
Technical Report

CMU/SEI-89-TR-1
ESD-TR-89-' ooi

Carnegie-Mellon University

Software Engineering Institute

Technical Report
CMU/SEI-89-TP--«

ESD-TR-89- 001
February 1989

The State of Software Engineering Practice:

A Preliminary Report

Watts S. Humphrey
David H. Kitson

Tim C. Kasse
Software Process Assessment Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler ^
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 by Carnegie Melton University.

This document is available through the Defense Technical Information Center. OTIC provides access to and transfer ol
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station. Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Executive Summary 1
1. Introduction 4

1.1. Software Process Focus 4
1.2. Software Process Maturity Mode! 6
1.3. Software Process Assessment Instrument 8
1.4. Examining Software Processes 9

1.4.1. SEI-Assisted Assessments 9
1.4.2. Self-Assessments 10
1.4.3. Capability Evaluations 10
1.4.4. Workshop Assessments 10

2. Data Collection and Analysis Methodology 1 2
2.1. Basis for the Report 12
2.2. Data Usage Considerations 12
2.3. Data Analysis 13

2.3.1. Software Process Maturity Level Distribution 13
2.3.2. Profiles of Negative Responses to Key Questions 16

3. Implications and Recommendations 1 7
3.1. Level 1 Organizations 17

3.1.1. Software Suppliers 17
3.1.2. Acquisition Authorities 18

3.2. Level 2 Organizations 19
3.2.1. Software Suppliers 19
3.2.2. Acquisition Authorities 20

References 2 2
Appendix A. Key Questions and Response Profiles 23

CMU/SEI-TR-89-1

CMU/SEI-TR-89-1

List of Tables

Table A.1: Key Questions for Level 2 26

Table A.2: Key Questions for Level 3 29

CMU/SEI-TR-89-1

iv CMU/SEI-TR-89-1

List of Figures

Figure 1.2.1: SEI Software Process Maturity Model 6

Figure 2.3.1.1: Software Process Maturity Level Distribution
(113 Data Points) 14

Figure 2.3.1.2: Software Process Maturity Level Distribution
(55 Data Points) 15

Figure A.1: Percent Negative Response of Level 1
Projects to Level 2 Key Questions -
Workshop Assessment Data
(96 Data Points) 24

Figure A.2: Percent Negative Response of Level 1
Projects to Level 2 Key Questions -
SEI-Assisted Assessment Data
(41 Data Points) 25

Figure A.3: Percent Negative Response of Level 2
Projects to Level 3 Key Questions -
Workshop Assessment Data
(16 Data Points) 27

Figure A.4: Percent Negative Response of Level 2
Projects to Level 3 Key Questions -
SEI-Assisted Assessment Data
(12 Data Points) 28

CMU/SEI-TR-89-1

Vl CMU/SEI-TR-89-1

Acknowledgments

The authors acknowledge the efforts of those individuals (both within the SEI
and from organizations which support the SEI) who contributed to the work
described in this report. In particular, we acknowledge the contributions of
Ken Dymond, who performed various analyses of the assessment data and
provided the authors with relevant information and graphics. Also, we
acknowledge Linda Pesante, who significantly improved the readability of the
report through her technical editing skills. We extend a special thanks to all
the individuals and sponsoring organizations that were involved in the
various assessments, and to our colleagues at the SEI who reviewed the
various drafts leading to this report. We particularly appreciate the efforts of
the members of the final technical report review team: Ken Dymond, Ron
Higuera, Mark Paulk, Rich Pethia, and Bill Sweet.

CMU/SEI-TR-89-1 vii

I

The State of Software Engineering Practice:
A Preliminary Report

Abstract: This is the first in a series of SEI reports to provide
periodic updates on the state of software engineering practice
in the DoD software community. The SEI has developed, and is
refining, a process framework and assessment methodology for
characterizing the processes used by software organizations to
develop and evolve software products. This report provides a
brief overview of the process framework and assessment
approach, describes assessment results obtained to date, and
discusses implications of the current state of the practice for
both customers and suppliers of DoD software.

Executive Summary

The Software Engineering Institute (SEI) was established by the U.S.
Department of Defense (DoD) to transition improved software methods into
general practice. As part of this mission, work is under way to characterize
and report on the state of the practice of software engineering in the DoD
software community.1 Preliminary results of this work indicate that the
majority of the software organizations in this community are operating at an
immature level of software process maturity.2

In a mature software process, people, methods, techniques, and technology
are effectively and efficiently coupled to consistently produce quality software
within the constraints of cost and schedule requirements. In an immature
software process, costs and schedules are largely unpredictable, quality is
generally marginal, and technology is often used ineffectively. Specifically,
organizations with immature processes are often deficient in one or more of
the following areas:

• project planning
• project management
• configuration management
• software quality assurance

1By DoD software community we mean DoD agencies and DoD contractors engaged in the acquisition,
production, or maintenance of software.
^Because of the way organizations were selected for inclusion in this study, the data upon which the
report is based does not necessarily constitute a statistically valid measure of the state of DoD software
community practice.

CMU/SEI-TR-89-1

Software professionals generally need most help in controlling requirements,
coordinating changes, managing (and making) plans, managing
interdependences, and getting help on systems design issues. Since these
and similar problems generally consume much of every practitioner's time,
this is where management can provide the most immediate help. For low-
maturity organizations, technical issues almost never appear at the top of key
priority issue lists. This is not because technical issues are not important but
simply because so many management problems must be handled first.

A mature software process will not eliminate the ongoing need to understand
the application, to deal with changing requirements, and to manage system
design issues. However, organizations with more mature processes will be
better positioned to address these issues effectively and avoid the
unnecessary exacerbation of these and other problems.

According to the SEI five-level process maturity model,3 current software
engineering practice is largely at the initial level (level 1, or lowest level) of
process maturity. There is a small number of level 2 organizations and a few
level 3 projects in some organizations. No projects have been reported or
assessed at level 4 or 5.

Nearly all level 1 software organizations urgently need to improve their
management system for controlling their software process. Many managers
need guidance on how to conduct project reviews, what key indicators to
examine, and how to use basic management methods and tools. For project
managers, this training should include the methods and procedures for
estimating software size, estimating resource needs, and developing
schedules. The second area requiring immediate attention for level 1
software organizations is Software Quality Assurance (SQA). SQA, while
generally available, is not effectively performing its role because of
inadequate resources, inadequate task definition, or inadequate
management support. As organizations start to improve their software
process, they should also begin gathering data on their code and test errors.

Since level 1 organizations are typically high-risk suppliers, we suggest that
acquisition authorities that deal with level 1 organizations require aggressive
action by these organizations to improve to level 2.

The relatively few level 2 organizations are currently among the most
capable software groups in the DoD software community. But even though
they have advanced substantially beyond level 1, they still have considerable
room for improvement. Many of these organizations are equipped to

3The maturity model is discussed in Section 1.2.

CMU/SEI-TR-89-1

advance rapidly; a full 69% have a Software Engineering Process Group
(SEPG).4 Organizations without a SEPG should promptly establish one.

Level 2 organizations typically do not adequately train their software people.
A further deficiency in level 2 organizations is the lack of mechanisms to
assure that SQA is evaluating representative samples of the software
process. The lack of adequate regression testing is also a common problem.
This generally leads to late discovery of problems, last-minute testing crises,
and poor product quality. While level 2 organizations typically have their
costs and schedules under reasonable control, they generally do not have
orderly methods for tracking, controlling, and improving the quality of their
software or of their software process. Further, few of these organizations
have adequate resources or action plans directed at long-term software
process improvement.

With the increasing reliance of critical defense systems on complex software,
the necessary improvements require aggressive action. Thus, we suggest
that acquisition authorities require level 2 organizations to dedicate
resources to process improvement and to establish and report on the actions
needed to progress to maturity level 3. An appropriate vehicle for doing so
might be to provide for such improvement efforts as an allowable cost to the
contract, or in the statement of work. We also suggest that acquisition
authorities require that contractor SQA organizations be adequately staffed
and effectively used.

Because there are only a few level 3 projects in organizations, our sample
size is too small to draw meaningful conclusions about their improvement
needs.

While SQA will continue to play an important and significant role in achieving
the objectives of high-quality software delivered on time and within budget,
we believe that SQA alone is not sufficient to meet these objectives.
Ultimately, we need capable and motivated professionals, mature software
processes, and commitment to build quality into every product; in short, we
need the recognition that quality is everyone's job.

4An SEPG is a group of software professionals specifically chartered to focus on software process
improvement.

CMU/SEI-TR-89-1

1. Introduction

This report describes the initial results of a continuing Software Engineering
Institute effort to characterize and report on the current state of software
engineering practice.

Characterizing, understanding, and facilitating improvement in the practice of
software engineering is important to the SEI, the Department of Defense, and
the nation. The SEI Software Process Program has the goal of improving the
process of developing and evolving software. Our approach emphasizes the
following:

1. Developing and validating a software process framework and
evaluation methodology for identifying capable contractors.

2. Transitioning the evaluation methodology to DoD software acquisition
agencies and their prime contractors.

3. Developing and refining an associated assessment methodology for
use by the DoD software community for internally assessing software
engineering capability and determining improvement needs.

4. Characterizing and reporting on the state of software engineering
practice in the DoD software community.

5. Facilitating software process improvement in the DoD software
community.

The focus of this report is the current state of software engineering practice
from a software process perspective; that is, the report will characterize the
software processes currently used by software managers and practitioners in
organizations doing DoD software work. The SEI has considered and our
results are generally consistent with the results of a number of prior studies
[BAS84, DRU82, REI88, THA82].

This report is organized in three parts. The first section provides the
background and framework for collecting the data upon which the report is
based. Section 2 describes the data collected and the analyses performed
on this data. Section 3 discusses implications and recommendations for
customers and suppliers of DoD software.

1.1. Software Process Focus

Since early 1987, the SEI Software Process Program has focused on
software process as a means of improving the ability of software

CMU/SEI-TR-89-1

organizations to produce software products according to plan while
simultaneously improving the organization's ability to produce better
products. This focus on software process is based on the premises that 1)
the process of producing and evolving software products can be defined,
managed, measured, and progressively improved and 2) the quality of a
software product is largely governed by the quality of the process used to
create and maintain it.

The software process is the set of activities, methods, and practices which
guide people (with their software tools) in the production of software. An
effective process must consider the relationships of the required tasks, the
tools and methods, and the skills, training, and motivation of the people
involved.

Software process management is the application of process engineering
concepts, techniques, and practices to explicitly monitor, control, and improve
the software process. It is only one of several activities which must be
effectively performed for software-producing organizations to be consistently
successful. Capable and motivated technical people are also needed.
Knowledge of the ultimate application environment is critical also, as is
detailed understanding of the end user's needs [CUR88]. Even with all these
capabilities, however, inattention to the software management problems
described in Section 2 will likely result in disappointing organizational
performance. [KIT89] provides a more comprehensive discussion of the role
and significance of software process and the discipline of software process
management.

This view of process and process management has led to the creation of a
process maturity model and a related software process assessment
instrument, which are important elements of SEI methods for examining
software processes. The remainder of Section 1 briefly discusses these
elements and some methods of applying them to the software processes of
organizations.

CMU^EI-TR-SQ-I

1.2. Software Process Maturity Model

The software engineering capability of an organization can be characterized
with the aid of the software process maturity model shown in Figure 1.2.1.
This model provides five maturity levels, identifies the key improvements
required at each level, and establishes a priority order for moving to higher
levels of process maturity.

Figure 1.2.1: SEI Software Process Maturity Model

At the initial level (level 1), an organization can be characterized as having
an ad hoc, or possibly chaotic, process. Typically, the organization operates
without formalized procedures, cost estimates, and project plans. Even if
formal project control procedures exist, there are no management
mechanisms to ensure that they are followed. Tools are not well integrated
with the process, nor are they uniformly applied. In addition, change control is
lax, and senior management is not exposed to or does not understand the
key software problems and issues. When projects do succeed, it is generally
because of the heroic efforts of a dedicated team rather than the capability of
the organization.

An organization at the repeatable level (level 2) has established basic project
controls: project management, management oversight, product assurance,
and change control. The strength of the organization stems from its
experience at doing similar work, but it faces major risks when presented with
new challenges. The organization has frequent quality problems and lacks
an orderly framework for improvement.

CMU/SEI-TR-89 1

'

At the defined level (level 3), the organization has laid the foundation for
examining the process and deciding how to improve it. The key actions
needed to move from the repeatable level to the defined level are to establish
an SEPG within the organization, to establish a software process architecture
that describes the technical and management activities required for proper
execution of the process, and to introduce a family of software engineering
methods and technologies.

The managed level (level 4) builds on the foundation established at the
defined level. When the process is defined, it can be examined and
improved but there is little data to indicate effectiveness. Thus, to advance to
the managed level, an organization should establish a minimum set of
measurements for the quality and productivity parameters of each key task.
The organization should also establish a process database with resources to
manage and maintain it, to analyze the data, and to advise project members
on its meaning and use.

Two requirements are fundamental to advance from the managed to the
optimizing level (level 5). Data gathering should be automated, and
management should redirect its focus from the product to process analysis
and improvement. At the optimizing level, the organization has the means to
identify the weakest process elements and strengthen them, data are
available to justify applying technology to various critical tasks, and
numerical evidence is available on the effectiveness with which the process
has been applied. The key additional activity at the optimizing level is
rigorous defect cause analysis and defect prevention.

These maturity levels have been selected because they do the following:

• Reasonably represent the historical phases of evolutionary
improvement of actual software organizations.

• Represent a measure of improvement that is reasonable to achieve
from the prior level.

• Suggest interim improvement goals and progress measures.

• Make obvious a set of immediate improvement priorities, once an
organization's status in this framework is known.

While there are many aspects to the transition from one maturity level to
another, the basic objective is to achieve a controlled and measured process
as the scientific foundation for continuous improvement.

It has been our experience (based on ten SEI-assisted assessments
conducted since February 1987) that when software organizations are
assessed against this maturity framework, the assessment method has
enabled us to accurately place them on the maturity scale and identify key

CMU/SEI-TR-89-1

improvement needs. We believe software process maturity is a useful
indicator of an organization's software engineering capability, e.g., its ability
to produce quality software products on time and within budget. We also
believe that while the use of tools and technology can enhance software
engineering capability, their contribution is often of limited value for
organizations with low-maturity software processes.

[HUM88] and [KIT89] provide more comprehensive descriptions of software
process management and the maturity model.

1.3. Software Process Assessment Instrument

The assessment instrument is a structured set of yes-no questions which
helps to facilitate the conduct of reasonably objective and consistent
assessments of software organizations [HUM87]. It has also been designed
to assist DoD acquisition organizations in identifying software contractors
with acceptable software engineering capabilities. Since the instrument and
method for applying it are publicly available, software contractors can use
them to identify areas for improvement. The SEI provides training on how to
conduct effective assessments for organizations interested in conducting
their own.

The questions in the assessment instrument cover three areas:

1. Organization and resource management. This section deals with
functional responsibilities, personnel, and other resources and
facilities.

2. Software engineering process and its management. This section
concerns the scope, depth, and completeness of the software
engineering process and the way in which the process is measured,
managed, and improved.

3. Tools and technology. This section deals with the tools and
technologies used in the software engineering process. It helps
determine the effectiveness with which the organization employs
basic tools and methodologies.

Some sample questions from the assessment instrument are:

• Is there a software engineering process group or function?

• Is a formal procedure used to make estimates of software size?

• Are code and test errors projected and compared to actuals?

"8~ CMU/SEI-TR-89-1

1.4. Examining Software Processes

There are a number of ways the software process framework (software
process concepts and principles + maturity model + assessment instrument)
can be applied; the SEI has developed, and has experience with, the
following:

• SEI-assisted assessments
• Self-assessments
• Capability evaluations
• Workshop assessments

The paragraphs below briefly discuss each type of application. A more
comprehensive discussion of how assessments are conducted and the role
of assessment in improving software engineering capability is contained in
[KIT89].

1.4.1. SEI-Assisted Assessments

An SEI-assisted assessment is an appraisal, by a trained team of
experienced software professionals, of an organization's current de facto
software process. Typically, a team is composed of four or five SEI
professionals and one to three site professionals. A methodology for
conducting assessments has been developed by the SEI [OLS89]. The
assessment team receives training in the methodology prior to conducting
the actual assessment. The goal for this type of assessment is to facilitate
improvement of the organization's software process. The assessment team
identifies the most important software process issues currently facing the
organization and develops recommendations to deal with these issues.
Since the objective is improvement within a given organization, validation of
questionnaire responses (e.g., requesting substantiating documents) is
limited to those having a direct bearing on transition to the next higher level
of process maturity (contrast this with contractor capability evaluation as
discussed in Section 1.4.3).

SEI-assisted assessments are conducted in accordance with an assessment
agreement signed by the SEI and the organization being assessed. This
written agreement contains provisions for senior management involvement,
organizational representation on the assessment team, confidentiality of
results, and follow-up actions.

The SEI has been conducting this type of assessment since February 1987
and is using the knowledge and information acquired to refine an emerging
picture of the state of the practice of software engineering in the DoD
software community.

CMU/SEI-TR-89-1

1.4.2. Self-Assessments

Self-assessments are similar to SEI-assisted assessments, with the primary
difference being assessment team composition. Self-assessment teams are
composed primarily of software professionals from the organization being
assessed, with one or two SEI software professionals optionally present. The
context, objective, and degree of validation are the same as for SEI-assisted
assessments.

The SEI offers self-assessment training on a limited basis for organizations
committed to improving their software engineering capability. Organizations
that participate in the SEI-provided training execute a written agreement with
the SEI which provides for sharing of assessment results, integrity of the
assessment methodology, and optional participation of SEI assessment team
members.

1.4.3. Capability Evaluations

Capability evaluations, like SEI-assisted assessments and self-assessments,
are appraisals of an organization's current software process; however, the
context, purpose, and assessment team composition are different. The
context of capability evaluation is the DoD acquisition process, and the
purpose is to provide information concerning the organization's software
engineering capabilities for the acquisition agency. This information is then
considered, along with other relevant information, in the source selection
decision. Hence, validation of assessment instrument responses is a greater
consideration here than it is in assessments.

Capability evaluations are conducted by trained teams of evaluators from the
acquisition agency. The SEI provides the necessary training for the
evaluation teams using our methodology, but we do not participate in
evaluations. The results of capability evaluations are supplied by the
evaluation team to the acquisition agency. Non-attributed, "sanitized" results
are provided to the SEI to help us refine the assessment instrument and
evaluation methodology; they also contribute to our emerging picture of the
status of DoD software engineering capability.

1.4.4. Workshop Assessments

At workshop assessments, professionals from various organizations learn
about process management concepts, assessment techniques, and the SEI
assessment methodology. They also complete an assessment instrument
and supply demographic data based on a project with which they are
familiar. This format is designed for people who wish to learn more about the
SEI assessment methodology with minimal investment.

10 CMU/SEI-TR-89-1

(fTK

The data collected at workshop assessments is added to the SEI assessment
database and is used for various analyses. Workshop assessments are
typically conducted at conferences and symposia attended by DoD and DoD
contractor software professionals (e.g., National Security Industrial
Association, Electronic Industries Association, and the annual SEI affiliates
symposium).

CMU/SEI-TR-89-1 11

2. Data Collection and Analysis Methodology

This chapter provides a characterization of the data used in this report,
identifies some of the considerations in using this data, and describes the
analyses which were performed to derive the results presented.

2.1. Basis for the Report

This report is based on information of two types:

• Responses to the assessment instrument (the questions in the
instrument are yes-no questions). The responses were collected from
workshop assessments and SEI-assisted assessments.

• The collective knowledge and experience which the SEI has acquired
as a result of our involvement in the development and application of
the various assessment methods discussed in Section 1.4.

Assessment participants include software and hardware/software developers
from DoD organizations, DoD contractors, and commercial enterprises. Ten
organizations participated in SEI-assisted assessments (with 4 to 6 projects
involved in each assessment), and over 70 organizations were represented
in the workshop assessments, representing 168 data points5 from
assessments across the United States. In every assessment, the SEI signs
an agreement that there will be no attribution of the results to a specific
company. The implications and recommendations presented in Chapter 3 of
this report, therefore, represent an aggregate view.

2.2. Data Usage Considerations

The results described in this report reflect the state of the software
engineering practice based on the data, experience, and knowledge
acquired by the SEI since February 1987. This section describes some
methodological considerations which we feel are germane to readers of this
report.

First, the sample population was not statistically selected. Most of the
respondents came from organizations that are affiliated with the SEI. These
respondents varied in the type and degree of involvement with the projects
they reported on.

5 A data point is one set of yes-no responses to the software process assessment instrument; the scope
of these responses is a specific software project.

12 CMU/SEI-TR-89-1

Another consideration is the degree of validation of the responses; the extent
to which corroboration of responses was requested depended on the type of
assessment being conducted. At this time, we have no way of determining
the effect of this factor on the responses.

In comparing the question responses received from workshop assessments
and from SEI-assisted assessments, several points should be noted:

1. The SEI-assisted assessments were conducted on-site by a trained
team, with participation from knowledgeable project managers and
technical professionals.

2. The workshop assessment respondents contained a mix of
management and non-management professionals, some of whom
likely had detailed knowledge of the technical points.

3. For SEI-assisted assessments, many threshold responses were
verified; however, no workshop assessment responses were verified.

2.3. Data Analysis

Two views of the data were prepared and analyzed: (1) software process
maturity level distribution and (2) percent negative response to key
questions.6 For the purposes of this report, we separated response data from
SEI-assisted assessments and that from workshop assessments, treating
them as two distinct data populations. Because of the considerations
mentioned in Section 2.2, we do not believe that greater depth of analysis
than that presented in this report is justified.

2.3.1. Software Process Maturity Level Distribution

The distribution of software process maturity level across the sample
population provides a high-level view of the state of the practice; Figures
2.3.1.1 and 2.3.1.2 show the software process maturity distributions for
workshop assessments and SEI-assisted assessments, respectively.

For both figures, the vertical axis represents the percentage of data points in
the population; the horizontal axis represents the software process maturity
scale-levels 1 through 5. In order to show additional fine structure, the
maturity scale has been further divided into quartiles-four quartiles for each
maturity level (for a total of 20 quartiles, or 20 vertical bars). The quartiles are
identified in the charts using the notation x.y, where x is the maturity level (1-

"Key questions are those for which a high percentage of affirmative responses is required to qualify for a
particular maturity level. See Section 2.3.2.

CMU/SEI-TR-89-1 13

5), and y is the quartile (1-4). In Figure 2.3.1.1, for example, 2.4 refers to the
fourth (and last) quartile for level 2 and contains approximately 13% of the
sample population. Note that since no data points have been observed to
date at level 4 or above, that portion of the graph has not been shown.

Each data point was placed in the maturity level distribution based upon a
determination of how many additional affirmative responses would have
been needed to rate the project at the next higher level of process maturity.
The range of these values was then equally divided into four "buckets" or
quartiles. Thus, the higher the quartile number, the closer the project is to
being rated at the next higher maturity level.

50 -r

This chart reflects corrections
made June 1989.

i 1 r 1 1 r-""H 1
1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3

Maturity Level Quartile

Figure 2.3.1.1: Software Process Maturity Level Distribution - Workshop
Assessment Data (113 Data Points)7

3.4

'Note that the percentages may not total 100 due to rounding errors.

14 CMU/SEI-TR-89-1

This chart reflects corrections
made June 1989.

1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2
Maturity Level Quartlle

3.3 3.4

Figure 2.3.1.2: Software Process Maturity Level Distribution - SEI-
Assisted Assessment Data (55 Data Points)8

The workshop assessment results, shown in Figure 2.3.1.1, indicate that the
majority of the respondents reported projects at the initial level of maturity.
Figure 2.3.1.1 shows a large percentage of the respondents to be in the
fourth quartile of level 1 (quartile 1.4); with minimal improvement, these
projects could be classified as level 2. Fourteen percent of all the workshop
respondents reported projects at the repeatable level, and only 1% of those
respondents described projects at level 3, the defined level. No workshop
respondents reported projects at either the managed or the optimizing level
of software process maturity.

8Note that the percentages may not total 100 due to rounding errors.

CMU/SEI-TR-89-1 15

The maturity level distribution for projects reviewed by SEI-assisted
assessments, shown in Figure 2.3.1.2, is very similar to that for the workshop
data. Although workshop participants were largely mid- to upper-level
managers not currently managing a project (as opposed to the project
managers who provided data for SEI-assisted assessments), the profiles of
process maturity are surprisingly similar. Some key differences are apparent,
however. First, Figure 2.3.1.2 shows that the sample population is skewed
slightly towards higher levels of process maturity. Secondly, larger numbers
of projects are in quartile 4 of maturity levels 1, 2, and 3, poised for moving to
the next higher level of software process maturity.

2.3.2. Profiles of Negative Responses to Key Questions

For the purposes of this report, two attributes of the assessment instrument
questions are germane. First, each question is associated with a particular
maturity level; for example, the question "Is a formal procedure used to make
estimates of software size?" is a level 2 question. This means that an
organization that has all of the attributes of a level 2 software organization
(with respect to the SEI process maturity model) would respond affirmatively
to this question. Second, certain questions are designated as being key In
order to qualify at a given level of process maturity, an organization must
respond affirmatively to 90% of the key questions for that level.

To analyze the responses to key questions, we determined the percentage of
the population responding negatively to each key question for levels 2 and 3
and displayed the results in decreasing order. These computations were
performed for both the workshop assessment data and for SEI-assisted
assessment data. The results are provided in Appendix A and are
referenced in appropriate parts of Section 3. An examination of the results in
Appendix A shows a close, though not exact, correlation between the two
data samples; for example, for both level 2 and level 3 profiles, four out of the
top five questions for SEI-assisted assessments were among the top five
questions for the workshop assessment profiles.

16 CMU/SEI-TR-89-1

w .-.LV>—■ •" I

3. Implications and Recommendations

This section discusses the implications of the current state of software
engineering practice and suggests improvement actions. We discuss
implications and recommendations, first for level 1 organizations, then for
level 2 organizations. Our views are offered for two audiences: software
suppliers and acquisition authorities.

3.1. Level 1 Organizations

3.1.1. Software Suppliers

Nearly all level 1 software organizations urgently need to improve their
project management methods (CN24, CN42, CN43 ,CN44, CN46, CN77,
CN84).9 Many managers need guidance on conducting project reviews,
selecting key indicators to examine, and using basic management methods
and tools. For project managers, training should include the methods and
procedures for estimating software size, estimating resource needs, and
developing schedules. While organizations in the highest quartile of level 1
typically have the ability to make resource and schedule projections, size
estimating is a problem for fully 66% (CN42) of level 1 projects.10 Software
size tracking is also a problem for 64% (CN46) of this group. As a result,
projects generally underestimate resources and rely on overly optimistic
schedules. The introduction of more formal procedures for estimating and
tracking software size will thus substantially contribute to improved project
cost and schedule performance.

One of the first steps organizations must take when they start to seriously
address software quality is to gather data on the errors found in the product.
This area should receive early focus in any process improvement program as
it is a prerequisite to significant improvements in overall process quality and
productivity. Since the final code and test stages are generally the easiest to
measure, this is where data gathering should start. Of the workshop
assessment respondents, nearly 60% indicate that such data was not
gathered (CN48).

Another area requiring immediate attention for level 1 software organizations
concerns the role of Software Quality Assurance (SQA). While 70% of level 1

9CN » control number. The control number uniquely identifies a particular question and is invariant
across versions of the assessment instrument. Where conclusions are directly supported by question
responses, the relevant assessment instrument question control number is cited. The question text can
be found in Appendix A.
10This, and subsequent, percent negative response values are taken from the workshop assessment
charts provided in Appendix A.

CMU/SEI-TR-89-1 17

organizations have reporting channels separate from development for their
SQA groups (CN6), 56% of the organizations report that they do not have
independent audits of each step in their software development process.11

As a result, SQA, while generally available, is not effectively performing its
role. The reasons may be a lack of adequate resources, a lack of adequate
task definition, or inadequate management support. In any event, effective
SQA is required to assure management that its established methods,
standards, and procedures are being applied. SQA can only be effective,
however, when it addresses clearly identified and stated objectives.
Wherever SQA is established merely to meet a contractual provision, it is not
likely to contribute significantly to overall performance and may, in fact,
detract.

3.1.2. Acquisition Authorities

Since level 1 organizations are typically high-risk suppliers, we suggest that
acquisition authorities who deal with level 1 organizations require aggressive
action by these organizations to improve to level 2.

The key items to examine in determining whether an organization is at level 1
or level 2 are defined in the SEI software maturity model and the software
process assessment instrument [HUM88, HUM87]. If a detailed review is
impractical, however, a critical examination of current practices for size and
resource estimating and scheduling should identify the most critical
exposures. When these are not adequate, improvement commitments
should include the establishment of a formal planning and review system as
well as comprehensive management training in software project planning.

Acquisition agencies should also be particularly interested in contractor
procedures for gathering code and test error statistics since this data
provides a good indication of product quality. When the data is available and
can be reviewed during the project, it provides early warning of quality
problems. Without this data, quality problems are generally first detected in
final test, when it is too late to recover without serious schedule and cost
consequences. Thus, we suggest that the acquisition agency request code
and test error statistics as part of its normal project review process.

We further suggest that software acquisition agencies require the contractor
to establish and maintain an effective SQA organization with adequate
resources to review the key steps in the process. This SQA role should be
clearly defined and documented. SQA responsibilities should be focused on
the policies, methods, procedures, and standards for making plans and
tracking progress against them. Once these are in place and consistently

11The 56% figure is based on responses to question CN30 - a non-key question ("For each project, are
independent audits conducted for each step of the software development process?").

18 CMU/SEI-TR-89-1

T

followed, the SQA role should be expanded to include peer reviews12 and
test. If the measures above are coupled with a separate management
reporting chain to assure that SQA nonconcurrences and issues are
resolved, SQA is likely to quickly become effective.

3.2. Level 2 Organizations

3.2.1. Software Suppliers

Though organizations at level 2 have advanced substantially beyond level 1,
they still have considerable room for improvement.

Across all organizations at all maturity levels, training was found to be the
area most needing improvement. Fully 88% of the level 2 organizations in
the workshop assessments did not have adequate training for review leaders
(CN20) and over half the organizations did not have a required training
course for software developers (CN19). Although a lack of training may be
acceptable for simple or noncritical applications, training is crucial in
organizations responsible for developing advanced software systems.
Software practitioners need to be knowledgeable and skilled in the use of
languages and organizational procedures, understand the project
requirements and the application area, and have a common understanding
of the system protocols and architectural design. Without adequate training,
projects often have serious schedule and cost problems; and they have
difficulty ensuring that the requirements and the system architecture are
consistently implemented.

A full 69% of the level 2 organizations do have Software Engineering
Process Groups (CN15) and, thus, are equipped to advance rapidly to a
more mature status. Conversely, 31% of the level 2 organizations have not
established SEPGs and, thus, are hindered in planning and implementing
significant software process improvement actions. The lack of a process
focus is demonstrated by the fact that 50% of level 2 organizations do not
track software design errors (CN47).

Regression testing helps to ensure that code changes in a product baseline
which render previously implemented functions inoperable are identified.
When regression testing is not adequately performed, such damage is
generally not found until later in the process, when it is more expensive and
time consuming to fix. Regression testing is a problem for nearly 80%
(CN99) of the organizations in the workshop assessment population,

12jjy peer review we mean a review of a software product (specification, design, code, test plan, etc.) by
peers of the producer(s) of the product for the purpose of identifying defects and improvements. Peer
reviews range from walk throughs to formal inspections, as described in IEEE standard 1028, "Standard
for Software Reviews and Audits."

CMU/SEI-TR-89-1 19

indicating that late problem discovery is a common problem. This situation
can be substantially reduced with relatively simple regression test
procedures.

A further serious need for level 2 organizations carries over from level 1.
Almost one-third of these organizations do not have mechanisms in place to
assure that SQA is evaluating representative samples of the software
process (CN98). It has also been found that many SQA organizations are
understaffed, or their role is ill-defined, or they are not adequately supported
by management. The continuing lack of adequate SQA generally results in
inconsistent use of established methods and procedures. Without effective
SQA, organizations will find it difficult, if not impossible, to improve to level 3.
Until the basic methods and procedures of level 2 are consistently and
effectively applied, further process improvement efforts are likely to be
ineffective.

3.2.2. Acquisition Authorities

Based on the SEI data and experience to date, the relatively few level 2
organizations are currently among the most capable software groups in the
DoD software community. They typically have their costs and schedules
under reasonable control; however, they generally do not have orderly
methods for tracking, controlling, and improving the quality of either their
software or their software process. Further, few of these organizations have
adequate resources or action plans directed at long-term software process
improvement.

Level 2 organizations should concentrate on establishing SEPGs as a focal
point for process improvement. We suggest that acquisition authorities
require organizations to dedicate resources to process improvement,
including initiating and monitoring the actions needed to progress to maturity
level 3. An appropriate vehicle for doing so might be to provide for such
improvement efforts as an allowable cost to the contract, or in the statement
of work. The key needs are for process standardization; improved methods
for design, implementation, and test; and the identification and application of
improved tools and technologies. Typically, the lack of an SEPG means that
no one is responsible for defining metrics, installing an error tracking system,
retaining and analyzing the resulting data, or reporting on progress in quality
or process improvement. While the specific improvement priorities vary
across organizations, the common need is for resources dedicated to
process improvement.

Training is a particularly sensitive problem. Unless the contractor has an
experienced team which is already familiar with the system and its
application and is fully familiar with the languages and tools they are to use,
some training programs are essential. Even with such an experienced team,
some training is valuable. Though specific course needs vary among

20 CMU/SEI-TR-89-1

- I

organizations and training involves some expense, the costs are invariably
less than the hidden costs of trial-and-error methods. Training is expensive,
but not nearly as expensive as not training.

Regression testing is essential for any well-run software project. Without
selective retesting of the system or component to verify that modifications
have not caused unintended effects, there is no assurance that previously
integrated functions still perform and that the system or components still
comply with the specified requirements. Unless adequate regression testing
is routinely performed as changes occur, large numbers of problems are
likely to be found when the complete test suite is run at acceptance testing.
The time used to fix defects and rerun the tests can be substantial when
these activities occur during the final phase of testing. We suggest that
acquisition agencies closely examine the regression test plans of their level 2
contractors.

We also suggest that acquisition authorities require their contractors to
adequately staff SQA organizations and effectively use them. Although a
high percentage of level 2 organizations have SQA organizations in place,
only 31% of them have established methods for ensuring that SQA samples
are appropriately selected. Thus, it is likely that many SQA groups represent
a substantial expense but do not produce measurable benefits for the
organization. If the contractor has an SQA group, the acquisition agency
should require clear evidence that it is being used effectively. Such evidence
should include: an SQA charter signed by a senior executive; approved
standards against which SQA conducts audits; and a record of SQA
nonconcurrences and the corrective actions taken. If an SQA group is not in
place, its effective establishment should be a requirement in the contract.

CMU/SEI-TR-89-1 21

References

1. [BAS84] Basili, V.R., Gannon, J.D., Hamlet, R.G., Yeh, R.T., Zelkowitz,
M.V., "Software Engineering Practices in the US and Japan,"
IEEE Computer, 1984.

2. [CUR88] Curtis, B., Krasner, H., Iscoe, N., "A Field Study of the Software
Design Process for Large Systems," Communications of the
ACM, November 1988.

3. [DRU82] Druffel, L.E., Lt. Col. USAF, et al., Report of the DoD Joint
Service Task Force on Software Problems, Department of
Defense, July 1982.

4. [HUM87] Humphrey, W.S., Sweet, W., et al., A Method for Assessing the
Software Engineering Capability of Contractors, Software
Engineering Institute, (CMU/SEI-87-TR-23, ADA187230.),
September 1987.

5. [HUM88] Humphrey, W.S., "Characterizing the Software Process: A
Maturity Framework," IEEE Software, March 1988.

6. [KIT89] Kitson, D.H., Humphrey, W.S., The Role of Assessment in
Software Process Improvement, Software Engineering
Institute, (CMU/SEI-89-TR-3), March 1989.

7. [OLS89] Olson, T.G., Humphrey, W.S., Kitson, D.H., Conducting SEI-
Assisted Software Process Assessments, Software
Engineering Institute, (CMU/SEI-89-TR-7), February 1989.

8. [REI88] Reifer, DJ., Final Report: Software Quality Survey, American
Society for Quality Control, 1988.

9. [THA82] Thayer, R.H., Pyster, A., Wood, R.C., "Validating Solutions to
Major Problems in Software Engineering Project
Management," IEEE Computer, August 1982.

22 CMU/SEI-TR-89-1

Appendix A. Key Questions and Response
Profiles

This section of the report provides a view of selected portions of the response
data from workshop assessments and SEI-assisted assessments. Figures
A.1 and A.2 show negative response profiles (with respect to those projects
rated overall to be at level 1) for level 2 key assessment instrument
questions. Table A.1 provides the text of the same key questions indexed by
control number (CN). For example, Figure A.1 shows that of the workshop
assessment projects reported to be at level 1 (96 out of a total of 113
projects), 64% responded negatively to question CN46 ("Are profiles of
software size maintained for each software configuration item, over time?").
Question CN46 is a key question for advancing to level 2.

Figures A.3 and A.4 show negative response profiles (with respect to those
projects rated overall to be at level 2) for level 3 key assessment instrument
questions. Table A.2 provides the text of the same key questions indexed by
control number.

CMU/SEI-TR-89-1 23

Figure A.1 Percent Negative Response of Level 1 Projects to
Level 2 Key Questions - Workshop Assessment Data
(96 Data Points)

100 -r

p
e
r
c
e R
n e t s

N P
0

p n
g s
a e
t
I
V

e

CN42 CN46 CN48 CN43 CN44 CN24 CN84 CN6 CN87 CN77 CN14 CN96

Key Question Control Numbers

24 CMU/SEI-TR-89-1

Figure A.2: Percent Negative Response of Level 1 Projects to
Level 2 Key Questions - SEI-Assisted Assessment
Data (41 Data Points)

100 -r

p
e
r
c
e
n
t

N
e
g
a
t
i
v
e

R
e
s
P
o
n
s
e

CN42 CN46 CN48 CN43 CN44 CN24 CN84 CN6 CN87 CN77 CN14 CN96
Key Question Control Numbers

CMU/SEI-TR-89-1 25

Table A.1: Key Questions for Level 2

£N13 Question

6 Does the Software Quality Assurance (SQA) function have a
management reporting channel separate from the software
development project management?

14 Is there a software configuration control function for each project that
involves software development?

24 Is a formal procedure used in the management review of each
software development prior to making contractual commitments?

42 Is a formal procedure used to make estimates of software size?

43 Is a formal procedure used to produce software development
schedules?

44 Are formal procedures applied to estimating software development
cost?

46 Are profiles of software size maintained for each software
configuration item, over time?

48 Are statistics on software code and test errors gathered?

77 Does senior management have a mechanism for the regular review of
the status of software development projects?

84 Do software development first-line managers sign off on their
schedules and cost estimates?

87 Is a mechanism used for controlling changes to the software
requirements?

96 Is a mechanism used for controlling changes to the code? (Who can
make changes and under which circumstances?)

13CN ■ control number - the control number uniquely identifies a particular question and is invariant
across versions of the assessment instrument. These questions are presented here in control number
order.

26 CMU/SEI-TR-89-1

Figure A.3: Percent Negative Response of Level 2 Projects to
Level 3 Key Questions - Workshop Assessment Data
(16 Data Points)

100 T

p
e
r
c
e
n
t

N
e
9
a
t
I
v
e

R
e
s
P
o
n
s
e

CN20 CN99 CN19 CN47 CN15 CN98 CN23 CN83 CN95 CN59 CN61 CN91 CN92
Key Question Control Numbers

CMU/SEI-TR-89-1 27

Figure A.4: Percent Negative Response of Level 2 Projects to
Level 3 Key Questions - SEI-Assisted Assessment
Data (12 Data Points)

p
e
r
c
e
n
t

N
e
g
a
t
I
v
e

R
e
s
P
o
n
s
e

0
H h

0
1 h

CN20 CN99 CN19 CN47 CN15 CN98 CN23 CN83 CN95 CN59 CN61 CN91 CN92
Key Question Control Numbers

28 CMU/SEI-TR-89-1

Table A.2: Key Questions for Level 3

CN Question

15 Is there a software engineering process group function?

19 Is there a required software engineering training program for software
developers?

20 Is a formal training program required for design and code review
leaders?

23 Does the software organization use a standardized software
development process?

23 Does the software organization use a standardized and documented
software development process on each project?

47 Are statistics on software design errors gathered?

59 Are the action items resulting from design reviews tracked to closure?

61 Are the action items resulting from code reviews tracked to closure?

83 Is a mechanism used for ensuring compliance with the software
engineering standards?

91 Are internal software design reviews conducted?

92 Is a mechanism used for controlling changes to the software design?

95 Are software code reviews conducted?

98 Is a mechanism used for verifying that the samples examined by
Software Quality Assurance are truly representative of the work
performed?

99 Is there a mechanism for assuring the adequacy of regression testing?

CMU/SEI-TR-89-1 29

UNLIMITFn, imr.T AQQTFTFn
»CCURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1*. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE

2«. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-89-TR-1

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-89- 001
6* NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INSTITUTEl SEI

Sb. OFFICE SYMBOL
(If applicable)

7«. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
Sc ADDRESS (City. Statt and ZIP Cod*)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADDRESS (City, State and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

•a. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

8c ADDRESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH. PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Clauification)

THE STATE OF SOFTWARE ENGINEERING PRACTICE: PRELIMINARY REPORT

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

Watts S. Humphrey, David H. Kitson, Tim C. Kasse
13«. TYPE OF REPORT

FINAL
13b. TIME COVEREO

FROM TO

14. DATE OF REPORT (Yr.. Mo.. Day)

February 1989

15. PAGE COUNT

31.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverie if neceuary and identify by block number)
software assessment capability evaluation
software process maturity model
assessment instrument software process maturity
self-assessment software engineering capability

19. ABSTRACT (Continue on reverte if necetsary and identify by block number)

This is the first in a series of SEI reports to provide periodic updates on the state of
software engineering practice in the DoD software community. The SEI has developed, and
is refining, a process framework and assessment methodology for characterizing the
processes used by software organizations to develop and evolve software products. This
report provides a brief overview of the process framework and assessment approach,
describes assessment results obtained to date, and discusses implications of the
current state of the practice for both customers and suppliers of DoD software.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITEO XX SAME AS RPT. O OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22». NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER
22b TELEPHONE NUMBER

{include Area Code)
(U2) 268-7630

22c OFFICE SYMBOL

SEI JPO

I C CT Tf r*n

^ZZT Software Engineering Institute

Our distribution records show that you received a copy of the Software Engineering
institute technical report entitled The State of Software Engineering Practice: A Pre-
liminary Report and bearing the report numbers CMU/SEI-89-TR-1 and ESD-
TR-89-Äfc &Of

We recently discovered several data-entry errors in that technical report. Enclosed
are corrected versions of the pages containing the errors. Please insert these
change pages into your copy of the report.

Sincerely,

Purvis M. Jackson
information Management
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890
(412) 268-7700

