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19. ABSTRACT

In this report-we develop an electromagnetic model for three-dimensional inversion of eddy-
current data, an inversion algorithm based on the conjugate gradient technique, and a special
purpose computer that we estimate can execute this algorithm in times comparable to high
speed main-frames. This computer has a pipeline architecture and is designed around our parallel
implementation of the inversion algorithm and makes use of high-speed DSP chips. The inversion
process achieves a higher performance measure when more than one data set is inverted. The
sequential order of the inversion scheme restricts the number of active elements in the pipe for
a single problem. When more than one inversion problem enters the pipe, then more than one
element could be active to improve the overall performance of the system.

The basic electromagnetic model startswith the integral equations for electromagnetic scat-
tering, which are then discretized by means of the method of moments. This gives us the funda-
mental inversion model, which is then solved using the conjugate gradient algorithm. In order to
accomplish the three-dimensional inversion, we acquire data at a number of frequencies; there.
fore, our inversion process is called a multifrequency method. The choice of frequencies, and thenumber of frequencies to be used, depend upon the conductivity of the host material, and the
depth resolution sought. .

The method of conjugate gradients has a number of attractive features for our purposes. Chief
among them is that it allows a large problem to be solved efficiently, and, because it is an iterative
algorithm, it allows us to take advantage of the special Toeplitz structure of the discretized model.
We also derive an algorithm that allows us to constrain the solution, use preconditioning and a
Levenberg-Marquardt parameter. Preconditioning is often useful in improving the convergence of
the conjugate gradient algorithm, and the Levenberg-Marquardt parameter is needed to stabilize
the solution against the effects of noise and modeling inaccuracies.

The inversion algorithms may require a priori information about the flaw regions. The infor-
mation can be used to concentrate the inversion efforts on regions of interest rather than unflawed
regions. Statistical pattern recognition and computer vision techniques have been examined to
achieve this goal. The purpose of applying statistical pattern recognition techniques, is to detect
the flaw regions and the background regions in the spatial domain. In addition, a graphical tool
can be used to analyze the raw data when used as input features, and evaluate the classifiability
of the measurement (any two features). Accession For
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5[i CHAPTER I

DEVELOPMENT OF THE MODEL

1. Introduction

In this chapter we describe mathematical models that were developed to be the basis

for our inversion algorithms. These models make use of a bulk conductivity model of an

anisotropic material. The bulk conductivity approach and the associated Green's functionsI for a fiat plate are described in Sabbagh Associates' report SA/TR-3/88. Here we develop

direct and inverse models based on a whip source probe and a ring source probe. In
laboratory tests these probes have been used successfully to detect flaws and so we develop

these models to allow for the reconstruction of three-dimensional flaws.

3 2. Whip Source Direct Model

(a) Computation of the Incident Fields Due to a Whip Source

3 The infinitely long 'whip' is oriented parallel to the y-axis, with x-coordinate equal to

zo and z-coordinate equal to zo. Hence, we have for the current density

3 Jo(z,y,z) = Z0 5(z - zo)6(z - z)a,, -oo < y < oo. (1)

The Fourier transform of J is given by

10 00Jo(k.,k,,z) =a,6(z - z0)-2 f (z - zo)e j(ku+kv)dzdy
7r - .00 (2)

=a,~ L 06k.o(k,)b(Z...zo).
2w

I We have, from (15) of NSWC TR 85-304:

I et(z) = J 2 zz') " jo(z')dz'

=a, 1 ".{..xk:o(k)d21(zjzo),()I2w
where the tilde denotes a function of (k., k.), and -2 1 (zIZo) is the external Green's func-3 tion. From here on we suppress the subscripts on the Green's function and replace them

with the superscript, '(e)'.

I Hence, the electric field at level z, within the slab, is given by

Eo,(z, zo) I0,k50(k)G7r 12(4)

I -I-

o.,(z, 20) =0 ek , ,(),27 bLi d2 ZZ)



I
where the subscripts refer to a 4 x 3 tensor (because there are four transverse field com-
ponents in ft, and the applied current can point in three directions.)

Upon taking the inverse Fourier transform of (4),we get

Eo(x, y, z) =o 22(k, 0; z, z0)ek(x )dkz
-Fo,(zo - z,0o;z, zo) (5)Io - Xe,.ff~k

£Eo,(z,y,z) = 7 02)LZ 0; Z, Zo)e-jku(:- )dkz

=F(zo - X, 0; z, zo).

I These are the functions that are to be used in the next section.

3 (b) Computation of the Scattered Fields Due to the Whip Source

We will analyze the problem shown in the figure:I

I Field PointI " (z,,,z)

Anomalous Current
.1 A. .A A.

J(.)ZZ

COMPOSITE SLAB

I.
I

We have, from (15) of NSWC TR 85-304:

I it(z) = J 612(ZIz') • a()(Z')d', (6)

I where the tilde denotes a function of (k., ky); i.e., (6) is in the Fourier domain. G 1 2(zIz')
is the "internal Green's function".

3 We assume that the only significant currents lie in the transverse plane; i.e., j(")(z') =

J./()a.(z') + J(')a,(z'). From here on we suppress the subscripts, 12, on the Green's

1 1-2
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t function and understand that this is the internal Gr, 's function. We also suppress,
for the moment, the independent variable, z', and understand that J') refers %c he
anomalous current at some depth z'. Hence, the electric fields at the sensor level z due to
the anomalous current at level z' are

E3 . =G1 1 J~' + y1 2  (7)UEll =Gd21 J& + d2X

where the subscripts refer to a 4 x 3 tensor (because there are four transverse field com-
ponents in it, and the anomalous current can point in three directions).

We are really interested in B2 at the sensor. According to (10)(b) of NSWC TR185-304, we have
= = 0oH.= -k, + ,,(8)

which, according to (7), implies that

B2 =- ~ G~J~) +3'sJ)] + !L" [d 21JWL + c22iPL)]
= -L1 &i + k,1§ 22)y + kG2+ (9)(a)CL

For completeness we write the other two components of B:

ff. =A~Od3a1 J(+ JSO 3 2 JCL
B, =/poG ') + poG 4 2 4.). (9)(b)

Let's call

=z FsoIs fill = 110OG32
HI, = joG41, H,, = 0o,4 (10)
RI.= (-k,&1 + k.dCn)/w, Hf, = (-k,LG 2 + kzl 2 )/W.I

Then, from (9)(a):

B, (zy z) = L AO ( 3 ky; z, ZI)YJa)(k 3 , ky)e(kuz+kl)dkzdky

3 +/]].Hz (kxI k,; z) z')i ' , (k, ky)e - i (Az+k1'' )dkzdk(

or, in convolution form:

B,(z,y, z) =0L- Jj H (z - , y -1;z,z')J.(')C(,)dd 1

SJ ,(z - y - ; z,z')J(°)(4, v)d d7.

31-3
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In order to compute emf's, we integrate B, over the appropriate sensing coil. This
computation should be done in (11), because it is very easy to integrate the exponential in
(2,y). The result is to introduce new H functions for the emf's, and these functions can
then be transformed for use in the convolution integrals of (12), et seq. (The derivation
of these H functions is described more fully in Appendix A of Chapter IV; see (A.33), et

U.Let the conductivity of the flawed region at level z' be the scalar function a(f )((, y, z')
(for a void region o(f) = 0). We are assuming, therefore, that the flaws are isotropic.
The incident field at z' is Eo(z,y,z') = E0 (z,y,z')a + E0 (r, y,z')a. If the source
of the incident field is an infinitely long 'whip' oriented parallel to the y-axis, with x
coordinate equal to q, then it is straightforward to show that Eo2(z,y,z') = Fo(q -
z,0, z'), Eo,(m,y,z') = Foy(q - z,0, z'), where F0o and F are given in (5). The zero in
the second argument of the F's implies that the incident field is independent of y, as we
know.

noThe anomalous conductivity tensor is the difference between the flaw conductivity
tensor and the host conductivity tensor:

0,[af) ] 0 [an 1 i ]2
0m ' 0 0 03

3 Hence,

m a)( 2,1 ) =a()(z,,y)F02 (q - ,0, z') + a(;(x,,)Fo,(q- ,O, z')

J(')(z,y) =0u')(z, y)Fo,(q - z, O, z') + (2)(z, y)Fo,(q - M,0 , z'),

I and we note that a(; ) = V2, which is known. Of course, if we work in the principal-axis
system, then 122 = 0.

3 When this is substituted into (12) we get

B,(z, -z)- = ; ,, ')Fo,(q - , 0, z')oW(2 , 17)d77
-00

+ ff H 1 (z - ,y - 1; z,z')Fo,(q - ,z')ori)(t /)dd/

I

- _00 (14)
+I.f +jj H SZ(X,3 i..v ;z1z)F,(qef,0,z')

00+ H2 1 (z -C ,w - ,;z,z')Fo3 (q - 4, , '] r;(~ 7d d

Because we sense the field at the same location as the whip, x = q, we can replace q

1 1-4



by z in (14) and get

B. (z, y, z) 0T1 I(z - Y- 7;Z ' (, j 1

T2 T (Z - Y- 7,; Z, Z')a ( , )dd77  (15)

1 f 00+ 472 j._4.f T12(-T - C, Y - ,7; ,,Z')a(2s)( , n)d~d,,

where

T (z - -, 17; z, z') =H,8 (z - ,y - 17; z, z')Fo0 (z -4 0, z')

T22(- CY- 1;z,Z') =H 1 (Z - ,y- 7;Z,z')Fo,(X - ,O,z')
T2Z- CY- 7; Z, Z') =H~z(-- -, - 77; Z, Z')FoV (Z - ,0,Z') (6

+ He -(z CY - 7;z,z')Fo (z - ,Oz').

The last integral in (15) is known, because a2 ) = 012. Indeed, if we are operating in the
principal-axis system of the host conductivity tensor, then a12 = 0.

For three-dimensional flaws, we need only perform a spatial integration of (15) with
respect to z'. We consider the slab to be partitioned into Nz discrete 'layers' and consider
&(') to be constant with respect to z' for each layer. The transfer function T(') for
example, for a layer bounded by zn-) and znM is

1 (n)(, Y - ;Z, Z,) H,, (z-,y - 7; z,z')Fo (z - 4,O; z,z')dz' (17)

The total field due to flaws in a slab, then, is the sum of the fields due to flaws in each of
the 'layers'. This will be fully explained in Section 4.

Equation (15) is the same equation that we derived for reconstructing &W using an
infinite current sheet for excitation. The only difference is that for the whip the transfer
functions T11 , T22, and T12 consist of the product of two arrays, rather than the product
of one array (H., or H,) and a scalar (Eo.,or Eoy), as was the case with a current
sheet excitation. Clearly, if the excitation source is bounded in the y-direction, then
the transfer function is the product of two two-dimensional arrays. Hence, it appears
that we can apply all of the inversion algorithms that were developed for excitation with
infinite current sheets, but that there must be a little more pre-processing to generate the
appropriate transfer functions.

1
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I
3. Ring Source Direct Model

(a) Computation of the Incident Fields Due to a Ring Source

The source is a single filament ring parallel to the slab workpiece. The ring has radius
to and is centered at (Zo, Y0, zO). The current density is

I Jo(z, y, z) = Io6 (z - zo)(-a. sine + a. cos O)6(r - "o) (18)

The transform of J is given by

Sjo(k.,o, Z) = 6(z - )O*L J 0(-a. sin 0 + av cosO)b(r -r)e (kz+Y)dzdy (19)

3 From Appendix C of NSWC TR 85-304, this transform is

0(k.. k,, Z) = j orO6(z - zo) Ik + .30 k,,kz 2 Ji(kro)(-a,. + ) (20)

where k, k.. = k V2 _

3 From (15) of NSWC TR 85-304, the fields due to this current ring are

g it(z) = f d(")(zjzo) -jo(zo)dzo

= &e()(Zlzo) joro( - Z o)+ (21)
2w z kr)(a- + k

I where the tilde denotes a function of (k3 ,k,) and d(')(zIZO) is the external Green's
function which is a 4 x 3 tensor (because there are four transverse field components in

I F, and the applied current can point in three directions).

The electric field at level z within the slab, then, is

I 0.((z, Z) = jIoo6(z- zo JI(k,.ro) [-kvO()(zjzo) + kzO)(Zizo)

Eo (z, =j~orob(z - so) Ji(kr°)[-k )(z*zO) + kz(;)(zOz°)] (22)Io~ O 2wk Ic,. PV212
Taking the inverse Fourier transform of (22) we obtain

Eo(z, y, z) =
3jLoro f jJ(kro) [k,(.)(k kgG 2 )kg k-O-)+j -Y)d

= Fo.(o - z, yo - ; z, zo)
IIV( I Y), ,) =

J4 -J I-k. [ (k 3 , ky) + k3.2)(k., k.)] e-(kO(*O-)+&(--v))dkdk,
27 0o. k,.

- Fo(o - z, o - Y; z, Zo) (23)

3 1-6
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(b) Computation of the Scattered Fields Due to the Ring Source

I The computation of the scattered fields due to the ring source is identical to that of the
whip source (S.ction 2(b)) through (12). For the ring source, though, the incident field is
not indepc .dent of y. If the ring source has z coordinate q and V coordinate r, the incident
electric fields are Eo.(z,y,z') = Fo(q-z,r-y, z') and Eo,(z,y, z') = Fov(q-z,r-y, z'),
where Fof and Fo are given in (23). If we choose z and y to correspond to the principle

i directions of the host material, then f1= " r21 = 0 and the anomolous currents are

Jf")(z,y) = r0)Fo.(q - z,r - yz')S)(Z Y) )Fov(q - z,r - y,z') (24)

When equations (24) are substituted into (12), we obtain

U~ ~ ~~~B (zi J, z) H= ,-w;z 'Fo( ~ ~

I ,.(.,,I. Go
+4w2 f Go H.(z - 4, Yi - 17; z) z')Fo%(q - 4, r - q~, z')oj(&j(, i'j)d~d 25' I// H.=(z_ ,.V_ ;z~z.)Fov(q_ .r-irlz')ff )( .rl)4Zdi/  (25)

The sensor is a single filament loop. If the source ring remains stationary while the
sensor loop is moved around, then the electric fields do not change as the sensor loop isI moved. In this case, F0. is a function of 4 and il only and (25) becomes

+ .I f ccH..(z - , y - vj)Fo,(C, r)o'00)( ,2 )d4d (26)

I So, B. is computed by

3. = H + ff. (27)
where

II.(z, y) = Fo((z, y)u,(my)

,,(2,y) = Fo,(=,Y)0'2(,Y)

5 On the other hand, if the source ring and the sensor loop always move together (and
are concentric), then q = z and r = y. In this case, (25) becomes

3~ ~ ~~~B B(z, y, z) H(z-,y-iFoz- y-

+ I I HI(z- ,y- )Fo,(z- ,y- 2 ) (28)

+ Z0 0



I
5and B. is computed by

B. = + i.&21a2 (29)
5where

T11(z,y) = H..(z,y)F.(z , y)
ST 2 2(-,Y) = H, (ZY)Fo,(ZY)

Finally, if the source ring and the sensor loop move together but are not concentric,
then the offset must be considered in (25). If the offset in the z direction is a and the
offset in the y direction is b, then equation (25) becomes

SB,(z, y,z) =

1..4i JL H,.(z - ,y- i; z,z')Fo3 (z - - a,y - 7- b,z')al,)(, ,7)d d7d

+T2 H,,,(- - t, y - 71; z, z )FN(z - -a, y - 77- b, Z')a() 7) d d77 (3 0)

3 and B, is computed by

B1 + (31)
where

Ty(z,y)F(*f)(z,y)
T2 n(Z, Y) = H.v(Z,y)FO(y -, Y)

and
p(f:")(T,Y) = e(k'+4b)POYo f ;)(,,y) = ej(ka+4b)POV(X, )

For three dimensional flaws, the transfer functions must be integrated with respect
to z'.I

I
I
I
I
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3 4. Whip Source Inverse Model

(a) The Discretized Integral Equation

I We assume that we are operating in the principal-axis system, so that the last integral
in (15) vanishes. If the whip is oriented along the y-axis, then we know from theoretical

q considerations that the electric field, Fo.(Z - , 0, z'), vanishes. Thus, (15) reduces to an
integral equation for a single unknown, the anomalous conductivity, 20(, 7, z') at layer

B,(z,y,z) = 12  Tn(z -( ,,y - v7; z,Z 2)(, i, z')d~d7 . (32)

£ This is the contribution of the layer that is located at z'. The net contribution of all
layers is given by the integral of (32) over the flawed region:

I B(-, y) = j i . Jj T(z- ,y- i,z')o(")( , i,z')d.d7 }dz'i /,.{/ ,,,00., o )z (33)
I= jfe {Jj0 T(kX, k1, zI)&(&)(k., ky, )ej:z+;Yddk Iz'

From here on we will suppress the sensor z-coordinate, because it is fixed; we also suppress
the subscripts on T and a(*).

Next, expand the unknown conductivity in a series of pulse functions (defined on a3 reg,,dar grid of spacing (6 z,6y,6z)):

N. N, N.I7(')(Z,y,z) = E E iwPa1(Z/6)P,,(Y/6y)Pn(Z/6z), (34)
1=0 M=0 n=0

where the {rl,} are real-valued, positive constants. Any other functions that are defined
over this grid, such as the sinc functions, could work as well; the pulse functions, however,
and functions derived from them by convolution, are particularly nice.

I The Fourier transform of (34) is

I&(k,, ky)Z)== w~y N. N, N.47r2-- E E Ft*ek(~li"'"'~l)
1=0 ,,=o,,=o (35)
(sin(kZgz/2)) (sin(k 16/2))PZZ"")

k3 6z/2 kSy/2

and when this is substituted into (33) we get

B(z,y) = S6 No N, Ns 8 l°' c ((0 (")(k.,,k.) sin(k.6z/2)(sin(W6y /2))

Bjj2_ E E Ew f/ j?1I (I k.64/2 kySy/2 (36)
I -9

I
I I i -9



I f-n)(k, k,, w) is the Fourier transform of

Z(+)

( -,y-;w)= - 4, Y- 17; w, z')Fo (z- , ;w, z')dz', (37)

I which was derived in (17). We are explicitly showing the dependence of the transfer
function on frequency, in anticipation of the multifrequency model for inversion.

I We take moments of (36) by multiplying by "testing functions", and then integrating.
For testing functions we will use the same pulse functions, PL(z/6z), PM(y/6y), that were
used in the expansion of the unknown (thus, this is Galerkin's variant of the method of
moments). The integration on the right-hand side introduces another Fourier transform,
so that the result is

I LM =JJPL(zI6)Pm(y/6y)(,)dzdy

(6 z 6 y)2 N N ,. )/_ T) sin(l 6z/2) )2sin(kby/2)2 (38)= 4.--"""r-wio,, ,. >(")(k=,k,, si(c sink--,-l/2)2(8

47r2 D jj0, k,6x/2 ky5y/21=0 O -h J:(L-)+ k, Ei(M-,)] dk dk,.

This equation can be written as the sum of Toeplitz operations

N N. N,5 BLM = 1: 1 1 TC)(L - 1, M - M)O'hn, (39)
n=O 1=0 vn=O

3 where the two-dimensional Toeplitz matrix, T(n), is given by the integral in (38). This is
the discrete version of the integral equation, (33), and is the basis of our inversion method.

I (b) The Multifrequency Model

Equation (39) consists of (N + 1) x (N. + 1) equations in (N. + 1) x (N. + 1) x (N. + 1)3 unknowns. Hence, we need more equations. The easiest way to generate these equations
is to repeat (39) at a number of different frequencies. This is easy to do in the lab (where
we must measure B at these frequencies), and on the computer (where we generate a new
transfer function, T, at the same frequencies). This approach is plausible because the
anomalous conductivity is assumed to be independent of frequency. Thus, assuming that

I we use N! frequencies, we have

B, =T, 1  + 0 al + + T,N, 9 ON.

3 :(40)

BNI =TNI,, ) al +... + TNl,N. ON..

1-10
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Each of the B's in (40) is a (N 3+1)x(Nv+1)-dimensiona data array, the subscript denoting
the frequency at which the data is taken. The operator ® denotes the two-dimensional
Toeplitz operation

N. N-

T, 1 @, 0 = E T(') (L-,M -m;f)o r''. (41)
1=0 n--0

i We write (40) in a block-matrix form, in which the real and imaginary parts are
separated

Bl) T (R) ... T(R)

NN1,1 N,N.(2
(1) T() ... T(1
N1I = (1 1N 1 N . T' (42)
1 1,1 1N, ON,

N1,N Nj,

Equations (40) or (42) are our basic system of discrete equations, and constitute the
'multifrequency model' for the whip source. These equations may contain several thousand
unknowns, so we must use efficient methods of inverting them. In Chapterll we will apply
the method of conjugate gradients, together with the Fast Fourier Transform (FFT), to
accomplish this task.

The question arises as to the best number, Nf, of frequencies to use, and what is the
optimum range of frequencies. Generally, this can be answered by trial-and-error, with
the following ideas as a guide. Least-squares methods, such as the conjugate gradient

algorithm, often work better with overdetermined systems, because the variance of the
error is reduced as the number of equations increases, for a given number of unknowns.
Hence, we would like N1 to generally be much larger than N,. It is time consuming,
however, to generate too much data, so there is a trade-off that can only be determined
by conducting numerical experiments with typical problems.

The same can be said in determining the frequency range, but we know intuitively, if
for no other reason, that we should use as broad a frequency range as possible. We can be
a little bit more definite here, and rely upon the phenomenon of skin effect to guide us. If
we want a resolution of 6, in depth, then our upper limit of frequency should produce a
skin depth that is smaller than 8,, though, as we will see in Chapter III, we have gotten
good results with simulated data at lower frequencies.

I'
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5. Ring Source Inverse Model

The inverse algorithm developed in the previous section for the whip probe is equally
applicable for the ring probe. For the whip probe, we noted that if the grid was oriented
parallel to the principle axes of the workpiece, oW) = 0 and the third integral in (15)
vanishes. Also, since the whip is also oriented parallel to the y axis, Fg. = 0 and the
first integral in (15) vanishes. Hence, (32) includes only the second integral. For the ring
probe it is still true that we can choose to orient our reference grid parallel to the principle
axes of the workpieces and so we can eliminate the third integral in (15). However, the
first integral must be retained. The basic inversion equation for the ring probe, then,
involves T11 and o,() as well as T22 and o). For isotropic materials, o,' - ') and the3 transfer functions can be combined. For anisotropic materials, we can either treat the two
principle conductivities as independent unknowns and double the size of the problem or
we can assume a constant ratio for the conductivities and combine the transfer functions.

1
I
I
I
II
I
I
I
I
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CHAPTER II

APPLICATION OF CONJUGATE GRADIENTS

3 1. Introduction

The discretized system of equations, (1-40), which resulted from the application of the
method of moments to the operator equations in Chapter I, will, in general, have a large
number of unknowns. In subsequent chapters we demonstrate some problems with 4000 to
10,000 unknowns. In addition, we found that this system has a very special structure; it
was Toeplitz in two of the three dimensions. This means that we should apply a solution
technique that can accomodate a large number of variables, while, at the same time, taking
advantage of the special structure. This suggests the use of iterative techniques, such as
the conjugate gradient (CG) method.

We have successfully applied the CC method to a number of problems involving volume
integral equations in nondestructive evaluation [1-3]. Much of the rest of this report dealswith the application of this method to three-dimensional inverse problems.

In this chapter, we will simply sketch the important features of the CC algorithm;
references [4-6] should be consulted for further details on the method.

* 2. The Conjugate Gradient Method

Let us write the complex vector-matrix equation (1-40) as the operator equation

Y = AoX, (1)

I where

S= ], (2)
B13 [47NZ

r2

and
[T1 , I ... T1, N

AoX= [ " ; j . (4)
| L ,,..."' TNI,,N. 0WN.

Keep in mind that each of the B's and a's is a two-dimensional array, say of dimension
32 x 32, and each T,j in (4) is a two-dimensional Toeplitz matrix, T,j(l - L, m - M). 1, m
index the 'row' in each of the two dimensions, while L, M index the 'column' of each
dimension.
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We will need the adjoint operator, A, which corresponds to the conjugate transpose
of the block-matrix in (4):

iIl ... TN 1, 1 Bi

A* o Y = [ " T . (5)3 LI N. N.~ J B,,

TA is the Hermitian transpose of the two-dimensional Toeplitz matrix Ti,,; i.e., T,, (l-
L,v - M) = Tj(L - 1, M - m), where * denotes the complex-conjugate. The operator
formalism is precisely the same if we use the real system, (1-42), except that the Hermitian
transpose is replaced by the ordinary transpose in defining the adjoint operator in (5).

We remind the reader that the 0 operation that appears in (4) and (5) stands for the
sum of a number of two-dimensional Toeplitz operations, as in (1-40).

The conjugate gradient algorithm starts with an initial guess, Xo, from which we
compute Ro = Y - A o X0, P = Q0 = A* o R0 . In addition, we have a convergence
parameter, c. Then for k = 1,..., if Teat = IlRhII/JIYII < e, stop; Xt is the optimal

I solution of (1). Otherwise, update Xk by the following steps:

S; = A o Pt

I = IQk-1 112'

Xk = Xh-I + atPt

R 1 = Rt- 2 at St (6)
Q = A* o Rk

I = lQkII2
IIQ-I112

P+1 = Qt + bkP.

comment (1): The algorithm terminates at the Mth step when QM+i = 0, so that
XM+1 is the least-squares solution of Y = A o X. The vectors Qo, Qi, Q2,..., are
mutually orthogonal, as are the vectors, S1, S2 , Ss,. In addition

f0, if j < k;1 i II ,Q"II otherwise.

comment (2): This suggests that we monitor the iterates {Qk} for loss of orthogonality,
and restart when the condition IQHQk+I : e1QH+Qk+l is satisfied, where c2 = 0.2
(say). When this occurs, we set bt = 0 in the last line, and then continue (i.e., we restart
with a pure gradient step).

3comment (3): Allen McIntosh, Fitting Linear Models: An Application of Conjugate
Gradient Algorithms, Springer-Verlag, 1982, gives an alternative expression for bk:

bh = Q'(Qk - Qh-i)
I1Q-11

2
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which seems to produce Q&'s that are more orthogonal, when using the criterion of com-
ment (2). This definition requires, however, that an extra array to store Qk-1 be made
available. This is no problem if we monitor for orthogonality for the purpose of restarting,
because that array is required anyway.

The convolution and correlation operations that are a part of A and .A are evaluated
by using the FFT, as described in Appendix A. This, together with the fact that the
storage requirements are reasonably modest, are the reasons why the conjugate gradient
algorithm becomes attractive for large problems in our model.

3. Conjugate Gradients with Constraints

The conjugate gradient algorithm that was just described does not constrain the
solution. In solving an inverse problem, we often need to constrain the solution in order
to get meaningful solutions. Hestenes [6, Chapter III] presents algorithms that involve3 general linear inequality constraints (such as bounds on the solution). We show one such
algorithm, the active set method, using Hestenes' notation.

The problem is to minimize the quadratic function,

F(z) = !zTAz - hTz + Co,

I on the set, S, of all points, z, satisfying a set of inequality constraints

g()= wTZ - k.<o (:l i M). (7)

We assume that A is N x N and symmetric; later, we will consider the more general case5I that can be solved using least-squares.

A special case of (7), which will be of interest to us, are the bounds

3 c'<z'<d' (i= 1,...,N).

This can be put into the form (7):

g,(Z) = -' + c' <0

3 gi+N(Z) = z'i-d' <0 (i = 1,...,N).

Hence, M = 2N; I i in (7) is the unit vector pointing in the negative ith-coordinate
direction, for i = 1,...,N, and in the positive (i - N)th-coordinate direction, for i =
N + 1,..., 2N. These vectors, of course, are the outer normal vectors to the feasible
region, S, which, in this case, is a cuboid whose edges are parallel to the coordinate axes.

I(a) CG-Algorithm for Minimizing F on S [6, p. 224]

3 Step 1. Select a point z in S. Compute

r" = -F'(z) = h - Ati, g 1l = gi(:i) (i = I,... ,2N).

S11-3
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If r, = 0, stop; algorithm terminates.

Else, let I be the set of indices, i, such that gl = 0 (the 'active set'), and go to Step 2.

3 Step 2. If I is empty, i.e., no constraints are active, let H be the identity matrix, and go
to Step 3.

3 Else, let H be the nonnegative symmetric matrix that annihilates the vectors, w,, i E I.

comment:Note that if the first N constraints are active, or the last N, then H is the
sero matrix, because that is the only matrix that jointly annihilates all of the coordinate
vectors. This is the case when z is at a vertex of the feasible region (which corresponds to
a corner of the cuboid). In general, the columns of H are orthogonal to the normal vectors
of the surfaces that intersect to form the part of the cuboid on which z lies. (Consider the
case in which z lies on a face of the cube, or on an edge.) It will be quite apparent how
we apply H, so that no matrix multiplies will be involved.

3 If H = 0 go to Step 5, with r, playing the role of xt+,.

Else go to Step 3.

3 Step 3. CG-subroutine. Set
p= e = Hr2 . (a)

I comment:If H is not the identity matrix, then when it operates on a vector it merely nulls
certain components. Thus, the resulting vector lies in the constraint subspace in which z
is located. This means that the correction vector, p, lies in the constraint boundary, if z
starts there.

Starting with k = 1 compute

84;= Apt, c = pk rk, d5 =p~A; , Cs (b)k

WiO, i I,I +tk{= Tak, 9i a (c)

=k+ = z + a~ g,,+ = g, + akq3  (j = 1,... ,2N). (d)

If for some j I I, g,+ _ 0, go to Step 4. (e)

I Else
Ek+l = rk - akak, ir+, = Hrk+z. (f)

If fk+l = 0, or k = N, go to Step 5. 
()

Sp = k+l + bApk, bk - .k+l (h)| dh

Replace k by k + 1 and go to (b).
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I
Step 4. Scale back to the boundary of the feasible region and update the active
set. Let J be all indices j I, B 9j,k+1 _ 0. Let ak be the smallest of the ratios

ak =-D, j E J.
qjk

I Reset

z=zk+akpk, ri=h-Az 1 , gjl=gj,k+akqjk, (j=1,...,2N).

I Update the active set by adjoining to I all indices j V 1, 3 gi = 0. Then go to Step 2.

comment: Instead of scaling back to the boundary along the conjugate direction, we canreturn to the boundary along the orthogonal direction from the current estimate point.
This seems to speed up the algorithm.

I Step 5. If rA+1 = 0, stop; algorithm is terminated.

Else select shortest v of the form

v = rk+1 - E wiy, summed for all i E I with y, _ 0. (i)

I comment:It is easy to do this because the wi are unit coordinate vectors. The y, are
celled either Lagrange multipliers or components of the dual vector.3 If v = 0, stop; Kuhn-Tucker conditions are satisfied, and algorithm is terminated at
minimum point of F on S.

3 Else, choose a > 0, such that

gi,,+2 + av Tw <0 (i = 1,...,2N), F(zk+l + av) < F(xk+i). (i)

comment:The last inequality holds when 0 < a < 2vTrk+I/VTAv.

5 Restart the algorithm at Step 1 with

I as the initial point.

I (b) CG-Algorithm for Least-Squares on S

comment:The algorithm follows from the preceding one, after observing that the new
I functional to be minimized is

F(X ) 
X TII 11y112I -~~ XTA*AX -X(A" Y) + -i~i~
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5 where we are returning to our usual notation. The constraints are the same as before, (8).

g Step 1. Select a point X, in S. Compute

RI = Y -.AXI, Q, =-A*"R, = -F'(XI ), gi 1 = gi (XI ) (i-- 1, ...2N).

U If Q, = 0, stop; algorithm terminates.

Else, let I be the set of indices, i, such that gil = 0 (the 'active set'), and go to Step 2.

I Step 2. If I is empty, i.e., no constraints are active, let H be the identity matrix, and go
to Step 3.

5 Else, let H be the nonnegative symmetric matrix that annihilates the vectors, W, i E I.

comment:This is the same matrix as above.

5 If H = 0 go to Step 5, with X, playing the role of Xk+l.

Else go to Step 3.

3 Step 3. CG-subroutine. Set P1 = = HQi. (a)

5 Starting with k = 1 compute

SiI=lAPk, a (b)

I 0, i EI(c
lik=WTPk, iEI (c)

Xk+1 = Xk + akPk, gj,k+1 = gjk + akljk (j = ,..,2N). (d)

If for some j V I, gj,k+ > 0, go to Step 4. (e)

Else Rk+1=Rk-akSk, Qt+=ARk+, i +z.=HQk+l. (U)

Me If i'j,+ = 0, or k = N, go to Step 5. 
(g)

=I = II Pk+I = Qk+I + bk. (h)

Replace k by k + I and go to (b).

comment: The definitions of ak, bk force the orthogonality conditions: QkQk+i
0, f "~~S+ = 0. This suggests that we monitor the iterates {} for loss of orthogonality,

and restart when the condition IQk Qt+1I > EQk+zQk+j is satisfied, where el = 0.2
(say). When this occurs, we set bk = 0 in (h), and then continue.
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5 Step 4. Scale back to the boundary of the feasible region and update the active

set. Let J be all indices j V I, 3 gi,k+l > 0. Let ak be the smallest of the ratios

ail -ik- j EJ.

3 Reset

Xl=Xk+akPk, R 1 =Y-AX1 , Qi=A'Ri, gj=gj,k+al ,, (j=1,...,2N).

Update the active set by adjoining to I all indices j 0 I, 3 gil = 0. Then go to Step 2.

3 comment: Instead of scaling back to the boundary along the conjugate direction, we can
return to the boundary along the orthogonal direction from the current estimate point.
This seems to speed up the algorithm.

Step 5. If Qk+1 = 0, stop; algorithm is terminated.

3 Else select shortest V of the form

V = Qk+l - E WiA, summed for all i E I with Ai 0. (i)

If V = 0, stop; Kuhn-Tucker conditions are satisfied, and algorithm is terminated at
minimum point of F on S.

Else, choose a > 0, such that

3 g,,A+i +aVTW : 0 (j = 1,...,2N), F(Xk+l +aV) < F(X+i). U)

comment:The last inequality holds when 0 < a < 2VTQt+/VTkAAV.
Restart the algorithm at Step 1 with

X= Xk+1 + aV

as the initial point.

(c) Example Calculation

*Let[2

A 1 ], A= 0 0 1 =g~~ 1 8

Then the solution of the normal equation

A*AX =[ 2 2] X10
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IIis X' [2]. The outer-normal vectors to the two-dimensional constraint region (which is

a square) are W = - ] 2 [ ] 3 [ ] 4 [ ]

Start with X = [] Then g,(X 1 ) = 0, g2 (X 1 ) = 0, gs(XI) = -1, g4(X 1 ) = -1.

Hence, the active index set is I = (1, 2), which means that the H matrix is the null-matrix.
The initial residual and gradient vectors are, respectively,

*= [21
R,= [ Qi=A Ri= 10 •

Enter 5: Minimize V with nonnegative A1, A2, where,

V= [~%] -A~ [7)] - A2[0 =]10 0 =1 10 + Ai2]

Hence, A, A2  0, and V = [] Next, consider

gl,,+a8 101[ 0  1o _8a< 0oa>0

92,1+a[8 10]1,]=-.10 _<O= °1>

9 3,+a[8 101 [0]
3g 4,1 +a[8 101[ ]=1+ 10a 50= a <1/10

0 < 328 328
0<a 10 +182+182 = 7T48

Thus, a = 0.1, and we leave step 5 with

I= [0]+ [1.O1 = [0"8]

I Enter step 1 with this value of X, and compute

I R, = [ 1 I]1.0 8
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U

S[211 1 1 28 3.4

1= -0.8, g2=-1.0, g = -0.2, g4 = 0.

I=(4), H= .

Enter step 3:

0 1 2.4 0
Si =AP, 0 [ 1 - 2.4

.(2.4)2
I a, - 2(2.4)2 =-0.5

Ill = -2.4, 121 = 0, Is, = 2.4, '41 = 0X2 XI+1,=08 = [.o] = [2.0].
2 .1  0 2 1 .0

912= - 0.8 + 1 (-2.4) = -2.0

9 2 2 = -1.0 +i(0) = 1.0

I ,-0.2 +i(2.4)=1.0

g4 ,2 =0

3 Enter step 4: 0.2

a- =1/12, I=(3,4)

X [0.8] 1 [2.4] = [1.0]

X1  1.0 12 0 [1.0

Q (2 0

gR--1.0, g =-1.0, g3=0, g4-0.
1 11-9
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I Enter step 2:

Enter step 5: Find smallest V with nonnegative As, A4, such that

V= [4] -A [1] -A4 [1] =4- -\

151 0- 'A

3 4. Preconditioned Conjugate Gradients

The rate of convergence of the conjugate gradient method depends upon the condition
number of the matrix operator, A. Hence, in order to speed up the convergence, we
precondition A. There are several ways to do this (see Allen McIntosh, Fitting Linear
Models: An Application of Conjugate Gradient Algorithms, New York: Springer-Verlag,
1982); we are going to consider only one method, scaling to produce columns of A that
are unit vectors.

Return to the basic equation

Y =AX3 =ABB-'X (9)
-ABU,

3 where B is some invertible operator (matrix), and U = B-X. B is chosen to improve the
condition number of A. We will take it to be a diagonal matrix, whose nth entry is the
reciprocal of the norm of the nth column of A.

We do not multiply A with B, because that would destroy the special convolutional
structure of A. We introduce a new operator, A', which is the composition of B followed3 by A. The adjoint of A' is then A = BT 4 . Note that because B is diagonal, then
BT = B. In multidimensional problems, in which we don't actually write out the operator
equations as matrix equations, we intrepret a "diagonal operator" to be an operator that
multiplies the nth component of the solution vector by the nth component of B.

The conjugate gradient algorithm remains unchanged, except that A is replaced by A'.
The solution, U, of the scaled equation is then unscaled to get the original solution: X =
BU. Keep in mind that this also introduces scaled bounds in the constrained conjugate
gradient algorithm for U. That is, if c' < z' < d', then (c'/B') < u' < (d'/Bi).
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I
5 5. Conjugate Gradients with the Levenberg-Marquardt Parameter

In our discussion of deconvolution via Fourier transforms, we introduced a filter pa-
rameter, a, which smoothed the solution. Here, we introduce a similar parameter, A,
called a Levenberg-Marquardt parameter. We want to see how it enters into the conjugate
gradient algorithm.

We start with the augmented functional

* F(X) =IIY-.A-X12 + lA2[IXlI2

XTA*AX - XT.4'Y + 11y112+IA21X! (10)

XTAI A'X - + IyI ,11

U where the augmented operator, A', is defined by

* A'= (-4

5 and the augmented right-hand side is

*? 0'[J (12)
I in (11) is the N x N identity matrix (where N is the number of unknowns), and the zero

I vector in (12) is of length N.

The vectors in the conjugate gradient algorithm that are affected by these definitions3 are S and Q. We define new vectors, S' and Q', in terms of the old ones by

S '=A'P= p = [ ] , (13)

Q = -F'(X) =A*Y - (A*A + \ 2 )X

=A*R - \ 2x (14)

=Q- 2X.

I t is easy to see that 1S1112 = ISI12 + A211 P1 2.
We can use the Levenberg-Marquardt parameter t.o solve a constrained least-squares

problem. First, let us approximate the cuboidal constraint set, that was defined in Section
3, by the inscribed hypersphere, whose center is at the centroid, X, of the cuboid. Then
we replace the functional of (10) by

1 ly _4 1
F(X) = .1- X 2 + _AlX -,X]j1 2, (15)
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which, under the change of variables, U = X - X,, becomes

G(U) = - AX, - AU 2II + \2 11U112. (16)

Hence, the previous algorithm is unchanged, except that the inhomogeneous term, Y, in
(12) is replaced by Y - AXE.

Now the question arises, how do we determine A? In a statistical approach to de-
convolution, A can be given in terms of signal-to-noise ratio, as is done in Chapter IX.
Without this data, however, we look for something else. In our discussion of decon-
volution via Fourier transforms, we showed that the smoothing parameter, a, could be
determined by solving a nonlinear equation, given certain prior information. We do some-
thing similar with the Levenberg-Marquardt parameter, but first we quote the following
theorem:(Charles L. Lawson and Richard 3. Hanson, Solving Least Squares Problems, En-5 glewood Cliffs: Prentice-Hall, Inc., 1974, p. 193)

Theorem. For a fixed nonnegative value of A, say, 1, let X be the solution vector for the
problem of m nim (10), and let ' = Ily- ._ AI2. Then ? is the minimum value of
111Y= - AX112 for all vectors X satisfying IlXll -< IlXil.

3 The proof of this theorem is simple, and is given in Lawson and Hanson. The meaning
of the theorem is clear: Given the radius of the hypersphere constraint set (which follows
from the original hypercube constraint set), lIX'll, we minimize (10) by means of conjugate
gradients, for a collection of A's. We choose that solution for which JIXH = li il. This
yields the optimum A, and gives us the optimum, constrained, least-squares solution of
Y = AX.

This approach is equivalent to solving for A using a trial-and-error method. This is
inevitable when using conjugate gradients. If we were solving a much smaller problem, we
could determine the singular value expansion of A, and use that result in setting up an
analytic equation for A, which could then be solved using Newton's method, as indicated
in Lawson and Hanson. It remains to be seen whether this approach is faster than that
which constrains each component of the solution vector individually.

There is a serious problem with this approach, however. The inscribed hypersphere in3 N-dimensional space has a volume that is much smaller than the N-dimensional constraint
cuboid, when N is only reasonably large, whereas the circumscribed hypersphere has a vol-
ume that is much larger. Hence, using the inscribed hypersphere results in a very strong
(and undoubtedly incorrect) constraint, whereas using the circumscribed hypersphere re-
sults in a very weak constraint.
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APPENDIX A

3 Efficient Computation of Convolutions and Correlations

If we attempt to solve (1) using an iterative technique, such as the conjugate gradient
method, it will be necessary to evaluate the vector-matrix product many times. This is a
PQ-step operation, where P is the number of rows (equations), and Q is the number of
columns (unknowns) of the matrix T. If the matrix is square, with dimension N x N, this
process can be reduced to N log 2 N operations by using the Fast Fourier Transform (FFT)
for evaluating discrete convolutions.

The appropriate theorems (in one dimension) that relate discrete Fourier transforms
and convolutions and correlations are ( = denotes a discrete transform-pair):

Iif 9(j) 4=*- G(n)

IB h(j) - = H(n)
IN-iI N-1

Then g(J + k)h() =- Eg()h(k - j)
N L ( +Ah=o h=o (A.1)(,,)3 4=, G(n)H(-n)

=G(n)H(N - n)
IN-i N-1

E g(k)h(j + ) g(k - j)h(ck)
h=0 0 (A.1)(b)I =* G(-n)H(n)

=G(N - n)H(n)
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3 gkI~ -k N-i

g(k)h k) g(j - k)h(k)
SN=o k=o (A.1)(c)

3G(n)H(n),
wherej 0 ,., N - 1, n = 0,..., N - 1 in all of these. Several points should be made:
first note that correlation summing is not commutable, and that one must use negative
frequencies in the discrete Fourier transform (which, of course, introduces the term N - n).

Let's look at the matrix structure of convolution and correlation sums and see how
we can use FFT techniques to compute them. We'll work in one dimension. Consider the
following convolution sum, which is written as a vector-matrix equation:

mo0  .. 1 M-2 .M2 M-3'a rMol3I ]-.M1 MO r-I M-2 Z (A.2)
Y2 rn m2  m1  mO i L 3X
43. -M3 M2 M 0M Z3.

Rewrite this in the expanded form (padding with zeros to get a power of two) in order to
achieve a circulant-matrix:

O Mo mo r-1 M- 2 M- 3  0 m 3  m 2  mI Zo-
Y1 m 1  mO rn- r_ 2 M-nM3  0 M3 rn 2  Z

2 M 2  r1n MO rnM..-1 Mn ,-2  rn-3  0 M 3  2
Y3 M3M=I M -I M 2 M 3 0X (A .3)* 0 M3 m 2  Mr MO M-1 M 2  M-3  0

-* 0m mS m M o MO M-1 M-2 0

* M- 3 0 0 ms m3 M M o MO M-1 0

* .m-1  M- r. 3  0 m3 M 2  m Mo r.0 J

where the *denotes a discarded entry. Hence, the sequences to be FFT'd are: (MO, MI, m2,

Ms,0,M-s,M- 2 ,m... 1 ) and (zo, X, 22, zs, 0,0,0,0), and the output sequence is (yo,yi,Y2,Ys,
*,*, *, *). The order of the entries in the sequences is very important.

Now for correlations:

YO, rno n n2  M 3  to'

y2 = mI m 2  ms m 4  W1 (A.4)
L M2 nM3  M4 M5  2:

Y3 M3 4 M5I MG - M

Rewrite this in the expanded form (padding with zeros to get a power of two) in order to
achieve a circulant-matrix:

YO" 'MO Mn M2 MS M 4 MS M 6  0 Zo'

Y1 1 M rn2  M3  Mn4  Mn5 in 0 Mn0  21

Y2 M 2  M3 4  M 5  M 0 M 0 I 2
Y3 M3 Ms i 4  5  M 0 mo m M2  W=

rn4 m4 m e 0 m O mo rn i 3  ' (A.5)

5  06  0 MO I M2  M 3  M4 0
e* 0 MO M1 M 2 M3 Mi4  M 5  0

* 0MO MI M2 M3 M 4 Ms Mn 6 0J
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where the * denotes a discarded entry. Hence, the sequences to be FFT'd are: (MO, m 1 , M2 ,
?s,m 4 ,ms, n,O) and (z0,z,,z2 ,Z3 ,0,0,0,0), and the output sequence is (Y0,y,y24,ys,
*, *, *, *). The order of the entries in the sequences is very important, and also don't forget
to negate the frequencies in the transform of the z-sequence.

To summarize: we expand the original data, padding with zeros, as necessary, to get
a circulant matrix, and then take FFT's.

APPENDIX B

Bi-Conjugate Gradients

Let us consider the following equation,

AX = Y, (B.1)

where A is a known operator, X is the unknown, and Y is the known vector. For aI non-Hermitian operator, the conjugate gradient method solves the normal equation,

3 AAY = AY, (B.2)

where A' is the adjoint operator of A. It is noted that the condition number of the original
equation (B.1) is squared in the solution of (B.2). In the bi-conjugate gradient method, one
solves the non-Hermitian operator equation (B.1) directly. For this algorithm an additional
2N storage spaces is required, where N is the dimension of the unknown vector X.

Method of Solution

To solve (B.1), one starts with an initial guess, Xo, for X, and then defines the
residual Ro = Y - AX 0 , and an initial search direction P0 = Ro. In parallel, we define
the hi-residual A0 = M and bi-directional Po = Ps', where (*) denotes the complex
conjugate. In addition, we have a convergence parameter, e. Then for k 1, 2,..., if
Test= IIRkII/IIYHJ < e, stop. Otherwise, update Xk by the following steps:

3Sk =AAk 9k S= A*P
aj - <Rt,,K,> bt = <Rh, AR+1><h -- <.> ; oh jib >=Xk+= X + akPh (B.3)

Pk+1 = Rk+X + b -; Pk+ G = k+ + b-,A k

U k+ = Rk - ak~k Akl=A -§,

The scalar {ak} is chosen so as to force the bi-orthogonality conditions,

U <RR,,>=<R,., ,>=0 ; 0<m<n<_,

and {bt} is chosen to force the bi-conjugacy conditions,

< P,S,>=<S,.P>o ; 0 <m<n<N,
II1-15
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5 provided that the algorithm does not break down; i.e., for all i for which

< <s,.P, > 4o ; < P, ,. > J-o.

The algorithm must terminate with R,, = A,, = 0 in at most N iterations. It is
important to point out that the bi-conjugate gradient algorithm does not minimize the
norm of the residual, IiRII, at each iteration. Nevertheless, if the algorithm does not break
down, it converges at a much faster rate than the normal conjugate gradient algorithm.
From our experience with large size and ill-conditioned operators, however, the bi-conjugate
gradient algorithm does seem to break down; (i.e., I < Si, Pi > I < 6 ; < , R > 1<
6, where 6 is a very small positve number), before it meets the convergence criteria.

I
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I CHAPTER III

RECONSTRUCTIONS USING SIMULATED AND LABORATORY DATA

* 1. Introduction

The goal of our work is to reliably reconstruct three dimensional flaws in workpieces
from emf measurements that are inherently noisy. First, though we tested the algorithm
using simulated data, that is, computer generated data. Through these tests, we were
able to learn how the conjugate gradient (CG) algorithm performs as a function of the
frequency range of the emf data and the degree of overdeterminedness of the system.I Also, the equations we are trying to solve are ill-conditioned and so we needed to know if
acceptable solutions could be expected using this form of the CG algorithm. The results
of the tests using simulated data are very encouraging. We also include some preliminary
results based on actual measured data.

3 2. Reconstructions Using Simulated Data

(a) Simulating the EMF Data

Two types of synthetic data were available. Since, in the fourier domain, we are
solving an equation of the form Az = B, we can provide a test solution zt and calculate
Bt = Azt. Then, using A and Bt, we can try to reconstruct z, using the CG algorithm.
This type of synthetic data will be referred to as "exact" data.

Another type of synthetic data resulted from our model of the direct problem. In
the direct problem, we calculate emf data from a flaw definition and a transfer func-
tion derived from internal and external Green's functions (see Chapter I). This transfer
function is discretized using the method of moments and becomes the operator A in
the inverse model. The discretization introduces error so that the emf calculated using
the direct model differs slightly from the emf calculated using the discrete operator A.
The difference between the two diminishes as more terms are used to approximate the
operator. This type of synthetic data will be referred to as "direct model" data.

g All tests using simulated data used the "direct model" data.

(b) Material and Data Collection Parameters

The em! that is measured depends on the material parameters and and the parameters
of the data collection system. Figure 1 shows the typical arrangement of workpiece,
source (whip) and sensor. For the synthetic data tests the distances shown were as

I follows.

= 0.013 in.
z. -= 0.019 in.
z,,,,, = 0.273 in.

III- 1
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I The sensor consisted of ten square turns from 0.10 inch to 0.55 inch. The workpiece
was 0.11 inch thick. The conductivity tensor was (mhos/m)

0 104 0

I0 0 1

This represents a graphite-epoxy composite material that is isotropic in-plane and essen-
tially nonconducting through its thickness.

Data measurements were simulated at each point of a 32 x 32 grid in the sensor plane
at a resolution of 0.1 inch. The thickness was discretized into four layers, each also a
32 x 32 grid. A test flaw, then, could be defined as a collection of "voxels" each with
dimension 0.1 x 0.1 x 0.0275.

* (c) Convergence Test

A convergence test variable was defined in terms of the L2 norms of the simulated3 data and the residual. Specifically, at iteration i, the convergence test variable 6, is

I Y- AX 2

- IYuI2
where Y is the simulated emf data, Xi is the flaw function at iteration i and Y - AX, is

* the residual.

(d) Test Set #1

3 A flaw in the shape of a cross was chosen as the standard test flaw. This test flaw
was placed in the center of each of the four layers (one at a time) and an attempt was
made to reconstruct the flaw from emf data. The conductivity was scaled so that flaw
locations had a value of 1 and host material locations had a value of 0. For ease of
reference, we will refer to a particular flaw using the word 'flaw' followed by digit(s)
indicating the layer(s) that contain the test flaw. This first test set, then, involves flawl,
flaw2, flaw3 and flaw4. Data was simulated at 5 frequencies: 1, 3, 5, 7 and 9 MHz. The
unconstrained version of the CG algorithm was used and the initial guess was no flaw,3 that is, all zeroes.

The number of unknowns in this problem is 32 x 32 x 4 = 4096. Because the emf
data is complex and our solution (conductivity) is real, each set of emf data provides
2 x 32 x 32 = 2048 equations. For 5 sets of emf data and 4 layers, the overdeterminedness
of the system is 2.5.

3 The purpose of this set of tests was to determine the ability of the CG algorithm to
isolate the flaw to the proper layer. Also, we wanted to find out the effect of depth on
the convergence.

Figure 2 shows grayscale plots of the attempted reconstruction of flawl at four stages
duriLg the iterative process: 100, 500, 1000 and 2048 iterations. Table I below shows

III- 2
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the value of the convergence measure, 6,, as well as the minimum and maximum values
of the solution for each layer.

Table 1
flaw1 Layer 1 Layer 2 Layer 3 Layer 4

Iterations 6, min max min max min max min max
100 0.00397 -0.270 1.343 -0.068 0.142 -0.118 0.025 -0.074 0.053
500 0.00067 -0.215 1.216 -0.164 0.176 -0.093 0.037 -0.034 0.0471000 0.00027 -0.293 1.300 -0.170 0.171 -0.065 0.044 -0.050 0.027

2048 0.00011 -0.350 1.364 -0.156 0.139 -0.044 0.050 -0.037 0.036

Figure 3 shows three-dimensional plots of the solution after 2048 iterations. The
solution exhibits overshooting at the transition from host material to flaw. That is, near
the base of the flaw "tower" some values drop to -0.350 and at the edges of the top of
the "tower" some values reach 1.364.

Figures 4 through 9 are similar plots for flaw2, flaw3 and flaw4. Likewise, Tables 2
through 4 show the convergence measure and upper and lower limits of these solutions.

Table 2
flaw2 Layer 1 Layer 2 Layer 3 Layer 4

Iterations 6, minI max min max min max min max3 100 0.00972 -0.066 0.154 -0.259 1.108 -0.107 0.455 -0.221 0.149
500 0.00166 -0.165 0.166 -0.257 1.220 -0.154 0.333 -0.152 0.086

1000 0.00079 -0.170 0.165 -0.192 1.258 -0.158 0.248 -0.175 0.131
2048 0.00036 -0.155 0.133 -0.136 1.232 -0.191 0.239 -0.182 0.111

* _Table 3

flaw3 Layer 1 Layer 2 Layer 3 Layer 4
Iterations 6, min max min max min max minI max

100 0.01762 -0.120 0.026 -0.108 0.456 -0.152 0.615 -0.120 0.472
500 0.00431 -0.089 0.040 -0.156 0.322 -0.279 0.976 -0.170 0.507
1000 0.00199 -0.060 0.041 -0.160 0.237 -0.203 1.042 -0.176 0.442
2048 0.00088 -0.041 0.046 -0.184 0.238 -0.208 1.049 -0.208 0.365

* _Table 4

flaw4 Layer 1 Layer 2 Layer 3 Layer 4
Iterations 6i min max min max Min max MinI max

100 0.03249 -0.066 0.048 -0.219 0.141 -0.114 0.470 -0.199 0.668
500 0.00600 -0.029 0.041 -0.153 0.080 -0.170 0.512 -0.290 1.0481000 0.00268 -0.047 0.031 -0.172 0.135 -0.171 0.452 -0.242 1.151

2048 0.00123 -0.041 0.043 -0.184 0.112 -0.214 0.369 -0.180 1.181
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U The results of this first set of tests are encouraging. Flaw3 and flaw4 are more difficult
to isolate and this is to be expected. Figure 10 is a plot of the convergence measure, 6,,
for the first 500 iterations. Notice that the deeper the flaw is, the slower the convergence
is. The "skin effect" phenomena suggests that the results should be better if some of the
data were taken at higher frequencies. With this in mind, more tests were performed.

(e) Test Set #2

The error in our solutions reported in the previous section was greatest in the layers
immediately adjacent to the layer that contained the flaw. The worst case for layer
discrimination, then, would seem to be having a flaw in layers 2 and 4. The error that
would appear in layer 3 may be large enough to lead us to believe that there is a flaw in
that layer also. We will call this flaw arrangement flaw24. First we tried to reconstruct
flaw24 using data taken at the same five frequencies as above (i.e, at 1, 3, 5, 7 and 9

SMHz). The results are shown in Figures 11 and 12 and in Table 5.

Table 5

flaw24 Layer 1 Layer 2 Layer 3 Layer 4
Iterations 6, min max miin max min max min max

100 0.00992 -0.048 0.142 -0.221 1.096 -0.198 0.927 -0.166 0.639
500 0.00251 -0.170 0.194 -0.206 1.097 -0.253 0.820 -0.245 0.930
1000 0.00120 -0.177 0.181 -0.133 1.110 -0.291 0.674 -0.175 0.998
2048 0.00053 -0.128 0.128 -0.123 1.118 -0.402 0.489 -0.186 1.045

At 9 MHz, the skin depth of the workpiece is 0.066 inches or 2.4 times the layer
thickness. A second reconstruction was performed for flaw24 using data simulated over
a wider frequency range. The frequecies used were 1, 5, 10, 20 and 30 MHz. At 30 MHz,
the skin depth is 0.036 inches or 1.3 times the layer thickness. The results of this second
reconstruction are displayed in Figures 13 and 14 and in Table 6 below. As expected,3 the higher frequency data improves the solution.

Table 6

flaw24 Layer 1 Layer 2 Layer 3 Layer 4
Iterations 6, win max nin max min max mn max

100 0.02541 -0.029 0.034 -0.323 1.381 -0.147 0.499 -0.329 0.693
500 0.00452 -0.062 0.065 -0.210 1.270 -0.184 0.308 -0.310 1.148
1000 0.00189 -0.044 0.042 -0.151 1.239 -0.196 0.198 -0.321 1.315
2048 0.00072 -0.024 0.024 -0.238 1.242 -0.185 0.255 -0.291 1.398

Earlier we noted that 5 sets of emf data made the system overdetermined by a factor
of 2.5. To see if additional data sets from the same frequency range would improve the
solution, we tried a third reconstruction using 9 sets of emf data (1, 2, 3, 4, 5, 6, 7, 8 and
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1 9 MHz). This increased the factor of overdetermination to 4.5. The results are shown
in Figures 15 and 16 and in Table 7. Note that the results in Table 7 are essentially
identical to those in Table 5. The additional data sets may be important, though, when
data with noise is used.

I Table 7

flaw24 Layer 1 Layer 2 Layer 3 Layer 4
Iterations mi min max mun max min max min max

100 0.00953 -0.048 0.146 -0.219 1.088 -0.199 0.932 -0.165 0.647
500 0.00244 -0.174 0.198 -0.206 1.091 -0.243 0.826 -0.243 0.926
1000 0.00117 -0.182 0.187 -0.131 1.106 -0.290 0.684 -0.176 1.000
2048 0.00052 -0.134 0.133 -0.123 1.120 -0.399 0.490 -0.184 1.043

I In Chapter II a method of constraining the solution was considered. A final recon-
struction was performed with all variables constrained to the interval [-0.0001,1.0]. The3 results are shown in Figures 17 and 18 and in Table 8 below.

Table 8

flaw24 Layer 1 Layer 2 Layer 3 Layer 4
Iterations 6, min max min max min max min max

100 0.1041 -0.001 0.714 -0.001 1.000 -0.001 1.000 -0.001 1.000
500 0.1035 -0.001 0.706 -0.001 1.000 -0.001 1.000 -0.001 1.000
1000 0.1035 -0.001 0.706 -0.001 1.000 -0.001 1.000 -0.001 1.000
2048 0.0400 -0.001 0.379 -0.001 1.000 -0.001 1.000 -0.001 1.000

These results are not very good compared to the unconstrained solutions we have gen-
erated. More work is needed in this area to determine whether our implementation
of constraints should be modified. The results are interesting in that the convergence
measure 6i goes from 1.0 to 0.104 in about 100 iterations and then changes very lit-
tle through iteration 1460. Then, at some point between iteration 1460 and iteration
1470, a direction for significant improvement is found and the solution improves steadily
through iteration 1560 and then again little changes until some point between iteration
1960 and iteration 1970 when another "good direction" is found. Figure 19 is a plot of
6i illustrating this phenomenon. More work is needed to determine if convergence can
be speeded up for the constrained case.

To make sure that there is nothing fundamentally incorrect with the constrained CG
algorithm, we used the actual flaw as the initial guess. This guess would yield 80=03 and terminate the algorithm if we were using "exact" data. Since we are using "direct
model" data, though, our initial guess is not the best fit. Figures 20 and 21 and Table
9 show the results of this last run.
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Table 9
flaw24 Layer I Layer 2 Layer 3 Layer 4

Iterations 6i rain max mun max nun max minI max
100 0.01504 -0.001 0.116 -0.001 1.000 -0.001 0.275 -0.001 1.000
500 0.01256 -0.001 0.110 -0.001 1.000 -0.001 0.674 -0.001 1.0001000 0.01254 -0.001 0.110 -0.001 1.000 -0.001 0.704 -0.001 1.000

2048 0.01253 -0.001 0.110 -0.001 1.000 -0.001 0.706 -0.001 1.000

I Notice that although some isolated points build up to help match the data, the flaw
locations from the initial guess are unaltered. Also, the convergence measure is much
smaller in Table 9 than than in Table 8. Hopefully this means that our previous test
(Figures 17 and 18) will eventually evolve (albeit slowly) to this same solution.

Post-processing Using Classification Theory

Returning to the unconstrained results, post-processing based on some classification
theory results seems to "clean up" the solutions. Using some of the solutions as a
"training set", 0.23 was determined to be the optimum value for partitioning the data
into two classes, host material and flaw (see Chapter VI). If we filter our first test from
Test Set #2 by assigning 0 to all variables less than 0.23, we obtain the solution shown
in Figure 22.
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3. Some Preliminary Results Using Measured Data

Several tests that use actual measured data have been performed to validate the
model. Results of a few of those tests will be presented in the following.

A 0.11 inches-thick work-piece of graphite epoxy, in the form of woven fiber, has
been used for measurement in the laboratory. Holes at various depths have been drilled
into this workpiece, as shown in Figures 23-25. A multi-frequency measurement of the
work-piece has been performed, as explained in Chapter V. For the test, an algorithm3based on a ten-layer, five-frequency model has been chosen. Figures 26-30 show the plots
of the real and imaginary parts of the measured data, B, for the f-equencies of 2, 4, 8,U 12 and 16 MHz.

In order to reconstruct the flaws from the measured data, a normalization process
is performed. First, the left hand side, Y, of equation (II - 1) is calculated by using
the flaw as the unknown X; these results are shown in Figures 31-35. Next, the real
and imaginary parts of the measured data, B, are normalized with respect to Y at each
frequency. This normalization procedure attempts to compensate for amplitude andI phase variations during the data acquisition. The sup-norm of the real and imaginary
parts of B, as well as Y, versus frequency are depicted in Figure 36. It is noted that the
real and imaginary sup-norms of B are greater than the real and imaginary sup-norms
of Y at all frequencies. The normalized value of B is then used to solve for the unknown
X of (II- 1).

Figures 37-39 are samples of the real and imaginary parts of the 64 x 64 elements
of the operator, A, that appears in (II - 1), for different layers and frequencies. The
elements of the operator are highly localized around the origin, as indicated in Figures
37-39. This simply states that the coupling effect is localized in physical space.

Figures 40-42 show the results of the reconstruction of the flaw. The constraint
of positive conductivity is used; the Levenberg-Marquardt parameter is set to 1.5, the
number of iterations is 500 and the threshhold is 0.3. Figure 43 shows the flaw and
its reconstruction in gray scale. The flaws of layers two to six have been somewhat
reconstructed. Excessive noise is accumulated in layers one, two, seven and ten, which
makes the flaws somewhat unrealisable.

Although the reconstruction with actual data is not perfect at this preliminary stage,
it is very promising for further investigations. This shortcoming is in part due to the fact
that the theoretical model for this study is based on the Born approximation. For the
future study a more accurate and realistic model for reconstruction is proposed, which
is discussed in the following chapter.

1I
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3D Reconstruction of flaw2
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Reconstruction of flaw3
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Reconstruction of flaw4
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3D Reconstruction of flaw4
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3D Reconstruction of flaw24
5 Frequencies: 1 5 10 20 30 MHz
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3D Reconstruction of flaw24
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Reconstruction of flaw24
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3D Reconstruction of flaw24
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Figure 26: Real and Imaginary parts of the measured data, B, at 2 MHz.
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Figure 27: Real and Imaginary parts of the measured data, B, at 4 MHz.
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Figure 28: Real and Imaginary parts of the measured data, B, at 8 MHz.
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Figure 29: Real and Imaginary parts of the measured data, B, at 12 MHz.
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Figure 30: Real and Imaginary parts of the measured data, B, at 16 MHz.
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Figure 32: Real and Imaginary parts of the measured data, Y, at 4 MHz.
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CHAPTER IV
RIGOROUS FORMULATION OF THE INVERSE PROBLEM

* 1. Introduction

Throughout this report we have simplified the model by approximating the anomalous
current density, j(0) = B ). E, as j() - Eo, where E 0 is the incident electric field
produced by the whip (or any other source) in the absence of the flaw. This approximation
linearizes the problem, and obviously simplifies the task of inversion. Nevertheless, the true
problem is nonlinear, because it involves the product of two unknowns, () and E.

In our earlier work in eddy-current inversion we solved the nonlinear problem by re-
Ssorting to a package of nonlinear equation-solvers, called MINPACK. In addition, we used a

variable-metric, nonlinear-programming package, called VMCON, in an attempt to satisfy
constraints. These worked well for rather small problems, but for the three-dimensional
problems that we are currently addressing, it becomes necessary to use storage-efficient
algorithms that allow us to take advantage of special structures of our matrices, such as
convolution. Hence, we will go back to the rigorous problem to see how it might be attacked
in the light of what we now know about iterative algorithms for solving large problems.
There should be no doubt, however, that the rigorous solution of a large nonlinear problem

Swill be time-consuming.

2. The Nonlinear Coupled Integral Equations

i Let region 1, where the excitation source and sensors are located, be above the slab,
and region 2 be the slab, which contains the anomaly. Assume that we measure the
magnetic induction field, B, from which we compute EMF's in the usual way. Then the
appropriate pair of coupled integral equations is

E(r) =E(0 )(r) +/j G(e')(rir') "J( )(r')dr'

=E(0 )(r) +j G(e)(rlr'). 8(')(r') • E(r')dr'if(i)

B(r) - B(0)(r) =I0 sj G(-e)(r lrt) -0(*)(r') E(r')dr'.

I The superscripts on the Green's functions denote their type, the first denoting the type of
field (electric or magnetic), and the second the type of current source (electric or magnetic),
whereas the subscripts denote the regions which are coupled by the Green's function; the
first subscript denotes the region which contains the field point, and the second the region
that contains the source point. The superscript, (0), on E or B denotes the incident field,
which is the field that exists in the presence of the slab without the flaw. The left-hand
side of the second equation is integrated over the sensor coil to give the measured EMF.

This system is nonlinear (or, more precisely, bilinear) because of the presence of the
product &( )(r') . E(r'). We have been linearizing the problem by replacing E(r') in the
second equation by E(0 )(r'), and then ignoring the first equation.
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To solve this system, we first discretize it in the usual way by means of the method of
moments, and then apply an iterative technique to the resulting algebraic equations. The
iterations start by replacing E in the second equation by EM , and then solving for &(

d
)

by using one of the iterative methods just described. This step uses measured data, and
is the 'inverse' phase of the problem.

Once we have an acceptable approximation to &(Q), we substitute it into the first
of (1) and solve the resulting 'direct problem' for an improved version of E, the electric
field within the flawed region. This step will usually converge more rapidly than the
inverse phase because the equations are better conditioned. We can use the same iterative
technique here that was used during the inverse phase.

The result of the direct phase is then substituted into the second equation, and the
second-level inverse problem is solved. The process ib continued until the error in the
solution is of the order of the error in the measured data.

IThe process that we have just suggested may not be the most efficient way to solve
system (1). We will look at conjugate gradients, and see how to handle the nonlinearity
there.

Keep in mind that if we use multifrequencies on this problem, a number of distinct
incident fields and Green's functions will have to be computed and stored, one for each

Sfrequency. Because of the convolutional nature of the problem, however, we will be able
to utilize storage efficiently.

5 3. Discretization of the Coupled System: Method of Moments

We start by writing the Green's function as a two-dimensional Fourier transform,

I-G()(_ z',y - y',z,z') - JG f (e)(z,z)eJ[k(_)+k,(lsf)]dkzdki, (2)

I with a similar expression for G(-'). From here on we will drop all subscripts that are
related to regions 1 and 2.

When (2) is substituted into (1) the integrals over z' and y' become Fourier transforms.
The resulting integral equations become:

3 E(r) = E(0 )(r) + I Jdz ccj (ee)(z, z') -!.(z1)-j3(-z+:V)dkzdk, (3)(a),r2 ff_" 00z)-C'")dfk• ()b

B(r) - B(C)(r) - " Idz 0j d(me)(z'). .(zI)e3(k+kY)dkgdkw. (3)(b)

4w2 J f- 00

The measured data are usually EMF's induced into fiat coils that are oriented parallel
Sto the workpiece. In such a case, therefore, we are only interested in jw x the z-component

of (3)(b) integrated over the sensor-coil position. This produces another integral relation
with a new Green's function to replace (3)(b):

EMF(r) = j dz' cc, (Ee)(z,, z). J.(Z')e3(k+11)dkzdk (3)(c)
I JIV-2
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where d(Ee) is the z row-vector of (") multiplied by the transfer function corresponding
to integration over the sensor coil. The Green's functions that appear in (3) are computed
in Appendix A.

The discretization of the coupled system of integral equations is done by subdividing
the region of space occupied by the anomaly into a regular grid of (N. + 1) x (N. + 1) x
(N. + 1) cells, each of size 6. × 6xS x 5, and then expanding the electric field and anomalous
conductivity tensor using pulse functions defined over the grid:

I N. Ny N.

E(r) = E 1 ElijPj( -)P.(Y)P,( (4)3 1=0 I =O j=O 3n V6

and

I : N. Z ,i ,P (- )P m(f)P(). (5)

5 1=0 M=O j=0

The pulse function, Pj(j), satisfies

1 ifj<6<j+;)
! = 0, otherwise.

Note that the anomalous current density, which is given by the product of (4) and (5), has
exactly the same expansion in pulse functions as either (4) or (5), except, of course, that
the expansion coefficients are given by the term-by-term product 8Lmj • Elni.

We are going to use Galerkin's variant of the method of moments to complete the
discretization. In Galerkin's method, we 'test' the integral equations (3) with the same
pulse functions that we used to expand the unknowns in (4). For example, we formL moments of (3)(a) by multiplying (3)(a) by P(zl6.)Pn(yI6)Pi(zl6,))I6.6, 6,, and then
integrating over each cell. This yields an algebraic system for Ei,:

I N, N, N,

() =El, Noj G )(I - L,m-M). LM J.ELMJ, (7)

w e L=0 M=0 J=o

where

I =(c)
G "( - L,m - M) =r 6.Y47 If - sin(k6,/2) ' csin(klt5,/2) 2 'dk~dk,. (S)

kb6/2, k k,6,/2 /
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I
I =(ee)

is the result of the integrations with respect to z and z':

-(ee) Z(+) ,'(+)

S(k, ,,ky)= I dzl dz'G(ec)(Z, z)

-J dzlf dz'GI(z - z')

p(+ 1 ,, j(+) (

+ dlz dz'GD(Z - Z')

Zk ,z
dz dz'GR(z,z').I2 j() L=-)

The subscripts, I, D, R, denote the incident, depolarization, and reflected Green's functions,
i respectively.

We will show how to compute the integrals of the incident and reflected Green's
functions later. The depolarization function, however, can be integrated by inspection;

the result is j( 6 kJ6,/w= 2 )aa, where 6Aj = 1, if i = j; = 0, otherwise.

In taking moments of (3') we must keep in mind that the sensors lie in a fixed z-plane3 above the workpiece. Hence, we multiply by only Pi(z~/6)Pm(y/6y) and then integrate to
get the algebraic system:

No N, N.
EMF, = E G(mO(l- L,m- M) -LMJ. ELMJ , (10)

where L=O M=O J=O

CO -(Ee)

G(e)(l - L,,m- M) j 0o6. 1 f e-[k 6.(l-)+,-(m-M)] j (k,)

(,sin(k2 6:/2) '2 (sin(kb,8 / 2 )) 2dk ) (11)

(k.6.12 I kykb6/2 kdy

and ( B) SI M

V, (k,, 1) = +dz'G(Ee)(Z, Z,). (12)

l =(Ee)

I Keep in mind that F , G(E), and d(Be) are vectors, not dyads; they take vectors into

scalars (EMF).

3 Equations (7) and (10) are the coupled system of discrete equations that define the

rigorous inverse problem. The system is nonlinear (bilinear) in the unknowns, &1,ni, Ezj.
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Note that in two of the three dimensions, the indices appear in a Toeplitz (or convolution)
form. We will discuss the computation of the matrices shortly.

3 4. Multifrequency or Multiview Reconstruction Methods

Eqnation (10) indicates that if we measure the EMF's at a single z-level, then we
don't have enough data to reconstruct a three-dimensional flaw. The additional data to
reconstruct the third dimension can be obtained several ways. For example, we can excite
the system from a single coil at a number, Nj, of frequencies, where N1 _> N, + 1. In that
case, the Green's functions and electric field in (7) and (10), as well as the measured EMF's,
vary with frequency (but the unknown conductivities are assumed to be independent of
frequency).5 If we let the integer, n, index the frequency parameter, then (7) and (10) become

E(O) (n) = Eji(n)IM N. N, N.

-- Z Z Gj)(I- L,m- M;n)-OLMJ ELMJ(n) (13)(a)
L=O M=0 J=0

N. N, Ns

EMFn(n) = E E G('(l - L,m - M;n) - LMJ. ELM1(n), (13)(b)
L=O M=0 J=0

where G (Ee) is a vector, not a dyad.

This is the "multifrequency reconstruction algorithm". Note that here the Green's
functions vary with frequency, as do the measured EMF's and the computed electric fields.5 Another method is to excite the system at a single frequency, but with a number of
different exciting coils. In this case, only the electric fields and measured EMF's vary with
n, which now indexes the location of the exciting coil. Hence, the system of equations
becomes

No N, Ns5(O .(n) =E:,j(n) - E *( - L, m - M) -8LMJ - ELmj~)1)a
L=O M=O 

J=0

N. N, N.

EMF, L=0 (n)-- G(e0(I - L,m - M) . RLMJ ELWMJ(n), (14)(b)
L=O M=O J=O

3 where G(B) is a vector, not a dyad.

This is the "multiview reconstruction algorithm". It has the advantage over the
multifrequency algorithm in not requiring the computation and storing of a number of
different Green's functions. This is not too important when the linearized theory is used
for inversion, but could be quite significant in the present context of the rigorous theory.SAnother advantage to the multiview algorithm is that it can be applied to problems where
the unknown conductivity is frequency dependent.
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An advantage of the multifrequency approach, however, is its relative flexibility inthe laboratory, especially with regard to hardware implementation. That is, it is probablyeasier to change frequencies than to change excitation sources.

5. The Conjugate Gradient Algorithm for the Coupled System

We are going to apply the conjugate algorithm to the coupled system of either (13)or (14). This will be an interesting application of conjugate gradients to a nonlinearproblem, and in this context we will use some ideas of Stephen J. Norton, "Iterative

£ Seismic Inversion", Geophys. J. Roy. Astr. Soc. (submitted).
We will consider (14) first, and work in the coordinate system in which O is diagonal.

I Then we can rewrite (14)(b) as

N. N, N,

0 =Rim = M~i~n)+ Z z G'e)(l - L, m - M>,LMJz ELMjz(n)±U L=O M=O J=O L

je (I - L, m - M)O'LMJyELMJv(R)+

I G(e)(1 - L,m - M)OaLMjzELMJZ(n)]

I EMz N 'n) [G(E) G(E, ) o3E3(n)]

-EMF,,(n) + ®__ [..jffi 0 ajEj,(n) + ® o(, lEj,(n) + Ee) j 9 a,,J=O YJ

(15)
where Rim, is the Wmnth component of the residual vector, and ® denotes a two-dimensional
discrete convolution.

We form the squared-norm of the residuals

N. N, N.

CIb(LMJzU'LMJIO7LMJZ.) = EX ERImnRi~mn, (16)
1=0 m=O n=O

where N,, is the number of "views" (i.e., the number of source locations), and then differ-
entiate with respect to OLMJ = {OLMJz,7LMJWtYLMJz}:

=2Re N. N, N.

&OZLMJ =0 ER [Diag G(e* - L, m - M)E1MJ(n)) +
1=0 m=0 n=03 Gse)*(l - L,m - M) " LMJ OEIMj(n)] (17)

00LMJ

=2 radLMJ.

In (16) and (17) the asterisk denotes complex conjugation. We are using dyadic notation
in (17). For example, the first term within the square brackets is the diagonal part of the3 dyadic product of the vectors G ( BEC) and EjMj(n). We can write (17) in the form of a
two-dimensional convolution, also, but we will not need it here.
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EIMj(n) satisfies the conjugated version of (14)(a) (but keep in mind that & is real);
what can we say about the dyad OE1Mj(n)/fOLMj? This can probably most easily be
computed by using a finite-difference approximation, in which (14)(a) is solved for two
values of 8, and then the difference-quotient is formed. It is possible, however, that some
insight into the computation of the derivatives can be obtained by directly differentiating
(14)(a) with respect to &Vm',3 , keeping in mind that & is diagonal. The result, after a5 straightforward computation, is

G ")(l - l',m - m'). Diag(EIIFmi(n))

OEIm,(n) N. N, N. = OELMJ(n) (18)
O- in l, - 1 E 1 G Jj - Lm - M) - MJ

i.=o M=o J=o

This is the tensor version of (14)(a). After solving for OELMj(n)/O 'm,', we keep the
"diagonal" entries in which (1, m,j) = (', m',j'). These correspond to local gradients, in
which the variations of conductivity and electric field are within the same cell.

Actually solving (18) is out of the question, because of the computations involved.

A possibility is to keep only the local gradients in (18), and solve the resulting equation.
We might wish to simplify the problem further and approximate the solution for the local
gradients by the term on the left-hand side of (18) when (1,m, j) = (', M', '):

!JV..(o,o)E,,nj.(n) G !.,(o,o)E,.,j(n) G : )(o,o)E,,. .(n)

I U ,() !e() ("e)
c .(o,o)E ,,. (,) G( . (o, o)E ,,n, (,) G .(o,o)E ,,i.(n).

This would be a form of Born approximation for the local gradients.

The conjugate gradient algorithm starts with the iterative step N(k) 1(k)
a Ak) .. .W ch oea tom n iz p,(k-1) + a ) .
kf, Mj. We choose ak to mimnze ,M + akJLM ) with respect to at, for a given

.(k) .(k)

fLMJ. We will shortly determine the optimum !LMJ.

Let us first derive an expression for the kth residual, (15), using a linearized expression,
in which the electric field is replaced by its (k - 1)th approximation:

R(") EMFimn(n) +~ G('(l -L, m -M)u M LakMJ) .ELJ(n)
lynn ~~ J LJ0 LL=O M=O J=O

N. N, No
=R( + aZ E= E G ( - (, -M) E(j'(n)

L=O M=0 J=0

I + a F (k)
=R(I n A; Imn(20)
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i Upon substituting this result into (16), we get

No Ny N.3, .) +< , a( ,) kF()) (R(k-') + kF(I?)Yn)

1=--0 m=O n=O In(1

=0'(k) + a2Re[F(k) " R(k-1 )] + aIIF(")II2,

where we are using vector-matrix inner-product notation. Hence, 0(k) is minimized when

a Re[R(-'). F(h)} (22)
ak IF(k)112  (

and when this is substituted into (21) we find the minimum value to be

I(k) ._ [Re(F(k) " R(k-,))]2 (23)
IIF(k)112

I
The greatest decrease occurs when F(k) = R(k- ' ) in (23). What this means in terms

Y )

of the direction, JfLMJ, of the change in O0LMJ can be determined by returning to (20):

I Re[R(- 1) F(k)]

N. N . N N Nh)-

=Re- E _ [ GKK : ( - L,7 m- M) LMI .1
Owi= J01=0 LMJ~/1=0 v=O n=O L=O --- J=O

N. N, N. NY Ni-- Re EE (,n _, D iag G (,E e * - L , 7n M E( - * n

L=O M=O J=O 1=0 m=O n=O (24)

3 Upon comparing the summation term within the large square brackets of (24) with the

expression for the gradient, (17), we see that the summation term is the linearized gradient,

which is (17) with 8EMj(n)/8 VLM. = 0. Hence, (24) shows that the maximum decrease

I in the norm of the residuals occurs when

k)_ (k-)()

I LMj =Mr L j(5

This is the steepest-descent direction.

There is an important orthogonality relation that holds:

N. N, 

(6

II . U Z < rad, = t = .  (2)
L=O M=O J=O
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In order to derive this result, substitute the final version of (20) into the expression, (24),

for the linearized gradient and get the following recursion relation:

NN. N, N, R(
-LMJ :'-ReZZ : j[ 1 ) M% M

=Ta 4 Dia + akRem -

1=0 m=0 n=0 (27)

When the definition of Fm from (20) is substituted into (27), and the resulting3 expression is multiplied by :Mj, and then summed, we get

N. Ny N, N. Ny N,

L=0 M=0 J=O L=O M=0 J=O (28)g=Re[R( k-1) -F(k)] - Re[R (k-1) -F(k)] (8

=0.

3 We have used (22) and (24) in arriving at the final result.

The conjugate gradient algorithm starts with a pure gradient step, (25), for k = 1,
and then continues withI fLMJ = Urd4M) + bktLJ h2 (29)

bk will be chosen to minimize the denominator in (23), thereby guaranteeing an improved5 convergence rate.
Before deriving an expression for bk, we will derive another expression for the numer-

ator of ak, which appears in (22).We start with (24), and use (29):

Numerator of ak =Re[R(k- 1 ) . F k )]

3 N. N, N+Z Pj.rad(,) +LMJ • ao ') (30)

L=O M=O J=O

=llrad(k 1 )112,

where the final result is due to the orthogonality relation, (26).

The derivation of bk starts with

N. N, N.
_I~)1 = F)EF(k)-

Lin Imn
1=0 m=0 n=0 

31
No Ny N, No Ny, N, (31

SLM J;L' M'JILJ LMJ
L=O M=O J=0 L'=O M'=0 J'=0

IIV-9

I



where N, NY N,,

E E EDiag(G(Ee)(I - L,--M)E (-)) •

LMJL'M'J' -= -N , N (32)
Diag((Ee)'(1 - L',m - M')Ek,;(-())

is Hermitian in (LMJ; L'M'J'). Equations (31) and (32) are derived from the definition of

Fl(k) in (20), together with an interchange of summations, and a rearrangement of terms.

Upon substituting (29) into (31), and then minimizing the result with respect to bk,
we get for the optimum value of bk

_R N .-. 1rM) (k-1)
bk = Y J=O LMJ;LIMIJ'tI a'M ) J LkM-1 (33)

EN. 0 ... FN. -1(k-1 f ') J
L== o LJ;L'MJ, LMJ

3 It is straightforward to rewrite (27) in terms of rLMJ;LIMIJI

N. N, N.,
k)= (34)

L'=O M=-0 J'=0

IThere are two fundamental conjugate gradient orthogonality relations:

iN, N,5. * f LMk).ki ILMJ;L'M'J' (35)(a)

L=O J'-0

N. N, N,Z Z radk k ) . radA:) = 0. (35)(b)

L=O0 M=0 J=0

The first relation is easily proved by substituting bk from (33) into (34), multiplying

I by Re{rLM f -VMI, and then summing over (LMJ) and (L'M'J').

u In order to prove the second relation, we multiply (34) by Grad"gM) and sum

N. N, N 

N. N, N.

~ Gra4(, gra4kE =a(k' Ua MJ~ ~ Z G LMJ.G8MJ
L=0 M=0 J=O L=0 M=0 J=0

No N,

3 ~ ~~~+a&kRe 1: ... 1: rad,}.fIIrMLMJ..= , •$= L J L'M 'J' LM J;L'M 'J
' '

,=0 (36)(a)
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=Next substitute Urad",) = Pk,),, - which follows from (29), into the second
term on the right-hand side of (36)(a), and rewrite the right-hand side as

L=0 J,=0 (36)(b)
bkrI (k)* LM (k - 1)

LMJ;LIMIJ' f L 'fL'M'J'].

The second term under the summation sign vanishes because of the first orthogonality
relation, (35)(a), and the first term under the summation sign is equal to tIF()112 , because
of (31). Therefore, when we recall that ak = -JI ad( k-) J2/IIF(J I2, which follows fromI (22) and (30), we see that (35)(b) vanishes, which proves the theorem.

Our last task is to derive a simpler expression for bt. In order to do this we must
assume that the change in the model (i.e., conductivity) is sufficiently small to permit usto say that the electric field within the anomalous region does not not change too much
from iteration to iteration. If this is the case, we can write r(k) s r(k - 1), so that

mm~~E N _Rk _°  ,v t 1 ¢-1) (k-1)
= -Re • *0 ... roLMJ;LMIJ'UradMj (L37j)bk = iIF(k_1)112 (37)

where we have used (31) and (33).

I Next, take the complex conjugate of (34), replace ak in the resulting expression by
(22) and (30), replace k by k - 1, and get, after rearranging:

ReN. N, N tM' I-;) 'k-1 ) ' I' = 112 - 38)) Jr( Uraoj(38)
R L'=O M'=0 J"=OLMJ;LMJ IICradk-2 I J LMJ

Upon taking the dot product of (38) with ad(,), and then summing over LMJ, we
get

N. N, 11F&- 1 112  
-

Re 1: ... 1 r("L>MJ L> .U ?a d - 11iirad('_l')i2  (39)
L=O LMJ;LMj I Jrad(k2)2

where we have used (35)(b). Upon comparing (39) with (37), the result follows immedi-
ately:

b1 II~rad(kl) 112 (0-II a~t->ll'(40)

bk =- ~Irad(k-2 )112

Note that at and bk are negative here, whereas they were positive in our previous
notes on the conjugate gradient algorithm. This is due to the fact that we have defined
our residual vector to be the negative of the previous definition.
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I

We can summarize these results by saying that the nonlinear conjugate algorithm
is similar to the linear one, except that the operators must be updated at each iteration,

betalse the electric field is updated. In addition, we may have to ensure that the incrementE
in the solution vector are not too large.

Let Y be the array of complex scalars, {EMFn(n)}, where lnn index the array3 elements, and define the operator

N. Ny N,

A(k) (f) - L, m - M) iLM, E(-(n)
L=o M=O J=o (41)
N. Ny N.

=E E E Diag (GEe)(/ - L,7- M)E - 1)(n)

L=O M=O .=0 M LJ

together with its adjoint

N. N.
A*(k)(R) = Re E E RimDiag (- 'e)*(/ - L, m - M)E.k- *(n) (42)I=0 m=0 n=0 (VJ LMJ

Note that A produces an array of complex scalars from an array of real vectors,
whereas A* produces an array of real vectors from an array of complex scalars. The
electric field at the kth step is computed from (14)(a), using the kth approximation of
aLMJ.

I We can derive a recursion relation for the electric field when (k) == 1) + )GLM J = "0 'LMJ +akLM J

in the following way. Substitute this expression into (14)(a), in which the electric field is
replaced by its kth approximation. Subtract from this result (14)(a), in which the electric
field and conductivity tensor are replaced by their (k - 1)th approximations. Then, if we

Lsyt Mt " V, we get the final result

N. N, N.
Em. = m.) + ah E E E G "(l - L,m - M). JJ J" E(k1),  (43)

L=0 M=O J=0

The second term on the right hand side of (43) is the correction vector induced in
the electric field, due to the correction term in the conductivity. Clearly, (43) gives E(k)
explicitly in terms of E(k- ). Hence, this is an explicit recursion relation for the electric
field vector. We can get an implicit relation by simply replacing the electric field vector
in the correction term of (43) by E(), which means that we would have a large system to
solve in (43). Therefore, the explicit recursion relation has an obvious advantage over the

implicit. We should also remember that (43) was derived under the assumption that the

changes in conductivity are not large, from iteration to iteration. This means that ak is
small.

3 The conjugate gradient algorithm starts with an initial guess, Xo, from which we

compute RO = Y - A(')X 0 , P = Qo = A*'O)Ro. In addition, we have a convergence
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3 parameter, e. Then for k - 1,..., if Test = ilRkIl/IJYJ < e, stop; Xk is the optimal
solution of (14)(b). Otherwise, update Xk by the following steps:

I Sk = A(k)Pk

al;= Il kll2

XA; = Xj;1 + akPi
iRj: = Ri,-, - ajSA: (44)

Q1 = A*(k)Rk3 bk = IIQ 112
" IJQk-1 112

i Pk+i = Qk + bkPk.

comment (1): For a linear problem, solved in infinite precision arithmetic, the algorithm
terminates at the Mth step when QM+1 = 0, so that XM+1 is the least-squares solution
of Y = AX. We have already shown that the vectors Qo, Q1, Q2,..., are mutually
orthogonal, as are the vectors, S1, S2, S3 ,.... In addition

IsTp, =0) if j < ki

k - {IQk112, otherwise.

I comment (2): This suggests that we monitor the iterates {Qk} for loss of orthogonality,
and restart when the condition IQTQk+Il - C1QT+ 1 Qk+1 is satisfied, where f1 = 0.2
(say). When this occurs, we set bA = 0 in the last line, and then continue (i.e., we restart
with a pure gradient step).

comment (3): Allen McIntosh, Fitting Linear Models: An Application of Conjugate
Gradient Algorithms, Springer-Verlag, 1982, gives an alternative expression for bk:

Tbk - Q- _Qk ,IA = IJQk-I 112

which seems to produce Qk's that are more orthogonal, when using the criterion of com-
ment (2). This definition requires, however, that an extra array to store Qk-1 be made
available. This is no problem if we monitor for orthogonality for the purpose of restarting,3 because that array is required anyway.

The Toeplitz operations that are a part of A and A* are evaluated by using the FFT,
as described in Appendix A of Chapter II. This, together with the fact that the storage
requirements are reasonably modest, are the reasons why the conjugate gradient algorithm
becomes attractive for large problems in our model.

3 APPENDIX A

Internal Green's Functions, G12 , G 22 , in the Bulk Model
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We are going to sketch a procedure that organizes the computations in such a way
that the :' dependence is displayed explicitly, so that integrations with r spect to z' are
computed more easily. There is a bit of preliminary work that must be done. We will use
our previous equations and notation as much as possible.

O g -- 0

cV) - - -

V4

0O

We rewrite the equation of continuity at the bottom interface in the following form,
which is suggestive of a scattering operator:

fi I a/ ,

3[(v2t1 V~I io [3 0 J = - I'V, ] [I] (A.1)

I where

d' =dre x (20+2')

P' =fceAa(o+z') 
(A.2)

El =ele-A,(o+5').
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Equation (A.1) defines the scattering operator at the bottom interface:

where

w h e r e~ ~ = [ '0 21 64 1 - 'Uo l 03 ] - V I I - V ]
'Bil B 1 2 '
B 2 1 B 22  (A.4)
B31  B3 2

LB 41 B 42

It is easy to express these equations in terms of the expansion coefficients defined at
z = Z'(-):

where
i [<- e l e-A(zo+z') + 0 -1(Co+Z') ]

i=0 0 1 0 0 • - 3' ( XO+ Z' )

Bile -2)41( zO+ 3') B12e- (-%+ O)(2 +2') (A.6)

B 2 1e - ( x1+'\)(o+z') B 22e-82(zo+') 1
Bsi e - 1(zo+') Bs2e - .\(o+z') i
B 4,. ek(zo+z,) B4 2e -. (zo+') J

A similar analysis, starting at the top interface and working down to z'(+), yields

laI~~ [l..()[d] (A.7)

where Tr2e.\ X'  T12 eA3Z' 1
T21+) T2 e.\' T22 e Az'S = Te 2:Az' T32e(i,+,)*'J (A.8)

I and T2  r- osi' - e 2 Ii'

21" 22 - [V20Io1o -'01 1 - 03 -'[,1, (A9)T31. TS2 l
IT4 1. T42i-3IV-15
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is the scattering operator at the top interface. The discontinuity equation at z = z'
becomes

eu = [ 1 l 2 Ii,[i 4 ].i, (A.10)

* or
C - c' =h

1
d - d' =h2  (A.11)

e - el =h 3

f -f =h4,

3and the h's are independent of zo and z'. Don't forget that we have a different set of h's for
each type of current (electric or magnetic), and for each orientation of the current source.

Now, on to the algebra! When written out, (A.7) and (A.5) become:
-S(+). +S(+) f
a - 11 """""12I b -S()d + S(+)f

S=S(+) + S(+)f (.2

e =S(Jjd + S(+)f

d' =S(-)c' + S(j)e'

"" 1"4 1 tD 2 e,

f' -)Ci + S(j)eI

gS-c + S(j)e'

h -S(j)c' + S-e

and when (A.11) is substituted into the middle four equations in (A.12), we get, after someI steps
cild - ai2f =?1 (A.13)
C-a21d + * 22f =r2,

where whereall 1 - s(-)-€(+) - s-)s(+)
1 -- "11 "31 - "12 "41_ (-)(+) -).(+)

a22 =11 "32 + S2 "42II
_s(-)s(+) S(-) (+MaK21- -'21 31l + 22 4141 (A.14)

022 =1 - S21 32 - (22A)S(+5 rI =h 2 - S(')h 1 -$')h3

r2 =h 4 - S(,h 1 - S(;)h3 ,

I When we expand a and 022, using (A.6) and (A.8), we find that they are independent
of z', but we find that Q12 is proportional to exp(Aj - As)z' and a21 is proportional to
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exp(-(Al - As)z'). Hence, when we solve (A.13) using Cramer's rule, the denominator
determinant is independent of z' (as we knew it had to be). This means that z' appears
only in various exponential terms in the numerator of the solution. This makes it easy to
integrate.

Let's continue. After solving (A.13) we substitute (d, f) into the first two equations
in (A.12), and get what we are really looking for: the field above the slab. The result is

a =Nj [T 11(1 - B 2lT32 e-(X+;3)O - B2 2 T 4 2e-2;az)

D

+ T12(B21 T e -1+ x)0 + B 22T41e 2 +- Z)]

+ DiT eAXA3z+ N2 1T31 (Bil T32e-2 Xi)zo + B2T4e - '  )

D

+ T12 (1 - B1 sT3je - , 
- B12 T4 ,e - ( > +X8)3o]

N Te21'h - hiB-e2 32 e e' - ,-\3-( -+B2)T°e - 2A

N2  eABz'h 4 - - t+ e - hsB 2 2e-2B e'

I D =(1 - B11T 16-2Alao - Bi 2 T,e-(A1+A)o)(1 - B2iTsse( A1+) *  - B22Ti2e-2 sz°)
_+ (BN2Tj e(Ai+,a)o + B 2T4ie-'ao \)(B3)T2 e - o + - +

~(A.16)

Equation (A.15) is needed for computing G12 , where the subscripts refer to regions of
Sspace (1 being above the slab, and 2 being the interior of the slab). In order to compute

G2 , we need the coefficients c, e, d', f'. These are gotten, alter solving (A.13), by using
(A.11) and (A.12):

( A 11 a d( 12 :C =S (j d + S (J )fe-=S(+)d + (+)f
-41 42 ', (A.17)

5 d' =d- h2
I' =f -h4.
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There is another way of getting the results of this note that reflects the physics of
the problem. It is less complicated algebraically, and will produce expressions that are
easily integrated with respect to z'. The technique is based upon the notion of incident3I and reflected Green's functions, and uses the scattering operators that have already been
defined.

We start with (A.11) and decompose the fields within the slab into incident and
reflected parts. Because the h's in (A.11) are independent of zo and z', being properties
of only the exciting point source and the material within the slab, they are used to define

I the incident field within the slab:
F1 = { h 2 V2e-AI(z-') + h 4 V4 e- 3(2-')) if Z' < z < 0 (A.18)
F= -h feA1(z- z') - hs 3e(A- z'), if -ZO < z < z'.

Note that the incident field is decomposed into an upward-traveling wave above z', and a
downward-traveling wave below z'.

The incident field contains all those singularities of the Green's function that are
associated with the source and sink points. The reflected Green's function, therefore, is
regular, and is the response due to the presence of the boundaries at z = 0 and z = -zO.
The reflected field is given by the remainder of the total proposed field and the indicenti field:

F R = c-V'%I(z z ) + eVse A3( - z')  + d #'2e- I(z a- ') + f e4 e - s (z - z') (A 19)

S--c##ile-%1 + e"e 3eAaz + d11 e - AIz + f1i4e - s (A9

where
It deAX', fi -f'ez' s ('3 c" - ce - 1', e" ee- sZ'. (A.2O)

Note that FR is continuous across z', and that the (c", e") terms are downward-
I traveling (which means that they originate at the upper boundary, z = 0), whereas the

(d", f") terms are upward-traveling (which means that they originate at the lower bound-
ary, z = -z0).

Eventually we will have to integrate FR with respect to z and z'. The integral with
respect to z is trivial, being simply the integral of the exponential terms. The integral
with respect to z', on the other hand involves the coefficients, c", d", e", f", and these
are only implicitly defined in terms of z'. This is the same problem that motivated these
notes in the first place; now we are going to develop another formalism for expressing these5coefficients in terms of z', in order to evaluate the integrals.

In terms of our new notation, (A.3) and (A.4) are equivalent to

S[ d"1 [Bllie-Diso B22e-( +%a)zo hie- 1
[ft] = B, e_(AI+))O B22 e 2 x,.o [hJ e-I S (A.21)

[Bile-21jxo B121-( r'+ cAs)x [" ]

+ B2,e(-1+-)xo E2e_2 AS80 jes]
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and (A.7) and (A.8) produce

[C __T 31  T32 1 LT 1  T3 ] [f]" (A.22)
Le" , [T 4 72 ][h4eX3 + [T4  (A.22) .

The physics implied by (A.21) and (A.22) is interesting. The first term in (A.21)
corresponds to the reflection from the lower boundary of the downward-going part of the
incident field, and the second term represents the reflection from the lower boundary of
the downward-going wave that has been reflected from the top boundary. In (A.22) the
terms correspond to reflections from the top surface.

Equations (A.21) and (A.22) can be solved for c", d", e", f' in several ways. One
way is to use an iterative scheme, which starts out by assuming that c" = 0, e" = 0 and
then computing [d", f"] from (A.21). This result is then substituted into (A.22), from
which an updated value of (c", e"] is obtained. This completes the first cycle; the second
cycle starts with the updated [c", e") being substituted back into (A.21). This iterative
method mimics the multiple reflections that are produced in this system.

An alternative method of solution is simply to create a 4 x 4 linear system from (A.21)
and (A.22), which is then solved conventionally. No matter how (A.21) and (A.22) are
solved, these results are all that are needed to compute G22 (don't forget the depolarizing
term). In order to compute G 22, we need [a, b], as before. Rather than use (A.15), we
can derive a second equation from (A.7) and (A.8):

[a]= [T11 T12 [h2e:%z' + [T 11  Tn fd"] (A.23)

T.b 721 T'22 h4e)Asz J +T 21  T22  (Af23

This equation can be solved once [d", f"I is known.

Because the coefficient matrices in (A.21), (A.22) are independent of z', we can easily
derive an equation for the integrals of [c", d", e", f) with respect to z'. In fact, the
equation is (A.21), (A.22), with the inhomogeneous terms replaced by the appropriate
integrals with respect to z'. Such integrals are easily computed because of the presence of
the exponentials.

Let's charge on and solve (A.21) and (A.22) the old-fashioned way, by elimination of
pairs of unknowns. For example, if we substitute (A.22) into (A.21), thereby eliminating
[IO", ell] in favor of [d", f'], we get

r_== [dill - - Eh2e~~z -B=hi e-A 1A24IBT Ift] B T hae)'az']- [h xaz](A24

where B is the matrix that appears in (A.21), and T is the matrix that appears in (A.22).

The solution of (A.24) is

&I="1- rhe h1-fit B B T--' h L )48,.1 - r _ B B I h3,- ." (A.25)
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and when this is substituted into (A.22), we get

"- 1 -= r, = 1 ( I hje-;z 1

In T~ ~ B T -~x: _ TI-_B T h-ASZ (A.26)
Because we are only solving 2 x 2 systems, the inverses can be easily carried out by using
Cramer's rule, as was done in solving (A.23).

The solution vector can be written as

co RI, R 12  R 13  R14 'i h2eAls'
el R 21  R22  R 23  R24  h4eAaz'

R, 3  R32  R 33 R34 hie)1z' (A.27)

RP 41 42  R 44 J -hses

where the matrix elements are independent of z', and are called reflection coefficients. Note
that there is a matrix of reflection coefficients for each of the three components of electric
or magnetic current density, because h depends upon the current source.

I In terms of the 2 x 2 matrices defined earlier, we have

R21  R22 . =J
[R13  R14 ] T I[ B BSR2 (A.2)R 3 R 32R41 E: r:] B _ - .

The Dyadic Green's Function e()(z, z')

5 The "electric-electric" dyadic Green's function has the following interpretration: its
first column is the electric field vector produced by a point source of electric current that
is oriented in the z-direction, its second column is the electric field vector produced by
a point source of electric current that is oriented in the y-direction, and similarly for the
third column. Of course, we are still working in the Fourier domain, so that the only
spatial variables are (z, z'), where z is the field point, and z' the source point. Hence, we
can write

d.(")(Z,') =

Ac). , .s)1

I (-.<)+..').. (-&. <'> + .. <')/-,.. (-k..') + ,m.')/1-,.
i + j ~6(z - ') a.

WEB (A.29)
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The superscripts on the field components in each column denote the direction of the applied
electric point-current source. The delta function term that appears in the zz component
of the dyad is due to the fact that E, contains a term that is directly propo - ,,r 1 to the
z-component of the applied electric current density. Hence, when this current density is a
delta function, as it is when computing the dyadic Green's function, the same delta function
appears in the Green's function. This term is the "depolarization" Green's function.

The tangential components of the electromagnetic field that appear in (A.29) are
computed from (A.18) and (A.19), where the coefficients in (A.19) are given in (A.27).
We conclude, therefore, that the matrix in (A.29) consists of two parts: an incident part,
due to (A.18), and a reflected part, due to (A.19). Hence, we write &(")(z, z') = 61(z -
Z') + GD(Z - z') + GR(Z, z'). Note that the incident and depolarization Green's dyadics
depend upon the difference between the source and field points.

Let's go into the computation of the dyadic Green's function in a little more detail.
We start with (A.18) and (A.19), keeping in mind that there are three different h's (corre-
sponding to each possible orientation of the point source of current) for the electric Green's
function, and three different h's for the magnetic Green's function. We are interested in
only the electric dyadic Green's function now. Hence, each h will give us a column of the
Green's dyad; how do we get the rows? Remember that the eigenvectors stand for

H. (A.30)

IXV,

Hence, the entries of (A.29) can be easily picked out of this vector structure. For
example, the first column of the incident part of (A.29) is obtained upon referring to~(A.18):

-_(z)..2)o-%(,-2') + h()..1)-(')3(Z-') z' <Z
- 2 "2 ""4 v4 "

3--", h"t)l e) z') -s z < (A.31)(a)
.(2f) h()v(2)e-1(-') + O )V.2)-X(-') z' < Z

-- 2 "2 "1.4 "4 e<

I.(z),V(2 )e1(z') - h()..(2)eA(z-x') z< (A.31)(b)il (z).,)_.jz xI ( ) -A3(B-') z'< z
-- 2 "2 e " 4 Vi-,h((3)eI(-z') + h(m).(3)eX2(z-z') z' (A.31)(c)

h (z)"(,)e-%1(8-8')"1, - "h()1)*z=-'" 3 e (A.31)(d)

S I[I 1 z
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1 ( 4)
-~~~ I(-k-v + k,\h..e1x

(-k4) + k V(3)(z)eAS(z-,')] z' <

kz(4) _ VV) )Iz) e (z 2')

S(kzt4)~ -s s)h3 ( z < z1. (A.31)(e)

In order to compute the reflected part, we start with (A.19), and get

e a) =c,,C-)1,(l);,,z + e,,Cv 2,e. + d"()t,, -e , +.fl("c) ,,i).-),.Z (A.32)(a)
.g(z) _1IZ=)V(2) AIX + e,,(-)V(,)e +,(,,ci,) e -Alz +.t 11() e ) (A.32)(b)

R€z) ,- e + eD v3 e a, + + e fN e-A (A.32)(c)

( ) I(z)V (4) e+ eIS)V"C)e - x " + d(x)v2 e- AX (4 ) 2) e- (A.32)(d)

jqr ,(= -,- oC-) (4)A32,.)4
where~ -[V( ) " = ,d ( ), e'()] +s en byV(.2) , + t dthe 2 ) ven'\ by t+- f "(4( e-o\D , ( .3)

E(z) A [k 3 z+ kH)

+ (-kt 4 ) + k V(3) )dI(x)e-)\z + _L()+ kv V())ft()e)'\s (A.32)(e)

where [c.zI), e('), &"(z), f"(z)] is given by (A.27), with the it's given by [hc) h~) h() (z]
It should be clear, now, how to compute the other two columns of the incident dyadic

Green's function.

The Vector Green's Function &E'e)(z, z')

We start with the dual of the bottom row of the dyad in (A.29), which produces the
z-component of the magnetic field:

H 5 (z,z') =

[(_ .) + k3E.)/wjo (_kE + k.gc,))/ 1 ° (_k,.E) + k Ev )/,3]I - (A.S3)

If S(kz, kv) is the transfer function corresponding to integration over the sensor coil, then

,e)_, , ) = 9(k.,k,)fI4(Z,Z'). (A.34)

This is the expression that is used in (12) (see the comment below (3)(c), also). The
electric field is evaluated in region 1 of the figure (z > 0), so that we need [a, b] from either
(A.15) or (A.37).
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Consider (10); with a whip source that produces ., y-directed electric field, E0 , in the
principal-axis system, we have

N. Ny N.

EMFm = G()()(l - L, m - M)EoLMJOL. , .  (A.35)
L=O M=O J=O

Now G(fe)(Y) is given in (11) and (12), which uses the y-component of (A.33) and
(A.34)3 ~ ~~~~~~(Ee)Ci) (Z, z') = §(k., kv)(-kE+ kyE')w 0,(.6

where, from the figure,

E()=- a(1)aioe- oz
e +(A.37)

P(30 = - a(y) =z + b(y)e --o z .

A- a(l) and b(') are given by either (A.15) or (A.23) with [hi [h()]. For example, inI (A.16) we have

I N, =e>'\'h() - h()Biie2zoe- .\1' - h(3)Bl2e-('\+ \)x'e - 
A3Z2 1 1 3-2.Xzo SX,(A.38)

N 2 =e'\z'h() - h(Y)B 2,e-(-1+i3)ZOe - -Z' - h(Y)Be o--a'

whereas (A.23) and (A.27) produce

a E l_ T11  T22 i( R31  R32  hw 1~ Z
b0) - T2 1  T 2  R R 421) , h, 'e3" (A.39)

+ 2 T2 R43 R44 h~P)e--\z'

IClearly, we are using separation of variables, in which the coefficients, [a, b], carry the

z' dependence. Hence, in evaluating the integrals over z' in (12), we need only integrate
these coefficients with respect to z'. The results are readily apparent from (A.38) and
(A.39), because the z' dependence is explicitly stated in the exponentials; the coefficient
matrices are independent of z'.

I
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1. INTRODUCTION

Collecting and storing laboratory data became a fairly complicated task as a large
amount of data were taken under a wide range of physical circumstances. This chapter
gives an overview of the software and hardware involved in the complete data acquisi-
tion process. We first discuss the data collection software, which touches on the
hardware design for a complete understanding of the motivation behind the software.
We also review the sensors and excitations used for the project; these sensors are men-
tioned here to complete the documentation of handling and keeping track of the data.
Finally, we present some sample laboratory data.

3 2. DATA COLLECTION SOFTWARE

3 The data acquisition itself was just one part of the overall process, and began with a
"C" language data acquisition program designed to run on MS-DOS computers. We
used two different MS-DOS computers during the project, and the software was
developed to operate well with almost any type of MS-DOS computer, even one without
a hard drive. During the project, we upgraded from a PC-XT compatible computer to
12MHz PC-AT compatible laboratory computer, allowing us to acquire data much more
efficiently. Some changes to the data acquisition program were required to get the pro-
gram to run on the new computer, these changes are documented in the Sixth and
Seventh Quarterly Reports.I Data collected in the laboratory went through many handling steps before its usage
in the computer modeling program. This section outlines the steps that we used in
acquiring and storing the data collected in our laboratory at Indiana University (1U). The
laboratory was set up and operated through 1U's "Partners in Applied Research" (PAR)
program. Hardware used in the project was developed prior to this work, and is dis-
cussed in the reports for our contract with Naval Surface Warfare Center, contract
number N60921-86-C-0172, which expired in December 1988 (51]. It will be necessary
to refer to features of the hardware in this report, but for detailed information, the reader
is encouraged to study the reports for the NSWC project and Reference [T2]. It is
sufficient for this project to model the electronics system as in the block diagram of Fig-
ure V-1. It is very important to note that the signals produced by the electronics are not3 the true in-phase and quadrature EMF readings required by the model [S2], but are
derived from the EMF values after some amount of amplitude scaling and phase-angle
rotation. The actual EMF values must be determined from the laboratory measurements

Sby forming a linear combination of the measured "zero" and "ninety" signals. Refer-
ence to Figure V-i is made later in this chapter when discussing the algorithms that we
used for computing the actual EMF values.

I
i V-1



voso

I ..

I

Il

Figure V-i. Model of the mixer circuit.

3 2 a. Steps in the Acquisition Process

To obtain a sufficiently large base of data from different flaws requires special tools
and methods for compactly storing and retreiving the data. All data collected were even-
tually stored on our Alliant UNIX machine, and the UNIX environment was used to
access the growing database, process and plot the data, and maintain information about
the laboratory experiments. The following list summarizes the steps acquiring data and
making it ready for the model.

I 1. Collect measurements in remote laboratory. We will use the term "test" to denote a
given set of measurements resulting from one scan over a sample of material. A test
typically consists of measurements at a multitude of frequencies on a grid of points in
the X-Y space, and is stored on a floppy disk or a hard drive in a number of different
files.

2. Transfer the data from laboratory computer to Alliant computer. This task was best
performed by first using an archive program to consolidate the data into one file (we
used the public-domain program zoo), then copying the archive file to an IU UNIX
machine that could be used to send data to our Alliant by UUCP (UNIX-to-UNIX
copy). Alternatively we sometimes hand-carried floppy diskettes to an IBM-AT
networked to our Alliant.

3. Store the data in an orderly manner. Our method was to use a unique directory in the
labdata account, named by the year and date that the test was performed, that con-iined a few standard files: the compressed archive in one of several formats, tar, zoo,
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or ar-, Readine, overview information about the measurement; db.entry, database
information in a specific format; and header, specific information about the measure-
ment. Readine and header were also added to the archive.

4. Add db.entry to the database so that page number, data measurement statistics, sam-
ple, excitation, and other information could be accessed through the database pro-
gram.

5. Run a program called profile developed by Bishara Shamee and Jeff Treece to make a
profile page of grayscale images to add to our booklet of data.

2 b. Phase Shifts and Gain Errors

Note that there are two DC outputs of the circuit represented by Figure V-1, whose
phase and amplitude depend in part on several phase errors and the amplifier gain. In
short:

V, = sin (co t) (V-O)

Vs = A sin ( cot + ) (V-i)

V1 =ALPF{ sin(cot+ M)sin(cot+O,+OA

= A' cos ( M - Os, -OA ) + Vo0 o (V-2)

V2 =ALPF{ sin(ct+M+Oc)sin (ca O+A )I

=A'cos(OM+OG-Os-OA ) + Vos9g (V-3)

Where V1 and V 2 are the outputs of the in-phase and quadrature mixers, respectively,
and 0. is the phase of the signal applied to the mixer input. Equations (V-2) and (V-3)
can be used to calculate system parameters when some of the variables are known. Also,
it is possible to calculate the mixer phase shift using the SPICE circuit analysis program.
One can also extract the amplifier phase shifts from the data sheets. Finally, another set
of two equations can be obtained after modifying the mixer circuit to bypass the amplifier
(thus bypass the amplifier phase shift). These equations and calculations yield an over-
determined system, however, the equations are non-linear, and several ideal assumptions
have been made. Moreover, the laboratory measurements are taken with some degree of
experimental error. The solution to the set of equations was attempted using MINPACK.
A more complete discussion of this calculation was presented in the Seventh Quarterly
Report.
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5 2 c. New Method of Finding Phase Shifts, Based on Field Model

The MINPACK method of determining phase shifts, reviewed in this chapter and
described in the Seventh Quarterly Report, has certain drawbacks, one of which is its
complexity. The complexity of the process makes the error margin uncertain. Because
of this fact and that we wanted to test results using an independent method, we briefly
looked at a second method of calculating phase shift and gain multipliers for the lab data.
The second method was based simply on calculating the expected EMF values I and
determining from the calculations the proper scaling factor and phase angle for the actual
frequencies measured.

To calculate the expected EMF, we must know, apriori, the properties of the
material. For this, we selected various metals, whose conductivities were documented in
[WI]. We selected thin planar samples of the metals and measured the transmitted

USensor
U - ' *--- Materia l --> I ZI

Excitation-> z -z3

5 Top View Side View

i Figure V-2. Sensor and excitation arrangement for calibration experiments.

field using the setup of Figure V-2. We were able to comput the expected field using theII
experiment geometry and sample conductivity as inputs to the model. The outputs of the
model were assumed the correct EMF values, and the outputs of the lab system were
assumed to be V1 and V2 as shown in Figure V-1. A simple linear transformation can be
used to transform V1 and V 2 into the calculated EMF values. Then, assuming the same
hardware setup for other tests, other laboratory data can be converted using the same
linear transformation.

Plots of Figure V-3 show laboratory data and model calculations for the field
transmitted through a sheet of aluminum foil. Similar experiments were repeated for
other samples: copper, stainless steel, iron, and thick aluminum. Thick samples were
desirable because the thickness was convenient to measure, but were undesirable because
they attenuated the signal at high frequencies (demonstrating their EM shielding proper-
ties). Consistent results were obtained, indicating that a good agreement is seen after
scaling the lab data by a factor of about 10 and correcting the phase by almost 180

5 The calculation itself is not simple, but the concept is simple. The calculation is based on
work reported in Chapter I.

I
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accurately measuring the thickness of the material.

2 d. Using High-Frequency Data

At high frequencies, phase shifts and gain errors in the laboratory hardware can not
be ignored. In competition with the hardware limitations are the needs of the computer
model, which uses a multi-frequency algorithm that benefits from a wide range of fre-
quencies. By compensating in software for phase shifts and gain errors and redesigning
some of the sensors and exciting coils, we were able to collect data over a wider range of
frequencies than expected at the onset of the project. The inductance of our sleeve exci-
tation source was about 8OgH, and the sleeve had a self-resonance frequency in the I-
2MHz range. In order to expand our usable frequency range, we first looked for an exci-
tation source with less inductance (though data collected with the sleeve are not useless:
it is, however, more difficult to characterize the current that is driven through the coil,
and thus determine the phase and magnitude of the excitation current). We next used a
whip excitation, which had nearly the same cross-sectional geometry as the sleeve, but
was formed of only one turn of wire instead of about forty. We were able to collect data
using the whip at frequencies up to 25MHz. Smaller sensors also allow us to make meas-
urements at higher frequencies - sometimes up to 50MHz 2 . We were not able to collect
data above 50MHz because that is the highest frequency we could generate with our
HP8116A signal generator.

The small excitations do not produce uniform fields, and the first version of the
computer model assumed uniform fields. Later, changes were made to the model (see
Chapters I and I) that allowed us to use data from whip, ring and other sensors and
excitations. We discovered several trade-offs when using the smaller sensors: they typi-
cally gave higher resolution, measured only the near-surface region of the sample, tended
to be more sensitive to lift-off, and gave a smaller flaw signal. Since the small sensors
gave higher resolution measurements, we were often able to detect micro-features of the
material, such as fiber weave structure and fiber orientation.

The software phase and gain compensation took place in three stages: we first
characterized the laboratory harware by performing experiments, then calculated parame-
ters required for rotating and scaling, and then we converted the data by calculating
actual EMF values, taking the excitation current into account. The first step was
hardware-dependent: for each new sensor/excitation arrangement, new experiments were
required to characterize the phase shifts. For this reason, EMF values could be accu-
rately calculated for only certain sensors and excitation (the ones for which we per-
formed the required experiments). The second step was accomplished by running a pro-
gram using the data of the first step as input. The program calculated best-fit values for a
number of unknowns. The entire method is described in detail in the Fifth Quarterly
Report for contract number N60921-86-C-0172, between Sabbagh Associates and Naval
Surface Warfare Center [S1]. An alternative method for the second step was

2 The data at high frequencies had much more amr. that is the phase and amplitude were much

less accurate than at the low frequencies.
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contemplated near the end of this project, and some preliminary results are presented in
Section 0. At certain frequencies, the final step can possibly fail (see Seventh Quarterly
Report, Appendix D, Section e). If the final calculation fails due to large specific values
of phase shifts, the data are not useful at that frequency for use in the model.

i 3. SENSORS, EXCITATIONS, SAMPLES, AND DESCRIPTIONS

We tested new sensors to optimize the design for flaw and feature detection. Cer-
tain sensor configurations were particularly good at detecting certain features. For exam-
ple, a directed current, such as our whip excitation, was found to be good at detecting3l fiber "tows." 3 Certain innovative sensors, such as the "figure-eight" sensor/excitation
described in the sensors listing, were useful for detecting flaws and other small features.
We have noted that certain sensor designs are optimum for particular applications; we
have already discussed an excitation that is good at detecting signals from tows, which
indicates micro-structure of the material. However, carrying the example further, large
tow signals hinder detection of flaws, so those sensors that are good at detecting tows
might not be good at detecting impact damage.

1 3 a. List of Sensors Used

I SENSORS

1. Sensor "EW1"
Pancake coil, 13 turns, 28 ANG. Diameter 0.16"

2. Sensor "HWla"
Hill's replacement. Pancake coil, 13 turns, 28 AWG.

Outer diameter 0.125"; Inner diameter 0.06"

3. Sensor "HW2"
Pancake coil, 4 turns, 34 AWG. Diameter 0.09"

4. Sensor "HW3"
Pancake coil, 3 turns, 34 AWG. Diameter 0.06"1 5. Sensor "HW4"

Pancake coil 3 turns, 34 AVG. Diameter 0.06"

6. Sensor "HW5"
Pancake coil, 3 turns, 34 AWG. Diameter 0.03"

7. Sensor "HW6"

1 Tows re the result of the bunches of fibers that are used when the materials ae made. Con-
ductivity is better in the tow regions than between tows, resulting in a stiped image. Some such
images are presented in the Fifth, Sixth, and Seventh Quartefly Reports. Tow is spinners' cant,
now used by makers of graphite-epoxy. Satin weave, which has warp and woof without a twill, is
another borrowed textile phrase, taken from weavers at the loom.

I
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Pancake coil, 3 turns, 34 AWG. Diameter 0.04"

S. Sensor "HW7"
Pancake coil, 2 turns, 34 AWG. Diameter ?"

9. Sensor "mac0l"
Circuit board sensor, 0.6" x 0.565". 10 turns, each having a width of 20
mils.

10. Sensor "mac08"
A circuit board sensor made up of 8 mac0l's with a spacing of 30 mils
between each sensor. Center-to-center distance between sensors is

* 0.6".

11. Sensor "jrb2"
0.375" diameter barrel, probe tip 0.25" diameter. This probe has a
black housing with three gold stripes. There is a female connector for
coaxial cable in back, and a small (less than 0.06" diameter) coil at
front. The number of turns in the probe tip is unknown.
Inductance ? henries. Resistance ? ohms.

I 12. Sensor "Jrb2ns"

This is simply the jrb2 probe without its ferrite shield.

13. Sensor "HWS"
Pancake coil, 5 turns, 28 AWG.
Outer diameter 0.375"; Inner diameter 0.03"

14. Sensor "HW9"
Pancake coil, 5 turns, 36 AWG. Diameter 0.03"

15. Sensor "HW10"
Pancake coil, 5 turns, 36 AWG. Diameter 0.035"

16. Sensor "HWIl"
Pancake coil, 5 turns, 40 AWG. Diameter 0.03"

17. Sensor "HW12"
Pancake coil, 5 turns, 40 AWG. Diameter 0.025"

18. Sensor "capl"
Circuit-board sensor. 0.745" x 0.385"
Fingers separated by 20 mils. 2 groups of fingers. The inner group has
four fingers, each outer group has two. The outer groups are connected.III 19. Sensor "cap2"

Circuit-board sensor. 0.65" x 0.65"
Fingers separated by roughly 30 mils. Two separate groups of three
fingers each. The fingers zig-zag twice.

20. Sensor "cap3"
Circuit-board sensor. 0.5" x 0.75"
Fingers separated by roughly 20 mils. Two separate groups of five5 fingers each.

21. Sensor "cap4"
Circuit-board sensor. 0.6" x 0.575"
Six groups of two fingers roughly 20 mils apart. The groups are separate.

22. Sensor "cap5"
Circuit-board sensor. 0.6" x 0.55"
Two separate groups of three fingers, each separated by 40 mils.

23. Sensor "cap6"
Circuit-board sensor. 0.75" x 0.55"

V
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Both sides are different. One aide has two groups of three fingers, the
other side has three groups of two fingers, where the outer two groups
are connected. The fingers are roughly 50 mile apart.

24. Sensor "cap7"
Circuit-board sensor. 0.275" x 0.575"
Six separate groups of two fingers separated by 20 mils.

25. Sensor "cap8"
Circuit-board sensor. 0.39" x 0.37"
Both sides are different. One side has four groups of two, the other
side has one group of four flanked by two groups of two. The fingers
are 20 mils apart. One finger in the four finger group is broken.

26. Sensor "HW13"
Pancake coil, 5 turns, 40 AWG. Outer diameter 0.15"

m 27. Sensor "HW14"
Pancake coil, 5 turns, 32 AWG. Outer diameter 0.1"

28. Sensor "HWI5"
Pancake coil, 5 turns, 32 AWG. Outer diameter 0.09" +1- 0.01"

29. Sensor "HW16"
Pancake coil, 5 turns, 32 AWG. Outer diameter 0.09" +/- 0.01"

30. Sensor "HW17"
Pancake coil, 5 turns, 32 AWG. Outer diameter 0.09" +/- 0.01"

31. Sensor "280"
Sue Vernon's 86.280 probe. The barrel is a highlighter pen. A coax
female connector is on one end, and an iron cup, 835 mils in diameter,
is on the other. Epoxy seals the cup. Inner diameter - 350 mils.
Barrel - 2,875 mils long. Inductance -? Henries. Resistance -? ohms.A label says:

86.280 291
m1 c6 03

32. Sensor "335"
Sue Vernon's 86.335 probe. The barrel is a highlighter pen. A coax
female connector is on one end, and an iron cup, I" in diameter,
is on the other. Epoxy seals the cup. Inner diameter - 450 mils.
Barrel - 2,140 mils long. Inductance -? Henries. Resistance -? ohms.A labl says:

86.335 2616 pa
400 3b9

33. Sensor "disk"
A disk drive head. See the lab book for details. This is basically
a split-core transformer, as far as we can tell.

34. Sensor "HW18"
One loop, 34 AWG, 0.2" diameter.

35. Sensor "HW19"
One loop, 34 AVG, 0.1" diameter.

36. Sensor "eyel"
Two loops with one turn in each loop. The windings oppose so that the
background signal is eliminated, outer diameter .13" +/- 0.01", 34 AWG

37. Sensor "Xl"
Four handwounds in series. Each Hw has two turns of 38 AVG wire
around the peg of a dual-row header. The four sensors were then bent3 into an x shape such that opposing legs canceled each other in a
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uniform field. This sensor was then place in a ring excitation.

38. Sensor "rings"
Two handwounds with two turns of 34 AWG wire that were wrapped around
a peg of a dual-row header. The windings oppose so that the
background signal is eliminated.

39. Sensor "Dl"
Two handwounds with two turns of 34 AWG wire that were wrapped around
peg of a dual-row header. The windings oppose so that the

background signal in eliminated.

40. Sensor "microl"
Small micro sensor made at Purdue.

40. Sensor "micros"
Small micro sensors connected in series, placed side by side.

50. Sensor "HW20"
Two loops, 34 AWG, .70" 4/- 0.01" diameter.

51. Sensor "HW21"
Two loops, 34 AWG, .59" +1- 0.01" diameter.

I
3 b. A List of the Excitations

EXCITATIONS

1. Excitation "linch loop"

diameter 1", 34 AWG.

2. Excitation "big sleeve"
A 11" x 3.88" x 0.25" piece of Plexi-glass, wound by 28 AWG wire 16
times. Each winding is 0.125" apart.

3. Excitation "Junk sleeve"

4. Excitation "large sleeve"
9" in length when flat. 39 conductors (standard computer ribbon cable)
connected together to form a solenoid. Width 1.94".

5. Excitation "small sleeve"
9.5" when laid flat. 14 conductors (standard computer ribbon cable)
connected together to form another solenoid. 0.7" width.

6. Excitation "bridge"
A circuit board sensor, macO8, is attached to a Plexi-glass backing,
which measures 9.06" x 5.06" x 0.24". The macO leads run out of the
bottom edge of the Plexi-glass, back to another board with one 200 ohm
potentiometer and 2 other resistors for each lead.

7. Excitation "HW2"
See above entry in SENSORS. Used as an excitation, HW2 was
arranged in a "ring" configuration.

B. Excitation "HW6"
See above entry in SENSORS and "HW2".

1
~V-10



9. Excitation "harp"
An 11" x 2" x 0.25" rectangular solenoid wrapped around Plexi-glass. It
has 17 turns of 28 AWG wire, each spaced roughly 0.125" apart.

10. Excitation "loop4"
28 AWG, diameter 0.875". Loop excitations are used in anisotropN tests.

11. Excitation "loop2l"

12. Excitation "large loop"

28 AWG, diameter 2.22"

13. Excitation "small loop"
28 AWG, diameter 1.11"

14. Excitation "mac0l"
See above entry in SENSORS.

15. Excitation "monster"
28 AWG wire. 10" x 10.6". A 30 turn solenoid whose windings are in the
direction of the larger axis. The windings are spaced five to six
sixteenths of an inch apart.

16. Excitation "ringl"
28 AWG, diameter 0.625"

17. Excitation "ring2"

18. Excitation "ring3"
Slightly bent. 28 AWG, diameter 1"

19. Excitation "ring4"
28 AWG, diameter 0.1"

20. Excitation "ringS"
34 AWG, diareter 1.5" 4- 0.06"

21. Excitation "ring6"

22. Excitation "ring7"
36 AWG. diameter 0.625" 4- 0.06"

23. Excitation "ringS"
36 AWG, diameter 0.6" 4- 0.06"

24. Excitation "ring9"
36 AVG, diameter 0.625" 4- 0.06"

25. Excitation "ringlO"1 36 AWG, diameter 0.64" +- 0.06"

26. Excitation "ring20"
40 AWG, diameter 0.125"
Has broken lead wire.

27. Excitation "ring2l"
A double ring, one superimposed upon the other. 34 AWG, diameters 1"3 +- 0.06".

28. Excitation "whip"
A single loop of 28 AWG wire. The loop is 8" when stretched flat.

3 29. Excitation "window"
A circuit board, 7.06" x 7" x 0.06", with copper on top. The left and
right edges are solid copper columns, each one 0.375" wide. Joining the
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two are regularly-spaced copper rows, each 0.06" wide, that completely
fill the board from top to bottom. There are 100 rows in all.

30. Excitation "loop5"
28 AWG, diameter 0.25".

31. Excitation "ringli"
36 AWG, diameter 0.625" +- 0.06"

32. Excitation "ringl2"
36 AWG, diameter 0.625" +- 0.06"

33. Excitation "fig8"
A sideways figure 8. The leads are attached to loop B. Diameter of loopA is 0.625" 4- 0.06". Diameter of loop B is 0.625" +- 0.09". The
figS is made out of 36 AWG wire.

34. Excitation "280"

See the above entry in SENSORS.

35. Excitation "335"
See the above entry in SENSORS.

36. Excitation "whip2"
A single loop of 28 AWG wire. The wire is 0.75" long when stretched to
a separation of roughly 60 mils.

37. Excitation "ring23"
34 AWG, diameter 0.2"
38. Excitation "ring24"
34 AWG, diameter 0.1"

39. Excitation "ring25"

34 AWG, diameter 0.12"

40. Excitation "ring26"
34 AWG, diameter 0.06"

41. Excitation "ring27"

42. Excitation "ring28"

34 AWG, diameter 0.33"

43. Excitation "Rings"
Two handwounds of 34 AWG wire that were wrapped around a peg of
a dual-row header. The windings oppose each other.

44. Excitation "micro2"
Small micro sensor made at Purdue.

I
I
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3 c. Samples

DESCRIPTIONS OF SAMPLES

1. Sample "1"
Sample 1 is the well-known satin weave square sample that has twelveflat-bottom drilled holes. The dimensions are 6.125" wide by 6.125"1
long by 0.11" thick. The top side has twelve visible holes (6 0.5"

diameter and 6 0.25" diameter). The top side is smoother than the
bottom side. Weaves of dimensions approximately 0.1" are visible from
both sides. The pattern appears to be "under-4, over-l." See the lab

notes for more details.

U 2. Sample "panl2"
6.125" x 6.125" x 0.11" satin weave. Same weave pattern as Sample 1.
Yellow alignment lines run horizontally as shown in the lab notes. The3 top side is smoother than the bottom side.

3. Sample "3"
6.1" X 6.1" x 0.1" satin weave. There is a hole almost precisely in the
center of the top side (top side is the side that is "roughest"). The
hole is 0.2" in diameter, appears to be flat-bottomed, and is
approximately 55mils deep.

4. Sample "pil"
6" x 6" x 0.065" checkered cloth pattern, but not satin weave. Top side
is rougher than the bottom side. The panel flexes more easily along the
y axis than along the x axis, as in the lab notes. A tag attached to
the sample says:

10 layers
11 mil ohm
T- 67 -
wt - 57.1140 gm
v - 39.837 p - 1.434
high resistivity reasons unknown

5. Sample "pa4"
5.9" x 5.9" x 0.08". Top side has eleven holes of various sizes; see
the lab notes. The panel seems rigid in both directions.

6. Sample "4"
6" x 6" x 0.085". The top side in smooth, the bottom side is
cloth-patterned. The bottom has "5245C" and "#4" written in yellow
grease pencil. There is a yellow X connecting the four corners of the
sample. We will call the "5245C" edge the "0" direction. From the top,
one can see predominate (fiber?) lines, diagonal from upper-left to
lower-right. A blue grease pencil arrow points to the left on the top
side. The board bends easier about the "0" direction axis than about
the axis of the blue arrow. The board is warped in the "easy"
direction (about 50 mile in the center).

7. Sample "2"
11.375"x 11.5" x 0.085" cloth pattern. The top says "top/front." The
panel has blue grease pencil Xe near the center on both sides.
Horizontal grooves of various widths (from 0.125" to 1", two sets) have
been stamped on the top in four rows. The grooves average less than 5
mile deep. 7" from the left edge, and I" and 2" from the bottom edge,
are 2 depressions. The lower one is roughly 10 mils deep, the upper oneSis around 5 mile deep. 2" above the second depression is a third, 0.5"
long and roughly 5 mile deep. On the back face, a crack extends from
top to bottom, 3.875" inward from the right edge. The sample is warped
near this crack, by (on the average) 5 mile. The whole sample bends
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along the axes parallel with the crack much easier than along other
axes.

8. Sample "RhEI"

13" x 12.875" x 0.215" cloth pattern. The front has "RAEl" and "0-90"
on a sticker in the top right corner. Various irregular depressions
are circled with yellow grease pencil, see the lab notes for more
details.

9. Sample "RAE2"
4.94" x 4.38" x 0.125" rigid cloth weave. The panel has blue tape
saying "RAE2" in the upper right corner. The back shows fibers in x
patterns. The front has two circled regions. See the lab notes for
more details.

10. Sample "RAE3"
6.125" x 4.31" x 0.195" rigid cloth weave. The front and back are plain
except for a circled depression on the front. The depression is located
2.5" up and 3.5" over from the bottom left corner.

11. Sample "RAE4"
7.125" x 6.125" x 0.395" rigid cloth weave. The panel has no diagonal
fibers. No obvious flaws are on it. Blue tape saying "RAE4" is in the

upper right corner.

I 12. Sample "RAE5"

12.25" x 11" x 0.32" rigid cloth weave. There is a tape saying "RAE5"
in the upper right corner. Also in the top right corner is written
"0+/-45." The panel has 5 layers of roughly 0.06" each. The front has
two circled depressions. The upper left circle says "28.3 J."

13. Sample "5"
12" x 11.88" x 0.15". Top is smooth, bottom is a canvas-type of
surface. A blue X is drawn on the front. Lines run from left to right
on the top. The top is scraped in the bottom left quadrant. The edges
are rough and irregular. Fibers run vertically. The panel is rigid,
except for vertical axes. Two cracks are in the back. One is 0.75"
from the right edge, the other is 6.75" from the right edge. This is
the unidirectional sample made by Olaf Rask.

14. Sample "bar"
2" x 12" x 1.44". The top is cloth weave, the bottom is satin weave.
The sample is obviously layered. the Middle of the bottom is warped
upward by roughly 15mils. The top says "4-10" and has two circular
depressions: one squarely in the center, and one 4 inches beneath the
first. The top has shallow grooves spaced around 1" apart; these
grooves are apparently joints.

15. Sample "A"
9" x 9" x 0.11". The top is smooth, the bottom is a tight canvas weave.
Fibers run diagonally, + and - 22.5 degrees. A red "A" and an arrow
indicating fiber direction are drawn in the upper left quadrant. The
panel has no obvious flaws.

16. Sample "B"
9" x 9" x 0.11. This panel has the same physical attributes as Sample
A. A red "B" and and arrow are drawn in the upper left quadrant, as with
Sample A. Again, no visible flaws are present.

17. Sample "ceramic"
Two ceramic disks, one white, one black. The white one has a circular
depression in it, 85 mils in diameter and 30 mils deep. The white disk
has a 465 mil diameter and is 242 mils deep; the black disk is 465 mils
in diameter and 212 mils deep. The black disk is abraded near the edges.

I
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18. Sample "xas"
12" x 12" x 0.17". This sample is described fully in the notes included
in the package from England. It is a 32-ply carbon-epoxy slab with nine
0.2-ply-wide delaminations ranging in diameter from 0.8" in the upper left
to 2" in the lower right. A label in the upper right corner of the top
face says:

070 688 / B.C.
XAS 914
32 ply 0/90/+or-45
with delaminations

19. Sample "carba"

20. Sample "carbb"

21. Sample "C302"
10" x 13.25" x .14" carbon carbon weave sample. This sample has it's lower
right corner cut out. The sample is warped down the middle, however it is
not obvious. The front of the sample is labeled with C302 written on it, also

the direction of the warp is indicated here. The sample also has a purple
square painted on the front.

22. Sample "copper"
3.995" x 3.930" x .024" piece of copper.

523. Sample "lead"
4.5" x 4.6" x .106" piece of lead.

24. Sample "stainless"
16.88" x 7.9" x .062" piece of stainless steel.

25. Sample "slide"
1.074" x 3.135" x .274 carbon-carbon. The top side has two large
flaws, also the top right corner is ground down. Backside has a glossy
appearance.

SOLAR CELLS

1. 2L65-66-503
Solarcell marked with "0" on the bottom in black. Has obvious defect
going across the cell, 80 mils up from the centerline (silver strip at
the bottom).

2. 5J79-63-501
No defects are obvious, though there is a slight hump 80 mils up from
the centerline, with the silver strip at the bottom. Also, there may be
a defect along the upper right side. See lab notes for more details.I 3. 5J69-20-06-501

There seems to be a defect 175 mils below the centerline, and the cell's
appearance is "patchy," more reflective than cells #1, #2, or #4.

4. 4L96-44-501
No obvious flaws, though there is a slightly raised area about 200 tils
above the centerline.

3 S. 4M59-30-501

6. 5K19-41-501

3 7. 2M16-49-503

S. 5K15-43-501
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9. 2L87-08-50i

There is an obvious diagonal crack from the lower left edge going up to
the right.

10. 3M61-41-503
There is a lengthwise raised area 300 mils from the right edge.

11. 4Ml1-59-501
This cell has a crack on the lower right edge. There is also a smashed
spot in the lower right.

.2. 4M59-35-501
There is a crack at the upper left edge.

13. 3M62-65-501
No glaring defects.

14. 4M78-48-501
No obvious defects.

15. 3M72-22-501
Nothing obvious.

16. 4M59-45-5015 Nothing obvious.

17. 4048-37
Exposure.

18. 4048-60

19. 4048-14

5I  20. 4048-54

21. 4048-07I
CIRCUIT BOARDSI
7.94" x 3.625" x 0.06" Copper-colored rectangle. See the lab notes for
a picture of it.I
2.
9" x 3" x 0.06". Top is silver-green, bottom is dark green. There are
many large holes, but few pinholes. There are 2 solder globs on the top
and the bottom. See the lab notes.

3.
4.5" x 5.44" x 0.06"
This board is green. There is a 2.63" x 0.38" projection out of the
bottom, located 0.63" from the left edge. The top has a 5 x 7 grid of
contacts. Six chips are still on the board. The back "looks like a3 parking lot." See the lab notes for a diagram.

4.
9" x 3" x 0.06"
This board is a clone of #2, except it has no solder globs, and its
pinholes are smaller.

5.
.5.44" x 3.38" x 0.06" green board. The top and bottom both have rows of
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silver near the top and bottom, roughly 0.125" wide, but the top has a
silver column at the left edge, 0.125" wide. In the middle of both
sides are pinholes, arranged in 6 groups of 16. These pinholes cover a
rectangular area totaling 4" x 1". The bottom left corner of the
pinhole rectangle is 0.75" from the left and 0.75" from the bottom.

6.
8.5" x 5" x 0.06" green board. The top face say "top" in the lower left
corner. There is a gold strip on the left edge of the top and bottom.
The top has sparse wiring, the bottom somewhat more wiring. The only
holes are close to the left and right edges, in the center. See the lab
notes for more details.

7.
4.06" x 2.44" x 0.05" brown board. The left has a contact projection
with dimensions 1.5" x 0.25", located 0.5" up from the bottom edge. The
front says "s2193626" near the lower left. The upper right and lower
left corners have 0.625" long, 0.063" high cuts extending into the board
from the right along the top and bottom edges. Again, see the lab notes
for a diagram.

8.
6.69" x 6" x 0.06" board, dark green front, silvered back. There is a
contact projection on the left edge of the top. It is 0.25" wide, 2.5"
long, and starts 1.75" from the bottom.

9.
8.25" x 2.88" x 0.07" board. The front says "44112" near a resistor in
the upper left. A 4.12" x 0.375" contact projection starts 2" from the
right edge, near a capacitor. Two rows of 22 vertical, soldered,
pinhole columns cover the front and back faces. Two 0.125" diameter
holes are positioned at 2" and 6.25" from the left side, 0.5" from the
top.

10. copper3
16.25" x 10" x 0.06" brown board. The front face of this board has
"10424" in the upper right quadrant. The back face has a mailing label
along the top edge. There is a rectangular hole in the upper left
corner of the front. Gold contacts are along the bottom edge. The
wiring and pinhole rows are predominately vertical on both sides. The
board is made up of 6 layers. The top and bottom edges of the front are
warped upwards by roughly 0.3", and the left and right edges are warped
downwards by around 0.1". The board is flexible in all directions.

3 d. Database Descriptions

AETURES

1. tows
Linear disturbance in data due to the sample's fiber direction.
When two or more fiber directions are present, a weave-like
pattern appears in the data.

2. flaws
Any man-made or natural cut, crack or blemish located on the sample
being analyzed.

3. anisotropy
Used to obtain directional properties of a sample. A pattern is
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obtained by using a single current loop placed either on top
(1)Reflected or on the bottom of the sample (2) transmitted.

4. foil
A piece of foil used to represent a "target". This piece of foil can
be any size, shape and at any location. (See Read.me files for detailed
information on location.)

5. aluminum
A piece of aluminum used as a sample.

6. orientation
Aluminum "targets" cut in various shapes and sizes. These "targets"
are then placed on the sample being analyzed. Useful for giving true
directions of sample with respect to the positioner.

7. monosensor
A single sensor being used for eddy current detection, as opposed to
using several sensors.

8. solarcell
A semiconductor solarcell was used as the sample.

9. subtraction
The subtraction of one data set from another. This is generally
performed on data coming from two samples of identical makeup and
orientation, except one of the two samples may have a man-made flaw.

10. saturated
Measured signal at the A/D converter exceeded the maximum readable
value. The data obtained at these points are generally useless. Asure
indication is areas in the grayscale that are all-black or all-white.

11. traces
Copper traces on a pc board.

12. weaves
Weave patterns can be seen on plots associated with satin weave
graphite epoxy composite materials.

13. SBIR88
These data were used in a proposal for the SBIR 1988 solicitation.

14. 0.lufcap
A .luf capacitor was placed at the output of the lowpass filter on
amplifier. The resistor value used in the LPF was 10k.

15. 2.7ufcap
The lowpass filter at the output was using a 2.7uf capacitor. The
resistor used was 10k

16. 0.Olufcap
The lowpass filter at the output was using a .Oluf capacitor. The
resistor used was 10k

17. transmitted

The anisotropy test was done in transmission (the sensor and excitation
were on opposite sides of the material).

18. reflected
The anisotropy measurement was reflected (the sensor and excitation
were on the same side of the material).

19. te5 The sensor arrangement was "tee." For a tee arrangement, the sensor
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3 and excitation are pancake coils, and the sensor is placed tangentially
to the material. The excitation is placed tangentially to the sensor
(in a plane parallel to the sample).

£ 20. impact

Damage is visible in the measurement that was the result of impact.

21. cracks
This primarily applies to solar cells. A crack in the material shows
up in the measurements.

22. incase
This feature primarily applies to solar cells. The measurements were
made while the samples were still in their cases.

23. blast
The data was taken, but the real reason for the measurement was to
expose the sample to a "blast" of excitation.

24. striping
Discontinuities in the Y direction in the plots caused by multiple
sensors covering adjacent areas of the sample.

25. lemon
An anisotropy test feature. The reflected or transmitted field has an
"oval" appearance (stretched in one direction).

26. fourfold
An anisotropy test feature. The reflected or transmitted field has
four or more "lobes".

27. balazs
The data collected is bad for some reason. For example, a sensor may
have come loose during the test and only half of the data are valid.

28. metal
data were collected from transmitted field through a metal sheet som that calibration data could be collected to determine gain and phase
shift of the amplifiersI

4. DATA-HANDLING SOFTWARE

The phase angle and gain depends on many things, including the particular sensors
and excitations used. The numerical accuracy of the data, and hence the success of the
inversion algorithms, hinges on the proper characterization of these sensors and
hardware. An improved method of storing data was developed during this project that
involved using a different coding of data and a different data compression algorithm.

As mentioned above, proper handling an appropriate usage of the data can be as
complicated a task as actually acquiring the data. One difficult problem is documenting
the experiments well enough that the phase shifts, gain, and physical parameters can be
accessed when required by the conversion program. In addition to having the informa-
tion available, proper usage of the data demands that the user have knowledge of how the

m data conversion tools operate. Another difficulty is locating the data required after it has
been stored away in its archive.
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Documentation consisted of more than notes about sensor size, distances, and physi-
cal locations of samples and sensors; we also performed experiments to characterize the
hardware. Results from the experiments were used data-handling software. Descriptions
of sensors, samples, excitations, and data features were updated for the laboratory data-
base, and a menu-driven program was developed to locate particular data based on
features or other keywords. Documentation was improved for the software tools required
for extracting and managing data to help the user understand the operation of the rela-
tively complicated data conversion utilities.

4 a. Keeping Track of the Data

Our method insured a standard way of storing the data, and reduced the amount of
disk space required, making it easy to recover raw data for a numerical experiment. By
placing vital information in the database, one later has the abildy to search for specific
samples or other keywords and immediately locate the data. The ability to select certain
features of the data helped us to gain insight about the data collection process. We can,
for example, locate all tests that demonstrate the "tow" feature, and then see what sen-
sors and excitations were used to gather those data. A listing produced by the database
program is included in this report. Sample entries from the laboratory data have
appeared in previous quarterly reports, and do not appear here. The complete summary
of all data appears in a collection of outputs from profile, that we appropriately call the
Tons-o-Data data book. One such entry was made for every test made for this project
and others. Also included in this report is a description of the operation of the database-
searching utilities. Standard UNIX and public software utilities were used to locate and
rmanipulate the data: awk, sed, tar, grep, ar, zoo, compress, and troff. The followingII
listing is an introductory notice that gives the user an idea of how the database operates.

INSTRUCTIONS FOR "DATA" USAGE

You have accessed a simple (really) database that will give you
information about data acquired in the lab. Some on-line definition
files can be viewed from the main menu. These definition files explain
characteristics of sensors, samples, excitations, and features from the
entire collection of lab data. A few simple database operators allow
you to pick out particular sets of data based on your selection of
features or other stored information. A report will be generated that
can be sent to the printer, a computer file, or the terminal screen.
In order to effectively use the database, you should understand how the
information is stored...

1) Raw information about lab measurements is edited into a form-like file
that is human readable. That file is called "db".

2) The raw file is condensed into a more compact file that is not very
readable. Information is stored one-data-set-per-line. Separate
bits of information within the line are separated with the "@" sign.
The compact file is called "db.condeAsed".

To retrieve information, the compact file is "grep"ed for patterns that
match the keywords specified by the database user. The keywords can be a
list of words, and can involve logical operators: OR, AND, and NOT. For
example, one can search for all data listing features "flaws" but NOT
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"balaza." Note that since the file is grepped on a line-by-line basis,
there is no way of telling what field the pattern matches. The pattern "I
will match "1" in the SAMPLE field (see fields below), but will also match
"1988" in the DATE field. If you wish to match fields precisely, you can
surround the pattern with 0"; thus the pattern "9l" matches the "I" in
the SAMPLE field (unfortunately "01" matches "1" in other fields such as
*AVERAGES" -- see below).

The fields appearing in the db file are listed below:

2) (empty) Empty; nothing in this field
2) PAGE Page number in the Tons-o-Data manual
3) SAMPLE The official sample name
4) DIRECTORY The pathname to the data on the Alliant
5) DATE Date recorded by data acquisition program
6) SENSOR The official sensor name
7) EXCITATION The official excitation name
8) ORIENTATION Orientation of sample, if applicable
9) TOPORBOTTOM Top -- > sensor scanned over top of sample
10) RANGE Two numbers representing lower and upper frequency
11) TEST Name of the test performed (e.g. "flaw")
12) QUALITY One word describing data quality igood, fair, poor)
13) DIMENSIONS Size of scan in inches -- X and Y
14) RESOLUTION Step size in inches -- X and Y
15) AVERAGE Number of points averages together per measurement
16) VERSION Laboratory hardware ID number
17) FEATURES Features demonstrated by the data

For more information, refer to documentation for the data-taking program
and documentation for the conversion program.

4 b. Data Conversion

To correct in software for phase and gain errs, a program was run in the lab to
record the outputs of the A/D converters (all channels) under simplified conditions.
These data were used determine the phase-shift and gain effects present in the circuitry.
A program called adcounts .c reads the A/D converters on the lab computer at a
number of frequencies to provide required phase and gain information. A second pro-
gram is a c-shell program on the Alliant UNIX computer that takes adcount s output
and formats a "parameter" file to be used by the parameter-calculating program. A third
program, calcparms. f, uses the MINPACK equations and the parameter file,
params .dat to determine amounts of scaling and rotation. The output of the
calcparms program is called calcparms.dat. A fourth program, makesystem
takes the calcparms.dat file and produces mixer.parms. Finally,
mixer. parms is used by convert when the phase and gain calculations are made.
This process is further described above, in the DATA COLLECTION section.

convert was used to translate raw laboratory data, stored in a compact coded for-
mat, into user-ready EMF data, processed as needed to compensate for the phase and
gain errors described above. A great deal of input is required by convert before the
EMF values can be extracted. The values of Nx and Ny, along with the number of sen-
sors used and the ordering of the data files, are always required when attempting to
reorder the data. convert must also know the storage format of the data: several dif-
ferent storage formats were used throughout this project (see Image Compression and
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Archival). Also, the laboratory setup and parameters are needed to use the data in the
model (e.g. the list of frequencies and excitation voltages used). If the user attempts to
compensate phase and gain or normalize to the exciting coil current, then the values of£ amplifier gains and exciting coil voltages are required. Other information is useful for
keeping track of how the data is collected: date of the measurement, version of data-
taking program used, number of measurements averaged to get one data value, sensor
used, excitation coil used, the sample material measured, and the physical dimensions (in
inches, for example) of the area covered by the test.

In early versions of the data-taker program, the data files were named with digits
indicating the sensor number and Y value of the pass. This storage is very different than
the storage method of later versions. Whenever a such a revision is made to the lab3 software, the required method of conversion changes. If a new there is a new hardware
setup, the sensor order is possibly reversed, and in some cases, sensors can be hooked up
with reverse polarity. Thus for every hardware or software revision, a new hardware ID
number was created that was used as an input to convert. The program can decide
from the unique ID how to reorder the data and invert certain channels if required. All of
the above parameters are read by convert in the form of a header, which is always
created by the data-taker program. The following list is a summary of the information
found in header:

Hardware ID Number
Date of Experiment
Description (Sample, Sensor, Excitation)
Beginning X Value in InchesEnding X
Number of Data Values in X

Beginning Y Value in Inches
Ending Y
Number of Data Values in Y
Number of Frequencies Used

Number of Sensors Used
Number of Data Points Averaged
List of Frequencies in KHz
List of Exciting Coil Voltages
List of Gain Settings (0-H; 1-L)3 Data-taker Version ID

Included in the list of inputs to convert is the revision level of the data-taking
Sprogram. The revision of the data-taker is important because a number of factors within

the data-taker can affect the accuracy of the measurements. If a measurement is repeated
for verification, it is important to use the original revision of the program. Also, when

Sthe laboratory numbers are compared to model calculations, the accuracy of the measure-
ments is an important consideration. Under some conditions, the data-taker might give
erroneous results, and the revision level helps debug problems with the data.

A number of hardware system parameters must be determined before the phase and
amplitude of the signal can be calculated (see DATA COLLECTION). These parameters
are assumed to be stored in a file called mixer .parms in the lab data home directory.
When convert runs, it searches for the file and allows phase and gain calculations if
the file is present. If the file is not present, then the program will warn the user that no

I phase/gain calculation can be attempted. Sometimes, convert can not perform the
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requested calculation of EMF values. In this case, the files are still created but are not
normalized: the result is "raw" values from the A/D converter. Thus, the user must pay
attention to any warnings given by the program.

The contents of mixer.parms are calculated by calcparms: mixer phase
shift, exciting coil current, exciting coil magnitude, amplifier phase shift (H and L gains),
individual channel DC offsets (H and L gains), and individual channel gains (H and L
gains). The values of the parameters change with different exciting coils, sensors,
cables, and mixer circuits; thus, a new mixer.parms file is required each time a new
experiment is set up (whenever the actual phase and magnitude is required). Since it is
not always feasible to produce a new parameter file every time an experiment is run, we
often "live with" the phase and gain errors that result. Any time that the "standard"
parameter file is not accurate enough, additional data can be taken to improve the
experiment's accuracy. It is impossible for convert to estimate the accuracy of the
conversion, except when the frequency is known to be out of range.

Documentation for convert exists for the FORTRAN version of the program.
When the format of data storage was changed (data-taker Revision 1.17), convert was
re-written in C language to assure better portability to other computers, such as MS-DOS
machines. The operation of the C version of convert closely follows the documentation
in two internal documents: A Guide to Using Convert, and Convert Usage Instructions,
both written by Jeff Treece. Some amount of usage instruction is given when invoking
convert -h.

4 c. Image Compression and Archival

Counts measured from the A/D converters were originally stored in jeffcode. A
slightly more compact storage would result from storing a pair of readings in three bytes,
but it would be impossible to edit or view the file with standard text tools. The disk-
space savings would be 25 percent, ignoring the newline character at the end of every
line in the coded file. The standard file format for all hardware Revision Numbers 4.1
and 4.4, prior to software Revision 1.17, has two lines of jeffcode numbers for each X
value in the file: one line contains the in-phase measurements and the other line contains
the quadrature measurements. Each of the two lines has a coded measurement, occupy-
ing two characters, for each frequency recorded. Each line is terminated with the UNIX
newline character (10 decimal). Jeffcode must be first decoded since it is not a native
machine data type. Coding and decoding jeffode can be done using bit operations to
speed up the process, but the process always takes some amount of computation. A
decoded number is always in the range of 0-4095 decimal, inclusive, and represents the
number of counts measured by the A/D converter. The analog input range of the A/D
converter is -10V to 10V; thus the counts are converted into a voltage by the equation
V = -10 + C x 20/4096, where C is the number of counts measured by the A/D

i Jeffcode is described in previous quarterly reports. It was created for convenience, not for
efficiency. Every byte of the coded file is a readable ASCII character, making it possible to edit
and view the file.
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converter.
Data for each measurement are stored in a compressed archive. Three archive pro-

grams have been used: UNIX's ar, UNIX's tar, and the public domain program
zoo. Zoo has its own internal data compression; when the other two are used, the
resulting archive file compressed with UNIX's compress utility. Data from the lab
stored in jeffcode does not typically have a good compression rate (not much disk space
is saved) because The like-features of the data are dissociated: the spatial stucture of the
image is not maintained. One way to improve the compression is to store the gradient
(along columns) of the file. This simple operation improves compression by saving only
variations and not the absolute numbers.

Another way to improve compression is to store the data in a reordered space. The
normal ordering (adjacent X values stored in successive memory locations) makes the
most sense; if stored this way, regions of small variations compress well. There are other
advantages to storing data in the sensible ordering; for example, the data can be read
directly into arrays using low-level read statements, resulting in much more efficient I/O
in processing programs. Compression can often be improved by separating least-
significant bits and most-significant bits into separate files. The most significant bits
have little variation, and compress very well. This discussion applies only to general-
purpose data compression utilities, such compress. There may exist other compres-
sion utilities that take advantage of the geometry of the data file that would perform ade-
quately without reordering the data. Prior to Revision 1.17 of the data-taker, storage was
injeffcode; after that time, the data were written with the four most-significant bits in one
file and the eight least-significant bits in another file. The naming convention for the data
files became:

A number of experiments were performed using the techniques discussed above.
Timing results are not very accurate because they were performed on a UNIX machine
while it was tending to other tasks. The timing can be used to get a rough idea of the
computer resources required to store and extract the data. Experiments using several dif-3 ferent methods yielded the following results:

I
I
3
I
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Lab Data Files: Output of Convert:
namelO.Oh nameO0.00

Base Name Base Name I 
Frequency I Frequency1

Phase Phase

Bit Significance

Figure V4. File naming convention for the data files and convert out-
put files. The "Base Name" is up to five characters, and is determined
when the data is taken. "Frequency" is an integer, starting with 0, that indi-
cates the frequency index (0 is the first frequency, 1 is the second, and so
on). "Phase" is either 0 or I in the lab data files and 00 or 90 in the con-
vert output files, and represents whether the data are in-phase or quadra-
ture. "Bit Significance" is either h or 1, and indicates whether the file con-
tains most-significant bits or least-significant bits. Lab data files are stored
in character format (one byte per datum), and convert output files are
stored in single-precision floating point binary format

Storage Method JC DF Size Time *

1. Raw Jeffcode y n 424 35.1
2. Differenced Jeffcode y y 252 30.3
3. Reordered Jeffcode y n 220 25.9
4. Differenced Reordered Jeffcode y y 200 24.3
5. Reordered 2-byte Integer n n 276 27.4
6. Differenced Reordered 2-byte Integer n y 208 27.8
7. Reordered 2-byte Integer Separate Files n n 216 25.5
8. Differenced Reordered 2-byte Integer n y 176 28.3

Separate Files
9. 1.5-byte Character No Compression n n 384 2.6
10. 2-byte Character No Compression n n 500
11. 1.5-byte Character Differenced Reordered n y 168 33.3
12. 1.5-byte Character n n 204 32.3
13. 2-byte Character Differenced in X-Y Reor- n y 140 26.1

dered Separate Files

* Very approximate

Table V-I. Experimental timings and disk usage values for various storage
methods.
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The column labeled "JC" indicates whether or not the method uses jeffcode; if so,
some computation is required to extract the data. Likewise, the column "DF" indicates
whether or not the data is differenced. Again, a "y" in this column indicates that addi-
tional computation is required to extract the original data. The size is given in k-bytes
used by the archive file. The time column tells how much time was required for extrac-
tion, in seconds. The time column is very approximate since the time depends on system
load and other factors. "Jeffcode" is the data format produced by the laboratory pro-
gram. "Reordered" means that the data has been re-written into a "normal" ordering
(see above), whose rows and columns correspond to X- and Y-indices of the data. "2-
byte" and "1.5-byte" indicate how many bytes are used to store one datum. "Integer"
indicates that the counts of the A/D converter are re-formatted into the machine represen-
tation for an integer. "Character" indicates that the data are stored as-is from the A/D
converter, bit-for-bit. "Separate Files" indicates that the most-significant and least-
significant bits are stored in two different files. In terms of disk storage space required,
method 13 is the best. In terms of extraction time, methods 9 and 10 are the best. Other
methods, such as 2-byte character, might be more convenient for accessing and using the
data. The new version of software uses method 7.

5. SAMPLE LABORATORY DATA

It is beyond the scope of this report to present all 500 plus pages of the Tons-o-Data
booklet. We have presented some of these data in previous quarterly reports, and a rela-
tively complete discussion of the data is presented in the final report for the NSWC pro-
ject, mentioned previously in this chapter. For the purpose of this report, a few key sets
of data are presented (the data presented here bears special significance because it is con-
sidered in model calculations in Chapter 111). The images are presented here as they
appear in the Tons-o-Data booklet. The data used by the model are these data, rotated
and scaled as discussed above.

S a. Data Database Listing

A fairly complete summary of the stored data is presented here. The database list-
ing starting on the following page was produced by the database programs, and
represents one of the forms of output that a user can request when searching for particular
data. Page numbers in the listing refer to the page numbers from the Tons-o-Data book-
let, as in the Sample I and Sample 3 data presented in this chapter.
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Pars D&IONm 8mph eue ao Safrce Q no. Ran&e Tats
001 I9Sl/aglW=Vhsa A so1amad anmowopy makcOS small loop goo 0.10.1 50016000 sUCa-op

003 19S7/mgltihplbse1a no a nai oouy MaOM asal loop good 0.10.1 50016000 az~~p
2.70feap- -rp

005 l6/u1qmaanA sissquM uwrauAtd macOS mall loop good 0.1 0.1 SW016000 amacicmpy
2?ufcap 1mbm,

007 1987AWg9ompb-u B suascum opy aina maom uml loop good 0.1 0.1 50016000 amacimY
27ufcap Imom

009 1967MA%@0 3 flown ros SUS maotS whip good 0.1 0.1 1000 2500 flaws
2 7safcp imqsac

011 317MducIO ahaonirnun maloeod niacompy macOS litich loop fair 0.1 0.1 1000 25000 aimrpy
sbmin 2.7ufcap

013 196 7/doc11 16mminUMn reflected animotuy =aCos lancl loop good 0.1 0.1 100025000 sniacrpy
ahnmm 27ifcap

015 1917AMac14 ahnninmo seflaciad anaouoy amcO liesch loop good 0.1 0.1 501250 ImaooPY
ahmanmn 2.7ufcap

017 19117/Mc02hompile I flaws 2.7ufctp mcoem,- macOS whip good 0.1 0.1 100025000 flaws

0 9 l 7 M m c 2A a pl . e B A D fl a w s t o w s W n 2 .7 u f c p m a c O S8 w h i p t o 0 .1 0 .1 1 0 0 2 5 0 0 0 n w s

021 19S7Mc07M I flaws maoom macOS whip good 0.1 0.1 10002M00 flaws

023 l 1 7fju)10 I flaws 2.7ufcostriping macO bridge good 0.1 0.1 100900 bridge

M 05 lS7fpll 4mpi1.l11qmual I lawo 2.7ufapasrping mscOSl "Cg fair 0.1 0.1 1009000 bridge
M27 19I7fi ll4/psnl2.5Smils pan2 laws 2.7ufctp auipng mcO brdge fair 0.1 0.1 1009000 bridge
029 I

9
Sbjslls 2 flows 2.7ofetp striping macS bridg fai 0.1 0.1 1009000 bridge

031 1987&,416 2 flaws 2.7ufcap sniping mmacOS bridge fair 0.1 0.1 10025000 bridge
033 1987fp2 I flawn 2.7ufcap striping rmcOg bridge fair 0.1 0.1 100031000 bridge
035 1927rjpl24 I flaws 2.7ufcap striping macOll lage aue fair 0.1 0.1 1009000 flaws
037 I9S7pO 1 flaws 2.7ufcap striping mmcO bride fair 0.1 0.1 1009000 bridge
039 9liM&WIObupl2 2 flaws 2l7 uicap striping m&MO bridge poor 0.1 0.1 100 9000 bridge
041 I9Sfjvsl09hasi4smpI 1 flaws 2.7ufcap stapi macOS brdgte fair 0.1 0.1 1009000 bridge
043 19I7fvn12/aniitSJoqpz S amacir 2.7ufcap macO8 mall loop goo 0.1 0.1 1009000 siauopy

045 I9S7jnl /plsoorpidc, S raflted Wainoioy macOS wm loop goo 01 0.1 1009000 amaiazOpyI 2.7up
047 19  5/1s/mpl2..aiso-topaide 2 releted aasaouoy macOg mall loop poor 0.1 0.1 100 9000 anatiwopy2.7ufeap Adniig al

G" 1917/ismSfloOP only ardactrop 2.7.sfeap 111000 ml loop goo 0.1 0.1 1009000 arxsaropy
051 19S7/onW2Amplc3 3 lawn V.ulkop siping macOS lapg sleove goo 0.10.1 100 9000 laws
053 1957 m asa4 p&4 flaws 2.7sfesp asipin~g insacOl lapg sleve Bo 0.10.1 1009000 flaws
05 1IS ~fji oopid. aimiampyM 27ufcap mucm emu loop goo 0.10.1 1009000 ainacipy

reflected
057 lSIjMfp26/mnplSam S bnitapy tsanatd macOS sml loop good 0.1 0.1 100 9000 smaropy

2.7isfcap
059 1967ifu2WmnplS~se S siacoy 2-7ofcap macO smrall loop good 0.1 0.1 1009000 saispy
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061 19117C4m0ihasopki 4 MMesg 2.7ufcap Mee"S so.ll loop goo 0.1 0.1 1009000 anmropy
UMAmined faurfold

063 l9V7
fpWmin3 )2 pmol2 -W"e 2-7ufeap Mae"S small loop goo 0.1 0.1 100 9000 ai.rn y

trimmined faurfold

065 19674mm3OAmIs I flaws 2.7ufeap stping macco junk sleeve poo 0.1 0.1 1009000 flaws

067 19S73mQVs2 I Bow 17ufcep striping mar06 junk sleeve poor 0.1 0.1 1009000 flaws

069 1967Oym amfsouopy~ 2.7ufeap mews mAll loop good 0.1 0.1 1009000 amamsroy
071 1937bAmy9 I flaws 2.7ufcap sun$n mar06 lauge Sleeve good 0.1 0.1 1005000 flaws

073 1967bAvy2W~mp2a 2 flows 2.lufcap stojang marOS large sleeve poor 0.1 0.1 1005000 flaws
@75 19 7 sy2bp2b 2 Boaws 2.7 ufcap striping ma0 larg sgeev poor 0.1 0.1 1005000 flawsI077 19S7Azisy2l~mp2a 2 Boawe V.ufesp srping mar08 laresleev poor 0.1 0.1 1005000D flaws

079 I9$7hsy2I/mnp2b 2 flaws 2.7ufcap stsiping macol lusgt sleev poor 0.1 0.1 1005000 flaws5061 lS71may25/may2Sjso 2 aiorpy 2.7ufcap WMa0 lawg loop good 0.1 0.1 1005000 ansaopy
ufled

63 l97Anmy26ftnpl1kl psi anmaop" 2.7ufcap eanO large loop goo 0.1 0.1 1005000 amacimPY
reflected fourfold

0651 lS 7 ~Ay26knplP12 p12 msisesop 2.7ufap mar01 ling loop good 0.1 0.1 1D000 amaouop

067 19S7Anay27/mnple4r 4 aniasop 2.7ufeap mar08 imall loop good 0.1 0.1 100 5m0 aniaouoy
refleeted fasurfold

069 1"Us7 my2Mnileh 4 ai Uso n raniued msom small loop good 0.1 0.1 100 5000 amacuOPY
2.7ufcap fourfold

091 l9$7
/mvy27ffimn12z panl2 ussj transmited moo0s small loop good 0.1 0.1 100 5000 aliso-py

2.7tfeap fourfold

09 "/y7mq4&ju miot 2 7uf- nm awn loop good 0.10:.1 1050 - WI veined fourfold
0 95 Ima~y2411 pal mactbepy 2.7ufcap mar08l aal loop good 0.1 0.1 1005000 nIOSUOPY

trmmiead fourfold
099 19 S7Amay28Vnpl2aniao 2 akMmp 2.7ofrap Mee" all loop goo 0.1 0.1 100 9000 amaispy

10,~ 1917/novil AD Boaws tows 2.7nsfeap MOcOS whip fair 0.1 0.1 100025000 flaws

103 19SAjdeeoMasma I flaws 2.7ufesp Strping mae05 umosut fair 0.1 0.1 100025000 flaws
105 1987hao02/a..whipj 12-5 A tows 2.7ufeap "M&n ma-W whip good 0.1 0.1 1000D25000 Boaws
107 I9S7/dseMAazp I flaws 2.7sseap stiping mwN0 harp good 0.1 0.1 1000 2500 flaws
109 1987Mo0AW"wipU225 A tows 2.7aftep &*ipng macO whip goo 0.1 0.1 1000 2500 flaws
111 l9SmtamO Soai saluaseli maonsmor HII ~ whip fair 0.050.05 1000 25000 as*k

flows 2.7dfop staiping

11_97o0~..hp.45 A tows 2.7ufeep uping mar06 whip good 0.1 0.1 1000 2500 flaws
115 1987/ne20 AD flasows mfan 2.7ufcap macS Wwip good 0.1 0.1 1000 2500 flaws

117 lff7hAsov3AalA A flaws sutaedon mar0 whip fair 0.1 0.1 1000 25000 flaws

2.7ufeap seripng

V-28



Isp Dkaslary ScApl Fuling. lae ret Q Res. Ramp Tat
lt19 l"7hsev03mp1B 3 aws hAtscjon macO Whip fair 0.1 0.1 1000 2500 flaw$

2.7tfcap sgoins
121 1"UmmsO All laws~a tos7ufeap macO whip fair 0.1 0.1 1000 25000 flaw$

323 1917/hai06 amutim. 27ufcap foil macO WwiP good 0.1 0.1 1000D2500 inion
125 19g7/~lacl3 2 fiaws 2.7safeap atipng maosef who goo 0.1 0.1 32000 320D flaws
127 19117IeglS I Baws 2.ufkap amiping macOl Whop good 0.310.1 3000 25000 flaws
120 1I6711~a m sw1gg I flaws 2±7ufcap sing macOll window fair 0.10.1 I0002500 flaws
131 l967/ai23 3 flaws tows 2,7ufcap macOl sdeam fair 0.1 0.1 1000 2500 flaws

133 1967/o29 B flaws tows 2.7ufcap mnsoll whip fair 0.1 0.1 1000 2500 flaw&

135 lIUm7AO3dlssal I flaws 2.7ufcap staling mascOll window fair 0.1 0.1 1000 25000 flaws
137 19117aOd13bjzty0 3 flaws tows 2.7ufcap macOS Whip good 0.1 0.1 100025000 flaws

stlig i-P
139 1911fja1n 1flaws 2.7ufdmp amnn HWI uingl good 0.1 0.1 100025000 flaws

141 1937/octjO A tows 27ufcap axipig macOS Whip good 0.1 0.1 1000 25000 flaws
143 I9S7MsSIMlG2 B amaeop 27 ufcap nacws stawn loop good 0.1 0.1 500 .O00o anisompy

seflected lanus

145 1917A;p15/Ma-1 B smiamop 27ufcap mscOll small loop good 0.1 0.1 50016000 ania-Woy
saflectim emn

147 19S7ss23/sbj,7r1 B flaws tows 2.7ufcap ma0cOR lawgeslev fair 0.1 0.1 500 16000 laws
smlgr impact

149 l9S7Asop23akboy20O B flaws tows 2.7ufcap macOt laremv good 0.1 0.1 500 16000 laews
WiPing npac

151 1917/sp~b/sbnyllj B flaws tows 2.7ufcap eusf lar sdamv fair 0.1 0.1 500 160 GD flaws
owig imnpact

153 l9I7hqQsI-baz 7 90 B flaws tows 2.7ufcap macOs laW sleeve fair 0.1 0.1 500 16000 flaws
01310 impact

155 l9117hq2Ma-tyl-0 A tows 2.7micap tipig nuacM Jageeve fair 0.1 0.1 500 16000 flaws

157 l987hqS00nsdam I flaws 2.7ufcap MacO" whip goo 0.1 0.1 10002500 flaws
19 19117IM93Wdermter 1 flaws SSBIS 2.7ufcap nmfO window fair 0.1 0.1 1000 2500 laws

-4if

161I 19t7Apr23/mzp3.n 3 flaws 2.7ufcap atipig umaO Invg sleeve poor 0.1 0.1 1005000 ]laws
163 19I7Ap25Mzp32 2 flaws 2.7. cap asping macOR Lle sle poo 0.10.2 3005000 laws

167 191W/a13 2 flaws 2.7ufcap stinsg MUMO small sleeve poor 0.1 0.1 1005000 flaws

169 1917/apI6 3 flaws7ifeaptpins mscOll anam fair 0.10.1 1005000 flaws
171 191?Apr23MrzlZ9O 2 flaws 2.7uap siping mcOR al sleeve poor 0.1 0.1 1005000 lsaws
173 19117har~olem03.90 3 flaws 2.7ufeap secoing nmcO ml sleeve fair 0.1 0.1 1005M0 laws
175 19117/sapM I laws Sf1188 2lufcap umc ~ mawn sleeve good 0.1 0.1 100500 flaws
177 1917/apslll 2 flaws 17sfcap stcoing mmc111 smlleleve good 0.10.1 300500 flaws
179 19117/spOF/smil =nco flaws 2.7mieap stsipug mO mawn sleeve -oo 0.050-05 1005000 law

11 11AslIO iI2 flaws 2.7uftep swiping macO smal sleeve goo 0.1 0.1 1005000 laews
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153 I9SAssar I Roaws 27ufcap smping =acog smal sleeve good 0.10.1 100 500 flaws
13 1917/nku2 I flaws7detsp wpg macOg sUsall sleeve goo 0.10.1 1005000 flaws

157 l917fmVar2mnpl2 2 flaws 2.7ofesp suiping MACOS small sleeve poor 0.10.1 100 5000 flaws
159 lSS17hM anpldiag I flaws 2.7ufcap sing ma1COO saln sleeve good 0.1 0.1 100 5000 flaws
191 1997ht271bmmp1back I flaws 2.7ufcap smdig macOff mUa sleeve glood 0.1 0.1 1005000 flaws

I9" 1917Mnayll I flaws 2.7ucp stipg mascoR latge sleeve fais 0.1 0.1 100OO fas
balaun

15 9taO7bar flaws 2-7nfcap sttiping macOg big sleeve poor 0.1 0.1 1005000 flaws
ises balaza

197 lV14jsm12 Cow)r VUt nmoms or HWI ring] fair 0.020-02 10025000 pcboaid
2.7ssfcap asustd

1 99ASjjnl3holarceIll aclari solagoell maooniscr HW2 ring2 fair 0.01 0.01 100 30000 crack
cmics atatred Ziufcap
flaws

201 15 janlSA~tsad peboardi a mormor 11W2 rin&2 good 0.02 0.02 20025000 peboard
2.7defap satuad

203 l9I8fjanI3fiarcell.2 solari macks flaws omosersor HW2 rng2 fair 0.02 0.02 100050000 cuack
solarcell satrusd
2.7sp

205 l9S3/jn4Al~arsce112 solar2 mwoasaor aolarcell 11W2 rmg2 fair 0.02 0.02 100050000O crack
saturated 2.7ufcap

2D7 I9118janl4halasoef aalar3 flaws cracks mosmor HW2 n2 good 0.02 0.02 2000000DO mac
solall 2.7ufcap

209 1989gro14fidareM22 ao0ar2 moncoscsor ellC HW2 Ting2 fai 0.02 0.02 1000 50OO crack.
2.7sfcap

211 1988tanI4fiolarceWJ maba4 flaws monmosor sla- 11W2 xng2 fair 0.02 0.02 1000000 mrack
call 2.7iscap cracka

213 l9SVtanl4iaunplel I flaws maosasor HW2 rmng2 good 0.1 0.1 50050000 flaws
weaves 2-7ssfcap

215 l9Sftjaa1S/pboasd2 Cappi UAu inoammm HW2 ning2 good 0.01 0.01 50050000 trace
2.7ufcap

217 19SSfjsnn I Roaws 0.1ufapmmsoaai- IIWI 11W2 goo 0.1 0.1 50050000 flaws

219 I9Wja2g eapr2 mr amagem HW2 ring2 good 0.01980.02 50050000O peboard
Q 1ufcap

221 l91&tjanl94ecboard NMIpr Ia monamavor 11W2 ring2 good 0.1 0.1 50050000 pcbom-d
O.Iuicap

223 lII~tan2Iisoppl trms umoewor HW7 m&X6 fair 0.1 0.1 500 50000 pcboayd
0.IufCap

225 1989fann soa4 msssscolalal HW5 HW6 poor 0.1 0.1 20000 50000 crack
a lufCap

227 19118ebIO 1 flaws mosossemor HWI a rmg&3 fair 0.10.1 50050000 flaws
0.lufcap

229 19884feb6 1 flaws mofasmaor macOl macOl good 0.1 0.1 1006000 flaws
0.lsfcap

231 I"fffebll I laws mofoamnaor 11W3 ring good 0.1 0.1 50050000D flaws
a Iafcap wave.

223 19Sifjmn30 2 flaws0.ucapmorosen- HW3 ng2 good 0.1 0.1 50050000 flaws
sor

235 1988rin20 I Boaws 0.lufcapmmein- MY/S HW6 good 0.1 0.1 500500D0 laew
oft wsay.

227 I9118Ajoe9fimple1 I flaws monaamasor HW2 u&42 goo 0.1 0.1 100050000 flaw
O.lssfcap weaves

229 l9S1ffabl3 salad masosussor soacell HW3 uing flo 0.1 0.1 1000 50000 mack
0. 1 sfcop
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241 l9S$fb14Malamu16 aehiE molazvll monamoaa NW3 :gn4 good 0.1 0.1 1000D50D00 crack

sarn 0.lufkap cracks
243 19SS11abl4holareaU7 aolar7 aoluall manommor HW) rig4 good 0.1 0.1 100050000 crack

24S 1933ffab1(oamfl aelarS ocu solaalf nuaar NW: rigs good 0.10.11 10005000 crack

247 SVel7~Aplb Bar mlouosertor HW3 :gn4 fair 0.10.1 100050000 flaw
Odaafcap kqwpct lowaI261 19SMob17~pl B lawa moneemiso HW3 rin4 por 0.10.1 1000 50000 flow

251 I9PfisaIEA~rm h 2o, flawsg moomaamm NW3 rm8l goor 0.10.1 100050000 craokI flaws 0.lufcap cracks
255 1labEaceJJ6 SOlA26 soana monosersor NW) Mig4 good 0.1 0.1 50050000 crack

flaws 0.lufcap cracks

257 l91111fabl5ccpper3 g -e3 u~moneuoSNC HW3 rmgB4 good 0.1 0.1 10040000 pcboardI 0.lufcap
259 l9IgN~b22/Spb22 B flaws mmonor tows NW) ring4 good 0.1 0.1 100050000O flaw

(Uuicap impact3261 19ftfeb25 flawsamonoauaasor NW) rings good 0.10.1 50050000 flaw
0.IafcAp austed

26) 198$fjanV7 poaMsr Vitcmaowo NWI whip fair 0.00959 0.01 100)30000 tmcc
OLlUfeA p

265 i1g9118molhl.,,n I Bar* maoom NW) ringS good 0.20.2 50020000 flaw

r6 1111o filw Iflw oncu NW) rngS good 0.20.2 500 20000 flaw

£ 27) l9I~~~~~nar27Meb B ~ O.famo p ucp N) ral0101 10500 fa

275 198SAar2) I Sarsamanaasmao HW3 ringl good 0.1 0.1 10005000 flaw
0.Iufcap Iee weaves

277 Ml9Sraw 2oa aiwolawel cac NW) zingI far 0.020.02 500050000 clawk
inoarO.lufc a tee

275 l9tjaeO Iel flow moemaor NW) ngl good 0.050.05 50050000 flce

31 1933/aprlS AB~~~~~~aluca we weoaves~ucpmcR hpgo .7 .05 5000 sreI23)7 1018Apr18 aelaI aclsrcsfl cracks Ha3 wfis fair 0.050.05 500 25000 crack
innomoO.lufcapte
flawa uanwted3V29 191141aprl9 aolari bair umcsum HWar3l acSl wgopodi 0.05 0.05 500250000 track
.Umfainao 0afca

23 101144908 aolaI 9 c racksme s olar. NW)p faipor 0.05 0.05 100050000 crack
ano naamorlufcap
flaws aum

29 199S1/pr9 SAZlI 9l cracks s r ow NW)l whip fair 0.050ft05 500050000 crack
msa. macaullufop32971 9I3aperbe9011a 9 toras td 1m ma c~a- W wip& far 0.050.05 5005000 flawk

fa-
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233 I1Ipr2hul2 hl W"a minoasan 02001 whip fair 0.1 0.1 50050000 flaw535 l9UAprzha2 ae2 W"aomoa m mac"l Whip fair 0.10.1 0050000 flaw
A Iuofeap, usaad

30 im~rSue uS~pect Iwa saturated macOl whip fair 0.10.1 50050000 Rlaw£330"9Np2h. Z161 Wrm as macOl Whip fair 0.10.1 50050000 fRaw

201 19IEap25hats s -0w mimabnaa macof whip good 0.10.1 S5000 flaw
0a1wfcap,

303 l9Uhp SAoAz fadsxmaneeso prb2 me]~ good 0.050.05 50050000 cuac

30 M#Oths oit aM waistrpy oaisr jbrs lo1 fi 0.2 0.2 500 50000 anacsropyI 0~~~O1ufCAP bnia

207 19Smia)ozraeS =65 ~ amserupy moncesor p2nt loop2l fair 0.2 0.2 50050000 anisotrpy
0.lufCapibnsunssad
lemon (OW(OISI:0 " mywd 011 crack 7aaeo zrbn: ,2' goo 0.500 50050000 crk
OL lufoapaolascell flaws

313 19R~may09Aarga AB 0.lufcap mmnsomaor foil macOl IOAfair 0.0750.7 50050000 U
inaWed lawa flaws

315 I9SIVayI0AampkAB AB 0.lufCaP snsoasor foil macOl loop4 fair 0.075 0.075 50050000 WaWe

317 1983/mayli/=a2 =2nbam 0 fc macOl boOP4 good 0.10.1 50050000O amaopy

moomarinw AOMr

reflociad anisotropy

321 191Amaylliszio. ADmo smuaou fcp mr1 op ai . .1 50000 aau

323 l~lzaldalml MaMOMzo0.lufcap macol loop4 foor 0.1 0.1 50050000 aiotopy~musmin aismpy

325 I9SUrnsyl l~msc S.O amsoaaaaO.Iufcap macOl loopil faod 0.1 0.1 50050000 anisotropy
laininuinad andearopy,

32 9SInay I as=3. ADC mauiaw0.1nfcap MaEOW loop4 fair 0.1 0.1 500 50000 fla op

Iuasmuna nsorp

333 I9SUhmay3Amlaes:c A manoagalao Isfeap, macol loop4 fair 0.1 0.1 50050000 ansotropy
saffnuud akarospy
aamemad lemon

329 l"mlnyldwmAa .3 AB ffmosm w.afcap usacol loopil foor 0.1 0.1 5005000 fluo

331 191MAnayl2,hmI4 4e MMsOaasacr lnfcap HW9o naop4p 0.1 0.1 500 50000 faiorpusu-Itd nsap
hnifo law slsuaU3 "4a,31ape ooosOIfOP MC1 loi ar 01. W5 dcrpUrnrie aiorp5auue lemon
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339 39NSny7le4S.1 mel ionoolafcap HW9 sin&7 poow 0.1 0.1 50050000 flaw

ssinsed toows

341 19SIAssayl7s.45.2 net mcsuiaar0.lucap HW9 zing7 fair 0.1 0.1 500 50000 flaw-v~ Bows tows
343 1951/maylAiaaI 8soled monosaur solarcoll HW9 zng7 good 0.1 0.1 50050000 blast

Olufcap blast

345 1N&%myl7Mas2 voaul? 7 aDMenm= or malle HW9 AStog good 0.1 0.1 500 50000 blast
&Iufcap bas

347 19IImy7Aa*3 @olar17 minmaoraSolaavsli HW9 sinS7 good 0.1 0.1 500 500D0 blast
Olufcap blast

349 1I3Jmay1Mdus41 6011129 minoina solascul HW9 n7 good 0.1 0.1 500 50000 crack
alufeap cracks flaws

351 I9SI/uayll/adarl-4 NOlanl mannaomo solarsl, HW9 zig?7 fair 0.1 0.1 50050000O crack
M ufcop cracks fhaws

353 I1Vmay261flg&mt I flaws inrmmuao 1W3 figs good 0.2 0.1 500 50000 Rlaw
OlIufeap wenves

355 I9BS/MnyZShmpocab AB astopym tromattiod macll loaws pood 0.1 0.1 500500D0 snisotropy

0. lufeap
357 1988/may26/noc.mu nel onautopy tssumittwd mcOl loop5 fair 0.1 0.1 50050000O anibior).

ummsacr 0 lufeap
fotudold aabwstad

359 1933Any260kaclflaw23l MCI inawotop traumted muc~l IOop5  
fair 0.1 0.1 500 50000 anismsxpy

mmncro olufeap
fondold flaws impact

361 l988jun01 I inmiM aar0.OLInicap HrWIO zsng7 good 0.1 0.1 50050000 flaw
Wsavo

363 l9SSfpnMmO pl 3 us asaIroufcap capi capi fair 0.1 0.1 50050000 flaw
sabstad flaws

365 I9IIfjmO3/taplr I uaomiaaOlIufcap capi Capt fair 0.1 0.1 50050000 flaw

367 1988jun3Acap2 I mmamaor o.1lcap cap2 cap2 fair 0.1 0.1 S00500D0 flaw

369 l9WpjmO3/cps 1 mmurOlufcap cap capS fair 0.1 0.1 50050000 flaw
Bows

371 I9SMmsOiVean I monagmaroluibsp 280 335 fair 0.10.1 500000 flawI sannasad laws
373 19S53fjmsEcmp2s I amnamma luicap -ap2 -ap2 fair 0.1 0.1 500 500D0 flaw

flaws
375 19WM=O6Mcp6 I mMCM 0.Imfcap cap6 CSp6 fair 0.1 0.1 50050000 flaw

flaws
377 m9S~ir 7/mmnn0 I monwmamo0lufCap 290 whip fair 0.1 0.1 500 500D0 flaw

flaws

379 l9IfpaO7vasm335 I Monomaar0.lufcap 335 whip fair 0.1 0.1 500000 law
Boaws

38I I9Wpfi9m"dibtaiaanda I O.1dfca aws am aug macO hasp? fair 0.1 0.1 500 50000 law

383 l9Sryfp miai3 Ida I a Iofeap tiping flaws macOS hasp fair 0.1 0.1 "0050000 law
335 191Spmlolard aelaS mca~ solareall HW13 ting7 good 0.05 0.05 5005000 cack

ammmcr aL isfeap
bt lws

397 I9Ijmml4*Wmajiu I flaws Wanves stiping HW9 ting? fair 0.1 0.1 500500 flaW
0.lufcop atcm
belan

U39 1U9It4 tAE1 mel laws impact mwiping 11W9 n7 lair 0.1 0.1 500500D0 law
isabustio, O.Iufcep
bahzam

391 191 I4Agad*%2 mel lAs infact aripig HW9 uing7 fair 0.1 0.1 50050000 flaw
soatsion O.lufcap
bam
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UW 1kdr mphk reactorp $Now sicum no. Rang Ts3 5 11 ~~alIbdmr atopng 0.lfa HWI4 rinS7 fair 0.101 500 50000 flaw
Baws

397 I98Vjmm21Amn6 I fiews aurig . ufCap NNW"S kap fair 0.1 0.1 50050000 flow
399 196io2l~iirsjmad I flaws 0.lucop mooseri disk disk goo 0.1 0.1 s05000 flaw

401 Ilhltjmm2Vmasbcmcap6 MCI flaws OlIufrap maon cOP6 -aP6 fair 0.1 0.1 500500D0 flaw

am

405 1I Zbo= u 1161116 flaws0.Iucapmanooam. disk disk good 0.05 0.05 505000 flaw
ow solarcell

407 J9WpmnZ~wbau1..mp6 MCI faw sO.lufcap maonm- cap6 csp6 fair 0.1 0.1 500 50000 flaw

40919Sp2ho -dis MC laws 0.lufCapmonoaar dis disk fair 0.10.1 505000 flaw

43 1911Aim~Isas4dnda 14m flaws O.lufcap sapang HW14 fin&7 fair 0.1 0.1 50050000 flaw

417 l9S9/IA@m~IWoc I laws 0.01 fcpmancesn HW2 final faod 0.05 0.05 50050000 flaw
monweae auae

419 193/jullo cfltcr caps I flaws O.Iufcapmaoosur HW2 final good 0.05 0.05 50050000 flaw

421 1988Ay~AwIS*yhb-bw2 b flaws 0.1 ufcap tows HW2 fnagl fair 0.05 0.05 50050000 flaw5423 19W9U fnleyb...ew-jlaw, b flaws O.lufeap tows HW2 fial good 0.05005 500 50000 hoaw

425 I9Il9Ammpldr .few~flaw back b flaws 0.lufcap tows FW2 afial good 0.05 0.05 50050000 flawI427 19&Sj12wbipoaanym1eb b flaws OlIufeap tows HW2 whip fair 0.05 0.05 5M0500D0 flawI429 198WtMa1~hip ovot _back b flows Olufecap tows HW2 whip fair 0.05 0.05 500000 flaW

431 l9WjAMIAfhcrbsnu2 Caiba flaws 0.lufcap weaves HW2 HWNS fair 0.05 0.05 50050000 flaw

43 11tpmk~a,bAtm1 caba monoasom.Iufcap HW2 final fair 0.05 0.05 50050000O flawI435 19S1yA12Ik&*amm3 Ceiba mntoasmrlufeap HW2 whip2 poor 0.05 0.05 500000 flaw
4" ", balaso

437 I9WjputLa whip2 Caabs smaonsco bairn HW2 whip2 poor 0.050.05 50050000 flawI439 l98SptjuI22 caraop9 catba moncosaor bolaza CaP9 CaP9 poor 0.05 a05 50050000 flaw
441 19I&fpW~eba.we oath menammo bala= W3 zng22 fair 0.05 0.05 1000 50000 weave443 I182r hbft~o Caibb moinooam bairns HW3 ng2 fair 0.05 0.05 1000 50000 flaw445 1913 I25jcaibb wsa've cajbb weaves O.lufcap HW2 final fair 0.05 0.05 50050000 law

umnem balrn

4I 1 91110p:I2Slarhb fold oathb flaws0.lufcapmmar disk disk poor 0.05 0.05 505000flaw

409 198Vpi2Eumqaa4 aIM flaws 0.lmfopmo.,am MW ruma1 far 0.1 0.1 50050000 flaw
ow balma towsI451 196tOAMf l os..n ia flaws0.lufeapmomasion. HW2 fial fair 0.1 0.1 500000 flaw
seoam airnmw

453 )9IpioI2Sambs..wesves Ceiba Smommoae luoap HW2 final fair .050050 5005000 weave
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45 9Sul2haj.aa9 mommam ' .lvfcap HW3 n22 goad .025.025 1000 50000 crack

cmd~ flaws solaoll

459 19IW~ia22 r2 moda6a Bow m m ik disk fair .05.025 5m050000 ack
a lufeap aolamiiIL~ a flowa crocks

3463 19aoWpcaiMsts cracs Raw@a Olufeap HWIS rin&23 good 025.025 1000 5000 crack

465 lS"hjWa27mdy Wacla flaw .Imfcap moonsmor HW1S uin&23 good .025 025 1000 50D00 flaw

467 198SWA17ss zoo summorf lowa .1 ufcap HIi~S znng23 fair .099.099 1000 50000 flaw

469 1913(ul"Ieazt, cuba ummaao.IufCap HW119 n23 fair 0.1000.100 500 50000 weave

471 19WP.I29cazbe cua inmwo.acop HW19 ng&24 fair 0.1000.100 5005000 weave
wmvu bolm

473 1lMug0lmuAmdwAiled woav,&t CuA woove.icap HiW19 aug24 goad .050.050 500 50000 weave

475 1"IslugOlhou _Smatovcjq aola6 Ioa .lutcop n HW19 ting24 fadr .05.0250 50050000 flaw
477 131/"AuglhAlm:... Mcaui flaw. .lufcopmoamai- HW19 ring24 goad .05.025 50050000 flaw

asm solarcu

481 1981&/ugo6Aoc.fbrjam c0abb momamr.1ucapm m HW19 AngZ4 fair .05. 1000M50000 nlow

451 1998/aUg09A~cmfibaamn cfb I maam a~lut a HW19 uin&24 fair .050.050 500 5000 Raow

469 19&W~aM10gcbam b flows tows uar HW19 whip4 fair .050.050 50050000 flaw
487 1988sul 0121-tap b flows low. amume MvI whip goad .050.050 50050000 flaw39 I98vlaaaiSmcbaardis b flo tw s in eia HWII zins a) .050.010 500 50000 flaw

497 191M1apr bacmtir b Bosaow u mmar0.Iuc mal wipt god .00.00 5050000 fo

3499 19S8mpr77kAw3 small aeunciomOlufeap .hbl aug21 0.1000.100 5W050000
501 191180spr2 7 h 13.3 monmmo .lfeap Wb 6421 0.1000.100 S50000
503 198S6Pau~AAwO I MaWOOMaar.hfcap HWIO dng7 .099.099 50050000
M0 19I3/juIOlkanyljwwI.cap 1 smommi lulbap HW2 duea .099.099 50050000

507 19UWpiO7M o4 on MWAaMeuc &lufCaP mascol loop 0.1000.100 S0050000

50 9IWjulO7M1=5 XMoo ma"MMOarl~fcap mascol loopS 0.200.100 500500003 511 1 W ljWO4al ino .muamuaa OlIufeap MtaOM lop 0.1000.100 500 50000

513 1I"iMsd0Apud2 amo ammonmo Oliafep 10100l looS 0.1000.100 500 5000
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515 1N"uI07MAqua3 la ammmr0lufCap mcol IOOPS 0.100 0.100 500 50000

517 I"WApaad4 lan amumo rcep mso] le0S 0.1000.100 500 50000

519 19u~mdlIAwiojsm -~cvp I MWAmrOWlUfCap 11W2 ringl .050.050 50050000
521 lgul vu13iw=4 las momdveO.lufcap ascOl lepS .A50.050 500 50000

m=bsi usurniun

523x l64flin5ssmmsBOMao Olnfmap asceOl l1apS .050.050 500000
MbOmd UWmied

52 ltjmlSxa" s manmm"a 0. 1ufcap maovl leapS .00.050 500 50000
abb~acto bumnned

527 I"ltjUlIdq 2 Iae mmOSOMMaer0ICap asol lopS .050.050 50050000
mbowa ctaeeusiid

529 191tfjnl13/qued3 Ma monamsar0.ufcap macol loOPS .050.050 500 50000

531 l9Sl4u s&Apd uss mar 0. lufcap macol loopS .050.050 50050000

533 1911JjmASMIdwno ass monuuarO.lufcap macol lo00S 0.1000.100 500 50000
mwbacaw nammine

535 l9IVAa15At~no2 uas meeaume .lnfcap macOl lo0pS 0.1000.100 5005000
mbQmae emiuad

537 l9StjulSIamA us minaeasrO.lufcap maKOX loop 0.1000.100 50050000
wbers~m wnaitWe

539 I9StlI~larnSm ins uionmaD 0lufCap MUMO loopS 0.1000.100 500 50000

541 lIlIfjulliquadl LAn nmoeamolufoap macOl lopS 0.1000.100 50050000
msacuao usmmited

543 19S3/lpl1 mCd uas moneaisor Olufoap macol lo0pS 0.1000.100 50050000

545 l9$julSqad3 aus monaMume Oiufcsp macOl leap 0.1000.100 5005000

547 191luszd4 ms *wAasuma.ufCap uscOl loop5 0.1000.10 50050000
~btcm oumained

549 M W~~u2IM~ffi~m2 mae mmesmma0lufcsp HWit loop 0.1000.100 100050000

551 lifjI27/diEls ins mmosmuer0lufcsp MWIS loopS 0.1000.100 100050000O

553 1951jol27diflqudl uas memeamo~ufeap NWIS leap0 0.1000.100 I10W050000
wbuncion ne~mied

555 19S8Iu12M iff~quad2 ass monemmso 0lufCap HWIS loop 0.1000.100 10005000
mlmracdai vsminud

557 l9SM nX2Miff~Usd3 lan momuo 0.Iufcap MWIS leap 0.1000.100 1000 50000
mabftsuie uummiuid

359 196vpmsa2iff~usd ass monesaseO.uWeep HWII loop 0.1000.100 10005000

561 1IM12V/dwm2 aas mnaosaiaar0lucap HW4 leop 0.1000100 500500D0

M43 1ImnldMAMS aas meaor0.lafep HW4 loop 0.1000.100 SO0050000
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56s I9UVP=2Aquwd e inummam &.ufcap HW4 lowp 0.1000.100 500 50000

567 l96Id tmuu2 USma"amor 0L 1ufCap HW4 loop 0.100 .100 50050000

569 196vp~kPWd x" mobmalaw 0. lafoap HW4 loops 0.1000.10) 500500D0

571 196*IAh2~Uei4w a" inmumorO. lmtap HW4 loops 0.1000.100 50050000

57S lMWWOVMijam X&I awummeu O. lufcap 11W4 loops 0.1000.100 50050000

577 1961/AguWlfjuadl Im ambmmor. lufCap 11W4 lo0pS 0.1000.100 50050000

579 19S1MugOSdVflqud2 in anmmor . ufcap HW4 l0O0S 0.1000.100 500 50000
mbw m mnined

581 1911 O5Aiff/quad3 an iinaor a.Iufcap HW4 loop 0.1000.100 50050000
amato smined

513 ItS/uSiiflquad4 em amomm"rOlufCap 11W4 loops 0.1000.100 500 50000

515 19S8/uag9MfiffA/dwm2 em inommor O.lufcap IIWS loops 0.1000.100 50050000

537 l9SI~AiO9/MlEM~I em monummo.Iufcap HWB loops 0.1000.100 500 50000
mutiwo trumnied

589 1911mu&g0A9MJ!Apdl em monmmerO.Iufap IIWI lo0pS 0.1000.100 500 50000

591 195 mA0s9/Iiff~juad2 em manmumorO Infcap W8' loops 0.1000.100 500 50000

593 1953/WaugO9ffijuad3 us omammor Olufkp IIW8 loops 0.1000.100 500 50000
w~aobumjizedin

595 l9SIwmu0MifflyM no mem ummor 0L Iufomp ESIW lowp 0.1000.100 50050000O
mobtandon Uumninad

597 l9S1/aug1~fmm2 em momm a0Jfcap IIW2 loop 0.1000.100 50050000
mboactontrmied

S"9 lIig lWdaffM~ms em" emmuuawro.ufCap HWS loops 0.1000.100 50050000

001 19SSmg1lWApsd1 em inmmmmor0a1utap MY/S loops 0.1000.1m0 5005000
mabuum Uumdued

603 191AIWW1~if~qad2 em mammobr 0. lufcp NY/I lowp 0.1000.100 50050000
wbaedon UWAMiftd

GM5 l9ItAmhlWMffad3 em umommosoaor1feep MY/S loops 0.1000.100 50050000
mbUMaioo UWmined

607 19Sit"l1fApuaM emN moanaoro~lucap NY/I loop 0.1000.100 500000
subtraction uwmmioned

609 l9#I/&%glAUMilm2 em amoosmmor0.luftep NY/S loop 0.1000.100 50050000
subraction UWmined

611 1l AI/gimmumIs eM uonogaawaalufcap NWI lowps 0.1000.300 S0050000
mobumaeim trumnined
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P14PUI Wek mple votwi SIONOr grnarc RA Rafte Test3613 1966Aq1 NjEM ad ur m uso0.1vcap NY/S loop 0.1000.100 500 50000
mhcaoummoninad

617 1966A'a11 A ad3 s ~ m"Gomm0.1uiesp NYS lpS01000 .100IO 500500003679 1964 muIMff~lsd3 ans *maano rO.Iuip NW8 loopS 0.1000.100 50050000

'01 a"~2~ugu mmmmaaor OIiefsp 1W19 zigSM 0.100.100 50050000
ouazcti usmmuied

i2n9~S~di ooma ora p NY/IP n24 0.1000.10 S0050000

63 9ONW0g2/47zn ass ~ maa 0. Weecp HW19 zingsZ4 0.1000100 50050000O

627 1"I/ou1Z~q2mg ISM moomor Olufoap HW19 fing24 0.1000.100 50050000

mhuuoa sim me

:;1 z zsgn m an nmmora1ucap HW19 nS2 0.1000.100 50050000 flawI 3 19Emng2Q/zsj 04 imbum Ifao HW20 An2 019 010 1000 50000 cack

637 SIVug23/u2 uss mnmmaoralufCap HW20 dng25 .019 C=2 100050000D flaw

639 19SViug3W=la dism mofamnso 0ufCap H1W20 dng25 .050.050 1000 50000
641 19Swsug31jhsm nos uinombor 0.lufcap HW20 dnz .041.040 1000 50000I643 I9SSMapOlftasO2 uss uoainuusor a ltcap H1W20 Dag5 .040.040 100050000
645 1IPSIAyl oO7 JIS somaosWo~ufkap US to062.062 100050000rn 647 19SAV jas OI~m ins mon 0.Inicap big WNt .062.061 10005000
649 19SS"IMfts9 ass innouuor . ufeap big tont .062.061 10005000
651 19I9UspiftshlO ams EMDosmsft .lUfCOP HW19 zhig24 .062.061 100050000I653 l9mv tlm 2 us umossnor0lnfcsp m~ loso Qp5 0.1000.100 SW050000

655 19S3aqm2E/ds IAS illns .lcl fcsp uscOl loop5 0.1000.100 $005M00U57 19Umep~#asq1 us omoosoor aLlufoap macsol loopS 0.1000.100 50050000
mwm troatitted

659 I91sU~pSEssq2 JIM momosmor0Iufcsp uaowl loopS 0.1000.100 5005000
wuuation UmniaI661 I9ISqs4iQaaq3 a" mososemora0lufosp Iscol loopS 0.1000.100 500 500100
muhtraoton oW uAnvd

663 193Vsq26ftamq4 a" monomswOrlulcsp Inacol loopS 0.1000.100 500500003mubnactiooramit
465 1913/sqOM=2 JIM monagommolb~p VIARCl loco 0.1000.100 50050000

W 6 19SGMWO mm INS ommmmsor0.1feap mocol loop 0.1000.100 50050000
=hstbuse= js

V-38



r ace Direcuty 1mpk Fmtura sen" Source Q Red. isafe Test
469 mu3Iap wipad UaS inammaor 0. lufCap macol loows 0.100 0.10 500 50000

671 I9I8Ap2&ai2 iii Umomaaor 0. Iuicap, mmdli loops 0.100 0.100 500 50000
matuon tummmined

673 1961Avp2&paad ins smnmoar O.lufcap macol lo0pS 0.100 0.100 500 50000

675 19f hit ~ umm a" mommar 0. Infcsp Fmcol loops 0.1000.100 s50000OG

677 l9I&mkd4lm2 US minourmo.:lucap macol loops 0.1000.100 50050000

subtaction rmie

663 IPSEgzogwd3k s US WADOuOr Olucap macol loops 0-100010D 500 50000

13 1913/ocl3A d an amounaor 0. lufoap MRc0l loops 0.1000.100 500 50000I moubtaction ~ e
63 1983Aci03Aud4 Soa mnsoralufcap macOl loop 0.1000.100 Soo050000

669 19/omMiqad3 ass mnamo0.lufcap mecol loops 0.1000100 500 50000

I mo~~sbtractiovn id
691 193/bctO4Main MS mamaor O.lufCsp macOl loows 0.1000.100 500 50000

Sutrcto uwmedw

493 1 90/UMSd uAs mamae Iufucap, mucol loops 0.1000.100 500 50000

as3 l"uWcaid zoo mmansor O.Iufcap Uec01 lowps 0.1000.100 50050000O3697 1"9i5Oc4/qusd2 us masummoro lfoap MUM~ looCpS 0.1000.100 50050000
subtracton buminad

699 l988Mct04Alusd4 MIS mwommaorLlacp maacol loopS 0.1000.100 50050000

703 198110/octllolsz .lefl mABO"or Wl 64V ~ .050.050 1000D350D00
0.luicap

705 1933/actI/alals 48243 mnmeor bolsausll %I zina2S .019.020 100035000

707 1981/actl206olub ~ 2C0l .anewao folaw,2 l a] rngn .019.020 1000 35000 crackU709 19Sh~ctl2soakrU 4ftM aSoazell monmor %I dupsu .019.020 10W03500 crackU711 l9I1Amcl2&oaAs SoWSS umor0.lufcap, a] ling2 .019.020 2000D35M0 crack

713 1913/octl2Adas6a molar6 minoamaOlufcsp X1 ui428 .019.020 1000 IS5M crack
Soluall

715 1911/octl3/solar7a 201l3 INCOOMMarCOlUfcPa l mzngn .019.020 1000D35000 crackI molarmll
717 1933/ctl3ha 3q3%44 manomoaOlufap HW? Ang7 .019.020 1000D25M0 crackI719 19963Aeel4/caut i&MINo manomucoloicap HW7 AnS7 .019.020 2000D50000

721 1"I1*a14hdi% 4em2 manobmbor a Weeap Hw7 zzn&7 .019.02D 20OW025000 crack
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U Pp Dady 3ph VinageLaer useRels. lampt Tat
723 1981Mcs7OMaJ2 3Q3944 mnaoem 0. luiap NW? at .019.020 1000 50000 mcrc

75 m/m7Wj 36 unmar.2 ufcap HW7 ngs .019.020 1000 50000 mcrc

727 1938Atl7fidstI4 ~ S435 tnaosw.Iufcap 11W? rngs 019.020 2000 50000 mcrc

72asApA" yT408u ao Olsieap HW7 sngs 019.020 1000 50000 mcrc

731 1WSmAaheuJ5 4p""6 mominassar OlIufeap 11W7 ns .019.020 1000 50000 mcrc

733 198Im~la SI *W8.4 mmsmearscar 0.Itaap NW7 zin&7 .01 9 20 1000 50000 mcrc

75 1"ASAM19fisciaS2 4r202 nmagaor 0.ltufoap NW? ring? .019.020 1000 50000 mcrc

731 1I/aOot19/AdarS3 4p8243 moomm. Olufiap 31W? ving? .019.020 1000 50000 mcrcU739 191/aSkedaalarS4 2r114 Masnac?= O.lufcap HW7f ngst .019.020 1000 50000 mcrc

741 21Vmact0arSS 20O31 monoauor 0. 1ufcap N? ing$ .019.020 10005000 mcrc
molamefl3743 19Sojea264AouM ~ 2 2 mfoaooro 0.Iufcap 14W tnts .019.020 1000 50000 crack

745 19SSocoZalolo 2rJ514 umlnusar 0.lufeap dl vinpl 019-020 10002000 crack

747 193Ss'cZhakrS8 4,2=2 inmscr 0.luap di uinul .019.020 1000D20000 mcrc

749 19IlMocWAwus *3563 ron o 0. 1ufcsp di rnapi .019.020 1000D 20000 mcrcIDUM
7 l1 "1ha2Sz2M wI 3q393 monommacy O.lufap dI ringal .019.020 1000 20000 ccI755 1988oc26"mar13 4q924 unmmoalufCap dI tnapi .019.020 1000 20000 cc

I 757 1SIVicM27dIsma RAS inammuaOufcap di napi 0.2000.100 200020000 fAm

759 l9S MVoct7/lasb RAS imac OIufeap dI VIDul .(50.050 1000 20000 flawI 761 1933ms27hadar4 262 incm ra rlufcap di liar1 .01 9.020 20020000 mcrc

763 M*9SS M e2fd~mC xix ataarm0lfCap dI raspI 0.1000.100 1000 2000 flaw
765 19UWbc2M.1mD xis maaa, OIurcap dI finpI .049.049 1000 20000 flawI 767 191 WOa0Zicre 3q39 44  

umnamncr OLIufcp marccl zoic*2 .019.020 1000 SOO mcrc
scell

769 1991/oaImsic*3 4,2=2 inmosmcr 0. lufCap nacrol sic2 .019.020 1200050000 mcrc
771 1"V1oatifnicrol 2r1Sl4 manomamorO~lutbap "coaol auc2.01 9.020 I200050000 mcrc

egilma

I 779 ff1AmVot&3mia4o 48243 mmcauoaar 0.2dm9  .naaol ic2 .029.020 1000 50000 mcrc

731 19sh1111112 *45 moamucarlufoap ImAcm) voictc2 .019.020 1000, 5000 end
Sana

733 t9" O l INW12 24S monou"assrOufbap unwcol iniec2 .019.020 200040060 mcc

739 191SbwvOL2Minz 491663 mariamw 0a w (2s1i .ro1 ondm*2 .019= 0064 2646 mcc

7U "fwlAS 3 oomr1fa ocu im 09m 00" u
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3W imp W Iluarmple FlurmSla Source Ries. Range Test
717 196l8wv43hAu5 MA4S35 moamomr Olulcap mAcrol 04ro .019.020 2"46 26464 Crack

7m "ha3AWS55 tosaisor OIafcap msnxl macro2 .019.020 26464 26464 crack

7"1 IWMmvvO34sic4 262 emlnosmor 0 lufcap ftcrol .aar2019.020 26464 2646 crack1 I9I8avovAqlO 49823 monossuior Olufcap mi~crol nucro2 .019.020 1000 1000 crack

795 I9SAfmv4aqEO 4PS243 iomo 0 lufCap macrdl eicr2 .019-020 6000 6000 crack

797 l9IIAVO fq7O 49823 amoamasr 0lufcap acrdl nicro2 .019 020 7000 7000 crack

799 194oO qO498243 inOMffaao 0. Weep micrad Wacro2 .019-020 1~ 000 D crack

301 lI"VaowO9ihfqoI 498243 mmomoOltafcap maicros n2l .019.020 19464 19464 crack

303 )9SA~hwIAfqO2 *3563 monclesuorOL Iufcp maicros rans3 .019.020 100045000 crack

305 I9Iovoru2*02eamsaor 0. 1ucap m~icro. rinS3 019.020 100050000 crack

8 07 195 4 catr 4r=2 maINNIGIMM 0. Itlcap ndmac HW3 .019.020 1200050000 crack
809 l9IS8Mav17Amkckl 4r=2 inoaaaolacp Macros mag29 .019-020 9000 9000 crack

11i9%nm7wk 3 monamor Olifcap acros ving3 .019.020 2446424464 crack

313 I9ISm/aoIpdl 493243 mmoncsor 0.Iufcap Micros vinS3 .019.020 500050000 crack

315 l98AvIl7/pnd2 498243 Mosoamuor Olufcap vicros ring3 .019.020 500050000 crack

317 1988 ~Aar21sdb dl nomaworoldemp Micros wijag3 .0000 1000 50000 flaw3 19 1933W/D2Md1 .161 tonsao0ltafCap HW19 ving2 .000.050 100050000 flaw
321 19$Va/nov22&Mdd sldl mmourner 0.Iufeap 11W19 2inS.4 .050.050 100050000O flaw
323 I9ISfiev2Si/c-.301b Mm0 mnomaala ~ufkp HWI4 2ing3 0.1000.100 1000 50000 flaw3 25 1l~Am23AIc302& Mm0 inmoaa lufcap HW14 alma) 0-.100.1 100050000 flaw
327 19I3lAs mmas la sam osommor .lufCap smicros lOopS .000.050 1000 50000 flaw

329 II#Am2Imb sammm "Osas~Unfeap micros Iwoa .000.000 100050000 fRaw

831 I988Am3GWuyb2 monosm uuo.ucap macol whip .019.020 1000 28000 BMaW

8 33 1918Moc2Jmpb2 3 mumfosomor. ufoap EW14 whi .019.020 100045000 flaw
335 1918dua02hib B monmmior 0.1.fap HW14 whip .019.020 100045000 flaw
337 l9I acOwibpb4 B maomn0.1nicap hW14 1-0p .019.02O 2000500 flowI 39 I9SUlacOmumphS a monammera0luftap HW14 lawps .019.020 100050000D flaw
541 I9S3MecOSm a mooaie lufoap HW14 1-0p .019.020 100050000D flaw
543 19U/dadAmpb7 B ammamosr olufeap HW20 zlma25 .019.020 S50500 flawIU34 198S~me1mplI B monamossrOlufeap HW21 tmag25 .019.020 500050000 faw
547 l9SMactJuyb 3 sioamuer 0ufCs, HW21 iga25 .000.060 500050000 flaw
in9 19631e13. 3 fsuasec O.1lop mcol whip .00.00 100025000 flawI851 3lwIVlSap~b 3 monomor OL ufelp macol whip .A50.050 1000 2500 flaw
153 I980=msIStbIO 3 macoma e m HW3 whip .019.020 50005000 flaw
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PaOW Db'uarp Son* Fmkwu g. ae Q 3m. Rtanse Tat
15S 1MVwlA,1 bll mmmm O0lmufcap 1(W3 whip WO.050 500 50000 Rlaw
557 l9SSWa15APs01 ainioa suiaem.Olufeap milcol nal .050.050 500050000 anuouWy

359 It6Isi~eesol OMgPW amnmmom 0. 1ufcap mocol ainsi .050.050 1004000 arucazpy

361 I9S wlIEM m?2 ummlm mmun a., 0.lufcap macOX liigl .00.00 1004000 a-c-py
umaa MOW.

863 19U/dsct9hbi inha monosac? 0. lufCap oacol lngi .00.050 1004000 azrspy
Ism"Mimd Miga

US IOU/daC9A@&dI lad "macsm. 0. lufCop macOl rngl .050.050 100D4000 animriapy

36 9~jnlfail M"aibananatid macOl lngl .050.050 1004000 ar waPy

369 1919fjanl2 foi anaI mamaisor macol zng! good .050.050 500050000 anmsompy
0.1ufcaptrimuiwnid
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"I b. Sample I Data

Laboratory data considered in Chapter III was taken from Sample 1, a satin weave
sample with twelve flat-bottom drilled holes of two different diameters and six different
depths. A complete discussion of the modeling and inversion of these data appears in
Chapter HI. Here, images from the Tons-o-Data booklet are presented before any rotat-
ing or scaling, as outlined above, is done to the data.I

* 0 0
0.008 0.016 0.031

0 0 0
0.063 0.078 0.094

0 0 0
0.008 0.016 0.031

0 0 0 L y

0.063 0.078 0.094 x

3 Figure V-. Drawing of Sample 1, satin weave graphite epoxy panel with
twelve flat-bottom holes of two diameters: 0.5" and 0.25". Depths of the
holes are as indicated.

The layout of Sample I appears in Figure V-5. Depths of the holes are shown in inches.
The overall size of the sample is 6" by 6". The larger holes are 0.5" diameter, the smaller
holes are 0.25" diameter. All holes in this sample are flat-bottom machined. Pages from

i data profiles are presented in Figure V-6.

5 Uc. Sample 3 Data

Sample 3 is a satin weave sample of graphite with one 0.25" diameter flaw in the
center. Thus, it is a convenient comparison with model calculations: it is easy to describe
the flaw to the model, and relatively easy to interpret the results since they are known to
come from a single flaw rather than a number of flaws. Some tests were done with Sam-
ple 1, both right-side-up and up-side-down. The topside images am presented her
because they represent a convenient measurement to be considered for model calcula-Udons.

I
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imm... mm...
mmm, mm...
mmnmu ummM

Figure V-6. Data from Tons-o-Data booklet used in the model for recon-
struction of flaws. See previous figure for layout of actual flaws. Data here
are "raw" laboratory data, without normalization and phase angle rotation.
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Figure V-7. Data from Samnple 3, a satin weave with a single flat-bottom
machined hole in the center. These data are convenient for reconstruction
because of the relative simplicity of the flaw geometry. The actual flaw is
approximately 0.1" deep and 0.25" in diameter. Data here are "raw" la-
boratory data, without normalization and phase angle rotation.

[WI] H. P. Westman, Editor, "Reference Data for Radio Engineers", Fourth Edition,
International Telephone and Telegraph Corporation, 1956.

V-45


