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ABSTRACT

In this study. we present an algorithm for system identification for systolic array

implementation. With this schema, discrete samples of input and output data of a sys-
tern w'ith uncertain characteristics are used to determine the parameters of its model.

The identification algorithm is based on recursive least squares, QR decomposition, and
block prouessing techniques with covariance resetting. The identification process is

based on the use of Givens rotation. Additionally, we want to address the following

problems: how the round-off error propagates in time and the implementation in closed

loop adaptive control. We will compare the implementation of fixed point arithmetic
with the implementation or floating point arithmetic. This is primarily a theoretical in-

vestigation to be conducted with computer simulations where numerical results will be

investigated.
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1. INTRODUCTION

A. BACKGROUND
When we design control systems we are faced with the problem of identifying the

plant to be controlled. In particular. we try to determine the parameters of a math-

ematical model (i.e., a linear differential or difference equation) which best fits the

input-output data of the given plant.

In some cases, insight of a model may be obtained from the laws of Physics,

Chemistry, etc. In most cases, this may not be possible due to the complexity of the

physical factors involved. In these instances, it may be possible to derive the values of
the parameters by observing the nature of the system's response under appropriate ex-
perimental conditions. This procedure is called "parameter estimation".

The problem of adaptively controlling systems with uncertain characteristics de-
pends on identification of the unknown system parameters. In these cases, the paramc-
ters of the controller are computed on the basis of the current estimate of the dynamics.
Figure I shows a general structure of an adaptive control system.

The purpose of parameter estimation is to best fit a proper model to the input-
output data of the system under investigation. The main issues are the following:

1. Select an appropriate class of models, and

2. Select an appropriate estimation algorithm.

For the particular case of estimating the parameters of linear models, we search
within the class of models with a given fixed order for the one which mininizes a pre-
diction error criterion.

Firstly. suppose we wish to select a model of a system based on input-output
measurements, in the form

.(,) = ( r o + t'(1) (1. 1)

where y(t) and Vt(t) are determined on the basis of the output and input signals and 0
is an array of unknown parameters to be determinated. The term v(t) represents noise
or other modeling errors. Further information about this equation will be given in the
next chapter. This class of linear models is preferable because of its simplicity and the

amount of theory developed to analyze them.



Secondly, we need to select an appropriate estimation algorithm. Although a wide
choice exists, the most effective in terms of speed of convergence and accuracy is the
recursive least squares algorithm [Ref. 1I.

-" ..- Identification

Uo
S

S

I

Compnsator Plant

oa

Figure 1. The Adaptive Control System.

The origins of the least-squares method can be traced back to Gauss as in (Ref. 21.

In its recursive version it has been formulated by several authors. Tile major drawback
of recursive least-squares identification is its cost in terms of complexity, which might
make it unsuitable for real time identification of a large number of parameters, since the
size of the matrices involved grow with the complexity of the the system to be estimated.

Although available microprocessors are effective for low order systems and slow sampl-
ing rates, more complex problems require improved capabilities.

In this thesis we address the problem of implementing recursive least-squares iden-

tification using parallel processing techniques and systolic arrays. Particularly, the pa-
rameter estimates are determined by the least-squares solution of a redundant number
of linear equations obtained from the measured data. The techniques of solutions for

this class of equations are based on QR decomposition, discussed in the next chapter.



B. SYSTOLIC ARRAY

The idea of systolic array was developed by Kung and associates [Ref 3] at

Carnegie-Mellon University, and rrany versions of systolic processors are being designed

by universities and industrial organizations. This subsection reviews the basic principle

of systolic architectures and explains why they should result in cost-effective high per-

formance, special purpose systems for a wide range of potential applications.

A systolic array consists of a set of interconnected cells, each capable of performing

simple operations. Since simple, regular communication and control structures have

substantial advantages over complicated ones in design and implementation, the cells in

a systolic system are typically interconnected with the immediate neighbors. In the

systolic array we are considering there are two kinds of cells (boundary cell, internal

cell). Each cell in the array is provided with local memory of its own, and it is connected

only to its nearest neighbors. The array is designed such that regular streams of data

are clocked through it in a highly rhythmic fashion, much like the pumping action of the

human heart: hence the name "°systolic". Information in a systolic system flows between

cells in a pipelined fashion, and communication with the outside world occurs only at

the boundary cells.

Basic principle of a systolic array is illustrated in Figure 2. Suppose each processing

element in Figure 2 operates with a clock period of 100 ns. The conventional memory

and processor organization in Figure 2a has 5 million operation per second. With same

clock rate. the systolic array will result in 30 million operation per second performance

provided the processing elements operate in parallel on pipelined data. The gain in

processing speed has been increased six times. Being able to use each input data item a

number of times is just one of the many advantages of the systolic approach. Other

advantages include modular expandability, simple and regular data and control flows.

use of simple and uniform cells and fast response time.

Previous authors have presented parameter estimation algorithms using systolic

arrays. The general idea has been to solve a system of linear equations in two stages:

1. Triangularization of the matrix of coefficients,

2. Solving by successive substition.

As explained in Chapter III the previous algorithms used a triangular systolic array

to triangularize the matrix, and a linear systolic array configuration to solve for the pa-

rameters. The linear section requires operations such as divisions which are hard to

implement by simple processor operations. Because of this, a new algorithm was

3



developed. In our implementation, a second identical triangular array has been used
insteatd of the linear systolic array. It is characterized by the fact that only orthogonal
operations are involved, making the algorithm numerically more stable and easily

implementable by simple shift and add operations. Also this algorithm needs two dif-
ferent cells (boundary and internal); previous algorithms needed four different cells (two
for a triangular array, two for a linear array). Although more total cells are required in
this implementation, the cost of additional cells in a VLSI scheme is considered to be

ninimal.

riemory,

PE P EIPJEIp

(a) (b)

Figure 2. Tie Concept of Systolic Processor Array.

In implementations based on fixed point arithmetics, vector rotations necessary for

the QR factorization can be implemented by a CORDIC algorithm, based on simple

shift, add operations.

The use of fixed point versus floating point arithmetic is considered during this in-

vestigation. Because fixed point operations are based on simple shift functions and finite

registers, which are simple to implement, it seems advantageous to use fixed point val-

ues. However, since input and output data do not naturally appear as integer values,

there is concern over loss of accuracy due to necessary scaling and truncation.

4



This research report is divided as follows: Chapter I1 discusses the methods of sys-
tem identification. i.e., solution of systems of linear equations, QR decomposition, and

recursive least squares algorithm, block processing and covariance resetting. Chapter
III discusses the Givens rotation, the CORDIC technique and implementation of the

systolic arrays. Chapter IV presents the simulation results, and Chapter V shows the

final conclusions. A listing of the computer program is used to simulate the systolic

arrays is found in the Appendix B.



11. MODELS FOR SYSTEM IDENTIFICATION

A. LINEAR SYSTEM MODELING
Suppose we wish to identify a model of a system based on input-output measure-

ments. As shown in Figure 3 consider a system with a single input u(t) and single output

y(t).

UM System W y(t)

Figure 3. Simple Linear System.

If we consider a linear difference equation to model the dynamics, we can write

y(t) + alv(t - 1) + .... + a,.yt - n) = bju(t - I) + .... + bt,,u(t - in) + v(t) (2.1)

or, equivalently

y(t) = -aly(t - 1) - .... - ay(t - n) + blu(t - I) + .... + b,,u(t - in) + v(t) (2.2)

where v(t) shows noise or other modeling errors, a,'s and b, 's are real constants, and the
equation is of nth order. Since the output depcnds not only on the input but on the
previous output values, this discrete system is known as recursive system. Equation (2.2)
can be written in the matrix form

-ytf- 1)

y1,) so [a,,..., a., b,,..., bm] -yj t ) (2.3)u(t -

141 - m)

6



where 0 represents the parameter vector

O [a...., an, b1,..., bIm] (2.4)

and q(t) represents the regression vector.

-y(1 - 1)

-vt- n)on) (2.5)
u(t- 1)

u(t - ,n)

By the above definitions we can write Equation (2.1) as

j!') = (P (0) + VW (2.6)

The problem now is to estimate the parameter vector 0 from measurements of the

sequences y(t) and O(t). Normally, if the number of samples of u(t) and y(t) (i.e., the

number of equations) equals the number of unknowns (m + n), we can solve exactly for

0. However, the number of equations is usually greater than the number of unknowns.

since we tend to collect a large amount of data. For this reason, this system of equations

in general does not have a solution. Ideally, in the noiseless case (v(t) = 0) a solution

exists. regardless of the number of equations. However, since noise and numerical errors

are present, we look for the least squares solution of the system of equations, i.e., for the

solution which minimizes the error.

If we take N samples of Equation (2.6) and do not consider noise or other modeling

errors we can write the system of N equations in matrix form as

y~t) o (t)

Avt - 1) T r(t- l)
0 (2.7)

SA e-N)J LT

or, equivalently

7



-=AO (2.8)

where A e 5.P .v, 0 e 2-v, h e 2m.. When N = M and A is full rank and invertible, we can

solve uniquely for 0 as

0 - A-b (2.9)

However, in signal processing applications we often face the case of M > N (i.e., more
equations than unknowns), and the solution of (2.9) is defined in the least square sense

by minimization of the error

&(0) = IIAO - bl2  (2.10)

Therefore, the least squares solution 0, of(2.7) is implicitely defined as

I405 - bi2 = minJJ.40 - bi2  (2.11)

The least squares solution always exists, althought it might not be unique. We can

solve Equation (2.11) by pseudoinverse which however, involves matrix inversion. An-
other method is to triangularize A in Equation (2.8) and solve for 0 by successive back

substitutions.

When M > N we meet the dilemma of triangularizing an array. The solution is to

triangularize the upper part of the A matrix, leaving one or more rows of zeros at the

bottom as a result. This will allow us to solve for 0 in the least square sense as indicated

in Equation (2.11). This is known as QR decomposition.

B. SOLUTION OF THE LEAST-SQUARES PROBLEM USING QR

DECOMPOSITION

A numerically attractive method for determing the least squares solution of a sys-
tem of linear equations is provided by the QR decomposition of a matrix [Ref. 41.

Consider again Equation (2.8) with M > N. It can be shown that we can always

factorize A as

A=QR (2.12)

where A is a M x N matrix, Q is an M x M orthogonal matrix such that QTQ = I and

R is defined as

8



R (2.13)
0

where A is an N x N upper triangular matrix and 0 represents null matrix. It is not re-

strictive to assume the diagonal entries of B to be non negative. Now we write again

Equation (2.9)

AO=k

with the equality intended in least squares sense, and multiply both sides by QT

QTQRO=QT

since QTQ -

RO= kb

and, therefore,

-- r (2.14).. O=Qk= .

It is now easy to see that the error t(O) is given by

IAO - bI2 = flRO - 111' + 11fl2112  (2.15)

which is minimal when

R0 - fl, (2.16)

since fl2 is independent of 0. In particular, if A is full rank and M > N, then the solution
is unique, A is invertible and we can compute the least squares solution of(2.7) and (2.8)

as

OS =

9



Now the solution of Equation (2.8) in the least square sense can be computed in

the same manner as the solution of a system of N equations and N unknowns in

Equation (2.16).
There is a number of methods available that can be used to compute the upper

triangular matrix R (e.g., Householder transformation, Gram-Schmidt procedure, Giv-
ens rotation). We will concentrate on Givens rotation. The Givens rotation is an at-
tractive method for systolic array implementation since it successively manipulates two
adjacent rows of the matrix at a time. CORDIC techniques can be used to implement

these rotations and are discussed in the next chapter.

C. RECURSIVE LEAST SQUARES ALGORITHM
It is possible to estimate the values of the model parameters 0 by observing the

nature of the system's response under appropriorite experimental conditions. The idea
for the recursive identification problem is to compare the output with that of an adjust-

able model, and update the parameters until the error between the outputs of the model

and the system is minimized as in Figure 4.

u(t) System y(t)
(Plant)

A
A 1 E (t)=y(t)-y(t)
y(t)

0
Adjustment

Mechanism

Figure 4. The Minimization of Error in the System.

As seen in the previous section, assumption of a linear time invariant model leads to the

relation

Y( = T(0 (2.17)

10



with 0 the parameters to be estimated, and q(t) a measurable sequence. A recursive least

squares procedure can be determined by defining 0, the estimate of 0 at time t, as the
vector which minimizes

qT

t-(-) A Z [ P - .00 1' (2.18)
.=O

Particularly, 0, is the least squares solution of the equations

T(t - 1) ( I

A . A

o0f -- A(t- 1)01=y t- 1) (2.19)

Sr(o) Y(O)

It is possible to show that 0, can be recursively computed as f Ref. 21

A

t+ 1  0r + P(1t- 1) 20)
I + q (P (tI- l)(P(t)

where P(t) = (A r(t)A(t))-1 satisfies the recursion

P(t) = P(t- 1)- (2.21)
1 + P aT )P(I - ljp(t)

So far, we have neglected the problem of existence of the solution. The matrix A(t)

can be singular, and then P(t) might not exist. Furthermore, we can not initialize A(-1)

= 0 because, in this case this would yield P(-I) undefined, and we would not know how

to start the sequence P(t). A solution to this problem is to incorporate initial conditions

into A(t) so that P(t) can be computed at each t. Therefore, we modify the definition
A

of 0, in Equation (2.19), so that initial conditions of the matrix P(t) can be accounted.

Let A(-I) be any arbitrary matrix (it must be full rank). For convenience let A(-1)

be square, with det (A(-1)) : 0, and define P(-I)= (At ( -I)A(-I))-'. This can be done

by defining a new error criterion

2 Zycr)(- or,(,) 12 + (0 -Oo)T(AT( -1)A(-1))'(0 - 0o) (2.22)

11



which takes the initial estimate 00 into account. This new formulation leads to the

matrix A(t) as

STCt
O(t- 1)

A(t)= 4r(o) (2.23)

A(-1)

We choose A(-I) = a0I, where 0 > 0 is some arbitrary constant, and I the identity

matrix of appropriate dimensions. In this way the matrix P(t) is always defined since

AT(t)A(,t) is never singular. Then, by algebraic manipulations, Equation (2.19) can be

written as

4r(i-l1) y.(- l)

A

OT" 0r= .(0) (2.24)

A(-1) 4(-l)o

The solution to (2.24) is computed recursively using (2.17) and (2.18) and the appropri-

ate initial conditions.

D. BLOCK PROCESSING AND COVARIANCE RESETTING

From the previous considerations, the algorithm was described that allows us to es-

timate the parameter 0 recursively. By using Equation (2.20) and P(t) = (A(t)rA(t))- ' we

obtain

P(t) - (A (t)A(t))' = (02o + z T(r))- (2.25)
1=0

In general, the term Ycp(0ipr(i) is likely to grow with time, so that P(t) -. 0 as t -- ooi=0

[Ref. 2]. Therefore, the algorithm loses sensitivity as t increases, and later values of 0

12



may not be as accurate as earlier values, especially if our model changes with time.

There are two possible solutions to this problem:

1. The use of a "forgetting factor", and

2. The covariance resetting approach.

By the forgetting factor approach we minimize the error

2 ^.- 2 ^jr 1_ 01

Ic(,112-- Z).k(y(k) -2 + o,0,1 - 0o11 (2.26)

k=O

where 0 < ). < I is the forgetting factor. This has the effect of assigning a higher weight

to more recent data.

The covariance resetting approach, on the other hand, divides the time scale into

segments of equal and fixed length N as in Figure 5. At the end of each time block,

_______ Time

kN (k+ 1 )N

Solve for 0

Figure 5. Covariance Resetting Approach.

we reset the covariance matrix P(t). Although it can be reset at any time, for conven-

ience we choose the end of each block, and P(t) now becomes

Po)a t = kN- I k = 0,1,2,... (2.27)
P(t)-- Equation(2.21) oherivise

13



In particular, at the beginning of each interval the systolic array is initialized as aoj, and

at the end of the interval (at kN + N-i for the kth interval) the data are exited from the

array and the system is solved to obtain 0 (k-)N. This estimate is used as an initial con-

dition for the next time block.

In an adaptive control context it has been shown [Ref. 51 that an external input u(t),
sufficiently rich in frequency (n sinusoids), together with blocks I, of sufficent length N

provides a guarantee for a consistent estimation as

0..Ox

where 0- represents actual parameters. The effect of various lengths of N will be inves-

tigated later.
If we apply the considerations given to the general case, we can see that the pa-

rameter estimates at the end of each time block are related by the equation

0rT 0 + l)N- 1) y((k + 1).X- 1)

T(O)  O + )N y(kO) (2.28)

o... .. o...

The systolic array implementation is based on this equation. In particular.0-,

is computed from Equation (2.28) at the end of each time block by making the leftmost

matrix upper triangular.

Although, the algorithm presented in this Chapter assumes a single input. single

output (SISO) plant. it can be extended to the multiple input-output (.MIMO) plant

[Ref. 61. Additionally, we assumpe the plant to be causal and of known order.

14



III. SYSTOLIC ARRAY IMPLEMENTATION

Now, the problem is to compute the solution of Equation (2.28) using systolic ar-

rays. In particular, Equation (2.28) is appropriate for parallel implementation. As de-
scribed in [Ref. 5], the identification problem can be constructed again into a set of linear

equations as

RkO(k+, .N - Pkl (3.1)

where R, is in upper triangular form. We can compute 0,. by using two processors

in cascade: one to compute R, and f, , and the second to compute 0 from Equation

(3.1). Notice that Equation (3.1) does not require any explicit matrix inversion since

R. is in upper triangular form.

As seen in Equation (2.2S), we initialize the array at the beginning of each time

block such that

Rt = aol

fo = 6001.V

This has the effect of initializing the R, matrix in (3.1) to an upper triangular form.

Then. at each discrete time t, an array of data 9(i) and y(t) will be passed to the systolic
array. The task of the array is to re-triangularize the data at each clock pulse, so the

matrix remains in the form prescribed by (3.1). It is then a simple matter to solve for
0 ,M .* This technique is based on QR decomposition as the means to triangularize the

data array.
The value of ao relates to the confidence we have in the initial estimates of 00. As

seen in Equation (2.26) a larger value of o , will increase the confidence on the initial

estimate of 0. Equations (2.24-2.28) show the role that a. plays.

A. GIVENS ROTATION
The orthogonal triangularization process may be carried out by using various

techniques. One of the techniques is the Gram-Schmidt orthogonalization procedure

that provides the mathematical basis for the pipelined lattice predictor. Another pow-

erful technique of triangularization by QR decomposition is provided by the Givens
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rotation. The reason for this choice is the fact that the Givens rotation operates on pairs

of adjacent rows, making it suitable for systolic array implementation. The object is to

combine two adjacent rows in the matrix, forcing zeros in the appropriate positions so

to obtain an upper triangular data matrix. Figure 6 shows an example of

triangularization by successive Givens rotations.

a1 1 a12 a 1 3 iIF a a 12 a 13 a a 12 a 3  all a 12 a1 3

[21 :22 a 2 3 J..0 a'2 1 a 22 ['23 0 22 2 a 2 2 a 2 3

a31 a 32  a 3 3  0 a 3 2  a 3 3  0 a32 a33 0 0 a3 3

Figure 6. Example of Row Operations.

Basic idea: Consider any two rows of data as

ak,1 ak,2 ...... ak,n

a , tk+ 1,2  ...... ak+

We can see these two rows as a sequence of vectors in Figure 7.

If we rotate all these vectors by all appropriate angle a then a - 0 since the

leftmost vector becomes parallel to the horizontal axis. This is accomplished by the

following operation

I Cos a sill 0' ak'i ak,2 .... akfl ak., ak,2 .... akfl

-sina cos a ak ll ak+ 1.2 ...... ak+I, 0 ak+1.2 ...... ak+ I

The value of the angle a can be determined using simple trigonometry

cos a - ak sina - k+l-- (3.2)
ak + ak,, a + ak.l,

This same rotation a is then applied to the remaining (x,y) vectors in the affected rows
(i.e., rows k+ 1, k) to ensure consistency. Next, the sequence of rotations is repeated for
the remaining pairs of rows (i.e., rows k+n, k+n-1; k+n-1, k+n-2; .... ; k+2, k+ l) in
order to force zeros in the correct locations that leave an upper triangular matrix.
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Y y y

a

1 X X

Figure 7. Example of Vector Operations.

We remember that the data matrix is initialized to an upper triangular form (Uol).

Then, as we take samples from the signals in the plant, new values of P (t) and y(t) are

added to the matrix. By a sequence of Givens rotations, we can transform it into an

upper triangular matrix. An example set of rotations is shown in Figure 8, where the

operations performed by the systolic array at each clock pulse are illustrated. This is

repeated until t = kN (i.e., at the end of the time block), at which time the parameters

0 are solved for, the matrix is reinitialized, and the process is repeated.

Basis of the Givens rotation is the matrix

11 0 0

Q(p,q) = 0 r(p,q) 0 (3.3)

0 0 12

associated to each pair of indexes p, q e (l,n+ 1), with I, and 12 identity matrices of di-

mensions (q-2) x (q-2) and (n + I-q) x (n + I-q) respectively, and r is a 2 x 2 matrix of

the form

r(p,q) - c(p,q) s(pq) (3.4)
-s(p,q) c(pq)
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The matrix Q(p,q) is an orthogonal matrix and has the property that it affects only two

rows at a time, i.e., rows q and q-1. Application of the transformation Q(p,q) to any

matrix A of appropriate dimensions impliesX X X
Xz (35

Q(p,q)A = (3.5)

x x xr

where x indicates other elements of the matrix and z indicates

2 2z -- x/ q_1p + a.,

1 1(t) a2(t) +40 aII a12 a13
a 1 a 12 a 3 0 a a

-22 23
0 a 22 a 23 0 0 a 3 3

0 0 a3 3  0 0 0

Figure 8. Example of Givens Rotation.

In Equation (3.4) c(p,q) and s(p,q) are provided such that

c(p,q)aqjp + s(p,q)aqp = z

(3.6)

c(p,q)aq,p - s(p,q)a_.. = 0

In Figure 8, an example or application of the Givens rotation Q(3,4)Q(2,3)Q(1,2) to the

left matrix results in the rotated matrix shown on the right (Ref 71. As seen before the

Givens rotation requires addition, substraction, multiplication, division, and squares.
Figure 9 illustrates the operations of each of the cells. Next, we will see how to perform
the rotations, by using add and shift operations only in the CORDIC technique algo-

rithm.
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EDGE CELL if u = 0 then

U cOut =1

S out 0

(c out ,s out )el se

c out u/(sqrt(u2 + a2

S out a/(sqrt(u 2+a))

a = sqrt(u 2+ a2)

endif

INTERNAL CELL

U

I U out = - S in U+Cin a

(c inl Isin) (Cout ISout) a = C u+s1 a

"(Cin Sin C out Cin

Sout :Sin

U out

Figure 9. Givens Rotation Algorithm.
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B. THE CORDIC TECHNIQUE
Here is a simple, accurate and relatively Ihist method for generating trigonometric

functions. The technique proposed is based on the ingenious coordinate rotation digital

computer (CORDIC) technique developed by J. E. Voider [Ref. 81.
The principle involved in CORDIC is to rotate a vector, represented by its com-

ponents X and Y, through a set of successive elementary rotations as seen in Figure 10.
Each single rotation of the vector (X,Y) is computed at each step by a combination of

simple add, subtract, and shift operations.

Y

R

aaj X

Figure 10. Example of CORDIC Rotation.

Consider a vector R represented by its components X and Y and rotate it through

an angle ± 0. The results are the rotated coordinates .' and Y', which are related to X

and Y by the following equations

X' = Xcos 0 _ Y'sin 0

(3.7)
Y' = Ycos 0 T Xsin 0

where the top sign rerers to clockwise rotation.

The CORDIC principle is based on performing a vector rotation in a sequence of

angular steps a, such that the sum of them equals to 0, that is

0 - ao ± al ± a2 ....... ± an (3.8)
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If we define y : ±I , then we can express 0 as

n

022 D ial (3.9)0
ti0

The problem is to choose the value of a, such that the equations above can be imple-

mented with simple add and shift operations. This is possible if the values are chosen

such that

c, =tan-'(2- ') i =0,1,2 .... n (3.10)

Dividing both sides of Equation (3.7) by cos 0, gives

o 0- ± +Y tan 0, = X+11'1 (3.11)

cos 01 - Yj ± X tan 0 = Y+1

The factors X',/ cos 0, and Y',/ cos 0, are the rotated components of the vector (X,Y). The

new vector is not only rotated, but also scaled by a factor 1/ cos 0,. If0 is now replaced

by a, = tan-1(2 -') the new equations

X= ± 1)'2 -' = X, + V,Y'2-  Kr'

(3.12)

'+, Y' T AV2 - - Y, - VX2-' - K, '

The terms X, and Y, indicate the components of the initial vector R. The term K, is the

factor I/ cos 0, by which X,1 and Y,, are larger than the components X and I" of a

vector which is only rotated.

Rotations by angles smaller than 90, the index (i) starts with 0,1,2,.... and contin-

ues to n. The resulting values for 2-' , a, and K are given in Table 1. During each ro-

tation the magnitude of R increases by = I/ cos a, . After n rotation steps the value

of K. becomes

i-fl iI I i
K, -''A, (3.13)C= 2os0 ' cosa I cosa 2 ... osCS a

-0
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The value of K. thus increases with each rotation step and approaches 1.6468 for high

values of i.

Table 1. THE BINARY CORDIC CONSTANTS.

1 2- cc (in degrees) KI

0 1.0000000000 45.00000000 1.414213500
1 0.5000000000 26.56505124 1.581138826
2 0.2500000000 14.03624340 1.629800596
3 0.1250000000 7.12501632 1.642484060
4 0.0625000000 3.57633432 1.645688908
5 0.0312500000 1.78991064 1.646492240
6 0.0156250000 0.89517384 1.646639215
7 0.0076125000 0.44761428 1.646743467
6 0.0039062500 0.22381056 1.646756030
9 0.0019531250 0.11190564 1.646759170

10 0.0009765625 0.05595300 1.646759954

Since we assume the number of rotations to be constant, K is also constant. And

to correct for the encrease of the magnitude of R, the resulting ." and I', values must

be divided by K, after the rotation operation is completed. Figure II illustrates a series

of rotations for an arbitrary vector which we desire to rotate by 400 . Notice that in the

figure, the desired angular value is approached quickly, because a, decreases by approx-

imately half during each step. The y sequence in the figure would be ( + 1, -1, + 1,

+ 1, + 1,-1, -1, -1, + 1,-1, + I).

In an ideal case such as the one presented, the value of Y decreases during each

step. However, this may not always be the case. For example, consider the vector (X,Y)

= (5,2) and a = 12.5*. The first rotation in the CORDIC algorithm would be -450, this

gives us a rotated vector (X,Y) = (4.94,-2.12) and a = -32.5 ° . Notice that the value

of I I'I has actually increased. To make the algorithm more efficent, we modify the se-

quence y to include the value zero. Whenever a rotation causes I I'l to increase, we do



45

40

1 2 3 4 3 8 7 0 9 10

Figure 11. Set of CORDIC Rotations.

not perform it, and we set the corresponding y, to zero. Then, we continue on with the

next rotation value and repeat the process. For the example just mentioned, the next

value to be tried would be 26.60 . A CORDIC rotation algorithm can be seen in Figure

12.

C. SYSTOLIC ARRAYS

In this section w will examine the parallel structure that will be used to solve the

least squares algorithm described above. In particular we aim at a structure that accepts

a sequence of regression vectors 9o(n) and signal y(n) as input and then outputs the es-

timate for the parameter 0. Specifically, we are interested in a high performance parallel

structure that can be implemented directly as a hardware device in order to deliver

maximum tlroughput. Systolic arrays represent a structure suitable for these charac-

teristics.
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Initialize: If x > 0 then x = x, U =y
else x =-x, y =-u

If Y > 0 then Vo = +I
else tVo =-

1=0

while I > N- I do
if Y I-tVi 2 xI > y then

Y1-'1 := Y i
Z i, I:=0

else
-jXi-t I' X i+ 6i 2_j~

Ui, := gi- Vj2 xi
If U > 0 then V ;= +1

else Zi14 := -1
endif
endwhlle.

Figure 12. CORDIC Rotation Algorithm.

A systolic array has simple and regular conununication and control structures, and

this is a substantial advantage over other designs and implementations. Additionally,
we want to allow the computations to proceed concurrently with the input, in order to

maximize the throughput. This is known as pipelining [ef. 31.
Figure 13 shows a typical system. As said before, the array is simply a network of

processors that are regularly connected. The data is continuously "pumped" through
this structure, thereby minimizing overall execution time, since all the processors work

in parallel.

It was shown that two processors would be necessary to solve Equation (3.1).
Previously used configurations have consisted of a triangular array (as in Figure 13) to
compute the upper triangular matrix, and a linear array to solve the system of equations.
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(2(t) 4(t) t (t)

Figure 13. Systolic Array.

The entire systolic array is controlled by a single clock. Figure 14 shows the typical de-

sign for the case d (dimension) = 3, where d shows the number of columns which enter

into the system. In this thesis we will use the alternative configuration in which the

linear section is replaced by a second triangular section identical to the first one. This

new design will be discussed later in this chapter. Both designs use a single clock signal

to control operations. Before continuing on to discuss the alternative design, we will

review the structures of the triangular and linear sections.
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+31 +22 +13 0

+21 +12 **

Figure 14. Systolic Array Procedure for Old Design.
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1. Triangular Array

The triangular systolic array performs a sequence of Givens rotations. The

CORDIC technique is a possible implementation for the rotations. The processors work

simultaneously at each clock pulse. The data regression vector 9(1) and output signal

y(t) are inputs to the top of the array, and rotations are calculated at each clock cycle.

The triangular array consists of two types of cells: edge cells (or boundary cells)

and internal cells. The edge cells are represented by the circles and the boundary cells

are represented by the squares as seen in the Figure 13 and Figure 14. Figure 9 defines

the operations of these cells. The edge cell computes the rotation parameters c and s

as seen in Equation (3.2). Each cell of the triangular array stores an element of the up-

per triangular matrix R(n) from Equation (3.1), and it is initialized to zero for internal

cells and to acI for the edge cells as mentioned before. The function of each row of

processing cells in the triangular systolic array section is to combine one row of the

stored triangular matrix with a vector of data received from the above cells in such a

way that the leading element of the received data vector is annihilated. The data vector

so obtained is then passed downward on to the next row of cells. The boundary cells in

each row of the section computes the rotation parameters and then passes them to the

right on the next clock cycle. The internal cells apply the same rotation parameter to

all other elements in the received data vector.

A delay of one clock cycle per cell is incurred when passing the rotation pa-

rameters along a row. That is why it is necessary to "skew" the input data as seen in

Figure 14, so that the input data interacts properly with the previously stored triangular

matrix. Because the cells are operating simultaneously, the data in the system at any

time t consists of values from (2n) different matrices. Figure 15 demonstrates this for a

system with n= 3. In this figure, we can see that at time (t+ 5), there are also values

present from the five previous matrices (i.e., t + 4,t + 3 ....... ,t). In order to get all the cells

in the array to a similar time state, the array would have to be clocked an additional 2n- 1
(five) cycles, feeding zeros as input where necessary. At the completion, all cells will be

at the same time (t+ 5) [Ref. 71.

Note that at the same time the triangularization process is being carried out,

the column vector kI is also being computed by the rightmost column of internal cells

using y(n) as its input.
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Figure 15. Data Flow in Triangular Section.
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At the end of the triangularization period (N), we are ready to solve for 0 ,.,)N.

The data in this triangular array is clocked out to the next array section that will com-
pute the parameters.

2. Linear Array

The linear systolic array has been used in previous implementations to solve for
the estimated parameters. The linear section consists of' one boundary cell and (d-I)

internal cells as seen in Figure 14.

The operation of the cells as they compute the parameters are shown in Figure

16. Note that the cells are different from those in the triangular array, increasing to four

the number of unique cells necessary in the combined system.

It is shown in [Ref. 3] that the time required to solve for 0 using the linear array

is equal to 2d. At the end of the period, the parameters are used as initial values for the

triangular array, and the triangular section again begins the operation.
We now replace the linear section with a second triangular section, and discuss

the differences between these two design approaches.

z 1 (n) z I z,(n)

e=b- Z ln) Z1_ (n+1) Z, (n) + aj Oj

Figure 16. Definition of Cell Operation for Linear Section.

3. The Use of a Second Triangular Array as the Solution Section

An alternative implementation can be obtained by solving 0 as shown in

Figure 17.
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Figure 17. Systolic Array Procedure for New Design.
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In this implementation, at the end of the triangularization period, the data is

passed from the first triangular section to the second triangular section in a reversed

position. The second triangular array performs the same type of operations as the first,

therefore, the cells are identical.

The reason of using another triangular section is that, by proper combinations

of rows, we can force zeros into all elements of a given row but one, so that we can solve

for each of the parameters. Also, the fact that orthogonal operations are used makes it

more robust in the presence of numerical errors [Ref. 7]. To see how this works, consider

an arbitrary set of equations in upper triangular form as in Equation (3.14). Now x3 is

simply solved as b3/a,3 . To solve for x,. we can force a23 to zero by a linear combination

of rows two and three. Then x2 is found to be b,/a,2. Similarly, by row operations on

row 1.2 and 3 we can make a,2 = a,3 = 0 in row one, and x, is found to be ba,,. This type

of operations are exactly what the triangular array was designed to do.

all a,, a13  X1 b
o a,2 a23 x2 = b2  (3.14)

0 0 a33 ix3 b3

Figure IS shows these operations in matrix format, and as mentioned before

data is in reversed position. Notice that the array is initialized to all zeros here, whereas

the first triangular section is initialized to aoOs and al.

To understand how the system operates. recall the first triangular array at

time N. Now we must feed the data down into the second triangular section in an

appropriate manner so that we can solve for the parameters. The same delay (one clock

cycle per cell) in propagation of data applies to this triangular section as it does in the

first section. That is why we must carefully choose when to sample the array in order

to get the correct values with which to calculate the solution.

Figure 19 illustrates the data flow for a simple system where d - 3. The input

data is skewed as it was in the triangular section. It can be seen that the values a33,

a, , and a,, are available at times N + I, N + 4, and N + 7 respectively. Similarly, the

values of b3, b2. and b, are available at times N + 4, N + 6, and N + 8. In general, for any

size system n, the coefficients a,, and outputs b, are available as shown in Table 2. Note

from the figure that the coefficients are "picked off" from the edge cells at the appropri-

ate times, while the outputs are found in the rightmost set of internal cells IRef. 31.
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Compute XO Compute () Compute 0

Figure 18. Solution of System of Equations.

This new design operates slower than the linear system seen in [Rer. 7J. The

time to solve for 0 in this design is equal to the time until b, appears, which is equal to
(3n - 1). This compares to 2n (or 2d) in previous implenentations; hence, n-I more

clock cycles are required.
On the other hand, simplification is gained in the manufacturing process since

the number of types of cells is reduced. The tradeoffs to be considered are simplicity
(cost) versus speed.
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Figure 19. Data Flow in the Second Triangular Aray.
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Table 2. TIMES OF AVAILADILTY OF DATA.

Coef f icent Times

a nnN+ I

a N+4
n-I .n- 1

a n22 N+7

a n3n3N+10

b nN. (n+ 1)

b n-I N +(n +3)

b N + (n + 5)
n-2..

b- N (n 7)
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IV. SIMULATION STUDY

1. Model Equation

In general, a linear model can be expressed by either the difference equation

relating the input and output sequence, or in a regression form as mentioned in the

previous Chapters. In the example below, we will consider the problem of estimating the

unknown parameters both with and without noise present.

In our simulation program, we will use the first order model which has the

discrete time transfer function such that

H(z) - z b_ a, (4.1)

which corresponds to the linear difference equation

y(t) + aly(t - 1) = blu(t - 1) (4.2)

where u(t) and y(t) are the input and output sequences respectively. Equation (4.2) can

be expressed as

0T= [a ,, b1] (4.3)

(t) --W [41t - ]). u(t - I)] (4.4)

This corresponds to the regression model

-v( = 0%() (4.5)

If the model has noise we obtain

0t- (0 + tit) (4.6)

For proper system identification the input sequence must contain a sufficient

number of frequency components. In our simulating program we used the sine wave

nt 2rt 57rt 6nrt
u(t) - sin( -I- ) + sin( -L- ) + sin( )+ sin( 6 (4.7)
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For identification purposes the input must be sufficently rich in frequencies to

excite all modes of the system. If we have fourth order system we should have at least

four different sinusoidal components.

In our simulation model we chose the values of the parameters as a, = 0.5 and

b, = 2. In the parameter estimation problem, these values will be assumed to be un-

known.

2. Noise Model

The noise term v(t) is a sequence of independent random variables with zero

mean values. The noise is added to both the incoming signal u(t) and measured output

y(t).

3. Choice of Initial Values

For a recursive algorithm, we need to initialize the systolic array with an initial

parameter estimate a00(0) and ajl in Equation (2.28). Here 6, is related to the confidence

of initial condition of 0(0). If some prior information about 0(0) is available, it should

be used for determining proper values of 0(0). If no prior information is available we

choose 8(0) = 0.

4. Choice of Block Length

In our simulation program we have used four different block lengths both

without noise and with noise in order to test the convergence rates in the different cases.

We chose N = 3, 7, 10, 15 values for the block lengths, where N identifies the block

sizes.

5. Floating Point and Fixed Point Operations

During simulation, the use of floating point versus fixed point arithmetic is

considered. Fixed point arithmetic operations are performed using simple shift oper-

ations and finite registers. Because of this, they are simpler to implement than floating

point operations. On the other hand, since input and output data values do not na-

turally appear as integer values, there is some concern over loss of accuracy. The sol-

ution to the latter problem is to scale all the numbers so that they stay within the limits

of the fixed registers.
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A. NOISELESS MEASUREMENTS

This is an ideal case. Figure 20 through 27 illustrate the results of these simulations.

In these figures the estimated parameters ( 0 and 02 ) are plotted along the vertical axis,

the block number is plotted along the horizontal axis. In the following we will discuss

the results for floating point and fixed point arithmetic.

1. Results Using Floating Point Arithmetic

Figures 20 through 23 illustrate the floating point results for block lengths of

N = 3, 7, 10 and 15 respectively. As seen from the figures the parameters exhibit the

fastest rate of converge when N = 7. Even though the estimated parameter a, converges

very fast at N= 15, the other estimated parameter b, converges slowly in this block

length. As it can seen from the Table 3, the case of N = 7 requires minimum number

of clock cycles, therefore in this case we should choose a block length of seven.

2. Results Using Fixed Point Arithmetic

This situation has been simulated by adding the random noise to the measure-

ments and the computations, so to account for round-off errors.

Figure 24 through 27 illustrate the fixed point results for the same conditions.

Notice that the parameters converge as fast as floating point operations. As seen from

Table 4, for this case again, N = 7 requires minimum number of clock cycles. This indi-

cates that the degradation due to the implementation is not dramatic for the fixed point

processors. When we consider the simplicity of fixed point processors, this is a distinct

advantage.

Table 3. THE RATE OF CONVERGE FOR FLOATING POINT(NO NOISE).

BLOCK LENGTH(N) BLOCK NUMBER TOTAL
AT CONVERGE CLOCK CYCLES

3 30 90

7 12 84

10 14 140

15 11 1.
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Table 4. THE RATE OF CONVERGE FOR FIXED POINT(NO NOISE).

BLOCK LENGTH(N) BLOCK NUMBER TOTAL
AT CONVERGE CLOCK CYCLES

3 30 90

7 12.5 87.5

10 15 150

15 10.5 157.5

B. NOISY MEASUREMENTS

As mentioned before the noise term v(t) is a sequence of independent random var-
iables with zero mean. We used a variance of 0.5 for these random variables. As cx-

pected in a real system, the noise is added to both incoming signal u(t) and output y(t).

1. Results Using Floating Point Arithmetic

Figures 2S through 31 show the results for the four different block lengths.

As seen from the figures, for N = 3 the parameters are most affected. For N = 7 or

N = 10, the parameters are less affected by the noise. When the block length is equal to

7, the parameters have converged reasonably well within eight blocks (56 cycles). For

N= 15, we see that the parameters are least affected by the noise.

2. Results Using Fixed Point Arithmetic

Figures 32 through 35 show the results for fixed point implementation. Again

we see that they exhibit similar performance as in the floating point cases. Effects of

block length are almost the same as described previously.

To simulate fixed point behavior we added random disturbances in the com-

putations within the cells. In particular, the factors c and s are affected by round-off
errors which we can simulate in this fashion. A similar approach has been taken in [Ref.

91 in the analysis of a systolic array implementation of the projection operator.

46



z

mt

07 911 1 91-
S83J3KVWd GRAI03

Figre28 Foain Pin Oeraio fr =3 Wih oie)

470



0

,.)

~o

C)

WE Glt 01 O" 0 0

S83.131NVd 031.41IS3

Figure 29. mlating Point Operation for N = 7 (With Noise).

48



C4

0

0
z
X)
0

sn-i

z
0

SH.3VS~ 031 IS

Figure~~~ ~ ~~ 30 laigPit prto o -1 Wt os)

S 49



5_ 0

!z
C14

z

|0

500

o
S~3JJdV~V GJIflIS

F~gue 31 Flotin Poit Opraton fr N 15(~VihiNose)

/50



z

0

z

C14

10

0"z G" t 0 * L T'O 0

SI3JV1IVHd 31W4IJLS3

Figure 32. Fixed Point Operation for N = 3 (With Noise).

SI



0

z

Olz 9*0
SIJ31viVHd 031"Ii0

Figue 3. Fied ointpertionforN - 'ih Nose)

52z



in z

0

10

070 *0 0
SH*3VV~ (11 J S

Figure~ ~ ~ ~ 34zie on prto frN-1 Wt os)

530



z

I I z

aH1VI~ 03MS

34-



V. CONCLUSIONS

In the previous chapters we explained the estimation of the model using a parallel

structure and recursive least squares algorithm. In this chapter we will discuss the

tradeoffs. advantages and disadvantages of the systems that we have investigated.

The recursive algorithm, based on recursive least squares with covariance resetting,

is redesigned in order to make it suitable for implementation on a VLSI chip and also

modi y the systolic array in order to reduce computing time and complexity. The dif-
ference in adaptive control is that the estimator has to operate recursively on subsequent

blocks of data, so that the estimated parameters converge to the respective correct val-

ues. This convergence is guaranteed by initializing each estimation with the parameter

values from the previous one, and by persistency of excitation of the external inputs.

We simulated several possible conditions to see the response of the parallel algo-

rithm. Almost in each condition the parameters converged close to their own values,

even in the presence of noise.

This parallel algorithm is different from other similar algorithms in the fact that

we replaced two different processors by two identical ones. There was a total of four

different computing cells (two for triangular section, two for linear section) in the old

design. For the new design we need only two different cells for the whole system as ex-

plained in Chapter III. The new design requires more total cells than the old design.

For a fourth order system (d= 4). new design requires 10 additional cells from the for-

mula of -Ld(d+ 1). However, additional cells are not expensive in a VLSI schema.

As described in Chapter III additional (d-l) clock cycles are required to operate the
second triangular section. That is why a second triangular section is a little bit slower

than the linear section.

In this thesis we also compared floating point operations with fixed point oper-

ations. For floating point operations we saw that the convergence rate increases with
the block length. Also when the block length is small, the identification is more sensetive

to the presence of noise.

We got almost the same results for fixed point operations. If we consider the

simplicity of the fixed point processor, a significant advantage to use the fixed point

arithmetic is due to its simplicity.
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APPENDIX A. COMPUTER PROGRAM I

A. PURPOSE OF THE PROGRAM

This program converts a given data matrix to an upper triangular matrix by using

Givens rotation algorithm. There are two classes of cells. Therefore, two different types

of subroutines are used. As explained in Chapter III this upper triangular matrix again

convert to another upper triangular matrix and meanwhile the unknown parameters are

computed.

All elements of the matrix are given interactively. This program can solve 49 x 50
matrix. If run this program, should be extended virtual storage capacity to 1500K in

advance due to the large array.

C ********,*VAR IABLE DECLARATION*********
IMPLICIT REAL.'8 (A-H,O-Z)
REAL*8 A,C,S,U,LU,AOUT,AA,ED,IN,AAA,CC,SS,UU,AAOUT,LLU,EED,

+IIN,THETA
DIMENSION A(50,50),C(0:50,0:50),S(0:50,0:50),U(0:50,0:50),

+LU(0: 50,0: 50),AOUT(0: 50,0: 50) ,AA(50,50),ED(0: 50,0:50),
+IN(0: 50,0: 50) ,AAA(50,50) ,CC(0: 50,0: 50) ,SS(0: 50,0:50),
+UU(0: 50,0: 50) ,LLU(0: 50,0: 50) ,AAOUT(0: 50,0:50),
+EED(0: 50,0: 50),IIN(0: 50,0: 50),THETA(50)
INTEGER I,J,K,M,N

C f -¢*****-***€-** r' ** "k"q" * r **r¢ k" - **
C "****'VARIABLE DEFINIATION****%h'r**
C A(I,J) = DATA MATRIX
C ED(I,J) = FIRST TRIANGULAR MATRIX
C EED(I,J) = SECOND TRIANGULAR MATRIX
C THETA(K) = UNKNOWN PARAMETERS
C
C * *********DATA ENTRANCE*************

PRINT *,'ENTER THE NUMBER OF COLUMNS M"'
READ(5 ,*)M
PRINT *,'ENTER THE NUMBER OF ROWS N;'
READ(5 ,*)N
PRINT *,' '
DO 1 I;1,N

DO 2 J=1,M
WRITE(6,3)I,J

3 FORMAT('ENTER A(',I2,I2,')')
READ(5,*) A(I,J)

2 CONTINUE
1 CONTINUE

PRINT *,'DATA MATRIX'
DO 4 I1,N
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WRITE(6,*)(A(I,J) ,J=1,M)
4 CONTINUE

PRINT *,'
DO 5 I=1,N

DO 6 J=1,M
AA(I,J)=A(N-(I-1),J)

6 CONTINUE
5 CONTINUE

DO 7 I=1,2,3
DO 8 J=1,M

AA(N+I ,J)=O. 0
8 CONTINUE
7 CONTINUE

DO 9 I=1,2,3
DO 10 J=1,M
AOUT(I,J)=O. 0

10 CONTINUE
9 CONTINUE

DO 11 I=1,N+1
DO 12 J=1,M
U( I,J)=AA( I,J)

12 CONTINUE
11 CONTINUE
C
C *****FIRST TRIANGULAR IZATI ON**c*

DO 13 K=1,N
DO 14 J = K,M

DO 15 I = 1,N-K+2
IF (J.EQ.K)THEN
CALL EDGE(U( I,J) ,AOUT(I ,J) ,AOUT( I+1,J) ,C(I,J) ,S(I,J))
ED( I,J)=AOUT(I ,J)
ELSE
CALL INTERNAL(U(I,J),AOUT(I,J),C(I,J-1),S(I,J-1),AOUT(I+1,J),

+LU(I,J) ,C(I,J),S(I,J))
U(I-1,J)=LU(I,J)
IN( I,J)=AOUT( I,J)
ENDIF

15 CONTINUE
14 CONTINUE
13 CONTINUE

DO 20 I=1,N
DO 21 J=1,N+1-I
ED(I,J)O. 0

21 CONTINUE
20 CONTINUE

DO 22 J=M,2,-1
DO 23 K=N+3-J,N+1

DO 24 1=K,N+1
ED( I,J)1IN( I,J)

24 CONTINUE
23 CONTINUE
22 CONTINUE

PRINT *,'FIRST TRIANGULAR MATRIX'
DO 29 I=N+1,2,-1

WRITE(6,*)(ED(I,J) ,J=1,M)
ol29 CONTINUE
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PRINT ,

C *********I-**DATA ENTRANCE*****,'********
DO 25 1=1,N

DO 26 J=1,M-1
AAA( I,J)=ED( 1+1 ,M-J)

26 CONTINUE
25 CONTINUE

DO 27 J=M 'M+1,2
DO 28 I=1,N

MAAC I,J)=EDC 1+1,11)
28 CONTINUE
27 CONTINUE

DO 30 I=1,2,3
DO 31 J=1,M

AAA(N+I,J)=0. 0
31 CONTINUE
30 CONTINUE

DO 32 1=1,*2,3
DO 33 J=1,M

AAOUT(I,J)=O. 0
33 CONTINUE
32 CONTINUE

DO 34 I=1,N+1
DO 35 J=1,M

UU( I,J)=AAA(I ,J)
35 CONTINUE
34 CONTINUE
C
C *******SECOND TRIANGULARI ZATI ON******

DO 36 K=1,N
DO 37 J = K,M

DO 38 I = 1,N-K+2
IF (J.EQ.K)THEN
CALL EDGE(UU(I,J),AAOUT(I,J),AAOUTCI+1,J),CC(I,J),SS(I,J))
EED( I,J)=AAOUT( I,J)
ELSE
CALL INTERNAL(UU(I,J),AAOUT(I,J),CC(I,J-1),SS(I,J-1),

+AAOUT(I+1,J),LLU(I,J),CC(I,J),SS(I,J))
UU( I-1,J)=LLU(I ,J)
IIN(I ,J)=AAOUT( I,J)
END IF

38 CONTINUE
37 CONTINUE

THETA(K)=IIN(2 ,M)/EED(2 ,K)
36 CONTINUE

DO 39 I11,N
DO 40 J1-,1-I

EED(I,J)=O. 0
40 CONTINUE
39 CONTINUE

DO 41 J=MP2,-1
DO 42 K=M+2-J,N+1

DO 43 I=K,N+l
EED I ,J)11IN(I ,J)

43 CONTINUE
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42 CONTINUE
41 CONTINUE

PRINT *,SECOND TRIANGULAR MATRIX'
DO 44 I=N+1,2,-1

WRITE(6,*)(EED(I,J) ,J=1,M)
44 CONTINUE

PRINT *,'
PRINT *,'UNKNOWN PARAMETERS'
WRITE(* 146)

46 FORMAT( ,11X,'K',13X,'THETA(K)')
DO 45 K=-N,1,-1

WRITE(6,*) N-K+1,THETA(K)
45 CONTINUE

STOP
END

C

C
C **e***Y*SUBROUTI NE GROUPS FOR********
C **********CELLS FUNCTI ON*********
C

C ***~*********eBOUNDARY CELL--************
SUBROUTINE EDGE (U,AIN,AOUT,C,S)

* IMPLICIT REAL*8 (A-H,O-Z)
REAL---8 U,AIN,AOUT,C,S
IF(U. EQ. 0. AND. AIN. EQ. O)THEN
C=1. 0
S=0. 0
AOUThU
ELSE
C=U/(SQRT(U**2. ODO+AIN**2. ODO))
S=AIN/(SQRT(U**2. ODO+AIN*~*2. ODO))
AOUT=-SQRT(U**2. ODO+AIN**2. ODO)
END IF
RETURN
END

C

C **y**********INTERNAL CELL********hh**
SUBROUTINE INTERNAL (PU,AIN,PC,PS,AOUT,LU,LC,LS)
IMPLICIT REAL*r8 (A-H,O-Z)
REAL*8 PS,PCPUS,C,U,AOUT,LU,AIN,LC)LS
LUC -PtferPS)+CAIN*PC)
AOUT-( PU*PC)+(AIN*PS)
LC=PC
LS=PS
RETURN
END

C
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C
C
C *****THE RESULTS OF THIS PROGRAM******
ENTER THE NUMBER OF COLUMNS M=
3
ENTER THE NUMBER OF ROWS N=
2

ENTER A( 1 1)
1
ENTER A( 1 2)
2
ENTER A( 1 3)
3
ENTER A( 2 1)
4
ENTER A( 2 2)
5
ENTER A( 2 3)
6

DATA MATRIX
1.0000 2.0000 3.0000
4.0000 5.0000 6.0000

FIRST TRIANGULAR MATRIX
4.1231 5.3357 6.5484
0.0000 0.7276- 1.4552

SECOND TRIANGULAR MATRIX
5.3851 4.0852 6.6850
0.0000 0.5570 -0.5570

UNK(NOWN PARAMETERS
K THETA(K) 4
1 -1. 0000
2 2.0000

ENTER THE NUMBER OF COLUMNS M=
4
ENTER THE NUMBER OF ROWS N=
3

ENTER A( 1 1)
3
ENTER A( 1 2)
7
ENTER A( 1 3)
11
ENTER A( 1 4)
20
ENTER A( 2 1)
5
ENTER A( 2 2)
9



ENTER A( 2 3)
16
ENTER A( 2 4)
21
ENTER A( 3 1)
6
ENTER A( 3 2)
8
ENTER A( 3 3)
10
ENTER A( 3 4)
22

DATA MATRIX
3.0000 7.0000 11.0000 20.0000
5. 0000 9. 0000 16. 0000 21. 0000
6. 0000 8. 0000 10. 0000 22. 0000

FIRST TRIANGULAR MATRIX
8. 3666 13. 6256 20. 6774 35. 4982
0.0000 2.8884 6.6670 7.3792
0. 0000 0. 0000 2. 2345 -3. 2276

SECOND TRIANGULAR MATRIX
21.8403 13.7818 7.9211 35.5305
0. 0000 2. 0151 2. 3979 7. 6038
0. 0000 0. 0000 1. 2269 -2. 1812

-UNKNMWN PARAMETERS
K THETA(K)

* 1 -1. 7777
2 5. 8888
3 -1. 4444

ENTER THE NUMBER OF COLUMNS M=
5
ENTER THE NUMBER OF ROWS N=
4

ENTER A( 1 1)
6
ENTER A( 1 2)
9
ENTER A( 1 3)
14
ENTER A( 1 4)
26
ENTER A( 1 5)
31
ENTER A( 2 1)
42
ENTER A( 2 2)
14
ENTER A( 2 3)
57
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ENTER A( 2 4)
38
ENTER A( 2 5)
3
ENTER A( 3 1)
9
ENTER A( 3 2)
21
ENTER A( 3 3)
42
ENTER A( 3 4)
57

ENTER A( 3 5)
48
ENTER A( 4 1)
12
ENTER A( 4 2)
19
ENTER A( 4 3)
23
ENTER A( 4 4)
45
ENTER A( 4 5)
58

DATA MATRIX
6.0000 9. 0000 14.0000 26.0000 31. 0000

42.0000 14. 0000 57. 0000 38.0000 3. 0000
9. 0000 21.0000 42.0000 57. 0000 48.0000
12. 0000 19. 0000 23.0000 45. 0000 58.0000

FIRST TRIANGULAR MATRIX
44. 9999 23. 5333 69. 6000 62. 3333 32. 0000

0. 0000 22. 9168 26. 4032 58. 9561 73. 2183
0. 0000 0. 0000 14. 0252 4.5607 -14. 6452
0. 0000 0. 0000 0. 0000 3. 4541 6. 2125

SECOND TRIANGULAR MATRIX
85. 9883 69. 3000 32. 7718 32. 6206 72. 8703

0. 0000 30. 5859 -0. 9184 28. 4896 -35. 7980
0.0000 0.0000 2.0397 7.9060 4.9136
0.0000 0.0000 0.0000 9.3125 4.7191

UNKNOWN PARAMETERS
K THETA(K)
1 0. 5067
2 0. 4447
3 -1.6290
4 1. 7985

62



APPENDIX B. COMPUTER PROGRAM i

A. PURPOSE OF THE PROGRAM
This program computes the estimated weight vector of least squares for first order,

second order or third order model which has the discrete time transfer function such that

b1Z 2

H(Z) - Z3 + aZ 2 + a2Z + a3

where the all coefficients are given interactively. In this program, addition to the previ-

ous program is used another two subroutines to supply the gaussian noise which corre-

sponds to parameter v(t). As seen in the plots this program computes the unknown

parameters by converging. In order to run this program should be extended virtual

storage capacity to 2M.

C **'yrr****VARIABLE DECLARATI ONy*******
REAL C,S,U,LU,AOUT,ED,IN,X,Y,SIG,UIN,THETA,V,R,BM,AAA,CC,SS,UU,

+LLU,AAOUT,EED, IIN
DIMENSION C(0:50,0:50),S(0:50,0:50),U(0:50,0:50),LU(O:50,0:50),

+AOUT(0: 50,0: 50) ,ED(0: 50,0: 50),IN(0: 50,0: 50) ,X(50) ,UIN(0: 50),
+AAA(50,50),CC(O: 50,0: 50),SS(0: 50,0: 50),UU(0: 50,0:50),
+LLU(0: 50,0: 50) ,AAOUT(0: 50,0: 50) ,EED(0: 50,0:50),
+I IN( 0: 50,0: 50) ,Y( -3: 50) ,THETA(0: 50)
INTEGER I,J,K,M,N,L,T

C **********VARIABLE DEFINIATION********
C ED(I,J) = FIRST TRIANGULAR MATRIX
C EED(I,J) = SECOND TRIANGULAR MATRIX
C
C
500 PRINT *,'ENTER THE SIZE OF MATRIX N BY N **N=?'

READ *, N
PRINT *,' N = ',N
PRINT *,'
PRINT *,'ENTER THE ORDERS OF DEN. OF DIFF. EQ. **NO=?'
READ *, NO
PRINT *,' NO = ',NO
PRINT *,'
PRINT *,'HOW MANY BLOCKS DO YOU WANT TO ITERATE **NBN=?'
READ *, NBN
PRINT *,' NBN - ',NBN
PRINT *,'
PRINT *,'ENTER THE VALUE OF SIGMA **SIC,=?'
READ *,SIG
PRINT *,'SIG = ',SIG
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PRINT ,
IF (NO.EQ-l) THEN
PRINT *,'FORMAT OF 1ST ORDER DIFF. EQ. ** Y(T) B l*UCT.1)+Al*YCT-1)

+1

PRINT *,'ENTER THE COEFF. OF Al V'
READ *,Al
PRINT *,'Al = ',Al

PRINT *,'ETR THE COEFF. OF Bi V'
READ *,Bl
PRINT *,'B1 = ',Bl
WRITE(*,46)

ELSEIF (NO.EQ.2) THEN
PRINT *,'FORMAT OF 2ND ORDER DIFF. EQ. ** Y(T) =Bl*UCT-l)+A1*Y(T-1)

++A2*Y(T-2)'
PRINT *,'ENTER THE COEFF. OF Al V'
READ *,Al
PRINT *,'Al = ',Al

PRINT *,'ENTER THE COEFF. OF A2 V'
READ *,A2
PRINT *,'A2 = ',A2

PRINT *,'ENTER THE COEFF. OF Bi V
READ *,Bl
PRINT *,'Bl = ',Bl
WRITE(*,47)

ELSEIF CNO.EQ.3) THEN
PRINT *,'FORM1AT OF 3RD ORDER DIFF. EQ. ** Y(T) =Bl*U(T-l)+Al*Y(T-l)

++A2*Y(T-2)+A3*Y(T-3)'
PRINT *,'ENTER THE COEFF. OF Al V'
READ *,Al
PRINT *,'Al = ',Al

PRINT *,'ENTER THE COEFF. OF A2 V'
READ *,A2
PRINT *,'A2 = ',A2

PRINT *,'ENTER THE COEFF. OF A3 V'
READ *,A3
PRINT *,,'A3 ='A3

PRINT *.,'ETR THE COEFF. OF Bi V'
READ *,Bl
PRINT *)'Bl Bl
WRITE(*,48)

ELSE
PRINT *$'ERROR, PLEASE TRY AGAIN'
PRINT *,'CHOOSE N0=1,2 OR 3'
GOTO 500
END IF
NB=15*NO
z= 1
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P1=4*ATANC Z)
P=PI /10
BM=O
R=0. 0707
I X=1

C
C **n********n**DATA ENTRANCE***w*******

DO 1 LF=2,NO+2
DO 2 KF=1,NO+2

IF((LF.GT.KF).AND. C(LF-KF).EQ. 1)) THEN
U(LF,KF)=SIG
ELSE
U(LF,KF)=0. 0
ENDIF

2 CONTINUE
1 CONTINUE

IF(NQ. EQ. 1)THEN
Y(O)0. 0
UIN(O)O. 0
Y( 1)=A*Y(0)+Bl*UINCO)
ELSEIF(NO. EQ. 2)THEN
Y(-1)=O. 0
Y(O)=O. 0
UIN(O)O. 0
Y( 1)=A2*Y(-1)+A1l*YCO)+Bl*UIN(0)
ELSE
Y(-2)=0. 0
Y( -1)O. 0
Y(O)=O. 0
UIN(O)=0. 0
Y(1)=A3*Y( -2)+A2*Y( -1)+AI*Y(O)+Bl*UIN(0)
ENDIF
DO 3 IT=1,NBN
DO 4 J=1,NB
CALL GAUSS(IX,R,BM,V)
IF(NO. EQ. 1)THEN
U( 1,1)=Y(J-1)
U(1,2)=UIN(J-1)
U( 1,3)=Y(J)
UIN( J)=SIN( P*?J)+SIN( P*2*J)+SINC P*5*J)+SIN( P*6*J)
Y(J+ )=A1*Y(J)+B1*UINCJ)+V
ELSEIF( NO. EQ. 2)THEN
U( 1, 1)Y(J-2)
UC 1,2)=Y(J-1)
UC 1,3)=UINCJ-1)
UC 1,4)=Y(J)
UIN( J)=SINC P*J)+SIN( P*2*J)+SINC P*5*J)+SINC P*6*J)
Y( J+1)=Al*Y( J)+A2*Y( J-1)+Bl*UIN(J)4.V
ELSE
UC 1, 1)Y(J-3)
U 1,2)=Y(J-2)
U( 1,3)inY(J-1)
U 1,4)UIN(J-1)
U( 1,5)=Y(J)
UIN( J)=SIN( P*J)+SINC P*2*J)+SINC P*5*J)+SIN( P*6*J)
Y( J+1)=AI*YC J)+A2*YC J-1)+A3*Y( J-2)+B1*UINCJ)+V
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ENDIF
DO 5 I1=1,2,3

DO 6 JJ=1,N+1
AOUT(II,JJ)=O. 0
U(N+II,JJ)0O.0

6 CONTINUE
5 CONTINUE
C ********FIRST TRIANGULARI ZATION*******
c ****: ;~ ~..:: ~********

DO 7 K=1,N
DO 8 Ji =K,N+l

DO 9 1 1,N-K+2
IF (Ji. EQ. K)THEN
CALL EDGE(U(I,Jl),AOUT(I,Jl),AOUT(I+1~,J1c(I,j1),S(I,j1))
ED(I,J1)=AOUT(I,J1)
ELSE
CALL INTERNAL(U(I,J1),AOUT(I,J1),C(I,J1-l),S(I,jl-l),

+AOUT(I+1,J1) ,LU(I,J1) ,C(I,j1) ,S(I,J1))
U(I-1,J1)=LU(I,Jl)
IN( I,J1)=AOUT( I,J1)
ENDIF

9 CONTINUE
8 CONTINUE
7 CONTINUE

DO 10 11, N
DO 11 J2=1,N+1-I

ED( I,J2)O. 0
11 CONTINUE
10 CONTINUE

DO 12 J3=,N+1,2,-l
DO 13 K7-N+3-J3,N+1

DO 14 I=K,N+1
ED(I,J3)=IN(I,J3)

14 CONTINUE
13 CONTINUE
12 CONTINUE

PRINT *,'
C ***********DATA ENTRANCVE%******~*,
C ***wr*eFOR SECOND TRIANGULAR ARRAY'**I**

DO 15 I=1,N
DO 16 J4=1,N

AAA( I,J4)=ED( 1+1 ,N+-J4)
16 CONTINUE
15 CONTINUE

DO 17 J5=N+1,N+2,2
DO 18 I-1,N

AAA( I,J5)=ED(I+1,N+1)
18 CONTINUE
17 CONTINUE

DO 20 I1,2,3
DO 21 J6=lN+1

AAA(N+I,J6)nO. 0
21 CONTINUE
20 CONTINUE

DO 22 I=1,2,3
DO 23 J7=1,N+1
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AAOUT(I,J7)=0. 0
23 CONTINUE
22 CONTINUE

DO 24 I=1,N+1
DO 25 J8=1,N+1

UU(I,J8)=AAA(I,J8)
25 CONTINUE
24 CONTINUE
C.. . . .

C ********SECOND TRIANGULARIZATION******
DO 26 K=1,N

DO 27 J9 =K,N+1
DO 28 I1 1,N-K+2
IF (J9. EQ. K)THEN
CALL EDGE(UU(I,J9),AAOUT(I,J9),AAOUT(I+1,J9),CC(I,J9),SS(I,J9)

EED( I,J9)=AAOUT(I,J9)
ELSE
CALL INTERNAL(UU(I,39),AAOUT(I,J9),CC(I,J9-1),SS(I,J9-1),

+AAOUT(I+1,J9),LLU(I,J9) ,CC(I,J9) ,SS(I,J9))
LIU(I-1,J9)=LLU(I,J9)
IIN( I,J9)=AAOUT(I ,J9)
ENDIF

28 CONTINUE
27 CONTINUE
26 C ONTINUE

PRINT ',
C

DO 29 I=1,N
DO 30 J2=1,N+1-I

EED(I3J2)0O.O
30 CONTINUE
29 CONTINUE

DO 31 J3=N+1,2,-l
DO 32 K=N+3-J3,N+1

DO 33 I=K,N+l
EED(I,J3)=IN(I,J3)

33 CONTINUE
32 CONTINUE
31 CONTINUE

DO 34 MM=1,N+l
DO 35 LLr2,N+l
UU( LL,MM)=EED(N+3-LL,IM)

35 CONTINUE
34 CONTINUE

IF(NO. EQ. 1)THEN
IF(UU(3,3). EQ.0. AND. UU(3,2). EQ. O)THEN
THETA(2)0O.0
ELSE
THETA(2)=UU(3,3)/UU(3,2)
THETAC 1)i(UU(2,3)-(THETA(2)*UUC2,2)))/UU(2, 1)
WRITE(6,*) THETA(l),THETA(2)
END IF
ELSEIF(NO. EQ. 2)THEN
IF(UU(4,4). EQ.0. AND. UU(4,3). EQ. O)THEN
THETA( 3)0O.0
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ELSE
THETAC 3)=UU(4,4)/UU(4,3)
THETA(2)=(UUC3,4)-(THETA(3)*UU(3,3)))/UUC3,2)
THETA(1)=(UU(2,4)-(THETA(3)*UU(2,3)+THETA(2)*UU(2,2)))/UU(2,1)
W-RITE(6,*) THETA(1),THETA(2),THETA(3)
ENDIF
ELSEIF( NO. EQ. 3)THEN
IF(UU(5 ,5). EQ.0. AND. UU(5,4). EQ. O)THEN
THETA(4)=0. 0
ELSE
THETA(4)=UU(5 ,5)/UU(5,4)
THETA(3)=(UU(4,5)-CTHETAC4)*UU(4,4)))/UU(4,3)
THETA(2)=(UU(3,5)-(THETA(4)*UU(3,4)+THETA(3)*UU(3,3)))/UU(3,2)
THETA(1)=(UUC2,5)-(THETA(4)*UU(2,4)+THETA(3)*UU(2,3)+THETAC2)*

+UU(2,2)))/UU(2,1)
WRITE(6,*) THETA(1),THETA(2))THETA(3),THETA(4)
ENDIF
END IF

4 rONTINUE
IF(NO. EQ. 1)THEN
Y(0) =Y( NB)
UIN(0)=UIN(NB)
Y( l)=Y(NB+1)
ELSEIF(NO. EQ. 2)THEN
Y( -1)=Y(NB-1)
Y( 0)=Y( NB)
UIN(0)=UIN( NB)
Y( 1)=Y(NB+l)
ELSE
Y( -2)=Y(NB-2) 0Y(-l)=Y(NB-l)
Y(0)=Y(NB)
UIN(0)=UIN(NB)
Y( l)=Y(NB+1)
ENDIF

3 CONTINUE
46 FORMAT('' :17X,'THETAl' ,17X,'THETA2')
47 FORMAT(''17X,'THETAl' 17X: THETA2',18X:'THETA3')
48 FORMAT('',17X,'THETA1',17X,'THETA2',:18X,'THEMA'19X,'THETA4')

STOP
END

C

C ********SUBROUTINE GROUPS FOR********
C ************CELLS FUNCTION************
C
C ********AA A. **BOUNDARY CELL***********

SUBROUTINE EDGE (U,AINAOUTC,S)
REAL UAIN,AOUT,C,S
IF(U. EQ. 0. AND. AIN. EQ. O)THEN
C=1. 0
SO0.0Q
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AOUT--U
ELSE

C CALL GAUSS(IX,R,BM,V)
C=U/(SQRT(U**2. ODO+AIN**~2. ODO))

C C=U/(SQRT(U**2. ODO+AIN**2. ODO))+V
S=AIN/(SQRT(U**2. ODO+AIN**2. ODO))

C S=AIN/(SQRT(U**2. ODO+AIN*r*2. ODO))+V
AOUT=SQRT(U'e2. ODO+AIN**2. ODO)
ENDIF
RETURN
END

C . . .

C ************INTRNAL CELL*************
SUBROUTINE INTERNAL (PU,AIN,PC,PS,AOUT,LU,LC,LS)
REAL PS,PC,PU,S,CU,AOUT,LU,AIN,LC,LS
LU=( -PU*,PS)+(AIN*PC)
AOUT=( PU*PC )+( AIN*PS)
LC=PC
LS=PS
RETURN
END

C

C ********~SUBROUTINE GROUPS FOR********
C *******GAUSS IAN NO ISE************

SUBROUTINE GAUSS (IX,S,AII,V)
A=0. 0
DO 90 I=1,12
CALL RAiNDU(IX,IY,Y)
Ix=IY

90 A=A+Y
) V=(A-6.0)*S+AM

RETURN
END

SUBROUTINE RANDU (IX,IY,YFL)
I Y=IX*655 39
IF (IY) 5,6,6

5 IY=IY+2147483647+1
6 YFL=IY

YFL=YFL*. 46566 13E-9
RETURN
END

C
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