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ABSTRACT

i The thermomechanical properties of -,now have been described in terms of microstructural

3 processes. The constitutive theory was rormulated in a form consistent with the second law of

thermodynamics. The deformation was described in terms of such microstructural proccsscs as

I pressure sintering, shearing deformations within the necks connecting the ice grains, and

3 intergranular glide. The matrix material (ice) was modeled as an elastic-viscoplastic material such

that transient response as well as steady state response to loading can be described. The

3 formulation also has the ability to describe the development of material anisotropy which evolves

as a result of sustained deformation.

In conjunction with this, an experimental technique was developed to enable one to

measure the change in the microstructure of the material due to deformation. This had to be done

in order to determine if the constitutive theory was correctly describing the microstructural

deformation processes. This technique involved the use of an image analysis system to

3 quantitatively determine the important microstructural processes (grain size, pore size, neck length,

bond radius, bonds/grain). Computer software had to be developed in order to automate the

process as much as possible.

3 Finally the changes in microstructure due to thermal effects was studied. A modern mixture

theory was adopted and modified for snow to characterize the effects of hcat and vapor mass

I transport through snow on the grain size, neck radius, density, etc. This part of the project was

3 considered important, since these microstructural properties determine the mechanical properties.

At the end of the contract, work was still continuing to make improvements on the

constitutive theory, since it has not yet been anplied to cases of large .'IrninF and cemnlic o'a...

I hi.;tories. However, preliminary results are very encouraging.
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I I SUMMARY OF FINDINGS

3 The efforts of the project can be divided into three separate areas of endeavor.

These are briefly described below. It is intended here to provide enough detail to give the

I reader a grasp of the main thrust of the work without getting into unnecessary details.

I.A. DEVELOPMENT OF CONSTITUTIVE THEORY

The behavior of a material must be consistent with restrictions imposed by the

3second law and the principle of material frame difference. If 0 is the Helmholtz free

energy, r) the entropy, G the absolute temperature, T the second Piola-Kirchoff stress tensor,

and E the Langrangian strain tensor, the second law may be written as:

I Po - po 76 + tr (T E) - (I/O)Flq. 0>0 (1)

F is the deformation gradient and po is the initial snow density. This law places restrictions

on the directions in which processes can evolve. Later we will use it in the development

3 c~f the constitutive law. The principle of material frame indifference is the statement that

the properties of a material are intrinsic, i.e. the manner in which it responds to a process

I (loading or deformation) depends on the material itself (Billington and Tate, 1981). If Q

3is a rotation of coordinates from one coordinate zystcm x to another x*, i.e.

x* = Qx (2)

I then the constitutive law, if it has the representation

3 T = F (E), (3)

must transform as

I T* = F(E*) = QF(E)QT (4)

3 where E* is the strain defined relative to the x* coordinate system. Eqs. I and 4 need to

be satisfied by the constitutive law.I
!
I
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We begin our formulation by assuming (p to be dcpendent upon the stress T, the

tLmpcrature 8, and an internal state vector . This state vcctor,

S= ( , 2 ... n) (5)

Uis a set of scalar valued variables which describe the internal state of the material. Later

3 we chose these i to represent variables such as bond diameter, neck length, intcrgranular

slip distanco, etc. Now make a change of dependent variables by introducing the

I complimentary energy 0, which has the value T:E - = 4.

3Differentiating 0 respect to time,

4 8(aO/aT):'r + (ol/ae) + (a/a ) * (6)

I and substituting into the second law of thermodynamics allows us to arrive at the following

3 results if the second law is to be satisfied:

E = po a4'aT (7)

St7 =-po a/ae (8)

Using Equation (7), a differential change in the strain can be written as:

dE = po (8 2 0/8T8T): dT + po (a2iObC8T)dC = de E + dPE (9)

I deE is the elastic change in the strain, while dE is the plastic change in the strain. The

compliance tensor M is defined to be

M = po(8 2 /8T8T) = M (C,0) (10)

and is a fourth order tensor consisting of various elastic coefficients. The plastic change

can be broken into two parts

dE = dM:T + dEP  (11)

3 where the first term represents a strain increment due to changes in the compliance tensor,

and dEp is the change in the plastic strain (permanent set). If the material compliance

U does not change significantly, then dE and dEP are equal. E is the strain which remains

I
*
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;;h'ien the stress is released, i.e., IgP  is Just E1(O, , ).

Now definc the vector of to be the thermodynamic conjugate to the state vector ,

f = Po ao/aC (12)

Then, one can show that (Hansen and Brown, 1988) the following Maxwell

relation holds:

a/aT - aE/a (13)

I Substituting this into Eq. 9 and integrating gives, after some algebra

po3 = 1/2 T: M:T + EP:T + Po10o (14)

where 0o is a stress independent term. The first term on the right hand side is the elastic

I strain energy and is the usual quadratic form for this type of strain energy. The form ofu EP needs to be Jetermined. This is best approached by finding a specific form for f. One

can readily determine that

3 f = Po '90o/C + 1/2 T:(dM/dC):T + T:dEP/dC (15)

0o and EP are both stress independent terms. Therefore the above equation shows that

f has a quadratic dependence on T if M is a function of C, as it surely must be, and that

I f must also be linear in T as required by the last term. Given Eq. 12, 0 must have a similar

dependence on T.

Using the above relations, and requiring 0 to be a scalar valued invariant function

3 of T, an appropriate form for 0 is

= + (l/2)T:M:T + tr (II T) (16)

I where tr ( ) is the trace of the tensor inside the parentheses. II is a second order

3 symmetric tensor which changes as the microstructure changes during inelastic deformation,

i.e. it is a function of C and E.

I The strain, from Eq. 7 becomes

*3
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I E = po M:T + 11 (17)

3 and we see that 11 is closely related to the plastic strain.

The elastic strain energy part of V) can be reduced to the following form

1 1/2 T:M:T = (1+v)/2E tr(T 2) - /2E (trT) 2  (18)

I if the material is isotropic. v and E are Poisson's ratio and Young's modulus and are

functions of . Let C1 and C, be the coefficients of tr(T) 2 and (trT) 2 expressed directly

I in terms of elastic properties.

C1 = l+v/2E, C, = -v/2E (19)

They can be expanded as a Taylor series in C:

C1 = CIO + - [CM ( i "i + C13i ( i - i)31  (20)

C, = C20 + [C21 (i io) + C23 i ( i _ io)3] (21)

where io are the initial values of each state variable. In the above an odd dependence

I on i was assumed. A similar form for II is assumed:

H ii = Hijo + z[Hijlk ("-k - ko) + Hijk3k ( Ck ko)31 J22)

The coefficients in the above equations can be determined from experiments, although many

3 will be assumed to be negligible based on physical reasoning and symmetry arguments.

Finally, evolution equations which govern the rate of change of the state variables must

I be found. These are of the form

3 = (T, (. ) (23)

In order to determine these, the details of the microstructure of the material must he

I considered.

3 MICROSTRUCTURAL DESCRIPTION

The vector C = (1, C2 -.- n) consists of a set of n scalar valued variables which

I (escrihe the microstructure of the material. For the purpose of this study, ihese variables ;irc

I
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I assumed to be

I = neck length vector

r = neck (bond) radius

I = intergranular slip distance vector

n.= bonds/grain (coordination number)

These variables should be considered as mean values averaged over small volume elements.

I The material is represented as a collection of grains joined by necks of a definite length and

radius. When two ice grains are brought into contact, a bond forms due to cohesion processes.

[his neck normally grows due to sintering effects and evolves into a necked region connecting the

3 two grains. Consequently all snow that has been on the ground for a finite time has this type of

structure.

I
I

X 3 3 3  X 3 3

2 ax
2 , 0 CK. X 2

Sa2

I a1  2 $x>
e2- 

I

(d) strus components and (b) nepck displac'mvni
unit vectors componrnts

I Figure 1. Schematic of typical ice grain and neck.

I
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IHowever, the ability to measure bond radius and neck length in snow is still a difficult task and

has to date not been adequately solved, even with modern image analysis techniques. As the

theory of quantitative stereology and the capabilities of image analysis systems continue to improve,

I these problems will be resolved.

3 IThe fundamental geometry of an ice grain and a neck as modelled in this paper is

presented in Figure 1. We assume most of the deformation takes place in the necks which are

3 considcrably more flexible than the grains.

3 The ice grain has a radius R, while a typical neck is located at the spherical coordinates

, and has a radius r and length 1. Contrary to the impression given in the figure, the neck

3 length is typically much smaller than the grain radius. The stresscs acting on the neck have the

i local coordinate components a13 , a23, and a33. Using an appropriate constitutive relation for ice

(Szyszkowski and Glockner, 1987) the rate of deformation tensor d can be found for the necked

region. The full details of this constitutive law for ice cannot be given here due to space

limitations. A more general constitutive law (Brown, 1987) is currently under development, but

the formulation of Szyszkowski and Glochner (1987) has been shown to represent the properties

I of ice for small and intermediate strains. The rate of deformation is given by the relation

d - de + dP + dr (24)

where de = (1/E 0)[(l+v), - ptr(o)lj (25)

3 dp - (l1/v2)[/(l-w)]nj + c(fP/EjI (20)

dr (1/vl)(a")n  (27)

I d"p, (P,dr are respectively instantaneous elastic, plastic, and delayed recoverable (viscoelastic) parts

I oC d. c is the stress tcnsor in the neck, of which , u1 and o23 are the only nonzero

cormponents. E and v are elastic properties of ice, w is a crack damage factor, and " is a stress

I variable in the neck. Consult Szyszkowski and Glockner (1 987) fbr a more detailed discussion.

I3



ihc crack damage factor w characterizes the internal damage resulting from microcracKing.

d can then be used to determine the deformation of the neck, i.e. change in length,

shearing deformations, and change in radius r. The motion of one end of the neck rclativc

to other end is given hy A1 , and A)2 give the shearing motions and 6 is the change in length

of the neck. Sec Figure l(a) for an illustration of these three quantities.

The rate of change of the neck length, 6, and the two intergranular slip rates, A

3 and x,, are related to d in the following manner:

.= Id3 3

i = 2 di31, i = 1,2 (28)

3 In arriving at these relations, it was assumed that rotational effects in the neck

during deformation is negligible. Normally this is a good approximation if the strains in the neck

are not large. It should be mentioned here that A1 and A2 represent the displacement of one end

Sof a neck relative to the other end in a direction perpendicular to the neck axis. Here we consider

displacements due to viscoplastic deformation. Slip due to neck fracture and glide are not

1 consicicrcd here. Studies are currently underway to include this in the formulation.

3I These have the vector forms for their rates of changein "
A=AIa, +A )a2 (29)

6 6a3

3l the vectors ai arc local orthogonal unit vectors illustrated in Figure 1. ; and 6 can be

uniquely determined from the tensor d, the rate of deformation tensor for the neck.

I At this point it is necessary to relate the neck stress a to the globally applied stress

', .hich is the snow stress. Once this ;.- done, the formulation is essentially complete. To this

end, we define a probability function P(a,, 0, n3) which gives the probability that the point on the

I surface of a grain lies on a point where a neck is attached to the grain. This function must bC

*7
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I properly normalized, i.e.
g, 3, n3)sin3d, d = n3 rI(r/R)2  (30)

P is obviously linear in n3. For the purposes of this study we will assume an isotropic

distribution of necks around the grains, so that P becomes a constant with respect to a and

3 5. However, it is worth noting that anistropy can readily be modeled by making P variable

in a and pi. Indeed, as deformations become large, P would normally acquire some

anistropic properties. In the case where P is constant, it must have the value n3(r/2R) 2.

If T is the stress tensor applied to the snow, the stress vector U(n) applied to the neck can

be shown to be (Hansen and Brown, 1986):

a(n) = a i = [a/p(a,6,n3 )In T (31)

3 =AnT

n is the unit vector parallel to the direction of the neck axis. A represents the

I augmentation factor which provides for the increase in the neck stresses over what stresses

Sare distributed over the snow. a is the density ratio, pi/Ps, of the ice density and snow

density. 01, a,, and a? shown in Figure 2 have the values

Ia, = cosasine I + sinacospe2-sincf3e3

a2 = -sinae1 + cosae2  (32)

a3 = cosasinpe1 + sinasinfe2 + cos6e3

3 where the vectors ei are the unit cartesian base vectors for the xi coordinates.

Under a three dimensional state of stress, T applied to the snow, the strain rate I

for the snow can be calculated using the above equations. First a(n) on a neck situated at the

3 position (a,fi) can be calculated by using Eq. 31. From this, the rate of dcfOrmation tensor d for

the neck can be found using the constitutive equation for ice, Eqs. 24-25. Then the rate of change
of the microstructural variables A and 1 (1 = 6) can be found with Eqs. 28-29. This gives the

I
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I raJtes A and S in the global cartesian coordinate system, xi, and then integrating over the grain

surface results with averaged values of the projections of A and 1 in the global coordinate

directions. Integration over an octant a< n/2, 0 < , < 1i12 can be done if one assumes sufficient

I symmetry of the probability function P(o,.b). These averaged values, 6 and A areHt/2 IL2

6 - 8((2P/p)2/v 3f f P(c,,6)i(ct,,)sin6dadp (33)

" ((2R/r)2/n3) J1P(a,) ;(a,,O)sinpdad0 (34)

where , and S are transformed to the global coordinate components. Once this is done

the evolution equations, Eqs. 25, are essentially determined. With these determined, the

rates of change of the compliance tensor (here characterized by C1 and C,) and the tensor

Hi can be determined from Eqs. 19-21, and then Eq. 9 can be used to calculate the strain

rate E.

The above full program has not yet been completed, but results have been obtained

for simple uniaxial states of stress. These are illustrated in the following section.

EVALUATION FOR UNIAXIAL STRESS STATES

I We consider here the strain response to a uniaxially applied load. We c:onsidcr

imedium density snow (po = 355 kg/m3). For this snow, surface section analysis has determined

the following initial microstructural variables

I R 0.484 mm

r =0.23 mm

= 0.19 mm

I n? = 2.53

a =2.58

These values have been taken from a study (tlansen and Brown, 1980) utilizing an image

I
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analysis system to evaluate the initial microstructural geometry of the necks. The material

3 coefficients for the constitutive equation for the ice (Eqs. 24-27) are provided by Szyszkowski and

Glockncr (1986) and will not be repeated hcre. Applying the previous equations to the case of

I a uniaxial stress state

I dE = 2po(C, + C,)dT1 j + 2po(aCjIa + aC21ai) * dE + dill, (35)

provides for an increment in the axial strain during a time increment when the stress T11

I is varied or the microstructural variables i are varied.

3 For the case of uniaxial loading, we can simplify the above formulation somewhat

by calculating the total intergranular slip x rather than the two components )', A2 in the a and

p directions indicated in Figure 1. Likewise, rather than dealing with the three vector components

of the neck length vector 1, we can deal strictly with the scalar value, 1, of the neck length.

Under more general loading conditions where deformations in all their coordinates are of concern,

I this is not a valid simplification. The terms aCl/axandaC 2/af then require the forms

aC1lax = CI CI,( A, o) 2 , aC1/al = Cl I + 3C1 31(1 - 1o)2 (36)

8C/OA = C2IA + 3C23 .\(A-Ao)2, aC,/al = C311 + 3C 331(-1o)2  (37)

3 aHI1/la = H1 l. + 3H 1 3A(A-,o)- (38)

aHllial = Hl 1 + 3 H31(1 - 1o)2 (29)

I Utilizing experimentally determined values of the coefficients in the above equations, the

I rates of change of Hll, CII, and C2 can be obtained as the microstructure changes, since

H11, C1 , and C) can be determined directly in terms of Eqs. 36-39 and the rates of change

I of X and 1. , and 1 can be found from Eq. 28. This then is all applied to Eq. 35 and

integrated numerically with respect to time.

Figure 2 illustrates creep curves for medium density snow subjected to a tensile

I stress of 0.01 MPa for a prescribed period of time and then unloaded. As can be seen the

I
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I TEMPERATURE = - 10 n = 2.53

R = 0.484 mm a = 2.53

L = 0.194 mm

I - 3 - r = 0 - 1 8 m m

I ~

0 it f

0 2000 4000 6000 8000 10000
TIME. SEC.

I Figure 2. Typical creep curves and creep recovery curves for uniaxial stress

I states-

xl0 "4  AXIAL AND LATERAL STRAINS: STRESS = 0.01 MPa
4

3.5-

* 3-

* 2.5- j
2-

* z
< 1.5-

0.5-

I-0 .5 - -- -------------------------------

0 2 4 6 8 10 12

TIME. SEC. x104

IFigure 3. Axia and lateral creep strains for uniaxial loads.
I 011 68101
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Imaterial exhibits all of the usual characteristics of snow. Also contained in that figure is

the creep curve for an actual experiment carried out on medium density snow.

Unfortunately the data was collected in 1974, and the relevant microstructural variables were

I not recorded. Consequently it is not known if this data is relevant to the case used here.

Figure 3 shows the creep response of the material. The response cannot be compared with

available data in a definite manner, since the microstructure of the snow tested was not

recorded. The data at MSU was acquired in a testing program carried out between 1974

and 1976. While the creep curves for that data was similar to those given in Figure 3, the

computed strains were only about 50% of the measured ones. This was true for both the

axial and lateral strains. It is quite possible the snow which was tested had incurred

temperature gradient effects and was poorly bonded.

The constitutive equation still needs more development and refinement before it can

3 acquire a truly acceptable form. The properties of snow are determined in part by the

properties of the matrix material ice. Consequently accurate modelling of the ice properties

I is needed. Howcver the snow properties are also strongly influenced by the geometry of

the material microstructure. Correctly modelling this is the more difficult of the two

processes. Work is currently in progress to obtain a more complete representation of the

I deformation processes in terms of what happens at the granular level.

This type of constitutive equation, while quite involved, can be used to more

accurately analyze problems involving large multiaxial deformations of snow. Such examples

I include vehicle mobility over snow covered terrain, building footing settlement into snow

cover, and impact problems. With ever improving computational capability, the use of

microstructurally based stress strain equations is now becoming a reality.

I
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I I.B. EXPERIMENTAL TECHNIQUE FOR ANALYZING SNOW MICROSTRUCTURE

I As a cohesive granular material such as snow is deformed under the influence of

applied loads, its microstructure changes. In fact, even as the material is at rest in an

I unloadeJ state, its microstructure slowly changes as the material attempts to lower its energy

state by consolidating to reduce its surface energy. At this point we are primarily interested

in the changes resulting from applied loads. As loads are applied, the necks connecting the

grains are strained, their lengths and diameters change. In some cases they fracture, thereby

initiating intergranular glide. As the grains are pressed together under compressive loads,

new bonds are formed, so that the coordination number (average bonds/grain) changes.

Under certain conditions grains can fracture, thereby causing changes in mean grain size.

The constitutive law discussed in Section L.A is described in terms of these

microstructural variables. As a consequence, we needed to develop a means of

experimentally determining the variation of these variables as a result of load induced

deformations. This is necessary if we were able to determine if the evolution equations

I (Eqs. 23) were accurately predicting these microstructural changes. This section describes

* in some detail the method we developed to achieve these ends.

The internal-state variables must describe the current microstructural state of the

U material and be capable of representing average measures o the structural rearrangements

taking place within the snow cover. The variable selection process attempted to include

the most significant aspects of the granular structure and the dynamic environment of the

I material under high-rate deformation.

The variables chosen should be able to characterize the dominant deformation

mechanisms such as bond fracture, intcrgranular glide, and neck growth at the bonds.

Furthermore, they must account for various phenomena known to occur under compressive

I
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n loadings such as:

(1) The effects of pore pressure,

(2) A locking mechanism for grains during intergranular glide,

I (3) Coupling of the deviatoric and volumetric responses,

3 (4) Work hardening, and

(5) Local inertial effects.

3 Finally, the state variables must be chosen so as to make measuring them a feasible task.

Before proceeding with the selection of the state variables, it is necessary to clarity

the notation to be used. When discussing the behavior of dry snow in the general

I macroscopic sense, the material is considered to be a multiphase mixture consisting of an

ice phase and an air phase. Each phase is denoted by a subscript as follows: a, air phase;

i, ice phase. This convention is in accordance with that used in mixture-theory studies of

3 mechanical properties of snow.

An alternative approach will be used when measuring the internal-state variables in

the snow at the granular level. Here, the snow is considered to be a three-phase material

consisting of an ice-grain phase, ice-neck phase, and air phase. The three phases arc

denoted by the following Greek subscripts: a, ice-grain phase; 6, ice-neck phase; and -Y,

I air phase.

In the following discussions, no attempt is made to state which of the two previous

approaches is being used since the subscripts arc self-explanatory. Finally, in quantitative

U streology, it is necessary to differentiate between length, area, and volume measurements.

Therefore, let the following capitalized subscripts denote this difference: L, length

measurement; A, area measurement; and v, volume measurement.

I
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I Taking into account the desired properties of the state variables, the following

parameters were chosen to formulate the statistical model for snow. A discussion of their

significance and measurability is given later.

Ia = pi/p = density ratio where pi = the density of ice, and p- the density of snow,

r mean bond radius,

h mean bond length,

7 mean intergranular slip distance,

L mean intercept length,

n3 mean number of bonds per grain,

N v mean number of grains per unit volume

V mean volume of a single grain, and

I S mean surface area per unit volume.

MEASURING THE STATE VARIABLES

Before discussing each internal-state variable, it is necessary to

describe the streological measurements which are required to obtain the

desired information. As mentioned previously, snow at the granular level

is considered to be a three-phase material consisting of ice grains, ice

necks, and air. Kry (1975) developed an operational definition to identify

grain bonds in a two-dimensional surface section. If a grain bond is cut

by a section plane, it will appear as a line connecting opposite edges of

the ice. Three criteria are required to identify these bonds:

(1) A minimum constriction must exist; a 30% constriction on the plane

is used as a cut-off.

(2) Both edges of the ice must show the constriction.

(3) The notches on each edge must point approximately towards each other.

The neck region of a grain bond is defined as that area surrounding the
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m bond where the grain goes from convex to concave with respect to the

outward normal. The bond is defined as the region of minimum constriction.

Figure 4 shows an image-enhanced snow sample which delineates the three

phases of interest. Using the enhanced image, the following measurements

can now be made. The code contained within the parentheses indicates the

m method of analysis, e.g. visual count (VC) or computerized image analysis

I (IA).

P Area fraction of points falling in the ice-grain phase (IA).

Pa Area fraction of points falling in the ice-neck phase (IA).

Ply Area fraction of points falling in the air phase (IA).

E = (l/d 2 ) Harmonic mean of lines representing grain bonds in the surface section (IA).

Hence, d2 is defined as the two-dimensional bond diameter.

N,,L Number of interceptions of ice grains in the microstructure per unit length of a

I random test line (IA) (See Fig. 5).

N, Number of grains in the test area (VC)

N. Number of bonds in the test area (VC).

m (n) Probability distribution of the number of bonds per grain cut by the section plane

(VC).

It should be noted that all measurements which require a visual count can be performed

on the order of minutes. The time-consuming part of the analysis will be in the area of

image enhancement.

At this point one can proceed with a discussion of each of the state variables.

Density Ratio (a)

The density ratio is defined by the following expression: (40)

at = pi/p

I
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I The density of snow has been the primary measure of the "state" of the material in many

of the past investigations of the mechanical behavior of snow. This is primarily because of'

the ease and quickness of density measurement in the field. However, recent papers

I (Gubler, 1978) have shown that density alone cannot adequately describe the state of the

I material uqder certain conditions. This is especially true at low densities where the impact

of other state variables is more significant. However, the importance of density increases

as a approaches unity.

The value of the density ratio obtained in the field may be cross checked using the

following streological relationship:

Ir = 1/(P, + Pd 41)

This equation neglects the mass of the air phase.

Mean bond radius (r)

The mean three-dimensional bond radius is a significant parameter of pressure

sintering as well as bond strength and resistance to fracture. Brown (1979) used this

I parameter in a volumetric constitutive law based on neck growth. Fullman (1953) derived

the necessary relations with the assumption that the grain bonds are circular disks (1975)

has shown that this idealization yields self-consistent results.

I The governing equation for the mean bond radius as derived by Fullman is

r = rI/(4E) (42)

Mean bond length

I The mean bond length is also a significant parameter for modeling pressure sintering.

This was used in Brown's "neck-growth" volumetric constitutive law. However, until now

the authors are unaware of any attempts to evaluate this parameter stereologically. The

statistical model of bond length is developed by idealizing the necks of grains to hc

I
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I cylinders. This is based on the fact that self-consistent results have been obtained by

idealizing the grain bonds as disks. Clearly the neck regions of an ice grain are not

perfectly cylindrical. However, the definition still provides a meaningful relationship when

I comparing differing types of snow in that it is a consistent measure of bond length.

Fullman (1953) has derived a relationship for the number of bonds per unit volume based

on knowledge of the number of bonds per unit area. This relationship is

n Ntw = 8ENo A /r2  (43)

i where NM is the number of bonds per unit area. Underwood (1970) has shown that a

statistically exact equation for determining the volume fraction of the ath constituent is

n given by

I V = Pa (44)

Therefore, by introducing the neck region of an ice grain as a separate phase, one can

determine the volume fraction of the necks. The idealized bond length can then hc

determined by the following expression:

h = P/(N0,&rr") (45)

Mean intergranular slip distance (A)

The mean intergranular slip distance is of major importance for

I characterizing intergranular glide. As this distance decreases, pressure

sintering becomes more dominant in the deformation process. Furthermol-e,

this parameter must be inherently related to the locking phenomenon of

intergranular glide. The stereological relationship as defined by Fullman

(1953) is given by

I = (a- 1)/(aNj) (46)

This equation is valid regardless of size, shape, or the respective distributions of the grains.

Mean intercept length (L)

I
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I The mean intercept length provides a measure of the grain-sizc and, as a result,

complements the mean intergranular slip distance. The combination of these two

parameters should provide a physical basis for determining a critical "locking" density for

I grains during intergranular glide. Furthermore, pressure sintering of neck regions will cause

I changes in L.

The mean intercept length as derived by Underwood (1970) is given by

I L = (P, + P,6)N,.L (47)

i Again, this equation makes no assumptions about the shape, size, or distribution of thc

grains.

Remaining state variables

The remaining internal-state variables must be discussed together because of their

close dependence on each other. The variables are given by

(i) Number of grains per unit volume (N ,v)

(ii) Mean number of bonds per grain (n3)

(iii) Mean volume of a single grain (V)

(iv) Mean surface area per unit volume (S).

The mean number of bonds per grain is a strong measure of the degree of grain

I mobility and fracture strength. The number of grains per unit volume and the mean volume

of a grain are important parameters for modeling intergrai.alar glide including local inertial

effects. Finally, the mean ;ur'ace area per unit volume is extremely important for

I computing energy absorption by snow during high-rate deformation. Under high strain-

rates, the snow will undergo brittle fracture at the grain bonds. This causes a signi'icant

it.creasc in th e surface area which in turn is directly related to the free energy.

I
I
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I Until recently, no method was available for determining the mean number of bonds

per grain from a section plane. Gubler (1978) derived a technique for determining this

value based on comparing a theoretical distribution of the number of bonds per grain, f2 (n),

I seen in a section plane with the actual distribution. This paper appears to be a pioneering

effort in this area. The technique involved calculating the probability, p, that if a grain with

a coordination number n = 1 is cut by a section plane, its bond also appears in the section

I plane. The bond areas are assumed to be random and isotropically distributed o:i the grain

surface. Furthermore, the bonds are considered to be small compared to the grain surface.

This is consistent with Kry's (1975) definition of a bond.

Unfortunately, Gubler's approach contains one significant weakness in that the

stercological relationship used to obtain the number of grains per unit volume is based on

all grains having the same size and shape. This is hardly the case for alpine snow, as highly

Ifaceted crystals as well as rounded grains appear throughout the snow cover in many sizes.

The problem of accurately determining the number of grains per unit volume from

surface sections for a collection of particles of arbitrary size and shape is extremely difficult.

Most authors have assumed the particles to be all one size and shape for which many

solutions are known. Some solutions arc also known for particles of one shape which obey

I a log-normal distribution in size. DcHoff (1964-1965) has provided solutions for this case

for some simple shapes. Finally, Hilliard (1968) has developed a technique for determining

N,, for an arbitrary collection of sizes and shapes provided the relative frequency of the

I various shapes is known. Unfortunately, this theory is unable to produce specific results

since shape factors necessary to apply the theory have not been developed.

The approach taken here to determine N(, will avoid any specific identification of

grain shape other than to obtain a first guess, as this is virtually impossible for alpine snow.

I
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I The formulation follows Gublcr's approach with some notable exceptions.

To begin, the probability of finding a grain with a coordination number between n

and n + dn as derived by Gubler is given by

I f3(n) = N3 n3 ilexp(- n2i ) (48)

where n is the three-dimensional coordination number, N, is a normalizing constant, and

i is a free parameter of the distribution,

I and 2 2i

The normalizing constant may be determined numerically by requiring
12

I f3(n) = 1 (49)

n=1I
This is based on the premise that each ice grain in a snow cover has at least one bond and

I at most 12 bonds, as in the case for ice.

The resulting two-dimensional probability distribution as derived by Gubler is

f2(I) = N 2  K p(1 - p)K-'f 3 (k) (50)

k=1
where p is defined as the probability that, if a grain with a coordination number n

= I is cut by a section, its bond also appears in the section, and N, is a normalizing

constant. The normalizing constant N, does not appear in Gubler's work. The

reason for inserting this is as follows. Equation (50) without N2 represents a

binomial distribution of the probability p multiplied by the three-dimensional

probability distribution f3 (k). Therefore, the following equality holds:

12
-- f_,(l) = 1 (51)
=0
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I However, when cutting a section of ice with grains having a coordination number of 12, it

Iis physically possible to cut at most six bonds. Hence, one can require

6

>11f27(1) = 1 (52)

I The probability p is given by the following (Hilliard, 1968):

i P = s/sk  (53)

where

I s = rN,,b/NA

a n d 
=

I b = 2(r (d,/2)2)1/2

Notice that p is a function of the number of grains per unit volume, Nv. It is at this point

Iwhere all previous investigations assume specific shape and size distributions and where this

theory deviates.

Underwood (1970) provided a table for determining N,,v for particles of one size and shape.

This is the approach followed by Gublcr. The general equation is given by

N,,v = C(N 2 A/N,&) (54)

where C is a coefficient depending only on shape. It is interesting to note that C takes on

I a fairly narrow range of values for a wide variety of shapes, typically ranging from 0.4 to

0.8 for shapes pertinent to alpine snow. Therefore, one can use Equation (54) to obtain

a first estimate of N ,v. This in turn Rxes the probability, p, as defined in Gubler's paper.

5 Now recall an earlier relationship derived by Fullman (1953) for the number of

i bonds per unit volume

= 8EN^/1 2  (55)
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I The above equation is based on the assumption that the bonds may be considered to be

a polydispersed system of thin disks. This is precisely what has becn assumed throughout

this paper. Using this result, the mean number of bonds per grain is then fixed by the

I equation

n3 = 2N .v/N, (56)

By neglecting this equation and allowing n3 to vary, Gubler ha- an underconstrained system.

This could lead to uniqueness problems and produce erroneous results.

By invoking Equation (55), the parameters N v and i arc varied rather than n3 and

i to determine the proper theoretical density distribution f2(b). Hence, a method has been

I deve'oped for determining N, v without specific consideration of the individual grain shapes

and sizes other than to obtain a first guess.

Once N, v is determined, the mean volume of a single grain including the "necks" is given

*I by

V = (Pa + P9)/Nav (57)

I The neck regions in this variable arc included since the neck is assumed to become an

integral part of the grain when a bond fractures. Furthermore, the neck volume is typically

on the order of 5-10% of the total grain volume. Therefore, any errors caused by this

I assumption are small.

The mean surface area per unit volume can be derived by considering each of the

grains as being detached from its neighbors and then subtracting from the surface area

I contained by the grain bonds. Underwood (1970) derived an expression for the surface area

for a system of detached grains given by

S = 4Nj, (58)

I
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ITherefore, subtracting the area contained by the grain bonds from the above expression

gives the correct surface area per unit volume

S = 4N L - 2nI2b3N, (59)

IAPPLICATION
The theory presented above has been written into a computer code which uses a

high-speed image analyzer located at Montana State University. This image analyzer is

capable of digitizing a photograph of a section into approximately 300,000 points and

assigning each point one of 256 possible gray levels. The digitized section is then image-

enhanced and stored on a floppy disk for future analysis.

3 By using the image analyzer, exact point counts and extremely accurate length

measurements can be made very quickly. This allows large areas of a section containing

numerous grains to be analyzed which increases the statistical accuracy.

U The following data are an example of the results of the theory using the image

analyzer. A surface section was taken from a box of alpine snow stored in a cold room at -

12°C over the summer at Montana State University. Two areas of the section were then

i analyzed using the image analyzer. The areas of analysis are shown by the dashed and solid

lines in Figure 4, respectively. The two areas overlap and hence are not statistically

I independent. However, the large area does provide a check on the statistical accuracy of

3 the smaller area. The data taken from the image analysis of the two areas are shown

below.

I Area 1 Area 2

3 Area of analysis 64.4 mm- 133.9 mm-

Ice-grain area fraction 0.350 0.363

3 Ice-neck fraction 0.038 0.043

I
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I Air-phase area fraction 0.612 0.594

Mean two-dimensional bond length 0.307 mm 0.331 mm

Harmonic mean two-dimensional

bond length 3.42 mm 1  3.30 mm-1

* Number of grains per unit length

of a random test line 0.803 mm 1  0.776 mm -1

The data generated by the image analysis of the surface section are in good

agreement for both areas analyzed. This indicates that the smaller area was representative

of the overall properties of the section.

3 Using the above information, the two-dimensional theoretical probability distribution

for grain coordination number can be computed. The results for each area analyzed along

U with the measured distributions are shown below.

3 Area 1

No. of Measured Theoretical

I Bonds distribution distribution

3 n = 0 0.518 0.515

n = 1 0.291 0.313

I n = 2 0.139 0.102

Sn> 3 0.052 0.070

I Area 2

u No. of Measured Theoretical

Bonds distribution distribution

3 n = 0 0.490 0.489

I
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i n = 1 0.327 0.327

Sn= 2 0.112 0.111

n > 3 0.071 0.073i
The theoretical distributions for the number of bonds per grain, as seen in the

section plane, compared very favorably with the measured distributions. For the larger

3 area of analysis, the error is approximately 1% for grains with 0, 1, or 2 bonds, respectively.

These grains account for approximately 93% of the grains in the section analyzed.

Using the theoretical data generated above in conjunction with the previous

I information determined by image analysis, the internal-state variables may be readily

computed. These are given by the following:

Area 1 Area 2

I Density ratio 2.58 2.46

Mean three-dimensional bond radius 0.230 mm 0.238 mm

I Mean three-dimensional bond length 0.193 mm 0.182 mm

3 Mean intergranular slip distance 0.762 mm 0.766 mm

Mean intercept length 0.484 mm 0.523 mm

I Mean number of bonds per grain 2.04 2.26

* Mean number of grains per

unit volume 1.16 mm 3  1.17 mm 3

Mean grain volume 0.334 mm 3  0.345 mm 3

I Mean surface area per unit volume 2.43 mm 1  2.16 mm 1

The repeatability of the data for the internal-state variables for the two areas

3 analyzed is quite strong with the difference between the two typically being on the order

I
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I of 10% or less. Also, the density ratio determined by a field measurement of this particular

snow sample was 2.29. This differs from the stereological measurements by 13% ar.d 7%,

respectively for areas 1 and 2. It is not surprising that the field-measured density was

I slightly higher than that determined by image analysis, since some compaction of the snow

will occur when taking field data. Furthermore, etching of the ice grains during sectioning

will cause the image analysis to predict a slightly lower density than the actuai value.

The above technique was then used to measure changes in the microstructural

parameters during deformation. It was felt that the most substantial changes in

microstructure could be achieved by means of confined compression tests. A series of tests

I were run to compress snow from an initial density of about 330 kg/m3 to as high as 650

kg/m 3 . This upper value represented the densification achieved when the load capability

(10,000 lb) of the testing machine was reached. In one test the deformation was stopped

3 at 2000 pounds. In other tests the loading was stopped at 5000 lb and at 10,000 lb. In

order to obtain statistically viable data, five tests were made for each maximum load.

I Prior to each test, a surface section was made to determine the initial

microstructural parameters. After each test, the sample was cut in half and samples

removed for surface sections. These surface sections were then image analyzed to

I determine the variation in the microstructure due to metamorphism. For example, Figures

5 and 6 demonstrate the variation of the coordination number and neck length with density.

These are typical of results achieved. A more detailed descriptive of all microstructural

I variables is forthcoming in future publications.

I Ill. C Heat and Mass Transport in Snow

As was indicated earlier, the microstructure of snow undergoes changes even when

3 it is unstressed. Again, since microstructure determines the mechanical properties, the

I
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I question of which heat and mass transfer processes effect the propertics was of concern.

I Consequently, it was decided to adapt a mixture theory to investigate this. The details of the

theoretical basis behind the theory are too involved to present here. The theory is very

U involved and a considerable development effort was required. Some of this was done under

sponsorship of an NSF grant, and the application of this theory to snow was done under

this ARO grant. For a more detailed development of the theory, the reader is referred to

the papers by Adams and Brown (1988 a,b).

The material is assumed to consist of a mixture of constituents, in this case the

vapor phase and the solid phase, ice. For each constituent, the balance equations for mass,

momentum, and energy are postulated. A constitutive behavior for each constituent is

assumed, and the second law of thermodynamics is then used to place restrictions on these

constitutive relations. The conditions of thermomechanical equilibrium and stable

3 equilibrium are also investigated to further restrict these relations. The resulting set of

constitutive equations and balance principles form a set of coupled nonlinear differcntial

I equations which must be solved numerically.

* This theory was then applied to three sets of problems:

(1) temperature gradient effects

I (2) density gradient effects

I (3) fabric layering effects

The first one, often referred to as temperature gradient metamorphism. A temperature

I gradient causes a flux of mass and heat in the direction of the negative tcmpcrature

gradient. This produces a recrystallization of the snow, of ten resulting with substantial

reductions in strength. This would have a negative effect on mobility of military vehicles

over snow covered terrain.

I
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I The other two processes, which we refer to as density gradient metamorphism and

fabric gradient metamorphism result due to variations of material properties

(inhomogeneities) in the snow cover. Density gradients in the snow cover causes mass to

I move from the lower density snow to the higher density snow as the material attempts to

lower its surface energy. In the last process, vapor is transported from fine grained snow

to course grained snow, since fine grained snow has a smaller :adius of curvature and hence

a higher surface energy.

All three of these processes as well as others contribute simultaneously to the

overall flux of heat and mass through the snow, with subsequent alterations of the

mechanical properties. In an attempt to learn more about these processes and to better

quantify these, the mixture theory discussed above was specialized to the case of snow and

used to evaluate each process. These are briefly discussed below.

1 Temperature Gradient Metamorphism:

In this case, a one meter deep snow cover of homogeneous snow was suddenly cold

from 1273°C to 253°C on the top surface while the bottom was maintained at 1 10C.

Figure 7 shows the time dependent response of the temperature as a function of time,

while Figures 8 and 9 show respectively the time dependent vapor flux and condensation

I rate (rate of increase of volume of ice) in the snow cover. The pictures show vividly how

the establishment of a temperature gradient causes a flux and subsequent recondensation

of vapor throughout the snow cover. Although not shown here, the theory also brings out

I other more subtle results. For instance, when gravity is included in the calculations, the

effect of the stresses caused by overburden loads increases the surface cncgy slightly in the

snow near the bottom. This itself causes sublimation of vapor off the crystals near the

bottom and a migration of vapor upward.

I
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I Density Gradient Metamorphism:

I This effect has not been recognized until this study was implemented. Less dense

snow has more free surface a.ea in it than dense snow, thereby increasing the surface

3 energy for the less dense snow. In order for a material to decrease its free energy, it

naturally tries to decrease its surface energy. In the case of snow, :his causes a flux of

vapor from low density regions to high density regions. Given enough time, snow would

3 eventually consolidate to ice.

In order to study this effect, the layered snow cover shown in Figure 10 was

analyzed using the mixture theory. The results shown in Figure 11 shows that over time

3 there is a definite migration of mass from the less dense layers into the dense snow. This

causes a mass loss in the low density snow near the dense layer. While this process is very

slow, it can produce substantial reductions in strength of the low density snow in arctic and

! Iantarctic firn.

Fabric Gradient Metamorphism:

In this case a fine grained (high energy) layer is sandwiched between two large

U grained (low energy layers of the same density, as shown in Figure 12. Figure 13 shows

the slow migration of vapor out of the fine grained snow into the courser grained layers.

I This process produces slower results than the other two processes, and tends to be

5 overpowered by the other two.

I
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Figure 13. Rate of change of ice volume fraction due to a fine-grained layer

being sandwiched between two course grained layers ( see Fig. 12).
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