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1.0 INTRODUCTION

The Performance Modeling of Autonomous Electro-Optical Sensors (PM) program is a

basic research effort aimed at the fundamental analysis of inmage processing methodology.

To this end, an investigation into the the use oi LADAR imagery for target recognition was

initiated. Preliminary research and methodology development occurred from November

1986 to May 1987. Research and implementation are continuing and this report details

the investigation performed and results obtained during the period from May 15, 1987

through November 15, 1987.

During the previous six months, the LADAR target recognition investigation has fo-

cused on the area of object segmentation. The issues that were addressed include:

%--Surface segmentation via region growing

4 Robust planar surface estimation,

" Background plane removal/

e Smoothing of the image prior to the estimation of derivatives J

'-s Crease edge detectionr

The introduction to Section 2.0 contains a general problem definition and a brief method-

ology overview. The variou!3 subsections describe those aspects of segmentation that were

addressed in this reporting period. Specific techniques being investigated are detailed,

along with any pertinent demonstrations that have been performed. More information

on the overall recognition methodology and matching in particular A o tained in 4he

Second Semi-Annual Report [71. Areas of future work and investig.tion ar ummnarized

in Section 3.0.



2.0 TECHNICAL PROGRESS

In the Second Semi-knnual Report [7] we described our approach to target recognition
based upon laser radar sensor information. This approach emphasizes (i) the 3-dimensional
geometry of the targets and the scene, (ii) both local and global features, and (iii) model.
based graph matching. In [7] an overview of segmentation, description, and matching
were given, and detection was touched upon briefly. The major focus of investigation
during that period involved matching, with a proof of concept example demonstrating the
feasibility of the selected approach. During the last six months, the focus has shifted to
the development of an effective segmentation methodology.

This report contains a detailed discusion of the areas that were investigated during the
segmentation study. Overviews of the algorithms that are being researched are presented
along with examples of the associated experimental results.

2.1 Segmentation/Description Overview

"With range imagery the segmentation step involves determining the extended structure
of an object within the given target window. Specifically, this procedure entails: (i) the
detection of target boundaries, (ii) the location of edges between surfaces of the target,
and (iii) the determination of target surfaces, but not necessarily in that order.

Segmentation of intensity images is a well studied problem in image undeistanding
and computer vision applications. On the contrary, segmentation of range images for
target/background separation, and for detecting edges between surfaces is a relatively new
research topic.

There are two distinct classes of methods for detecting edges. The first is to search for
edges directly by hunting for properties that distinguish an edge. There are many different
edge detectors of this type, some of which are more robust to noise than others. Another
method for finding edges is indirect. First, the surfaces of the object are identified and
then the intersection of two adjacent surfaces indicates the presence of an edge. Through
the combination of these two approaches, more accurate estimates of both surface and
edge information can be obtained.

An iterative region growing technique for identifying surfaces also provides a "para-
metric" representation of the surfaces. Such a represent. Lion is critical fer effective object
description. Specifically, surface parameterization is reqt red to reduce the description of

a geometric entity to a small set of measures which are invariant to rotations, translations-,
aind changes in scale. In other words, it is he first step in forming a general object descrip-
tion that can be employed for matching. '; ' by i iing a surface.-based segmentation1
if) conjunction with edge detection the fu(• 6miý, of segmentation and initial description
can be accomplinhed sinmltaneously with a high degree Of accuracy.

lBesl and Jain III have developed a fast region growing segmentation algorithm whi h
F tarts from seed regions based on uniforir invariant curvature classificatimi and proc vd,

by parallei, iterative region growing. We are using this surface-based algorithm as tho,

cOre Of our segrnentauiol) approiwh. Section 2.2 describes this technique along with mi'r

modifications. and presents ,iome exaynpls of its behavior.

2' m m m (l i -• •



"One of the most important components of the region growing algorithm is the surface
estimation which is effectively reduced to planar estimation. During preliminary tests of
the matching technique in February 1987 [4), it was observed that planar estimation of
the noisy range data was extremely erratic when a least square fit was used. Therefore
a comparison study of various planar estimation techniques was performed. Section 2,3
describeq the various estimation methods that were compared as well as the tests that were
performed and their results.

Another issue which arose was the appropriate estimation of thresholds used during

the region growing process. Many of the thresholds are computed from the image, but
may be set incorrectly if too much background is included in this computation. This
occurs because the background pixels often have a larger variance from a planar fit since
(i) they generally don't come from exact planes and (ii) a high angle of incidence makes'
the footprint of the pixel cover a wide interval of ranges. Ideally the thresholds should be
calculated only from pixels on the target itself. Using LADAR imagery alone though it
is not easy to extract the target boundary. Section 2.4 discusses the problems associated
with finding and eliminating a large percentage of background pixels during pre-processing
for the region grower.

During the region growing, and for most types of edge detection, it is necessary to esti-
mate various partial derivatives from the image. Due to noise and quantization error in the

image, these estimates are often unreliable. Smoothing can be used to improve derivative
estimation if it is performed appropriately. Section 2.5 discusses how regularization can

be employed to optimally filter an image for a specified operation.

The two types of edges that occur in range imagery are (i) jump edges which are formed
wh*.n there is a discontinuity (other than a range ambiguity) in the relative range, and (ii)
crease edges, which are derived from discontinuities in orientation without discontinuities in
range. Jump edges can be identified quite accurately either directly, or indirectly using the

region growing algorithm. Crease edges can be more difficult to identify via region growing
and their location may vary. Therefore an alternate crease edge detection technique has
been implemented to supplement and correct the output of the surface-based segmentation.

The crease edge detection technique used is a variant of that proposed by Mitiche and
Aggarwal in 181. This technique is described in section 2.6 and an example is presented
demonstrating its function.

2.2 Surface-Based Segmentation

The goal of surface-based segmentation is to accurately estimate the true underlying surface
shape of objects in LADAk range imagery. The technique developed by Besl and Jain III
employs iterative region growing, and is based upon two significant assumptions regarding
the characteristics of targets in range data.

AV objects of interest may be iepresented by piecewise smooth surface-s.

IPlanar and/or quadratic surfaces are suffi(:ient to model targets under typical con-

ditions of eriseor resolutiont



SSeed regions form the starting point for the region growing process. They should
represent small, homogeneous regions not containing any boundary points and be a reliable
representative of the surrounding surface curvature. Besl and Jain use the Gaussian (K)
and mean (H) curvature to form a HK-Sign map which divides the image into regions
belovging to an invariant curvature class. The eight possible curvature classes - peak, pit,
ridge, valley, flat, minimal, saddle valley, and saddle ridge - are used as a starting point
when forming seed regions. Gaussian and mean curvature are defined and discussed in
more detail in [1,71.

A sumanary of the major steps involved in this algorithm is presented here.

1. Divide the image into regions of invariant surfsce class. This is done using the
HK-Sign map.

2. Take the largest connected region of invariant surface class and contract it so that
only points interior to the region remain. This is the seed region.

3. Fit a plane (or higher order surface) to the seed region. This is the estimated surface.

4. Search for all the points in the image that are approximately fit by the estimated
surface and find the largest connected subset which overlap& the seed region. This
becomes the new seed region.

5. Check conditions for stopping. If region growing is to continue go bac. to step 3.

There are a variety of conditions related to stopping at this point. Briefly, the more
important checks involve (i) the error in the surface fit vs. a calculated threshold, (ii)
the relative change in region size since the previous iteration, and (iii) the current
number of iterations.

6. If the final region is acceptable then add it to the surface list and remove the points
in that region from the surface class image. Otherwise, remove the original seed
region points from the surface class image. This is done to prevent looping caused
by repeatedly trying to fit the same surfaces. The acceptance of a region is also based
upon a variety of conditions, related largely to region size, error of fit, and whether
this region is contained within a previously accepted region,

7. Go back to choose another surface class region in step 2.

The purpose of this investigation was to determine whether this technique could be
effectively used for segmenting surfaces of vehicular targets. To address this question
several alterations were made to BesI' algorithm.

Initial rurs with the algorithm showed a tendency to utse a parabolic fit, over the
entire target. Since the target tjpes of interest are composed of planar surfaces, the
surface fitting was restricted to plants. This restric:tion is being used for these initial
tests and may be relaxed later.

4



* The planar surface fitting is being performed using an estimation technique that our
analysis showed to be superior to least squares under contaminated noisy conditions.
This tedcmiqae is calied M-es.timate-. It is presented in section 2.3 along with thz
tssts comparing it to alternative estimation methods.

With the addition of M-estimates for plane fitting, a portion of the code which
attempted to remove outliers in a very adhoc manner was removed. M-estimates
dov'n-weights the real outliers much more precisely.

* The variance of the gradient in the background was often higher than on the target
itself, and many of the thresholds are set based upon the perceived gradient variance
in the entire image. Therefore, the thresholds were being skewed due to background
roise and the segmentation of subregions within a target was poor or non-existent. By
masking out a sizable fraction of the background pixels when calculating thresholds
the performance was much improved. Since surface segmentation generally occurs
after the target is mostly separated from the background, a mask is very appropriate.
Section 2.4 discuwoes bow the background masks can be obtained.

The region growing algorithm does not take into ccnsideration any explicit edge
information. Jump edges are usually not a problem since a region will not easily
grow beyond an existing jump edge. On the other hand, crease edges are not easily
accounted for since surface fitting alone may grow beyond simple discontinuities in
orientation. Therefore code has bý mn added that can be used to limit region growth
based upon a mask. Such a mask would be made based upon crease and jump edges
in the image. This option has been tested and works functionally. It could prove
very effective when integrating other types of sensor information. For example, edge
information provided by a passive IR image could be taken into account.

So far we have seen that the target regions can be segmented into separate planar
surface regions, and the reconstruction image visually resembles the original image with

much less noise. But we have found that oveisegmentation often occurs, with too many
subregions being formed. Post processing to merge similar regions that are adjacent would
help eliminate this problem.. Crease edge detection will be used at this point to help
determine if two regions are distinct or if they need to be merged.

2.3 Robust Planar Surface Estimation

'Ihis investigation was initiated when it was observed that the planar fits that were being
found for sectioni of range imagery were highly erratic. Error in surface estimates may be
due to several different causes.

"* Expected varianCe.

"o Incorrect inodell ing of the noise ptoCe:-S.

"* Data samples that do not collie ftrom a s OglI underlying distribution.



e Invalid parametric model,

It is ilways desirable to chose a technique which has low expected variance but other
points must be considered as well. An estimation technique which ,P-"rks well u~ider 3pecific
conditions but degrades rapidly with very minor changes in the uma rlying distribution is
not useful when there is some doubt o to the form of the noise process. Parametric surface
estimation techniques generally assume all the data points belong to the same underlying
distribution. For instance if gaussian noise in the only problem, then the generally accepted
estimation technique is lemt squares regression. When corrupting data which belongs to a
different underlying distribution is present then the original surface estimation technique
will have degraded performance. A problem also arises when it is suspected that the
parametric model is inaccurate. For instance, does all the data really come from one
plane, or does part of it belong to another surface. Some estimation techniques can handle
the addition of corrupting data more readily than others. Since some LADAR returns
may be corrupted and slight missegmentations may also occur, it is important to find a
technique that is robust under these conditions.

In this section we discuss briefly the most promising techniques for planar estimation in
the presence of considerable noise and some corrupting data. Comparisons of their behavior
on controlled data are also detailed. These n ihods inzlude: least squares regression, M-
estimate regression, and the removal of outliers based upon a weighting function. Each of
these techniques is described and compared in the following sections.

Techniques

Initially the data is assumed to come from a plane with additive noise. The position
variable is x -= (1, x., y,), and the corresponding range observation is z,. Then we say

zi /3001 ~xi/301+ Yifj+ i~ A-c -iOi r

where the e, are independent, identically distributed noise processes with mean 0 and
standard deviation a, and 130 (137, '3',/38) are the planar coeflicents. If there are n (lata
points then we have

z X030 1 e

where X is the matrix of x,.

Least Squares: The goal iii leist squares is to estimater/ so as to minimize the difference
between the predicted i-ange v.-ldve,, x,/J, and the observed values, z,, i.e.

111 ( ' X,) /)z

I



As one would hope the expected value of/) is 0'. The covariance of 13 is

Cov( ) = C(XTX)-1 .

Thus, if the region to be fit is a square of area n centered at the origin, then

Var(A) = o'/n

Var(ý,) (12)

n

So if a is large, as is often the case in range imagery, then a large number of pixels is needed
in each region to obtain an accurate fit. The variance of 3o will depend upon the location
of the origin rel!ative to the center of the region being fit, with a larger distance inducing a
larger variance. The slope variances do not change with translation, but they will change
as the shape of the region is altered. For example, a region which is long in the x direction
but narrow in the y direction will have a small variance for 13, but a larger variance for I3.
A more compact region that has the same area would have a larger variance for 3i and a
smaller variance for 12.

However, sometimes the observed data does not exhibit the aforementioned behavior.
In other wordr the above description of e, is incorrect. Specifically, certain data points
may be corrupted by more than the expected noise. Since least squares tries to minimize
the squared error, undue weight may be given to points that are out of line with the rest
of the data. For example, consider the least squarTe regressions displayed in Figure 1.

Z7 Z

Figure 1. Least squares !inear regression when some of the data is corrupted.

There are a variety of ways of dealing with this type of problem. One method which
retains all the data is based upon M-estimnates,

Regression M-estimate: In least squares regression the objective is to minimize the
surm of the squared errors. This gives great importance and control to those data point-

that normally would have a large error. If the sum of the squares is replaced by a

rapidly increasing function of the residuals an M-estimate iUs produced, The problerm t011,1

b)ecornes

7.1



for some cost function p(.). The minimum can be characterized by the following equations:

I -- ),j = 0, k 0, 1,2
0

S: 0,

where

X =

For the test case used here, the cost function rwitches from square to linear once the
residual becomes too large. In particular

¢,(x) = max(--c, min(c,z)) with c = 1.5.

The constent c was chosen based upon the experience of experts in Iirear surface esti-
mation. Additional testing of this technique on LADAR data is needed for an optimal
setting. Since this is a nonlinear function, the reression must he solved by iteration. The
algorithm used is detailed in Huber [51. For more specifics on Lhe asymptotic behavior of

M-estimates in regression see Huber [6] as weitl

Another technique for dealing with data points that are suspected of being corrupted
is to remove them entirely from the least squares computation. First though, these data
points must be identified as outliers.

Outlier identitcation: The identification of outliers in a sample usually proceeds via a
variety of tests with a good deal of human subjectivity involved. Most methods start with

a least squares regression using all the points. Then the residuals from that regression and

know:edge of the design matrix X are used to find outliers.

The residuals from least squares,

-- ,/ (I (X7X)-IT)z Gz,

have a variazcc th;'it changes according to the location of xi. For example, the addition ,f
a constant fs,-t to all ',he data samples will affect the residuals ,. For this reason it is not
wise to con•,pare the residuals directly with each other. Instead there is a "norritalied"
version of the residtu,,

which has a ,ariance of I so that the values are comparable. If the variance o(f 6ifi noiso.,
ao', is vot. known, then it can be estimated from the data

- - -
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A large normalized residual is not the only indicator of a bad data point. In the first
plot in Figure 1 the residual at the last point is not very large but it is still an outlier. This
point has undue influence on the results of the reTgression and is called a leverage point.
The values on the diagonal of the matrix G, gii, are related to the leverage at point i. As
gii approaches 0, the leverage increases.

There are several ways of combining the values of ri and gii into an influence function
that measures the effect of point i on the total regression as compared to the other points.
Two of them are:

(1) Normalized residual Hi(rgii) rý, and

(2) Cook's function H2 (ri,g,,) - r (-g.

Other examples of influence functions are given in [3].
Those data points which have abnormally large values of the influence function are

removed from the data set and least squares regression is repeated without them. This
process can be repeated as needed. Severa! questions arise when using this strategy:

* What is meant by "abnormally large"?

* Fow many points can be removed at once?

* When should the process be terminated?

The variance of the normalized residual is one and the mean is zero, so if the errors are
all gaussian we will have Iril < 2.57 with probability .99. Therefore a value of HI greater
than 6.6 is highly suspect. Cook's function does not have a pre-determined variance which
is constant over all the data. It measures the effective change in ý that would occur if
the i-th data point were removed. The removal of most points will have little effect on
the regression estimate. Those points whose removal causes a change that is significantly
larger than average are potential outliers. These points are identified by estimating the
variance, ,s2, of riiv(1 - gii)/q.ij over the sample data. When H2 > 6.6s2 there is probably

an outlier present.

For the highest accuracy, it would be best to remove only one point -luring each pass.
This allowu the residuals to readjust. and avoids forcing the estimate to remain the same
because all non-supporting data has been removed immediately. Thk, is a very time con-
suming process, however, so there is a tradeoff between time and the potential for ruining
the computration. The potential for eliminating a large set of correct points is avoided if
the number of points that can be removed per pass is fixed to a certain percentage of the
points currently present. In these tests at most 10% of the points are targeted for removal
in the each pass.

The oudlier- removal can continue until no more points meet the outlier criterion. This
is a dangerous practice, however, since the number of points can be become so small that
the results are meaningless. It is important therefore to limit the total number of points
that can be eliminated, as well as the number of outliers renmoved at each stage. For these



tests, the limit on total number of points removed is based upon the size of the perimeter
- since it will often be the perimeter points which are suspect.

Tests

In order to test the planar estimation routines described above, several sets of synthetic

d~ta were generated. Parameters were varied to produce the data sets. These parameters
included:

"* Image Size: Either 5x5, 10xlO, or 15x15.

"* Expected Noise: a = 1, or 5.

" Exztra Corruption: 0% or 10% of the points had added noise with standard deviation
a = 20. The corruption was either Gaubsian or a one-sided Gausaian.

"* Angle of Plane: Either perpendicular to the line of sight 0° or at 45*.

The specifics of the different data sets are crntained in Table 1.

Each of the fitting techniques described in the previous sections was run on all the
synthetic data. Table 2 shows the labels that are used to denote the different algorithms.
To score each run, the interior angle between the computed ncrmal and the true normal
was calculated. The closer this angie, 0, is to zero the better the result. The scores from
each of the runs are shown in Tables 3 and 4. The different algorithms were then compared
by using the Wilcoxon signed-ranks pairwise hypothesis test (see PM LI monthly report

August 1986).

It should be noted that other tests that were considered, but were not performed due t:
lack of time. For instance, a test of data which had corrupted pixels along one boundary,
simulating the effect of slight missegmentations, could have been performed.

Conclusions

First it should be noted that when the noise was increased to a = 5, as in data set DS4,
the planar fits r a 5x5 region were so distorted that they were useless. Because of this,
future tests with a = 5 were not performed on the 5x5 images and the results from the
5x5 images in DS4 were ignored. Also a check of the estimated means and variances of
8 between data sets DS1, DS2, and DS3, and their counterparts in DS7, DS8, and DS9

shows that the viewing angle of the plane does not significantly alter the behavior of the
algorithms. The slight improvement in the angular results when the viewing angle is 45'
is due to slope to angle transformation rather than any actual performance improvement.
The number of pixels which can be seen on the plane is a much more important factor
in determining algorithm performance. Gernerally of course, for a fixed size surface, the
number of viewed pixels will be proportional to the viewing angle.

Table 5 presents the results from the pairwise hypothesis tests, and the conclusioui1;
are summarized here. Each pairwise test that is performed has a potential 'winner" arnd



"loser". When the significance level becomes small enough, there is evidence to support this
winner-los division. If the level is too large, neither algorithm can be called a "winner".
in fact a result as high as 0.3 is meaningless, and comparisons that produced such results
are not presented in lthe table. On the other hand, the appearance of an algorithm pair in
the table does not guarantee that one is better than the other. Confidence in this type of
conclusion must be based upon the significance level. For instance, in data set DS1 we-see
that the M-estimate (M) performed better than Normalized residual outlier removal (N)
and Least Squares (LS) with a fair amount of certainty, and better than Cook's function
outlier removal (C) with less certainty. But, no one of N, LS, or C can be said to have
pertormed better than any of the others.

A brief scan of the results of the Wilcoxon hypothesis testa on the separate data sets,

shows that the M-estimate is often the top performer, while least squares is often the worst.
As the noise increases the least squares estimate appears to perform relatively better than
at low noise levels. In fact when only the expected noise is present least squares is the
best performer, but it is still at a disadvantage when there is extra corruption in the
image beyond the expected noise. Since least squares is the maximum likelihood estimate
when the noise distribution is truly Gaussian it must be concluded that quantization
has significantly distorted the distribution. This is hardly surprising in the case where
a = 1. The performance of the M-estimate depends upon the value of the threshold, c,
which remained fixed in these tests. Ideally this threshold would vary based upon the
characteristics of the input data. (There are allusions to this in the literature, but we have
not yet seen any specifics.) Therefore, the M-estimate may perform even better than is
demonstrated in these experiments.

When ull the data sets are merged together a very definite ordering of algorithm per-

formance appears.

1. M-estimate.

2. Normalized residual outlier removal.

3. Cook's function outlier removal.

4. Least squares.

When using parametric surface estimation alone, M-estimates is the moet robust of the
four techniques tested. M-estimates is iterative and can be time consumnng, so it might
be possible to get similar results by (i) using Gaussian smoothing to remove part of the
quantization error, (ii) applying a replacement type filter to remove extreme points, and
(iii) proceeding with least squares.

11



Table 1: Data sets used for planar estimation tests.
(See text for options.)

Data 1Ange Expected Gaussian No. ofImages/Size

Sets Corruption j5 lxCj15x15

DS2 0 r--= 10 5 5 5

052 O, or = 1 10% 5 5 5

DS3 00 a = 1 10% on-.sided 5 5 5

DS4 00 a = 5 s 5 5
DS5 00 or 5 10% S 5

DS6 08 a 5 10% one-slded 5 5

DS7 450 a 1 S 5

DS7 450 a i 10% 5 5 5

0s7 450 =1 *0%d 5 5 s

Table 2: Labels of the plane fitting algorithms.

LS: Standard least squares.

M: Robust M-estimate regression.

N: Outlier removal based on normalized residuals,

C: Outlier removal based on Cook's function.
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Table 3: Angle, D (in degrees) between result normal and actual normal.
The mnom, m, and estimated variance, ad, of the angle are given for each size grouping.

LS M N C LS M N C LS M N C

S 5.71 4.50 5.55 5.71 63.43 24.28 19,21 21.59 28.92 0.38 4.04 4.80

x 11.53 13.12 13.24 11.24 56.24 20.87 18.27 17.67 48.02 17.84 26.10 16.17

S 4.57 1.57 4.57 4.57 $4.52 0.19 12.90 12.51 22,99 23.40 25.24 25.24

1S.53 15.96 10.57 16.57 41.1.1 13.34 9.50 9.50 62.40 19.03 16.96 19.9u

12.75 9.10 12.75 12.75 31.31 14.14 14.76 14.76 49.75 16.31 24.01 31.13

m 10.02 3.85 10.94 10.97 45.48 15.76 14.93 16.61 42.40 15.39 19.69 19.86
sd 4.7 5.94 5.64 5.60 13."6 10.57 3.97 4.70 16.18 8.80 9.67 9.82

10 4.60 3.31 S.81 2.06 16.30 4.03 3.25 4.70 4.03 0.5 1.66 1.l6

x 2.24 2..23 1.18 1.45 19.73 1.60 1.23 1.64 11.61 4.69 4.57 5.52

10 0S1 1.94 0.04 3.03 2.49 052 29.56 5.83 1.24 2.47 0S3 8.00 5.62 6.06 4.25

2.67 2.95 2.67 2.57 37.45 0.95 21.50 35.23 22.42 1.15 1.63 1.63

2.33 2.72 1.04 1.78 19.40 1.37 3.30 3.78 12.26 3.59 1.49 1.65

m 2.76 2.25 2.35 2.07 24.5 2.00 6.10 9.57 11.66 3.18 3.13 2.98
6d 1.06 1.30 1.20 0.47 3.76 2.07 8.67 14.39 6.6 2.12 2.08 160

15 0.35 0.60 0.24 0.24 0.32 1.20 1.20 1.14 5.96 0.19 0.98 1.01

x 1,70 0.76 0.67 0.65 1.31 0.52 0.71 1.17 11.03 1.30 7.53 7.99

15 1.40 1.04 0.87 1.73 4.59 0.56 1.07 0.85 7.71 2.40 1.61 3.32

0.68 0.30 0.35 0.19 6.44 2.*0 4.61 5.77 4.64 3.62 2.12 3.73

0.30 0.27 0.62 0.72 9.90 2.70 1.05 1.57 7.94 0.34 2.65 4.82

m 0.69 0.6(* 0.59 0.71 4.31 1.50 1.73 2.10 7.46 1.79 2.98 4.17
sd 0.63 0.33 0.29 0.62 3.56 1.12 1.62 2.07 2.41 1.31 2.02 2.55

LS M N C LS M N C LS M N C

5 63.07 62.06 62.27 63.07

x 34.59 44.41 34.59 34.59

5 52.59 56,53 52.59 45.52

32.53 36,83 43.16 43.92

53.17 49.42 53.17 59.69

m 47.19 49.77 49.28 49.36
Sd 13.14 10.12 10.50 11.30

10 15.55 20.T? 21.41 29.03 15.10 6.74 3.86 4.70 11.01 15.19 27.66 24.80

x 6.54 13.23 3.52 12.67 A$.22 22.70 26.79 23.37 15.92 2.68 9.41 10.58

10 DS4 21.02 23.74 34.89 33.61 DS5 11.43 4.50 13.96 10.93 DS6 21.70 23.20 36.24 33.06

10.07 14.67 12.54 12.01 15.84 9.08 6.61 2.49 25.21 18.82 15.25 7.93

15.60 P.3.66 34.25 24.94 11.86 9.16 19.35 26.41 9.50 11.63 13.35 13-30

m 13.80 19.22 21.32 22.45 14,49 10.64 14.11 13.56 16.67 14.30 20.38 17 93
sd 5.61 4.08 13.65 9.73 2-85 6.99 9.35 10.83 6.75 7.79 11.19 10 63

15 5.98 4.32 5.50 9.34 13,27 7.05 8.67 12.83 9.47 6.06 7,12 7 05

x 2.72 4.87 4.98 5.15 7.33 8.15 2.73 4.19 3.52 5.26 6.77 7 61

is 5.52 5.24 6.54 5.31 4.23 3.55 13 58 9.33 6.66 376 7.14 ILI 45

6.57 4.60 5.36 4.75 19.17 17.22 17.16 15.85 3.07 2.94 7.13 t 26

5.15 3.34 1.67 3.96 2.60 9.15 8.51 10.34 14.82 12.26 8.63 1 1 79

5.19 4.47 4.81 5.70 9.32 9.02 10.13 1051 7.51 6.06 7.37 Q3
SdA 1.4 0.72 '.85 2.10 6.85 5.05 5.50 4.34 4.84 3.68 0.72 i 1s
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Table 4: Angle, 9, (in degrees) between reult normal and actual normal (continued).

LS M N C LS M N C LS M N C

$ 5.16 7.37 5.16 S.16 27.90 22.02 15.00 12.96 57.16 3.62 4.20 4120

x 6.46 10.67 6.46 10.43 12.45 3.28 14.53 2.95 72.13 4.91 7.07 7.07

5 .T70 4,03 3.70 3.70 2.61 S.29 4.33 8.06 10.39 4.44 '7.65 10.39

12.11 15.21 16.18 16.16 68.43 9.47 14.88 11.83 3.12 0.05 3.12 3A12

1.07 3.09 1.07 1.53 6.07 11.52 10.90 13.51 12.16 12.64 11.63 11.63

m 0.10 8.11 6.91 7.4 23.49 6.48 11.94 9.93 31.00 5.13 6.77 7.28
ad 4.29 5.01 5.63 5.9 26.093 4.07 4.57 4.47 31.37 4.61 3.35 3.72

10 0.67 2.02 2.07 2.28 7.88 0.90 1.20 1.S7 3.81 0.31 4.47 0.73

x 0.91 0.69 0.91 1.58 3.56 0.43 1.20 1,26 4.19 1.07 0.88, 0.85

10 DS7 1 20 1.S9 0.904 113 DSU 8.31 0.19 1.33 1.33 DS09 14.53 0.18 1.12 1.S0

1.79 0.15 1.36 0.98 8.45 0.67 0.26 2.02 6.20 2.23 1.46 1.97

2.09 2.S3 1.35 2.66 2 58 2.02 3.32 2.34 2.69 1.29 1.6L 1.45

m 1.33 1.40 1.33 1.73 4.22 0.34 1.47 1.70 6.21 1.02 1.92 1.30
ad 0.35 0.97 0.4T 0.73 2.75 0.71 1.12 0.46 4.78 0.13 1.46 0.51I

IS 0.54 0.28 0.17 0.27 6.64 0.76 1.34 1.05 3.47 0.06 0.42 0.69

x 0.33 0.54 0.60 0.91 3.@5 0.20 1.10 1.60 2.10 0.45 0.13 0.09

15 0.44 0.24 0.49 1.14 3.19 0.42 0.62 0.32 0.90 1.16 0.54 0.85

0.32 0.16 0.35 0.62 1.28 0.84 1.13 1.48 7.13 0.79 0.40 0.4?

1.15 1.43 1.17 1.23 2.05 0.33 0.24 0.23 3.5S 0.26 0.36 0.45

m 0.56 0.53 0.56 0.83 3.40 0.51 0.89 0,94 3.43 0.54 0.37 O.S1
sd 0.34 0.52 0.36 0.390 2.07 0.26 0.45 0.4 2.34 0.44 0.15 0.29

Table 5: Results of the Wilcoxon signed-ranks hypothesis tests. Each triple consists of:
the "winner", the "loser", and the significance level. Smaller significance levels indicate
higher confidence in the "win-lose" decision. Triples with levels > 0,3 are not shown.

DS1 os2 0s3 DS4 s55

M C 0. 140 N C 0.010 M N 0.056 LS M 0037 M N 0.222

M N 0.096 N LS 0.000 M C 0.012 LS N 0.142 M C 0.254

M LS 0.070 C LS 0,001 M LS 0.000 LS C 0,014 M LS 0.101

M LS 0.000 N C 0.056 M N 0.254

N LS 0.001 M C 0,046

C LS 0.001

DS6 DST 0SO DSS All together

M LS 0.142 SLS M 0.018 M N 0.015 M h 0.116 M N 0.002

0t N 0046 LS C 0.018 W C 0.002 M C 0.08C Mt C 0.000

M C 0.046 N M 0128 M LS 0.003 M LS 0.001 M LS 0.000

LS C 0.222 N C 0.006 1, LS 0.010 N C 0,197 N C 0.004

C IS 0.012 N LS 0.001 N IS 0.000

C LS 0.001 C LS 0.000
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2.4 Ground Plane Removal

Thi thesholds used for the region growing segmentation are computed directly from the
image, but experience has shown that they are set inappropriately when a large amount of
background is included in the computation. This is to be expected since the background
is quite often not as smooth and regular as the target itself. Therefore, there is a need
to eliminate most of the background in an image before computing the surface fitting
thresholds.

The goal of this effort was not to totally segment the target object from the background,
but to identify areas that can be reasonably expected to belong to the background. Two
major techniques were investigated in this regard.

"* Create closed boundaries from edge pixels.

"* Model the background as a plane and strive to find this plane.

The first technique used edge information along with edge linking to try to produce
closed boundaries. This was found to be unreliable since linking was rarely complete
and the lower edge between target and ground plane was often not detected. The linking
techniques based upon edge magnitude and direction may prove useful though when trying
to identify crease edges. Figure 2 shows an example of the edge detection on synthetic
noise free data. The failure to detect the bottom edge of the target occurs even in this
noise free environment.

The second technique, based on a background model rather than edges, was more
effective. One of the largest major components of the background is the ground plane.
Therefore efforts were directed at finding and identifying a planar region that occupies a
major portion of the boundary of the image, and extrapolating this information to the
interior of the image.

Two different approaches to finding and removing the ground plane were investigated.
The first involved simple accumulation of evidence. It was assumed that the majority of
the boundary of the image is part of the background. Therefore a planar fit was computed
for a boundary point, and then any point within the image that lay close to this plane
accumulated evidence that it was also a part of the ground plane. Once this was done for
all the boundary points in turn, those points with the highest accumulation of evidence
would be background points. Unfortunately, this technique was so time consuming relative
t0 the surface extraction itself that it was judged infeasible.

Figure 2: Edge detection on a synthetic range image of a T!-55 tank.
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The second approach to removing the ground plane is based on similar assumptions,
but uses clustering techniques instead of accumulation. Briefly, the planar normal and
intercept are approximated at each point in the image and the normals are clustered to
find parallel planar regions. The cluster most likely to contain the background plane is then
separated based upon intercept value so that object regions parallel to the backgound plane
are not removed. This approach is much fawter than the previous one, and is described in
more detail in what follows.

The normal at each point is represented by the x and y partial derivatives and the
intercept is computed (mod 256) using the center of the image as the origin. The normals
ate then clustered in two-dimensional space using a convergent k-means technique. Since
we want to separate out one particular area in 2-D space, a 5-means clustering was used.
This allows for clusters on each side of the principal cluster. Brief tests with other numbers
of means have all produced inferior results. The clustering routine currently available
employs the Euclidean norm, but we would expect improved results if the Mahalanobis
norm were substituted.

In order to determine which of the clusters contains the ground plane the assumption
of backgound occupying the majority of the boundary is again used. Other types of
information such as the depression angle or terrain maps could be used to enhance this
determination. Once this clutter is identified it is further divided based upon the intercept
values. The intercepts are histograxnmed to find the major background intercept region,
so that the other parallel areas can be removed from consideration. This is done by
finding the maximum histogram value arnd moving outward until the value drops below
a given percentatge of the maximum. Points with the appropriate normal and intercept
value which axe connected to the boundary are identified as potential background points.
Finally those areas not currently identified as backgound are classified as either an area of
interest based upon some external criterion or added to the background region.

Figures 3 and 4 show various stages of the ground plane removal performed on synthetic
imagery. The original image in Figure 3 is a T-55 tank range image generated from ERIM
wire frame model with ground plane added at a depression angle of 10C. Gaussian noise
was added to the image to create SNR = 4. The sequence shows the 5 different normal
clusters, the chosen backgrournd cluster with points removed based upon intercept value,
the connected portion of the background, and finally the foreground area which will be
handed off for segmentation.

The original image in Figure 4 is an M-109 viewed at a depression angle of 100 and the
corresponding ground plane. No noise was added to this image. In this case, the sequence
shows the background cluster both before and after separation based upon the intercept,
and the mask to be used for segmentation. The only substantial differences between the
final mask and the original object are the artifacts due to the range ambiguities. The mask
is slightly larger than the real object because of averaging effects.

To give an idea of the power of the surface segmentation, Figure 5 shows the segmen-
tation of the original noise free T-55 image and the M-109 image. The sawtooth edge
occuring in the M-109 segmentation is due in part to quantization effects. The gun barrel

of the T-55 is included as part of one of the turret planes since the narrow barrel produces
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(a) ()(c)

(d) (e)(f

(g) (h)(i

Figure 3: Ground Plane Removal: (a) original image: T-55 at SNR =4, gun barrel
clipped to reduce image size, (b-f) points included in each of the 5 normal clusters, (g)
poinits in ground plane cluster minus those with the wrong intercept values, (h) (Innected
component of ground plane, (i) final mask identifying foreground.
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(a) (b)

C) "d

Figure 4: Ground Plane Removal- (a) original image: Ml-109 without noise, (b) ground
plane cluster, (c) after removal of points based upon intercept, (d) final mask of foreground.

(a) ( b)

Figure 5: Surface Segmetitation Examples without noise: (a) T-55, (b) M-109



degenerate planar fits by itself. This might be corrected by also allowing quadratic fits.

2.5 Smoothing Prior to Computing Derivatives

First and second order partial derivatives are often used in range image analysis, but mea-
suring them reliably is difficult. Edge detection may be viewed as the characterization of
intensity changes within an image. Thus, effective edge detection necessitates the reliable
estimation of the differential behavior of the image function. Specifically, derivatives of
various types, order and scale have to be accurately calculated for edge detection to func-
tion correctly. Surface normals and Gaussian and mean curvature are also functions of
partial derivatives and thus have the same reliability problems.

Numerical differentiation of a sensed image function is an ill-posed problem because its
solution does not depend continuously on the data. This may be directly attributed to the
random perturbations introduced by the previous sensing and sampling processes. Thus,
before edge detection can be reliably performed, the differentiation problem must become
well-posed and stable.

As argued in [11] ill-posed problems can be be solved using the regularization method-
ology originally suggested in [9,15]. Briefly, the general approach is to restrict the space of
possible solutions to subspace by imposing supplementary constraints. Of the many possi-
ble regularization techniques, one that is natural for edge detection on range images is that
of Reinsch [12] considered for numerical differentiation. In the context of edge detection,
this approach suggests optimal filters and their approximations that cal be applied to the
noisy data prior to computing derivatives [11i.

In the literature, various criteria have been proposed for directing the determination of
"optimal" regularization filters. Basically, these criterion center upon a tradeoff between
the degree of regularization of the filtered data versus the closeness of filtered data to
the original data. Once the criterion has been selected, a regularization filter must be
determined for each specific type of derivative.

For jump edges, a Gaussian operator is a good approximation I11] to the optimzl filter
derived using a calculus of variations technique. Although the regularization approach
suggests the near optimality of Gaussian filters, the variance of the Gaussian function

corresponding to the scale of the filter must be specified. At least two or three methods

for determining the scale have been suggested in the computer vision literature [11,18] but
we are not aware of any that have been applied to infrared or range images.

In addition to finding the optimal scale for a Gaussian filter there is the option of
applying the filter at various scales. In an image, changes of intensity take place at many
spatial scales depending on their physical origin. Consequently, a multiscale analysis,
tracing the behavior of some featare of the signal across scales, can reveal useful information
about the nature of the underlying physical process. For example 119J, spatial coincidence
at all scales of zero crossings in the Laplacian of Gaussian filtered images may confirirr
a physical "edge" distinct from surface markings. It should be emphasized that it is not
only necessary to detect and describe changes in a range image at lifferept scalcs, but ini
addition, much useful information can be obtained by combining descriptions across scales.
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Currenily a Gaussian filter is being applied to the range data prior to computing the.
derivatives needed for Gaussian and mean curvature. The results of this filtering are-
particularly obvious on synthetic data. Quantization effects can easily be seen on the
HK-Sign map for a plane which is at an angle to the line of sight. Instead of labelling
the entire plane as a flat, periodic stripes occur across the plane of other surface types.
Regularization filtering helps to minimize this quantization effect as well as suppressing
the noise.

2.6 Crease Edge Detection

During surface segmentation it is possible that a single surface becomes subdivided into
severtl separate regions. If these separate regions are used when forming the object graph
then any matching will be unlikely to succeed. Therefore a method must be found for
deciding when twG regionr belong to the same surface as opposed to two separate surfaces.

We are proposing to make decisions on the distinctness of two regions based upon the
presence or absence of crease edges. If a crease edge is present then the two regions remain
separate. Otherwise the two adjacent regions are merged and considered as one surface.

Jump edges tend to be easily identified by the surface griwing algorithm, but crease
edges are harder to find. Mitiche and Aggarwal 181 have pi iposed a method to crease
edge detection which has the advantage of being based upon a known noise model. This
technique has been implemented and is in the process of being tested and integrated with
the surface segmentation software.

This approach is based on fitting planes in various directions in a local neighborhood
and computing the angles between the planes. Let g(Xo, Yo) be the depth map value at
(x0 , yo) and N be an appropriate sized neighborhood around (x0 , yo). Let N be divided
into two contiguous planar surfaces, cl and c 2 , n 1, and n 2 being the surface normals of
the planes best fit (say in least square sense) to the points in c, and c2 respectively. The
collection of points in N together with these best fit plan,!s will be referred to as a partition
of N and is denoted as R. Suppose n is the number of directions in which crease edges
have to be determined. In our implementation n is 4, corresponding to horizontal, vertical,
left diagonal, and right diagonal directions. For each direction, planes are fit according
to some selected criterion to the corresponding two regions in N thus determining tile
partitionsf R, i := 1,... ,n. The angles between the planes associated with these partitions
are, denoted by 0,, 1 1,,... n. The crease edge dettction algorithm then proceeds as
follows:

(i) All points with G, < t, i t' l,..,n are discarded for some t. This step is intended

to eliminate deep "interior" points that are surface points far from edges or jump
boimdaries.

(ii) The likelihood of each of the partitions at the rernalninig poiits (deiotýd 1)y set 2)
is "o~inputcd asi follows:
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where p(g(zo,V0) R1) is a function of the physical properties of the target (suarface.
orientation with respect to the signal beam direction, reflectance and actual distance
from the sensor) and sensor parameters (fixed for a given scene).

AlthougIk it would be ideal to derive p(g(zo, yo)IRj) from the physics of the range image
function, it is a very complicated problem that is not currently addressed. Presently we are
modelling the function p(g(zo, yo)) as normally distributed with mean A = distance D to
the estimated plane at point (z 0, ye), and constant variance. If reliable reflectance data is
available then the variance model can be augmented to 7(Xo, yo) = a(O,)(D, p, 0), where p
is the surface reflectance and 46 i the orientation of the appropriate plane Ry with respect
to the signal beam direction. When cr is constant the likelihood function reduces to the

root mean square error of the two planes combined.

Once the likelihood values are computed, the parttAit with maximum likelihood (or
minimum RMSE) is selected. Then all points for which .. t, where e is the angle
a.sociated with the best partition, are identified an crease edge poki

A more implementation-oriented description of the software we are currently using for
crease edge detection is given here.

1. At each point an edge with a particular orientation 'hornzontal, vertical, either di-
agonal) is hypothesized. Pixels on either side of this edge f4.ý fi to two separate
planes.

2. The root mean square error of the computed planar fit calculated.

3. When the fits and RMSEs have been computed for each of 4 - edge directions, then
the edge direction with minimum RMSE is retained as a potential edge.

4. Potential edges are then accepted or rejected based upon an RMSE threshold and
local ninimum filtering.

5. The angle between the two surfaces is computed for each of the accepted edges. If this
angle is less than a certain angular threshold then the edge is considered nonexistent.

'This technique will find some jump edges as well as crease edges so an additional test
has been added to remove jump edges based upon a juimp distance computed between the
two planes at the point in question. This jump distance is best described with reference
to Figure 6. The point where the jump distance is to be computed is Izbelled x. The
planes P1 and P2 on either side of thc proposed edge cross position x at points z1 and z2

respectively. The jump distance is the average of the shortest distance from point z, to
plane P2 and likewise the shortest distance fhorn z2 to P,. When two planes are parallel

this distance is identical to the shortest diistance between the planes. This measure is much
more dependent on relative planar orientation than on absolute orientation which makes
it more useful than other jump distance measures.

An example of the behavior of crease edge detection prior to thresholding is given in

Figur'e 7. The first frarvme is the ba;is image that is to be analyzed. The surface segIen-

tation of this imrage was included iII the September monthly report. Figure 7-b shows the

21



Z2

,- P2PlP

Figure 6: Computing the Jump Distance.

minimum RMSE values computed at each pixel. Bright areas indicate a large amount
of error and are not good candidates for crease edge pixels. Figure 7-c shows the angles
between the planes of best fit. Angles which are too small indicate no crease edge. Finally
the last frame shows the jump distance corresponding to this fit. Large jump values also
eliminate the possibility of a crease edge. Inspection of these images indicates that the
most likely place for crease edges i- at the lower edge of the target, between the body of
the tank and the turret, and within the turret itself.

Since we do not have any accurate noise rmodels for the laser range data the noise model
assumed in this implementation is additive Gaussian. This also allows for easy simplified
testing on synthetic data. When the correct noise model for the data is known, it can be
used to tailor the likelihood function.

When crease edge detection is beivg used in conjunction with the surface fitting it is
not necessary to test for crease edges over the entire image. The crease edge detection
can be restricted to those areas in the immediate vicinity of surface intersections that
result from the surface growing. The surface growing algorithms also use thresholds that
are related io the likelihood of a planar fit. These thresholdR are computed initially from
those portiuns of the image that are expected to contain the target. The thresholo used
during the surface growing is expected to be highly coi'related with, if not identical to, the
threshold of the likelihoxd function mentioned above.
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(a) (b)

(c) (d)

Figure 7: Crease edge example: (a) original image, (b) error for the plane fit amociated
with best edge orientation, (c) angle between planes, (d) jump distance between planes.

231



3.0 SUMMARY' AND FUTURE WORK

The progrms made in the 15 May 1987 to 15 November 1987 reporting period concern~ed

preliminary implementation of surface segmentation/description techniques. A modified
version of Bel amid Jain's region growing segmentor is in place and shows promising re-
sults. This is a major step towards developing an effective LADAR target recognition
methodology.

In the previous reporting period (November 1986 - May 1987) a preliminary simplified
version of the matching algorithm was implemented. Future work will be aimed at creating
the links between these two algorithms. The major tasks involved in this effort include:

" Integration of the jump and crease edge detection into the surfac- segmentation, so
that a final segmentation image is produced composed of known planes.

" Smoothing and multiscale analysis will be investigated further for handling the ques-
tion of variable resolution.

" Description stage: Features of each of the surfaces and their relationships must be
computed. Any surfaces thought to belong to the background must be removed at
this otage. The feasibility and utility of curve description will be investigated as well.

"* Matching: The matching routines must be upgraded to handle a larger feature set,
occlusion, and varying ranges. Orientation approximation routines will be added to
eliminate the need for multiple target views in the database. The utility of different
features as an aid to matching will be studied.

"* Database: A search must be made for imagery that more accurately approximates
the ,xpected working data. A major problem in testing has been the scarcity of
lata representative of the specifications that were originally assumed. It would be
useful to be able to run tests on data which is free of range ambiguities and is not
range-gated.

" Modelling: Graph models for several target types will be developed based upon the
ERIM witeframe idnels.
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