (3.11)

instead of the polynomial basis B 1 = {1, w,. . . ,wT}. The change of basis matrix from
B 2 to B1 is

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 -1
0 0 1 0 0 0 -1 0
0 0 0 1 0 -1 0 0
0 0 0 0 1 0 0 0 (3.12)
0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1

Thus, when expressed in terms of the polynomial basis, Z^ is in Z[W]2M.

The inverse of (3.12) is

1 0 0 0 0 0 0 0
01 0 0 0 0 0 122
0 0 0 2
00 0 0 4 0 0

2 0 (3.13)
0 0 0 0 1 0 0 0
0 0 0 - 0l1 0 0
00 - 0 0 0 2 0

\0 - 0 0 0 0 0

27

The fractions in the second matrix indicate that B2 does not generate all of Z[w]; B 2 is
not an integral basis of Z[w]. In fact, if Z[B2]M denotes the points that are represented
in terms of the elements of B2 with coefficients in the range [-M/2, M/2], then, as a
subset of R2 , Z[B2]M is the cross product

Z[B 2]M = Z[2 + V2IM X Z[V'2 + 2IM

= {(a, b); a, bE Z[V'2 + V]M}, (3.14)

and this rectangular cross product is a proper subset of Z[w]2M.

No rigorous study was made of the decrease in performance incurred when real and
imaginary parts are approximated separately by the above technique. It is reasonable
to expect, however, that the error performance of Z[w]M in R2 is approximated by the

error performance of Z[V'2 + V]M in R. (Indeed, [6] showed that this is the case
for Z[e 2r i /8I and Z[v/F] for a region of R2 near the origin.) Thus, it is expected that
the error performance for Z[W]M should be roughly comparable to Z[B2]M. But the
representatives obtained lie in Z[W]2M, so the cost of the increase in efficiency is, if these
assumptions are correct, just the doubling of the dynamic range of the inputs.

If doubling the dynamic range of the inputs has to be avoided, then approximations
relative to the basis B 3:

{1, / +,2/2, ri /2, \ /2- /]2, 1,V/2+\2i/2, /2i/2, V/2- /2i/2} (3.15)

can be computed (the roles of the change of basis matrices (3.12) and (3.13) are in-
terchanged). However, now, Z[B 3] contains Z[w] and a strategy must be followed to
exclude elements. This is the approach of [14] , which was applied in the case Z[e2i/,

but is equally valid here.

3.4 QUANTIZATION PERFORMANCE FOR 7-[V2+\2]

The performance of a quantizer is usually evaluated in terms of signal-to-noise
ratios. More precisely, the analog signal x is assumed to be a zero-mean random variable
with probability density function p and variance a.. If i represents the quantized
version of x, then the mean of the squared error, or quantization-noise variance is given
by

; 0(x -. i) 2p(t) dt. (3.16)

The signal-to-quantization-noise ratio (SNR) is defined as 10 loglo(o2/a2) dB.

28

This section computes the SNR for quantizers derived from Z[V/2 + vf2] using the
nonpolynomial basis { 1, V2 + v'2 , v" 2 - v/}. This basis results in lower dynamic-
range growth and, if desired, leads more naturally to complex representatives. Both
direct and two-stage algebraic-integer quantizers are considered and compared. The
two-stage quantizer is assumed to employ a 12-bit uniform quantizer as the front end.

3.4.1 Uniform Inputs

In this section, the analog input x is assumed to be uniformly distributed on
the interval [-1, 1]; the signal variance is a 2 = 1/3. For comparison, the optimal
uniform quantizer, which has decision thresholds extending from -1 to 1, has an SNR
of 6.02 dB/bit [10] . The algebraic-integer quantizers are determined by specifying the
coefficient range M. The quantizers obtained extend beyond the interval [-1, 1] and so
must be scaled (in this case by a fractional amount) to best match the uniform input
distribution. A similar scaling (by an easily calculated amount) would be required for
the uniform quantizer if it had been initially matched to a larger variance. In the
algebraic-integer case, the proper scale factor is determined by computer search.

Figures 9 and 10 show the SNR plotted as a function of log 10 of the scale factor for
the direct and two-stage quantization schemes, respectively. The scale factor is plotted
using the logarithm to facilitate relative error comparisons for nonoptimal choices of
scale factor. These plots were obtained using a computer; the value of (3.16) can be
evaluated in closed form in this case.

Figures 9 and 10 show that, for both methods, the SNR rises rapidly as the scale
factor is increased from a very small value (actually the initial value of the scale factor
is .010), reaches a peak at about the same value of the scale factor (actually at the same
value), and then gradually declines as the scale factor is increased further (the largest
value of the scale factor considered is .550). The gradual fall-off of the curves means
that the quantizers perform near optimally over a wide range of scale factors.

The limiting effect of the 12-bit front end in the two-stage method is evident in
figure 10. The curves are approaching a ceiling of 72.24 dB-the accuracy of the 12-bit
uniform quantizer. However, for the smaller values of M, the curves appear almost to be
identical. Table 3 gives the optimal values of the SNR and the corresponding value of the
scale factor. For M < 8 (equivalently, for up to about 11 bits of accuracy), the methods
perform similarly. Thus, the following heuristic is indicated: the suboptimal two-stage
method performs practically equivalent to the optimal direct method if the front-end
A/D converter in the two-stage method is chosen with one bit, or more conservatively
with two bits, of accuracy beyond the accuracy requirements of the processor.

The performance of the quantizers derived from the polynomial basis is within
about 1 dB of the values in table 3. The scale factors, however, are smaller, reflecting

29

SIGNAL TO NOISE RAlIO v& SCALE
..o..................................'

onM

12

MA1

41LO / ... [..

".
00 -10.00 -1.600 -1.00 -. 200 -1.000 -=8000 6M -4000 -2000 M0000

SCALE

Figure 9. Uniform Inputs; Z[V2 + v/21M, 2 < M < 12;
Nonpolynomial Basis; Direct Quantizer

the fact that Z[V/2 + /2]M expressed in terms of the polynomial basis involves larger
numbers.

It is useful to compare the efficiency of the algebraic-integer quantizers with the
more conventional uniform quantizers. The rate of a quantizer containing P points is
defined as log 2 P. With this definition, ordinary b-bit quantizers have rate b. For any
quantizer Q, the efficiency relative to the uniform quantizer is defined as the ratio

equivalent bit performance of Q
rate of Q

(performance of Q (dB))/6.02 (317)

rate of Q

Table 4 lists the efficiencies of the direct algebraic-integer quantizers. Efficiencies of
about 90 percent are obtained with slightly increased efficiency for larger values of Al.

30

SIGNAL TO NOISE RA71O0s SCALE

MA

SCNF-

SSNR (dB)

6I - .80 120 614 1.0 1.09 -J 60 40--.7 0

Fiur 10 .090or 77.43s 71.09vf,2<M< 2
12poyoma .080s 83.45ag 71.93ze

Tabe3 CmprionofDiec an To-tae [V2--31]

Table 4. Efficiency of Z[v2+v2]M, 2 < M < 12;
Uniform Inputs; Direct Quantizer

M Bit Perf. Rate Efficiency

2 5.66 6.34 .892
4 8.53 9.29 .918
6 10.09 11.23 .904
8 11.45 12.68 .903

10 12.86 13.84 .930
12 13.86 14.80 .937

The fractional efficiencies are, of course, consistent with the fact that, if the inputs are
uniformly distributed, the uniform quantizer performs the best.

The algebraic integers form a distributed representation. For example, if 8-bit
performance is desired, then, examining table 4, representations with coefficient range
M = 4 can be used. This quantizer yields 8.53 bits of accuracy with a number of points
that corresponds to 9.29 bits. The conventional 8-bit quantizer involves a single value,
ranging from -128 to 127 for 2's-complement representation. The algebraic-integer
quantizer involves four values, each ranging from -2 to 2.

In actual systems, the variance of the input signal is often not known exactly, or
is changing with time (assuming there is even a fixed probability distribution). In such
situations it, is important that a quantizer perform well over a wide range of possible
input variances. To compare the conventional and algebraic-integer quantizers on this
point, the efficiency of the direct algebraic-integer quantizers is calculated for the case
that the input is assumed to be uniformly distributed on [-1, 11, but in fact the inputs
are uniformly distributed on [-1/2, 1/2] (a mismatch in variance by a factor of 1/4).

The performance for the uniform quantizer in this case degrades by exactly one bit,
or 6.02 dB. A b-bit uniform quantizer on [-1, 11 with inputs from [-1/2, 1/2] performs
like a (b- 1)-bit quantizer. The performance of the algebraic-integer quantizer is given
by the SNR in figure 9 at a value of twice the optimal scale factor s. (or s, + .301
on the log scale). These values for M = 2, 4, ... , 12 are, respectively, 31.10, 48.69,
57.52, 65.82, 74.52 and 79.51. Note that the degradation from the optimal algebraic-
integer performance given in table 3 averages around 3.2 IB, resulting in an increased
efficiency for this variance mismatch case. Table 5 lists these efficiencies, which now
average around 96 percent.

32

Table 5. Efficiency of Z[V"2.]n2IM, 2 < M < 12; Uniform Inputs;
Direct Quantizer; Variance Mismatch of 1/4

M Bit Perf. Rate Efficiency

2 6.16 6.34 .972
4 9.09 9.29 .978
6 10.55 11.23 .939
8 11.93 12.68 .941

10 13.38 13.84 .967
12 14.21 14.80 .960

3.4.2 Gaussian Inputs

To test the performance of the algebraic-integer quantizers when the input is
nonuniformly distributed, this section assumes the analog input x is Gaussian (or nor-
mally) distributed. Other common nonuniform input distributions, especially for speech
and images, are Laplacian and Gamma distributions, but they will not be considered
here. So that the input power in this and the last section are identical, the var;'tuce is
taken as 0.2 - 1/3; the mean is still assumed to be zero. For reference, table b lists the
SNR for the optimum uniform quantizers with 1 through 16 bits. The values in table 6
for 1 through 8 bits were obtained from [10] , page 127; the values for 9 through 16 bits
were estimated-the step size used was extrapolated from the step sizes for I through
8 bits obtained from (10] .

Again, the algebraic-integer quantizer must be scaled to best match the Gaussian
input distribution. Figures 11 and 12 show the SNR plotted as a function of log 10 of
the scale factor for the direct and two-stage quantization schemes, respectively. These
plots were obtained using a computer; the value of (3.16) in this case must be evaluated
numerically.

Figures 11 and 12 show that, for both methods, the SNR rises as the scale factor
is increased from a very small value (actually the initial value of the scale factor is
.010), reaches a peak at about the same value of the scale factor, and then declines
more gradually as the scale factor is increased further (the largest value of the scale
factor considered is .562). The gradual fall-off of the curves means that the quantizers
perform near optimally over a wide range of scale factors.

The limiting effect of the 12-bit front end in the two-stage method is evident in
figure 12. The curves are approaching a ceiling of 62.70 dB-the accuracy of the 12-bit
uniform quantizer for a Gaussian input. However, for the smaller values of M, the

33

Table 6. SNR of Optimal Uniform Quantizer;
Gaussian Input

Bits SNR (dB)

1 4.40
2 9.25
3 14.27
4 19.38
5 24.57
6 29.83
7 35.13
8 40.34
9 46.03

10 51.54
11 57.10
12 62.70
13 68.33
14 74.00
15 79.68
16 85.39

curves appear almost to be identical. Table 7 gives the optimal values of the SNR
and the corresponding value of the scale factor for the direct case (the scale factor
for the two-stage approach is within .03 of this value). In this case, there is a slight
performance degradation almost immediately, which becomes significant by the time
M = 8. However, up to M = 6, which from examination of table 6 corresponds to
better than 11 bits of accuracy, the performances are more comparable. This confirms
the heuristic derived in the last section: the suboptimal two-stage method performs
practically equivalent to the optimal direct method if the front-end A/D converter in
the two-stage method is chosen with one bit, or more conservatively with two bits, of
accuracy beyond the accuracy requirements of the processor.

It is more difficult in this case to determine the efficiency of the algebraic-integer
quantizers relative to the more conventional uniform quantizers. This is because there
is no simple formula, such as (6.02)(number of bits), for the performance of the opti-
mal uniform quantizer against a Gaussian input. The equivalent bit performance for
the algebraic-integer quantizer is estimated by linearly interpolating between the perfor-
mances of two successive bit values that contain the performance of the algebraic-integer
quantizer. Table 8 lists the efficiencies of the direct algebraic-integer quantizers. Effi-

34

SIGNAL TO NOISE RATIO vL SCALE

71 i..........

10

SAO

sNE (dO)i

0
POO -I.80 -1.10 -1.40 -1.2 -1.00 1 O6 -.400 200 -000

SCALE

Figure II. Gaussian Inputs; Z[V/2+7NM, 2 < M < 12;
Nonpolynomial Basis; Direct Quantizer

ciencies greater than 1 are consistent with the fact that the nonuniformly distributed
algebraic-integer quantizers better match the Gaussian input distribution.

For example, examining table 8, representations with coefficient range M = 4 yield
9.82 bits of accuracy with a number of points that corresponds to 9.29 bits. These 9.29
bits are distributed among four coefficients, each ranging from -2 to 2.

3.5 CONCLUSION

Analog-to-algebraic-integer conversion was considered. The focus of the section
was on real algebraic integers, since the complex case is further complicated by the need
to perform vector quantization in two dimensions. It was shown how separate scalar
quantization of the I and Q channels could be combined to form a complex algebraic-
integer representative, expressed in terms of a product basis. Other, more desirable,
basis representations are obtained by transforming coefficients, resulting in represen-

35

SIGNAL T0 NOISE RATIO v SCALE

so ---- 12

S

6

410asi.../.

S- () X0 . 0 -.

2S2

220

10*

-2.0 -1.80 -1.0 -1.40 -120 -1.01) 800 600 -.400 -200 -M00

SCALE

Figure 12. Gaussian Inputs; Z[V/'2 + V7]M, 2 <_ M _ 12;
Nonpolynomial Basis; Two-Stage Quantizer

Table 7. Comparison of Direct and Two-Stage Z[V/2 +V/2]M
Quantizers, 2 < M < 12; Nonpolynomial Basis; Gaussian Inputs

SNR (dB)

M Scale Direct Two-Stage

2 .3981 31.60 31.11
4 .2512 50.56 49.21
6 .1995 59.47 57.02
8 .1585 65.87 61.18

10 .1413 78.43 62.35
12 .1122 82.21 62.50

36

Table 8. Efficiency ofZ[V/2 + /21M, 2 < M < 12;
Gaussian Inputs; Direct Quantizer

M Bit Perf. Rate Efficiency

2 6.33 6.34 .998
4 9.82 9.29 1.057
6 11.42 11.23 1.017
8 12.56 12.68 .991

10 14.78 13.84 1.068
12 15.44 14.80 1.043

tatives with accuracies that are conjectured to be equivalent to accuracies obtainable
from the two-dimensional vector quantizers, but at a cost of twice the coefficient range.

Two methods that perform direct real algebraic-integer conversion were described.
The first method required the implementation of the exact shape of a nonlinear function.
The second method also involved nonlinear functions, but only required that the zero
crossings of these functions be implemented accurately. However the complexity of the
second method grows quickly.

A more practical two-stage approach, which is based on conventional A/D con-
verter technology was introduced. Although'this approach is in theory suboptimal, it
is practically equivalent (at least in the case considered: Z[V/2 +-2]) to the optimal
direct approach, provided that the processor is operated at one to two bits below the
accuracy of the front-end A/D converter. A corollary of this observation is that further
hardware development of a direct analog-to-algebraic-integer converter is not warranted
unless the application requires processing at accuracies and speeds that are at the limits
of conventional A/D technology.

Finally, the algebraic integers form a distributed quantizer-a single large repre-
sentative is replaced with a representative consisting of a vector of smaller coefficients.
For the same level of accuracy, the total cost (measured by the number of points)
of the conventional and algebraic-integer quantizers is comparable. For uniformly-
distributed inputs, the algebraic-integer quantizers (based at least on the case consid-

ered: Z[V2 + v]) averaged about 91 percent as efficient as the conventional quan-
tizers, although in practice the robustness of the algebraic-integer quantizers would
tend to increase this efficiency. For Gaussian-distributed inputs, the algebraic-integer
quantizers averaged about 103 percent as efficient. An advantage of the distributed
representation is that the smaller coefficients reduce the complexity of the integer-RNS
conversion into and out of the outer level of parallelism, which is considered next.

37

SECTION 4

INTEGER RNS CONVERSION:
THE OUTER LEVEL OF PARALLELISM

In an algebraic-integer RNS implementation, integer RNS is applied separately to
each coefficient of the algebraic integer to form the outer level of parallelism. Con-
verting into the outer level of parallelism is expected to be straightforward because the
distributed algebraic-integer representatives have small coefficients, which are likely to
be smaller than the moduli in the RNS. Converting out of the outer level of paral-
lelism will be more complicated, although the complexity will be mitigated somewhat
by the smaller RNS ranges, resulting from smaller input ranges, that are needed to
contain the dynamic range of individual coefficients. As is the case for integer RNS,
this conversion phase could still very well be the bottleneck in an algebraic-integer RNS
implementation.

In an attempt to eliminate this bottleneck, most converters have either taken
advantage of specialized sets of moduli (e.g., the set {2" - 1,2',2' + 1} used in [16]
and [21]), or have used mixed-radix conversion. Unfortunately, the first approach is
severely limited by the availability of appropriate sets of moduli for algebraic-integer
implementations, where the moduli have to satisfy certain restrictions to guarantee the
further splitting into the inner channels. The second approach, mixed-radix conversion,
is convenient for many applications, but suffers limitations of its own. One of these
limitations is its lack of flexibility in being' reprogrammed for different moduli as it
requires 0(n 2) modulo adders, which are not easily reconfigurable, for an n-modulus
RNS conversion.

This section looks at a recently proposed method for rapid output conversion
that overcomes some of these difficulties, called fractional representation. The next
section explicates conversion using fractional representation, and modifies it slightly by
replacing lookup tables with binary multipliers. Subsequently, a generalization allowing
adjustable output precision is developed and a comparison is made with mixed-radix
conversion. It will be shown that fractional-representation conversion is fast, requires no
custom modulo circuitry, has adjustable output precision to match the system precision,
and is adaptable to a variety of moduli combinations even after being designed and laid
down on silicon.

39

4.1 FULL-PRECISION OUTPUT CONVERSION
Given an RNS {mIm 2 ,.. ,m,,}, M = flm m, the Chinese Remainder Theorem

guarantees that any integer X between 0 and M - 1, inclusive, can be reconstructed
from its residues xi. This is done by using the formula ([151 , pp. 30-31),

= nM (Wixi) , (4.1)

where the wi satisfy the equation,

KWi~i 1

Constructing an output converter via a straightforward application of (4.1) is problem-
atic, however, as the large reduction modulo M at the end requires custom circuitry,
which is more costly to operate than an ordinary binary adder (figure 13).

x 1 x 2 xn

LOOKUP LOOKUP LOOKUP
TABLE TABLE TABLE

Sl S 2 Sn

MODULO M ADDER

I
x

Figure 13. Residue Decoding by the Chinese Remainder Theorem

40

4.1.1 Fractional Representation

An equivalent way to write equation (4.1) is1,

M

X Z--(wx), - MK, (4.2)
i

where K is some nonnegative integer. The difficulty in using (4.2) lies in reducing the
sum by a multiple of M to lie in the range [0, M - 1], when numbers are represented
in binary. This can be avoided by scaling X so that the result lies in the range [0, 2).
Multiplying X by 2/M, and calling the result X1, yields

, 2 (wixi),m, - 2K. (4.3)
i

In this way, the reduction modulo M can be transformed into a simple discarding of
bits above the unit bit. The true output X can now be fully recovered by multiplying
X, by M/2, though in many cases a scaled version of the output X will suffice. This is
an important point, which will be expanded upon in section 4.2.

The remaining consideration in computing X, is the representation of the summand
ui in (4.3), ui = 2i (wixi)m,. Notice that 0 < ui < 2 and the fractional part of ui cannot
be represented exactly in binary unless mi is a power of 2. Let ui be approximated by
t , where

1 i = [2'ui] 2 - ', (4.4)

and the ceiling brackets indicate the closest integer greater than or equal to the enclosed
quantity (the following analysis could be easily modified to accommodate rounding or
truncation to arrive at the approximations). Now, t + I bits are used to approximate ui,
with 1 bit for the integer part and t bits for the fractional part. From equation (4.4),
it can be seen that there is some approximation error ei such that fii = ui + ei, where
ei satisfies the inequality 2 0 < e, < 2- t. Using ti instead of ui in (4.3) introduces an
error e into the computed value of X.,

'I

e = ei < n2-t. (4.5)

'Except where noted, the following material up to (4.6) is condensed from [22]
2The authors in (18] and [22] state that, once the RNS is fixed, the upper bound on ei can be made

exact by an exhaustive search of all mi possible fractions. Actually, the exact upper bound can be shown to
be

e, : [- 2 min{".,9+1}/m I 2-'

where qi is the number of factors of 2 contained in mi.

41

Since the correct possible values of X, are evenly spaced by increments of 2/M, exact
reconstruction is possible, by rounding down to the next correct value, if the error
satisfies the inequality e < 2/M. By the bound above on e, the inequality is satisfied
when n2- t < 2/M, or equivalently

t > [log 2 Mn] - 1 (4.6)

(the ceiling brackets are included to guarantee that t, the number of bits representing
the fractional part of fii, is an integer as required in any practical system). This means
that if fii is calculated by a lookup table accepting xi as input and outputting fii, that
lookup table must store t + 1 = [log 2 Mn] bits for each possible value of xi.

4.1.1.1 Numerical Example

To illustrate how this procedure works, take the RNS consisting of the three largest
5-bit representable primes - 23, 29, and 31. The range M = 20,677 and the weights
wi are 12, 12, and 2, respectively. Suppose X = 9921. Its residues are x1 = 8, x2 = 3,
and X3 = 1. There are three terms in the sum in (4.3),

2223 i 2"-(12 x 8)23 + 92 x2 (2 x 1)3123 =(12 3 1)29

which are used to calculate X,. As indicated in (4.6), the uis are approximated by
16-bit numbers:

= [15. 8 2- 5 = 0.010110010000110,
I14231

fi2 = [2 15 1-1 = 0.011110111001100,

f3 = [215 41 - = 0.00,0000,0000,01.

Given the residues as input, the above numbers are fetched from the lookup table and
added:

'il : 0.010110010000110
fi2 : 0.011110111001100

+ f3 : 0.001000010000101

Xs : 0.111101011010111

Converting to decimal, X8 = 0.959686.--. Multiplying by M/2 gives the result
9921.72.-., which is truncated to the value X = 9921.

42

Notice that if only 15 bits had beei, used for the approximation, the final answer
would have been incorrect. In that case, the sum would have been

0.01011001000011
0.01111011100110

+ 0.00100001000011
0.11110101101100

or fCs = 0.959716.--, yielding a final answer of 9922.

4.1.2 Modified Fractional Representation

Xs may also be calculated in a way that avoids lookup tables or RAMs altogether.
This is due to the fact that the inner reduction modulo mi in (4.1) need not be per-
formed, i.e.,

S(~W.x) (4.7)

MiM

This equation may be transformed, via the same process used previously, into

Xs = Z -- wixi - 2L, (4.8)
i

where L is some nonnegative integer. It can be seen that the summand may now
be computed simply by multiplying -w, by the residue xi. Unfortunately, the first
multiplicand cannot be represented exactly in binary, unless the denominator in the
fraction when reduced to its simplest form is a power of 2. Call the first multiplicand
yi, and let yj be an (s + 1)-bit approximation of yi such that

= "2ayi] 2- 3. (4.9)

As 0 < y, < 2, the first bit represents the integer part of yi with the remaining s bits
representing the fractional part. The approximation of y, causes an additive error fi to
be introduced into yj, where3 0 < f, < 2s. Using 0, = ixj instead of ui in computing
X, causes a cumulative error f,

f fixi < 2-'(mi - 1), (4.10)
i S

3 The additive error can be calculated exactly from the equation

= i 2s) . rni] 2-'.

43

to be added to the final result. By the argument presented earlier, exact reconstruction
of the output is possible if the error f is less than 2/M. This is true when

n

2- s E(mi- 1) < 2/M,
i

or equivalently

S > lo0g 2 M E(mi- 1)]- 1 (4.11)

In sum, the reconversion may be performed by ordinary binary multipliers that multiply
each residue xi by a fixed weight of s + 1 bits. As the result has only s bits of fractional
accuracy, and as all bits above the unit bit are irrelevant, only the lowest s + 1 bits of
the product are needed in order to compute X,.

4.1.2.1 Numerical Example Revisited

To compare the above with the lookup table implementation, consider the example
shown previously. In this instance, there are again three terms in the sum,

V (- • 12)8 + (.12)3+(. 21,
L.d 23 29 31 '

used to calculate X. The terms in parentheses are the weights yi. By (4.11), these
weights must be approximated by numbers of at least 21-bit accuracy:

2 [20. 24 2 -2 = 1.oooo1i11io1iooo1i111,

102 = [2 120 24] 220 = o.110oioo11oi11ioo11ooI 291

Y3= [2 12 4 20 = .100101001.

The j are multiplied by the residues {8, 3, 1 } and the 21 lowest bits of each product
are summed to form k,:

JXl :0.01011001000010111000
Y2X2: 0.01111011100101100100

+ y3X3 0.00100001000010000101

0.11110101101010100001

44

Converting to decimal, X8, = 0.959626.--. Scaling up by M/2 yields the value
9921.09--., which is truncated to the correct result, X = 9921.

4.2 ADJUSTABLE PRECISION OUTPUT CONVERSION

In the previous section, it was assumed that a full-precision integer was the de-
sired output of the residue-to-binary converter. This, however, is not always the case.
Consider for a moment the nature of an integer-RNS system. Usually, it takes some
input(s) upon which it performs additions and multiplications. The range that the
resulting output can lie in is almost certainly larger than the input size, and in most
cases is considerably larger.

To illustrate this claim, suppose an FIR filter (a situation in which RNS is often
used) is being given a stream of 8-bit inputs. Suppose in addition that there are 128
filter coefficients, each with 8-bit magnitude. In such a case, the outputs could be as
large as 23 bits. However, the number of significant bits could range anywhere from
16 bits in the case of a matched filter, to 8 bits for an ordinary bandpass filter, to less
than that. Even in the worst case 7 bits of output precision would be unnecessary and
could be discarded.

There is some reason to believe that higher conversion accuracy m, v be required for
algebraic-integer RNS applications, but it is not necessarily the case that full output
precision will always be required even then (for example, see sections 6.1 and 6.2).
The reader should be aware that the amount of output conversion precision is a more
sensitive issue when an algebraic-integer RNS, as opposed to an ordinary integer RNS,
is employed.

It is clear from the preceding rough calculation that considerable savings might
result if there were some way to take advantage of the less-than-fudl output precision
necessary in many situations. For mixed-radix conversion, it is known that the large
adders at the end can be reduced if less than the full output precision is desired, but
that this in no way reduces the amount of computation required for the mixed-radix
coefficients. In the following subsections it will be shown that the hardware required in
fractional-representation conversion scales almost linearly with the number of output
bits desired.

4.2.1 Fractional Representation

Suppose it is decided that the lowest g bits of the output from the residue-to-binary
converter are unnecessary. That is, instead of resolving to the nearest 2/Al' increment, it
is decided that the output should be resolved only to the nearest increment of 29+1 /M.

45

This implies that the conversion error e should be less than the desired resolution,
2g+' /M.

Let iij be a (t + 1)-bit approximation of ui, as before. Then, by the bound on e
developed in equation (4.5), the conversion error inequality is satisfied when n2 <
29+ 1/ M. This is equivalent to requiring that the following inequality hold:

t > [(log 2 Mn) - g] - 1. (4.12)

As the number of bits of output resolution is (log 2 M) - g, it is clear that the number of
bits of accuracy that must be carried (and the size of the hardware as well) goes down
linearly with output resolution bits as indicated previously, except for a (log 2 n) - 1
offset.

Suppose that instead of discarding the lowest g bits, the highest h bits were thrown
away. This could occur, for instance, if it were known that the output didn't use the
full range, but only grew as large as some fraction of M. Specifically, deciding that h
high-order bits are unnecessary corresponds to knowing that the integer outputs lie in
the range [0, 2-hM). Given the above situation, the h high-order bits can be dropped
from the approximations. Thus, the number of bits coming out of a lookup table would
only have to satisfy the inequality

t > [(log 2 Mn) - hl - 1. (4.13)

More generally, if it is known that the output Xs will lie in some subrange such that
for nonnegative integers k and h, 0 < k < 2 h,

k2-h~ < X, < (k + 1)2

then the highest order h bits of the output Xs are unnecessary and may be dispensed
with in the approximations of the summands ui, as indicated in (4.13).

4.2.1.1 Numerical Example

Consider again the numerical example from section 4.1. Suppose that g = 4. Then,
as indicated in (4.12), the uis should be approximated by 12-bit numbers:

= [2• 8 2- = 0.011o,

46

Adding these numbers,
ul: 0.01011001001
62 :0.01111011101

+ fi3: 0.00100001001

)C, : 0.11110101111

and converting to decimal yields X, = 0.960449-... Multiplying by M/2 gives
9929.60.-., which is truncated to the nearest increment of 2g = 16, kC = 9920. In
practice, the last step of generating X from C, would not be done. Instead, ks would
simply be truncated to the number of output bits desired (presumably log 2 M - g bits)
and the result would be the converter output.

For this example, t + 1 was 16 bits for a full-precision output. This was reduced to
12 bits by decreasing the converter resolution. Since the hardware scales linearly with
t + 1, this implies a 25% reduction in hardware. This compares to a 28% reduction
(log 2 Al vs. log 2 M - g) in the number of bits of resolution.

4.2.2 Modified Fractional Representation

The results of section 4.2.1 may be straightforwardly extended to cover modified
fractional representation as well. Suppose it is desired that the output X be resolved
to the nearest increment of 2g+1 IM. Then the conversion error f must be less than
that increment. Using the bound on f from equation (4.10), it can be seen that this
occurs when

2- Z(m, - 1) _ 29+'/M,

which is equivalent to

3> [(log 2 M (mi-1) -g1 -1. (4.14)

In this case, except for the offset log 2 >j(mi - 1), the hardware again scales linearly
with the fraction of output precision desired.

In the same fashion as in section 4.2.1, bits can be dropped from the high end of
the approximations in order to focus in on smaller subranges of the output range. A
subrange of size h bits smaller than the full range size allows the number of bits needed
to approximate yi to be shrunk such that

S> [log2 M (m i - 1) -) - 1. (4.15)
i

47

As before, only the least significant s + 1 bits of the product ixi need be computed to
calculate X,.

4.2.2.1 Numerical Example Revisited

Suppose g = 4, as previously. Then the weights y, must be approximated by
numbers of 17-bit accuracy, as indicated in (4.14):

31= [216.]2~-24 2-16 = 1.0000,01,00,00010,

S=2- 1 = 0.11010011,011,01,
29

C r t deiml 2- 16 = 0.00b0000v0000,001.

Multiplying the s by the residues 8,3,1, the lowest 17 bits of each product are
summed to form k.,: Jxj 0.0101100100010000

2X2 :0.0111101110010111

+- Y3X3 : 00010000100001001
fcs :0.1111010110110000

Converting to decimal, ,s= 0.959716.-... Scaling by M/2 yields the value 9922.03-..
This is truncated to the nearest increment of 16, or 9920. Again, as in the case of
ordinary fractional representation, the M12 scaling would not be done in practice.
Rather, the output kls would be truncated to the desired number of output bits.

Reducing s + 1 by 4 bits caused a 19% reduction in hardware, as compared to a
28% reduction in output resolution. The relative hardware reduction is smaller for the
modified fractional representation, as the offset term in (4.14) is larger than that in
(4.12).

4.3 COMPARISON OF CONVERSION METHODS

Mixed-radix conversion has been the method of choice for RNS output conversion
in recent years. Therefore, any new conversion method must be compared with it to
have any chance of gaining widespread acceptance. Unfortunately, direct comparison of
conversion methods is often difficult as the criteria for optimality are highly dependent
on the nature of the rest of the RNS system. In addition, such factors as the availability
of certain technologies and hardware, the need to be able to reprogram the converter

48

easily, as well as others, may play an important role in any comparison. This means that
absolute, final statements as to which method is better cannot be made. What can be
done is to compare certain key features and highlight various trade-offs in order to help
the reader judge the suitability of the proposed technique, given a specific situation.

The rest of this section attempts to do such a comparison. The first subsection
briefly compares mixed-radix conversion with ordinary fractional representation con-
version by looking at the general architectures for both, and by comparing converters
designed for a specific RNS using the same technology. The next subsection shows that
there are reasons for using modified fractional representation above and beyond mere
area considerations.

4.3.1 Mixed Radix vs. Fractional Representation

The main advantages of mixed-radix conversion are that it requires no large modulo
M reduction at the end, and that it has a somewhat regular, pipelineable structure.
A block diagram of a four-modulus mixed-radix converter can be seen in figure 14.
The first observation one could make about the structure shown is that the area seems
to divide fairly equally between the computation of the mixed-radix coefficients and
the summing of the weighted coefficients at the end. A second observation is that the
connectivity is somewhat complex - there are several long wires that cross others on
their way to their destinations.

A block diagram of an equivalent fractional-representation converter can be seen in
figure 15. It is quite apparent that the wiring in this diagram is extremely simple. There
are no long lines and no crossing wires. Another observation is that the maximum length
path in the mixed-radix converter is longer than that in the fractional representation
converter. In fact, it can be seen that all paths are the same for the converter in
figure 15, which implies that it is more efficient in some sense than the mixed-radix
converter.

There was much discussion previously that the full output precision of the par-
ticular RNS under consideration was not usually needed, and that an almost linear
reduction in hardware for the fractional-representation converter could be achieved by
taking advantage of this and eliminating needless bits. What are the properties of the
mixed-radix converter given the same situation? It can be shown that the adders at
the end reduce more than linearly with decreasing output precision bits. Offsetting this
quick reduction, however, is the fact that no reduction is possible in the computation
of the mixed-radix coefficients. The reason for this is that each coefficient is needed to
compute the next highest one, and as the operations involved take place within a finite
ring, exact representation of the coefficients is always necessary.

49

X 4 X 3 X2 X I
LOOKUP LOOKUP LOOKUP
TABLE TABLE TABLE

TABLE TABLE BINARY ADDER

TABLE BINARY ADDER

BINARY ADDER

X

Figure 14. Four-Modulus Mixed-Radix Converter

A better idea of the trade-offs between mixed-radix and fractional-representation
conversion in VLSI can be gotten by looking at a specific example. In 1985, Department
D-82 of the MITRE Corporation designed a mixed-radix converter for the RNS

M = {61, 53, 41, 37, 29}.

Based on the technology used in that design, a number of mixed-radix and ordinary
fractional-representation converters were designed for the RNS M with varying degrees
of output accuracy. It was found that the active VLSI area of the modified fractional-

50

ILI I II I IIIIII III

4 3 X x

LOOKUP LOOKUP LOOKUP LOOKUPTABLE TABLE TABLE

BINARY ADDER BINARY ADDER

BINARY ADDER

I

Figure 15. Four-Modulus Fractional-Representation Converter

representation converter as a percentage of the area of the equivalent mixed-radix con-
verter, varied from 90% for full output precision (i.e., 28 bits), to 75% for 12-bit output
precision, and approached a limit of 20% as the number of output precision b,;ts went
to zero. This area advantage occured in addition to the regularity advantag of the
fractional representation architecture mentioned earlier.

4.3.2 Advantages of Modified Fractional Representation

The full power of the fractional representation is only realized when it is modified
to allow ordinary (i.e., no modulo operations) weighting of the residues in the recon-
struction formula. Ordinary weighting enables one to use standard binary multipliers
rather than modulo-specific lookup tables, thereby freeing the designer from the task
of designing a new converter for each and every RNS. Using modified fractional repre-

51

sentation, a general purpose converter can be built which can be programmed for the
RNS desired merely by hardwiring the necessary weighting factors to the inputs of the
multipliers.

A VLSI design using the modified fractional representation was beyond the scope of
this project. However, other efforts within Department D-82 have yielded very nice re-
sults in that direction. A systolic array that performs modified fractional-representation
conversion was developed, in which each array cell consists of a small adder with a small
amount of controlling circuitry. In addition, an input conversion algorithm was found
which maps directly into the same systolic array, yielding a regular, programmable
architecture capable of RNS I/O conversion. The array is programmed for a specific
RNS in the manner described above. Since each cell in it operates as fast, if not faster
than, the inner RNS operations, the systolic array converter imposes no constraints on
the throughput of the overall RNS system. A paper documenting these results is in
preparation.

4.4 CONCLUSION

A new method of RNS output conversion, fractional representation, has been ex-
plained and a slightly modified version of it employing binary multipliers rather than
lookup tables has been derived. The new method is fast, flexible, and yields a fairly
simple structure, which should be easily realizable in hardware. A general architec-
ture comparison, as well as a VLSI area comparison for a specific example, was made
between mixed-radix and ordinary fractional-representation converters. In the VLSI
area comparison, the area of the fractional-representation converter was always less
than that of the equivalent mixed-radix converter. The main advantage of fractional
representation occurs in the modified version, which allows a general output converter
to be designed. Such a design was pursued under a separate effort. A systolic array
using modified fractional representation has been developed which can also perform
RNS input conversion. The array is programmable for any RNS desired (within certain
designer-chosen limits) and operates at least as fast as the inner RNS operations that
it is meant to be used with.

52

SECTION 5

POLYNOMIAL RNS CONVERSION:
THE INNER LEVEL OF PARALLELISM

This section presents an architecture and VLSI design for the conversion into
and out of the inner level of parallelism of an algebraic-integer RNS implementation.
The conversion, which is based on the polynomial version of the Chinese Remainder
Theorem, can be expressed as a matrix multiplication, and the resulting architecture
will be based on the LU decomposition of the conversion matrix. This architecture
applies to parallel vector-matrix multiplication for any nonsingular matrix, and not
just to the special case of the conversion matrix.

The next section describes the inner-level algebraic-integer conversion problem
and relates it to LU decompositions. Subsequently, the architecture for the conversion,
called the LU architecture, is derived and two different basic cells are treated. An
alternative systolic architecture to perform parallel vector-matrix multiplication is con-
sidered and compared with the LU architecture. Finally, the VLSI design to perform
the LU architecture is described.

5.1 CONVERSION AS MATRIX MULTIPLICATION

5.1.1 Description of the Conversion

In order to make the discussion of the conversion more concrete, it is assumed that
the algebraic integers are of the form

ao + al0 + a202 + + an-o n- 1, (5.1)

where 0 is a root of an nth degree polynomial f(x), which is irreducible over the integers
and is called the minimum polynomial of 0. Other representations for the algebraic
integers and the changes that are needed in the conversion are elaborated on at the end
of this section.

Let the RNS be composed of the primes pi, p2,..., pm. It is possible to extend the
results of this section for some cases of arbitrary relatively prime moduli; the restriction
of primes is used to ease the exposition. For each prime p, the algebraic integer modulo p
must be converted to an n-vector of entries modulo p, where n is the degree of the
extension. Processing is then performed on each coordinate independently; this is the
inner level of parallelism. Unless otherwise noted, all constants in this section will be
residues modulo some fixed prime p.

53

An algebraic integer of the form of (5.1) modulo a prime p can be considered as
an element of the ring Z[x]/f(x), which consists of polynomials with coefficients in Zp
modulo f(x), i.e., x satisfies the relation f(x) = 0. The prime p is chosen so that
f(x) has n distinct roots modulo p, say ao, a1,... ,an- 1, and so f(x) factors as

f(x) = (X-O)(x-al)'.'(X- Qn-1).

From the Chinese Remainder Theorem applied to polynomials, there is the following
isomorphism:

ZP [X]/(f()) Zp[X]/(x-O) X .. x /(

- Z X ... X Zp.

This isomorphism is given by the map

: g(X) i-p (g(ao),... ,g(an-)). (5.2)

Each component of 4O(g(x)) represents one of the inner parallel channels; in particular,
there is an n-fold increase in parallelism.

If g(x) is represented as in (5.1) (with 0 replaced by x), then the mapping in (5.2)
is the following modulo p vector-matrix product:/(1.1)\

aO al an-I

-2 a2 2(9(ao),-. ,g(an-1)). (5.3)
(nau.-1.a) . ..1 a n (5

-0 - n-i

That is, the conversion to the inner level of parallelism is accomplished by a matrix
multiplication. The matrix in (5.3) is an example of a Vandermonde matrix. It will be
denoted by V. The next theorem proves that the matrix V is invertible (the fact that
the roots are distinct is needed here). Conversion out of the inner levels is accomplished
by multiplication by V - 1.

THEOREM 5.1. The matrix V is invertible.

PROOF: For i = 0,... , n - 1, define the following polynomials:

V(X) lj,(ix - a)

()=[i ,(- aj)

54

(this is the so-called Lagrange interpolation method). Then v,(ai) equals 1 if i = I
and 0 otherwise. For each vi(x), let vi be the row vector of coefficients of vi(x) written
by increasing degree. Then vV = (vi(ao),...,v(a,._.)) is a vector with a I in the
ith spot and Os everywhere else. The matrix whose rows are given by the vi is thus the
inverse of V. I

For a general non-prime modulus q, the mapping of (5.2) is an isomorphism exactly
when the corresponding Vandermonde matrix is nonsingular. In particular, this is the
case if the determinant of the matrix is a unit modulo q. A formula for the determinant
of a Vandermonde matrix is given in section 5.1.2.

Note that (5.3) is essentially a transform. Polynomial multiplication or convolution
on the left side becomes coordinate-wise multiplication on the right side. Hence, one
advantage of the inner level of parallelism is that it greatly simplifies the complicated
algebraic-integer multiplication.

5.1.2 LU Decomposition of the Vandermonde Matrix

The architecture to perform the conversion is based on the LU decomposition of
the Vandermonde matrix V. A matrix is LU-decomposable if it can be factored as
the product of a lower-triangular matrix L times an upper-triangular matrix U. Some
elementary properties of LU decompositions are given in appendix A.

Suppose first that V factors into two n x n matrices, say V = V1 V2 . Since V
is invertible, V must be invertible. Each row of V-' is identified with the vector of
coefficients of some polynomial (the coefficients written by increasing degree). With
this identification,

f - mI(X) -\Y(5.4)
- m n- (X) -

If mi is the vector of coefficients for mi(x), then equations (5.2) and (5.4) give

(m,(ao),... ,mi(an-)) = (m())

= miV
= mi VI V2

= ith row of V2.

55

That is,

mo(ao) mo(al) ... mo(a-li)

M I*a) micl .. mi(a,-.I)(

m.-l(,a0) m.-l(,al) ... m.-l(,f.-l)

Conversely, if {mO(x),... ,m,n_.(x)} is any basis for Zp[x] modulo f(x), then the
corresponding matrices V and V2 from (5.4) and (5.5), respectively, give a factorization
of V; V is a change of basis matrix and V2 is the matrix for the map in (5.2) in this
new basis.

When do V1 and V2 give an LU decomposition? If V is lower-triangular, then
V 11 is also lower-triangular, and in particular the degree of mi(x) is i. If V2 is upper-
triangular, then m,(aj) is zero if j < i, or equivalently, (x - aj) divides mi(x). These
observations lead to the following definitions:

tO(x) = 1
tl(X) = X - ao
t2(W) = (X - ao)(x - al)

t_(x)= (x - aj). (5.6)
j<n-1

Define V and V2 as in (5.4) and (5.5) using these t,(x) polynomials; this gives the LU
decomposition of V. Furthermore, up to a constant factor, they are the only polynomials
which do so (Theorem A.3). These matrices are denoted by L = V and U = V. The
LU decomposition of a Vandermonde matrix is presented in a different manner in [9]
along with additional references.

As an aside, this factorization gives for free the well-known formula for the de-
terminant of a Vandermonde matrix. The determinant of V is the product of the
determinants of L and U. The determinant of L is 1, since L- 1 is lower-triangular with
Is on the diagonal (the coefficient of x' in ti(x) is 1). Thus, the determinant of V is the
determinant of U, which in turn is the product of its diagonal elements. That is,

n-1

det(V) = rI ti(ai) = JJ(ai - aj).
i=0 j<i

56

5.1.3 An Example: Z[V2 + V2], p = 31

Let 0 = V/2 + v12. The minimum polynomial forD is f(x) = x 4 4 + 2, and a

small calculation shows that

X4 -4X 2 +2 - (x-5)(x -14)(x - 17)(x-26) (mod 31).

Thus the isomorphism of (5.2) exists. The corresponding Vandermonde matrix is

1 1 1 1
5 14 17 26
25 10 10 25 "

1 16 15 30)

The inverse of V can be found by expanding the following four polynomials (where,
for the remainder of this section, all calculations are modulo 31):

1

(5 - 14)(5 - 17)(5 - 26)(x- 14)(- 17)(x - 26)(- 14) 17(- 6) 5(x-1)(61

(14 - 5)(14 - 17)(14 - 26).(x - 5)(x - 17)(x - 26)
1 - (x - 5)(x - 14)(x - 26)

(17 - 5)(17 - 14)(17 - 26)
1 - ~(x - 5)(x - 14)(x - 17).

(26 - 5)(26 - 14)(26 - 17)

That is,
10 2 30 6

V 6 27 1 20
6 4 1 11 "

10 29 30 25)

In order to calculate the LU decomposition of V, define the four polynomials:

to(x) = 1 = 1

ti(x) = x - 5 = x + 26

t2 (x) = (x - 5)(x - 14) = x 2 + 12x + 8

t3(X) = (x - 5)(x - 14)(x - 17) = x 3 + 26x "2 + 21x + 19.

57

Then V = LU, where
26 1 00

2 1 0
0 0 1

8 12 1 01
19 21 26 1

(using the ti(x) in (5.4)) and

0 9 12 21U= 0 0 5 4

0 0 0 5

(using the ti(x) in (5.5)). These in turn imply that

1L0 0 0

L 5 1 00

1 12 5 1

and
29 6

U-1 0 7 8 201
0 2511

0 25

The latter two matrices are given for completeness; they will not be needed in the
architecture to be described at the end of section 5.2.

This and other examples are given in appendix B.

5.1.4 Change of Basis

An algebraic integer may be naturally represented in several ways. For example,
the elements of the ring Z[V'V2 + /2 of real numbers in the ring of algebraic integers
determined by the 16th roots of unity can be represented as

(ao,a,a2,a3)4 -ao + a IV +v/ + a2 2 + a3(V +V-2

or

(bo, bI, b,, b3) 4-bo + b I/2 +v/2 + b2 v2 + b 3 V2 - v/2.

58

It is the first representation that coincides with (5.1) and corresponds to the example

in section 5.1.3. The two representations are related by a change of basis matrix:

1)0 0 0

(bo," b3 0 1 0 (a0,... ,a3).
o -3 0 1

Call this change of basis matrix T. Then the vector (b,.... , b3) is converted into
the inner channels by multiplying by TV, where V is the Vandermonde matrix
from (5.3). Since T is lower-triangular and V is LU-decomposable, the matrix TV
is LU-decomposable. Therefore, the architecture to be developed in section 5.2 would
apply also to the matrix TV and thus to the second representation.

In general, given another representation for the algebraic integers besides the stan-
dard representation of (5.1), there is a change of basis matrix T that sends this represen-
tation into the standard representation. This matrix is integral with determinant ±1,
and so in particular is invertible modulo any prime p. The conversion of algebraic inte-
gers in the new representation into the inner channels is accomplished by multiplying
by TV, where V is the Vandermonde matrix from (5.3). If TV is LU-decomposable,
then no additional changes need be made; the resulting matrices L and U can be used
in the architecture of section 5.2.

If TV is not LU-decomposable, then there is some permutation matrix P such
that PTV is LU-decomposable (see Theorem A.2 in appendix A). Multiplying by the
matrix P induces a reordering of the coordinates in the representation, and thus requires
no additional overhead. That is, conversion becomes the calculation

((ao,... ,an- 1)PT) PTV,

where multiplying by pT just permutes the ai. The same observation applies to recon-
version.

5.2 THE LU ARCHITECTURE

In this section, an architecture is developed that performs the conversion and
reconversion of a vector via a matrix multiplication. The architecture applies whenever
the matrix is LU-decomposable and is called the LU architecture. The principle used in
the computation is a combination of forward elimination and back substitution (see [91
). The architecture is also motivated by the desire to have parallel inputs and outputs.

The LU architecture assumes knowledge of the LU decomposition; as seen in the
last section, it is possible to precompute the LU decomposition for the the case of

59

inner-level conversion and reconversion. In other applications, determining the LU
decomposition may be more the central issue, and the present architecture should not be
confused with methods that accomplish this. This section develops the LU architecture
in a general manner, illustrating it using the specific task of inner-level conversion and
reconversion.

5.2.1 Data Flow

Suppose that the vector x = (xo,... ,x,j) is converted to the vector z =
(z,... ,,-,) using an LU-decomposablP matrix. Then for the appropriate lower-
triangular matrix L and upper-triangular matrix U,

xLU = z. (5.7)

Reconversion from z to x is the matrix product

zU-'L - 1 = x. (5.8)

Define y (yo,... y,-1) as xL (= zU - '). This y is in some sense a halfway point in
the conversion from x to z (or the reconversion the other way).

Although the results in this section will be discussed for general LU decomposi-
tions, the specific example of the Vandermonde matrix of the last section should be
kept in mind. In that case, the vector x represents an algebraic integer in polynomial
notation (5.1). The vector z represents residues (from the polynomial version of the
Chinese Remainder Theorem (5.2)). As for y, it is the vector of coefficients of the ti(x)
from (5.6). The ti(x) are products of an increasing number of irreducible polynomials,
i.e., the (x - a,), and so are analogous to the successive products of primes in mixed-
radix conversion in ordinary-integer RNS; the vector y then corresponds to mixed-radix
coefficients. (This analogy can be made rigorous; it is based on the similar algebraic
properties of Z and ZPIx].)

The overall structure of the LU architecture is a grid of basic cells that uses the
fact that since L is lower-triangular, y. depends only on xi,... ,x-I, or equivalently,
on xi,yi+l,... ,y.-1. As each y, is calculated by forward elimination, it is then fed
into the calculation of yo,... , yi-i and zi,... , zn-1. The latter are computed by back
substitution. The flow of variables is shown in figure 16. Values pass from top to bottom
and calculations take place at the arrowheads. In particular, the grid in figure 16 is
5 x 4. This process will be made more apparent in the next subsection.

The reconversion is based on similar observations between the yi and the zi. Since
U- 1 is upper-triangular, y, depends on zo,... , zi, i.e., on zi, yo,... , yi-. Again after
being calculated by back substitution, each yi is then used to calculate Yi+1,.. , Yn-I

60

and x0,... , xi. This flow of variables is shown in figure 17. Observe that though the
underlying grid is identical to that in figure 16, the vectors are written in reverse order.

The LU architecture can be applied to matrix-matrix multiplication by pipelining
the input vectors. The only requirement is that one of the matrices be nonsingular.

As already stated, in order to complete the architectures in figures 16 and 17,
* some type of computation is performed at the arrowheads. These locations are called

cells. The function of these cells is the choice of the designer and could depend on
implementation, etc. The next two subsections each deal with one type of cell.

61

x3 x2 x xo

y 2 y

j 3
z 3 z 2 zi1 zo0

Figure 16. Flow of Variables in LU Grid (n =4)

62

y 3

Y2-

I -i
zo0 z1 z 2 z 3

Figure 17. Flow of Variables in UL Grid (n =4)

63

5.2.2 The A + BC Cell

The first cell is shown in figure 18. The operation of the cell is a multiply and
accumulate. There are two inputs, A and B, which are used to produce the result
A + BC, where C is a constant assumed fixed for the cell, i.e., stored in the cell. In the
algebraic-integer conversion, the calculation is carried out modulo some fixed prime p.

A BIIl

C

A+BC

Figure 18. The A + BC Cell

The following observation from appendix A is needed: if a matrix has LU decom-
position LU, then for any nonsingular diagonal matrix D, (LD-)(DU) is also an LU
decomposition. In this way, the diagonal of L or U can be prescribed as required.

64

5.2.2.1 Architecture for LU

The matrices of the LU decomposition are written so that the diagonal of L is all
ls (and so the diagonal of L - 1 is also all 1s). To ease the exposition, let n = 4 and let

/1 0 0 0
1e10 1 00
t20 e21 1 0
130 61623 1

and

UOO UO1 U02 U03

U0 Ul U12 U13

0 0 U22 U23

0 0 0 U33

Since yL - 1 x,
Y3 = X3

Y2 = X2 - 32 y3 (5.9)
Y1 = Xl - t31y3 - t 21Y2

YO = XO - t30Y3 7 t 20 Y2 - 6IOY1 •

These equations determine the constants for the triangle of cells above the off diagonal
(see figure 19). The remaining cells are filled with the appropriate uij; this follows from
the equation z = yU. By choosing the diagonal of L to be all is, the coefficient of xi
is also 1, and so the first row of figure 16 can be eliminated.

In the example of section 5.1.3, the matrices L - 1 and U are already in the required
form. The resulting grid with constants is shown in figure 20.

65

X 0 x 1 x 2 X3= Y3

0

430 L 431 432 'j 33
_j

I y 2

1 0 1

-/F20 4211 U 222 1 'j 231

Y,

0-1

ui107 1] U 1310 U11 U 12

YO

0-1 1 1

U 03U01U00 U 02

z 0 z 1 Z 2 z 3

Figure 19. Grid for LU Computation with A + BC Cell

66

zo 0i z 2 z 3 - 3

677

5.2.2.2 Architecture for UL

The matrices of the LU decomposition are written so that the diagonal of U is all
Is. Continuing with n = 4, let

t 0 0 0
L-1 io 1 0)

1 20 t21 622 0

6s0 t1 62 63

and

1U01 U02 U03u12 u13U)

0 0 1U2

(Of course, the Ii and uji may be different from those in the previous section.)

Since yU = z,
YO = zo

Y1 = Zl - U01yo (5.10)

Y2 = Z2 - U02YO - U12Y1

Y3 = Z3 - U03YO Ul3Yl - U23Y2•

These equations determine the constants for the triangle of cells above the off diagonal
(see figure 21). Notice that the vectors are reversed from figure 19. The remaining cells
are filled with the appropriate eij; this follows from the equation x = yL -1. Again, the
first row of cells in figure 17 was eliminated by the choice of diagonal for U.

In the example of section 5.1.3, the matrices L - 1 and U must be changed so that
the diagonal of U is all is. The new matrices are

27 7 0 0
1421 25 0
10 29 30 25/

and

U = 0 1 22 23
0 0 1 7
0 0 0 1

The resulting grid is shown in figure 22.

68

x3 x2 x xo yo

z3 2 0i 0

Figre21.Grd or L omptaio wih + C el

-U03 021 1 _U01 T o

X 3 X2 Xl 1o X0 YO

I I - -0

30 301 301

8 1 9 1 7 1 271

1Y2

0-

241 251 211 141

1y3
0

25 30291

z 3 z 2 zi1 zo0

Figure 22. A Specific Example of UL Computation

70

5.2.3 The C(A - B) Cell

The A + BC cell from above gives a square grid for any LU decomposition. Because
of the analogy with ordinary-integer mixed-radix conversion, another cell seems natural,
namely one which does a subtraction and then a multiplication. This is shown in
figure 23. The inputs A and B are first subtracted and the result is multiplied by a
(stored) constant C.

A B1 1

C

C(A- B)

Figure 23. The C(A - B) Cell

Unfortunately, this cell does not lead to a well-defined architecture for general LU
decompositions. Consider the equations in (5.9), specifically

Yl1 = X1 - 6 3 - 21 y2

In order to put this in the grid, there would need to be constants fO, such that the
following equation holds

Y1 = / 33(/ 32(31(X - O) - y3) y2). (5.11)

71

Equating coefficients yields the equations

312031 = 1

032 = £31

,33 =

In particular, 12 = £31/121. But there is no guarantee that £21 is nonzero. The same
problem occurs with the equations for reconversion (5.2). One can attempt to change
the order of operations in (5.3) or to change the diagonal of the respective matrix,
but the same criticism will still hold. In this way, there is no well-defined method to
assign constants to the cells for an arbitrary LU decomposition (for either conversion
or reconversion).

In the algebraic-integer conversion, there are such constants 3, for the U matrix
because the i,j entry

1(lj - ak)
k<i

factors in a natural way. This also can be seen from the analogy with ordinary-integer
mixed-radix conversion. The lower-triangular matrix though does not work in general.
It is straightforward, however, to combine the C(A - B) cells for U with A + BC cells
for L. The resulting grid for the UL case is analogous to ordinary-integer mixed-radix
conversion. These hybrid grids though are undesirable because of the lack in regularity;
this is especially so since all additions and multiplications are modulo the same prime.
Therefore, the A + BC cell is the better choice.

The grids using the C(A - B) cell are not shown; if they exist they would be similar
to figures 19 and 21.

5.3 SYSTOLIC CONVERSION

The LU architecture developed in section 5.2 computes in parallel a modulo p
vector-matrix product, but only if the matrix is LU-decomposable (equations (5.1)
and (5.2)). By using Theorem A.2 in appendix A, this architecture applies to an
arbitrary nonsingular matrix after an appropriate permutation of the coordinates of
the incoming vector. It is natural though to examine other methods to compute vector-
matrix products, and one common approach is to perform the computation via a systolic
architecture. A complete treatment of systolic architectures is beyond the scope of
this paper. Rather the LU architecture is modified into a systolic architecture. The
architectures are linked by the common use of the A + BC cells.

72

5.3.1 The Systolic Architecture

A systolic architecture is characterized by computation taking place in a set of
locally interconnected simple cells. It is desirable for the computation to be pipelined
so that the cells are in constant use. The LU architecture is semi-systolic; it is fully
pipelineable and the operations are performed in simple cells. Information, however,
must be made available globally via long buses. The goal then is to eliminate these
long buses. For a general introduction to systolic architectures, see [11] .

It should be stressed that for certain applications there are more suitable architec-
tures than those discussed here. For example, if the n inner channels were implemented
with a single channel running n times as fast, the n coordinates would be available
sequentially. In this case, a linear systolic array, requiring only n as opposed to n2 cells,
may be more appropriate.

If the inputs and outputs are to be processed in parallel, then systolic arrays
to perform matrix-matrix multiplication are required. There are a variety of systolic
architectures that perform matrix-matrix multiplication involving a host of basic cells
and data-flow strategies ([17]). When the restriction is made to use the A + BC
cell described in section 5.2 (figure 18) and a rectangular data flow, then the systolic
architecture of this section is suggested.

The systolic architecture is described for n = 4, and is easily applied for general n.
Suppose that the goal is to compute the vector-matrix product xV, i.e.,

O Vo V0l V02 V03

(xOXX2,x3) VIO V11 V12 V13

V)20 V21 V22 V23
V30 V31 V32 V33

The flow of data is shown in figure 24. Each matrix element resides in a basic cell, so
there are n 2 cells. The inputs enter from the left and are staggered. They are passed
unchanged along the horizontal arrows. Each input is multiplied by the matrix element
and the result accumulated and passed down to the next cell along the vertical arrows.
For example, at step 1, xovoo is computed. At step 2, xovol and xlvio are computed,
with the latter then added to the previously computed xovoo. After step 3, the partial
answers are x0v02, xOv01 + xjvll, and xovoo + XlVO + x2v20. The outputs thus come
out staggered at the bottom at steps 4, 5, 6, and 7.

This process is further illustrated in figure 25. Each cell is an A + BC cell of
figure 19. The result is fully pipelineable, as is illustrated by the vector y following
the vector x. Once the pipe is filled, a set of four coordinates, corresponding to four
different output vectors, is available at each step.

73

--. V0oo - o - v602 -- "o3

XI 1-- vO 10 - V11 - v'2 - "l3

3 - '0 ' 1 3

Figure 24. Data Flow in the Systolic Architecture

74

0 0 0 0

II D Id

yI 1 11

Y2 X 2 L eadeade y 7

y3 0x33 V V

Figure 25. The Systolic Architecture with A + BC Cells

75

5.3.2 Comparison with LU Architecture

Both the LU architecture and the systolic architecture are fully pipelineable. Both
can be used to compute in parallel a modulo p vector-matrix multiplication where the
matrix is arbitrary (for the systolic architecture), or arbitrary nonsingular (for the LU
architecture, after possibly rearranging inputs). Both architectures are easily parti-
tioned into smaller blocks, say by rows or 2 x 2 subgrids. For the systolic architecture.
these blocks are identical; for the LU architecture, a slight modification must be made
depending on whether certain lines are input or output lines.

The major difference between the two architectures is the timing of the inputs and
outputs. The systolic architecture requires the inputs and outputs to be staggered, and
thus after the pipe is full the n coordinates entering and exiting the converter at each
time step correspond to n consecutive algebraic-integer results. Therefore, thc systolic
architecture requires more complicated synchronization before and after the converter.
On the other hand, the n coordinates entering and leaving the converter for the LU
architecture correspond to a single algebraic-integer result. However, long buses are
needed at each time step. This may be a concern for larger matrices.

5.4 VLSI IMPLEMENTATION

Both the LU architecture of section 5.2 and the systolic architecture of section 5.3
are highly regular, and thus well suited to VLSI implementation. In such an implemen-
tation, the architecture would be divided up evenly into chips, with as much of the grid
of the architecture put onto a single chip as feasible.

Although a single chip implementing both architectures is possible, since both
use the same basic A + BC cell, the chip to be fabricated will implement the LU
architecture. This architecture was chosen over the systolic architecture because of
I/O considerations, namely the fact that the algebraic-integer vectors do not need to
be staggered. Furthermore, the long buses required are not a problem for the degrees
being considered (up to degree 8). The systolic architecture is not ;mplemented along
with the LU architecture because of the added complexity in the design due to the
extra delays needed. The I/O assignments on the chip are not ideally suited to both
architectures. It should not be difficult, however, in adapting the actual VLSI layout
to a systolic approach if such is desired in the future.

Recall that the grid for the LU architecture consists of an n x n square of A + BC
cells. Furthermore, for the applications of algebraic integers usually considered. n is
even, and this will be the assumption here.

76

5.4.1 Chip Layout Limitation

The chip to be fabricated uses an 84-pin package and a 7.9-mm x 9.2-mm die
size. These parameters were chosen based on two main limitations derived from the
architecture.

The first major limitation to the VLSI implementation of the LU architecture is
modulus programmability. Specifying a prime or family of primes beforehand limits the
possible sets of algebraic integers. Instead. "lie prime needed in the conversion should
be an input (though fixed during a given application). This ability to program the
prime requires a larger area to perform the modulo arithmetic. This in turn places
limits on the VLSI chips, since a chip consists mainly of A + BC cells, each of which
consists of a modulo adder and multiplier.

The other major limitation to the VLSI implementation is the number of input
and output lines, under the assumption that the values in the architectures are to be
bused in parallel. Area estimates for the A + BC cells suggested Lhat four of these cells
would fit on a chip. There are three natural ways to place four cells in an n x n grid: in
a row, in a column, and as a 2 x 2 sub-grid (recall figure 19). The I/O requirements for
just the cells, i.e., ignoring for the moment the prime, the cell constants, etc., are 9 lines
for the row, 7 lines for the column, and 6 lines for the 2 x 2 sub-grid. Here the lines
are b-bits wide, with b to be determined. Notice further that the first two placements
require that n be divisible by 4. Also, the 2 x 2 placement corresponds itself to the
grid for a degree 2 extension (such as QRNS). Hence, placement in a 2 x 2 sub-grid is
suggested.

The prime and constants could be read in by a single 1-bit line. However, allowing
wider (b-bit) lines would increase the generality of the chip, letting, for example, the
matrix be changed during processing (though this may reduce the speed of the chip).
Allowing one b-bit line for the prime and two other b-bit lines for the cell constants
would bring the total to 9 lines for the 2 x 2 sub-grid. For an 84-pin package, the
implied upper limit on b is 8. Setting b = 8, there would then be 12 remaining pins to
allow for the control lines, the clocks, and so forth.

5.4.2 Algorithms for the A + BC Cell

The computation in an .4+ BC cell consists of a multiplication and an accumulation
modulo an 8-bit modulus. The accumulation can be absorbed in the multiplication. so
that the two major optrations performed in the cell are the computation of A + BC
and the reduction of the result modulo the modulus. (It should be noted that nothing
inherent in the design requires that the modulus be a prime.)

77

The multiplication uses a standard array multiplier, see, for example, [6] . Such a
multiplier consists of an 8 x 8 square grid of small cells, each of which is made up of
a full adder and an and gate. By setting the initial sums to the bits of A, rather than
zero, the multiplier computes A + BC, rather than just BC. This result is 16 bits long,
assuming that all of the input values are 8 bits.

The multiplication/accumulation is followed by a modulo reduction, which is es-
sentially a division. The 16-bit number N is divided by the 8-bit modulus M to produce
a quotient Q, which could be 9 bits, and an 8-bit remainder R. At each successive stage,
N is updated based on a comparison with a shift of M. If, for the current value of N,
N > 2' M, then the ith bit of Q is 1 and N is decremented by 2' M; otherwise N is
unchanged and the ith bit of Q is 0. Here i runs from 8 down to 0. After the last loop,
the value of N is precisely R. In VLSI, the inequality N > 2' M is checked by adding
216 - 2' Al to N and checking for a carry. it is then straightforward to keep the old
value of N or the new sum, which is N decremented by 2' M, based on the value of
the carry. The carry is, in fact, the ith bit of Q. This algorithm is demonstrated in
figure 26.

In practice, only 8-bit adders, not 16-bit adders, are needed to perform this addi-
tion. This is because 216 - 2' M = 2'(216-i - M) and 216-i - M is just 28 - M with
8 - i leading ones. Hence, the 8-bit number 28 - M is added to the appropriate 8 bits
of N. The carry of the 16-bit addition is just the next higher bit of N or-ed with the
carry of this 8-bit addition. All of the more significant bits of N are necessarily 0, and
the bits of N below the 8 bits used in the addition are not needed (and are just passed
down). The example of figure 26 is shown in figure 27 using these observations. Here
the 8-bit addition is shown in the box. The next higher bit of N is shown to the left,
and the unused lower bits of N to the right.

78

N = 35,161 M = 199

Current N 1000 1001 0101 1001
Step 1 216 - 28 M 0011 1001 0000 0000 Carry = 0

Step 2 Current N 1000 1001 0101 1001216 - 27 M 1001 1100 1000 0000 Carry = 1

Step 3 Current N 0010 0101 1101 1001216 - 26 M 1100 1110 0100 0000 Carry = 0

Step 4 Current N 0010 0101 1101 1001
216 - 25 M 1110 0111 0010 0000 Carry = 1

Step 5 Current N 0000 1100 1111 1001216 - 24 M 1111 0011 1001 0000 Carry = 1

Step 6 Current N 0000 0000 1000 1001216 - 23 M 1111 1001 1100 1000 Carry = 0

Step 7 Current N 0000 0000 1000 1001216 - 22 M 1111 1100 1110 0100 Carry = 0

Step 8 Current N 0000 0000 1000 1001
216 - 2' M 1111 1110 0111 0010 Carry = 0

Step 9 Current N 0000 0000 1000 1001216 - 20 M 1111 1111 0011 1001 Carry = 0

R = 0000 0000 1000 1001 = 137

Q = 0 1011 0000 = 176

35,161 = 176 x 199 + 137

Figure 26. A Modulo Reduction Example (16-bit Adders)

79

N = 35,161 M = 199

Step 1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 Result of OR = 0
00111001I

Step2 1 000100 1 0 10 1 100 1 ResultofOR = 1

100111001

Step 3 0 100101 11 01 100 1 ResultofOR = 0

Step4 1 00 1011110 11001 ResultofOR = 1

00110011 I

Step 5 0 1 0 0 1 1 0 0 1 Result of OR = 1

l0011 0 001 R 0

Step7 00 00100010 0 1 ResultofOR = 0
001 1001 1

Step 9 0 0 0 1000 1 0 0 1 Result of OR = 0

00110011

R = 1000 1001 = 137

Q = 0 1011 0000 = 176

35,161 = 176 x 199 + 137

Figure 27. A Modulo Reduction Example (8-bit Adders)

80

5.4.3 Layout and Testing

This section contains some pictures of the chip. The chip was designed using
scalable CMOS technoiogy. Figure 28 shows the multiplier/accumulator. The 8 bits
of C come from the right; the 8 bits of A and B come in from the bottom. The 16
bits of A + BC come out from the left and top. Figure 29 shows the modulo reduction.
The 16 bits of the input come in from the top and right; the remainder exits from the
bottom. There are 9 rows, each an 8-bit adder. After every three rows, there is a set
of registers for pipelining (the last set is not shown, since it is outside this cell). The
registers allow for pipelining; each section isolated by registers takes roughly the same
time as the multiplier. Figure 30 shows the complete A + BC cell, with the modulo
reduction on the left and the multiplier on the right. There is a set of registers between
the two. Finally, figure 31 shows a picture of the whole chip with four cells forming a
2 x 2 grid.

Currently, the chip is undergoing testing before fabrication. SPICE simulations
for the basic full adder used in both the multiplier and the modulo reducer indicate a
speed of roughly 3 MHz. The chip will be fabricated using 3 pm technology.

5.5 CONCLUSION

The conversion into and out of the inner level of parallelism of an algebraic-integer
implementation is a modulo p vector-matrix multiplication. When the algebraic inte-
gers are in a natural representation (eq. 5.1), the conversion matrix is a Vandermonde
matrix. Some facts were derived about the Vandermonde matrix, including its LU fac-
torization. This latter result was used in the illustration of an architecture to perform
the conversion.

This architecture, called the LU architecture, uses the LU factorization of a matrix
to perform vector-matrix multiplication. With some slight modification, it can be used
with any nonsingular matrix. The LU architecture is semisystolic, in that computations
are performed in a grid of small basic cells. Unfortunately, long buses are needed
to distribute information globally. The LU architecture was compared to a systolic
architecture using the same basic cells. Although with the systolic architecture all
information is just distributed locally, the input and output vectors need to be staggered.
This is not the case with the LU architecture, which requires these vectors to be available
all at once. Because of this feature, the LU architecture was chosen for implementation
in VLSI.

A degree n conversion using the LU architecture requires an n x n grid of basic
cells. For the VLSI implementation, this grid is blocked off into n/2 x n/2 grid of chips,
each chip containing a 2 x 2 grid of basic cells (n is assumed even). The chip is limited
to an 8-bit modulus, so that all values are also limited to 8 bits. The matrix can either

81

be fixed or changed during computation, although the latter may reduce speed. The
chip has been designed using scalable CMOS technology. SPICE simulations indicate
a speed of 3 MHz. The chip is currently undergoing testing before fabrication using
3 tim technology.

82

U ~Nt..'-.....

Figure 28. The Multiplier/ Accumulator

83

IL
.....

......

J.L
-----------

L EI - -------

- --- -----------
.........

Figure 29. The Modulo Reduction

84

.i ur .0 .h . . .C ..el.

I85WI a

Figure 31. The LU Architecture Chip

86

SECTION 6

ALGEBRAIC-INTEGER-TO-ANALOG
(OR DIGITAL) CONVERSION

After processing in an algebraic-integer RNS system is completed, the results are
converted from the inner and outer level of RNS parallelism back into algebraic-integer
form. The algebraic integers can be assumed to be of the form

aowo + alwi +- --- + an-lwn-i, (6.1)

where the coefficients ai are integers, which are usually much larger than at the in-
put due to growth during the processing, and {wo, wi, ... , Wn-l} corresponds to the
algebraic-integer basis. The final quantization process, referred to as requantization to
distinguish it from the input quantization problem, involves evaluating (6. 1) using finite
precision approximations of the wis.

This final evaluation can be real or complex depending on the choice of algebraic
integers. If the wis are represented in binary form, then a binary result is computed.
If desired, this binary result can be input to a conventional digital-to-analog (D/A)
converter to obtain an analog result.

The key issue in this section is determining how accurate the approximations of the
wis have to be so that requantization degrades only negligibly the overall performance.
That the coefficients in (6.1) can become quite large would seem to imply that the
wis may have to be approximated very accurately. However, this has turned out to
not always be the case. In the case of computing a fast Fourier transform (FFT) with
cyclotomic integers, [4] reported that extensive simulations showed that approximations
(in this case of powers of w-a complex 16th root of unity) having comparable precision
to those employed in the input quantization and for the twiddle factors were generally
sufficient, with very little gain in performance if more accurate approximations were
used. The paper [4] also provided a statistical analysis as to why this was so.

This section deals with issues common to general algebraic-integer requantization,
using the algebraic integers Z[v 2 + v'] for illustration. Performance data, which is
consistent with the conclusion in [4] , is presented for three FIR filter examples. An
error analysis shows, for a proc'.ssing function consisting of a sum of products (which
are assumed to be orthogonal random variables), that the performance degradation, ex-
pressed as a difference of output SNRs, is independent of the output coefficient size and
summation length. The requantization for complex algebraic integers can be reduced
to the real case by treating real and imaginary parts separately. This is illustrated for
Z[eW i/16] using Z[V12 + v/.2]. Finally, implementation issues are discuased. including
the possibility of implementing the requantization using an RNS.

87

6.1 ALGEBRAIC-INTEGER REQUANTIZATION PERFORMANCE

The final stage in any algebraic-integer RNS system is the evaluation of
(6.1) using finite precision approximations of elements of the algebraic-integer
basis. The ring Z[2V_+7V] represented with the nonpolynomial basis B =
{1, v12 + V}, v/iT7V} will be used to illustrate the issues involved. The num-
bers in this case have the form

a = ao + aI V/2 -+V/2 + a2 Vr + a3 V2 - V2. (6.2)

As before, Z[B]M denotes the set of elements of the form (6.2) with coefficients in the
range [-M/2, M/2].

To form the output a in this case, an inner product of the algebraic-integer coeffi-
cient vector A = (ao, al,a2,a3) must be taken with the basis vector Q,

This task is complicated by the fact that three of the components of the basis vector
cannot be represented exactly as binary fractions. The obvious solution-use as many
bits as may be required for the basis vector components-may not be feasible, as more
bits translates into slower evaluations. This could make this final evaluation the system
bottleneck.

A practical requirement is that the components of 1 be represented by numbers of
b bits or less, where b is determined by the speed requirements of the system. A degree
of freedom still exists even when b has been specified, due to the fact that a scaled
version of the output a is just as good as a itself as long as the scale factor remains
constant. Thus, one can choose to represent kQ, k a constant scale factor, rather than
Q itself if this yields a better approximation. In either case, the b-bit approximation of
the basis vector is !l,

kLi = min {[kwI, 2b - }, i = 0, 1,2,3, (6.3)

where wi is the ith component of Q, and the square brackets indicate a rounding to
the nearest integer (k is considered to be 1 for the non-scaled approximation). The
advantages of scaling can be seen when approximating the numbers (vf2, v\). Using
the scale factor k = l/v- results in the numbers (1, 2), which can be represented
exactly with only two bits.

How does one choose the proper scale factor k given the basis vector and the
number of bits used in approximating it? Assume that the rescaled (the factor of k has

88

been removed) exact output is a, and the rescaled output of a finite-precision evaluation
is a. Then the quantity to be minimized is the squared error (a-) 2 . Letting H = Q- ,
the error vector due to the approximation of Q2, then

(a -)2 = (aorqo + ai1 + a2772 + a3773) 2 , (6.4)

where ?1i is the ith component of H. On the assumption that the coefficients ai are in-
dependent, zero-mean, and identically distributed random variables, then the expected
error due to the basis vector approximation error is

E((a - a)2) = E(a2)17o + E(a 2)12 + E(a2)172 + E(a2)172

= E(ao)(ro + 1 + + 773). (6.5)

That this error depends on the expected value of the square of the output coefficient
size means that the requantization error is dependent on the processing function.

The quantity in (6.5) is minimized by minimizing the sum of the squares of the
basis vector approximation errors 77i. Using (6.3), (6.5), and the equation for H, it can
be shown that that sum is a piecewise-continuous quadratic function of k containing a
finite number of minima. These can be solved for exactly and compared to find the scale
factor that minimizes the squared approximation error. Table 9 gives optimal values of
k for b ranging from 8 to 12 bits. In addition, the integer approximation k! (which is
what the requantization hardware would actually use) and the rescaled approximation

are given for the various values of b. The first four entries are the exact values of the
components of Q to six decimal places and are there for comparison.

To test the performance of finite-precision requantization, a simulation of an
algebraic-integer FIR filter was designed. Three filters-a lowpass filter, a highpass
filter, and a multiple passband/stopband filter-were simulated on nine sets of test
input data. The test data consisted of a combination of sinusoids and additive white
Gaussian noise. For each run, an algebraic-integer range Al was chosen. The set Z[B]M
was then used to quantize the input data by going through a 12-bit A/D converter and
mapping to the appropriate element in Z[B]M (the two-stage approach of section 3.2).
The quantized data was put through a filter arrived at by quantizing one of the three
filters-initially designed with floating-point coefficients-with the closest sc'led ele-
ment of Z[B]M. Scaling here is used in Lhe same manner and for the same reasons as
it was in approximating Q?, only now the set of available representation levels consists
of algebraic integers rather than just integers as before (simulation design issues are
covered in greater detail in the next section).

To measure the effect on performance of the finite-precision final evaluation, the
performance when this evaluation is performed exactly must first be measured. This
was done by comparing the output of the algebraic-integer simulation, assuming exact

89

Table 9. Optimal Approximations for b-bit Requantization
for Z[V/2-+ /2]

bits k k

00 - - 1.000000
1.847759
1.414214
0.765367

8 110.983 111 1.000157
205 1.847136
157 1.414636

85 0.765886

9 255.992 256 1.000029

473 1.847711
362 1.414104
196 0.765648

10 473.016 473 0.999966
874 1.847717
669 1.414328
362 0.765302

11 1091.042 1091 0.999961
2016 1.847775
1543 1.414244
835 0.765323

12 1759.977 1760 1.000013
3252 1.847751

2489 1.414223
1347 0.765351

requantization, with the output of a floating-point simulation (i.e.. a simulation where
neither the floating-point input data nor the original floating-point filter coefficients
were quantized, and where all computations took place in full floating-point accuracy).
The performance of the algebraic-integer simulation with exact requantization was mea-
sured ;iy computing the signal-to-noise ratio (SNR) of that simulation with respect to
the floating-point simulation.

90

Table 10. SNR Degradation for b-bit Polynomial Evaluation

ASNR as a function of the range M

bits 2 4 6 8 10 12

8 0.01 0.20 0.84 3.63 7.09 10.41
9 0.01 0.05 0.11 1.04 1.43 3.49

10 0.00 -0.01 -0.02 0.09 0.24 1.91
11 0.00 -0.01 0.01 -0.01 -0.03 0.55
12 0.00 0.00 0.01 0.00 0.02 0.26

To be more precise, let the jth output of the floating-point simulation for a specific
set of input data and a specific filter be called aj, and let the jth output of the analogous
algebraic-integer exact requantization simulation be called aj. Then the SNR with exact
requantization is

SR=10lg Ei ' (6.6)SNR1 = l0logl0 Zj(- 1

Call the jth output of the finite-precision polynomial evaluation simulation aj. Then
the SNR in that case is

SNR 2 = 10log 10 .Ia& (6.7)

The degradation due to using fl to generate aj rather than using fQ to generate aj, is
the difference between the two SNRs, i.e.,

ASNR = SNRI - SNR 2 . (6.8)

The above quantity has been computed for two different sets of input data put
through all three filters-in other words, six combinations. Each of these combinations
was run using Al = 2, 4, 6, 8, 10, 12 and requantization precisions of 8 to 12 bits, as
well as an exact floating-point requantization. In addition, a floating-point simulation
of each combination was run to set up a signal reference against which SNRs could be
measured. The results were divided according to M and b, and are tabulated in table
10.

The advantages of scaling before approximation, as done in (6.3), can be seen in
the fact that an SNR degradation of more than 13 dB was observed when scaling was
not used in the b = 8 bits, M = 8 case (as compared to only a 3.63-dB degradation
for an optimal scaled approximation). In that instance, the Wis were approximated by
writing them as binary fractions and rounding to 8 bits.

91

It seems clear from the table that degradation in SNR for a given precision b is
directly linked to the size of M, which in turn is related to the accuracy of the input and
filter coefficient approximations. If the limit on acceptable degradation is set at 0.5 dB,
then a requantization precision set at the same level as the input and filter coefficient
precision is all that is required to obtain acceptable performance. For example, if
M = 4, which corresponds to better than 8-bit performance (see section 3.4), b = 8
suffices.

The reader may wonder why some (albeit small) negative SNR degradations occur
in table 10, indicating that the imprecise requantization improved performance, rather
than degrading it as expected. The reason for this lies in the fact that the imprecise
evaluation merely adds more errors onto an already corrupted result. On average, one
expects the error to increase as a result, but there is no reason why the two errors being
added might not tend to cancel each other in specific cases. Since only six runs are
being averaged to produce each entry in table 10, it is not surprising that a noticeable
variation from the expected degradation occurs. When this expected degradation is
very close to zero, the variation can result in negative ASNRs. One would expect this
phenomenon to disappear for very large sample sizes.

6.2 AN ERROR ANALYSIS

The results in table 10 apply only to the finite-impulse response filtering simula-
tions that were run. A more valuable result would be an error analysis of requantization
in a more general processing framework.

System performance for finite-impulse response filtering is usually measured by
SNR. That is why SNR degradation was considered to be an appropriate measure of
finite precision requantization in section 6.1. In a more general setting SNR may be
an inconvenient way of quantifying errors. Even worse, it may not even be a relevant
measure at all. The ultimate error measure is. of course, the errors themselves, but
these are usually cumbersome to work with directly. If one assumes the errors due to
requantization are a sequence of zero-mean uncorrelated random variables (a common
assumption) then the most common measure of the error sequence is the expectation
of the squared error. Call this ar,-

a2 = E((a-) 2). (6.9)

where E indicates an expectation (the time index j is omitted in this section under the

assumption that all sequences are wide-sense stationary). By (6.5), o" is proportional
to the expected square of the algebraic integer coefficient ao. Under the assumptions

92

used in (6.5), it can be shown that

E(a2) = E((a0 + aI 2V + v'2 + a 2V + a3 -) 2

= (1 + (2 + V2) + 2 + (2 - vr2))E(a)

= 7E(ao). (6.10)

Assuming a sum-of-products process, each ideal output term a is a sum of N product
terms pi,

N
ax = Z i

8=,

and each pi is actually approximated (because of initial quantizations) by ii with an
error ej = Pi - pi, so that

N
a=Zp-s .

ia-- I

Assuming the Pi are identically distributed orthogonal random variables,

E(a'2) = E (it)2) = NE(P?). (6.11)

Using (6.5), (6.10), and (6.11) in (6.9) yields

NE(P) (77 + 12 +,q2 +,q2). (6.12)

.r 7-

It can be seen that the requantization error grows linearly as the number of product
terms N.

Even though the main focus of section 6 is the effect of requantization, one might
also be interested in errors due to initial quantizations, c = E((a - a) 2). It is not
difficult to show that

aq = NE (el) , (6.13)

if one assumes that the ei are identically distributed zero-mean uncorrelated random
variables. Given , ¢, and the expected signal power E(&) = NE(p1), one can
construct almost all conceivable interesting measures of error (i.e., total error variance
a2 + a 2, relative error variances, etc.). Since E(p2) = E(p2) + E(e2), and since one has
explicit control over N and the basis vector approximation error, the three quantities
specified in (6.11)-(6.13) depend only on E(P2) and E(e2). These latter two quantities
are specific to the processing situatiuLI, but oncc they have been determined the error

93

performance of the system can be completely characterized for all values of N and
all basis vector approximations. Hence the goal of this section-to determine how
the accuracy of the basis vector approximation effects the overall performance-can be
achieved using (6.11)-(6.13) without need for experimental determination. For example,
the accuracy needed in the basis vector approximation can be determined from (6.12)
when E(23) has been determined, and when an acceptable amount of requantization
error has been decided upon.

Applying these results to the filtering example, consider the following error mea-
sure: [1(.4

ESNRI = 10logl 0 [E(a *) (6.14)

It is not unreasonable to expect SNR 1 to behave like the quantity ESNRI as

1 a E(a) as J--*oo (6.15a)
j-1

J (i_ j) E(a-a)) as J -oo (6.15b)

where convergence occurs with probability 1.

Proceeding in a like manner with SNR 2 , its analogue is ESNR 2,

ESNR 2 = 10log 10 {E(a -) 2)] . (6.16)IE(i-a 2

Thus, the degradation in the expected signal to expected noise ratio is

AESNR = ESNR1 - ESNR 2

= 10lo0 E((a - a)2) (6.17)
[E((a- a)2)I"

Assuming that the errors due to quantization (a - a) are uncorrelated with the errors
due to requantization (a - i), it follows that

E((a _ 5i) 2) = E((ar - a)2 + (a a)2 + 2(ci - a)(a -)

= E((a - a)2 + (a - a)2). (6.18)

Substituting (6.18) into (6.17),

AESNR = 10 logl 0 I + E((a - a)2)

= 10 logl 0 E I + a (6.19)

94

A straightforward substitution yields

AESNR = 10 lo 10 1+ 1 + 2 2)E1 (6.20)I 7E(e 1)J

The felicitous and surprising result here is that (6.20) does not depend on the summation
length N or E(ao). For a fixed processing function consisting of a sum of products
(with no assumption on the number of terms in the products needed), the AESNR,
due to imprecise requantization, will not change when the summation is lengthened,
even though the size of the algebraic-integer coefficients increases due to the longer
computation. This says that one can use table 10 to predict the performance of linear
filters of arbitrary length.

Finally, note that the expression forAESNR is in qualitative agreement with the
results of table 10. The size of E(32) will hardly be affected by the range M, but as M
is increased, the quantity E(e2) will decrease, resulting, for a fixed requantization level
('0 + 2 + .+ i] is constant), in an increase in the fraction of (6.20). This agrees with
the increasing values of AESNR along the rows of table 10.

6.3 COMPLEX ALGEBRAIC-INTEGER REQUANTIZATION

Complex algebraic-integer requantization involves a sum of products where each
product, in general, involves an integer times a complex number. Rather than using
a full complex multiplier, it is more efficient to treat the product as two real multipli-
cations. Thus, it is natural to treat real and imaginary parts separately and reduce
the calculation to one involving real algebraic integers. This approach is illustrated for
Z[e 21r i/16] using the real subring Z[V/2 +V2]. In the following, w = . 2 ,ri / 16 .

An element x + yi = ao + alw + .. " + a7w7 of Z[w] has real and imaginary parts
given by

al__ -a7+2r- + 3-a /- /-ao + V/__7-2 2- + + a2 - a6 vf 3- s V/ (6.22)
2 2 2 (.2

~a3 + a a2 +a6 /+a, + a-,/ (.3y = a4 + a-+a v/2 + V2 + v/2 + a___ / +a+a.__ _V2-. (6.23)
2 2 2

These formulas can be derived by substituting w = v/2 +vf2/2 + iv/2- -' F2/2, or by
appealing to the results of section 3.3, in particular the change of basis matrix (3.13).

Formulas (6.22) and (6.23) imply that to implement the requantization for Z[,,14]
(expressed in terms of the polynomial basis), the vector of coefficients (ao, al, . a7)
can be transformed by the change of basis matrix given in (3.13), and the resulting

95

vector split in half and input into two Z[V'/2 +,-2 requantizers, which are implemented
using the nonpolynomial basis. The entries in the transformation (3.13) can be scaled
by 2 to eliminate the fractions ±1/2, and the transformation implemented with three
additions, three subtractions and two shifts (for implementing the multiplications by
2).

6.4 IMPLEMENTATION ISSUES

The final requantization involves forming an inner product between the current vec-
tor of algebraic-integer coefficients and a fixed vector of basis approximations. As such,
the fundamental operation is a multiply and accumulate. Off-the-shelf components can
be used to implement this function provided the speed, algebraic-integer coefficient size.
and basis approximation accuracy requirements can be satisfied. Currently, commercial
multiply-and-accumulate components are available that perform 16-bit x 16-bit fixed-
point multiplications with up to 40 bit accumulations with clock cycle time ranging
from 50 to 100 ns (up to 20 MHz throughput rate).

If the accuracy requirements of an application imply that large algebraic-integer
coefficients and highly accurate basis approximations must be used in the requantiza-
tion, and if high throughput is required, then performing the requantization using an
RNS may be the best solution. In this case, the basis approximations are scaled to
integers using an appropriately large scale factor. The RNS for the requantization is
formed by adding moduli to the the existing RNS of the algebraic-integer processor to
contain the increased range. The residue representations that result from the inner-level
reconversion are input directly to the second RNS processor. The inputs corresponding
to the additional moduli are determined by a base extension process, one for each co-
ordinate position. A final processor that implements the Chinese Remainder Theorem
(CRT) is required . The fractional representation method of section 4 is suggested,
since the full output precision is probably not needed at this stage.

Is is interesting to observe that the two-stage RNS processor described above can
be viewed as a single RNS process. A vector of residues produced by the inner channels
for a given moduli is multiplied by the reconversion matrix. Next, requantization is per-
formed by computing the inner product of the resulting vector and the vector of residues
of the basis approximations, with the result being input to the final CRT processor.
Instead of computing the result in this order, however, the inner-level conversion and
the final requantization can be combined by premultiplying the reconversion matrix by
the vector of basis residues, to produce a reconversion vector. The output conversion
then involves taking the inner product of this reconversion vector and the vector of
residues produced by the inner channels, with the result still being input to the CRT
processor.

96

The practicality of the simplified algebraic-integer RNS processor described above
depends in large part on the number of extra moduli that are needed to contain the
dynamic range of the requantization result. Additional processing channels (replicated
by the degree of the algebraic integer-extension) are required for each of the additional
moduli. Since the processing should be of sufficient complexity to amortize the overhead
of RNS conversion and reconversion, even the addition of a single extra moduli may
negate the advantage of the simplified output conversion. In many processing situations
the range required to contain the requantization result will be considerably larger,
and the two-stage RNS implementation will be more appropriate. If, however, the
dynamic range after requantization is comparable to (or smaller than) the dynamic
range of the original RNS, as would be the case if the requantization values correspond
to very small positive quantities, then the simplified output conversion method would
be advantageous.

6.5 CONCLUSION

This section treated the final requantization from the algebraic-integer number
representation back to a conventional binary or analog representation. An example of
an FIR filter (a sum of products) with numerical quantities represented by elements

of Z[v/2 + v2] was used to illustrate the issues involved, including the desirability of
scaling the basis values to improve their approximations and the efficient treatment of
complex requantization. In this case, the degradation of the overall performance due to
requantization errors was negligible provided-the basis values were approximated with
a precision comparable to the precision used for the inputs and filter coefficients. A
similar conclusion was reached in [4] for the FFT. An error analysis showed that, for a
general sum-of-products calculation, where the products are assumed to be orthogonal
random variables, the performance degradation, expressed as a difference of SNRs, is
independent of the algebraic-integer coefficient sizes and the length of the summation.

However, there is no guarantee that the heuristics derived for the FIR filter (prod-
uct with two terms) or the FFT (most of the simulation results in [4] were for a
256-point radix 16 FFT-a sum of 3-term products) will apply to arbitrary processing
situations or functions, particularly situations or functions that involve product terms
significantly larger than considered in these past studies. The error analysis implied
that the magnitude of the products themselves adversely affects the requantization er-
ror. These magnitudes depend, at least, on the magnitude of the input data and on
the number of terms involved in the products. As one example of a more complicated
situation, computing a single term of the adjoint of a k x k matrix requires a sum
consisting of (k - 1)! products with (k - 1) terms each. In such situations, studies
similar to the ones in this section would have to be conducted to obtain the appropriate
requantization precision heuristic. The performance degradation due to finite preci-
sion requantization should be independent of the number of terms in the sum, so this

97

calibration of the requantization precision can be determined using sums with shorter
length.

Commercial multiply-and-accumulate chips can be used to implement the sum-
of-products calculation involved in the requantization. Current devices can handle
coefficient sizes and basis approximations of up to 16 bits at a clock rate of up to
20 MHz. For applications with more severe accuracy or speed requirements, an RNS
implementation of the requantization is suggested, yielding a two-stage RNS implemen-
tation. A simpler RNS implementation, which combines the inner-level conversion with
the requantization, is possible if the increase in the dynamic range requirements due to
requantization are negligible.

98

SECTION 7

FUTURE WORK AND CONCLUSION

The objective of this work was to provide solutions to the quantization and con-
version problems involved in algebraic-integer processing, thus paving the way for a
variety of algebraic-integer RNS processors. Future work related to this effort could
involve the implementation of the designs/structures contained in this report as well
as additional studies of the quantization properties of finite sets of algebraic integers
(for example, the conjecture at the end of section 3.3 concerning the performance of
the separate real and imaginary complex quantization scheme). More importantly, the
utility of algebraic-integer RNS processing must be evaluated by comparing the method
with other processing schemes in the case of specific applications.

This section outlines future work involving an algebraic-integer brassboard, which
initially will be used to implement an algebraic-integer RNS finite-impulse-response
(FIR) filter. In part, the purpose of the brassboard is to have a working algebraic-
integer RNS processor for near-term demonstration purposes. A preliminary simula-
tion analysis comparing integer and algebraic-integer processing in the case of an FIR
filter, which serves to indicate the scope of the brassboard, is described. A final section
summarizes the conclusions of this report, including some final thoughts on some ap-
plications that are likely to benefit the most from using the algebraic-integer number
representation.

7.1 ALGEBRAIC-INTEGER BRASSBOARD

An algebraic-integer brassboard for implementing and testing the quantization and
conversion functions described in this report is being planned. In addition to demon-
strating that the conversion functions, when implemented successively, yield the identity
function, the brassboard will be used to configure an algebraic-integer transversal fil-
ter. Surplus RNS transversal filter chips, which were fabricated under a separate effort
for an experimental wideband high-frequency communication system, will be used to
implement the processing function. The performance of the resulting algebraic-integer
transversal filter will be evaluated.

Two different, but related, demonstrations are planned. First, a real algebraic-
integer processor that uses the 4th degree extension Z[V2 + V2], referred to as the
real demonstration, will be built. Two of the primes for which transversal filter chips
are available, 17 and 31, are suitable for this ring. The second processor, referred to as
the complex demonstration, will use the 8th degree cyclotomic extension Z[e2,i/16]. In
this case, only the chips for the prime 17 can be used. Appendix B lists the inner-level
conversion matrices for these rings and primes.

99

Since Z[V'2 + V2] corresponds to the real numbers in Z~e2 li/16], the complex
demonstration can take advantage of the hardware developed for the real demonstration.
The two-stage quantization approach of section 3.2 will be used in the real demonstra-
tion, and the approach in section 3.3 of treating real and imaginary parts separately will
be used to reduce the complexity of the complex quantization problem. Similarly, the
hardware developed for requantization in the real demonstration can be replicated and
used, as in section 6.2, to perform the requantization in the complex demonstration.

In the two-stage quantization approach of section 3.3, tables are required to store
the algebraic-integer approximations. These approximations can be converted ahead of
time into the inner level of RNS parallelism and be stored in the table in this form,
eliminating the need to explicitly implement the conversion into the two levels of RNS
parallelism. Of course, this requires a table for each prime in the RNS. The conversion
out of the inner level of parallelism will be implemented with the chip described in
section 5. The real demonstration will require a 2 x 2 grid of these chips for each
modulus; the complex demonstration will require a 4 x 4 grid.

The conversion in the brassboard out of the outer level of RNS parallelism, which
involves integer RNS, will either be performed using a table-based converter (in the case
of the real demonstration with the moduli 17 and 31) or not be required at all (in the
case of the complex demonstration with only the modulus 17). This approach is consis-
tent with the fact that the reduced ranges involved in algebraic-integer RNS decrease
the complexity of the integer-RNS outer level reconversion, making the feasibility of
table-based converters more likely. The final requantization will be implemented using
commercial multiply-and-accumulate chips.

7.2 PERFORMANCE OF AN ALGEBRAIC-INTEGER FIR FILTER

This section reports on the results of a simulation activity that was undertaken to
determine if the proposed algebraic-integer-RNS FIR filter planned for the brassboard
could provide a meaningful demonstration. The proposed implementation will be lim-
ited to the primes 17 and 31 with a dynamic range (per coefficient) of 17 x 31 = 527; i.e.
the absolute value of the coefficients at the output must be less than or equal to 263.
Three different filters were considered in this preliminary study. The actual filters to be
implemented will be subjected to a similar, but more exhaustive, simulation study. The
present effort is an initial attempt at comparing integer and algebraic-integer processing.

A simulation of an FIR filter was designed in order to (1) evaluate the error vs.
range performance of the algebraic integers Z[BIM, for

B= {1, V/2 + V2-, v, /2- V2},

100

and (2) compare their performance to that of the integers. The simulation consisted of
three fundamental blocks: the initial quantization of the input data (to either integers
or algebraic integers); the filtering operation, where the quantized data was convolved
with the quantized filter coefficients; and the final requantization for the algebraic-
integer case. In this application, finite-precision requantization can be performed with
essentially no loss in performance without having to resort to a second RNS processor.
Thus, in this preliminary study, the requantization is performed using floating-point
numbers, corresponding to it being performed by commercial multiply-and-accumulate
chips of more than adequate accuracy. The primary purpose of this study is to deter-
mine the range requirements of the respective RNS processors for equivalent levels of
performance.

The first task in setting up a simulation of this type is the choice and design of a set
of filters whose coefficients are drawn from either ZM, indicating the integers modulo M,
or Z[B]M. Unfortunately, finite-wordlength filter design is an open problem at present.
More specifically, for most filter design criteria a deterministic way of finding the best
coefficients drawn from the available set is not known, short of exhaustive search. This
is mainly due to the difficulty of fitting the discrete, finite-wordlength constraints into
the analytic methods employed in filter design.

The current practice in finite-wordlength filter design is to design an infinite-
wordlength filter, then approximate it in some manner with finite-wordlength repre-
sentatives. The unexpected problems that occur in this process can be seen in the
following example. A lowpass filter was designed and approximated by two finite-
wordlength sets-[B]io and Z[B] 12. The approximations were chosen so as to mini-
mize the squared error of the finite-wordlength filter coefficients. Naturally, the filter
designed using M = 12 had a lower squared error than that using M = 10. However,
on a set of test input data consisting of two sinusoids, one in the passband and one
in the stopband, plus some additive white Gaussian noise (AWGN), the M = 10 filter
performed better than the M = 12 filter even though the input data were quantized less
accurately in the M = 10 case. This occurred, even though its total squared error was
higher, because the M = 10 filter preserved a frequency notch better than the other
filter and one of the sinusoids happened to fall close to that notch. It is important to
remember that squared error is not always the best approximation performance mea-
sure, and that a filter approximation that is good in one particular situation may not
be suitable in another.

For the simulation under discussion, the filters were designed by first designing
an infinite-wordlength filter of the desired type and then approximating the infinite-
wordlength coefficients with the closest scaled representative in ZM or Z[B]M. There
were three infinite-wordlength filters designed-a 55-tap filter with three stopbands
and two passbands, a 60-tap lowpass filter, and a 61-tap highpass filter. These fil-

101

ters were approximated by Z[B]M for M = 2, 4, 6, 8, 10, 12, and by ZM for Al =
6 , 7 , 29 , 210, 211, 912

The input data fed into the filters consisted of a combination of sinusoids with
AWGN. There were ten such data sets computed, each 150 samples long and consisting
of a combination of one or more of the frequencies 0.025, 0.125, 0.2, 0.33, and 0.45.
These frequencies were chosen because none of them lay in the don't care bands of any
of the three basic types of filters. The 55-tap multiband filter was run with all ten sets
of data, while the other two were run on only two of the sets (the same two in each
case).

Each run consisted of a particular set of input data quantized either by ZM or
Z[B]M (using the two-stage conversion method of section 3.2). These inputs were then
convolved with a filter approximated by the same set. Along with integer and algebraic-
integer p:ocessing, a baseline was established for each input-data/filter combination by
filtering the floating-point input data directly with the original infinite-wordlength filter.
The outputs of this process were used as the standard against which errors occurring
in the integer or algebraic-integer processing could be measured.

The error was measured in terms of signal-to-noise ratio (SNR) in the same manner
as in equation (6.6), i.e.,

SNR = 10log1 0 [iZ j aj)2 (7-1)

where a is the jth output of the floating-point run, and a3 is the jth output of the in-
teger or algebraic-integer process. The other statistic one is interested in is the dynamic
range required to contain the results. Ideally, one would like to minimize the dynamic
range while maximizing the SNR. The trade-off between these two statistics is given in
tables 11 and 12 for one particular set of input data run on all the filter approximations.
Table 11 is for algebraic-integer processing, while table 12 is for integers. The input
data set consisted of a unity-amplitude sinusoid with frequency 0.2, a unity-amplitude
sinusoid with frequency 0.33, and AWGN with power 0.01. The algebraic-integer range
shown was the absolute value of the largest coefficient output that occurred, while the
integer range was the absolute value of the largest integer output that occurred.

The results in tables 11 and 12 should c'nly be compared for M = 2, 4, 6, 8, since
for larger values of M the front-end 12-bit A/D converter in the two-stage quantization
method becomes a limiting factor on the accuracy of the algebraic-integer representa-
tions of the input data (see section 3.4). Although the fact that the filter coefficients
are being approximated directly does result in some performance gain over the 12-bit
integer case for M = 10, 12.

Consider Al = 4 for example. The performance of filter #1, 48.15 dB, corresponds
to a performance for the integer filter of between 8 and 9 bits; filter #2 is slightly below

102

Table 11. Range vs. SNR for Algebraic Integers

Filter #1 Filter #2 Filter #3
M Range SNR Range SNR Range SNR

2 42 29.86 30 22.82 53 27.93
4 147 48.15 113 41.50 106 43.60
6 187 52.80 221 54.42 236 54.46
8 386 63.68 498 63.57 383 59.80

10 526 67.90 672 66.16 583 66.97
12 799 69.53 853 68.94 830 69.55

Table 12. Range vs. SNR for Integers

Filter #1 Filter #2 Filter #3
bits Range SNR Range SNR Range SNR

6 1172 22.30 986 28.29 1046 22.49
7 5115 32.21 3937 38.65 3867 36.45
8 20144 44.34 15871 42.96 15642 40.62
9 81343 50.18 64135 47.32 62863 50.89
10 324876 53.59 255207 49.86 251371 54.83
11 1301579 61.26 1025157 59.58 1006421 60.39
12 5103488 63.43 4221821 62.21 3917674 61.29

8-bit performance; and filter #3 is between 8 and 9 bits. These levels are consistent
with the accuracy of 8.53 bits for the quantizer Z[B 4 against a uniform input (table 4
of section 3.4), although the present input is most certainly not uniformly distributed.

The equivalent integer filters for M = 2, 6, and 8 are also consistent with the
accuracies of the respective algebraic-integer quantizers Z[B]M. Some anomalies are to
be expected, due to the problem, mentioned earlier, with using SNR as a performance
measure. In summary, the results in tables 11 and 12 do not present any surprises, and
it will be assumed that the integer equivalent of an algebraic-integer FIR filter can be
obtained by a bit level that approximates the inputs and filter coefficients to the same
level of accuracy.

An equally important point of comparison is the dynamic rangcs required by the
two processing methods. To get an idea of the largest range one might be called upon

103

to handle, the absolute values of the largest range encountered over all the runs using
the 55-tap filter were determined for each M. The other two filters were not included
so that filter length would be a constant factor in the measured ranges. The results
for integers and algebraic integers are shown below in table 13. It should be mentioned
that the dynamic range for the algebraic integer M = 12 case (1312) was an extreme
outlier-the next largest output coefficient encountered in that or any other run was
974.

Table 13. Summary of Largest Ranges

Algebraic
Integers Integers

M Range bits Range

2 48 6 2008
4 164 7 8532
6 239 8 34896
8 524 9 138586
10 705 10 559369
12 1312 11 2234533
- - 12 8946667

The ranges in table 13 suggest that the brassboard, with the primes 17 and 31
corresponding to an absolute value range of 263, could implement the 55-tap filter for
Al = 6. A corresponding integer filter involves approximations of between 10 and 11.42
bits (for uniform and Gaussian inputs; see tables 4 and 8) and requires a range of at
least 559, 369. If 5-bit (or less) primes are to be used, then the integer processor requires
at least 5 moduli in the RNS ((31 x 29 x 23 x 19- 1)/2 = 196,431; (31 x 29 x 23 x
19 x 17- 1)/2 = 3,339,335). For Gaussian inputs, this RNS may not even suffice since
the range would be closer to 5,000,000.

It should be noted that the algebraic-integer system, although only requiring 2
moduli in the RNS, has 4 processing channels per moduli for a total of 8. This in-
efficiency, 8 channels versus 5 or 6, may be due to the fact that each coefficient of
the algebraic-integer number representation experiences its own additive growth, which
in this example is between 5 and 6 bits. This effect would worsen for longer filters.
However, a 5- or 6-moduli RNS output converter should be much more complex than
a 2-moduli RNS output converter replicated 4 times (for each of the algebraic-integcr
coefficients).

104

Finally, only the nonpolynomial basis B was used in the simulations because the
polynomial basis resulted in larger ranges. For example, a run with the polynomial basis
that yielded a range of 72 for M = 2 compared to a range of 48 for the nonpolynomial
basis under the same conditions.

7.3 CONCLUSION

This paper addressed the quantization and conversion problems involved in
algebraic-integer RNS processing. The algebraic-integer number representation was in-
troduced using four important examples: cyclotomic extensions involving 8th and 16th
roots of unity, and their respective real subrings. A primary concern when choosing
a basis for the algebraic-integer representation is to minimize the growth in coefficient
size due to multiplication. This growth depends on the size of the entries in the co-
efficient forms, which are matrices that describe the relationships that exist between
the basis elements. These relationships depend, in part, on the minimum polynomial
involved in the algebraic-integer extension. In the 4th degree real example considered,
this meant processing with a nonpolynomial basis. The complexity of input and output
phases of a complex implementation (I and Q channels) can be reduced by representing
the complex algebraic integers in terms of a product basis, although it is best, from a
dynamic range viewpoint, to process using the complex polynomial basis.

Algebraic-integer RNS was introduced as a generalization of QRNS for the Gaus-
sian integers. In algebraic-integer RNS, each parallel channel of integer RNS (the outer
level of parallelism) is split further into another level of parallel channels (the inner
level of parallelism). This further splitting, for a modulus m, makes the complicated
algebraic-integer product easy to compute in parallel, but is only possible when the
minimum polynomial of the algebraic-integer extension, considered modulo m, factors
completely into distinct linear terms.

Unlike the Gaussian integers, which form the quantizer used in QRNS and cor-
respond to a two-dimensional integer lattice, the algebraic integers form a dense rep-
resentation and are a rich source of quantization problems. In practice, algebraic-
integer quantizers are derived by bounding the size of the algebraic-integer coefficients.
Two strategies for direct analog-to-(real)algebraic-integer conversion were described,
one based on the compressor characteristic of the nonuniform algebraic-integer quan-
tizer, and the other based on a generalization of a successive-approximation converter.
A suboptimal and straightforward two-stage method of real quantization was also pro-
posed.

In the important case that was considered, the suboptimal method performed
equivalently to the direct method as long as the conventional A/D converter, which
forms the front end of the two-stage method, has one bit, more conservatively two bits.
of precision beyond the precision of the direct algebraic-integer quantizer. Thus. further

105

hardware development of a direct analog-to-algebraic-integer converter is only required
for applications requiring processing at the speed and accuracy limits of current A/D
technology. By treating real and imaginary parts separately, complex quantization was
reduced to the real case, with a performance loss conjectured to be just a doubling in
the range of the coefficients.

The algebraic-integer quantizers yield a distributed representation-a single large
representative is replaced by a vector of smaller representatives. For the same level
of accuracy, the total cost (measured by the number of points) of the conventional
and algebraic-integer quantizers are comparable, especially when issues of robustness
are considered. Thus, in the case considered-a degree 4 real extension-for the same
level of accuracy, a single representative with a range R is replaced by a vector of 4
coefficients, each with a range of about %Y-R This dramatic reduction in range at the
input implies a smaller output range, hence a smaller RNS can be used, although the
advantage is somewhat mitigated by the additional coefficient size growth due to the
algebraic-integer multiplication. The smaller RNS range reduces the complexity of the
outer level integer-RNS conversion.

Because the algebraic-integer coefficients at the beginning of the calculation are
likely to be small, the conversion into the outer channels will usually be straightfor-
ward. Conversion out of these outer channels will require integer-RNS output conver-
sion. The fractional representation method performs this output conversion without the
large modulo reduction required by the Chinese Remainder Theorem. The method was
modified slightly to get rid of all the modular operations at the cost of needing slightly
higher precision approximations of the fractional quantities involved in the method.
As a result, an implementation with conventional arithmetic is now possible, making
programming to various RNSs easy. A comparison with mixed-radix conversion was
made for a particular RNS, and it was shown that the active VLSI area of a fractional
representation converter was always less than that of an equivalent mixed-radix one.
The VLSI implementation of this converter is being developed under a separate effort.

The conversion into and out of the inner level of parallel channels, for a modulus m,
is a modulo m vector-matrix multiplication. This involves a sum of products modulo m,
and so is similar to the functions most likely to be implemented by the RNS processing
channels; i.e., the complexities are similar also. An architecture based on the LU
decomposition of the transform matrix was developed that performs this product in
parallel. The LU architecture consists of a grid of basic cells and is semisystolic-the
cells in each row must communicate. A chip consisting of a 2 x 2 grid of basic cells
was designed in scalable CMOS. Each basic cell performs a multiply and accumulate
modulo a programmable modulus. The modulus, and hence all values on the chip, are
limited to 8 bits. The design can be clocked to 3 MHz and is currently undergoing
testing before fabrication (in 3 pim technology). A degree n conversion (either into or
out of the inner level) will require an n/2 x n/2 grid of these chips for each modulus.

106

After RNS processing is completed, including the conversions out of the two levels
of parallelism, the answer is obtained in algebraic-integer form. To obtain a binary or
analog result, this algebraic integer must be evaluated using finite-precision approxima-
tions of the basis elements. Rather than straightforwardly rounding the basis elements
to some prescribed number of bits, scaling and rounding should be employed to mini-
mize the average squared error of these approximations. Since the output coefficients
arm usually quite large, there is some concern that the basis elements may have to be ap-
proximated with equally extreme precision. In the applications considered to date, this
has not been the case-basis approximations with a precision matching the precision
of the inputs are all that have been required for there to be no significant performance
degradation due to requantization. There is no guarantee that this heuristic will apply
in general.

An error analysis showed that for a processing function consisting of a sum of
products, where the products were assumed to be orthogonal random variables, the
performance degradation due to requantization, measured in terms of the decrease in
output SNR, is independent of the output algebraic-integer coefficient size and the
length of the summation. However, the magnitudes of the products do adversely affect
the requantization error, and so a significantly different processing situation has to be
treated on an individual basis.

The requantization can be performed with commercial multiply-and-accumulate
units or even a separate RNS processor if accuracy and/or throughput requirements
dictate. In the latter case, the algebraic-integer output conversion can be simplified
in the special case that the dynamic range growth due to requantization is negligible.
This would be the case if the final results correspond to very small positive numbers.

In the future, an algebraic-integer brassboard is planned to test the quantizers
and converters that have been described in this report. Current plans also include
implementing an algebraic-integer RNS FIR filter in the brassboard. A processor based
on a 4th degree real extension will utilize existing processor hardware for the primes
17 and 31. A related processor for I and Q processing will use an 8th degree complex
extension and the prime 17. A preliminary simulation study showed that, for a 55-
tap filter, to obtain performance equivalent to the real algebraic-integer RNS processor
with moduli {17, 31}, an integer RNS processor would require the 5-bit prime moduli
{17, 19, 23, 29, 31}. A sixth modulus may be required depending on the distribution
of the inputs and filter coefficients.

The algebraic-integer FIR filter implementation is not intended to address the
fundamental question concerning the ultimate utility of the algebraic-integer number
representation. Rather, it is a near-term demonstration tool, which can be completed
using existing processing chips, to be used to compare the integers and algebraic integers
in a situation in which we have considerable prior integer-RNS experience.

107

What application should be used to demonstrate the advantages of the algebraic-
integer number representation? It is expected that the application will have more than
one of the following characteristics: (1) sum(s) of products function (products not nec-
essarily limited to two terms), (2) high sensitivity to quantization and round-off errors,
(3) matching nonuniform input distributions, (4) high dynamic range requirement, and
(5) high throughput (and low latency) requirement. There are relationships between
these characteristics. For example, any modest increase in quantization performance
due to (3) will translate into considerable output performance improvement because of
(2). Also, difficult to quantify characteristics such as ease of design or the need for fault
tolerance may enter the decision.

Most importantly, though, throughput and latency requirements probably will im-
ply that some type of parallel processing is required. Algebraic integers, as a parallel
processing scheme, are not likely to be preferred on area considerations alone. There
is an inherent inefficiency with the algebraic-integer number representation (for that
matter with any distributed number representation): additive growth occurs in each
coefficient. An application is needed with speed and accuracy requirements that force
integer processing, and dynamic ranges so large that integer RNS is impractical. Then
the dynamic range relief offered by the distributed algebraic-integer representation may
be essential in obtaining a practical implementation. High-performance adaptive re-
cursive filtering applications or various types of matrix processing, where the matrices
involved can have high condition numbers, could be the source of an appropriate appli-
cation.

108

APPENDIX A

LU DECOMPOSITION

The purpose of the section is to present some results about the LU decomposition
of a matrix that are needed in this paper. Let A be a nonsingular n x n matrix over
some field. Then A is LU-decomposable if there exists a lower-triangular matrix L and
an upper-triangular matrix U such that A = LU. Necessarily, the diagonals of L and U
are nonzero; no other restriction is made on the diagonals. The requirement that A be
nonsingular is not necessary for some of the results that follow; this requirement is
added to ease the exposition.

An LU decomposition for a matrix is desirable for the added information that it
furnishes and the simplification that it can give to calculations. For example, the LU
architecture in section 5.2 uses the LU decomposition of a matrix to perform matrix
multiplication. For a reference on LU decomposition, see, for example, [20] .

Almost all of the results in this section are well-known (see [20]); the exception
is Theorem A.2, for which no reference has been found as yet. The characterization of
when a matrix is LU-decomposable is given in the following theorem. The leading i x i
principal minor of a matrix M is denoted by Mi.

THEOREM A.1. A nonsingular n x n matrix A is LU-decomposable iff the matrices
A 1, A 2 ,... ,A.- 1 are all nonsingular.

PROOF: Suppose that A is LU-decomposable and let A = LU be the resulting decom-
position. For i = 1, 2,... , n - 1, block arithmetic yields Ai = LiUi. Since Li and U,
are clearly nonsingular, Ai must also be nonsingular.

Conversely, let A1, A 2,... ,A,,- 1 be nonsingular. By induction, A,-. is LU-
decomposable. Let A,.- 1 = L'U' be the decomposition. Then A can be factored
as

A = (0U' :

b n i . b n n

where bnl,... , bnn, bin,... , bl,n-1 are determined from L', U', and the aii, and blanks
denote Os. Notice that in the last product, the first matrix is lower-triangular and the

109

third is upper-triangular. Since the matrix product

°•."• •1

(1 1 (1

1-bnl . bn,n-I I bnl ... b/n

is upper-triangular, the middle matrix in (A.1) is LU-decomposable. Therefore, A is
LU-decomposable. I

Implicit in the above proof is one method for calculating an LU decomposition:
given A, one performs Gaussian elimination on the rows and columns to reduce A to
an identity matrix, keeping track of the elementary row and column operations used.
These operations can be expressed as a lower-triangular matrix and an upper-triangular
matrix. The inverses of these matrices give the LU decomposition.

As an example, consider a Vandermonde matrix V (see section 5.1). Since a
principal minor of a Vandermonde matrix is itself a Vandermonde matrix, Theorems 2.1
and 6.1 and induction imply that a Vandermonde matrix is LU-decomposable. This
was shown by constructive methods in section 5.1.

The following theorem shows that any nonsingular n x n matrix can be made
LU-decomposable by multiplication by an appropriate permutation matrix.

THEOREM A.2. Let A be a nonsingular n x n matrix. Then there exists a permutation
matrix P such that PA is LU-decomposable.

PROOF: The proof is by induction. For n = 2, let

A = (all a12)

ka21 a22

Then either all or a21 is nonzero, since A is nonsingular. Permute the rows, if necessary,
to put a nonzero element in the "11" spot. The resulting matrix is LU-decomposable
by Theorem A.1.

Let A be a nonsingular n x n matrix and suppose that the result is known for all
nonsingular (n - 1) x (n - 1) matrices. Form all (n - 1) x (n - 1) minors of A with
columns from the first n- I columns. Then one of these minors is nonsingular, otherwise
calculating the determinant of A by expanding along the last column would imply that
A is singular. Hence, the rows of A can be permuted so that the (n - 1) x (n - 1)
principal minor A j-. is nonsingular. That is, for some permutation matrix P,

PA = (A,,-), A.- 1 nonsingular.

110

By the induction hypothesis, there is an (n - 1) x (n - 1) permutation matrix P' such
that P'A,,- is LU-decomposable. In particular, all of the principal minors of P'A, 1

are nonsingular. Then so are all of the principal minors of

(P, 0) PA.

Applying Theorem A.1 finishes the result. I

Suppose that a nonsingular matrix A is LU-decomposable with decomposition
A = LU. If D is any nonsingular diagonal matrix, then

LU = LDD-'U = (LD)(D-'U).

Hence, there is another LU decomposition of A given by LD and D-'U. The next
theorem asserts that all LU decompositions of A are of this form.

THEOREM A.3. Let A be a nonsingular LU-decomposable matrix with decompositions
LU and L'U'. Then, for some nonsingular diagonal matrix D,

L = L'D and U = D-'U'.

PROOF: Since A = LU = L'U' and everything is invertible, (L')-L = U'U - '. The
left side is a lower triangular matrix and the right side is an upper-triangular matrix,
so the expression is some (nonsingular) diagonal matrix. I

Theorem A.3 says that by forcing L and U to have some prescribed diagonals, say
all Is, then A can be written uniquely as A = LDU, for some diagonal matrix D. For
the purposes of this paper, it is advantageous to not so restrict L and U and to in fact
allow the diagonals to be determined as the context requires.

11

APPENDIX B

SOME ALGEBRAIC INTEGERS

In this appendix, the matrices and other information needed to perform the inner-
level conversion are given for those rings of algebraic integers and primes that are likely
to be used in some near-term implementations. Each ring of algebraic integers is of the
form Z[01 modulo some prime p. Algebraic integers represented with the standard basis
are of the form

ao + al3 + + ad-1 o d - 1 , (B.1)

where the ai are modulo p, and d is the degree of the extension. The minimum poly-
nomial of 0 and its roots modulo p are also given; the order of the roots is consistent
with the matrices.

If more than one basis is considered, each is represented as {f0,. • • so that
the algebraic integers are of the form

ao/#o + a1#1 + + ad-1 3d.

The change-of-basis matrices to and from the standard representation of (B.1) is given.
The entries of the change of basis matrices are rational numbers and are in fact integers
whenever the two bases are both integral bases. The other matrices are consistent with
the order of the basis and have entries from Zp.

The conversion, respectively reconversion, matrices are denoted by V and V
(though these matrices need not be Vandermonde matrices). The matrices in the LU
architecture are LC1 and UC for conversion and LR1 and UR for reconversion.

Each of the Rj below is a ring of algebraic integers that will be described in this
section. Each of the associated Bjk is a basis which generates the algebraic-integer
approximations taken from Rj. It is usually the case, but not always, that each Bjk
generates all of Ri (and so is an integral basis of Rj); any exceptions are noted. The
standard basis is always Bil. The order of the Ri is the order that the information is
presented in this section. To avoid confusion, i here always denotes VC':

113

R- Z[,/2 -], p=17

B 1 { , V , 2- W-}

Bil = 1,2 V2 (2)+ (V/2)7 31

B12 =1, -,-vf2-7, V2, V2 TT7r}

R 3 = Z[w] w primitive eighth root of unity, p = 17

B 3 1 = {1, w, W, w }

R4 = Z[w], w primitive sixteenth root of unity, p = 17

B41 - (1, W, w , w 5 , 1

B42 = {1, V2 +v2 V2, V' , /2-, i , Vi2 +vr'2i, v-i , V/_ - V2i}.

114

EXAMPLE 1: Ring R1

The ring is
z [v"+-2 modulo 17.

The minimum polynomial of V2 + f is

f(=) x 4 - 4x2 +2

The roots of f(x) modulo 17 are

5, 8, 9, 12.

Ring R1 with basis B11

The basis is {f2 V, + V, 2 -z + 2)
Conversion Matrices:

V 589 12 V1 6512 101

6 2 15 11) (3 13 5 16/

(10 0O 0 1 1
12 1 0 0 (03 4 7

C 6- 4 1 0 0 0 4 11
14 4 12 1) (0 0 0 16)

LR' 4 60 0 UR= 0 1 78

10 113 50 0 0 1

115
• •(iV I) UR=a 10017 I

Ring R, with basis B12

The basis is

Change of Basis Matrices:

To Standard Basis From Standard Basis(o1 0o0 01 0 0 o0
0 1 0 0 0 1 0 0

-2 0 1 0 2 0 1 0
0 -3 0 1 0 3 0 1

Conversion Matrices:

8 9 1V 1 13 1 12 10
6 11 11 6 13 16 12 7

12 5 13 10 5 16

121 0 0 UC 0 3 4 7
Lcl- 4 10 0 0 4 14 712 11

1 0 0 0 1 6
L-R1 - 4 6 0 0 U R -" 1 7 8

R 2 1 13 0 0 0 7

13 10 5 16 0 0 1

116

EXAMPLE 2: Ring R2

The ring is
z[2]' modulo 3l.

The minimum polynomial of V/2 + r is

f(x) = x4 - 4x2+2.

The roots of f(x) modulo 31 are

5, 14, 17, 26.

Ring R2 with basis B21

The basis is
2, + V/•(/ /

Conversion Matrices:

1 I I 1 (10 2 30 6
V 5 14 17 26 1/ 1 = 6 27 1 20

25 10 10 25 6 4 1 11
16 15 30 10 29 30 25

1 0 00 111 1"1
26 1 0 01 0

C8 12 1 0, (o0 51)

(19 21 26 1)(

L 27 7 0 0 UR = 0 1 22 2314 21 25 0 0 0 1 T
10 29 30 25 \0 0 0 1

117

Ring R 2 with basis B22

The basis is

Change of Basis Matrices:

To Standard Basis From Standard Basis

1 0 0 01 0 0 0
0 1 0 0 0 1 0 0

-2 0 1 0 2 0 1 0
0 -3 0 1 0 3 0 1

Conversion Matrices:

1 1 1 1 8 2030 6
5 14 17 26V 1 25 1 20

23 8 8 23) 11
17 5 26 14 25

26 1 0 0 9 12 21
C = 10 12 10 0 5 4

9 24 26 1)(0 0 5

1 0 0 0 /1 11 1\
(2 7 0 01 = 0 1 22 23

R= 21 25 0 0 1 7

11 30 20 0 0 1

118

EXAMPLE 3: Ring R 3

The ring is
Z[w], w primitive eighth root of unity, modulo 17.

The minimum polynomial of w is

f(x) = x 4 + 1.

The roots of f(x) modulo 17 are

2, 8, 15, 9.

Ring R 3 with basis B 31

The basis is

Conversion Matrices:

111 11315 16 8\
2 8 15 9 V- 1i 13 8 1 15
4 13 4 13 13 2 16 9
(82 9 15) (13 9 1i

L- 15 1 00 6 13 7
L' -116 7 1 0 0 0 6 7

15 13 9 10 0 9

11 3 0 URR =(14 4 3 000 1 4

13 9 1 20 0 1

119

EXAMPLE 4: Ring R 4

The ring is

Z[w], w primitive sixteenth root of unity, modulo 17.

The minimum polynomial of w is

f() = X8 + 1.

The roots of f(x) modulo 17 are

3, 10, 5, 11, 14, 7, 12, 6.

Ring R4 with basis B 4 1

The basis is

{1, ,wa2 W3 ,4 ,W5 U 6 W}

Conversion Matrices:

€ 1 1 1 1 1 1 1 1

3 10 5 11 14 7 12 6
9 15 8 2 9 15 8 2
10 14 6 5 7 3 11 12
13 4 13 4 13 4 13 4
5 6 14 10 12 11 3 7
15 9 2 8 15 9 2 8
11 5 10 3 6 12 7 14

15 5 13 10 9 3 1 6
15 10 1 12 8 ii 13 3
15 3 4 11 9 12 16 10

V-1 15 6 16 3 8 10 4 5
15 12 13 7 9 14 1 11
15 7 1 5 8 6 13 14
15 14 4 6 9 5 16 7
15 11 16 14 8 7 4 12

120

1 0 0 0 0000

14 1 0 0 0 0 0 0
13 4 1 0 0 0 0 0
3 10 16 1 0 0 0 0

= 1 12 4 5 1 0 0 0
3 3 7 2 8 1 0 0

* 13 16 5 10 14 1 1 0

14 8 7 4 12 2 6 1

1 1 1 1 1 1 1 1
0 7 2 8 11 4 9 3
0 0 7 8 10 5 1 5

0 0 0 14 5 10 7 5
0 0 0 0 15 11 7 9

0 0 0 0 0 8 3 13

0 0 0 0 0 0 15 4
0 0 0 0 0 0 0 10

1 0 0 0 0 0 00
2 5 0 0 0 0 0 0

14 3 5 0 0 0 0 0
16 8 6 11 0 0 0 0

= 8 11 15 6 8 0 0 0

11 11 3 13 1 15 0 0
2 9 6 12 10 8 8 0
15 11 16 14 8 7 4 12

11 1 1 1 1 1 1
0 1 10 6 4 3 11 15

0 0 1 6 16 8 5 8

UR= 0 0 0 1 4 8 9 4

0 0 0 0 1 3 5 4
0 0 0 0 0 1 11 8

0 0 0 0 0 0 1 15
0 0 0 0 0 00 1

121

Ring R 4 with basis B 42

The basis is

(,V +(- ' 2-v2,i, ,/2 -+(-,,52i, v2-v'

Change of Basis Matrices:

To Standard Basis

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 -1
0 0 1 0 0 0 -1 0
0 0 0 1 0 -1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1

From Standard Basis

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 12 2

0 02 0 0 0 4 0
0 0 0 0 0 0
0 0 0 0 1
0 0 0 0 1 0 0 0
00 0 0 0 0 0
0 0 0 0 0 0

22
0 0 0 0 0 0-2 2

The fractions in the second matrix indicate that this basis does not generate all of R4;
B 42 is not an integral basis of R 4 .

122

Conversion Matrices:

3 1 1 1 1 1 1 1 1
9 5 12 8 8 12 5 9
11 6 6 11 11 6 6 11
5 8 9 12 12 9 8 5
13 4 13 4 13 4 13 4

15 3 3 15 2 14 14 2
7 7 10 10 7 7 10 10
14 15 15 14 3 2 2 3

15 8 6 12 9 15 7 14
15 12 11 9 8 3 7 15
15 5 11 8 9 3 10 15

V_1 15 9 6 5 8 15 10 14
15 9 6 5 9 2 7 3
15 5 11 8 8 14 7 2
15 12 11 9 9 14 10 2
15 8 6 12 8 2 10 3

1 0 0 0 0 00 0 0
8 1 0 0 0 0 0 0
13 3 1 0 0 0 0 0

- 3 12 8 1 0 0 0 0
0 4 0 14 1 0 0 0
8 2 1 7 9 1 0 0
10 2 14 2 13 14 1 0
5 14 2 4 14 12 9 1

0 13 3 16 16 3 13 0
0 0 4 14 14 4 0 0
0 0 0 12 12 0 0 0

U = 0 0 0 0 9 8 9 8
0 0 0 0 0 15 7 8
0 0 0 0 0 0 2 10
0 0 0 0 0 0 0 6

123

1 0 0 0 0 0 0 0
15 4 0 0 0 0 0 0
16 5 13 0 0 0 0 0
13 1 12 10 0 0 0 0
0 8 0 11 2 0 0 0
13 16 8 5 4 8 0 0
5 1 7 1 15 7 9 0

15 8 6 12 8 2 10 3

11 1 1 1 1 1 1
0 1 12 13 13 12 1 0
0 0 1 12 12 1 0 0
0 0 0 1 1 0 0 0

UR= 0 0 0 0 1 16 1 16
0 0 0 0 0 1 5 13
0 0 0 0 0 0 1 5
0 0 0 0 0 0 0 1

124

Observation about the B 42 basis

The conversion matrix given above for the B 42 basis factors in a natural way:

9 5 12 8 8 12 5 9
11 6 6 11 11 6 6 11
5 8 9 12 12 9 8 5

13 4 13 4 13 4 13 4
15 3 3 15 2 14 14 2
7 7 10 10 7 7 10 10
14 15 15 14 3 2 2 3

1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0
5 8 9 12 0 0 0 0 0 0 0 1 1 0 0 0
6 11 11 6 0 0 0 0 1 0 0 0 0 0 0 1
8 12 5 9 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 1 1 0 4 0 0 0 0 13 0
0 0 0 0 5 8 9 12 0 0 0 4 13 0 0 0
0 0 0 0 6 11 1 6 13 0 0 0 0 0 0 4
0 0 0 0 8 12 5 9 0 0 13 0 0 4 0 0

The 4 x 4 blocks in the left matrix of the product are the conversion matrices for the B 12
bases. This is because the B 42 basis can bewritten as the union of a B1 2 basis and a
multiple of a B 1 2 basis:

B42 I {l -/-, 2-, V/ -- 2 i , V2 'iY7i, V2i , V 2-V2i}

{I, % v/2 , v/2T7-\/ U {i, v/ + i , V2i}.

Because of this basis factorization, two 4 x 4 conversions could be used instead
of one 8 x 8 conversion. The 4 x 4 conversions can occur in parallel, but need to
be followed by some simple modulo 17 additions representing multiplication by the
sparse right matrix of the product. The factorization of bases and the corresponding
factorization of the conversion matrices will be the subject of further investigation.

125

LIST OF REFERENCES

1. A. L. Bequillard and S. D. O'Neil, "Systolic RNS Computation of the 2-Dimen-
sional Discrete Cosine Transform in a Ring of Algebraic Integers," Proc. of the
20th Annual Conference on Inform. Sciences and Systems, 783-789, Princeton, NJ,
March 1986.

2. D. 0. Carhoun, "Inversion of Integral Matrices Using Residue Number System Com-
putation," Proc. of the 20th Annual Conference on Inform. Sciences and Systems,
793-798, Princeton, NJ, March 1986.

3. J. H. Cozzens and L. A. Finkelstein, "Computing the Discrete Fourier Transform
Using Residue Number Systems in a Ring of Algebraic Integers," IEEE Trans.
Inform. Theory IT-31 (September 1985), 580-588.

4. J. H. Cozzens and L. A. Finkelstein, "Range and Error Analysis for a Fast Fourier
Transform Computed over Z[w]," IEEE Trans. Inform. Theory IT-33 (July 1987),
582-590.

5. A. M. Despain, A. M. Peterson, 0. S. Rothaus, and E. H. Wold, "Fast Fourier
Transform Processors Using Gaussian Residue Arithmetic," Jour. Parallel and Dis-
tributed Processing 2 (1985).

6. R. A. Games, "Complex Approximations Using Algebraic Integers," IEEE Trans.
on Inform. Theory IT-31 (September 1985), 565-579.

7. R. A. Games, "An Algorithm for Complex Approximations in Z[e 2Ti/8]," IEEE
Trans. on Inform. Theory IT-32 (September 1986), 603-607.

8. L. A. Glasser and D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits,
Addison-Wesley Publ. Co., Reading, MA, 1985.

9. G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins Univ. Press,
Baltimore, 1983.

10. N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1984.

11. H. T. Kung, "Why Systolic Architectures?," Computer (January 1982), 37-46.
12. S. Lang, Algebra, Addison-Wesley, Reading, MA, 1972.

13. S. H. Leung, "Application of Residue Number Systems to Complex Digital Filters,"
Proc. 15th Asilomar Conf. on Circuits, Systems and Computers (November 1981),
Pacific Grove, CA.

14. M. W. Marcellin and T. R. Fischer, "Encoding Algorithms for Complex Approxi-
mations in Zfe 2ri/8I," IEEE Trans. on Inform. Theory (to appear).

127

15. I. Niven and H. Zuckerman, An Introduction to the Theory of Numbers, John Wiley

& Sons Inc., New York, 1972.

16. A. Peled and B. Liu, "A New Hardware Realization of Digital Filters," IEEE Trans.
Acoust., Speech, Signal Processing ASSP-27 (December 1974), 456-462.

17. S. K. Rao, "Regular Iterative Algorithms and Their Implementation on Processor
Arrays," Ph.D. Thesis, Stanford Univ., October 1985.

18. M. A. Soderstrand, C. Vernia, and J.-H. Chang, "An Improved Residue Number
System Digital-to-Analog Converter," IEEE Trans. Circuits Syst. CAS-30 (De-
cember 1983), 903-907.

19. M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor, editors, Residue
Number System Arithmetic: Modern Applications in Digital Signal Processing,
IEEE Press, New York, 1986.

20. G. W. Stewart, Introduction to Matrix Computations, Academic Press, Orlando,
1973.

21. F.J. Taylor and A. S. Ramnarayanan, "An Efficient Residue-to-Decimal Converter,"
IEEE Trans. Circuits Syst. CAS-28 (December 1981), 1164-1169.

22. T. Van Vu, "Efficient implementations of the Chinese Remainder Theorem for sign
detection and residue decoding," IEEE Trans. Comput. C-34 (July 1985), 646-651.

128

*

MISSION
Of

Rome Air Development Center

.* RADC plans and executes research, development, test and selected
acquisition programs in support of Comman4 Control, Communications
and Intelligence (C31) activities. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of d -systems. The areas

* of technical competence include communications, command and control,
battle management, information processing, surveillance sensors,
intelligence data collection and handling, solid state sciences,
electromagnetics, and propagation, and electronic, maintainability, and
compatibilty.

