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ABSTRACT

In this study, we present an algorithm for system identification for systolic array
implementation. With this schema, discrete samples of input and output data of a sys-
tem with uncertain characteristics are used to determine the parameters of its model.
The identification algorithm is based on recursive least squares, QR decomposition, and
block processing techniques with covariance resetting. The identification process is
based on the use of Givens rotation. Additionally, we want to address the following
problems: how the round-off error propagates in time and the implementation in closed
loop adaptive control. We will compare the implementation of fixed point arithmetic
with the implementation of floating point arithmetic. This is primarily a theoretical in-
vestigation to be conducted with computer simulations where numerical results will be
investigated.
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1. INTRODUCTION

A. BACKGROUND

When we design control systems we are faced with the problem of identifying the
plant to be controiled. In particular, we trv to determine the parameters of a math-
ematical model (i.e., a linear differential or difference equation) which best fits the
input-output data of the given plant.

In some cases, insight of a model may be obtained from the laws of Physics,
Chemustry, etc. In most cases, this may not be possible due to the complexity of the
physical factors involved. In these instances, it may be possible to derive the values of
the parameters by observing the nature of the system'’s response under appropriate ex-
perimental conditions. This procedure is called “parameter estimation”.

The problem of adaptively controlling systems with uncertain characteristics de-
pends on identification of the unknown system parameters. In these cases, the parame-
ters of the controller are computed on the basis of the current estimate of the dvnamics.
Figure 1 shows a general structure of an adaptive control system.

The purpose of parameter estimation is to best fit a proper model to the input-
output data of the system under investigation. The main issues are the following:

1. Select an appropriate class of models, and

2. Select an appropriate estimation algorithm.

For the particular case of estimating the parameters of linear models, we scarch
within the class of models with a given fixed order for the one which minimizes a pre-
diction error criterion.

Firstly, suppose we wish to select a model of a system based on input-output
measurements, in the form

30 =07 (1)0 + +(1) (1.1)

where ¥(t) and ¢'(t) are determined on the basis of the output and input signals and 0
is an array of unknown parameters to be determinated. The term v(t) represents noise
or other modeling errors. Further information about this equation will be given in the
next chapter. This class of lincar models is preferable because of its simplicity and the
amount of theory developed to analvze them.




Secondly, we nced to select an appropriate estimation algorithm. Although a wide
choice exists, the most effective in terms of speed of convergence and accuracy is the
recursive least squares algorithm [Ref. 1.

——— Identification

u(t) y(t)
—» Compgnsator > Plant >

Figure 1. The Adaptive Control System.

The origins of the least-squares method can be traced back to Gauss as in [Ref. 2].
In its recursive version it has been formulated by several authors. The major drawback
of recursive least-squares identification is its cost in terms of complexity, which might
make it unsuitable for real time identification of a large number of parameters, since the
size of the matrices involved grow with the complexity of the the system to be estimated.
Although available microprocessors are effective for low order systems and slow sampl-
ing rates, more complex problems require improved capabilities.
In this thesis we address the problem of implementing recursive least-squares iden-
tification using parallel processing techniques and systolic arrays. Particularly, the pa-
rameter estimates are determined by the lcast-squares solution of a redundant number .
of linear equations obtained from the measured data. The techniques of solutions for
this class of equations are based on QR decomposition, discussed in the next chapter. .

*o




B. SYSTOLIC ARRAY

The idea of svstolic array was developed by Kung and associates [Ref. 3] at
Carnegie-Mellon University, and many versions of systolic processors are being designed
by universities and industrial organizations. This subsection reviews the basic principle
of svstolic architectures and explains why they should result in cost-effective high per-
formance, special purpose syvstems for a wide range of potential applications.

A systolic array consists of a set of interconnected cells, each capable of performing
simple operations. Since simple, regular communication and control structures have
substantial advantages over complicated ones in design and implementation, the cells in
a svstolic svstem are tvpically interconnected with the immediate neighbors. In the
svstolic array we are considering there are two Kkinds of cells (boundary cell, internal
cell). Each cell in the array is provided with local memory of its own, and it is connected
only to its nearest neighbors. The array is designed such that regular streams of data
are clocked through it in a highly rhythmic fashion, much like the pumping action of the
human heart; hence the name “systolic”. Information in a systolic system flows between
cells in a pipelined fashion, and communication with the outside world occurs only at
the boundary cells.

Basic principle of a systolic array is illustrated in Figure 2. Suppose each processing
element in Figure 2 operates with a clock period of 100 ns. The conventional memory
and processor organization in Figure 2a has 5 million operation per second. With same
clock rate. the systolic array will result in 30 million operation per second performance
provided the processing clements operate in parallel on pipelined data. The gain in
processing speed has been increased six times. Being able to use each input data item a
number of times is just one of the many advantages of the systolic approach. Other
advantages include modular expandability, simple and regular data and control flows,
use of simple and uniform cells and fast response time.

Previous authors have presented parameter estimation algorithms using systolic
arrays. The general idea has been to solve a system of linear equations in two stages:

1. Triangularization of the matrix of coefficients,

2. Solving by successive substition.

As explained in Chapter 111 the previous algorithms used a triangular systolic array
to triangularize the matrix, and a linear systolic array configuration to solve for the pa-
rameters. The linear section requires operations such as divisions which are hard to
implement by simple processor operations. Because of this, a new algorithm was




developed. In our implementation, a second identical triangular array has been used
instead of the linear systolic array. It is characterized by the fact that only orthogonal
operations are involved, making the algorithm numecrically more stable and easily
implementable by simple shift and add operations. Also this algorithm needs two dif-
ferent cells (boundary and internal); previous algorithms needed four different cells (two
for a triangular array, two for a linear array). Although more total cells are required in
this implementation, the cost of additional cells in a VLSI scheme is considered to be
nunimal.

Memory Memory —
—p PE —»{PE |PE |PE |PE |PE | PE
(a) (b)

Figure 2. The Concept of Systolic Processor Array.

In implementations based on fixed point arithmetics, vector rotations necessary for
the QR factorization can be implemented by a CORDIC algorithm, based on simple
shift, add operations.

The use of fixed point versus floating point arithmetic is considered during this in-
vestigation. Because fixed point operations are based on simple shift functions and finite
registers, which are simple to implement, it seems advantageous to use fixed point val-
ues. However, since input and output data do not naturally appear as integer values,

there is concern over loss of accuracy due to necessary scaling and truncation.




This research report is divided as follows: Chapter 11 discusses the methods of sys-
tem identification, i.e., solution of systems of linear equations, QR decomposition, and
recursive least squares algorithm. block processing and covariance resetting. Chapter
H1I discusses the Givens rotation, the CORDIC technique and implementation of the
systolic arrays. Chapter 1V presents the simulation results, and Chapter V shows the
final conclusions. A listing of the computer program is used to simulate the systolic
arrays is found in the Appendix B.
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II. MODELS FOR SYSTEM IDENTIFICATION
A. LINEAR SYSTEM MODELING

Suppose we wish to identify a model of a system based on input-output measure-
ments. As shown in Figure 3 consider a system with a single input u(t) and single output
¥(t).

u(t) —p System > y(t)

Figure 3. Simple Linear System.

If we consider a linear dilference equation to model the dynamics, we can write

YO +aplt=1)+...+ay(t—n)=bu(t = 1)+ ... + b, u{t — m) + v(1) (2.1
or, equivalently

W==ap(t=1)—....=ay(t=n)+ bu(t = 1) + .... 4+ bt — m) + v(1) (2.2)

where v(t) shows noise or other modeling errors, a,'s and b, 's are real constants, and the
equation is of nth order. Since the output depends not only on the input but on the
previous output values, this discrete system is known as recursive system. Equation (2.2)
can be written in the matrix form

“He=1)

~yt—n)

y(l) = [a,,..-. apy bh---o bm] u(t-1)

2.3)

u(t—m)J




where 0 represents the parameter vector
T
0" =[ay....,ay by,..., b,) (2.9)

and ¢@(¢) represents the regression vector.

-

-
={r1—=1)

_ =y(t=n) 2
o(1) = ui—1) (2.9)

u(t — m)

By the above definitions we can write Equation (2.1) as
H) = ¢7(08 + (1) (2.6)

The problem now is to estimate the parameter vector 8 from measurements of the
sequences v(t) and (7). Normally, if the number of samples of u(t) and ¥(t) (i.e., the
number of equations) equals the number of unknowns (m+ n), we can solve exactly for
0. However, the number of equations is usually greater than the number of unknowns,
since we tend to collect a large amount of data. For this reason, this system of equations
in general does not have a solution. Ideally, in the noiseless case (v(t)=0) a solution
exists. regardless of the number of equations. However, since noise and numerical errors
are present, we look for the least squares solution of the system of equations, i.e., for the
solution which minimizes the error.

If we take N samples of Equation (2.6) and do not consider noise or other modeling
errors we can write the system of N\ equations in matrix form as

[0 || e
He=1) @’(r=1)
= . ) 2.7)

A=) | L<p’(z -N

or, equivalently




b=A0 (2.8)

where 4 € 2%~ Qe A%, be 2. When N=M and A is full rank and invertible, we can
solve uniquely for 8 as

0=4""p (2.9)

However, in signal processing applications we often face the case of M > N (i.e., more
equations than unknowns), and the solution of (2.9) is defined in the least square sense
by minimization of the error

6(8) = 148 — I’ (2.10)
Therefore, the least squares solution 6, of (2.7) is implicitely defined as
146, — &I = mingl46 — B} (2.11)

The least squares solution always exists, althought it might not be unique. We can
solve Equation (2.11) by pseudoinverse which however, involves matrix inversion. An-
other method is to triangularize A in Equation (2.8) and solve for 8 by successive back
substitutions.

When M > N we meet the dilemma of triangularizing an array. The solution is to
triangularize the upper part of the A matrix, leaving one or more rows of zeros at the
bottom as a result. This will allow us to solve for @ in the least square sense as indicated
in Equation (2.11). This is known as QR decomposition.

B. SOLUTION OF THE LEAST-SQUARES PROBLEM USING QR
DECOMPOSITION

A numerically attractive method for determing the least squares solution of a sys-
tem of linear equations is provided by the QR decomposition of a matrix [Ref. 4.
Consider again Equation (2.8) with M > N. It can be shown that we can always
factorize A as

A=0R (2.12)

where A is a M x N\ matrix, Q is an M x M orthogonal matrix such that Q7Q = [ and
R is defined as




R=l... (2.13)

where R is an N x \ upper triangular matrix and 9 represents null matrix. It is not re-
strictive to assume the diagonal entries of R to be non negative. Now we write again
Equation (2.9)

A0=p

with the equality intended in least squares sense, and multiply both sides by Q7

Q"QRO=Qb
since Q70 =1
RO=0"p

and, therefore,

R
r, |B .
---|0=0"p= s (2.19)
0 2
It is now easy to see that the error ¢(0) is given by
140 — bi* = IR0 — 1" + 118, (2.15)
which is minimal when
RO =8, (2.16)

since B, is independent of 8. In particular, if A is full rank and M > N\, then the solution
is unique, R is invertible and we can compute the least squares solution of (2.7) and (2.8)

as

05=E-lﬂl



Now the solution of Equation (2.8) in the least square sense can be computed in
the same manner as the solution of a system of N equations and N\ unknowns in
Equation (2.16).

There is a number of methods available that can be used to compute the upper
triangular matrix R (e.g., Householder transformation, Gram-Schmidt procedure, Giv-
ens rotation). We will concentrate on Givens rotation. The Givens rotation is an at-
tractive method for systolic array implementation since it successively manipulates two
adjacent rows of the matrix at a time. CORDIC techniques can be used to implement
these rotations and are discussed in the next chapter.

C. RECURSIVE LEAST SQUARES ALGORITHM

It is possible to cstimate the values of the model parameters 8 by observing the
nature of the system'’s response under appropriorite experimental conditions. The idca
for the recursive identification problem is to compare the output with that of an adjust-
able model, and update the paramecters until the error between the outputs of the model
and the system is minimized as in Figure 4.

u(t) System Y(t)
» (Plant) >
A A
€ (D)=y(t)-y(t)
y(t) iy
Model z >
TA
3]
Adjustment
Mechanism

Figure 4. The Minimization of Error in the System.

As seen in the previous scction, assumption of a linear time invariant model leads to the

relation

¥y =@7(1)0 (2.17)

10




with 0 the parameters to be estimated, and ¢(r) a measurable sequence. A recursive least
squares procedure can be determined by defining 0, the estimate of 0 at time t, as the
vector which minimizes

I~1
£0)= ) |10 - ¢7(0)8)]? (2.18)
<=0
Particularly, 6, is the least squares solution of the equations
-1 -1
- A(t=18,=3(t~1) (2.19)

>
3
Il

¢7(0) ¥(0)

It is possible to show that é, can be recursively computed as {Ref. 2]

s (1) = 0] p(r)
0=0,+Pt—1 2.20
ik D 0P - Do (220
where P(t) = (47(1)4(1))"' satisfies the recursion

T
Py = P(t—1)— Pt — Do(Ne (NP1 - 1) (2.21)

1+ ¢ ()P~ 1)e(1)

So far, we have neglected the problem of existence of the solution. The matrix A(t)
can be singular, and then P(t) might not exist. Furthermore, we can not initialize A(-1)
= 0 because, in this case this would vield P(-1) undefined, and we would not know how
to start the sequence P(t). A solution to this problem is to incorporate initial conditions
into A(t) so that P(t) can be computed at each t. Therefore, we modify the definition
of é, in Equation (2.19), so that initial conditions of the matrix P(t) can be accounted.
Let A( —1) be any arbitrary matrix (it must be full rank). For convenience let A(-1)
be square, with det (4( —1)) # 0, and define P(-1)= (47( —=1)4( —1))-'. This can be done
by defining a new error criterion

=1
E2(0) = D [5() = 070(2) | + (8 = 6)(AT(~1)A(~1)) '8 - b) (2.22)

=0

11




which takes the initial estimate (3., into account. This new formulation leads to the
matrix A(t) as
o)
¢’t-1)
A= (2.23)

We choose A(-1) = g,/, where g, > 0 is some arbitrary constant, and I the identity
matrix of appropriate dimensions. In this way the matrix P(t) is always defined since
A™(1)A(2) is never singular. Then, by algebraic manipulations, Equation (2.19) can be

written as

¢T(r—1) =1

The solution to (2.24) is computed recursively using (2.17) and (2.18) and the appropri-
ate initial conditions.

D. BLOCK PROCESSING AND COVARIANCE RESETTING

From the previous considerations, the algorithm was described that allows us to es-
timate the parameter 0 recursively. By using Equation (2.20) and P(¢) = (A(1)T A(1))! we
obtain

P() = (AT(DAW)™ = (63 + D)oo () (2.25)

i=0

In general, the term Zq;(:)cp’(i) is likely to grow with time, so that P(t) = 0 as t = o0
[Ref. 2]). Therefore, the algorithm loses sensitivity as t increases, and later values of 0

12




may not be as accurate as earlier values, especially if our model changes with time.
There are two possible solutions to this problem:
1. The use of a “forgetting factor”, and

2. The covariance resetting approach.

By the forgetting factor approach we minimize the error

1

Il = Zz““@(k) — ¢7(K)B,41)" + 03[, — O (2.26)

k=0

where 0 </ <1 is the forgetting factor. This has the eflect of assigning a higher weight
to more recent data.

The covariance resetting approach, on the other hand, divides the time scale into
segments of equal and fixed length N as in Figure 5. At the end of each time block,

|||||l||,,_ ,Time

Solve for ©

Figure 5. Covariance Resetting Approach.

we reset the covariance matrix P(t). Although it can be reset at any time, for conven-
ience we choose the end of cach block, and P(t) now becomes

-1

I t=kN-1 k=0,1.2,..

P(t) = % o (2.27)
Lquation(2.21)  otherwise

13




In particular, at the beginning of each interval the systolic array is initialized as g,/, and
at the end of the interval (at kN + \-1 for the kth interval) the data are exited from the
array and the syvstem is solved to obtain ()(,,-m-. This estimate is used as an imitial con-
dition for the next time block.

In an adaptive control context it has been shown [Ref. 5] that an external input u(t),
sufficiently rich in frequency (n sinusoids), together with blocks I, of sufficent length \
provides a guarantee for a consistent estimation as

0—0"

where 0~ represents actual parameters. The effect of various lengths of N\ will be inves-
tigated later.

If we apply the considerations given to the general case, we can see that the pa-
rameter estimates at the end of each time block are related by the equation

STk +1)N =1 Wk+1)N=1)
. A _ . 29
¢T(kN) Qe V(kN) (229
oyl Uoék\

N

The systolic array implementation is based on this equation. In particular, 8,,_,,y
is computed from Equation (2.28) at the end of each time block by making the leftmost
matrix upper triangular.

Although, the algorithm presented in this Chapter assumes a single input, single
output (SISO) plant. it can be extended to the multiple input-output (MIMO) plant
[Ref. 6]. Additionally, we assume the plant to be causal and of known order.

14




III. SYSTOLIC ARRAY IMPLEMENTATION

Now, the problem is to compute the solution of Equation (2.28) using systolic ar-
rays. In particular, Equation (2.28) is appropriate for parallel implementation. As de-
scribed in [Ref. 5], the identification problem can be constructed again into a set of linear w
equations as

Rka(k+l).\' = ﬂm _ (3.1)

where R, is in upper triangular form. We can compute 0,._,,, by using two processors |
in cascade: one to compute R, and f§,, , and the second to compute 0 from Equation
(3.1). Notice that Equation (3.1) does not require any explicit matrix inversion since
R, 1s in upper triangular form.
As seen in Equation (2.28), we initialize the array at the beginning of each time
block such that

RO = 0'01

Bo= 0,0,y

This has the effect of initializing the R, matrix in (3.1) to an upper triangular form.
Then. at each discrete time t, an array of data ¢(7) and ¥(t) will be passed to the systolic
array. The task of the array is to re-triangularize the data at each clock pulse, so the
matrix remains in the form prescribed by (3.1). It is then a simple matter to solve for
..,y - This technique is based on QR decomposition as the means to triangularize the
data array.

The value of g, relates to the confidence we have in the initial estimates of é‘,. As
seen in Equation (2.26) a larger value of ¢, , will increase the confidence on the initial
estimate of éo. Equations (2.24-2.28) show the role that g, plays.

A. GIVENS ROTATION

The orthogonal triangularization process may be carried out by using various
techniques. One of the techniques is the Gram-Schmidt orthogonalization procedure
that provides the mathematical basis for the pipelined lattice predictor. Another pow-
erful technique of triangularization by QR decomposition is provided by the Givens
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rotation. The reason for this choice is the fact that the Givens rotation operates on pairs
of adjacent rows, making it suitable for systolic array implementation. The object is to
combine two adjacent rows in the matrix, forcing zeros in the appropriate positions so

to obtain an upper triangular data matrix.
triangularization by successive Givens rotations.

Figure 6 shows an example of

3y 3 A3 2, 32 3; an
321 32 3

3y 332 333 0 33, a5 0

22 213 21y 32 33
== | %2 3 a3 | —=| 0 3y 2y | —= | 0 a5 3y

333 a3y o o ays

Figure 6. Example of Row Operations.

Basic idea: Consider any two rows of data as

ak'] ak,z ...... ak.,,

eyl Qg voeeee Qs n

We can see these two rows as a sequence of vectors in Figure 7.

If we rotate all these vectors by an appropriate angle « then g,,,, = 0 since the
leftmost vector becomes parallel to the horizontal axis. This is accomplished by the

following operation

coso sina|| @Gy Gy e @

—Sina« cosa ak+l'] ak_’_l'z ...... ak+|'n

The value of the angle & can be determined using simple trigonometry

Aet1,1

cosa=

qp 1 ]
= - sina = = =
Vit Ay, V Qa1+ Ay

(3.2)

This same rotation « is then applicd to the remaining (x,y) vectors in the aflected rows
(i.e., rows k+ 1, k) to ensure consistency. Next, the scquence of rotations is repcated for
the remaining pairs of rows (i.e., rows k+n, k+n-1; k+n-1, K+n-2;....; k+2, k+1)in

order to force zeros in the correct locations that leave an upper triangular matrix.
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Figure 7. Example of Vector Operations.

We remember that the data matrix is initialized to an upper triangular form (g, ).
Then, as we take samples from the signals in the plant, new values of ¢ (t) and y(t) are
added to the matrix. By a sequence of Givens rotations, we can transform it into an
upper triangular matrix. An example set of rotations is shown in Figure 8, where the
operations performed by the systolic array at each clock pulse are illustrated. This is
repeated until t = kN (i.c., at the end of the time block), at which time the parameters
0 are solved for, the matrix is reinitialized, and the process is repeated.

Basis of the Givens rotation is the matrix

I 0 0
Qp.9)=10 rpg O (3.3)
0 0 I

associated to each pair of indexes p, q € (I,n+ 1), with /, and /, identity matrices of di-
mensions (q-2) x (q-2) and (n+ 1-q) x (n+ 1-q) respectively, and ris a 2 x 2 matrix of
the form

cp.q)  s(p.9)

D= | _oa)  clpa)

(EX))
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The matrix Q(p,q) is an orthogonal matrix and has the property that it affects only two

rows at a time, i.e., rows q and q-1.
matrix A of appropriate dimensions implies

Application of the transformation Q(p,q) to any

X X X
X z x
Q.4 = (3.5)
x 0 x
X X x
where x indicates other elements of the matrix and z indicates
2=y “qz-l.p"' “:,p
— - — ) e
¢ $t) $AD) 3y 32 a3
a a a ' ,
11 12 13
»| 0 222 23
0 a a .
22 23 0]
0 azsz
0 0 a
33 0 0 0
n 4 L _
Figure 8. Example of Givens Rotation.
In Equation (3.4) ¢(p,q) and s(p,q) are provided such that
P @)ag_1p+35(pq)agp =2
(3.6)

C(P’q)aq.p - S(P’q)aq—lp =0

In Figure 8, an example of application of the Givens rotation Q(3,4)Q(2,3)Q(1,2) to the
left matrix results in the rotated matrix shown on the right [Ref. 7). As scen before the
Givens rotation requires addition, substraction, multiplication, division, and squares.
Figure 9 illustrates the operations of each of the cells. Next, we will sce how to perform
the rotations, by using add and shil} operations only in the CORDIC technique algo-

rithm.
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EDGE CELL

(C out Sout )

if wu=0 then
th =1
sout =0
else

Coout = u/(sqrt(u’ + &)
S ot = 0/(sqrt(u?+ a?)

sqrt(u+ a2)

a =
endif
INTERNAL CELL
u
l U 4 = “SinU*Cin0
(C i S in) (C out +S out) 8 =C U+sp0
—_— 8 ——
=(Cin .Sin) € out = Cin
S out =S in
uout
Figure 9. Givens Rotation Algorithm.
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B. THE CORDIC TECHNIQUE

Here is a simple, accurate and relatively fast method for generating trigonometric
functions. The technique proposed is based on the ingenious coordinate rotation digital
computer (CORDIC) technique developed by J. E. Volder [Ref. 8].

The principle involved in CORDIC is to rotate a vector, represented by its com-
ponents X and Y, through a set of successive elementary rotations as seen in Figure 10.
Each single rotation of the vector (X,Y) is computed at each step by a combination of
simple add, subtract, and shift operations.

31,

a"j

Figure 10. Example of CORDIC Rotation.

Consider a vector R represented by its components X and Y and rotate it through
an angle + 6. The results are the rotated coordinates 1" and Y’ , which are related to X

and Y by the following equations

X' =Xcos8+ Ysin0

3.7
}"=VYcos@F Xsiné

where the top sign refers to clockwise rotation.
The CORDIC principle is based on performing a vector rotation in a sequence of

angular steps a, such that the sum of them equals to 0, that is

0=04+o0,+0;... +a, (3.3)
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If we define y = £ 1 , then we can express 0 as
0= v (39)
i=0

The problem is to choose the value of a; such that the equations above can be imple-
mented with simple add and shift operations. This is possible if the values are chosen
such that

q=tan"'(27) i=0,12...n (3.10)

Dividing both sides of Equation (3.7) by cos 6, gives

Y, . v .
cos 6, At Yitan ;= X, .
Y, , '
cos6, Vi Xjtan ;=¥

The factors X’/ cos 0, and Y [ cos 6, are the rotated components of the vector (X,Y). The
new vector is not only rotated, but also scaled by a factor 1/ cos 8, . 1f 8 is now replaced

by a, = tan~!(2-) the new equations

X=Xt 27 =x+yr2 =KX
(3.12)
Vi = NF K27 = Y= yd2" = Y

The terms .X, and Y, indicate the components of the initial vector R. The term KX, is the
factor 1/ cos 6, by which X,., and Y,,, are larger than the components X" and 1” of a
vector which is only rotated.

Rotations by angles smaller than 90°, the index (i) starts with 0,1,2,.... and contin-
ues to n. The resulting values for 2~ , a, and K; are given in Table 1. During each ro-
tation the magnitude of R increases by K, = 1/ cos a, . After n rotation steps the value
of K, becomes

lmn

1 | 1 |

od »

I\,,=]—[Is,= COsa, ' €OSa, ' COSa, ' COSa, (3.13)
im0
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The value of K, thus increases with each rotation step and approaches 1.6468 for high

values of i.

Table 1. THE BINARY CORDIC CONSTANTS.

-i

i 2 «; (in degrees) Kj
0 1.0000000000 45.00000000 1.414213500
1 0.5000000000 26.56505124 1.581138826
2 0.2500000000 14.03624340 1.629800596
3 0.1250000000 7.12501632 1.642484060
4 0.0625000000 3.97633432 1.645688908
S 0.0312500000 1.78991064 1.646492240
6 0.0156250000 0.89517384 1.646639215
7 0.0078125000 0.44761428 1.646743467
8 0.0039062500 0.22381056 1.646756030
9 0.0019531250 0.11190564 1.646759170
10 0.0009765625 0.05595300 1.646759954

Since we assume the number of rotations to be constant, K, is also constant. And
to correct for the encrease of the magnitude of R, the resulting .Y, and Y, values must
be divided by K, after the rotation operation is completed. Figure 11 illustrates a scries
of rotations for an arbitrary vector which we desire to rotate by 40° . Notice that in the
figure, the desired angular value is approached quickly, because a, decreases by approx-
imately half during each step. The y sequence in the figure would be ( +1, -1, +1,
+1, +1,-1,-1,-1, +1,-1, +1).

In an ideal case such as the one presented, the value of Y decreases during each
step. However, this may not always be the case. For example, consider the vector (X,Y)
= (5,2) and a = 12.5°. The first rotation in the CORDIC algorithm would be —435°, this
gives us a rotated vector (X,Y) = (4.94,-2.12) and a = -32.5°. Notice that the value
of | Y| has actually increased. To make the algorithm more efficent, we modify the se-

quence y to include the value zero. Whenever a rotation causes | I'| to increase, we do

[
~




F 3
45
—
i
—t—t—t—————t ot
12345 672809 10

Figure 11. Set of CORDIC Rotations.

not perform it, and we set the corresponding y, to zero. Then, we continue on with the
next rotation value and repeat the process. For the example just mentioned, the next
value to be tried wouid be 26.6° . A CORDIC rotation algorithm can be seen in Figure
12.

C. SYSTOLIC ARRAYS

In this section w2 will examine the parallel structure that will be used to solve the
least squares algorithm described above. In particular we aim at a structure that accepts
a sequence of regression vectors ¢(n) and signal y(n) as input and then outputs the es-
timate for the parameter 0 . Specifically, we are interested in a high performance parallel
structure that can be implemented directly as a hardware device in order to deliver

maximum throughput. Systolic arrays represent a structure suitable for these charac-
teristics. 3
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Initialize: If x> 0 then x
else X

if y> 0 then ¥4= +1
else o= -1

i=0

while 1> N=1 do

if yi-%;2 %x; >y, then

Rieg = Xi

Yier = Yi

=0

R
<+

= Xy 2‘i2_:Lli

Uie1 3= Ui- ¥;2 X,
if y >0 then o, :=+1
else ,,, := -1

endif
endwhile.

Figure 12.

in parallel.

CORDIC Rotation Algorithm.
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A systolic array has simple and regular communication and control structures, and
this is a substantial advantage over other designs and implementations. Additionally,
we want to allow the computations to proceed concurrently with the input, in order to
maximize the throughput. This is known as pipelining [Ref. 3).

Figure 13 shows a typical system. As said before, the array is simply a network of
processors that are rcgularly connected. The data is continuously "“pumped” through
this structure, thereby minimizing overall execution time, since all the processors work

It was shown that two processors would be necessary to solve Equation (3.1).
Previously used configurations have consisted of a triangular array (as in Figure 13) to
compute the upper triangular matrix, and a linear array to solve the system of equations.




i) o) $3(t) ¢y

‘3 ‘o

Figure 13, Systolic Array.

The entire systolic array is controlled by a single clock. Figure 14 shows the typical de-
sign for the case d (dimension) = 3, where d shows the number of columns which enter
into the system. In this thesis we will use the alternative configuration in which the
linear section is replaced by a second triangular section identical to the first one. This
new design will be discussed later in this chapter. Both designs use a single clock signal
to control operations. Before continuing on to discuss the alternative design, we will
review the structures of the triangular and linear sections.
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1. Triangular Array
The triangular systolic array performs a sequence of Givens rotations. The
CORDIC technique is a possible implementation for the rotations. The processors work
simultaneously at each clock pulse. The data regression vector ¢(r) and output signal
¥(t) are inputs to the top of the array, and rotations are calculated at each clock cycle.

The triangular array consists of two types of cells: edge cells (or boundary cells)
and internal cells. The edge cells are represented by the circles and the boundary cells
are represented by the squares as seen in the Figure 13 and Figure 14. Figure 9 defines
the operations of these cells. The edge cell computes the rotation parameters ¢ and s
as seen in Equation (3.2). Each cell of the triangular array stores an element of the up-
per triangular matrix R(n) from Equation (3.1), and it is initialized to zero for internal
cells and to o,/ for the edge cells as mentioned before. The function of each row of
processing cells in the triangular systolic array section is to combine one row of the
stored triangular matrix with a vector of data received from the above cells in such a
way that the leading element of the received data vector is annihilated. The data vector
so obtained is then passed downward on to the next row of cells. The boundary cells in
each row of the section computes the rotation parameters and then passes them to the
right on the next clock cycle. The internal cells apply the same rotation parameter to
all other elements in the received data vector.

A delay of one clock cycle per cell is incurred when passing the rotation pa-
rameters along a row. That is why it is necessary to “skew” the input data as seen in
Figure 14, so that the input data interacts properly with the previously stored triangular
matrix. Because the cells are operating simultaneously, the data in the system at any
time t consists of values from (2n) different matrices. Figure 15 demonstrates this for a
system with n=3. In this figure, we can see that at time (t+35), there are also values
present from the five previous matrices (i.e., t+4,t+ 3,......,t). In order to get all the cells
in the array to a similar time state, the array would have to be clocked an additional 2n-1
(five) cycles, feeding zeros as input where necessary. At the completion, all cells will be
at the same time (t+ 5) [Ref. 7]. .

Note that at the same time the triangularization process is being carried out,
the column vector B,, is also being computed by the rightmost column of internal cells
using v(n) as its input.
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$1(t+3) $a(te2) $s(te1) yy(t)
clmjofc
$1(te2) $(te1) $y(t) =
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$y(t) . . . @ o

@ 0 0 0 @ t+2 t+1 t
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Figure 15. Data Flow in Triangular Section.
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At the end of the triangularization period (N), we are ready to solve for 0,.,,y.
The data in this triangular array is clocked out to the next array section that will com-
pute the parameters.

2. Linear Array

The linear systolic array has been used in previous implementations to solve for
the estimated parameters. The linear section consists of one boundary cell and (d-1)
internal cells as seen in Figure 14.

The operation of the cells as they compute the parameters are shown in Figure
16. Note that the cells are difTerent from those in the triangular array, increcasing to four
the number of unique cells necessary in the combined system.

It is shown in [Ref. 3] that the time required to solve for 0 using the linear array
is equal to 2d. At the end of the period, the parameters are used as initial values for the
triangular array, and the triangular section again begins the operation.

We now replace the linear section with a second triangular section, and discuss
the differences between these two design approaches.

b, aij
l Zi(n Z,_(n+1) 1 Z; (n)
- -~
ei 6 ei
>
©
9,=b,- Z(n) 2,y (n+1) = 2, (n)+aije,

Figure 16. Definition of Cell Operation for Linear Section.

3. The Use of a Second Triangular Array as the Solution Section
An alternative implementation can be obtained by solving  as shown in
Figure 17.
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Figure 17. Systolic Array Procedure for New Design.
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In this implementation, at the end of the triangularization period, the data is
passed from the first triangular section to the second triangular section in a reversed
position. The second triangular array performs the same type of operations as the first,
therefore, the cells are identical.

The reason of using another triangular section is that, by proper combinations
of rows, we can force zeros into all elements of a given row but one, so that we can solve
for each of the parameters. Also, the fact that orthogonal operations are used makes it
more robust in the presence of numerical errors [Ref. 7). To see how this works, consider
an arbitrary set of equations in upper triangular form as in Equation (3.14). Now x; is
simply solved as by/a;;. To solve for x,, we can force a,; to zero by a linear combination
of rows two and three. Then x, is found to be b,/a,,. Similarly, by row operations on
row 1.2 and 3 we can make q,;, = a,; = 0 in row one, and x, is found to be b,/a,,. This type
of operations are exactly what the triangular array was designed to do.

a ap a3 by
O Clzz a23 .\'2 = b2 (3. 14)
0 0 a3 |.\'3 [73

Figure 18 shows these operations in matrix format, and as mentioned before
data is in reversed position. Notice that the array is initialized to all zeros here, whereas
the first triangular section is initialized to ¢,0,y and o,/.

To understand how the system operates, recall the first triangular array at
time N. Now we must feed the data down into the second triangular section in an
appropriate manner so that we can solve for the parameters. The same delay (one clock
cycle per cell) in propagation of data applies to this triangular section as it does in the
first section. That is why we must carefully choose when to sample the array in order
to get the correct values with which to calculate the solution.

Figure 19 illustrates the data flow for a simple system where d = 3. The input
data is skewed as it was in the triangular section. It can be seen that the values a;,
a., , and q,, are available at times N +1, N +4, and N+ 7 respectively. Similarly, the
values of b, b,. and b, are available at times N+4, N+6, and N+8. In general, for any
size system n, the coefTicients a, and outputs b, are available as shown in Table 2. Note
from the figure that the coeflicients are “picked ofl" from the edge cells at the appropri-
ate times, while the outputs are found in the rightmost set of internal cells [Ref. 3].
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Figure 18. Solution of System of Equations.

This new design operates slower than the linear system scen in [Ref. 7). The
time to solve for 0 in this design is equal to the time until b, appears, which is equal to
(3n - 1). This compares to 2n (or 2d) in previous implementations: hence, n-1 more
clock cycles are required.

On the other hand, simplilication is gained in the manufacturing process since

the number of types of cells is reduced. The tradeofls to be considered are simplicity
(cost) versus speed.
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Figure 19. Data Flow in the Second Triangular Array.
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Table 2. TIMES OF AVAILABILTY OF DATA.

Coefficient

a n,n

n-1,n-1

n-2.,n-2

Times

N+4
N+7

N+10

N+(n+1)
N+(n+3)
N+(n+5)

N+(n+7?)

4




1IV. SIMULATION STUDY

1. Model Equation
In general, a linear model can be expressed by either the difference equation
relating the input and output sequence, or in a regression form as mentioned in the
previous Chapters. In the example below, we will consider the problem of estimating the
unknown parameters both with and without noise present.
In our simulation program, we will use the first order model which has the
discrete time transfer function such that

H(z) = — 7 4.1)
which corresponds to the linear difference equation
O +ap(t=1)=but-1) (4.2)

where u(t) and y(t) are the input and output sequences respectively. Equation (4.2) can
be expressed as

0" =[a,, b,] @.3)
0'(0) =Dt = 1) st = 1] @)
This corresponds to the regression model

H0) = 070() (.5)
If the model has noise we obtain

20 =07(1) + 1) (4.6)

For proper system identification the input sequence must contain a sufficient
number of frequency components. In our simulating program we used the sine wave

2m Smt. 6nt @.7)

u(t)=sm( )+sm( ) + sin(=— 10 )+ sin(—— 10 )
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For identification purposes the input must be sufficently rich in frequencies to
excite all modes of the system. If we have fourth order system we should have at least
four different sinusoidal components.

In our simulation model we chose the values of the parameters as a, = 0.5 and
b,=2. In the parameter estimation problem, these values will be assumed to be un-
known.

2. Noise Model

The noise term v(t) is a sequence of independent random variables with zero
mean values. The noise is added to both the incoming signal u(t) and measured output
¥(1).

3. Choice of Initial Values

For a recursive algorithm, we need to initialize the systolic array with an initial
parameter estimate ¢,0(0) and o,/ in Equation (2.28). Here g, is related to the confidence
of initial condition of 8(0). If some prior information about 6(0) is available, it should
be used for determining proper values of 6(0). If no prior information is available we
choose 8(0)=0.

4. Choice of Block Length

In our simulation program we have used four different block lengths both
without noise and with noise in order to test the convergence rates in the different cases.
We chose N = 3, 7, 10, 15 values for the block lengths, where N\ identifies the block
sizes.

5. Floating Point and Fixed Point Operations

During simulation, the use of floating point versus fixed point arithmetic is
considered. Fixed point arithmetic operations are performed using simple shift oper-
ations and finite registers. Because of this, they are simpler to implement than floating
point operations. On the other hand, since input and output data values do not na-
turally appear as integer values, there is some concern over loss of accuracy. The sol-
ution to the latter problem is to scale all the numbers so that they stay within the limits

of the fixed registers.
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A. NOISELESS MEASUREMENTS
This is an ideal case. Figure 20 through 27 illustrate the results of these simulations.
In these figures the estimated parameters ( 0, and 0, ) arc plotted along the verticul axis,
the block number is plotted along the horizontal axis. In the following we will discuss
the results for floating point and fixed point arithmetic.
1. Results Using Floating Point Arithmmetic
-Figures 20 through 23 illustrate the floating point results for block lengths of
N = 3,7, 10 and 15 respectively. As scen from the figures the parameters exhibit the
fastest rate of converge when N=7. Even though the estimated parameter a, converges
very fast at N =135, the other estimated parameter b, converges slowly in this block
length. As it can seen from the Table 3, the case of N=7 requires minimum number
of clock cycles, therefore in this case we should choose a block length of seven.
2. Results Using Fixed Point Arithmetic
This situation has been simulated by adding the random noise to the measure-
ments and the computations, so to account for round-off errors.
Figure 24 through 27 illustrate the fixed point results for the same conditions.
Notice that the parameters converge as fast as {loating point operations. As scen [rom
Table 4, for this case again, N =7 requires minimum number of clock cycles. This indi-
cates that the degradation duc to the implementation is not dramatic for the fixed point
processors. When we consider the simplicity of {ixed point processors, this is a distinct
advantage.

Table 3. THE RATE OF CONVERGE FOR FLOATING POINT(NO NOISE).

BLOCK LENGTH(N)  BLOCK NUMBER TOTAL
AT CONVERGE CLOCK CYCLES
3 30 90
7 12 | 84
10 14 140
15 " 165
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Figure 20. Floating Point Operation for N= 3 (No Noise).
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Figure 24. Fixed Point Operation for N =23 (No Noise).
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Table 4. THE RATE OF CONVERGE FOR FIXED POINT(NO NOISE).

BLOCK LENGTH(N) BLOCK NUMBER TOTAL
AT CONVERGE CLOCK CYCLES
3 30 90
7 125 87.5
10 15 150
15 10.5 1575

B. NOISY MEASUREMENTS
As mentioned before the noise term v(t) is a sequence of independent random var-
iables with zero mcan. We used a variance of 0.5 for these random variables. As ex-
pected in a real system, the noise is added to both incoming signal u(t) and output y(t).
1.  Results Using Floating Point Arithmetic
Figures 28 through 31 show the results for the four different block lengths.
As seen from the figures, for N=3 the parameters are most affected. For N=7 or
N=10, the parameters are lcss affected by the noise. When the block length is equal to
7, the parameters have converged rcasonably well within eight blocks (56 cycles). TFor
N=135, we see that the parameters are least affected by the noise.
2. Results Using Fixed Point Arithmetic
Figures 32 through 35 show the results for fixed point implementation. Again A
we see that they exhibit similar performance as in the floating point cases. Effects of
block length are almost the same as described previously.
To simulate fixed point behavior we added random disturbances in the com-
putations within the cells. In particular, the factors ¢ and s are aflected by round-off
errors which we can simulate in this fashion. A similar approach has been taken in [Ref.

9] in the analysis of a systolic array implementation of the projection operator.
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V. CONCLUSIONS

In the previous chapters we explained the estimation of the model using a parallel
structure and recursive least squares algorithm. In this chapter we will discuss the
tradeoffs, advantages and disadvantages of the systems that we have investigated.

The recursive algorithm, based on recursive least squares with covariance resetting,
is redesigned in order to make it suitable for implementation on a VLSI chip and also
modifv the systolic array in order to reduce computing time and complexity. The dif-
ference in adaptive control is that the estimator has to operate recursively on subsequent
blocks of data, so that the estimated parameters converge to the respective correct val-
ues. This convergence is guaranteed by initializing each estimation with the parameter
values from the previous one, and by persistency of excitation of the external inputs.

We simulated several possible conditions to see the response of the parallel algo-
rithm. Almost in each condition the parameters converged close to their own values,
even in the presence of noise.

This parallel algorithm is different from other similar algorithms in the fact that
we replaced two different processors by two identical ones. There was a total of four
different computing cells (two for triangular section, two for linear section) in the old
design. For the new design we need only two different cells for the whole system as ex-
plained in Chapter III. The new design requires more total cells than the old design.
For a fourth order system (d=4), new design requires 10 additional cells from the for-
mula of % d(d+1). However, additional cells are not expensive in a VLSI schema.

As described in Chapter 111 additional (d-1) clock cycles are required to operate the
second triangular section. That is why a second triangular section is a little bit slower
than the linear section.

In this thesis we also compared floating point operations with fixed point oper-
ations. For floating point operations we saw that the convergence rate increases with
the block length. Also when the block length is small, the identification is more sensetive
to the presence of noise.

We got almost the same results for fixed point operations. If we consider the
simplicity of the fixed point processor, a significant advantage to use the fixed point
arithmetic is due to its simplicity.




APPENDIX A. COMPUTER PROGRAM 1

A. PURPOSE OF THE PROGRAM

This program converts a given data matrix to an upper triangular matrix by using
Givens rotation algorithm. There are two classes of cells. Therefore, two different types
of subroutines are used. As explained in Chapter I1I this upper triangular matrix again
convert to another upper triangular matrix and meanwhile the unknown parameters are
computed.

All elements of the matrix are given interactively. This program can solve 49 x 50
matrix. If run this program, should be extended virtual storage capacity to 1500K in

advance due to the large array.

C *********VARIABLE DECLARATION*********

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 A,C,S,U,LU,AQUT,AA,ED,IN,AAA,CC,SS,UU,AAOUT,LLU,EED,
+IIN,THETA

DIMENSION A(50,50),C(0:50,0:50),8(0:50,0:50),U(0:50,0:50),
+LU(0: 50,0: 50),A0UT(0: 50,0: 50) ,AA(50,50) ,ED(0: 50,0: 50),
+IN(0:50,0:50),A4A(50,50),CC(0:50,0:50),88(0:50,0:50),
+UU(0: 50,0:50),LLU(0: 50,0: 50) ,AAQUT(0: 50,0: 50),
+EED(0: 50,0: 50) ,IIN(0:50,0: 50) ,THETA(50)

INTEGER I,J,K,M,N

FevedledeedeTrveveve et e devest e e veveserk dede v vede sk deskddledbabsese

YesededeledededeveVeVARIABLE DEFINIATIQNevevedediedfesed

AC(I,T) DATA MATRIX

ED(I,J) FIRST TRIANGULAR MATRIX

EED(I,J) SECOND TRIANGULAR MATRIX

THETA(K) = UNKNOWN PARAMETERS
Yededrdrdevededersededeevetededesevevedeveverrdedrevirb bbb

Fedededevededededede e DATA ENTRANCE Yevevestedededevdedesiodedede

PRINT *,'ENTER THE NUMBER OF COLUMNS M='
READ(5,%*)M
PRINT *, ENTER THE NUMBER OF ROWS N='
READ(5,*)N
PRINT *," °
DO 1 I=1,N
DO 2 J=1,M
WRITE(6,3)I,J
3 FORMAT( 'ENTER A(',I12,12,")")
READ(5,*) A(I,J)
2 CONTINUE
1 CONTINUE
PRINT *,'DATA MATRIX'
DO &4 I=1,N

[sXoNoRoRoNo NN
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WRITE(6,*)(A(I,J),J=1,M)

4 CONTINUE
PRINT *," '
DO 5 I=1,N
DO 6 J=1,M
AA(I,J)=A(N-(I-1),J)
6 CONTINUE
5 CONTINUE
DO 7 I=1,2,3
DO 8 J=1,M
AA(N+1,J)=0.0
8 CONTINUE
7 CONTINUE
DO 9 I=1,2,3
DO 10 J=1,M
AOUT(1,J)=0.0
10 CONTINUE
9 CONTINUE
DO 11 I=1,N+1
DO 12 J=1,M
U(I,J)=AA(I,J)
12 CONTINUE
11 CONTINCE
C TeTeTeveTevededevedeTe o deveve e Yo e v e veve e de sk etk deve e se e vestesk
C e e e Vede e kT TRST TRIANGULARIZATION ewssesevsse
DO 13 K=1,N

DO 14 J = K,M

DO 15 I = 1,N-K+2

IF (J.EQ.X)THEN

CALL EDGE(U(I,J),AOUT(I,J),AOUT(I+1,J),C(1,J),S(I,J))

ED(I,J)=A0UT(I,J)

ELSE

CALL INTERNAL(U(I,J),AQUT(I,J),C(I,J-1),S(I,J-1),A0UT(I+1,J),
+LU(1,J),C(1,J),8(1,J))

U(I-1,J)=LU(I,J)

IN(I,J)=A0UT(I,J)

ENDIF
15 CONTINUE
14 CONTINUE
13 CONTINUE

DO 20 I=1,N
DO 21 J=1,N+1-1

ED(I,J)=0.0

21 CONTINUE

20 CONTINUE
DO 22 J=M,2,-1
DO 23 K=N+3-J,N+1
DO 24 I=K,N+1
ED(I,J)=IN(I,J)
24 CONTINUE
23 CONTINUE
22 CONTINUE
PRINT *,'FIRST TRIANGULAR MATRIX'
DO 29 I=N+1,2,-1
WRITE(6,*)(ED(I,J),J=1,M)
29 CONTINUE
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PRINT *,' '
c Fvededeiededelede Ve DATA  ENTRANCE #edededesdetededededededede
DO 25 I=1,N
DO 26 J=1,M-1
AAA(T,J)=ED(I+1,M-J)
26 CONTINUE
25 CONTINUE
DO 27 J=M,M+1,2
DO 28 I=1,N
AAA(I,J)=ED(I+1,M)
28 CONTINUE
27 CONTINUE
Do 30 I=1,2,3
DO 31 J=1,M
AAA(N+I,J)=0.0
31 CONTINUE
30 CONTINUE
Do 32 1=1,2,3
DO 33 J=1,M
AAOUT(I,J)=0.0
33 CONTINUE
32 CONTINUE
DO 34 I=1,N+1

DO 35 J=1,M
UU(I,J)=AAA(I,T)
35 CONTINUE
34 CONTINU
C Poleds Vesrdeveedededededededeede e dedededede e Sevededededededededede
C Jedededede e SECOND TRIANGULARIZATION******
DO 36 K=1,N

DO 37 J =K,M

DO 38 I = 1,N-K+2

IF (J.EQ.K)THEN

CALL EDGE(UU(I,J),AAOUT(I,J),AAOUT(I+1,J),CC(I,J),SS(1,J))

EED(I,J)=AAQUT(I,J)

ELSE

CALL INTERNAL(UU(I,J),AAOUT(I,J),CC(I,J-1),85(I,J-1),
+AAOUT(I+1,J),LLU(I,J),CC(I1,J),88(I,J))

uu(1-1,J)=LLU(I,J)

TIN(I,J)=AAOUT(I,J)

ENDIF
38 CONTINUE
37 CONTINUE

THETA(K)=IIN(2,M)/EED(2,K)
36 CONTINUE
DO 39 I=1,N
DO 40 J=1,M-1
EED(I,J)=0.0
40 CONTINUE
39 CONTINUE
DO 41 J=M,2,-1
DO 42 K=M+2-J,N+1
DO 43 I=K,N+1
EED(I,J)=IIN(I,J)
43 CONTINUE
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42
41

44

46

45

aoaan

CONTINUE
CONTINUE
PRINT *,'SECOND TRIANGULAR MATRIX'
DO 44 I=N+1,2,-1
WRITE(6,*)(EED(I,J),J=1,M)
CONTINUE
PRINT *,' '
PRINT *,'UNKNOWN PARAMETERS'
WRITE(*,46)
FORMAT('',11X,'K',13X, 'THETA(K)")
DO 45 K=N,1,-1
WRITE(6,%) N-K+1,THETA(K)
CONTINUE
STOP
END
P veredeverededeverertrededer ek ek ek drak e ok s vedeve s ve sk ok

deverledevedededededevedevesevesevedrleedevedede oo dede veve et le e de
Fdededew e s e SUBROUTINE GROUPS FORuevevedenededede
dedeveededededesvededeCELLS FUNCTI QN evesevedestedledededede

Feddevevevedevevedleddeveresedese v dirdevededevesevev Yo de v

Fedededededededede iR BOUNDARY CE LL7evevevevedededfedfededediedte
SUBROUTINE EDGE (U,AIN,AOQUT,C,S)
IMPLICIT REAL*8 (A-H,0-2)

REAL*8 U,AIN,AOQUT,C,S
IF(U.EQ. 0. AND. AIN. EQ. O)THEN

Cc=1.0

C=U/(SQRT(U**2, ODO+AIN**2.0D0))
S=AIN/(SQRT(U**2, ODO+AIN**2, 0D0))
AOUT=SQRT(U**2, ODO+AIN**2, 0D0)

ENDIF

RETURN

END

Yevevededevevevededevevevevededr dedevedevededidededevededevevedevesededeveve

Yededetedededededetetek INTERNAL  CELL¥vededededeviededededede
SUBROUTINE INTERNAL (PU,AIN,PC,PS,AOUT,LU,LC,LS)
IMPLICIT REAL*8 (A-H,0-2)

REAL*8 PS,PC,PU,S,C,U,AOUT,LU,AIN,LC,LS
LU=( -PU*PS)+(AIN*PC)
AQOUT=(PU*PC)+(AIN*PS)

LC=PC

LS=PS

RETURN

END
Sesevedrdeieioirieirivieedoioeteieieveleinieiriele e ek deiedeiedededeiede
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dedbredererddedeskse s e sk derirlrleser se st de s deakrl s e de dedevente
Feskakredederedraerbredbabarake st dereatrk vl s s ve s st ak v dededeve st et
desedede*THE RESULTS OF THIS PROGRAMiedrirdiek
THE NUMBER OF COLUMNS M=

NTER THE NUMBER OF ROWS N=

pEHLWEHAOAOQ
:
e

Ei
]

AC11)
1

ENTER A( 1 2)
ENTER AC 1 3)
gNTER AC 2 1)
gNTER A(C 2 2)

5
ENTER A( 2 3)

6
DATA MATRIX
1. 0000 2.0000 3. 0000
4. 0000 5.0000 6. 0000
FIRST TRIANGULAR MATRIX
4.1231 5.3357 6.5484
0. 0000 0.7276- 1. 4552
SECOND TRIANGULAR MATRIX
5.3851 4.0852 6. 6850
0.0000 0.5570 =0.5570
UNKNOWN PARAMETERS
K THETA(K)
1 =1. 0000
2 2.0000
ENTER THE NUMBER OF COLUMNS M=
4
ENTER THE NUMBER OF ROWS N=
3
ENTER A( 1 1)
3
ENTER A( 1 2)
7
ENTER A( 1 3)
11
ENTER A( 1 4)
20
ENTER A( 2 1)
5
ENTER A( 2 2)
9
o

e




ENTER A( 2 3)
16
ENTER A( 2 4)
21
ENTER A( 3 1)
6
ENTER A(C 3 2)
8
ENTER A( 3 3)
10
ENTER A( 3 4)
22
DATA MATRIX
3. 0000 7.0000 11. 0000
5. 0000 9. 0000 16. 0000
6. 0000 8. 0000 10. 0000
FIRST TRIANGULAR MATRIX
8. 3666 13. 6256 20.6774
0. 0000 2.8884 6.6670
0.0000 0. 0000 2. 2345
SECOND TRIANGULAR MATRIX
21.8403 13.7818 7.9211
0. 0000 2.0151 2. 3979
0. 0000 0. 0000 1.2269
UNKNOWN® PARAMETERS
K THETA(K)
1 =1.7777
2 5.8888
3 -1. 4444
ENTER THE NUMBER OF COLUMNS M=
5
ENTER THE NUMBER OF ROWS N=
&
ENTER A( 1 1)
6
ENTER A( 1 2)
9
ENTER A( 1 3)
14
ENTER A( 1 4)
26
ENTER A( 1 5)
31
ENTER A( 2 1)
42
ENTER A( 2 2)
14
ENTER A( 2 3)
57

61

20.
. 0000
22.

35.
.3792
-3.

35.
. 6038
-2.

0000
0000

4982
2276

5305
1812




ENTER A( 2 &)
38
ENTER A( 2 5)
3
ENTER A( 3 1)
9
ENTER A( 3 2)
21
ENTER A( 3 3)
42
ENTER A( 3 4)
57
ENTER A( 3 5)
48
ENTER A( 4 1)
12
ENTER A( 4 2)
19
ENTER A( &4 3)
23
ENTER A( 4 4)
45
ENTER A( 4 5)
58
DATA MATRIX
6. 0000 9. 0000
42.0000 14. 0000
9. 0000 21.0000
12. 0000 19. 0000
FIRST TRIANGULAR MATRIX
44.9999 23.5333
0.00c00 22.9168
0. 0000 0. 0000
0.0000 0. 0000
SECOND TRIANGULAR MATRIX
85.9883 69. 3000
0. 0000 30. 5859
0. 0000 0.0000
0. 0000 0. 0000
UNKNOWN PARAMETERS
K THETA(K)
1 0.5067
2 0. 4447
3 -1.6290
4 1.7985

. 0000
. 0000
. 0000
. 0000

. 6000
. 4032
. 0252
. 0000

.7718
.9184
. 0397
. 0000
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. 0000
. 0000
. 0000
. 0000

. 3333
.9561
. 5607
. 4541

. 6206
. 4896
. 9060
.3125

31.
. 0000
. 0000
58.

32.
73.
~14.
. 2125

72.
=33,
. 9136
. 7191

0000

0000

0000
2183
6452

8703
7980




APPENDIX B. COMPUTER PROGRAM 11

A. PURPOSE OF THE PROGRAM
This program computes the estimated weight vector of least squares for first order,
second order or third order model which has the discrete time transfer function such that

b,Z?
Z+ a,AZ2 +aZ + a3

H(Z) =

where the all coeflicients are given interactively. In this program, addition to the previ-
ous program is used another two subroutines to supply the gaussian noise which corre-
sponds to parameter v(t). As seen in the plots this program computes the unknown
parameters by converging. In order to run this program should be extended virtual
storage capacity to 2M.

C deleededededede*VARTABLE DECLARAT ION¥evcsescsedesedede

REAL C,S,U,LU,AQOUT,ED,IN,X,Y,51IG,UIN,THETA,V,R,BM,AAA,CC,SS,UU,
+LLU,AAQUT,EED,IIN

DIMENSION €(0:50,0:50),S(0:50,0:50),U(0:50,0: 50),LU(0:50,0:50),
+A0UT(0: 50,0: 50) ,ED(0: 50,0: 50),IN(0: 50,0: 50),X(50),UIN(0: 50),
+AAA(50,50),CC(0: 50,0: 50),8S(0: 50,0: 50),UU(0: 50,0: 50),
+LLU(0: 50,0: 50) ,AAQUT(0: 50,0: 50) ,EED(0: 50,0:50),
+IIN(0:50,0:50),Y(=3:50),THETA(O: 50)

INTEGER I,J,K,M,N,L,T

Fedrieeiedededede YV ARTABLE  DEF INIATIONesedesiesedeviese

ED(I,J) = FIRST TRIANGULAR MATRIX

EED(I,J) = SECOND TRIANGULAR MATRIX

Frdevededevededededededevedevevedevevevevevevese e vedle deveiede Yo e ve e ek

»maOOQaO

00  PRINT *,'ENTER THE SIZE OF MATRIX N BY N  *#N=7'
READ *, N
PRINT *,' N = ',N
PRINT *,' '
PRINT *,'ENTER THE ORDERS OF DEN. OF DIFF. EQ. **No=?'
READ *, NO
PRINT *,' NO = ',NO
PRINT *,' '
PRINT *,'HOW MANY BLOCKS DO YOU WANT TO ITERATE **NBN=?7'
READ *, NBN
PRINT *,' NBN = ',NBN
PRINT *,' '
PRINT *,'ENTER THE VALUE OF SIGMA **SIG=?'
READ *,SIG
PRINT *,'SIG = ',SIG
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PRINT *,' !

IF (NO.EQ.1) THEN

PRINT * 'FORMAT OF 1ST ORDER
+

PRINT *,'ENTER THE COEFF. OF
READ *,Al

PRINT *,'A1 = ',Al

PRINT *,'ENTER THE COEFF. OF
READ *,Bl

PRINT *,'B1 = ',Bl1
WRITE(*,46)

ELSEIF (NO.EQ.2) THEN

PRINT *,'FORMAT OF 2ND ORDER
+HA25Y(T-2)'

PRINT *,'ENTER THE COEFF. OF
READ *,Al

PRINT *,'Al = ', Al

PRINT *,'ENTER THE COEFF. OF
READ *,A2
PRINT *,'A2 = ',A2

PRINT *,'ENTER THE COEFF. OF
READ *,B1

PRINT *,'B1 = ',B1
WRITE(*,47)

ELSEIF (NO.EQ.3) THEN

PRINT *,'FORMAT OF 3RD ORDER
++A2%Y(T-2)+A3*Y(T-3)"'

PRINT *,'ENTER THE COEFF. OF
READ *,Al

PRINT *,'Al = ',Al

PRINT *,'ENTER THE COEFF. OF
READ *,A2
PRINT *,'A2 = ',A2

PRINT *,'ENTER THE COEFF. OF
READ *,A3
PRINT *,'A3 = ',A3

PRINT *,'ENTER THE COEFF. OF
READ *,B1

PRINT *,'B1 = ',B1
WRITE(*,48)

ELSE

DIFF.EQ.*% Y(T) = BI*U(T-1)+A1*Y(T-1)
Al 7'

B1 7'

DIFF.EQ.** Y(T) = B1%U(T-1)+A1*Y(T-1)

Al ?'

A2 7'

B1 7'

DIFF.EQ.** Y(T) = BI*U(T-1)+A1*Y(T-1)

A1 7'

A2 7'

A3 7'

B1 7'

PRINT *,'ERROR, PLEASE TRY AGAIN'

PRINT *,'CHOOSE NO=1,2 OR 3'
GOTO 500

ENDIF

NB=15*NO

=1




- N

PI=4%ATAN(Z)
=PI/10
BM=0
R=0. 0707
IX=1
e dedrdevertvedereve s dedevededertvededirakdedededevertrier bk
Yesededededededniet* DATA ENTRANCE Fevevevededesiededrsbdededt
DO 1 LF=2,NO+2
DO 2 KF=1,NO+2
IF((LF.GT.KF). AND. ((LF-KF).EQ. 1)) THEN
U(LF,KF)=SIG
ELSE
U(LF,KF)=0. 0
ENDIF
CONTINUE
CONTINUE
IF(NO. EQ. 1)THEN
Y(0)=0.0
UIN(0)=0.0
Y(1)=A1%Y(0)+B1*UIN(O)
ELSEIF(NO. EQ. 2)THEN
Y(-1)=0.0
Y(0)=0.0
UIN(0)=0.0
Y(1)=A2%Y(-1)+A1*Y(0)+B1*UIN(O)
ELSE
Y(-2)=0.0
Y(-1)=0.0
Y(0)=0.0
UIN(0)=0.0
Y(1)=A3%Y(=2)+A2*Y(-1)+A1*Y(0)+B1*UIN(O)
ENDIF
DO 3 1IT=1,NBN
DO 4 J=1,NB
CALL GAUSS(IX,R,BM,V)
IF(NO. EQ. 1)THEN
U(1,)=Y(J-1)
U(1,2)=UIN(J-1)
U(1,3)=Y(J)
UIN(J)=SIN(P*J)+SIN(P¥*2%J)+SIN(P*5#%J)+SIN(P#*6*J)
Y(J+1)=A1*Y(J)+B1I*¥UIN(JI)+V
ELSEIF(NO. EQ. 2)THEN
U(1,1)=Y(J-2)
U(1,2)=Y(J-1)
U(1,3)=UIN(J-1)
U(1,4)=Y(J)
UIN(J)=SIN(P*J)+SIN(P*2%*J)+SIN(P*5*J)+SIN(P*6%]J)
Y(J+1)=A1"*Y(J)+A2*Y(J-1)+B1*UIN(J)+V
ELSE
U(1,1)=Y(J-3)
U(1,2)=Y(J-2)
U(1,3)=Y(J-1)
U(1,4)=UIN(J-1)
U(1,5)=Y(J)
UIN(J)=SIN(P*J)+SIN(P*2%J)+SIN(P*5*J)+SIN(P¥*6*J)
Y(J+1)=A1*Y(J)+A2%Y(J~1)+A3%*Y(J=-2)+B1*UIN(J)+V

65




~3 00 \©

11
10

14
12

16

15

18
17

21
20

ENDIF
DO 5 11=1,2,3
DO 6 JJ=1,N+1
AQUT(II,JJ)=0.0
U(N+1I1,JJ)=0.0
CONTINUE
CONTINUE
Jdricdeike s FIRST TRIANGULARTZATTON ek
Fededestdedrrevrdrbatvederedede e dedrert bR derirede dedb i dedb ek
DO 7 K=1,N
DO 8 J1 = K,N+1
DO 9 I = 1,N-K+2
IF (J1.EQ.K)THEN
CALL EDGE(U(I,J1),AO0UT(I,J1),AOUT(I+1,J1),C(1,J1),S8(I,J1))
ED(I,J1)=A0UT(I,J1)
ELSE
CALL INTERNAL(U(I1,J1),A0UT(I,J1),C(I,J1-1),S8(I,J1-1),
+AOUT(I+1,J1),LU(I,J1),C(I,J1),S(1,J1))
U(I-1,J1)=LU(I,J1)
IN(I,J1)=A0UT(1,J1)
ENDIF
CONTINUE
CONTINUE
CONTINUE
DO 10 I=1,N
DO 11 J2=1,N+1~1
ED(1,J2)=0.0
CONTINUE
CONTINUE
DO 12 J3=N+1,2,-1
DO 13 K=N+3-J3,N+1
DO 14 I=K,N+1
ED(I,J3)=IN(I,J3)
CONTINUE
CONTINUE
CONTINUE
PRINT *,' '
Jedededevededeiedededede DATA ENTRANCE #riiededediestvostdiedintd
#3e%e%ed*FOR SECOND TRIANGULAR ARRAY¥eseird
DO 15 I=1,N
DO 16 J4=1,N
AAA(I,J4)=ED(I+1,N+1-J4)
CONTINUE
CONTINUE
DO 17 J5=N+1,N+2,2
DO 18 I=1,N
AAA(I,J5)=ED(I+1,N+1)
CONTINUE
CONTINUE
DO 20 I=1,2,3
DO 21 J6=1,N+1
AAA(N+I,J6)=0.0
CONTINUE
CONTINUE
Do 22 1=1,2,3
DO 23 J7=1,N+1




23
22

25
24

27
26

30
29

33
31

35
34

AAOUT(1,J7)=0.0
CONTINUE
CONTINUE
DO 24 I=1,N+1
DO 25 J8=1,N+1
UU(1,J8)=AAA(I,J8)
CONTINUE
CONTINUE
dedevestredrdereverededertdededrirdededesiede dedededrrevertdedede e e e dede
Fedrdedededede*SECOND TRIANGULARI ZATIONFddedcdede
DO 26 K=1,N
DO 27 J9 = K,N+1
DO 28 I = 1,N-K+2
IF (J9.EQ.K)THEN
" CALL EDGE(UU(1,J9),AAQUT(1,J9),AAOUT(I+1,J9),CC(I,J9),S8(I,J9)
EED(I,J9)=AAOUT(I,J9)
ELSE
CALL INTERNAL(UU(I,J9),AAOUT(I,J9),CC(I1,J9-1),88(1,J9-1),
+AAQUT(I+1,J9),LLU(I,J9),CC(I,J9),SS(I,J9))
UU(I-1,J9)=LLU(I,J9)
IIN(I,J9)=AAOUT(I1,J9)
ENDIF
CONTINUE
CONTINUE
CONTINUE
PRINT *,' '
devesedevedevevedevevedevrvesvedeveveveve dedevededevedevevevededevevevedte
po 29 I=1,N
DO 30 J2=1,N+1-1
EED(I,J2)=0.0
CONTINUE
CONTINUE
DO 31 J3=N+1,2,-1
DO 32 K=N+3-J3,N+1
DO 33 I=K,N+1
EED(I,J3)=IN(I,J3)
CONTINUE
CONTINUE
CONTINUE
DO 34 MM=1,N+1
DO 35 LL=2,N+1
UU(LL,MM)=EED(N+3-LL,MM)
CONTINUE
CONTINUE
IF(NO. EQ. 1)THEN
IF(UU(3,3). EQ. 0. AND. UU(3,2). EQ. 0)THEN
THETA(2)=0.0
ELSE
THETA(2)=UU(3,3)/0U(3,2)
THETA(1)=(UU(2,3)-(THETA(2)*UU(2,2)))/UU(2,1)
WRITE(6,*) THETA(1),THETA(2)
ENDIF
ELSEIF(NO. EQ. 2)THEN
IF(UU(4,4). EQ. 0. AND. UU(4,3). EQ. O)THEN
THETA(3)=0.0
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ELSE
THETA( 3)=UU(4,4)/UU(4,3)
THETA(2)=(UU(3,4)-(THETA(3)*UU(3,3)))/UU(3,2)
THETA(1)=(UU(2,4)-(THETA(3)*UU(2,3)+THETA(2)*UU(2,2)))/UU(2,1)
WRITE(6,%) THETA(1),THETA(2),THETA(3)
ENDIF
ELSEIF(NO. EQ. 3)THEN
IF(UU(5,5). EQ. 0. AND. UU(5,4). EQ. O)THEN
THETA(4)=0.0
ELSE
THETA(4)=UU(5,5)/UU(5,4)
THETA(3)=(UU(4,5)-(THETA(4)*UU(4,4)))/UU(4,3)
THETA(2)=(UU(3,5)-( THETA(4)*UU(3,4)+THETA(3)*UU(3,3)))/UU(3,2)
THETA(1)=(UU(2,5)~( THETA(4)*UU(2,4)+THETA(3)*UU(2,3)+THETA(2)*
+UU(2,2)))/00(2,1)
WRITE(6,%*) THETA(1),THETA(2),THETA(3),THETA(4)
ENDIF
ENDIF
4 (IONTINUE
IF(NO. EQ. 1)THEN
Y(0)=Y(NB)
UIN(0)=UIN(NB)
Y(1)=Y(NB+1)
ELSEIF(NO. EQ. 2)THEN
Y(-1)=Y(NB-1)
Y(0)=Y(NB)
UIN(0)=UIN(NB)
Y(1)=Y(NB+1)
ELSE
Y(-2)=Y(NB-2)
Y(-1)=Y(NB-1)
Y(0)=Y(NB)
UIN(0)=UIN(NB)
Y(1)=Y(NB+1)
ENDIF
3 CONTINUE
46 FORMAT('',17X,'THETA1',17X, 'THETA2')
47 FORMAT('',17X, 'THETA1',17X, 'THETA2',18X, 'THETA3')
48 FORMAT('',17X,"THETA1',17X, 'THETA2',18X, 'THETA3', 19X, 'THETA4')
STOP
END
C Feveverevetevededieriereserevere oo etk e e ve e e vk ek Yo e e

Yrdedrdedede*SUBROUTINE  GROUPS FORdeiririedededede
Fedrdedddedrieiled*CELLS  FUNCTIONestdesdededededented

[eXeNoRe

FheRdriedeke ek A BOUNDARY  CE LL*rvevedrsedededededededr

SUBROUTINE EDGE (U,AIN,AOUT,C,S)
REAL U,AIN,AOUT,C,S

IF(U. EQ. 0. AND. AIN. EQ. 0)THEN
C=1.0

$=0.0
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90

AOUT=U

ELSE

CALL GAUSS(IX,R,BM,V)
C=U/(SQRT(U**2. ODO+AIN¥**2, 0D0))
C=U/(SQRT(U**2. 0DO+AIN**2, ODO))+V
S=AIN/(SQRT(U*¥*2. ODO+AIN**2,0D0))
S=AIN/(SQRT(U**2. ODO+AIN**2, 0DQ))+V
AOUT=SQRT(U#*¥*2. ODO+AIN**2. 0DO)
ENDIF

RETURN

END
Fededededeieiririedrdedeirieieieieieioioleioieioiedeloiolodedeiclededeiodole

devesedederedeieiededede INTERNAL CELLeddevedesededededeordede
SUBROUTINE INTERNAL (PU,AIN,PC,PS,AOUT,LU,LC,LS)
REAL Ps,PC,PU,S,C,U,AOUT,LU,AIN,LC,LS

LU=( -PU*PS)+(AIN*PC)

AOUT=(PU*PC)+(AIN*PS)

LC=PC

LS=PS§

RETURN

END

dedesededededeeiedededodedeiededeiieddodedededo ookt

Fok e rSUBROUTINE GROUPS FOR********
Feedlede el el de GAUS S IAN NOT SEFevdevssedededededrsbsbaedk
SUBROUTINE GAUSS (IX,S,AM,V)
=0.0
DO 90 I=1,12
CALL RANDU(IX,IY,Y)
IX=1Y
A=A+Y
V=(A-6. 0)*S+AM
RETURN
END

SUBROUTINE RANDU (IX,IY,YFL)
IY=IX*65539

IF (1Y) 5,6,6
IY=1Y+2147483647+1

YFL=1Y

YFL=YFL*. 4656613E-9

RETURN

END

Fededededededeirbdedtedededededriedbdedesr Rl dde e dnlede e e
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