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I. INTRODUCTION

There are certain types of flight vehicles, namely the Kinetic Energy (KE)
projectiles, which must have relatively large body grooves to hold a sabot
which functions as a bore-rider inside the gun tube and which separates at a
short distance from the muzzle of the gun. These grooves, which usually
extend over half of the total length of the projectile, increase the axial
force coefficient and therefore the drag. The grooves also affect the aerody-
namics of the fins of these projectiles; however, this effect will not be con-
sidered in this study.

In recent years, long KE projectiles (those with L/D > 20) have been
receiving closer attention due to their terminal ballistics effectiveness.

For these long penetrators, the groove drag is an dincreasingly important
component of the total drag of the vehicle, It is for this class of projec-
tiles that a method was needed for predicting the increase in the drag coeffi-
cient due to these grooves. Reference 1 offers wind tunnel results for this

class of projectiles and represents a basis for validation of the models as
well as a basis for a correlation study.

Because the groove drag is small for shorter projectiles (L/D < 20) at
Mach number of 5, not many investigations have been carried out for its study.

Also, because the effect of grooves on aerodynamics is only of interest to
projectile designers, no investigations have been made in the corresponding

missile aerodynamics studies, Therefore, most short KE projectiles are
currently designed without any consideration to groove drag. Among the avail-

able literature on the subject, Reference 2 offers an expression for calcula-
ting ACD , without any basis and without any reference to any experimental

g
data for validation, Reference 3 offers a more logically acceptable expres-
sion which is validated using four data points; but which is shown to provide

much higher values (300% higher) in comparison with the present wind tunnel
data. In addition, Reference 3 does not disclose the Reynolds number of the
wind tunnel tests

With only poor prediction capabilities being available, the present work
was pursued to fill a void and to provide a prediction capability based on the

correlation of the experimental data of Reference 1 as well as other data
provided by Reference 4, The results of this correlation will be compared to

the predictions of both References 2 and 3.

The present correlations include the direct effect of the groove pitch (or
the groove depth, since they are directly related for all standard threads).

The present analysis also allows for multiple groove types on the same bhody.
An example for this particular projectile configuration is shown in Figure 1

together with the general nomenclature.

. The present work 1limits itself to zero angle of attack. Therefore,
distinction between drag and axial force vanishes and the drag coeefficient

will be used throughout this report.




I1. WIND TUNNEL DATA AND TEST

Reference 1 documents tests performed at the supersonic wind tunnel of the
Naval Surface Weapons Center Laboratory at White 0ak, Maryland, The tests
were performed at Mach numbhers 3.5, 4.0 and 5.0, with the majority of tests
run at M = 5,0 ., The Reynolds number for the tests varied between 4.0 through
5.8 x 106 per foot (12.2-19.0 x 10® per meter).

A11 the models had a diameter of 0.94 inch (23.9 mm), The models were
sting-supported. Four lengths were tested, with L/D of 20.59, 25.59, 3n.58
and 35.59. Both body-alone (without fins) smooth-surface and body-alone
grooved-surface configurations were tested,

The groovings are made on two body sections, a forward and a rear section.
The forward section is always grooved while the rear was either smooth,
threaded or grooved. The notation (5/T) is used to denote Grooved forward
section and Threaded rear section. Figure 2 displays the three basic combina-
tions together with the totally smooth body. Tests were also performed with
and without fins; however, the present work excludes the cases with fins in
order to obtain a better evaluation of the effects of grooves on the axial
force coefficient., The grooves were 8 per inch (i.e., pitch = 1/8 inch, or
3.17 mm) while the threads were 32 per inch (pitch = 1/32 inch, or 0.79 mm).

Four different noses were tested and they closely approximate the 10° cone
(semi-vertex angle). They are two Sears-Haack noses and a bi-conical shape in
addition to the 10° cone. In the present study, the nose configuration does
not affect the results since only the drag increase between smooth and grooved
configuration, ACD , is considered. Most of the tests, however, were run with

the Sears-Haack nose, This nose configuration and details of the forward and
rear grooves are shown in Figure 2b.

Examination of the wind tunnel results of Reference 1 indicated that the
measurements are not always perfect and the accuracy of the result may be
affected. For example, the axial force coefficient for some cases did not
exhibit symmetry for positive and negative a. Some obvious errors for other
cases for the normal force existed, usually for negative a. With such long
projectiles being supported by a sting from its base, possible rod hending may
partially explain the source of asymmetry with respect to a,

Seventeen test cases were identified from the data of Reference 1 and they
are listed in Table 1. The total pressure of the wind tunnel varied between

2.4 and 8.2 times the atmospheric value.

A second set of data was obtained from Reference 4. This data consisted
of three tests at Mach numbers 3.49, 3.98 and 4.75 with a corresponding tunnel
Reynolds number of 12, 14 and 18 x 10® per foot (39.4, 45.9 and 59.1 x .10® per
meter), respectively, The tests were run at the Vought Corporation wind
tunnel in Dallas, Texas. The wind tunnel model is shown in Figure 3, with
grooving of four grooves per inch (pitch = 0.25 inch or 6.35 mm). Both smooth
and grooved models were tested. The results and test conditions for these

cases are listed in Table 2.




IT1. ANALYSIS AND CORRELATIONS
1. REVIEW OF EXISTING EXPRESSIONS

A quick review of existing expressions will be presented so that
differences and similarities with the present work will be more clear.

Reference 2 provides an empirical relation in the form of:

ACD

! = [0.00025 M3+ 9 19] * G (1)

TS8B

where ACD is the incremental drag coefficient due to grooves, based on
g  the projectile reference area A.,¢ (= nD?/4), where D is the

reference diameter for the projectile

M is the free stream Mach number of the projectile
lg is the length of the grooved pértion, in calibers
CDTSB is the body-alone total drag coefficient (including base drag)

for the smooth body (i.e., without grooves) configuration,

Reference 3 provides the following expression for computing the
incremental dragq.

5y = 1.6 =2+ C (2a)
Osrsp

where 1 is the length of the cylindrical portion of the body, in
calibers,

CDSFSB is the drag coefficient due to skin friction of the smooth

body of the cylindrical portion, lc, of the body,

C = (4d 1)+« ¢ . 2h
DsFse cel f (20)
The skin friction coefficient, C¢, is defined as:

T

Cp = ~—F—
0.50V2A ¢

where 1 is the skin friction shear stress at the projectile surface

and de is the diameter of the cylindrical portion, in calibers.

3




Reference 3 did not specify the expression used for c¢, in its application

to the projectile configuration shown in Figure 4, In this study, an expres-
sion for ce for turbulent flow was used from Reference 5 as:

0.455(1 + 0,2m2)"0+32

Ce = (2¢)
f 2.58
(10910 ReL)

where ReL is the Reynolds number based on the total length of the projectile.

2. PRESENT ANALYSIS

The present approach is similar in general to the data correlation
approach used earlier in Reference 6. The influencing physical parameters are
first identified then some of the wind tunnel data are used to determine the
constants in the correlation, Finally, the rest of the data is used for
validation of the obtained expressions, :

a, First expression This expression is targeted only for "“typical" KE
projectiTes as shown 1n Figure 1. More specifically, the "typical” KE projec-
tile is defined as one with nose cone semi-vertex angle less than 9°, having a
very small nose radius < N.03 N, with no hoattail, and having one main cylin-
drical diameter. This expression is not valid for KE projectites shown in
Figure 3. This expressicn is formulated in the form of Eq. (1) (of Reference
2), where the hody-alone, smooth, total body drag coefficient is known, and
only the incremental groove drag is required. This approach suits projectile
designers where the groove drag is considered after all other design and shape
requirements have been fulfilled,

First, considering the physical parameters that do affect the groove drag,
one might write:

60y = F(My Rys 10s Py 0y x)

g
where R, is the Reynolds number per unit length,
p is the groove pitch (p = 1/n where n is the number of grooves
per unit length),
h is the depth of the groove,
Xo is the distance from the nose tip to the first groove.

The parameter x, was neglected based on the results of Reference 3 which

)
indicated no measureable effect on ACn of slightly varying x,. Also, the
g

4




parameter h was eliminated since both p and h are directly related for all
standard groove geometries. Therefore, the expression will be a function of
the pitch, p, which also can usually be more easily measured than h, The
above expression is then simplified and written as:

aC, =[FMM, R ,1,p)]-C .
ng e 9 nTSB

Based on the data for the 17 cases of Reference 1, the first correlation in
the present work for typical projectiles is introduced as:

}

sy = |2.05 TF, « 2. MF, . RF] - C (3a)
", [ 177 1 1) " V0

where TF1 is the Thread fgctor defined as:

2
TF) = 0.84 + 0,117 < P ) - 0,007<__E-_) (3b)
0.031 0.031
where p is the groove pitch in inches,
MFy is the Mach number Factor introduced as:
MF, = 1 , (3¢)
M (1.453 - 0.067M_)
RFy is the Reynolds number Factor introduced as:
6\N.8
RF, = <———-———4‘2 < 10 ) : (34)
Re
and Re is the Reynolds number per foot,

For multiple grooves with different pitch on the same projectile, Eq. (3a)
takes the form:

: (TFII 191 + TF, 192 .
b = |2.05 . « RF. |- C (4)
D 1 1 Dreg

L

where TF11 and TF12 are the thread factors for the threads of pitch ) and
P2, respectively.
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One can notice the large differences between the expression of Eq. (3a)
and the expression of Eq. (1) of Reference 2. The latter does not include
Reynolds number dependence or groove pitch dependence. Further, ACD

g
increases with the increase in Mach number, while in reality it decreases with
Mach number., Also, Eq. (1) depends directly on 1 while Eq. (3a) is found to

be more appropriate if 1 /L is used.

Finally, Eq. (1) dis found, as will be shown in the results, to give
results as high as 10 times the experimental value, Equation (3a) follows the

data within +13%.

b. Second expression For non-typical KE projectiles, as shown in Figure
3, it is not adequate To use ACD as an input. This is because large varia-

TSB
tions in nose or boattail angles can cause large changes in AC even though
the groove drag on the hodies will not change, TSB

Therefore, an approach like that of Reference 3, which relates only to the
cylindrical part of the projectile (i.e., excluding the nose and the bcat-
tail), should be more appropriate. Therefore, this expression is targeted to
be more general than that of Eq. (3).

Based on the data of References 1 and 4, the second correlation for the
general projectile configuration was found to have the form:

. =|2.59TF, - 2« MF, + RF. |+ C (5a)
Dy 2o % sese
where TF, = (1 + 0.1< D a> , (5b)
0.031

L

1,5
M-[3.164+3.225 M - 0,156 M " ]

6 \N.6
ap. L [x 108 , (s)
2 R
€

and CDS is as given by Eq. (2b).
FSB




For configurations with multiple thread types, Equation {5a) hecomes:

TFoy 1+ TF o, 1

21 9 22 9
] . MFZ « RF, CD . (6)
¢

ACD = 2,59 -

q

Comparison of the present expression of Eq. (5) and that of Eq. (2) (i.e.,
expression of Reference 3) reveals the following facts. First, the present
analysis includes explicitly the effects of Mach number, groove pitch and
Reynolds number. None of these effects is considered by Reference 3., Second,
as will be shown, the results of applying the expression of Reference 3, in
general, overpredict the wind tunnel data by 300%.

Since the second correlation expression (Eq. (5)) is more general, i.e.,
can be applied to all KE confiqurations (including the configuration of Figure
3), it is recommended over the first correlation expression. However, in
cases where both expressions apply, the results of those two expressions
should be very close to each other, :

[V. RESULTS AND COMPARISONS

Equation (3) of the first expression was first applied to the confiqura-
tions of Reference 1. Seventeen cases were computed, Also the expressions of
References 2 and 3 were applied and compared with the experimental data.

Figures ha-4 show the variation of the incremental drag with the increase
of Mach number for the four different L/D's of 20, 25, 30 and 35, respective-
ly. Figure 53 shows the predictions of Reference 3 to be twice as high as the
data, while those of Reference 2 are much higher. Also, the trend given by
the expression of Eq. (1) of Reference 2 is in the wrong direction compared to
the data. Figures 5b-d all show the same features as stated above and also
indicate the accuracy of the present correlation.

Figures 6a-c show the effect of the length of the projectile (and hence
the length of the grooved section) on the incremental drag, for each of the
Mach numbers of 3.5, 4.0 and 5.N. The expressions of References 2 and 3 over-
predict the results by more than 100% as seen in Figure 6a. The same results
are repeated in Figures 6b and 6¢c. In all cases, the present correlation
predicts the results very accurately, It is of interest to notice that in
Figure3gc, Eq. (1) of Reference 2 overpredicts 4Cp by more than ten times for
L/D = 35. g

Figures 7a-d focus on the variation of 1g/L, at Mach 5.0 where most of the

tests of Reference 1 were made for the same four L/D's of 20, 25, 30 and 35.
The same good agreement between precent expression predictions and the experi-
mental data persist., Also, one notices the considerable and consistent over-
prediction of the expressions of References 2 and 3 being evident.




Figures 8a-d re-cap the results as variation of the incremental drag with
the groove type. The same agreement with the data persists for the present
expressions while the expressions of Reference 2 and 3 consistently overpre-
dict the results as shown in Figure 8a. Figures 8b-d gives the same trend
described above,

A summary of the present predictions of Eq. (3), and the wind tunnel data
of References 1 and 4 is given in Table 3.

The second expression, Eq. (5), was applied to the test case of Reference
4 where the first expression, Eq. (3), i1s not applicable. The results as
shown in Figure 9 are in good agreement considering the complexity of the
shape, It is to be noted that the present results underpredict the data.
This underprediction is expected since the grooves are known to increase the
boattail drag.’ This trend has also been shown in Reference 7 where serrated
body ends were tested in wind tunnels at subsonic speeds, causing an increase
in the base drag. The effect of grooves on boattail drag is not included in
this study; however, this effect explains why the present predictions for this
projectile configuration must be smaller than those of the wind tunnel,.

The second expression, Eq. (5), was then applied to some of the cases of
Reference 1 to see how closely the two correlation expressions compare., Nine
of the seventeen cases were recomputed and the results were very similar.
Those results and a comparison with the earlier results of the first
expression, Eq. (3), are tabulated in Table 4.

A summary plot for the comparison of the present two prediction correla-
tions, Eqs. (3) and (5), with the wind tunnel data is given by Figure 10. The
predictions are shown to be in good agreement with the data.

It is felt that the most influential factor is the Reynolds number,
followed by the Mach number., The incremental groove drag decrease signifi-
cantly with increase in Reynolds number. It also increases rapidly with the
decrease of Mach number towards the sonic value., The present correlations are
only to be used for M 3> 3.5 since Mach number function was targeted for that
region only. It is found that for M < 3.5 the Mach number function may
greatly overpredict the expected answer,

V. SUMMARY AND CONCLUSIONS

A fast prediction capability for computing the incremental drag of Kinetic
tnergy projectiles due to surface grooves at supersonic speeds has been
established.

Physical variables affecting the groove drag have been identified and
studied with respect to their importance.

Two correlations with wind tunnel data are established for typical and
general KE projectile configurations. The second correlation is recommended

since it can be applied to many KE projectile configurations. The correlation
expressions are valid only for the Mach range 3.5 <M < 5,5 and for a = 0°.
Any application for Mach numbers less than 3.5 will yield overpredicted
results,

8




Comparison with other existing prediction expressions heavily favored the
present correlations. The accuracy of these present correlations is +20%
while the existing prediction methods of References 2 and 3 can be as high as
+1000% and +300%, respectively.

Finally, the Reynolds number is expected to play a significant role. The
incremental drag decreases significantly with the increase of Reynolds number.
It is hoped that more tests will be available at the Reynolds number of
35 x 108 per foot rather than the present values of 4-6 x 105 per foot. These
tests could be run in cryogenic wind tunnels and the results further used to
validate the present correlations.
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Figure 1. General configuration and nomenclature
for a Kinetic Energy projectile.
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TABLE 1. Case Designation and Test Conditions of Reference 1.
Total Cylindrical
Case | length, L Length and Type* of Threads lTength, 1. Mach Re per ft ReL x 1066
No. (caliber) ]91 {caliber) 192 {caliber) (caliber) Number x 106 (based on L)
1 6.366(G) - 5.0 5.79 9.32
2 6.366(G) 4,051(T) 3.5 4.15 6.68
20.59 10.417
3 6.366(6) 4.051(T) 5.0 5.65 9.09
4 6.366(6) 4.051(G) 5.0 5.56 8.94
5 9.392(G) - 5.0 5.68 11.36
6 9.392(G) 6.028(T) 3.5 4.19 8.38
25.59 15.420
7 9.392(6) 6.028(T) 4.0 5.23 10.45
8 9.392(6) 6.028(T) 5.0 5.41 10.81
9 9.392(6) 6.N28(G) 5.0 5.88 11.76
10 12.408(G) - 5.0 5.71 13.65
11 3n.58 12.408(G) 8.004(T) 20,412 5.0 5.71 13.64
12 12.408(G) 8.004(6) 5.0 5.76 13.77
13 15,424(G) - 5.0 5.65 15.72
14 15.424(G) 9.996(T) 3.5 3.79 10.55
35.59 25.420
15 15.424(G) 9.996(T) 4.0 4,49 12.48
16 15.424(G) 9.996(7) 5.0 5.70 15.83
17 15.424(G) 9.996(G) 5.0 5.81 16.15
* TYPE: (G) for grooves (B grooves per inch)

(T) for threads (32 threads per inch)
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TABLE 2. Case Designation and Test Conditions of Reference 4.

C aC
N
Dg
Case Mach Re per ft Wind Tunnel Wind
No. Number x 1076 Grooved | Smooth Tunnel
Body Body
18 3.49 12 0.280 N.255 0.025.
19 3.98 14 0.227 0.208 0.019
20 4.75 18 0.196 0.186 0.n010
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TABLE 3. Comparison of Present Predictions with Data of References 1 and 4.

o ACDg
Wind Tunnel
Case Present
No. Grooved | Smooth Wind Tunnel | Predictions
Body | Body Eq. (3)
1 0.213 | 0.197 0.016 0.0193
2 0.384 | 0.310 0.074 0.0779
3 0.231 | 0,197 0.034 N.0294
4 N.238 | n.197 0.041 n.N331
5 0.256 | 0.236 n.an20 n.0275
6 N.434 | 0,340 0.094 0.1005
7 0.328 | 0.280 n.048 0.0615
8 0.265 | 0,236 0.029 0.0429
9 0.277 | 0.236 0.041 0.0434
10 0.282 | 0,258 0.024 0,0312
11 0.308 | 0,258 0.050 0.0469
12 0.327 | 0.258 0.069 0.0509
13 0.293 | 0,248 0.050 0.0407
14 0.578 | 0.400 0.178 0.1532
15 0.450 | 0.357 0.093 0.1035
16 0.347 | 0,297 0.049 0.0603
17 0.354 | 0,298 0.056 0.0656
18 0.280 | 0.255 0.025
19 0.227 | 0.208 0.019 App??gab1e
20 0.196 | 0,186 0.n10
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TABLE 4. Comparison of the Present Two Correlations.

AC
Case Dg
No.
Present Present
Wind Predictions Predictions
Tunnel Eq. (3) Eq. (5)
2 0.074 0.0779 0.0805
3 N.034 0.0294 0.0334
6 0.094 0.1005 0.1040
7 N.048 0.0615 0.0650
8 0.029 0.0429 N.0415
11 0.050 0.0469 n.,0461
14 N.178 0.1532 N.1494
15 0.093 nN.1035 0.0937
16 0.049 N.0603 0.0514
18 0.025 0.0226
Not
19 0,019 Applicable 0.0144
20 0.010 0.0083
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Greek Symbols

Q

pﬂ

LIST OF SYMBOLS

projectile reference area, (mwD?/4)
axial force coefficient
drag coefficient, drag force/(0.50,V2A.q¢)

body-alone total drag coefficient (including hase drag) for
for the smooth body (i.e., without grooves) configuration

drag coefficient due to skin friction of the smooth body of
the cylindrical portioan, 1£T'of the body — -

skin friction coefficient

diameter of the cylindrical portion, in calibers

reference diameter of the projectile

groove depth

kinetic energy

length of the cylindrical portion of the body, in calibers
axial length of the grooved portion of the projectile body

reference length of the projectile, usually the total length
except as otherwise noted

projectile Mach number
groove pitch
Reynolds number per unit length

Reynolds numher based on the total length of the projectile

projectile velocity

distance from the nose tip to the first groove

angle of attack
free stream air density

shear stress at the wall
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