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1. Introduction

1.1 Background

Consider the multiuser communication problem: several users share a common channel to

transmit information. The design problem is how to allocate usage of the multiple access channel

to the different users, in order to maximize the information flow over the channel, while keeping the

bit error probability under a given level. This problem is of great interest, since it is representative

of a wide variety of data communication systems where there is more than one source (and any

number of destinations); e.g. computer networks, satellite broadcast channels and radio networks.

Various approaches to this problem are taken in practice. These can be divided into three broad

subclasses.

The first class of approaches divides the channel among the users, such that the multiple-

access capability relies on the orthogonality between the assigned signals. Different kinds of or-

thogonality are exploited in different systems, e.g. time-orthogonality in Time-Division Multiple-

Access (each user is allocated a time slot in which he alone can transmit data, utilizing the full

channel), frequency-orthogonality in Frequency-Division Multiple-Access (each user transmits on

a different frequency band), code-orthogonality, if the transmissions are synchronous, polarization-

orthogonality or direction-orthogonality. Existing channel allocation strategies are both static, or,

to avoid unused capacity allocation, dynamic, according to the need of each user. Dynamic chan-

nel allocation strategies are either centralized, where a central controller uses polling or probing

strategies to determine which users have information to send, or decentralized, as in token rings or

the Ethernet.

The second class of approaches allows random channel access. The first random access system

of this kind was the 4Joha system, where the innovative idea was to allow each user to become

active whenever he has anything to send. The general feature of this class of channels is that the

received waveform can only be demodulated if it consists of one signal at a time, which means

that all simultaneous transmissions are lost. A great deal of effort has gone into designing various

random access protocols which schedule access to the common channel such that the probability of

a simultaneous transmission, called a "collision", is as low as possible while satisfying constraints

on the waiting time distribution. When a collision occurs, it is handled by a collision resolution

algorithm, whose task is to reschedule transmission of the collided packets at times which will be
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nonoverlapping with high probability. Beyond a certain range of channel utilization a common

problem of random access algorithms is the problem of stability. Much research has been done

recently to find collision resolution algorithms which maximize throughput. Current research fo-

cuses on the issues of capture, which models the case when part of the transmissions involved in a

collision can be recovered (for example the ones with higher transmission power), and decentralized

transmission rate control to ensure stability.

The third approach, the simultaneous transmission philosophy or Code-Division Multiple-

Access (CDMA), allows simultaneous, asynchronous access to the common channel, without the

penalizing feature of collisions. Here each user is assigned a fixed, distinct signature waveform,

which he uses to modulate his digital information sequence, as if he were the only user of the

channel. The input to the receiver consists of the superposition of the transmitted waveforms,

perturbed by additive noise. The task of the receiver is to demodulate all transmitted sequences,

or a proper subset of these.

The fact that each user is assigned a characteristic modulating waveform enables the destination

to demodulate his information by correlating the incoming signal with a coherent replica of the

desired user's signature waveform. If, aside from comparison to a set of thresholds, no further

processing is done after this correlation, the resulting receiver is known as the conventional/single-

user receiver. This receiver is widely used in practice due to its simplicity and to the fact that it is

the receiver which minimizes the probability of error for reception of a single-user signal on a white

Gaussian noise channel. Due to a spurious component of each non-orthogonal interfering waveform

in the correlator output of the desired user, the performance of the conventional receiver is adequate

only as long as the energies of the interfering users are under a certain level and the crosscorrelations

between the signals are low enough. What "low enough" is, depends on the number of users and

on the operational energy range. In practice, low crosscorrelations are obtained by assigning the

users Spread-Spectrum pseudo-noise sequences with long constraint lengths. Much research has

been done on how to design sequences % hich have good auto- and crosscorrelation properties for all

relative shifts (e.g. [Sar 80]). Examples of these are maximal length shift-register sequences, Gold

sequences and Kasami sequences.

However, no matter how well the sequences are designed, if one or more of the interferers is

sufficiently strong, for example due to much closer proximity to the destination, the probability of

error of the conventional receiver is bounded away from zero even in the absence of background noise.

This problem is of great importance in piactice due to its ubiquity in communication systems with
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time-varying or very dissimilar topologies, and is known in the literature as the near-far probleyn

([Scho 77],[Pic 821). At present it is the main shortcoming of Multiple-Access systems using Direct-

Sequence Spread-Spectrum (DS-SS), which is one of the two main spectrum spreading techniques

used in practice. (The other being Frequency-Hopping). DS-SS is often used in applications which

require anti-jamming capability and immunity from hostile sources. One attempt to combat this

problem without changing the receiver btructure has been to control the power of the transmitting

stations such that the received energies are similar. For example in [Ska 82] each transmitter

estimates what power its signal has at the destination by estimating the arriving power of the

return signal from the destination, whose power it knows. The disadvantage of this approach is

both increased transmitter complexity, which may be undesirable, and the fact that the strong

users have to put up with reduced performance for the benefit of the weak ones. Furthermore, the

anti-jamming capability of the system is decreased.

However the near-far problem is not an inherent problem of DS-SS systems. If the receiver

has knowledge of the interfering waveforms, the performance of CDMA systems can be greatly

improved. Then each destination has a correlator and sampler for the signature waveform of each

user, thus obtaining a discrete sequence which can be shown to be a sufficient statistic. Verdfi

[Ver 84cl found and analyzed the maximum-likelihood multiuser receiver for CDMA systems and

in particular showed that the optimum receiver is not near-far limited. The optimum multiuser

receiver follows the correlating front end by a Viterbi algorithm.

1.2 Previous work

Comparatively little work had been done previously on the demodulation/detection aspects

of the multiuser channel. After Viterbi published his well-known maximum-likelihood decoding

algorithm, which he had devised for the decoding of convolutional codes, various researchers in the

field identified its relevance to related problems, e.g. [Kob 71] to correlative level coding, [For 72]

to the intersymbol interference channel and [Ett 76] to M-input M-output dispersive channels with

synchronous inputs, an environment which is related to the multiuser channel we are considering,

due to the fact that the intersymbol interference introduces memory. The latter is one of a number of

works on combatting crosstalk in multi-input multi-output dispersive communication systems using

pulse-amplitude modulation, most of them concerned with the structure of optimum linear receivers

under various criteria, including the work of [Shn 67) who finds the optimum linear receiver under
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a zero-forcing constraint, [Ett 75] who finds that the optimum linear filter under the minimum-

probability-of-error criterion has the structure of a matched filter front end followed by a tap delay

line, and of [Kay 70] who generalize the previous to I-input M-output diversity systems under a

mean-squared error criterion. The models of these works are very general and they recognize the

fact. first noted by [Shn 67], that intersymbol interference and "crosstalk" (synchronous multiuser

interference) can be treated in a unified framework. (We now know that intersymbol interference

can be viewed as additional multiuser interference by increasing the dimensionality of the user

population, and conversely multiuser interference can either be viewed as periodically time-varying

scalar intersymbol interference, or, if synchronization and matched filtering capabilities are assumed

at the receiver in order to obtain a discrete-input discrete-output equivalent channel, as a vector

generalization of intersymbol interference.) However, due to the generality of their model, the

above works contain few specific results and in particular contain very little performance analysis.

Earlier work on the multiuser channel of which we are aware considered multiuser receivers for the

synchronous channel, specifically the receivers of [Hor 75] and [Sch 79], [Sch 80]. In [Sch 79] it is

claimed erroneously (cf. [Ver 86"]) that a memoryless linear transformation on the matched filter

front end is optimum in terms of bit error probability. Though this is not the case, the proposed

receiver emerges as the solution in the synchronous case to the problem of finding a linear receiver

which has desirable near-far performance, which is part of this work. In a short discussion of

the asynchronous channel [Sch 79] also suggests that the Viterbi algorithm will provide a suitable

solution. His intuition was correct as proved in [Ver 84c]. The performance of the conventional

receiver under conditions of multiuser interference has been amply investigated in [Pur 81], [Pur

82], [Ger 82]. In part the relatively small amount of work on the multiuser channel prior to [Ver

84c] (which was in turn motivated by [Poor 80]) is due to the widespread previous belief that a

more complex receiver than the conventional one would not yield a worthwhile performance gain

([Pur 81], p. 153). This belief was proved wrong in [Ver 84c], which triggered a new research effort

in the multiuser communications area.
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1.3 Motivation

The main reason for the quest for new receivers, now that the minimum probability of error

and the maximum likelihood receivers for the asynchronous CDMA channel are known, is the

exponential computational complexity in the number of users of these decision algorithms.

The computational complexity of the various decision algorithms can be measured and com-

pared by their time complexity per binary decision, TCB, i.e., the limit as the length of the

transmitted sequence tends to infinity of the time required by the decision algorithm to select the

optimum sequence divided by the number of transmitted bits.

While the TCB of the conventional single-user detector is constant in the number of users,

its bit-error rate is bounded away from zero for sufficiently high energy of any interfering non-

orthogonal user, that is, the conventional systems can become multiple-access limited even in the

absence of additive noise. On the other hand any prespecified error probability was shown [Ver

84c] to be achievable using the optimum detector. Unfortunately it is also shown that the decision

algorithm for the optimum multiuser detection problem is NP-haxd in the number of users, i.e.

has a TCB which is exponential in the number of users, unless NP = P. Therefore the optimum

multiuser detector becomes impractical for user populations above, say, 10. It is this trade-of

between achievable performance and necessary time complexity per bit which motivates the current

research in multiuser detection.

The aim of this thesis is to derive and analyze receiver structures which offer bit-error rates

close to that of the optimum detector while maintaining computational feasibility. In particular

this work is concerned with remedying the near-far problem with a detector with low computational

complexity.

1.4 Outline of the thesis

In Chapter 2 we present the multiuser performance measures used to quantify and compare the

performance of multiuser detectors. The first, the asymptotic efficiency, is specifically tailored to

capture the performance degradation under conditions when the main impairment is the multiple-

access interference, rather than the background noise. The second, the near-far resistance, measures

the detector's robustness to the near-far problem which is our main concern in this work.
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Chapter 3 focuses on the synchronous CDMA channel. After deriving the near-far resistance

of both the conventional and the optimum detectors, the decorrelating multiuser detector is intro-

duced. This detector linearly transforms each vector of matched filter outputs with a generalized

inverse of the signal crosscorrelation matrix. It is shown that, somewhat unexpectedly, the near-

far resistance of the optimum multiuser detector coincides with that of the decorrelating detector,

whose complexity per demodulated bit is only linear in the number of users. In Section 3.5 the

optimum linear transformation on the matched filter outputs is found, and conditions on the signal

energies and crosscorrelations are given under which, for a certain user, its asymptotic efficiency is

equal to that of the optimum multiuser detector. The issue of computing the decorrelating detector

is addressed, and an iterative algorithm which converges to the decorrelating detector is given. In

Section 3.8 an iterative decision-feedback scheme with the decorrelating detector in the first stage

is proposed. This receiver uses the correlation of the noise samples in the matched filter outputs

to reduce the variance of the noise components by subtracting a noise estimate based on the past

decisions of the other users. The performance in the second stage is analyzed, both for feedback

from all the users and for partial feedback, and near-far resistance is shown to be preserved.

Chapter 4 is concerned with the asynchronous CDMA channel. In Section 4.1 it is shown that

the near-far resistance of the optimum multiuser detector can be achieved by a linear detector (the

decorrelating detector), which is obtained explicitly in Section 4.2, as well as its implementable

version as a linear time-invariant system. The dependence of the error probability of this detector

on the received delays and phases is discussed and a numerical comparison of the error probability

of the decorrelating receiver and the conventional receiver in a scenario of practical interest is

given. In Section 4.4 a computationally much simpler one-shot detector is considered, which trades

a lower level of near-far resistance than the decorrelating detector in return for lack of memory. A

numerical comparison with the decorrelating detector is shown for some of the examples considered

earlier.

Finally, in Chapter 5 the situation when the signature sequences of the other users are unknown

is considered, in the case of a synchronous channel. An adaptive algorithm is presented which is

shown to converge to the decorrelating detector as the level of the background noise vanishes, and

to the conventional detector, if the multiuser interference level goes to zero, i.e. to the respectively

optimum strategy under the respective (limiting) channel conditions.
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1.5 Parallel work in the field

Other possible approaches to the presented issues are to devise suboptimal lower complexity

versions of the Viterbi algorithm, as done in e.g. [Due 87] for the intersymbol interference channel,

or to find suitable sequential algorithms, with a metric closely related to the optimal one, as in

[Rus 88]. However these schemes rely largely on intuition and heuristics, which is why we chose

to formulate a computationally favorable class of detectors and to optimize performance over this

class. A recent publication which derives an optimal linear receiver under an asymptotic error

probability criterion in a hypothesis testing setting is [Gal 88]. Another recent attempt to derive

detectors for multiuser channels is [Var 88a], where the decisions of the conventional detector are

used to subtract an estimate of the multiuser interference. A similar idea is pursued independently

in Section 3.8 of this thesis. Part of the results presented here (also [Lup 86], [Lup 89a]) have

been incorporated in [Var 88b], where the decorrelating detector is used instead of the conventional

detector to obtain near-far resistant initial decisions. Finally, [Poor 88b] analyzes the form of the

optimum single-user detector in a multiuser channel. For a further discussion on research in the

field see [Ver 88].
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2. Multiuser Performance Measures

2.1 Asymptotic Efficiency

The performance measare of interest in communication systems is the bit-error rate or proba-

bility of error achieved by each transmitter. Since the single-user error probability (of the optimum

single-user detector) on the Gaussian channel is a one-to-one function of the signal-to-noise ratio

(SNR), the same information as the error probability is contained in the efficiency, defined for each

user as the ratio between his effective SNR and his actual SNR, where the effective SNR is the

one needed to achieve the same error probability (using the optimum single-user detector) without

interference from other users, and the actual SNR is the received energy per bit of the user divided

by the power spectral density level of the background noise (not including interference from other

users). Since it is the ratio of two energies, the efficiency is nonnegative, and since the effective

energy is upper bounded by the actual energy (a user's error probability in a multiuser environ-

ment is lower bou, ded by his single-user error probability), the efficiency is less than or equal to

unity. The main performance measure we are interested in is the bit-error-rate in the high signal-

to-background noise region. Thus, even though the background thermal noise is not neglected, the

main focus will be on the underlying performance degradation due to multiple-access interference.

This is a meaningful way to look at the problem, and offers the advantage of tractability.

With this in mind a suitable multiuser performance measure is the asymptotic efficiency, intro-

duced in (Ver 84c], [Ver 86a], and defined as the limit of the efficiency as the background noise level

goes to zero. Thus the asymptotic efficiency is defined for each user as the limit as the background

noise level goes to zero of the ratio between its effective energy and the actual energy it has in

the multiuser environment. Therefore it is a measure of the performance loss due to the existence

of other active users in the channel. Consider an additive white Gaussian channel with binary

antipodal signaling, to which we always refer in the sequel, such that the received waveform upon

transmission by a single user is

r(t) = b vws(t) + n(t)

where b, w and s(t) are the transmitted bit, the received energy per bit, and the normalized received

version of the modulating waveform, and n(t) is a white Gaussian noise process with power spectral

density a2. It is well known (e.g. [Woz]) that the error probability of the optimum detector for this
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situation, which is a filter matched to s(t) followed by a sign decision, isMI Q(v'w/1o). When K users

are transmitting, let the kth user received energy and error probability (achieved by the specific

detector under consideration) be equal to wk and Pk, respectively. Then the effective energy ek(a )

is such that Pk(a) = Q(V~ek/_7aT/) and the k th user asymptotic efficiency of this detector can be

written as (Ver 86a]

77k = lim ek(0)
'-O Wk

= sup O<r<l; lim Pk(a)/ (---7)<+oo (2.1)

We can make the connection between the two above definitions in the following way: Consider

the behavior of Pk(a) as a goes to zero. Since no multiuser detector can outperform the optimum

single-user detector in a single-user environment, Pk(o') decays in the limit either as a Q-function,

or slower. In the first case the value of r to ensure a finite ratio in (2.1) will be such that the two

Q-functions have the same arguments, i.e. it will be the ratio of effective and actual energy. In

the second case, (2.1) predicts an asymptotic efficiency of zero, which follows also from the first

definition, since for the second case to hold the effective energy must tend to zero.

From the above discussion it becomes clear that the asymptotic efficiency has the following

geometric interpretation: the logarithm of the kth user error probability decays asymptotically with

the slope corresponding to a single-user with energy ?7kwk. It also follows that while an irreducible

error probability entails a zero asymptotic efficiency, conversely an asymptotic efficiency of zero

means that the error probability does not tend to zero exponentially fast with increasing kt h user

signal to Gaussian background noise ratio. To illustrate how the asymptotic efficiency is obtained,

consider a linear detector. The kth user error probability can be shown to be a weighted sum of

Q-functions, one for each possible interfering bit-combination; as a -- 0 the Q-function with the

smallest argument dominates and determines the error probability. The asymptotic efficiency is

obtained from this smallest argument.

The importance of the asymptotic efficiency as a multi-user performance measure on the Gaus-

sian channel is that - while probability of error, the actually interesting parameter in any binary

communication environment, is highly intractable, which is why other measures like mean-squared

1) Q (Z) = f V /21dv



errors are resorted to, - it is a measure which is equivalent to probability of error in the high

signal-to-noise region, while offering the advantage of tractability.

2.2 Near-far Resistance

Since we axe interested in alleviating the near-far problem, i.e. are interested in detectors

whose performance level is high for all received energies, a suitable performance indicator for near-

far robustness is the kth user near-far resistance, which is defined as the worst-case asymptotic

efficiency over all possible energies of the interfering users. Thus for a synchronous channel the

near-far resistance of a detector is defined as

17 = inf r77. (2.2)Wj ?0
jok

The definition for the asynchronous channel is given in Chapter 4. A detector is near-far resistant

for User k if the near-far resistance of User k is nonzero.

12



3. Linear multiuser detectors for synchronous CDMA channels

3.1 Preliminaries

Suppose that the k t h user is assigned a unit energy signature waveform, {sk(t) , t E [O,T]},

and he transmits a string of bits by modulating that waveform antipodally. If the users maintain

symbol-synchronism, and they share an ideal white Gaussian multiple-access channel, then the

receiver observes

K
r(t) = E bk(l) V sk(t - IT) + a n(t) , t E [iT, IT+ T) (3.1)

k=1

where n(t) is a realization of a unit spectral density white Gaussian process, {bk(l) E {-1, 11)1

and wk(l) are the k th user information sequence and the possibly time-dependent received energy

sequence, respectively. Assuming that all possible information sequences are equally likely, it suffices

to restrict attention to a specific symbol interval in (3.1), e.g. I = 0. For this reason in the sequel

specification of the symbol interval is omitted.

It is easy to check that the likelihood function depends on the observations only through the

outputs of a bank of matched filters:

T

/k I r(t) sk(t)dt ,  k = 1,...K (3.2)

0

and therefore y = (Y,... ,YK) are sufficient statistics for demodulating b = (bj,...,bK). In

this section we investigate ways of processing these sufficient statistics, which according to (3.1)

and (3.2) depend on the transmitted bits in the following way:

y = RWb +- n (3.3)

where R is the nonnegative definite Hermitian matrix of crosscorrelations between the assigned

waveforms:
T

Rk = J Sk(t) sj(t) dt (3.4)
0

with diagonal entries Rkk = 1, W is diagonal with entries %/iiT and n is a zero-mean Gaussian

K-vector with covariance matrix equal to a 2 R.

13



In this chapter we do not restrict the signal set of the K interfering users to be linearly

independent, which means that R can be singular. Therefore many of the results are formulated in

terms of the generalized inverse of R, which obviously will reduce to the usual inverse, if the signal

set is linearly independent.

Note that the model of equation (3.3) is not the only one we could work with. Equivalently,
A

we could either choose r - rank(R) independent users and discard the other components of y,

or use a set of r orthonormal matched filters which are obtained from the waveform ensemble

{sk(t), t E [0, T], k = 1, ..., K) via Gram-Schmidt orthonormalization. Both representations yield

sufficient statistics for the demodulation of b. The orthonormalized matched filter set yields a

white output noise sequence, therefore it is equivalent to a K-input r-output whitened matched

filter. However, both representations yield non-square matrices for r < K, and the Gram-Schmidt

procedure requires increased computational effort. For these reasons this work adopts the model

of (3.3), although if the signal set is linearly dependent, the sufficient statistic y is redundant.

In order to see where the additional demodulation difficulty comes from when the signal set

is linearly dependent, consider the case of singular noiseless demodulation, i.e. the problem of

demodulating b = (bl,..., bK) from y = (yi,..., YK),

y = RWb,

when R is singular. Since the collection of all possible hypothesis vectors b spans JRK, it is apparent

that no linear transformation can recover b from y. In fact it is easy to show that noiseless singular

demodulation is NP-complete, because "PARTITION" ([Gar]: given L = {1i, ...,4), I, E &+ and

G E &+, decide whether there exists a subset L' E L such that DEL' 1i = G + EzliEL-L' 4) can

be reduced to a special case of "NOISELESS SINGULAR DEMODULATION", namely the case

where the rank of R is unity.(2 ) It is not hard to find an algorithm which solves noiseless singular

demodulation, i.e. given y decides whether a solution b with components in {-1, 1} exists, and in

the latter case finds it, with a time complexity per bit of

T(K) = 1 2 K-r 0(r 2 )
K

where r is the rank of R. To do this, one possibility is to choose r linearly independent columns of

R, assign all possible values to the K - r bits corresponding to the other columns, solve for the r

(2) Let Rij =1 p, i = IiG, W = I. Clearly R is symmetric, nonnegative definite, and rank R = 1. Then since

1i # 0, RWb = y - G = libi.
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remaining bits and accept a solution when these bits turn out to be -1 or +1. The given complexity

is then immediate.

Seeing that there is no linear transformation which solves noiseless singular demodulation, an

interesting question to ask is whether a subset of b can be recovered by a linear transformation.

The answer is given by Lemma 3.1. The following definition characterizes the dependence which is

the cause of the singularity of R. It is easy to show that dependence of modulating waveforms is

directly translated into linear dependence of the corresponding columns of R, ri, i = 1, ... , K.

Definition : Users ui, i E I C_ ... ,K} form a maximal dependent block if

V x60, s.t. Rx = 0, E rixi = 0
ElI

and no subset I' C I satisfies the above for all x in the nullspace of R.

Lemma 3.1: Application of the Moore-Penrose inverse (3 ) R+ on the matched filter output vector

y decouples the users into maximal dependent blocks, i.e. if the users are relabeled such that users

in the same dependent block have consecutive labels, then R+R is block diagonal. 0

Proof: Singling out a maximal dependent block I, let the matrices R, R+ and R+R be partitioned

according to the indices in I as

R -- (M, A, N)

R +  
- (B, C, D)

R+R -. (Y, X, Z)

where the first entry corresponds to the maximal dependent block, the last entry to its complement,

and since all the matrices are symmetric the notation (M, A,AT, N) has been abbreviated to the

above form. We want to show X = 0. By definition of a Moore-Penrose inverse,

R (R+R) =R *[ATN X Z] [_k ~ 1] 0

= MY =M

ATy = AT

(3) A generalized inverse A of a matrix B is any matrix that satisfies 1. ABA = A and 2. BAB = B. The
Moore-Penrose generalized inverse, denoted by B+, is tLe unique generalized inverse that satisfies 3. AB and BA
are Hermitian.
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where the last implication follows from the definition of a maximal dependent block. Also

(R+R) = R+R :, Y = BM + CAT

where from, multiplying by Y and using the previous equalities

Y2 = BMY + CATy = BM + CAT = y

but

(R+R)2 = (R+R) =y, + XXT = y

which means that

XXT = o = 0 X = 0.

This result implies that independent users, i.e. users whose modulating waveform is linearly

independent of the others, can be easily demodulated in the noiseless case, since they are decoupled

by multiplication of y with R+, while for dependent users, a time complexity which is exponential

in the size of the dependent block is feasible.

3.2 Single-user detection and optimum multiuser detection

3.2.1 The conventional single-user detector

If it were possible to accurately model the multiple-access interference as a zero-mean white

Gaussian random process, then the optimum receiver would be the one which is known to be opti-

mum for detection of a known signal in white Gaussian noise, namely a filter matched to the known

signal, followed by a threshold. This strategy is optimal in the absence of multiuser interfexence,

which is why the aforementioned detector is called a single-user detector in this context. However,

in the multiuser environments encountered in practical applications, the Gaussian assumption is

unfounded, and the colored non-Gaussian nature of the multiuser interference has to be taken into

account. Regardless of this fact, due to its simplicity, the conventional single-user detector is the

detector which is commonly used in practical situations. We focus now on this detector, along with

its performance in a multiuser environment.
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Conventional single-user detection for the kth user decides on bk in the simplest possible way.

The kth user receiver consists of a single matched filter, matched to the kth user's signal, instead of

the bank of matched filters which are necessary to generate the sufficient statistic y = (Y1,..., YK)

for demodulation of each user's bit stream. Thus only Yk is generated at the receiver, yielding the

following decisions for the ki h user:

= sgn Yk •

It is apparent that the conventional receiver requires very little complexity, and that its time-

complexity per bit is independent of the number of users. On the other hand,

Yk = V/'wk bk + 1 V Rki bi + nk , nk , N(O,a 2)

i# k

so that taking a sign decision on Yk completely ignores the multiple-access interference component

E v/'Rki bi present in Yk. As a result it becomes apparent that a sufficiently high interference
i#k
energy from any nonorthogonal user will result in an irreducible error probability, even for a van-

ishing background noise level. A necessary and sufficient condition for this to occur is that the

interfering energies are such that Iwk _< Eio-k IRkilv./ •i. This shows that the only way to prevent

the conventional receiver from becoming multiple-access limited for sufficiently high interfering en-

ergy is to use an orthogonal signal set. The kth user error probability of the conventional single-user

detector is:

Pc P [Y1k > 0 1 bk - -11

= P [Yk > O Ib] P [blb = -1]
bE{-l,11

K

bE/w Ri -,wi

--21-K Q i -- k (3.5)

bEf-,.,} K

bk=-l

In the low background noise region the foregoing summation is dominated by the term corresponding

to the least-favorable bits of the interfering users, i.e., bi = sgn (Rik). Thus, the asymptotic

efficiency of the conventional detector is equal to

r/k = sup {0 < r < 1 ; um P /(-) < +oc} (3.6)
0 a

max2  O, 1 - E .Rik • (3.7)
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It follows from (3.7) that the conventional kt h user detector is not near-far resistant (i.e., its

asymptotic efficiency is not bounded away from zero as a function of the interfering users' energies),

unless Rik = 0 for all i 0 k, i.e., only if the kt h user's signal is orthogonal to the subspace spanned

by the other signals. Otherwise,

= inf 17' = 0. (3.8)
i;6k

For example for two active users, ,77 = 0 for V/ThW 1/p, where p is the correlation coefficient

between the two waveforms. Actually, we can make a stronger statement than this. As explained

in Section 2.1, an asymptotic efficiency of zero does not imply that the probability of error will

be bounded away from zero as the background noise vanishes; it only limits the speed of decay to

be slower than exponential. However the error probability of the conventional receiver does not

decay to zero as a --+ 0 if its asymptotic efficiency is zero. (This holds for any linear detector, and

in general for any detector whose error probability can be represented as a sum of Q-functions).

Specifically, if the crosscorrelation coefficients and the user energies are such that for nl out of the

2 K-1 possibilities for b E {-1, 1}K, for fixed bk, we have

E bi Rik > 1

and equality holds for n2 possibilities, then the limit of the error probability in (3.5) as o -- 0 is

-K( I1 2n 1 + n.2
pe 2 1-K (x n1  x n2) = 2+

For example in the two-user case, if ,/-W2/VW-1 = (1 + A2)/p, the error probability of the conven-

tional receiver for User 1 tends to 1/4 if A = 0 and to 1/2 if A > 0, for increasing SNR of User

1.

This clearly shows the multi-access limitation of the conventional detector, as well as the fact

that in order to obtain an adequate performance within a nominal range of energies stringent

requirements have to be put on the crosscorrelations allowable between the modulating signals,

without being able to prevent a severe performance degradation if the multiple-access interference

exceeds the limit specified in the signal design.
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3.2.2 The maximum likelihood detector (optimal receiver)

Due to the fact that there axe several users on the channel, optimum detection in the sense of

minimizing the probability of error can be conceived in two equally meaningful ways: the goal can

be a global one, i.e. maximization of the joint posterior density of the transmitted symbols given

the received signal, i.e.
bk E uT arg max P[b J {r(t),t E JR}]

k bE{-1,1)K

where uk is the k th unit vector, or maximization of the marginal posterior density, i.e.

bk E arg max P[bk =bI{r( t ),tElR}].
b= (- -1, 1)

We will refer to the first as maximum likelihood detection and to the second as minimum-error-

probability detection. Note that the two criteria do indeed lead to different detectors, which is due

to the fact that the symbols of the interfering users are no longer independent conditioned on the

received signal.

Example 3.1. As an easy example, consider a two-user CDMA detection problem, where the

matched filters axe matched to the Gram-Schmidt orthogonalized versions of the modulating signals,

as discussed in Section 3.1. The matched filter outputs also form a sufficient statistic, with the

difference that the noise vector is uncorrelated, which eased the construction of the desired example.

The two-user detection problem then is

y= bi + pb 2 + nI

Y2 vi-b 2 + n2 .

Now let the crosscorrelation between the two signals be p = 0.6, the noise variance be a2 = 1

and consider the situation where the received vector y is [1, -0.1]. The posterior probability

P [b,b 2 ly - [1,-0.1]] is shown in Table 1, for the four possibilities, i.e., rowwise, [bl,b 2] =

[i, 1], [1,- 1], [-1, 1],-1, -11]. The maximum likelihood detector decides for the composite hypoth-

esis which is most likely conditioned on the received vector, hence in this case will choose [1,-1].

Thus the maximum likelihood decision on the bit transmitted by the second user will be -1. On

the other hand the minimum-error-probability detector for User 2 maximizes

P (b2Iy) = j P (b2 ,b1ly)
b1E{1,-i}
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(1,1) (1.,-i)

P[b lb 2 lY 1 ]

2 0. ] 0.17 0.02

(-1,1) (-1.-I)

Table 1. Posterior probability of hypotheses for Example 3.1.

i.e. in Table 1 it will choose the symbol corresponding to the column with largest element sum. In

this case this is the first column, hence the minimum-error-probability decision on the bit trans-

mitted by the second user will be +1. A

Both the maximum likelihood and the minimum-error-probability receivers for asynchronous

CDMA have been found in [Ver 84c], and while they are both dynamic programming algorithms,

the first is a forward Viterbi algorithm, while the second is of the backward-forward type, and is in

general more complicated. However, [Ver 84c] shows that as the noise level decreases the number of

symbols in which the optimum sequences according to both criteria differ goes to zero. Intuitively,

this is because for vanishing noise levels the probability mass function P[bly] concentrates increas-

ingly on one element, i.e. a table analogous to Table 1 would have one element close to 1 and the

others close to 0, so that both detectors would choose the same element. Since this work deals

with the performance of multiuser detectors in the high signal-to-background-noise region, where

the limiting factor is the multiuser interference, the aforementioned convergence in the high SNR

region of the performances of the two optimal detectors is the reason for which in the sequel we

may restrict attention to the maximum likelihood detector and refer to it as the optimum multiuser

detector.

The optimum multiuser detector selects the most likely hypothesis = (1,... ,1k¢) given

the observations, which corresponds to the noise realization with minimum energy, i.e.,

T K

b*Earg min K r(t) - bk dt
bE{-'1,)K 0 k = 1

20



=arg min bTWRWb - 2yTWb. (3.9)
bE{-1,l}K

The computational complexity of the optimum multiuser detector is radically different from that

of the single-user detector. While we have seen that the time-complexity per bit of the single-user

detector is independent of the number of users, no algorithm that solves (3.9) in polynomial time

in K is known. The reason for this is the NP-completeness of optimum multiuser detection (Ver

85], [Ver 89].

However the performance of both detectors is quite different as well. The kth user error

probability of the optimum multiuser receiver is asymptotically (as a - 0 ) equivalent to that of a

binary test between the two closest hypotheses that differ in the kt h bit (see [Ver 86b]). The square

of the Euclidean distance between the signals corresponding to these two hypotheses is equal to

K K
min min 11 bi si(t) - di si(t)112  -

bE{-1,1} K dE{-1,1)"I ,= ---dk~bk

W4 in CTW R Wc. (3.10)

Ck= 1

Hence, the asymptotic efficiency of the optimum multiuser detector is equal to
1

t k - - min CT WRW . (3.11)Wk CEf-I,oj)K
Ck  =I

This is the highest asymptotic efficiency attainable by any detector because as a -- 0 the optimum

multiuser detector achieves minimum probability of error for each user. In the two-user case,

denoting p = R 12, (3.11) reduces to

{ = min 1, 1 + 2,p, V (3.12)71= in1, 1 1 I/ Wl 1

and analogously for User 2. Unfortunately, no explicit expressions are known for (3.11) for an

arbitrary number of users. In fact, it is shown in [Ver 85] that the combinatorial optimization

problem in (3.11) is also NP-complete, if R is nonnegative definite. We will give a modified proof

which extends the result to positive definite matrices. This extension is nonobvious, because any

additional structure introduced (here it is the requirement of nonsingularity) may turn a difficult

problem into one solvable in polynomial time.

Proposition 3.1: The following problem is NP-complete.
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"MUL TIUSER ASYMPTOTIC EFFICIENCY":

Given K E EN, k E {1,..., K}, and a positive definite matrix R E RKxK,

find the kt h user asymptotic efficiency 77k = I min CT R f
Ck= 1

Note that we have absorbed the invertible positive diagonal matrices W into R, since there

is a one to one correspondence between the two situations, and positive definiteness is independent

of, and preserved by, multiplication by W on both sides.

Proof : The standard technique in proving NP-completeness of a given problem is to reduce to the

problem in question a similar problem, known to be NP-complete. We adopt the approach in [Ver

851 and reduce -1/0/1 KNAPSACK, which is shown therein to be NP-complete, to our problem,

using a modified reduction tailored for the positive definite case.

Reduction of '-1/0/1 KNAPSACK' to "MULTIUSER ASYMPTOTIC EFFICIENCY":

Given : {1,12,.. ,1L}, 1i E +, i - 1 .. ,L and G E Z+
L

find whether or not there exist ci E {-1,0, 1), such that L cli = G
=1

given that the following problem can be solved for all K E + and positive definite matrices
R:

find ak = min eT R .

(k= I

To reduce the first problem to the second we define

K L + 1

ij, i= 1,...,K-1

G, i= K

R Rij = 1 + A6J, i,j E { 1,...,K}. (3.13)

then

xT Rx = xj Rj

K
= (Z xil )2 + A2 11 xj12 , (3.14)

i=2
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hence lixIl > 0 t xTRx > 0, which means that the matrix R we have defined is indeed positive

definite, if A $ 0. Now, for c as defined in the asymptotic efficiency expression,

K
CTR c = ( 1i , + G ) 2 A2  112 . (3.15)

i=l

We can find the minimum of the right hand side (by assumption), and would like to know whether

the first term can be zero for some choice of {ei}. Now, since IeIC 2 < K, if we pick A2 < 1/K

the second term on the right hand side will be less than unity. Therefore, since the first term

is an integer, the sum is minimized if the first term is minimized. With this in mind, letting

A2 : = I

ak < 1 *# "YES" instance of -1/0/1 KNAPSACK

ak 1 * "NO" instance of -1/0/1 KNAPSACK.

We have shown that if we could solve "MULTIUSER ASYMPTOTIC EFFICIENCY", we could

equivalently solve "-1/0/1 KNAPSACK", which has been shown to have a formulation as a special

case of the former. Thus our problem is at least as hard as "-1/0/1 KNAPSACK", hence at least

NP-complete. It is easy to see that it is in NP, which completes the proof. 0

Nevertheless, it is indeed possible to obtain a closed-form expression for the near-far resistance

of the optimum multiuser detector, because the minimization of the asymptotic efficiencies with

respect to the energies of the interferers reduces the combinatorial optimization problem in (3.11)

to a continuous optimization problem whose solution is given by the following result.

Proposition 3.2: Denote the Moore-Penrose generalized inverse (see (3), p. 15) of the normalized

crosscorrelation matrix R, by R+. If the signal of the kth user is linearly independent, i.e. it does

not belong to the subspace spanned by the other signals, then
1

Tk = inf 77k - (3.16)Wi 0 R k k

Otherwise, T7 = 0.

Proof: Using expression (3.11) for the asymptotic efficiency of the k t h user we obtain

Tk = min ain m CT WRWE
w- 0 e E {- 1 ,0 , 1jK WL'k

= rain xTRx
x EpR

K

rk = 1

S ain (1 + 2 T mk + ZTRkz) (3.17)
z ERK - 1
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where Rk is obtained from R by striking out the kih row and column and mk is the kih column

of R with the kth entry removed. Henceforth, we will denote such a partitioning of a symmetric

matrix with respect to the kth row and column by R = [1, Mk, Rk, where the leftmost element

in the square brackets is the kth diagonal entry. The minimum in the right-hand side of (3.17) is

achieved by any element z* such that

Rk z* = -Mk. (3.18)

Because of the Fredholm theorem [Lan 85, p. 115] (the range space of a matrix is orthogonal to

the nullspace of its transpose), the solvability of (3.18) is equivalent to mk being orthogonal to the

nullspace of Rk. But for all z E RK-1 the parabola q(v) = v 2 + 2v zT mk + ZTRhz has

at most one zero because it is equal to the quadratic form of the nonnegative definite matrix R

with a vector whose kt h coordinate is v and whose other components are equal to z. Therefore, the

discriminant of the parabola satisfies (zTmk) 2 - zTRkz < 0; in particular, if z belongs to the

nullspace of Rk, then zTmk = 0. So mk is indeed orthogonal to the nulispace of Rk. Substituting

(3.18) into (3.17) we obtain

= z * T R k z*

= 1 - z*T Rk R" Rkz*

= 1R- m T R + mk. (3.19)

Notice that the k th user is linearly dependent if and only if there exists a linear combination of

the columns of R that includes the k th column and is equal to the zero vector. Therefore, if a

user is linearly dependent then we can find x such that Rx = 0 and xk = 1, in which case the

penultimate equation in (3.17) indicates that 7k = 0.

In order to obtain the near-far resistance of a linearly independent user, we will employ the

following property, which will also be invoked in the sequel.

Lemma 3.2: If the kth user is linearly independent, then every generalized inverse R1 of R

satisfies: (R'R)kj = bkj, (RR')jk = bjk for j = 1.... ,K and RI = R+k.

Proof of Lemma 3.2: Let S = RIR - I. By the definition of generalized inverse, it follows that

RS = 0, i.e., every column of S is in the nullspace of R. But if the kth user is linearly independent,

it is necessary that the k th element of each such column be zero. Hence (RIR - I)k, = 0 for all
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j = 1,...K.

Similarly, with S = RR I - I and SR = 0, we obtain (RR')jk = bjk. Equivalently

RRIUk = Uk, using the kth unit vector uk. Hence, for any generalized inverses R{ R I

R(R{ - R')Uk = 0. But since the k th user is linearly independent, it is necessary that the k th

element of each vector in the nullspace of R be zero. Hence (R1 - 1 )kk = 0. U

Proof of Proposition 3.2 (cont.): Partitioning R+ with respect to the k th row and column

we have, say, R+ = [/, c, C). Now, computing the submatrices of the partitioned matrix R+R

and using Lemma 3.2, it follows that

Rkc + - mk= 0 (3.20)

and
cTmk + 7 = 1 (3.21)

Notice that 7 $ 0 for otherwise c would belong to the nullspace of Rk and would not be orthogonal

to Ink, which, as we saw, is not possible. Finally, substituting (3.20) into (3.19) we obtain

%7  T +~t~
1 T

t~~~~ =  - R k R k' R k

-1 2CTRkc

= 1 + cT mk7

= - = 1- (3.22)

4kk

where the second, third and fourth equations follow from the definition of generalized inverse, (3.20)

and (3.21), respectively. a
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3.3 The decorrelating detector

In the absence of noise the matched filter output vector is y = RWb, so if the signal set

is linearly independent (i.e. R. invertible), the natural strategy to follow in this hypothetical

situation is to premultiply y by the inverse normalized crosscorrelation matrix R -1 . The detector

x = sgn R-ly was analyzed in [Lup 86], where its performance was quantified in the presence of

noise. In [Sch 79] it was erroneously shown (cf.[Ver 86b]) that this detector is optimum in terms

of bit-error rate. Note that the noise components in R-ly are correlated, and therefore sgn R-ly

does not result in optimum decisions.

Since here (also [Lup 89a]) the signal set is not constrained to be linearly independent, the

above detector need not exist. In general, we will consider the set 1(R) of generalized inverses (see

(3), p. 15) of the normalized crosscorrelation matrix R and we will analyze the properties of the

detector

A = sgn R'y, (3.23)

which we refer to as a decorrelating detector. Its name is due to the detector's effect upor. input

of y when the signal set is linearly independent: then the output is Wb + R-In, i.e. the matched

filter outputs have been "decorrelated".

The kth user asymptotic efficiency achieved by a general linear transformation T can be ob-

tained similarly to that of the conventional single-user detector T = I (Section 3.2.1). The first

step is to find the bit error probability of the kth user:

Pk = P [bk = lIbb = -1] P [(TRWb + Tn)k > OIbk=-1]

= P [(Tn)k > (TRW)kk - 1(TRW)kjbj]
jok

= 2 1-K Z P [(Tn)k > (TR)kkv"i'k - Z(TR)kjv/'ij bj] . (3.24)
bE{f-,IK jok

bk=-1

Since the random variable (Tn)k is Gaussian with zero mean and variance equal to 0 2(TRTT)kk,

the sum in (3.24) is dominated as a - 0 by the term

21-K Q( min [(TR)kkvw- - Z(TR)kjv/j b] / aC(TRTT)kk)
bE{-l,l}K
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which is equal to

2 1-KQ( ((TR)kk,/" - ZI(TR)kjlw-f)/o'(TRTT)kk ). (3.25)
jk

Hence according to definition (2.1) the kth user asymptotic efficiency of the linear receiver is equal

to zero if (TR)kk-/W < F(TR)kj[f . Otherwise it is either equal to the square of the ratio
j$k

of the argument of the foregoing Q-function and the argument corresponding to the single-user

probability of error Q(V/'fff/r), or equal to 1, whichever is smaller. Therefore

(TR)kk - i, I(TR)kl /~
i7k(T) = min {1, max2 0 }I (3.26)

V/(TRTT)kk

The min-operation can be seen to be redundant in this case as follows. Clearly the claim is true

if (TR)kk < 0. Otherwise, since all the terms subtracted in the numerator are nonnegative, it is

sufficient to show for all T

(TR)kk _ V(TRTT)k . (3.27)

Let vT denote the kt h row of T and rk the kth column of R. Then we have to show

vTrk <_ (3.28)

or, after squaring both sides and collecting terms, it suffices to show that the kernel matrix is

nonnegative definite, i.e.

rkrT - R < 0. (3.29)

We show this as follows. Letting Uk be the kt h unit vector,

(x - xkuk)T R (x - xkuk) = xTRx - 2xkxTrk + k _ 0 (3.30)

for all pairs (x,xk) E (/K,I?), since . is nonnegative definite. But (3.30) can be viewed as a

second degree polynomial in xk, whose discriminant has to be nonpositive in order to guarantee

that the polynomial does not change sign. Hence

A = (xTrk) 2 _ xTRx < 0 (3.31)

or equivalently, for all x
xT(rkrT - R)x < 0

which completes the proof that the min-operation in (3.26) is superfluous.
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Hence the kth user asymptotic efficiency achieved by the linear mapping T is

(TR)tk - F I (TR)kj /wi

77k(T) = max 2 { 0, jAk }. (3.32)
VI(TRTT)k k

Thus the kth user asymptotic efficiency of a decorrelating detector with matrix R' is given by

(R'R)kk - I (R'R)tj i\/
'7k(R') = max2 { 0, jok

(RIRRIT)kk 3. (3.33)

Define the highest asymptotic efficiency achievable by a generalized inverse, respectively the opti-

mum linear map by

d7k = sup 77k (R') (3.34)
RJEI(R)

and

t7  sup Tk(T) (3.35)
TERKXK

Proposition 3.3: If User k is linearly independent, every R' E I(R) satisfies

77k (R) = d = 1/R+, (3.36)

where the notation is as in Proposition 3.2. 0

Thus for independent users the asymptotic efficiency of the decorrelating detector is indepen-

dent of the energy of other users and of the specific generalized inverse selected.

Proof : If user k is linearly independent we established in Lemma 3.2 that (R'R)k, = kjk. Hence,

it follows from (3.33) that

77k(R) = _.L (3.37)

kk

and Proposition 3.3 follows, using the fact that, by Lemma 3.2, R'k= R+
kkkk'

If User k is linearly independent it follows from Lemma 3.1 that the Moore-Penrose decorre-

lating detector, which isolates User k, has a probability of error given by

Pk(e)= Q( N ). (3.38)
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In Section 3.5.2 it is shown that if user k is linearly dependent, then

d I
77k = 7k

i.e. for a dependent user the best decorrelating detector and the best linear detector achieve the

same kth user asymptotic efficiency.

Proposition 3.4: The near-far resistance of the decorrelating detector equals that of the optimum

multiuser detector, i.e., for all R' E 1(R),

inf ilk(R) inf 77k - . (3.39)Wj > o Wj ? 0
j~k jok

Proof : If User k is linearly independent, then according to Propositions 3.2 and 3.3 the near-

far resistance of the optimum detector is equal to the asymptotic efficiency of the decorrelating

detector, which is independent of the energy of the other users. If user k is linearly dependent,

Proposition 3.2 states that the near-far resistance of the optimum detector is zero, and hence the

same is true for any detector. a

The result of Proposition 3.4 is of special importance in a near-far environment, where the

received signals have different energies, and where the energy ratios may vary continuously over a

broad scale if the positions of the users evolve dynamically. In this environment any decorrelating

detector, with its linear time-complexity per bit, offers the same near-far resistance as the optimum

multiuser detector, whose time-complexity per bit is exponential.

Proposition 3.5: If the signature waveforms are linearly independent, the kth user asymptotic

efficiency of the decorrelating detector is lower bounded by:

7d 1 > 4 Amax/Amin (3.40)tlk
R'- (Amax/Amin + 1)2(

where Amax and Amin are the largest respectively smallest eigenvalues of R. 0

This gives a lower bound of .89, .75, .56, .33 and .04 for a spectral condition number Amax/Amin

of 2,3,5, 10 and 100, respectively. As always when dealing with matrix inversion, a small eigenvalue

spread is desirable.
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Proof: We use Kantorovich's inequality [Horn 85, p.444], which states that, given a positive definite

matrix B with eigenvalues 0 < \1 •... < ,

III 4 > 4 + A, (x*Bx)(x*Blx) (3.41)ll >_ (,\, +\,Y

for all x E Cn . Moreover, there is a unit-norm vector x for which equality holds. Proposition 3.5

follows by letting x be the kth unit vector, and using the fact that Rkk - I.

Numerical examples

The following examples illustrate the difference between the error probability behavior of the

conventional and of the decorrelating detector, for a 3-user and for a 6-user environment. The

waveforms used are Spread-Spectrum m-sequences of length 31. The first example, shown in Figure

1, employs the set of 3 sequences reported in [Gar 80, Table 5], to be optimal with respect to a

signal-to-multiple-access interference parameter when the conventional detector is used. These

sequences have also been used in related works ([Ger 82], [Ver 86a]).

The second example, Figure 2, uses the set of auto-optimal m-sequences of length 31 found

in [Pur 79, Fig. A.1] to be optimal with respect to certain peak and mean-square correlation

parameters which play an important role in the error probability analysis of the conventional

detector. The figures show the error probability of User 1 in a baseband environment (where the

crosscorrelation values are highest) with equal energy interferers, whose energy ratio to User 1 is

the parameter which indexes the different error probability curves for the conventional receiver.

Also shown are the error probability of the decorrelating detector for user 1 and, for comparison

purposes, the error probability of the single user channel. Note that the former is independent

of the energy of the interferers. The matrix R is given for interest, as well as the decorrelating

detector asymptotic efficiencies of all the users.

Both figures illustrate the strong dependence of the performance of the conventional receiver on

the relative energies of the active users, and the fact that the error probability of the conventional

receiver becomes irreducible even for vanishing background noise levels if the interference energy is

high enough. For 6 users the latter is seen to happen if each of the interferers has more than 1/3 the

power of User 1. Only if the multiple-access interference level plays a negligible role compared to

the background noise does the conventional detector outperform the decorrelating detector, which

pays a penalty for combatting the interference instead of ignoring it.
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, W /WZ'5.dB

. .2 "= . 5 dB

0-4 .. N-lO dB

-20 dB-'
. crosscorrelation matrix R:

I0 "  1.00 0.55 0.61
0.55 1.00 0.81
0.61 0.81 1.00

--- CONVENTIONAL
10-s- DETECTOR decorrelating asymptotic efficiencies of all 3 users:

DECORRELATING 0.78 0.59 0.55
DETECTOR

.SINGLE USER

10 -104 6 8 10 12 14
SNR, (dB)

Fig. 1. Error probability of User 1 with 2 active equal energy interferers,

each of energy wj, averaged over the interfering bit sequences, for the

decorrelating and conventional receiver versus the SNR of User 1,
for m-sequences of length 31 and different interference levels.

The same sets of sequences are used to illustrate the error probability constellation in the

asynchronous case (Section 4.3, Fig. 26, 27). The single error probabilities can be seen to be lower

in the asynchronous case, though the qualitative relations stay the same.

Figure 3 shows the asymptotic efficiency of User 1 achieved by the conventional detector,

the optimum multiuser detictor and the decorrelating detector, for two users with crosscorrelation

coefficient R 12 = p, versus the square root of the energy ratio of the two users. The figure shows the

good performance of the optimum detector, who asymptotically performs as well as in the absence

of a second user, if this user is powerful enough; the decay to zero of the asymptotic efficiency

of the conventional detector for relatively low interference power, and the energy independence of

the asymptotic effciency of the decorrelating detector, which is much superior to the conventional

detector except for very low interference.
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1..../ W, =-5 dB

iC 3 i

10-3..

• .,, dB

""OdB-"\ crosscorrelation matrix R:l- ".k1.00 0.35 0.23 0.35 0.35 0.48

"20 dB - 0.35 1.00 0.48 0.48 0.61 0.35

\"•0.23 0.48 1.00 0.74 0.48 0.35

07 \0.35 0.48 0.74 1.00 0.74 0.35

- ONVENTONAL 0.35 0.61 0.48 0.74 1.00 0.35
CONVECTOA , 0.48 0.35 0.35 0.35 0.35 1.00

DECOR RELATINGDETCOR.ETE T decorrelating asymptotic effiencies of all 6 users:
IOE0 .......... SINGLE USER 0.83 0.73 0.62 0.49 0.58 0.83

4 6 8 10 12 14
SNR1 (dB)

Fig. 2. Same as Fig. 1, with 5 active equal energy interferers.

ASYMPTOTIC ------ OPTIMUM MULTIUSER DETECTOR
EFFICIENCY DECORRELATING DETECTOR
USER I CONVENTIONAL SINGLE-USER DETECTOR

IP

Fig. 3. Asymptotic efficiencies in the 2-user case (p 0.6)

The * indicates the asymptotic efficiency of the best linear detector.
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3.4 Optimality criteria leading to the decorrelating detector

In this chapter we assume that R is invertible and present a number of optimality criteria

which lead to the decorrelating detector, thus providing further justification for its study. We

have already mentioned (Section 3.3) that the decorrelating detector is the optimal strategy in the

absence of noise.

Proposition 3.6: The decorrelating detector is the maximum likelihood detector in the case when

the energies are not known to the receiver. 0

Proof : The maximum likelihood receiver selects the decisions that maximize the maximum of the

likelihood function over the unknown parameters ([Poor, Ch.2], [Hel, p. 291]), i.e

T K

1T e arg mn min /[r(t) - E bk v 'ksk(t) ] 2 dt
bE{-1,1)K wi>O

=l,..,K 0 k=1

T

= arg min min r2(t) dt - 2yTWb + bTWRWb
bE{I-1,1}K wi>O J

i=l,...,K 0

= sgn (arg min xTRx - 2 xT ) = sgnR- y (3.42)

Proposition 3.7: The decorrelating detector is the limit as the Gaussian noise level tends to zero

(a -. 0) of the minimum-variance linear estimate of b given y, followed by a sign decision.

Proof : The minimum-variance linear estimate (e.g. [Lue, p. 87]) of b given y is b = T*y where

T* = arg rain E IlTy - b112  (3.43)
TERKxK

The expectation is with respect to the noise and to the transmitted information vector, the two of

which are independent, and 11 II is the Euclidean norm. From the Projection theorem, the optimum

estimate is obtained when each component of the estimation error is orthogonal to each component

of the measurement vector y. Thus

E [(T*y - b) YT] = 0

whence, T* = E [b yT] [E [yyT]] - 1  

(3.44)
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Since the bits transmitted by different users are independent of each other and of the background

noise, the above expectations are

E[byT] = E [b(bTWR+nT)] = WR (3.45)

and

E [yyT] = E [(RWb + n) (bTWR + nT)] = RW 2 R + a 2 R, (3.46)

so that the minimum-variance linear estimate is given by

T* = W R (R W 2 R + o'2R) - I = W (R W 2 + o21)- I  (3.47)

and

lim T* = W - 1 R - 1
. (3.48)

Finally, since in order to use the additional information that b is binary data, a sign decision is

taken on b, multiplication by the diagonal matrix with positive entries W - 1 does not affect the

resulting decision b, and can thus be omitted.

(3.8): The decorrelating detector is the analogue in multiuser communication of the zero-forcing

solution to the problem of minimizing peak distortion in automatic equalization.

In his pioneering paper [Luc 65], Lucky considers the automatic equalization problem of recov-

ering the term a, from

Yo = h, ao + "n h ] (3.49)

where the second term constitutes intersymbol interference and the hn depend linearly on the set

of N parameters cj,j E KN (called tap gains), which the system designer is free to choose, via

h. = (3.50)

The criterion Lucky chooses to minimize, since it is the maximum value the intersymbol interference

term can assume, is the so-called peak distortion

D I hI. (3.51)
n#0
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Under the condition that the level of the initial distortion D, = X n I is less than 1, Lucky
n9O

shows that the zero-forcing solution is optimal, namely to choose the tap gains which simultaneously

cause hn = 0, for all n E KN,n # 0.

Setting our problem up along these terms, we have (for User k)

6k = vy = rTvv/wbk + Z r4v---b + n+ (3.52)

j$k

therefore in our case the peak distortion is

D(v)- = I r I/ • (3.53)
rk Vjok Fyk

From here it is apparent that the decorrelating detector would be optimal if we wanted to minimize

the peak distortion, a trivial result in this case, since in our case we have the same number of tap

weights as of interfering samples, which means that we can force the peak distortion to zero. Note

that the asymptotic efficiency can be expressed in terms of the peak distortion D as

lk(v) - rTv (1 - D)7kM = 'V-7Rv(3.54)

and we show in Section 3.5 that though in general the zero-forcing solution (i.e. the decorrelating

detector) is not the optimal linear rule, there exists a region of energies where it is. In his formulation

of the problem Lucky neglects additive background noise, and motivates his choice of the peak

distortion criterion with the words "it is a ninimax criterion in that we seek to maximize the

customer's minimum margin against noise over all data sequences". A more appropriate procedure

might be to also take into account the noise, since the noise variance is also affected by the equalizer.

In this case one would maximize a functional equivalent to the asymptotic efficiency.
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3.5 The optimum linear multiuser detector

We now turn to the question of finding the optimum linear detector. We have seen that this

is a fruitful approach, since a particular type of linear detector, the decorrelating detector, offered

a substantial improvement in asymptotic efficiency compared to the single-user detector, while its

near-far resistance equaled that of the optimum multiuser detector. While we now know that no

detector, either linear or nonlinear, can outperform the decorrelating detector with respect to near-

far resistance, for fixed energies it is indeed possible to obtain linear detectors that have a higher

asymptotic efficiency than the one achieved by the decorrelating detector.

We find the linear detector which maximizes the asymptotic efficiency (or equivalently min-

imizes the probability of bit error in the low-noise region) and compare the achieved asymptotic

efficiency to the ones achieved by the conventional and optimal detectors. Thus we ask which

mapping T: IRK _ DK maximizes the asymptotic efficiency of the decision scheme

6 = sgn( Ty) = sgn (TRWb+Tn). (3.55)

The interpretation of this optimization problem in terms of decision regions is to find the

optimal partition of the K -dimensional hypotheses space into K decision-cones with vertices at

the origin. The surfaces of these cones determine the columns of the inverse T 1 of the desired

mapping. Application of T on the cone configuration will map the cones on quadrants, after which

a sign detector is used.

Letting vT denote the kth row of T, the kth user asymptotic efficiency of a general linear

detector, as given by (3.55) was derived in (3.32):

r/k(T) = max2 {0, (3.56)

The best linear detector has the asymptotic efficiency

/ = sup 7k(v). (3.57)
vEIRK

Hence the asymptotic efficiency of the best linear detector is equal to
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= sup max 0j (3.58)
VEIRK rTvvvrk -k } (.v8

= max2 {O, sup rk(v)} with 7k(v) jok (3.59)
VERzK -,vT~

In order to minimize the probability of bit-error, Pk, we have to maximize the smallest argument in

the sum of Q-functions, and equivalently maximize the asymptotic efficiency 17k(v), with respect to

the components of the vector v. Since the map applied on the matched filter outputs is linear, the

asymptotic efficiencies of all the users can be simultaneously maximized, each such maximization

yielding the correspondirfg row of the map to be applied.

For the sake of clarity we first consider the two-user case, for which explicit expressions for the

maximum linear asymptotic efficiency can be obtained.

3.5.1 The two-user case

Throughout this subsection we denote the normalized crosscorrelation between both signals

by p = R 12 . Without loss of generality, let k = 1. We first give an explicit expression for the

optimum linear detector:

Proposition 3.9 : The 1 t user optimal linear transformation T 1 (y) = vTy on the matched filter

outputs prior to threshold detection is given by

vT=.[1 ;-sgnp mn - , }, (3.60)

[1 -gn pv/7w]7 , if V < 1Ip (3.61)
[1J - p], otherwise.

Note that [1 - p] is the 18t row of the decorrelating detector.

Proof : We have

R "[ 'j, VT= i; v 2 ] (3.62)
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r Tv IrTv IVWj/Wk

1 + p V2 - I P+ V2 I U3 .6

(3.03)

1r + 2p V'2 + V,:

and the objective is to maximize the right-hand side of (3.63) with respect to v2. We consider

the case IJP = 1 separately. Equation (3.63) depends on the user energies only through the ratio

r Vu,'_27w_. With this substitution

p v2 - p + v 2 Ir
7712(V2) (3.64)V 1 + 2p V2 + v2

a) Case IJP 5 1 Introduce an indicator function for the absolute value term, as follows.

1, P+V2 >0

I = -1, p+v? <0 (3.65)
0 , else

Then
d _ (l-p 2 ) (ir + V2 )
dV2  (1 + 2p v2 + v 2 )3 / 2  (3.66)

Therefore we should take v2 = -I r when this is consistent with the definition of I as a function

of v2 . Thus,

V2 = r if 1=-i 0 < r <-p

V2 = -r if I = 1 €=e,0 < r< p. (3.67)

As can easily be seen, both values correspond to maxima. If neither of these conditions is met, the

derivative does not have a zero. The optimal value for v2 can be determined from a closer look

at the behavior of d?71/dV2 of (3.66), shown in Figure 4 for both I = 1 and I = -1. Looking %t

the curves we see the following. For both I = 1 and I = -1, the derivative of i0 is positive for

v2 smaller than the abscissa of the zero of the derivative (which is equal to -I r), and negative

afterwards. Due to the nonlinearity of 7 the derivative has the form corresponding to I = -1

for v2 < -p and the form corresponding to I = 1 afterwards. The dashed lines show possible

positions of -p on the v2 axis. Depending on where -p is located relative to -r and r, the resulting

derivative will have a zero (this happens when -p < -r or -p > r), or not (otherwise). In the

latter case, since the second branch (for I = 1) turns negative before the first one. we have to take

the largest value of v2 yielding a positive derivative on the first branch. It can easily be seen that
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,~/ I- l r

t~j I .

S-r r V?
i -r< -p< r

v -vZ=-P v*" r

Fig. 4. Behavior of the derivative in (3.66).

in the "no-zero" case, -r < -p < r, this is the point of discontinuity. i.e. v2 = -p. Note that for

p = 0 we get vT = (1 01, the identity transformation, as expected, since then the users are

decoupled and a single-user detector is optimal. by .,kin the inverse of R we also see that in the

"no-zero" case the optimal transformation vector is exactly the corresponding row of the inverse

correlation matrix.

b) Case IpI = 1 : Equation (3.64) becomes

= I+sgnp v 2 - 11 + sgnp v21 r

1 + sgnp v2I
= sgn (1 + sgnp v2) - r. (3.68)

We see that for r < 1, any v2 satisfying v2 sgnp > -1 is optimal, in particular the one given in

(3.61). Otherwise the asymptotic efficiency of the best linear transformation is 0, hence all linear

transformations are equivalent. Substituting the result of Proposition 3.9 into the asymptotic

efficiency of (3.64), we obtain the following.

Proposition 3.10 The kih user asymptotic efficiency of the optimal linear two-user detector

equals

= I I - 2jpj(w,/uIk)112 + wi/ck , if (wI/wk) 1/2 _< IPI (3.69)
11 p2, otherwise
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for (i, k) E {(1,2), (2, 1)}. 0

The kth user asymptotic efficiency obtained in the range (wi/wk)1/ 2 < IpI equals the optimum

asymptotic elliciency, obtaincd in (3.12). Even where it equals the decorrelating detector, outside

the region of optimality, the best linear detector shows a far better performance than the conven-

tional single user detector (see Figure 3), since if wi/wk > p2, then 77 is independent of wi/w k ,

whereas according to (3.7) the asymptotic efficiency of the conventional detector is equal to zero

for wi/wk > 1/p 2.

There is an intuitive interpretation of the dual behavior of the best linear detector and of the

boundary point r = Ipi. The input to the threshold device corresponding to the first user, z1 = vTY,

has three components:

Z = V-[1 -p 2 +p (p +v 2 )] bi (3.70)

+ -V-W [ r (p+ V2) b2 + h, fi - N(O, a2 [1-p 2 +(p+v2)2).

For r > 1pI, the second term outweighs the second part of the first term, so the best one can

do is to eliminate it, by choosing v2 = -p (the decorrelating detector). Since this minimizes the

noise variance at the same time, it is the best strategy in this region. If, however, r < Ipi, and if

additionally v2 is such that the term p(p + V2) is positive, it is a better policy to allow interference

from User 2, which is compensated by the second part in the first term, and use the residual positive

contribution in the first term to increase the SNR compared to the decorrelating case. We have

seen that this strategy leads to the same performance as the more complex maximum likelihood

detector.

Note that in the two-user case the signal energies and crosscorellations cannot be picked such

as to allow both users optimal performance at the same time: for User 1 we need r < [pI < 1,

whereas for User 2 we need r > - >1.
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3.5.2 The K-user case

Unlike Propositions 3.3 and 3.10, in t.e general K-user case it is not feasible to obtain an

explicit expression for the asymptotic efficiency achieved by the best linear detector.

Proposition 3.11: The kth user asymptotic efficiency of the best linear detector equals:

I max 2 {0, max 17 (e)} with 7 (e) = sup v TRv (3.71)ejE{-1,1} VERK

j#k vTRv = I
eir7v>O

j~k

where the i th component of vo is equal to (Vo)i= {ei ./wk ,i k
1 i = k

Then the maximum 77(e) is achieved for -7 such that

Vo + E_ Ajejuj
vj k  {u~i 0, i 96j (3.72)

(vTRvo + T Aeju)l/2 (u 3 X = { i = j

jik

ejr T  > 0 for j 7 k (3.73)

r7 ; 0 0 => Aj 0 (3.74)

Aj > 0 j 0 k (3.75)

Proof: Let

S+ - {x E R' : rx> 0 (3.76)

5T = {xE ?K : rTx<O}

From (3.59) we seek

sup - 1 IrTv I V
1 T ~)

-max sup (rv - j rT v 1 V w (3.77)
.3-,1 V R k Wk

77(eI, ) v(flS. U3  38

- max ij(e), with Y7(e) sup l.1 (rv--Z V r l- (.7
eE{-1,l ej V j-kk

41



From the definition of vo we see that the term in parentheses equals vo'Rv. Now v E r$ j
)j

ejr v > 0, j # k and, since 17j is invariant to scaling of v, maximization of the given functional

over iRK is equivalent to maximization over the ellipsoid vTRv = 1.

This proves the first part of Proposition 3.11. We now have a sequence of two maximizations to

perform, where the second one has the explicit form of an exhaustive search. We turn our attention

to the inner maximization in (3.78). We first show that it is possible to replace the feasible set

therein by an equivalent convex set, i.e., the asymptotic efficiency is unchanged if we replace

=(e) sup vTRv by 7(e) sup vT Rv. (3.79)
vERK VERK

vTRv 1 vTRv<l
eir~v>o ejrjvio

T I jth I jI/2.k

In order to show (3.79), let y = R 1/ 2 v , z jth row of R1 2 . Then it follows that rTv = zry,

voTR 1 /2 = YT vTRv = = IlyII2  and

77(e) = sup yoy Isup jjyoIIyjI cos a (3.80)
yERK yERK

[[y[[ = 1 HII[ = 1
ez jy>O e.,Tyo

j# j;i#k

where a is the angle between the vectors Yo and y. Since the inequality constraints are linear and

partition the space into convex cones with vertex at the origin, the optimal angle a is independent

of Ilyll. Either the optimal cos a is nonnegative, in which case q7(e) is maximized for IlYll maximal

in both versions, or it is negative, in which case 77(e) < 0. In either case the value of 771, which

involves comparison with 0, is unchanged if the maximization is performed over the interior of the

ellipsoid, which completes the proof of the claim.

We now have to consider the following problem:

77(e) = inf - vTRv. (3.81)
vERKvTRv-l_ O

-ejrTv_5O

j tk

Since this is a minimization problem of a continuous real function on a compact set, it achieves

a minimum on the set [Rud, Thm. 4.16]. Since both the cost function and the feasible set are

convex, any local minimum is a global minimum. Let be a minimizing v, unique up to addition
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of a vector in the nullspace of R. Since all the functions are differentiable, we can apply the

Kuhn-Tucker conditions (4) , e.g. [Bro], to get, from condition (1),

- Rvo + A, 2 R- - Ae j r = 0
jok

hence, since r = Ruj,
1

= ( v, + -'Aj ejuj ) (3.82)

with uj the Jth unit vector, as defined above. Equations (3.73) and (3.74) result from the Kuhn-

Tucker conditions (2) and (3), condition (3.75) expresses the nonnegativity requirement for the Ai.

There is one more constraint to satisfy, which is -TR- = 1 (we know from (3.79) that the bound

is achieved)
1 VTRI VT 0 vMT ,

1 = +TRj = -(voRv+ Z jr' = (3.83)
2 A 0 k 2 A

We used condition (3.74) to get the last equality. So

2 Ao = vTR-7 = 77(e) (3.84)

and since

vR = .- ( vTRvo + vTR Ajejuj)
2 A ,

we get

2 ) o = (voRvo +vR ZAjeu, )1/2 (3.85)
i~k

Together with equation (3.82) this completes the proof of Proposition 3.11.

We would now like to have an explicit procedure to find the maximizing vector r given im-

plicitly by Proposition 3.11. Next we give an algorithm which solves this problem. The idea is the

following: condition (3.74) states that if the maximizing vector ;' lies in the intersection of a subset

of the delimiting hyperplanes with equations rTi? = 0, j E S, with S the index set of the specific

hyperplanes, only the Aj , j E S are possibly nonzero and enter into the expression defining €,.

Thus we have IS[ equations with (SI unknowns, which we can solve to get the Ai, and then €:.

(4) Kuhn-Tucker conditions for minimum of differentiable convex function F(z), subject to the set of differentiable
convex constraints fi(z) < 0, - 1 .... z is a minimum of F(x) if and only if there exist nonnegative Ai , i -, ... K

such that (1) 7F(x) + 'Ai fi(z) = 0, (2) fi(x) <0, all i, ( z feasible ), (3) fi(x) 0 0, =: Ai = 0.
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In order to state (and prove the correctness of) an algorithm that finds the optimum linear

transformation, the following terminology will be used.

Definition 1 : Let S be an index set {Jl,J2, ... ,n}, O<n<K-1, with jl,...,jnEf{1,..,K}-{k}, labeled

in increasing order. Define

TV Rr3v 0 j~ Riljn

D,(j) = det J, R,13  (3.86)

r~nvo Rinjl Rinin

Definition 2 : We introduce an indicator for the second Kuhn-Tucker condition:

If ej Ds(j) > 0 then Cs(j) = yes , else CS(j) = no (3.87)

Definition 3 : An n-tuple S of {1,..,K}-{k} is matched if for all i E S

Cs_{i } (i) = no.

Definition 4 : An n-tuple S contains a basis B if {rIjEB} is a basis for {rJljES}.
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Proposition 3.12 : The following algorithm finds a vector € achieving the maximum in Propo-

sition 3.11 :

[A] Search for the index set with least cardinality S C{I ....K}-{k}, for which Ai, iES, are pos-

sibly nonzero

n := 0

all n-tuples := untried; S, := matched

while n < K-2

while there is still an untried n-tuple containing a matched basis B

select untried matched n-tuple := Sn, contained matched basis := B

if V j Sn,,j y k CB (j) = yes, return Sn,, B, stop

else Sn := tried

return

n := n+1

return

print "decorrelating detector is optimal", output {1,..,K}-{k},

stop

[B] Computation of the Ai

i B: Ai = 0

i E B : Ai are the solutions of the IBI equations in JBI unknowns rTv = 0, i E B, where

v = Vo+ F Aieiu,
iEB

[C
Vo + Z Aieiui

- iEB

(vTRvo + VTR F Aieiu,)1/2

iEB

Comment : Recall that this procedure has to be repeated for all the different e1 in search of the

maximal 71(e) value, until either the efficiency 77(e) reaches the upper bound given by the optimal

detector, or all 2K possibilities have been exhausted. Prior to running the algorithm, the sufficient

conditions given in Propositions 3.13 and 3.14 should be checked.
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Proof: Conditions (3.72) and (3.74) are obviously satisfied by construction of -7 in [C], and the

requirement rT3 = 0 for the possibly nonzero Ai in [B]. To prove conditions (3.73) and (3.75),

consider the system of BI linear equations in B I unknowns of [B]. From [A] the set B is matched,

and satisfies CB (j) = yes for all j 5 k,j Sn. We have to show:

a) Ai 0 , foralli = 1,2,...,K.

b) CB (j) = yes for all j 5 k, j 0 Sn is equivalent to condition (3.73).

a): Ai = 0, i B, by construction of the index set S, and [B]. For i E B

In step [B] we solve rj, -;"= 0, all i = 1,2,...,IBI : (let IBI = n)

rTv. + Aj ej, Rj, , +... + Aj, ejRj,, = 0 (3.88)

rT v o + AjejRj2j 1 + ... + Aj ej. Rjj = 0

rT'vo + Aj, ej, Rjj + .. + Aj, ejn R, jn =0.

Denote by DB the determinant of the coefficient matrix of the Ajej. This coefficient matrix is the

reduction of R to rows and columns indexed by elements of B. Therefore it is nonnegative definite,

which implies DB > 0. However, because B is a basis, the signal set restricted to indices in B is

linearly independent ( , therefore DB is strictly positive. Then, by Cramer's rule,

Aj= ej. DB-{,} (Ji) (3.89)Ajl= -eji DB

The numerator is obtained by i row flips and i column flips in order to get ji into position (1,1).

Since the set B is matched, the numerator is nonnegative. As obtained above, the denominator is

positive, hence A 2! 0 for all i E B. This completes the proof of a).
b): Since rF4 = Oj E B and B is a basis of Sn, rTv = 0, j E S.. For j 0 S,, j k

B is a basis 4=- (VOERIBI, 3jE{1,....K) s.t. Z aiRij 4 0)
AEB

T

4=. VaERIBI, 3jE{1-..,K} s.t. J[Z: ai&,(t)]1j(t)dt $ 0)

0 IEB

{ li(t), i E B )linearly independent

(The converse is also true, as is easily seen).
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With the values obtained for A compute the "feasibility" expressions (omitting the positive denom-

inator) :

eiri = e-r'( v. +E Aeju )
iEB

= ej DBrv,,o + E -DB-. (i) R,)
iEB

= -B ej DB(j) > 0 , since CB(j) yes, V,¢Sn,,jk. (3.90)

The last equality is obtained by expanding along the first row of DB (j). This completes the proof

of b). By construction the algorithm terminates after at most K-2 steps. M

In Part [A] of the algorithm notice that n = 0 corresponds to a solution in the interior of the

feasible cone, with all A equal to zero, and V = vo/V/T-rRv. The corresponding asymptotic efficiency

2(e) = vTRvo, which is equal to the asymptotic efficiency of the maximum likelihood detector

as given by (3.11). Call this case "the optimality case". On the other hand, n = 1 corresponds to

a solution on exactly one of the delimiting hyperplanes, with exactly one A nonzero (let it be Ai).

Then Aj is found in [B] by setting

T

r v = 0 * rT (v + Ajejuj) = 0

SAjej = -r'v 0 / R,,

Therefore,
1 r 'vo

- (Vo Rje uj) (3.91)

and

2(e) = vRvo (rv) 2  (3.92)Rjj

The asymptotic efficiency achieved in this case is bounded above by the one for n = 0, since the

second term is nonnegative. If the matrix R does not have a lot of structure, which is to be expected

in practical applications, this is the most probable case. For increasing n the computational effort

grows fast, but in most cases the algorithm will terminate for very small n.

We also have an explicit solution for the "terminal case", n=K-1, which corresponds to the

decorrelating detector case. Then without loss of generality 4c = r'/ a scaled version of

the kth column of an) generalized inverse of R, in particular of R+, and r(e) = 1/R + , which
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is equal to the kih user asymptotic efficiency of the decorrelating detector. This can be showed as

follows: In the terminal case rl, = 0, for all j 0 k. Hence

7(e) = max vTRv = max r.v = max 1 (3.93)
vER 0 vER vER Vk

vRv = I TV = 0 Rv -Uk
rTv - 0 . 1

j; k vkrTv=

If User k is dependent, rTV = 0,Vjok implies rTi = 0, hence the feasible set F in (3.93), F =
I7 k

{vjRv _ 1 uk), is empty and 7(e) = 0. Since this was the best choice of ;, we can without loss

of generality replace v by the k t h row of any generalized inverse, because the resulting asymptotic

efficiency cannot become negative. If User k is independent, Lemma 3.2 implies RR'uk = Uk, and

for all v in the feasible set,

1 __1

RIv " -Uk 4 R'Rv = R Uk
Vk Vk

hence, using Lemma 3.2 to obtain the k th elements of the vectors on both sides,

v k = -kk :1 Vk = _=.
Vk

The last equality was also obtained in Lemma 3.2. If User k is independent the feasible set F in
(3.93) is nonempty, (e.g. it contains the set 1 r, R' E I(R), since Rr' = uk ) from Lemma 3.2,

Vk k k= k)frmLma32

and for all v E F, vk = VR. Hence r(e) = 1iii, which is the energy independent asymptotic

efficiency of the decorrelating detector for independent users.

We showed that there is an energy region for which the best linear detector is equivalent to

the optimum multiuser detector ("optimality case"), and an energy region where it is equivalent

to its lower bound, the decorrelating detector ("terminal case"). In the following results we give

sufficient conditions for these two boundary cases.

Proposition 3.13 : The following are sufficient conditions on the signal energies and crosscorre-

lations for the best linear detector to achieve optimal k th user asymptotic efficiency:

V/j.=> max f' IRij (3.94)
8Rkj1 ik
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Proof : In the optimality case, ejrvo > 0 for all j 6 k. If we introduce ek = 1 this has to hold

also for j = k, otherwise we get negative asymptotic efficiency. Letting D be the diagonal matrix

with i t h diagonal element equal to ei and noting that

Vo = D kthposition (3.95)

an equivalent requirement is that each component of the vector

R1 1  ele 2 R 12  ... elRlk ... elegRlK1 - 'WTwk
ele2 R 2 1  R22 e2R 2k ... e2eKR2K (3.96)

eKe1RK1 eKe2RK2 ... eKRKk ... RK

be positive. We now see that a sufficient condition for this to be satisfied for some el,.. .,eK is

IRjk{ > : IRjil WK (.7
i k "R ' j = 1,...,K. (3.97)

The corresponding ej are e4 = sgn Rik. 

Note that the above condition can be satisfied by only one user, because then

Vk> V/"j3/IRkjI > Vwij, for all j. (3.98)

Proposition 3.14 : If User k is linearly independent, the following condition is sufficient for the

ktk row of the decorrelating detector R' E I(R) to be the best kth user linear detector for a given

set of signal energies and crosscorrelations

lRkI < Rlk V for all j $ k. (3.99)

Proof : We showed that in the terminal case if User k is linearly independent, any = VR/v k

is a maximizing vector for vTRv. From (3.84) and Lemma 3.2 (RR'uk = uk)

2AT Rr= v.u k (3.100)
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As a consequence, there are nonnegative Kuhn-Tucker multipliers Ai, such that, with (3.82),

= V = (vo + X ejuj) (3.101)
kj$k

or

-- = (,..,1,...,(K- F )eK]T (3.102)

so

V/ -+ eiRjk/Rkk , j 54 k. (3.103)

Hence (3.99) is sufficient to ensure Ai >_ 0 regardless of {ei , i 96 k} a

Note that in the two-user case, Proposition 3.10 implies that the sufficient conditions found in

Propositions 3.13 and 3.14 are also necessary.

Proposition 3.15 : If User k is linearly dependent, then

77k sup 77k(R') = sup 7/k(T) - 77k (3.104)
Ri'EI(R) TERKXK

i.e. for a dependent user the best decorrelating detector has the same asymptotic efficiency as the

best linear detector.

Proof : Using (3.33), we can write:

(R'R)kk - E l(RR)kj[

77k = max {0, sup .Rk k -. (3.105)
R'EI(R) V( R e R R / )k-k

Since R is nonnegative definite of rank r, it can be represented using its orthonormal eigenvector

matrix T, and the r * r diagonal matrix A of nonzero eigenvalues of R, as

R =T [~ A 0TT. (3.106)

Then (cf.[Bou]), R' is a generalized inverse of R if and only if, for some matrices U and V of

appropriate dimensions, it can be represented as:

R T[A-I = T] TT (3.107)
U UAV "
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Hence, using the corresponding partition of T, we can write:

(R'R)k, = u4 [T1  T 2 ] [TJA [ uj = u (T 1 T " + T 2 UATf) uj (3.108)

(RIRRT)kk k 4 [T1  T 2 [ U UAUT T k
UT T TUT UTT)

= u4 (TIA- 1Tf + T 2UT1 + T1 UT2 + T 2UAUTT2) Uk (3.109)

and

UT Tuk (TI + T 2UA)Tfuk/~
d = max 2 {0, sup j(k + T (3.110)

UER(K-)*t /uT(T1 + T2 UA)A-'(TI + T2 UA)Tuk

Since User k is dependent, uTT 2 , whose components are the kth components of the eigenvectors

to eigenvalue zero, is nonzero. (Otherwise for all x with Rx = 0, xk would be zero, which implies

that the kth user is linearly independent of the other users.) Therefore, and since A is invertible,

we can make the change of variables

x = (T 1 + T 2 UA)Tuk (3.111)

to get
XTTTuk- Z IxTT ujv V

r7d = max2 0, sup jok I . (3.112)
xk Vx T 0A-,I x

From here, with the same reasoning as in the proof of Proposition 3.11 for the best linear detector,

we obtain

7= max 2 { 0, max sup v T Tx } (3.113)
ejE{-1,11 xERr

jok XTA-ix=1
ejxTTfTuIj : 0

jok

where the i th component of vo is equal to (vo)i = 1,/ wk i k

=- max2 {0, max 7d (e)} with 77d (e) = sup vo'Tx (3.114)
j $k-,I x EA'

j~k xFA-lx = I

ejxTTTI uj >. O

51



whereas the k t h user asymptotic efficiency of the best linear detector equals, cf. (3.71)

7 = a2 {, max 1 (e)} with 471 (e) = sup vorRv.
ej-1,1) vERK
j~k vTRv =-- 1

ej rTv>O
j kjok

Let

v* E arg 4/'(e) E arg max vT Rv. (3.115)
vE RK

vT Rv = 1
ejrTv>O

jjok

We show that x* = AT Tv* is feasible in (3.114), and vTT1x* = 471(e)

e T T uj T T.VT
ejx*T = ejv* TATj uj  ejv Ruj (3.116)

= ejv *T r 0 (3.117)

since v* feasible. Also

* T TV *T
x A-lx* = v* TiAA~ATTv* = v'TRy* = 1. (3.118)

Hence x* is feasible, and

VoTlx* = TTAT ~v* = VT Rv* = 1(e) (3.119)

We know that 7i - 77k, since the decorrelating detector belongs to the class of linear detectors. We

exhibited for each e a feasible vector x*, which satisfied VT Tlx* = 77'(e).

Since from (3.114) 7d(e) _ vTT 1 x for all feasible x, we have, for all e, i4(e) _ 471(e). Hence

0d > 471, which establishes (3.104).

Since the k th user asymptotic efficiency depends only on the kth row of the applied linear

transformation, optimization of rlk(R') over the class of generalized inverses for each dependent

user k, yields different rows, each belonging to a different generalized inverse. Consequently, the

collection of the K optimal rows need not be a generalized inverse.

Finally notice that the near-far resistance of the optimum linear detector is equal to that of

the optimum detector, since it is shown in Proposition 3.4 that a particular type of linear detector,

i.e. the decorrelating detector, achieves optimum near-far resistance.
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3.6 A geometric interpretation

This section gives a geometric interpretation of the problem of constructing a linear decision

scheme for K-user synchronous CDMA, in the case where the signal set is linearly independent,

using the familiar formulation in terms of a hypothesis testing problem. Every linear detector for

User k can be viewed as a hyperplane in K-dimensional Euclidean space which separates the region

where the detector decides that User k has transmitted +1 from the region where it decides -1. As a

result the kth user asymptotic efficiency of a linear detector is determined by the smallest distance

among all those hypotheses which coincide in the kth component to the separating hyperplane,

which implies that the best linear receiver problem for User k consists in finding the hyperplane

with maximal minimum distance to the multiuser hypotheses which coincide in the kth component.

Also an explanation of the equality between the near-far resistance of the maximum likelihood

detector and the asymptotic efficiency of the decorrelating detector is given, as well as a geometric

derivation of the best linear detector in the two-user case.

It is advantageous for the geometric intuition to view the detection problem in a domain where

the noise is spherically symmetric. Therefore set z _ R 1 / 2 y, where R 1/ 2 is the unique positive

definite square root of R. Then

z = R1/ 2Wb + n' , n' , N(O, a 2 I). (3.120)

and in this domain the noise is spherically symmetric. The kt h user receiver has to decide on the

basis of z whether bk = 1 or bk - -1. Letting

, = {R'/ 2'Wb b E {-1, 1 }, bk = 1}

S-1 = {R'/ 2 Wb I bE {_1,1}K, bk--1), (3.121)

this is a two-hypotheses problem with

H0 : z E S, + n' -- decide for bk 1

H I : z E S-1 + n' - decide forbk=-i. (3.122)

Any decision rule corresponds to a partition of the signal space span (SI, S-1) into a decision region

for HO and one for H1. The maximum likelihood detector decides -since the noise is spherically

symmetric- for the hypothesis which is closest in Euclidean distance to z. In the two-user case Figure
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Fig. 5. Decision regions of a) the conventional, b) the maximum-likelihood

and c) a linear detector, for spherically symmetric noise.

5 illustrates the decision regions for the conventional, the maximum-likelihood and a general linear

detector.

On the other hand a linear detector decides according to

C 
T

bk= sgnv vy = sgn < u,z > (3.123)
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where for the second equality we have set u = R/ 2 v/IIR1/ 2 vl. The normalizing factor is intro-

duced for convenience, and does not affect the sign decision. In other words, since u is a unit length

vector,

bk = sgn Pu z (3.124)

where Pu denotes the projection operator onto u. Therefore the decision boundary for the kth user

is the hyperplane Lu perpendicular on u, since this is where Pu changes sign, i.e.,

Lu = {x I Pux = o}. (3.125)

Hence a linear detector for the kth user is specified equivalently by u or by the hyperplane Lu

perpendicular on u. (We know that it is sufficient to consider hyperplanes, i.e., we do not need to

introduce a possible offset from the origin, because of the symmetry of the hypotheses with respect

to a sign change in all coordinates). In order to have zero error probability in the absence of noise

it is apparent that the hyperplane corresponding to a reasonable linear detector has to separate S1

and S-1. We will refer to such a hyperplane as a separating hyperplane. So this is how the decision

regions depends on the chosen u. On the other hand the asymptotic efficiency depends on u as

follows. From (3.56) T
tk(v) = max

2 {0, jok

and recall that the absolute values resulted from the worst-case set of bj,j # k. Therefore

1 m < v,RWb >77-() - max 2 to, rain.

bk=l

max 2 {0, mi < R'/ 2Wb >}=Wk ax obE{-1,1}K <JR1/ 2vJJ
bk=l

max2 {0, min <u,s >}
Wk sES 1

1 max2 {0, min Pus >}. (3.126)
W/k sES 1

The first equality uses the nc ,gative definiteness of R, while the last two equalities make use of

the definition of u and S], respectively the fact that u has unit length. Hence for a linear detector

for the kth user, specified by the separating hyperplane Lu, the asymptotic efficiency is given by

the minimum distance of a hypothesis to Lu. The problem of selecting the best linear detector

is therefore that of selecting a separating hyperplane with maximal minimum distance from the
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hypotheses (since Si and S-1 are symmetric with respect to the origin it suffices to maximize the

minimum distance to SI). That this is a desirable goal is intuitively clear, because the decision

on the transmitted bit is based entirely on whether the received vector z falls on one side of the

hyperplane Lu or on the other. Since in the absence of noise z has to be one of the hypotheses in

S1 or S-I, this means that the white noise resistance of this binary decision is determined by the

hypothesis which is closest to the decision boundary (i.e., the term corresponding to this hypothesis

dominates the error probability in the high SNR region).

Explanation of Proposition 3.4 for a linearly independent signal set

Since the signal set is linearly independent, R is nonsingular and 17k = rk(R - 1) is energy-

independent for all users. We want to explain the equality of ?7- and 77d. First consider the two-user

case, and assume we want to decide on the transmitted bit of User 1.

M -

/ "- -

Fig. 6. Geometric illustration of Proposition 3.4.
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Figure 6 shows the four hypotheses, where SI " {A, B} and S1 = {C, D}. Since in this

domain the matched filter output noise is spherically symmetric and Gaussian, the decision regions

of the maximum likelihood detector, determined by the minimum Euclidean distance rule, are given

by the perpendicular bisectors of the segments between the different hypotheses, and the kth user

asymptotic efficiency corresponds to the square of half the minimum distance between distinct

hypotheses differing in the kt h bit (Q(dmin/2a) = Q(V'i-/a)). Thus, in Figure 6, up to the

factor Wk which will be ignored because it multiplies the kth user asymptotic efficiency for linear

detectors too, Vr- is the length of the shortest of the segments AM,AO and BO.

The decision regions of the decorrelating detector for User 1 are determined by a straight line

through the origin, such that application of R- 12 maps it to the y-axis (since a sign decision is

then taken). This means that the separating line passes through the points ±R1 / 2u 2, with u 2 is

the unit vector in y direction, i.e., [0 1]T. These points are at the centers of the sides AD and BC of

the parallelogram formed by the hypotheses, because the unit vector is collinear to half the sum of

adjacent hypotheses differing in the first bit. Hence the decorrelating detector decision boundary is

parallel to the parallelogram sides AB and CD, which follows because it passes through the centers

of the sides AD and BC. As a consequence, all the hypotheses have equal distance to the decision

boundary of the decorrelating detector. This is intuitively clear, because the kth bit error probability

of the decorrelating detector reduces to a single Q-function. Now the first user asymptotic efficiency

of the decorrelating detector is equal to the square of the distance of any hypothesis to the decision

boundary, e.g. in Figure 6 is the length of AP.

The result of Proposition 3.4 can now be interpreted as follows: since 77 appears as the hy-

potenuse and 7d as the leg of a right angled triangle, 77 is lower bounded by the energy independent

7d . However, since the triangle angles vary with increasing energy of the interfering user, there is

a particular energy ratio for which the triangle degenerates into a line segment. This is the point

when 17 reaches its minimum, , which is geometrically identical with 77d. For the parallelogram

formed by the hypotheses this is the case when a diagonal is perpendicular to a side (eg. AO

perpendicular to CD).

For more than two users the explanation is analogous. The set of 2 K hypotheses will be the

corners of a parallelepiped in RK, since the nonsingular linear map R maps hyperplanes into hy-

perplanes, hence the rectangular parallelepiped with corners Wb, b E {-1, 1}K into the one we

are considering. Call the sides of the parallelepiped corresponding to S1 and S-1 significant sides.

57



Any linear detector corresponds to a hyperplane separating the significant sides. Since the proba-

bility of error of the decorrelating detector is for each user a single Q-function, the corresponding

separating hyperplane is equidistant to the hypotheses, i.e., is parallel to the significant sides, and

the asymptotic efficiency is determined by their distance (see Figure 7).

N C

Fig. 7. Same as Fig. 6, in the case of three users.

As the energies vary, there will be particular energy constellations (because the deformations

of the parallelepiped are continuous) where the vector from the origin to some hypothesis, say

Rl/2 Wb*, is perpendicular on the corresponding significant side, i.e., also on the decorrelating

hyperplane. This is the case when equality occurs between the asymptotic efficiencies of the decor-

relating and the maximum likelihood detector. To see this note that in this constellation the

asymptotic efficiency of the maximum likelihood detector must simultaneously be higher than that

of the decorrelating detector (since being the optimum multiuser detector it constitutes an upper

bound on the performance of any detector) and smaller, since from (3.10) it equals the minimum

of IIRI/2W112 for c E {-_, 0, 1 }K, Ck = 1, hence is upper bounded by IIR1/2Wb*II 2 , which in this

case is the asymptotic eficiency of the decorrelating detector.
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Explanation of Proposition 3.9 for a linearly independent signal set

Again, consider User 1. The hypotheses in S1 are h++ !! R 1/2 W[1 i]T and h+_ -

R/W[1 - 1]T . To find the best linear detector we have seen that we have to find the sepa-

rating line L. through the origin which has maximal minimum distance to h++ and h+-. If we only

consider h++, the line having maximal distance from it is the perpendicular through the origin on

the vector from the origin to h++. Call this line L++. Similarly for h+-, which defines L+-. If we

start with an arbitrary separating line, it is easy to see that a rotation of this line in the direction

of L++ increases its distance to h++, while a rotation in the direction of L+- increases its distance

to h+-. Call the decision boundary corresponding to the decorrelating detector Ld. We have seen

that Ld is equidistant from h++ and h+-. Now given that we have three lines through the origin,

L++, L+- and Ld, one can have two inherently different situations. In one case Ld lies between

L++ and L+, in the second both L++ and L+ are on the same side of Ld. The two cases are

illustrated in Figure 8 a) and b).

The difference between them is that, while in the first case attempting to rotate L. away from

Ld will decrease its distance from either h++ or h+- (though increasing the other), so that the

optimal solution is to have both distances equal, i.e., L. = Ld, in the second case rotating L, in

the coinciding direction of L++ and L+- will increase the distance to both hypotheses, as long as

L++ and L+ are still on the same side of the line we are rotating. Clearly this can be done until

the first of L++, L+- is encountered and this will be the optimal solution L,. Note that this is the

linear continuation of the (piecewise linear) decision boundary of the maximum likelihood detector,

which is given by the perpendicular bisector of the segments between hypotheses differing in the i st

bit. This can be seen also from Proposition 3.9, where if w2/wl < p2 the optimum linear detector

is collinear to [1 - sgnpVrw- T], i.e., is collinear to one of the hypotheses Wb, i.e., is still collinear

to one of the hypotheses after application of the map R 1/2 . This means that the corresponding

delimiting line is perpendicular on this hypothesis, i.e., is a relevant boundary for the minimum

Euclidean distance detector, which is just what the maximum likelihood detector is in this case.

This explains why there are two different cases for the optimum linear detector in the two user

case, why the decorrelating detector is one of them, and also why in one of the cases optimum

asymptotic efficiency is achieved.
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£1d

\\4 .

Fig. 8. Geometric illustration of Proposition 3.9.

3.7 Computation of the decorrelating detector

The decorrelating detector for a synchronous communication system with a linearly indepen-

dent signal set is the inverse of a positive definite symmetric matrix. The straightforward computa-

tion via the Cholesky factorization or Gauss elimination requires on the order of K3 multiplications

and the same number of additions. Thereafter, as long as the active user configuration does not4

change, the demodulation of b requires a TCB of K multiplications and additions. In the following
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an iterative scheme is given, which for each z converges to the solution x = R - 1 z upon starting

with an arbitrary initial vector x*.

Proposition 3.16: The iterative scheme

x + I = (I - OR)xn + '3Z (3.127)

converges to

x00- R- 1 z (3.128)

for any initial vector x* as long as 0 < / < 2 /Amax, where Amax is the largest eigenvalue of R.

Moreover the fastest convergence is achieved for

/Oopt . 2 (3.129)
Amin + Amax

Proof and Discussion: It is easy to prove convergence by defining the error vector en = x n -R - I z

and deriving from (3.127) that

e n = (I - /OR)n eo (3.130)

where from convergence follows if the spectral radius of I - /3R is less than unity, which results

in the given condition on 03. Alternatively, (3.128) can be interpreted as a gradient solution to the

problem

min (xTRx - 2 xTz) (3.131)xER

whose exact solution is x" = R-1z and for which the gradient solution is given by

xn +  = = xn  V 1x--n (xTRx - 2 xTz). (3.132)2

Iterative gradient solutions of this kind have been well studied and used in practice , among others

in adaptive filtering applications (e.g. [Hon], [Ben]). Denoting by p the spectral radius of the

matrix I - OR, the Euclidean norm of the error vector satisfies

Ie'lI < IIR112  - p' Ileoll, (3.133)
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where the equality follows since, R being Hermitian, its spectral norm equals its spectral radius.(6)

It can be shown (e.g. [Ben, p. 375]) that the smallest spectral radius is achieved by the choice of

given in the proposition, and equals Amax A (1

Popt = Amax + Amin

which is a function of the eigenvalue spread of the matrix R. As always, a small eigenvalue spread

is desirable.

Note that if z = uk, i.e., the k th unit vector, x" is the kt h column of R - 1 , which is sufficient for

decentralized detection of the information sent by User k. The iterations would be run before the

beginning of the detection process in order to find the decorrelating detector. K different iterations

have to be run beforehand, in order to get the matrix R - 1 .

Given an initial error norm and a value for a sufficient final error, equation (3.133) can be used

to upper bound the required number of iterations, for purposes of comparison with the method of

direct matrix inversion. Choosing x* = 0, the initial error vector has a norm upper bounded by
1 n 1

Iell < Pl -IIR-ukII S ? IR II = < Popt "_ mn - mi

Therefore an upper bound on the necessary number of iterations for obtaining the kth column of

R - 1 with precision E is
n * < log ( min)(3.135)

- log (Popt)

Each iteration involves K multiplications and additions, therefore the computational complexity

is K * n* for each column of R-1. Whether it is preferable to use the direct inversion scheme or

the iteration algorithm, depends on which of the two complexities is smaller, K 3 or K * P * n* (for

demodulation of P users). For example, for Amax = 3, Amin = 0.5, f = 10- 12 and demodulation

of one user, the necessary number of iterations is, from (3.135), at most 85, which means that the

iterative scheme is more efficient than the direct inversion scheme for K > 9.

(6)

IIAI_2 max {V,: A is an eigenvalue of A*A}

(A--A') max {VA: A is an eigenvalue of A 2)

- max (V/ 2 is an eigenvalue of A)

= max (JAI: A is an eigenvalue of A) 1__ p(A)
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3.8 On a simple decision-feedback detection scheme for synchronous CDMA

In synchronous CDMA the receiver has to make an estimate of the transmitted information vector

b of the K synchronous users in one symbol interval, or on the kth component thereof, based in

the sufficient statistic y, which depends on b according to

y = RWb + n', n' N(0, a2 R).

In the following it is assumed for simplicity that R is invertible (otherwise generalized inverses will

be used, along the lines of the previous sections). Then the sufficient statistic is equivalently

z = R-y

= Wb + n, n , N(O,a2 R - 1). (3.136)

If the noise vector n were uncorrelated, a sign decision at this point, which is what the decor-

relating detector does, would be optimal. Also, if the variance of the noise samples were a2 , i.e.,

R-1 = 1, the probability of error of a sign decision for User k would be the same as the probability

of error of a single user channel with the same noise level. On the other hand when R-1 > 1

(from (3.27) R-1 > 1 is obtained by setting T = R-1 ), the noise sample variance, and hence

the error probability of a sign decision is higher. Therefore a natural question to ask, is how to

use the fact that the noise samples in (3.136) are correlated, to reduce the variance of the noise

sample affecting User k. One can reason as follows. The kt h noise sample has an a priori expected

value of zero. However, its expected value, given the symbols transmitted by the other users, is

nonzero in general, because of the correlation of the noise components. Subtracting this expected

value from zk reduces the variance of the additive noise component contained therein. It turns out

that the variance is reduced to unity, therefore decreasing the probability of error to that of the

single-user channel, as expected, since the bits transmitted by the other users have been given. Of

course the symbols transmitted by the other users are not available, but if the detector used has a

small error probability, then there exist estimates of these symbols which are correct most of the

time. Therefore the above scheme can be expected to still work well if decisions on the transmitted

symbols are used, instead of the real values, as long as these decisions are reliable enough. The

aim of this section is to investigate under what conditions feedback in the aforementioned form

improves performance, and by how much.
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3.8.1 Detector with full feedback of decisions

Given that zi = V/wibi + ni, upon decision bi for the transmitted bit, an estimate of the

noise is obtained as a byproduct, namely

hi = zi - ./'ibi (3.137)

Such an estimate is obtained for all the components of the noise vector. Note that knowledge of

the received energies is required, in contrast to the decorrelating detector.

Denote by (nk, ii) and (bk, ) the partitions of the noise and information vector, respectively,

according to User k (the tilde indicates that the entry corresponding to User k has been deleted),

and let b(2) denote the second stage decision on the bit transmitted by User k, obtained by using

the first stage decisions b,, j $ k, of the other users. The question of interest is to investigate the

performance of the decision scheme

(2) = sgn ( zk - E [nk lb] )
k)

= sgn ( Zk - E[nk  I .]= ) "  (3.138)

E[nk I fi] is the minimum mean-square estimate (MMSE) of nk given fi, and since the ni are jointly

Gaussian, this MMSE is linear, therefore it equals the projection of nk on the space spanned by

the components of fi. Hence

E [nk I fil = Zcini' (3.139)
i#k

and by the Projection theorem

E[(nk - Zcini ) n j ] = 0, Vj 5 k , (3.140)
j~k

i.e., since the covariance matrix of the ni is R - 1,

Rk'- E ciR) = 0, VjA k . (3.141)

iik

Equivalently, the vector [-Cl,...,-cCkl, 1, -ck+1,..., -cK] T is perpendicular on the jth column

of R - 1, for all j 5$ k, i.e., is the kth row of R. Therefore, letting [1, mk,Rk] denote the partition

of the matrix R with respect to the kth row and column, we have

Enk IT] = i (3.142)
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and the decision scheme of (3.138) becomes

&(2) = sgn(zk + mT h). (3.143)

Using (3.137)

- sgn (zk + n - W ))= sgn (rTz - mTW ) (3.144)

is the obtained feedback detector, where b are the initial decisions of the detector in the forward

branch. We can rewrite the last expression as

(2) = sgn (Yk - mk 'Wb). (3.145)

Interestingly, the detector we obtained subtracts the available estimate of the cross-interference,

which is intuitively pleasing, although not obvious from the starting point of reducing the Gaussian

noise variance. Subtracting an estimate of the multi-user interference has been independently pro-

posed in [Var 88a], using the conventional detector to obtain initial decisions. However a weakness

of that work is the absence of the desirable property of near-far resistance of the original estimates.

This criticism has been incorporated recently in [Var 88b], where the decorrelating detector is used

in the first stage. However, the error probability analysis in [Var 88b] is numerical, in contrast to the

asymptotic efficiency results obtained here. Also the approach via noise variance reduction rather

than interference cancellation is easily generalized to a partial feedback scheme which is near-far

resistant, a property which partial interference removal obviously lacks. For all users together the

decision scheme is

6 (2 ) = sgn (y - (R - I)Wb). (3.146)

A

Fig. 9. Structure of the decision-feedback detector of (3.146).
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Figure 9 shows the resulting detector. Since equation (3.145) can be rewritten as

b2) = sgn (v bk + TW (, - ;) + n'), n' N (0,o 2 R) (3.147)

it becomes apparent that if the first-stage estimates b are correct, the probability of error of

the above scheme is the same as that of the single-user channel, since the n' has variance a2.

Obviously, if the second-stage decisions 6(2) are better than the original estimates, the procedure

can be repeated using the new decisions instead of 6, and the iteration process can be repeated until

the decisions of two consecutive iterations are the same. In this light it is to be expected that the

performance of the above feedback scheme depends critically on the robustness of the first-stage

estimates, and has the potential of significant performance improvement over the decorrelating

detector, if these estimates are good enough. This potential is analyzed in the sequel. The question,

in a more general form than will be answered, is the following.

Problem statement

Given

y = RWb + n, n , N (0, a2 R) (3.148)

and an estimate b, with error probability P ,k(e). When is the performance of User k improved

by doing
k2) = sgn (Yk - mTW b) (3.149)

Our measure of performance is the kth user asymptotic efficiency.

It would be interesting to be able to answer this question for an arbitrary first stage detector,

though probably intractable. The results when using the decorrelating detector for the first stage

are summarized in the following propositions. The reason which speaks for using the decorrelating

detector to obtain initial decisions is that it is the only near-far resistant linear detector, which

moreover achieves the near-far resistance of optimum multi-user detection, thereby ensuring a

nondegrading performance level regardless of the received energies.
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Proposition 3.17 : The kth user second stage asymptotic efficiency 7k of the iterated decorre-

lating detector with full feedback, which decides for

!(2) = sgn (y - (R - I)Wb) (3.150)

where b are the decisions of the d -correlating detector, satisfies

7 f > mi f (a,,c,), (3.151)

where

a_ = w (3.152)

= 2 F IRkI ,(3.153)

no.t.an <aj

and
for c> 1, a>l

f(a,c) 2 and c< 1, (1-c) 2 +a 2 >1 (3.154)a ,  for c > 1, a < 1
C)2 + a 2 , else

The function f(a, c) is shown in Figure 10.

C
I I

0 &

*o S2Sm

* S S

I S

S(a,C) 1-C S2+ l<1

Fig. 10. Function f(a,c) of Proposition 3.17.
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The dotted lines indicate curves of constant f, while the labels 1 and a2 show the values of

the function in the corresponding region. Note that f is nondecreasing in a and nonincreasing

in c. The following two corollaries give sufficient conditions for unit asymptotic efficiency of the

feedback detector, and for a performance improvement over the decorrelating detector used for the

first-stage decisions, respectively.

Corollary 3.1: A sufficient condition for unit kth user asymptotic efficiency is that

V i 4 k (ai,ci) E Ri, (3.155)

where Ri is the shaded region in Figure 11a, and ai,ci are defined in Proposition 3.17. The

condition
wi > R7 1  V i k (3.156)
Wk

is sufficient for (3.155).

C A C A,

a,

0_ a v )2 8 M

., ,//

0 IAf (a, c) - (-C)2- a' <i f (a. c) ( c)*a. 2,CI

Fig. 11. a) Region 1 of Corollary 3.1, b) Region 2 of Corollary 3.2.

Corollary 3.2: A sufficient condition for achieving an improvement over decorrelating detector

Ot h user asymptotic efficiency is that

V i 54 k (ai,c,) E R2 . (3.157)
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where R2 is the shaded region in Figure llb, and ai,c i are defined in Proposition 3.17. The

condition
_1> R4 Vik (3.158)

wk R'

is sufficient for (3.157).

Note that since R- 1 > 1, condition (3.158) is less stringent than the one in Corollary 3.1.
kk -

Proof of Corollaries : Conditions (3.155), (3.157) follow immediately from Proposition 3.17. For

conditions (3.156), (3.158) notice that

f(a,c) m rin (a2 ,1) (3.159)

and require a > 1, Vj # k *4 wj/wk > 1/i4 for Corollary 3.1,3d d

and a > ?7d , Vj $ k 4* Wj/Wk >_ ?k/r for Corollary 3.2.

The following proposition is important, because it shows that by using feedback the near-far

resistance of the decorrelating detector is still positive.

Proposition 3.18: For a linearly independent signal set the feedback detector is near-far resistant.

Moreover
7  =min m> > (3.160)

i k

where

4= 2 E JRk 7 (3.161)

Particularizing (3.160) to the two-user case, the near-far resistance there is lower bounded by

______
-

_I _i -p 2  4-7f>- =2 1 - 4(3.162)

1 + ( _1i)2 1 + 3p 2  3+p- 2  (

which is monotonically decreasing on [1,0] for p E [0, 1]. The proofs of the propositions are given

in a more general setting in Appendix 3.1. To particularize to the full-feedback case, F has to be

set to {1,....K)\{k}.
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OPTIMUM MULTIIJSER DETECTOR
DECORRELATING DETECTOR

-- FULL FEEDBACK LOWER BOUND

I-p. .. .. . ..

I-p 2/I+ 3p2  _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _

2I I I

2110o.r

1-p2

I/ /

I-p2/I.3p 2

21I <I r

Fig. 12. Lower bound on the asymptotic efficiency of the full feedback detector
for 2 users. Also shown are the asymptotic efficiency of the optimum

multiuser detector and of the decorrelating detector.

Example 3.2. In the two-user case, the lower bound given by the right-hand side of (3.151) on

the asymptotic efficiency of User 1, when feeding back the decorrelating detector estimates of the

transmitted bit of User 2, is shown in Figire 12.

Also shown are the asymptotic efficiencies of the decorrelating detector and of the optimum

multiuser detector, the latter as an upper bound on the asymptotic efficiency of any detector.

We see t!hat the asymptotic efficiency of the decorrealting detector with feedback is no longer

energy independent (we can infer this from the behavior of the lower bound, because otherwise the

asymptotic efficiency would have to always be one, i.e., larger than that of the optimal multiuser

detector, which is a contradiction), which comes about because the correctness of the fed-back
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decisions on the symbols of User 2 is a function of his energy w2. Notice that a performance

improvement is obtained-over the decorrelating detector if either User 2 is very weak, or is stronger

than User 1. In the latter case it is always better to use decision feedback for User 1, with a

performance gain which is monotonically increasing as User 2 gets stronger with respect to User

1. When user 2 is strong enough, e.g., 1.15 times stronger than user 1 for a correlation of p = 1/2

between the normalized signals of the two users, the asymptotic efficiency of User 1 is unity,

because the upper and lower bounds coincide. This means that for sufficiently strong interference

the decorrelating detector with feedback performs as well as the optimum multiuser detector, and

both achieve single-user performance, if the SNR with respect to the background noise is high

enough. In this region the performance improvement results from the fact that the decorrelating

detector decisions of User 2 have a very small error probability, due to the fact that User 2 is

strong. The fact that there is also a performance gain if User 2 is weak, has a different explanation.

In this case the detector for User I should ignore user 2, and not eliminate it at the expense of

increasing the background noise, as the decorrelating detector does. This we have seen from Figure

4, when the conventional detector performs better than the decorrelating detector as long as w2 /w 1

< (I - v/FL'p)/p, e.g., for p = 0.5 the power of User 2 is under one fourth of that of User 1. In

this region the performance gain of the fedback detector results not from the feedback itself (since

User 2 is weak his decisions are not overly reliable) but because the -insignificant- interference is

not eliminated any longer at the expense of the background noise. Finally, there is an intermediate

energy region, where the feedback strategy may signify a performance loss over the decorrelating

detector.

Intuitively there are two critical factors which may affect detrimentally the performance when

using feedback: feeding back decisions of users with low i7,, and feeding back decisions of weak

users, such that their error probability is high (in spite of possibly a high 7,), but who are not

weak enough that their contributions are negligible.

To remedy this problem, in the following we analyze partial feedback, where only the decisions

on the symbols of a subset of the interferers -considered reliable- are used.
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3.8.2 Partial feedback of decisions from users in index-set F

Recall that in the full feedback case we subtracted from zk = ,,fwbk + nk an estimate of the

noise nk based on estimates of the (correlated) noise components of the other users, which equaled

hi = zi- ,/w-bi. In the partial feedback case only a subset F of noise estimates of this form is used.

The other estimates, for i E F, are considered unreliable, and are replaced by their expectation in

the absence of information, namely zero. The conditional expectation

E [nk I ii] = -mk

is now replaced by

[nk I R, F] = -mT IF fi (IF)ij = f ij, , i E F (3.163)

E0, else

The partial feedback detector decides for:

b(2) + S T~n
k sgn ( zk + Mk IF n

= sgn (zk + mT IF ( .- VV )) (3.164)

where as before [1, ink, Rk] denotes the kth user partition of the matrix R and the tilde indicates

that the entries corresponding to che kth user have been deleted. Inserting z = Wb + n, the

dependence of W) on the transmitted bits can be made explicit, namely

/,2) = sgn (v/'kbk + Mt IF W( -) + n"), n" ~ N (0,02 (1 + mT Ip Nk IP ink))

(3.165)

where [1/77d, *,Nk] denotes the kth user partition of the matrix R - 1 . Notice that the two limiting

cases F = 0 and F = {1, ... , K}\{k} reduce to the decorrelating and to the full feedback case,

respectively. In the following the case F = 0 is excluded, since no additional insight is gained by

considering it. If the decisions that are fedback are correct

F= 1 + mT IF Nk 'F ink (3.166)

which is less than 1 since Nk is positive definite (> 0 if R > 0), unless full feedback is used or

mk = 0. Therefore, in this optimistic case, a performance gain over the decorrelating detector is

obtained as long as mTIFNklFmk < MTNkmk. The following propositions generalize the results

obtained in the full feedback case to include partial feedback.
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Proposition 3.19: The kth user asymptotic efficiency of the decorrelating detector with partial

feedback set F # 0 satisfies

7rk min f (aiv(F),ci(F)) (3.167)
V()iEF

where

a, = (3.168)

ci(F) = 2 Z IRknI V (3.169)
nEF '

n s.t.an<ai

v2 (F) = 1 + mT IF Nk 1F mk , (3.170)

and
1, for c>1, x>1

and c< 1, (1-c) 2 +X 2 >1 (3.171)
fXx~c) for c>1x<1 (3.71

with

= k] R-1 = [/ Nk]. (3.172)

The proof is given in Appendix 3.1. Note that the ai and the function f(.,.) are the same as

in Proposition 3.17 and do not depend on the feedback set F. Obviously, if F $ {1,...,K}\{k},

v2(F) > 1. Therefore we cannot achieve unit asymptotic efficiency using strictly partial feedback,

regardless of the energy region. However, counterbalancing the detrimental effect of division by

v2 > 1, there are three favorable effects due to v > 1:

s ai v > ai, hence higher values of f,

o ci possibly decreased, since summing over fewer terms, hence higher values of f,

o tking the min f(.,.) over fewer terms.
iEF

Whether an improvement over feedback-free detection is achieved or not, depends on which

influence dominates; hence it depends on the operating energy region, since the first two favorable

effects are energy dependent. One thing is obvious: we need not consider feedback sets F, such

that 1/v 2(F) < 7d
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Proposition 3.20: If r # 0 Vi E F, the feedback detector with feedback set F is near-far

resistant. Moreover

77k mi 71 >(3.173)
wi o k 1 + m T I FNk I Fmk + (2 ) 2Rkn[ )2
iEF nEF

The proof is given in Appendix 3.2.

Example 3.3. First consider the following example of a 3-user environment. Figure 13 shows the

lower bound given by the right-hand side of equation (3.167) on the asymptotic efficiency of User

1, under feedback-free, partial feedback and full feedback conditions, assuming that users 1 and 2

are equally strong, with the energy of User 3 as a parameter.

Under feedback-free conditions, (F = 0), the lower bound is achieved, and equals the asymp-

totic efficiency of the decorrelating detector. The asymptotic efficiency of the optimum multiuser

detector, which constitutes an upper bound, is also shown. The signals of the 3 users are the

ones shown in Figure 13, with crosscorrelations P12 = -0.5, P13 = 0.87 and P23 = -0.65, hence

77d = 0.24, 77d = 0.56 and 7d = 0.19. Since V2(12}) ; 5, i.e., 1/v2(12}) < 77dthe feedback sets to

consider are {2, 3}, {3} and 0. Considering Figure 13, it is apparent that significant performance

improvement can be achieved in certain operating energy regions by using feedback of the decisions

of other users, and that partial feedback can be superior to full feedback. Also both feedback

schemes are near-far resistant, in accordance with Proposition 3.20, though with possibly smaller

worst-case asymptotic efficiency than the decorrelating detector (recall that only lower bounds are

tractable).

As can be seen from this 3-user example, different strategies are superior for different energy

regions. While it is not desirable to use feedback regardless of the operating energy region - since

taken by itself the feedback detector-does not preserve optimum near-far resistance - substantial

improvement can be achieved if feedback is used in certain energy regions. Thus in the given

example, where users 1 and 2 have equal energy, if User 3 is four times as powerful, the asymptotic

efficiency can be more than doubled by full feedback as compared to the decorrelating detector,

and tripled by using only partial feedback of User 3.

(3.21): By adapting the feedback set F to be the optimum set for the corresponding energy region

the asymptotic efficiency is increased to

77k' : max f 7k, maX- min f (aiv(F),ci(F))} . (3.174)

. v2(F) iEF
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OPTIMUM MULTIUSER DETECTOR

--. -- D-ECORRELATING DETECTOR

FULL FEEDBACK
......... PARTIAL FEEDBACK,F={3} LOWER BOUNDS

ASYMPTOTIC ' / w2 /w1

EFFICIENCY
USER I

I /

% %' 0 5 6
-, .9.

0.58 I 1.73 1.95 v___/_w

FOR THE SIGNAL SET

lSi(t ,  S 2 (tl

.IT I/T ._-0. 
5 o 6

am. rRz -o. 1,

T t T =/4 T 110.9 6 -5 1

S31)

T/ 2 T

Fig. 13. Lower bound on the asymptotic efficiency of User 3 for full and
partial feedback for a 3-user example with equally powerful interferers.

The following algorithm finds the optimum feedback set F:

[A] compute v2(F) for all sets F C {l,.- K}\{k).

discard all F with 1 v2(F) < rk,
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all remaining sets := admissible

order the admissible sets according to increasing v2 (F).

note: full set will be first in list, with v2 = 1

F = 0 is admissible, since v2 1 1 7 d .

[B] 77maz : 7

Fopt := 0

while not at end of admissible sets

F := next admissible set

compute the ai,ci,Vi E F

7 = I- min f(aiv, ci)
V iEF

if (7max < 77) Fopt = F, 77max= 7

if (v27 = 1) return Fopt, 77maz

end.

ret urn

return Fopt, 1'max

end.

Part [A] of the procedure is independent of energies, hence is done only once. If the energies are

not constant the optimum set F will change in time, hence part [B] has to be executed periodically

to update F. If the energies are known exactly as a function of time, the adaptive feedback detector

is seen to have optimum near-far resistance. If the energies are not known, and have to be estimated

at the receiver, we have the following cases.

a) The energies vary slowly in time, such that for long transmission lengths they can be considered

constant. In this case estimates of the energies can be obtained up to any desired precision.

One obvious possibility is to estimate

1N

Wk = Z (zk)?t - R-
s=1

where (zk) i is the input sequence to the decorrelating detector. Since the information bits and

the noise are uncorrelated

E~z~] = E[wk + 2Vkbkk + n21 = Wk + R-1
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hence, by the weak law of large numbers fak converges to wk as N - x. More elaborate

and effective schemes can be found in the literature. Since the energies can be estimated with

arbitrary precision the energy-adaptive feedback detector can be used. It can be robustified with

respect to small errors in the energy estimates by accepting a nonempty feedback set F only

if the achieved performance improvement exceeds a certain threshold. Moreover, Proposition

3.20 shows that feedback from users with nonzero asymptotic efficiency is near-far resistant,

hence near-far resistance is not lost even for completely erroneous energy estimates. However

optimum near-far resistance is then lost, which is why large errors in the estimates of the user

energies are detrimental.

b) A subset of users has slowly varying energies, while the rest has energies that vary rapidly in

time. In this case only feedback from the slowly moving users should be considered, otherwise

identical to a).

c) The energies of all the users change rapidly. In this case no feedback can be used. The

decorrelating detector is well suited for this environment since it is energy independent and has

optimum near-far resistance.

Also note that an inherent drawback of feedback schemes compared to the decorrelating detec-

tor is that the former require knowledge of the received energies. Finally, it can be shown that, if

R is not invertible, the results obtained still apply if F excludes all linearly dependent users.

Appendix 3.1: Performance analysis of partial feedback

From (3.165) the partial feedback detector decides for:

b(2) = sgn( /ii'bk + mTIFW(b-b) + n ), n' , N (0, a2v2 ), (3.175)

where we have set 1 + m T Ip Nk 'F mk v2 . The prol ability of error for this decision scheme

is, by symmetry

P'_(2)k(e) = p(b(2)= 1 A bk =-1) + p(b( 2 ) -1 A bk=1)

= p (b(2) = -1 bk = 1)

- >_ P (b2) = -1, bb EF I bk=l )
(bjFj)

jEF
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- P _ = _ bj,j,jEF , bk=l) P (bj,jEF I bj,jEF , bk=) P (bj,jEF I b,.=1)
(bp2 j)
jEF

2--1 O P (nk < m I IF W(b - b) - V17I I bj,b 3 ,jEF) P (bj,jEF I bj,jeF , bk=l)

(bj ,b3 )

jEF

( VM - - F, Rki V/U7 (bi - hj)
Q  jEF P (bj,jEF I bj,jEF , b f=l)(bj ,&j )

jEF

(3.176)

The probability P (bj,jEF ] bi,jeF , b-=1) is hard to specify. However, noticing that the joint

event 6j = x,iEF is contained in the marginal event bi = xi, for each i E F, we can find an upper

bound, which is exact in the two-user case.

P (bj,jEF I bj,jEF , bk=l) < minP (bi I bj,jEF , bk=l) . (3.177)
iEF

Next we have to use the precise form of the detector used to obtain the bi. For the decorrelating

detector the decision on the symbol of each user is independent of the interfering transmissions of

the other users, i.e.,

P (bi I bj,jEF, bk=i) = P (b, I bi)

= Qi + bb-i (1-2Qi) , (3.178)

where, for notational simplicity, we have abbreviated by Qi the probability of error of the decorre-

lating detector, i.e., Qi = Q(V wl/Ri'a), and bij is as usually zero for i $ j and one else. So we

now have

P (bj,jEF I bj,jEF , bk=l) min [ Qi + 6b (1 - 2Qi) 3 • (3.179)
z -EF

Let the index set {iEFI6bi = 0} of users whose first-stage decisions are erroneous, be denoted by

S. Also let il,..., iJ be the permutation of the users in F according to increasing decorrelating

detector error probability Qi (i.e., we order the users according to their expected reliability), and

let r(i) return the rank of User i in this permutation, i.e., r(ik) = k. Let i(S) be the index of the
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user in S with the lowest Qi, i.e., i(S) = iin{lijES} , which is the index of the most reliable user
among those who did make a first-stage decoding error. (3.179) now becomes

min Qi ,So
P (bj,jEF I bj,jEF, bk=l) iES

' - 1 - max Qi , S= 0
icF

Q O(s) , s5 0

{1 -Q (F), S = . (3.180)

Thus, combining (3.176) and (3.180), we obtain

:PUB A 1

Pf(2),k(e) < P(2),k(e) 21F

QJ jEF a Qi(S) S 6 0 (3.181)

(b1 ,6j)E{±1}
2  

Qi )(F)' , ]
jEF

Now, bj - bj cait have the values 0, 2 sgnRkj or -2 sgnRkj, and the "+sgn" case makes a higher

contribution to P(e), while having the same 6b j pattern, so that the other Q-term affecting the
error probability is the same. Hence the leading terms for a -* 0 are among those for which
(bj, 6j) E {(1, 1), (-1, -1), (sgnRkj, -sgnRk,)}. Denote by A the subset of pairs (b, b) whose jth

components, jEF, are in the above set. Then

bUB (e) - 1

(3.182)

The above expression depends on (bj, bj) only through 6,by. Hence we can group the summands
whose 6 bjj pattern, jEF, coincides in all components, as follows. There are 2 1F sets { 6bj'I,j E

F}. Fix a j E F and consider the corresponding component pair (bj,bj). If 6bibi = 0, i.e., the

corresponding components are different, there is only one possibility for the components, since
(b.6) E A. Otherwise, there are two choices which result in by, = 1. This implies that the

number of vecuor pairs (b,b ) E A which result in the same 6b jbj pattern for i E F is

-E = 2 F1-ISI• (3.183)

79



Therefore the right hand side in (3.182) equals

Rv"W7' k E) Q(S) 1 421F 2 2FI-ISI QjE

S{6- o1 {} ' ' av 1 - Qi(F) , S =0
fb1 j EMLjEF}

(3.184)

where, recall, S = {:EFIbbb = 0} is the index set of the users whose first-stage decisions are

erroneous. i(S) is the index of the user in S with the lowest Qj, i.e., with the lowest error probability

when deciding for bi with the decorrelating detector, among those users in F who made wrong first-

stage decisions on their bits. Among all sets S with the same i(S), the set which will asymptotically

dominate the error probability as a -* 0 is the one which includes all users in F with Qi > Qi(s).

This set has JFl - r(i(S)) + 1 elements. Hence letting j := r(i(S)) run from 1 to JFl we have

PB (e)

M(2,k  a-O

F~ vlw-- - Z: lRk.IV5W\-F nEE

211 Qn>Qij
2- -E L Qi + Q(JT) (1 QrIFI)

(3.185)

and finally, neglecting QilF I versus 1 (since it becomes arbitrarily small for a - 0), and after the

change of variable i := ij,

pUB(e
Pb(.),k(e) a-

-/

Q(V ~ ~ ~ ~ ~Vk- - F_'()' I_____ nQ IRkniv"W

o av(F)I 2F iEF aiRQ (Vv(F))

(3.186)

where we have made explicit the dependence of thE noise variance r on the feedback set F. If

F = 0 the above expression reduces to the first term, and since it is easily shown that t2 (0) =

1 + mrNm = 7d (the asymptotic efficiency of the decorrelating detector). the upper bound in
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(3.186) is achieved if F is empty. In the sequel we consider the case F $ 0. Then (3.186) has the

form
SPUB(e) . Q(.) + k2Q(xaj)Q(xi1- cJ)] (3.187)

k a-0 iEF1 V V

where x = v/'-'/a , k 2 1IF , 0 2 r(i)-IjF-1 (3.188)

ai = /w V > 0 (3.189)

and ci = 2 1 lRkn I/ > 0. (3.190)
nEF

a2n <ai

In investigating the associated asymptotic efficiency, we will make use of the following properties,

which are immediate if the asymptotic efficiency is thought of as the slope with which the logarithm

of the error probability decays in the high SNR region :

1) The asymptotic efficiency obtained from an upper bound on the actual error probability is a

lower bound on the actual asymptotic efficiency.

2) The asymptotic efficiency obtained from a sum of terms is lower bounded by the minimum of

the asymptotic efficiencies obtained from the single terms.

Then, if r7k denotes the asymptotic efficiency resulting from the ith summand, the k t h user

asymptotic efficiency of the decision-feedback detector is by 1) and 2) lower bounded by

7 > min 7/i (3.191)
iEF k

Each 17' is the asymptotic efficiency associated with an error probability of the form

P = koQ (x) + k2 Q (xa) Q (x(i1 -c)), a,c >0 (3.192)
0 V tV

hence is a function of a and c. We distinguish the following cases

A c > I = in the high SNR region

P- k Q (X) + k;Q (xa) (3.193)

=>r 1/rV2 min(a 2 v2 , 1).

B c < 1. We use the inequality Q(o) < 1/2 exp(-a 2 /2) for a > 0 (e.g. [Woz]) to upper bound

P. We get

P < k- + - - (3.194)
2 4
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Bl1 (1 - C)2 + a2 v2 > 1: then in the high SNR region t'he upper bound will approach the first

term, and by 1) 77 > 1/v 2.

B2 (1 - C)2 + a2 v2 < 1: then in the high SNR region the upper bound will approach the

second term, and by 1) ./>_ ((1 - c) 2 + a2 v2 )/v 2 .

Finally, combining with (3.191), we obtain

1 min f (av(F),ci(F)) (3.195)
v2 (F) iEF

where
he1, for c> 1, x> 1

and c< 1, (1-c) 2 +X 2 >1 (3.196)
fxx~c = 2 , for c >1,x< 1
(1-c) 2 + X 2 , else

Appendix 3.2: Near-far resistance of partial feedback

Let r i be a short hand notation for Vrw f[~. We want to show that the lower bound on kih

user asymptotic efficiency given in Proposition 3.19 is near-far resistant for each feedback set F,

i.e.,

T = mi> > 0. (3.197)

iEF

By definition (3.168) ai = V7_dri. We have the following upper bound on ci, which will be useful

since f is nonincreasing in c.

ci(F) = 2 E IRknIrn = z IRknI an (3.198)
nEF nrEF

an:Sai  
an:5ai  7=n

< ai 2 E IRkI 1 < ai 2 E JRk,1 1d (3.199)
nEF VnnEFn

an<ai

a7k = kri kcri , k, > 0. (3.200)

Now the function f has three regions, given by the three cases in its definition (3.171). In the
second region

1 < c, < kcr, and kcrit,< 1 => ' < ri <-  1 (3.201)
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therefore f is lower bounded by

f(aiv,ci) = a?22= 174V 2 r > Vd2_
r? > 77(3.202)

In the third region

0 < ci :_ min{kcri, 1} = 1 > 1 - ci > 1 - min{kcri, 1} 0 0 (3.203)

therefore f is lower bounded by

f(aiv,ci) = (1 c) 2 + v2 a2 > min [(1 - kcri)2 + rv 2 ] = ?i1v (3.204)
kc,< k2 +74V

Finally, combining the three cases,

d 2 4.V2 d 22
f(aiv, c) 2 min {1, 2l, k -v  ' (3.205)

k2t~v ±2 V
_ k2 ,' k2 + 774dV2 k2 + 774dV2 - +v325

which is independent of i. From here, using (3.195), i7F > 1/(2 + v2), which is energy-independent.

Using the definition (3.200) of 4, and the definition of v, (3.173) follows, together with a strictly

positive near-far resistance, since Nk is positive definite.
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4. Near-far resistance of multiuser detectors in asynchronous

channels

4.1 Optimum near-far resistance of linear detection

4.1.1 Multiuser communication model

Let the receiver input signal be

r(t) = S(t, b) + n(t) , (4.1)

where n(t) is zero-mean white Gaussian noise with power spectral density 0'2 and
M K

S(t,b) = 1: Jbk(i)/W-_') sk(t - iT - rk) (4.2)
i=-M k=1

is the element of L2 (the Hilbert space of square-integrable functions) which contains the informa-

tion sequence b = {b(i) = [bl(i),...,bK(i)], bk(i) E {-1,1},k = 1,...,K;i = -M,...M}, sk(t) is

the normalized signature waveform of User k and is zero outside the interval [0,T], and wk(i) is the

received energy of User k in the i th time slot. Let N = 2M + 1 be the length of the transmitted

sequence. Without loss of generality it is assumed that the users are numbered such that their

delays satisfy 0 < 7- :5 ... < rK < T. The normalized signal S(t, b) is the receiver input signal

corresponding to unit energies.

Define the vector space L = {x = [ x(-M),...,x(M) ] = [[ xl(-M),...,xK(-M) ]

xl(M),...,xK(M) I IT, Xk(i) E R?, k = 1,...,K, i = -M,...,M}, (each element of which can be

equivalently viewed as a sequence of N (K • 1)-vectors or as one single (NK * 1)-vector), and define

the (k, i) t h unit vector uk i in L as u '(l) = bkjbli. Let < .,. > denote the usual inner product on

£2, i.e. the integral of the product over the region of support, with induced norm jJ .j. Henceforth,

we make the following assumption on S(t, b):

Linear Independence Assumption (LIA) :

VxE L, x 0 II (t,x)f1 0 (4.3)

In other words, no matter what the user energies are, the received signal does not vanish

everywhere if at least one of the users has transmitted a symbol. This condition fails to hold only
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in pathological non-practical cases with very heavy crosscorrelation between the signals, such as

the two-user example in Figure 14. There, if the delay between the users is T/2, the received

signal can be identically zero although transmissions have been made (this happens if, for all i,

b2 (i) = -bl(i)). It is shown in Appendix 4.1 that such a situation will arise with probability zero

if the a priori unknown delays are uniformly distributed, which is the case in an asynchronous

unslotted channel used by non-cooperating users. Basically, in order to violate the LIA, a subset

of the users must be effectively synchronous and the modulating signals of this subset have to be

heavily correlated.

S, (t) S2(t)

T/2 T t T/2 T t

Fig. 14. Example of signature waveforms which can
violate the LIA.

For simplicity the LIA will be in effect in the rest of this section. It has been shown to be a

mild condition. If it is removed all the given results can be generalized in a manner analogous to

the treatment of the synchronous transmission case. The changes that have to be made are given

in Appendix 4.2.

The sampled output of the normalized matched filter for the ith bit of the ki h user, i -

-M, ... , M, is

iT+T+rk

Yk(i) J r(t)s(t - iT - rk)dt (4.4)
iT+rk

00 0J S(t, b)sk(t - iT - Tk)dt + ] n(t)sk(t - iT - -rk)dt , (4.5)
-00 -00

where the sccond equality is valid since the signals are zero outside [0,T]. It is well established (e.g.

(Ver 86a]) that the whole sequence y of outputs of the bank of K matched filters, with components
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yk(i) given by (4.4), for k = 1, ... , K, i = -M, ..., M, is a sufficient statistic for decision on the most

likely transmitted information sequence b. The multiuser demodulation problem at the receiver of

User k now is to recover the sequence {bk(i)}, transmitted by User k, from the sequence y E L. Due

to the uncertainty introduced by the noise any detector will have a nonzero probability of making an

error. The different detectors are characterized by their probability of error versus computational

complexity tradeoff. Motivated by the state of the art - where the choice lies between the optimum

multiuser detector, which is of exponential complexity and the ad hoc single user detector whose

performance degrades to zero for sufficiently high interference energy - we define a class of simple

detectors and optimize performance within this class, to obtain an acceptable error probability

versus complexity tradeoff.

A linear detector for bit i of User k is characterized by v k i E L. The decision of the detector is

given by the polarity of the inner product of v k i and the vector y of matched filter outputs, which

is equal to

M K

v,'1 v(1) yj (1) = ] (t, wb)S3(t, vkid k,(4.6)
I=-M j=. -00

= < S(t, wb), 3(t, vk'i) > + nk,i (4.7)

where for any sequence b of information bits, wb will denote the sequence of amplitudes wb =

{[VI_'7i)bj(i), ... , /wK7 bK(i)], i = -M, ...M}. nk,i is the noise component at the output of the

cascade of matched filter, sampler and detector, hence is a Gaussian zero-mean random variable

with variance given by

00

E[nk,] = o Vk(r)vr(i) J sk(t - 1T - rk)Sj(t - iT - rj)dt = o 2113(t, vk'i)112 . (4.8)
k~llid _00

The receiver decides on the ith bit of the k th user according to the rule

M K
bk(i) = sgn vi(l) Yj(l) (4.9)

1=-M j=1

= sgn (< 3(t, wb), 3(t, vk'i ) > + nk,i). (4.10)

Wherever it is clear from the context, the superscripts k, i will be omitted.
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Matrix Notation: It is convenient to introduce the following compact notation. Define the K * K

normalized signal crosscorelation matrices R(1) whose entries are given by

00

Rki(l) = J SOk - rk) sj(t + IT - rj) dt . (4.11)
-00

Then, since the modulating signals are zero outside [0, T]

R(1) = 0 V III > 1, (4.12)

R(-I) = RT(l) , (4.13)

and, if the users are numbered according to increasing delays, R(1) is an upper triangular matrix

with zero diagonal. Also let W(l) = diag ([QVrwj7T, ..., vliwjK7j). With this notation the matched

filter outputs for I = {-M, ... , M can be written in vector form as (cf. [Ver 83b])

y(/) = R(-1)W(l + 1) b(l + 1) + R(0)W(l) b(l) + R(1)W( - 1) b(l - 1) + n(I) , (4.14)

as can be seen for each component by inserting (4.1) into (4.4). We make the convention that

b(-M - 1) = b(M + 1) = 0. n(I) is the matched filter output noise vector, with autocorrelation

matrix given by

E [n(i)nT(j)] = oa2 R(i - j). (4.15)

The entries of the matrices R(i), i = -1,0, 1 are obtained at the receiver by crosscorrelating

appropriately delayed replicas of the normalized signature waveforms according to (4.11). Note

that no additional complexity is hereby required of the receiver, since knowledge of the normalized

signature waveforms and the capability to lock onto the respective delays are necessary for matched

filtering and sampling at the instant of maximal signal-to-noise ratio.

In contrast to (4.5) the asynchronous nature of the problem is clearly transparent in (4.14).

To make this notation more compact we define unifying variables, the NK * NK symmetric block-

Toeplitz matrix TZ and the NK * NK diagonal matrix W, as follows:

R(0) R(-1) 0 ... 0
R(1) Rt(0) R(- 1)

R 0 R(1) R(O) ". 0 (4.16)

: "- "'. R(- 1)

0 0 R(1) R(O)
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W = iag(I/i ~ x~I7),..,\7if]).(4.17)

In this notation the matched filter output vector y depends on b via, from (4.14)

y = 1ZWb + n. (4.19)

The matrix R can be interpreted as the cross-correlation matrix for an equivalent synchronous

problem where the whole transmitted sequence is considered to result from N * K users, labeled as

shown in Figure 15, during one transmission interval of duration T, =N • T + r K - rl.

1 K I NK-K. I

2 K#2I I II , I

K 2K NK
-----

To

Fig. 15. Equivalent synchronous transmitted sequence.

Then the results presented here for finite transmission length can be derived via analysis of

synchronous multiuser communication, as done 'n Chapter 3. However, the approach taken here is

more general and gives more insight into the nature of the problem. The limit N -- 00 is considered

in Section 4.2.2.

The decision made on the ith bit of the kth user at the output of the detector v is:

bk(i) = sgn vTy = sgn vT( PzWb + n). (4.20)

As for the inner product, for all x, y in L

<,(.x), S(t,y) > = x T T- y = < x, y> . (4.21)
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It can be seen from (4.21) and from (4.3) that RZ is positive definite.

Definition : We will refer to the (k, i)th row (or column) of a matrix of the dimension of TR when

we want to name the kth row (or column) within the ith block in vertical (horizontal) direction.

4.1.2 Near-far resistance

We first assume N to be finite, as is the case in all communication enviroiments, and prove

existence of a linear filter which achieves the near-far resistance of optimum multiuser detection.

This filter is nonstationary for finite N. The limit N - oo is then considered, yielding a sta-

tionary noncausal limiting filter, and hence, after appropriate truncation of the noncausal part, an

approximation of the near-far optimal linear filter which can be implemented easily.

As shown in [Ver 86b] the asymptotic efficiency of the optimal multiuser detector t/ is

77k ..1 min IIS(tc)11 (4.22)
wk(i) ' EZk

m raim In.(t,wf)I 2  (4.23)
wk(i) aEZk

where Zk is the set of error-sequences c = {E(i) E {-1,0, 1}K, i = -M, ...,M, ck(i) = 1} that affect

the ith bit of the kth user. The NP-completeness of this problem for a positive definite matrix R

was established in Section 3.2.2.

In an environment where the transmission energies change in time, e.g. if the transmitters are

mobile, a performance measure of interest for any detector is its kth user near-far resistance, 1k,

which is defined for each detector as its worst-case asymptotic efficiency for bit i of User k over all

possible energies of the other (interfering and non-interfering) bits, i.e.

,= inf rlk,i (4.24)w% (l)>0

(jI)(ki)

In our definition of near-far resistance we model the most general case, where the energies of the

users are allowed to be time-dependent. This captures the worst-case operating conditions of the

detector, which are, for example, encountered in mobile radio communication, due to positioning

and tracking variations. In the case where the energies are constrained to be arbitrary but non-

varying the present near-far resistance is a lower bound. That case is not amenable to closed-form

analysis, since one has to deal with a combinatorial optimization problem.
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For illustration consider the two-user case. If the user energies are constant over time, i.e.
w(i) = W1, w2 (i) = W2, the asymptotic efficiency of the optimal multiuser detector given by (4.23)

reduces to [Ver 86b]:

771 = min , 1 + - 2 max {P1,1 2141}) V- ' , 1 + 21 - - 2(IP121 + IP211)--! '

and hence

tlin m= "i = min 1 - P12 ,  21i 1-P 2 -P 2 + (1P121- I z1) 2  (4.25)Wu2 2
W1 cost.fI

and analogously for User 2, where P12 = R 12 (0) and P21 = R 12(1). The dependence of r1 for

constant energies on the energy ratio is shown in Figure 16.

W

LL,

1--OPTIMUM MULTIUSER DETECTOR
O ~---CONVENTIONAL SINGLE-USER DETECTOR

(L

U -

2Ii.

09

0.

2m II 'I=, I} T i/(I,,2 I IP2, I)

Fig. 16. Asymptotic efficiencies in the 2-user case for infinite
transmitted sequence length, when the user energies are constant

over time (here we chose 1P121,1IP211 = 0.3,0.5).
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Note that the optimal multiuser detector is near-far resistant, and in fact has an asymptotic

efficiency of unity for sufficiently powerful interference ([Ver 86b]). Intuitively this is because in

that case the interferers can be "perfectly" recovered and their contributions can be subtracted

from the decision statistic. Note also that in this case three different error-sequences minimize

(4.23) for different values of w2/w 1 , as can be seen from the discontinuity points of the derivative

of 27. The minimum of 77 over constant energies, 27min, is an upper bound on the near-far resistance

of optimum multiuser detection 7, which is the minimum asymptotic efficiency over unconstrained

energies.

The near-far resistance of the optimal multi-user detector is important since it is the least

upper bound on the near-far resistance of any detector, and a measure of the relative performance

of any suboptimal detector. From (4.23) and the definition of near-far resistance it is equal to

77k,= inf 1 min IIS(t,wE)1 2  (4.26)
Wj(l) :O wk(i) cEZk

wk(i) const.
1 2

inf min 11 S(t, wc)I 2  (4.27)
wy(l)_>0 EZk

wk(i) const.

= inf IIS(ty)I 2 . (4.28)
yELyk(i)='

In Section 4.2 a closed form expression for (4.28) is obtained as the reciprocal of the (k, i)th diagonal

element of the inverse of 7Z (see footnote 7). Hence, though nonobvious because an inf and not

a min is considered, the near-far resistance of optimum multiuser resistance is guaranteed to be

nonzero because of the inear independence assumption of (4.3), which ensures that 1Z is invertible.

We now turn to the performance analysis of the linear detectors introduced above. The prob-

ability of error at decision upon bk(i) of the linear detector v is, from (4.10):

Pk(i) = P(bk(i) 5 bk(i)) (4.29)

= P(< 3(t, wb), 3(t, v) > + nk, i < 0 bk(i) = 1). (4.30)

The equality follows since the hypotheses +1,-1 are assumed equally likely. Let B be the set of

possible transmitted sequences. From (4.8) nki is a zero-mean Gaussian random variable with

variance o2 1 I.(t, v)112 , hence the probability of error in (4.30) is a sum of Q-functions, one for

each possible interfering bit-combination. For a - 0 the Q-function with the smallest argument
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dominates the error probability, hence from (2.1), since the expression below is shown to be upper

bounded by 1 via the synchronous equivalent (Section 4.1.1) and the proof in the synchronous case

(Section 3.3), the asymptotic efficiency achieved by the linear detector v for the i th bit of the k t h

user is

k,) < (t,wb),S(t, v) > (4.31)
- m bSIIS(t, v)11 }

bk(i)=i

Knowledge of the asymptotic efficiency of a linear detector is equivalent to knowledge of the worst-

case probability of error over the bit sequences of the interfering users, since this error probability,

which is a Q-function, is set equal to Q( llk,i(v)wk(i)/o) to obtain (4.31). Note that when we say

worst-case error probability in this chapter, we mean with respect to interfering bit sequences or,

when explicitly stated, with respect to energies, and not also with respect to delays and phases, as

e.g. in [Pur 82].

For illustration consider the conventional single-user detector in the two-user case. We have

v = uki (recall that uki is the (k, i)ih unit vector in the space L of linear detectors). If the user

energies are constant over time, i.e. wI(i) = W1, w2(i) = w2, the asymptotic efficiency of the

conventional single-user detector is found from (4.31) to be:

71 = max2  f0, 1 -(P121 +Ip21,). ' , (4.32)

and analogously for User 2, where P12 = R.12 (0) and P21 = R 12(1). The dependence of 77c for

constant energies on the energy ratio is shown in Figure 16. Note that the asymptotic efficiency of

the conventional single-user detector is zero for sufficiently high interference energy ( /W7 /'/ii " >

1/(!P121 + IP21 1)). This implies that its near-far resistance is zero, which is what we want to remedy.

There are three quantities of interest in this communication environment. They are the trans-

mitted bit-sequence, the set of energies (these depend only on the transmitters and determine

the operating points for the receiver) and the data-processing linear detector v. In determining

what linear detector to choose at the receiver a useful procedure is the minimax approach, in

which the design goal is to optimize the worst-case performance of the receiver over the class of

operating points. Thus we are interested in finding the maximin linear detector, whose worst-case

performance over all allowable input sequences is the highest in the class of linear detectors. The

following result quantifies the performance of the maximin detector, in the sequel denoted by v*.

Proposition 4.1 : There exists a linear detector (which is independent of the received energies)

that achieves optimum near-far resistance. 0
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In other words, there is a linear detector which achieves the near-far resistance of the optimum

multiuser detector.

Proof: From (3.10) the asymptotic efficiency of the linear detector v is

r7k,i(v) = w.Lmax2 10, min < S(t,wb),S(t,v) > (4.33)
bk(i)---

=2 min 0 <S3(t, wb), 3(t,v) >I

bB wk(i) max2 O, - (4.34), , C B W k IIs ( t , V 1 11

- i nw(i) max2 {0 bW , (4.35)
bk(i)=l

where in the last equality we have used the compact matrix notation of (4.21) for simplicity. We

are interested in the energy-independent linear detector with the highest worst-case asymptotic

efficiency, i.e. whose near-far resistance is

?7ki(v*) = sup inf r7k,i(v) (4.36)
vEL wj(l)>O

II1(tv)I O wk(i)const.

= sup inf min 1 max b T0, v

vL wj(,)>o bEB wk(i) m VO, j4.
vTlRvo wk(i)consi bk()=

= sup inf maxo2  0y (4.38)
vEL YEL max 7(4.38

vT' v#O Yk(i)
= I

= max2 0,  sup inf (4.39)
vT'Rv# 0 YA:(i)

= 1

where we have set yj(l) = bj(l) wj(l)/\/ T) for the third equality. Let M(v,y) denote the

penalty function yT7Zv/V-vT-7Zv, where the first argument is from the set H of detectors and the

second from the set Q of operating points. We now show that M(v,y) has a saddle point, i.e.

Tpv

sup inf yT-V = inf sup (4.40)
vEL YEL V7TP7 YEL vEL VT'V T 7-

vTRveo Yk(')
= 1  yYk= ) Trv#o

which means that the sequence of sup and inf in (4.39) can be interchanged.
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Though the penalty function of (4.39) looks similar to the signal-to-noise ratio functional

encountered in the robust matched filtering problem [Ver 83a], I < h,s > 12/ < h, Eh >, the

problorn is different here because the numerator can be negative. Thus we have to establish the

result "from scratch". In order to show that M(v,y) has a saddle point, i.e. satisfies (4.40), we

show that it satisfies the requirements of the following theorem:

Theorem 4.1 [Ver 84a, Thin. 2.1]: Suppose Q is a convex set and M(v, .) is convex on Q for

every v E H. Then if (vL, YL) is a regular pair(7 ) for (H, Q, M), the following are equivalent:

a) YL E arg min sup M(v,y),
yEQ vEH

b) (vL, YL) is a saddle point solution for (H, Q,M).

This theorem establishes that if we exhibit a regular pair whose second at rment satisfies a),

the game (H,Q,M) has a saddle point, which means that the sequence of max and min in (4.39)

can be interchanged. In the following we find a suitable regular pair, thereby proving (4.40).

Clearly the convexity conditions are satisfied. We need to find a candidate regular pair. Note

that the value of the inf term in (4.39) is -oo (which gives a near-far resistance of zero) unless v

is picked such that RZv = uki(q is invariant with respect to scaling of v). uk,i is the (k, i)th unit

vector in the Hilbert space L, defined as u' i(l) = bkjbli. This gives us a candidate for an optimal

detector vL: d, with Rd = uk,i . (If this detector is indeed optimal, which follows if the candidate

pair is regular and satisfies a), it coincides with v*).

Definition: A decorrelating detector di, k for the iih bit of the kth user is an element of L for

which the following relation holds:

VxEL : < 3(t, dik), .(t,x) > = xk(i) . (4.41)

Equivalently, Rd = ui k and the candidate vL = d (superscripts are omitted). The explanation

of the name of "decorrelating" is similar to the one given in the synchronous case in Section 3.3.

From (4.10), using v i , k = di 'k , the detector decides for sgn(V'wj7bk(i) + nk(i), i.e. bk(i) has

been decorrelated. As to existence of the postulated filter, we show in Section 4.2., (4.63), that

(-) (vL,YL) E H x Q is a regular pair for (H,Q,M) if, for every y EQ such that y" = (1- )YL +y EQ
for o E [0, 1], we have

sup M(v,ycr) - M(VL,YO) = o(ck).
vEH
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a decorrelating detector exists for any set of transmitter signals and delays for which the LIA is

satisfied.

Next we find a YL which meets the requirement of point a) of Theorem 4.1. Using the Cauchy-

Schwarz inequality, we find that

sup M(v,y) = sup = yTRy (4.42)
vEH vEL = 'vT ~v# 0

where the inner product is maximized for v = ky + {x E L : 7x = 01.

We now need to solve the Hilbert space optimization problem

inf yT7y (4.43)

subject to Yk(i) = 1

Using (4.21) and the definition of d we can rewrite the minimization problem under consideration

as:

inf I[YIIR (4.44)

subject to <d,y>=1.

1 IIR is a norm since IZ is positive definite. We have obtained a minimum-norm optimization

problem in Hilbert space. To prove existence of a solution we need to show the constraint set to be

closed, which holds since the Hilbert space is finite dimensional. (Even for N -- oc, when we have

an infinite dimensional optimization problem, we could use the fact that the codimension is finite.

The problem there is that the signals are no longer square integrable.) The constraint, yk(i) = 1,

is equivalent to y = uk,i + {x : < x, d >R= 0}. A = [ d ], the subspace generated by d, is a closed

subspace of dimension 1. Hence the constraint set {x :< x, d >R= 01 = .4± is closed. We now

have a minimum-norm optimization problem in HilLert space over a closed subspace. Hence the

Projection Theorem, [Lue], guarantees existence (so we can replace the inf by a min, as required

in a)) and uniqueness of a minimizing equivalence class y*, with

y* E {A l + u i A- 1- {.4.L + uk,i) n A, (4.45)

where equality holds since A is closed. Hence y.(i) = 1 and y* = k d, which implies

y* d (4.46)
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We now have a candidate regular pair which satisfies a): (vL,yL) = (d, (dk(i))-ld). From

(4.42) and the definition of regularity we have to check the dependence on a of

i - Ya vL

VVT7 ZV L

VdTZd + 2a(y - d)TlZd + a 2(y - d)TIZ(y - d) -

- + a2(y - d)T-Z(y _ d) - ()(4.47)dk(i) 0

We have repeatedly used the decorrelating property of d. Since V*r1 _ 1 + 1/2 x, the above

quantity lies in the interval [0 , (y - d)T7?(y - d)v/RjlY/2 a2 , hence divided by a goes to 0

when a 1 0. Thus (d, (dk(i))-ld) is a regular pair which satisfies point a) of the theorem.

Hence it follows from the theorem that the penalty function yTiZv/v17IT has a saddle point,

i.e:

sup inf yTv = inf sup yTpv (4.48)
vTEv L ~() 1 _ 75 E VEL Vr/VT37 (4.48vTVR,,* Yk(i)

= 1  
Yk(i)=l vTV,,vdj

which establishes existence of v* and hence

?7k,i(v*) = max 2 (0, inf sup Y (4.49)y E L v E L V IV_ z
Yk(i)

= ! vT'RZv 0

= max2 {0, inf /;Ti74} (4.50)yEL

= inf I[3(t,y) 112 (4.51)

yELYk(i)=l

(4.52)

where the second equality is obtained in (4.42), the third line follows since R_ is nonnegative definite

and the last equality was obtained in (4.28).

We have proved that there is a linear detector which achieves the near-far resistance of optimum

multiuser detection.

0

The reason why the near-far optimum linear receiver achieves the same near-far resistance as

the optimum receiver can be understood as follows. Let Ql be the set of multiuser signals modulated
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by all possible amplitudes, i.e. f/= S(t,y),y E L} and let S denote the subset of fl such that the

amplitude of the ith symbol of the k th user is fixed to 1, i.e. S = {S(t,y),y E L,yk(i) = 1} (note

that S is a convex set, and because of the LIA it does not include the origin). Since the penalty

function in (4.39) is invariant to scaling of v and the operator R. is positive definite, (4.39) can be

rewritten as

i7k,i(v*) = max 2 0, sup inf < S(t,y),S(t,v) > (4.53)
vEL yEL

= max2  0, sup inf < y, v > 1  (4.54)I t'Ef =l yES
11V11=1J

Therefore the k1h user decorrelating detector corresponds to the unit-norm multiuser waveform

whose minimum inner product with the elements of S is highest. But since S is a convex set,

that signal is a scaled version of the closest vector in S to the origin (Figure 17), and its near-far

resistance (c.f. (4.51)) is the norm squared of that vector. But, as (4.28) indicates, the square of

the distance from S to the origin is precisely the near-far resistance of the optimum detector.

Fig. 17. Interpretation of near-far resistance. Vector

in boldface corresponds to decorrelating detector.
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Equation (4.28) leads to a nice intuitive interpretation of near-far resistance. Rewrite this

equation, using the definition of S(t, .), as

= inf IIsk(t - iT - rk) + Z yj(l) sj(t - IT - r) . (4.55)
1'j ()E (It)(li

(jL)O(ki) (j)#(ki)

Letting {yj(l)} vary over the admissible set, the second term above generates all points of a linear

subspace which includes the origin, therefore the infimum in (3.26) is the distance of 3k(t- iT-rk)

to this space, i.e.

= d2 ( k(t-iT-rk) , span { j(t- iT- rj),(j,l) 5 (k,i)}), (4.56)

where d(a, b) denotes the Euclidean distance between the £2 elements a and b. In the synchronous

case, because the time-support is disjoint, the infimum in (3.26) is achieved when yj(l) = 0, 1 i,

and (3.27) reduces to

YFk = d2 (9(t), span { j(t), j $ k}), (4.57)

i.e., the kth user near-far resistance in a synchronous channel is the square of the innovation of the

kth user signal with respect to the space spanned by the signals of the interfering users. Viewing the

asynchronous problem in terms of the equivalent synchronous system with N * K users and period

NT, the near-far resistance of asynchronous communication allows for the same interpretation.

Note, however, that the shifted versions sk(t - IT - rk),i 0 I of the kth user signal affect the

near-far resistance of the i th symbol of User k.

The following section characterizes a linear detector that achieves the optimum near-far resis-

tance anticipated by Proposition 4.1.
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4.2 The decorrelating detector

4.2.1 The finite sequence length case

Definition: A decorrelating detector dk,i for the ith bit of the kth user is a linear detector for which

?Zdki = u '  (4.58)

or equivalently, from (4.21), < S(t, dk,i), S(t,x) > = xk(i), for all x in L (cf. (4.41)).

Existence: By the LIA, statement (4.59) below holds for all k, i. Hence the following equivalences

show the existence of the decorrelating detectors for each bit of each user.

V x E L with xk(i) 0 0 : 13'(t,x)II $ 0 (4.59)

.-. V xEL with xk(i)$0 :xTx $ 0 (4.60)

4--* xEL with xk(i)$0 s.t. Rx = 0 (4.61)

4== the (k, i) th column (7 ) of R' is linearly independent of the others (4.62)

3 3d s.t. Rd = u k i  (4.63)

Properties:

i) The decorrelating detector for each bit of each user is invariant with respect to received energies

and does not require knowledge thereof.

Proof- Since the elements of the matrix 1Z are normalized crosscorrelation coefficients, the

defining equation (4.58) is energy independent.

ii) The decorrelating detector eliminates the multiuser interference present in the respective matched

filter output. (Hence its name).

Proof. From (4.20) the decision made on the it h bit of the kt h user at the output of the

decorrelating filter d is,

bk(i) = sgn (dTZWb + dTn)

= sgn ( Wk-kibk(i) + dTn). (4.64)

(7) We refer to the (k, ih row (or column) of a matrix of the dimension of R. when we want to

name the kth row (or column) within the ith block in vertical (horizontal) direction. This notation

was adopted since RZ is block-Toeplitz.
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Interestingly, this natural strategy, though not necessarily optimal for specific user-energies, is

optimal with respect to the worst possible distribution of energies. The sgn decision in (4.64)

is based on the assumption that the respective user is known to be active.

iii) The klh-user bit-error-rate of the decorrelating detector is independent of the energies of the

interfering users wj(i),j A k, i = -M,..., M.

Proof: It follows from (4.64) that the decision statistic that is compared to a zero threshold is

independent of the energies of the interfering users.

iv) The efficiency of the decorrelating detector is independent of the energies and is given by

d= ma 2 to, mn 1 < S(t, Wb),S (t,d)> (4.65)

bk(i)=1

= max2 {0, min ' 1 bk(i)} (4.66)

bk(i)-1

1(i) (4.67)

which by i) is energy-independent.

v) The decorrelating detector achieves the highest near-far resistance of any linear detector. In

addition, it achieves the near-far resistance of optimum multiuser detection.

Proof." The proof of Proposition 4.1 is constructive, hence the first part of v) was obtained as a

byproduct during the proof. Here is a shorter proof, using the following fact: Any single (i.e.,

energy-independent) linear strategy which is not decorrelating has a near-far resistance of zero.

This is shown as follows: The near-far resistance of an energy-independent linear filter is (cf.

(4.39)):

7ki(v) = max2 0, inf -T_ (4.68)SyEL 1J "r Z
Yk(i)=l

Unless Tlv = uk,i (note invariance of 77 to scaling of v) the value of the inf-term is -oo.

Hence any linear filter which is not decorrelating has a near-far resistance ' = 0. This fact

together with the nonzero asymptotic efficiency (4.67) of the decorrelating detector establish

optimality of the decorrelating detector within the class of energy-independent linear filters.

Therefore the second part of v) results from Proposition 4.1.

Note that since the asymptotic efficiency of the dpcorrelating d,-t-etnr is independent of energies

(Property iv) it equals the near-far resistance. This gives us an explicit solution for the Hilbert
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space optimization problem we obtained for the near-far resistance of optimal multi-user detection

in (4.28), namely

N, 71, 1 (4.69)

11ki (i)

and outlines an alternative proof for Proposition 4.1: one could have explicitly solved the optimiza-

tion problem (4.28) by proceeding as in (4.43 if), postulated the decorrelating detector by reasoning

as in Fact under v), and shown that the asymptotic efficiency of the decorrelating detector and the

near-far resistance of optimal multi-user detection are equal (see [Lup 89a]). However, the game

theoretic proof provides more insight into the nature of the solution.

Property iii) is of special importance. By this property the decorrelating detector does not

become multiple-access limited, no matter how strong the multiple-access interference is. Also the

decorrelating detector demodulates the data perfectly in the absence of noise, as can be seen from

(4.64).

Characterization

We would now like to find an explicit expression for the decorrelating detector which we have

up to now defined implicitly. It follows immediately from (4.58) and the uniqueness of the inverse

of an invertible matrix that the decorrelating detector for the i~h bit of User k is the (k, i)th row of

the inverse of RZ.

From the above and (4.67) the asymptotic efficiency of the decorrelating detector for the it h

bit of User k is given by the (k, i)th diagonal element of the inverse of JZ:

d _ 1 (4.70)

(k,i),(k,i)

For the values of N encountered in practical applications, inverting a NK * NK matrix is not

possible. This issue is addressed in Section 4.2.2, where we represent the decorrelating detector

as a K-input K-output time-varying linear filter, and then show that in the limit as N tends to

infinity the filter becomes time-invariant.
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4.2.2 The limiting case N - cc

Proposition 4.2 : As the length of the transmitted sequence increases (N - oo) the decorrelating

detector approaches the K-input K-output linear time-invariant filter with transfer function

G(z) = [RT(1)z + R(O) + R(1)z- '] - 1
. (4.71)

Proof: From (4.14) and (4.13) the matched filter outputs for I = {-M,..., M} are

y(I) = RT(l)W(I + 1) b(I + 1) + R(O)W(l) b(I) + R(1)W(I - 1) b(1 - 1) + n(l), (4.72)

where b(-M - 1) = b(M + 1) = 0. Taking z-transforms and letting N go to infinity we have:

Y(z) = S(z) [VB](z) + N(z) , (4.73)

where [WB](z) is the z-transform of the sequence wb = {[V..~T7bj(i),..., V \/_7 bK(i) ]}, the

matrix S(z) is

S(z) - RT(I)z + R(O) + R(1)z- ', (4.74)

and Y(z), B(z) and N(z) are, respectively, the vector-valued z-transforms of the matched filter

output sequence, the transmitted sequence, and the noise sequence at the output of the matched

filters. S(z) can be interpreted as the equivalent transfer function of the multiuser communication

system between transmitter and decision algorithm, as illustrated in Figure 18.

{b~i)) -I I :(Y Y(0) FOEC-ISION1 (b 4b)) { ( )

S (Z) jALWORI I rw

(n ())

Fig. 18. Equivalent communication system.

102



In this setting the optimal receiver problem is to find the transfer function matrix G(z) of a K.

input K-output linear time-invariant filter, at the output of which a sign-decision yields estimates of

the transmitted sequence which are optimal in a certain sense. In our case the optimality criterion

is the near-far resistance, and we have demonstrated that the optimal filter is the decorrelating

filter, which is the filter which eliminates the multiuser interference, i.e. is the K-input K-output

time invariant linear filter which recovers the transmitted data in the absence of noise. Its transfer

function is therefore the inverse of the equivalent transfer function S(z)

G(z) = S(z) (4.75)

0

,/det S(z)

{n ( ())

Fig. 19. Interpretation of the decorrelating detector.

The effect of the inverse filter [ S(:) 1-1 can be interpreted as illustrated in Figure 19. The

decorrelating filter can be viewed as the cascade of a finite impulse response filter with transfer

function adjoint S(z), which decorrelates the users, but introduces intersymbol interference among

the previously noninterfering symbols of the same user, and of a second filter, consisting of a bank of

K identical filters with transfer function [det S(z)]- 1, which removes this intersymbol interference.

Whereas the region of convergence of the z-transform can always be chosen so as to make S(z)

invertible, attention has to be paid to the issue of stability.

Proposition 4.3 : There is a stable, noncausal realization of the decorrelating detector, if and

only if the signal cross-correlations are such that

det S(e) det [RT(1)ew + R(0) + R(1)e - "] $ 0 , V E [0,27r]. (4.76)
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Proof: As long as det S(z) has no zeroes on the unit circle, a nonempty convergence region of

S-(z) can be chosen which includes the unit circle. Thus stability can be achieved. But, since

R(O) is symmetric,

det S(z) = det ST(z) = det S(z-1).

Hence the stable version of the decorrelating detector will be noncausal.

In the two-user case condition (4.76) is easily shown to be

iP121 + IP211 < 1. (4.77)

Since [P12[ + IP211 < 1 is always satisfied, condition (4.77) is violated only if the normalized

waveforms coincide modulo circular shifts and sign changes.

Condition (4.76) is equivalent to the limit of the LIA as N - oc. Both are necessary and

sufficient conditions for system invertibility. The LIA requires that the output of a system (the

system between the user bit-streams and the matched filter outputs) be not identically zero if the

input is nonzero. Hence different inputs generate different outputs, i.e. the system is invertible.

For a linear system the requirement that nonzero input produce nonzero output is equivalent to

requiring that the transfer matrix be nonsingular on the unit circle. Assume the transfer matrix is

singular at the angular frequency wo. Necessity follows since otherwise the input sequence consisting

of a complex exponential at w0 times a vector in the nullspace of the transfer matrix evaluated at

w0 yields zero output, since the transfer function on the unit circle gives the magnitude and phase

of the system response to complex exponentials. On the other hand sufficiency can be established

by using Parseval's relation extended to multivariable systems:

1 f2Tyei l~w 1 02:r
I.y"II 2 = 2 ] Y(ej"))dw IH(e,") X(ej")j2dA;. (4.78)

Hence for a zero output sequence yn the vector H(e)')X(e) '° ) has to vanish for all ', which implies

that H(e)W' ) is singular whenever X(e) w) is nonzero. This establishes the claimed equivalence.

The following results quantify the asymptotic efficiency achieved by the liniting d-correlating

detector.
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Proposition 4.4 : Let

[S (z)]- 1 = D(m) z - ' (4.79)

Then the asymptotic efficiency of the limiting decorrelating detector for the kt h user is given by

dk = (4.80)
Dkk(O)

= ~f [RT(1)eJiw+R(O)+R(1)e-]i dw (4.81)

Proof : With Proposition 4.2 the decision statistic at the output of the limiting decorrelating

detector has a z-transform given by

G(z)Y(z) = [WB](z) + [S(z)-'N(z) = [WB](z) + N'(z)

where N (z) is the z-transform of the (stationary) filtered Gaussian background noise vector

sequence. Its covariance matrix sequence E [n'(.)n'T(. + i)] has a z-transform of o2[S(z)]- 1

(2s-(z)S(z)S-1T(z-1)), hence with (4.79) nk is a zero-mean Gaussian random variable with

variance u2 DkU(O). Therefore the probability of error for the kth user equals

' (4.82)Pk = Pitn k > VIU) = Q(-a(.82

From here, using the definition of asymptotic efficiency, the first equality follows. For the second,

applying the inverse z-transform and (4.79),
1 fo2'[S(ej)_ 

&
Dkk(O) = 2'dw

and the result follows by inserting (4.74) into the above.

Proposition 4.5 : The asymptotic efficiency of the limiting decorrelating detector for the k h

user is strictly positive, and lower bounded by

d > mx [RT(1) e j w '+ R(0) + R(1)e - j "-]7 > 0.
- ";E[o,2ir]

Proof: From (4.81)

Dkk(0) _ max I [RT()i + R(O) + R(1)c -'] -. (4.83)
wE,1[0,20]
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Hence

7kn 1 [ max [ RT(1)e " + R(O) + R(1)e- J ' -I 1

~.(-) E[o,2r]

min, I det [RT(1)ejw + R(O) + R(1)e - jw] (
maxw I adjik RT(1)eJw + R(O) + R(1)e-j (.4

which is positive by Proposition 4.3.

0

Next we summarize some properties of the matrix encountered in Propositions 4.3, 4.4 and 4.5.

Proposition 4.6 : Let M(V) = RT(1) eJp + R(O) + R(1) e- j . Then

i) M-'(p) is real.
ii) AI-'1(2r - p) = MI-(o)

iii) M(c) is nonnegative definite for all p.

Corollary

i) Dkk(O) is real.

ii) Dkk(O) = -1 f0[ RT(1)ej v + R(O) + R(1)e- j w dp. (4.85)

iii) If one user is added to the system, the asymptotic efficiency of the other users is nonin-

creasing, and changes according to

1 1 1 f 1im T( ) M-'(P) u (l2

klkK+1 T k(K rJ 1 - mT(y) M-I(V) M() d ,

where [1, mT(P), rn(p), M(v)] are the elements of the matrix M(p) after the additional user has

been added to the system.

The proofs are given in Appendix 4.3.

Proposition 4.7: Condition (4.76) of Proposition 4.3 is equivalent to

rain (x R(O) x - (x* R+ x) 2 + (x* R- x) 2 ) > 0, (4.87)

where R+ = RT(1) + R(1) and R- = j(RT(1) - R(1)). The * denotes the complex conjugate.
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Note that both R+ and R.- are Hermitian.

Proof: Since from Proposition 4.6 M(W) > 0, condition (4.76) is equivalently expressed as

inf Amin (M(V)) > 0. (4.88)

Since M(V) is Hermitian, its smallest eigenvalue is [Horn, Thm.4.2.2]

,min (M(w)) = min x* M(c) x. (4.89)
X"X=I

xE

Therefore (4.88) becomes

inf min x*R(O)x + x*[RT(1) + R(1)]x cos v + j x*[RT(l) - R(1)]x sin O
p x*x=1

min x* R(0) x - y'[x* (RT(1) + R(1)) x]2 + [j x* (RT(1) - R(1)) x]2  (4.90)
x*X=1

where we have exchanged the inf and min operations and used the fact that

inf (a cos p + b sin V) - -a 2 +b 2 . (4.91)

Proposition 4.8 : A necessary condition for Proposition 4.3 is that the matrices R(O) + R(1, +

RT(1) and R(0) - R(1) - RT(1) be nonsingular. C

Proof:

min x* R(0) x - V/(x* R+ x) 2 + (x* R- x) 2

xE

< min xTR(O) x - V(xT R + x)2 + (xT R- x)2  (4.92)
-- xTx__1

xER

= min xT R(0) x - ,(xT R+ x)2  (4.93)
xTx=I

= min xT R(0) x -I(X T R+ X)21 (4.94)
xTx=l

= min min {xT (R(0) + R+) x, xT (R(0) - R+) x} (4.95)
xTX=]

= min { Ami. (R(0) + R+), Amin (R(0) - R+) }. (4.96)

The result follows from Proposition 4.7, since from Proposition 4.6 iii) both R(0) + R+ and

R(0) - R+ are nonnegative definite (€ = 0, respectively = r). m
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Proposition 4.9: A sufficient condition for Proposition 4.3 is that

,\2 Max(1_\2 2.972

Sin(R(O)) > max {Amax(R+), Amin(R+)} + ax(R-) (4.97)

or equivalently

Amin(R 2 (0)) > Amax(R+) + Amax(R 2 ). (4.98)

Proof:

ain x* R(O) x - V(x* R+ x) 2 + (x* R_ x) 2
X*X-=I

Xle

> min x* R(0) x - ,/max [x* R+ x] 2 + max [x* R._ x]2  (4.99)-x*x=1 x x .  x*x--1

Amin(R(0)) - max {Aa(R+) 2(R+)} + \ax(R_)
-- R+ , Ali(R) max (R , min(R_)}

= Amin(R(0)) - V/max {A2ax(R+), Amin(R+)) + A (4.101)

Equation (4.101) follows after noticing that if A is an eigenvalue of R_, -A is is an eigenvalue of

R_, hence of R-, which allows us to collapse the second set. Condition (4.98), which requires

more computational effort to verify than (4.97), but is of simpler structure, follows from the fact

that R(0) is nonnegative definite (it can be easily reasoned) and both R+ and R_ are Hermitian,

hence diagonalizable. a

We now turn our attention to the two-user case, in which the asymptotic efficiency has a closed

form expression.

Proposition 4.10 : In the two-user case let R 12 (0) = P12 and R 12 (1) = P21. Then the asymptotic

efficiency of the decorrelating detector for infinite sequence length is given by:

= - 2 )2 - 4p12 P21

- - (P12 + P21 )2][1 - (P12 - P21 )2]. (4.102)

Proof : This formula can be obtained by particularizing Proposition 4.4 or by minimizing the

asymptotic efficiency of optimal multiuser detection in the two-user case with respect to energies.
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Alternatively, (4.102) can be proved by taking the limit as N -- o of the asymptotic efficiency

of the decorrelating filter for. the central bits in a length N sequence, which is done in the sequel.

(The reason for considering bits near the center of the transmitted sequence is that the demod-

ulation process in this region is least affected by the marginal effects due to the finiteness of the

sequence.) Thereby it is proved that in the two-user case the limit of the asymptotic efficiency

of the finite-length decorrelating detector as N -- o is indeed the asymptotic efficiency of the

limiting decorrelating detector.

Recall that the asymptotic efficiency of the decorrelating detector is given by the reciprocal of

the corresponding diagonal element of RZ- 1. We need to find explicit expressions for the central

diagonal elements of the inverse of the matrix RZ as a function of N. We have

1 P12 0 0
P12 1 P21 0

R= 0 P21 1 P12 " (4.103)

0 0 P12 1

Denote by An the determinant of the above n • n matrix. It is easy to see from the structure of Z

that An satisfies the recursion:

A =P12 An-2 , n even (4.104)

2P21 An-2 , n odd .

Hence we can writeAp2 -p2 ]-A2 1  1 2 2 [A2n_ ] (4.105)

2n-1 _1 p21  A2n-3 J(.15
If we consider the sequence of 4n * 4n matrices for simplicity, the central diagonal element of the

inverse of RZ is A 4n/(A21 _1 A,)n). Hence after introducing the state vector

A "= [ N 1 1 (4.106)1n = 2n-l

we see that finding A2n, A2n-1 requires finding the trajectory of the unforced linear dynamic

system

= [ . 2 X , 1  1 22X, -- 1 -- 21

i.e.,

x1= [ r P2 [ (4.107)
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The eigenvalues of this system are found to be

I _ .2 2 2 _ p2 _2 4p2 P 2

A1,2 = 1-P2 1  2 - - 1

We see 0 < A, < A2 < 1. After finding the corresponding eigenvectors it follows that:

xn: Al,+, p22 2+p ,] [An, 0] , -(A , ,, +, p221 :
12  A2  ] in (4.108)

Hence the central diagonal element of the inverse of 1Z is

A4_ [1 0] X2n
A'-,,-I A,, [o 11 Xn [1 01 X.

(ALIA 2) 2n (A1 +p2 1) - (A2 + P (Al - A,)). (4.109)

[(A,/A2 - 1][(A1/A2)n (A1 +p2 1) - (A2 +P( 1)

So finally

d im = A-A 1 = p2 2 - 2 277 -1 - -" - - P21) -- 12 P21
n-0 A2n-1 A2n

Figure 20 shows the asymptotic efficiency of the decorrelating detector for infinite transmitted

sequence length in the two-user case. Note its invariance with respect to energies. The discrepancy

between 77d and 77min, defined in (4.25), is due to the fact that q7nin is higher than the near-far

resistance of optimum multiuser detection, since for r1,in the energies are constrained to be constant

over time.

The fact that the stable version of the decorrelating filter turns out to be noncausal is not

surprising. Due to the lack of synchronism among the users any decision based on less than the

entire received waveform is suboptimal. In practice, since the filter is stable, the more remote

symbols will count less heavily, and truncation of the noncausal part will be performed after a

suitable delay without affecting performance appreciably. For illustration consider the two-user

case. There from (4.74)
( 1 P12 + P21z - l

S(z) = P12 +P21 Z  1

and the transfer function of the decorrelating detector as given by (4.71) is:
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Fig. 20. Asymptotic efficiencies in the 2-user case for infinite

transmitted sequence length, when the user energies are

constant over time (here we chose 1P121, IP211 = 0.3,0.5

which yields 7i,, = 0.68, 77d - 0.59).

A

r (t) I 2+P2 1z "

Fig. 21. Limiting decorrelating detector in the 2-user case.

1 ( 1 -(12 + P2 1 z-1) (4.110)
1- - 21- P12P21z - PI2P21 z I1  -(P12 + P21z) 1 (

The resulting detector is shown in Figure 21. We are interested in the impulse response f(n) of

the IIR part of the above filter. Taking the inverse z-transform it is found to be

f(n) Z- 1 [ 2 - I - &1] =(4.111)

n - 1 -P - - 1221 z - 12 21 Z 7



where -- (1 - p1 2 - P21 - i)/(2p12p 2 1 ) and q7 is the asymptotic efficiency which is given in

Proposition 4.10. It can be checked that 1j] S 1, with equality if IP121 + IP211 = 1, which can

be shown to coincide with the condition imposed by Proposition 4.3 for the two-user case. In

the latter case the asymptotic efficiency is zero, which follows from Proposition 4.10. Otherwise

since 1 1 < 1 the limiting filter is stable, with symmetric coefficients which decay with rate . In

practical applications the filter will be approximated up to any desired precision by truncation of

the noncausal part to a finite number of filter coefficients. For illustration the decay rate of the

filter coefficients and the achievable asymptotic efficiency q7 are plotted in Figure 22 as functions of

P12 and P21.

Poor cross-correlation properties among the signature waveforms could imply that the limiting

filter G(z) does not exist, although the decorrelating detector exists for finite-length transmitted

sequences. We give an example to illustrate this fact. As mentioned earlier, for K = 2 it is

straightforward to show that the condition of Proposition 4.3 is satisfied for all signal constellations

for which 1P121 + IP211 5 1, which is the case unless the normalized waveforms coincide modulo

circular shifts and sign changes.

Consider the trivial signal case, where both users are assigned the same rectangular waveform,

as shown in Figure 23. In this case P12, which is the crosscorrelation between bits in the same

signaling interval, is r = (T - r)/T E [0, 1), where r E [0, T) is the delay between the two users.

Then P21, which is the crosscorrelation between bits in adjacent intervals, is 1 - r. Then

S(z) = ( 1 r+(1-r)z - ) (4.112)(r + (1 - r)z1

becomes singular for z = 1, hence there is no stable limiting inverse filter. And if it existed its

asymptotic efficiency, as given by (4.102), would be zero. For an infinite sequence of transmitted

bits where both users use the same waveform, this is not surprising. However for finite length

sequences advantage can be taken of the marginal effects of having bits which are not affected by

either past or future bits. For finite N the decorrelating detector exists unless r = 0, i.e., when

the transmissions are not synchronous. This is in accord with the multiarrival condition given in

Appendix 4.1, and with the results obtained in the synchronous case.
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Fig. 23. Signals and crosscorrelations of example (4.112).
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Appendix 4.1: Sufficient conditions for linear independence

Suppose that, for a fixed signal set,

i) {rl, ... , rK} are continuous random variables,

ii) {rl, ...,rh' are independent random variables,

iii) wk(i) 0 0.

Then almost surely there is no V E L, vk(i) 0 0 such that S(t, v) = 0.

Proof : Define the times of effective arrival and departure of the ith signal of the kth user, [1], as

Aqk=rk+iT+sup { E [0,T), s (t)dt 0 (4.113)

and

A,k = rk + iT + inf {r E (O,T],j s'(t)dt = 0}, (4.114)

respectively.

Since vk(i) 0 0 there is a first and a last symbol that differs from zero. It is readily apparent

that in order to have S(t,v) = 0, the effective arrival of the first (and the effective departure

of the last) symbol that differs from zero must be a point of effective multiarrival (respectively

multideparture). Note that this property does not depend on the particular v chosen, but only on

the set of delays. From (4.113),(4.114), the effective times of arrival and departure inherit from the

delays the properties of being continuously valued and mutually independent. Therefore, the result

follows, since the set of delays {rl, ... , rKj} for which multiarrival points result has measure zero.

0

Appendix 4.2: If the LIA is not satisfied

In this case 1Z is nonnega ive rather than positive definite. We will concentrate on the it h bit

of the ki h user. Recall the definition of the decorrelating detector for the ith bit of the kth user,

given in (4.58).

Proposition 4.11 The it h bit k t h user decorrelating filter exists if and only if

V x E L with xk(i) i 0 : IIS(tx) $ 0 (4.115)
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It can be seen that this condition is weaker than the LIA of (4.3), which is necessary and sufficient

for existence of the decorrelating detector for each bit of each user.

Proof : The proof is given by the equivalences (4.59)-(4.63). =

Proposition 4.12 : The decorrelating filter for the ith bit of the kih user does not exist if and

only if any decision algorithm for the ith bit of the kih user has a near-far resistance of zero. 0

Proof : Let's assume that conditions are such that the decorrelating filter for the it h bit of the

kth user does not exist. Then by Proposition 4.11 there exists an x with zk(i) = 1 such that

S(t,x) = 0, since S(t,x) is linear in xk(i). But then (4.28) implies that the near-far resistance of

the optimal multiuser detector is zero. Hence unless any decision algorithm has a near-far resistance

of zero, existence of the decorrelating filter is ensured. .

Proposition 4.13 : Let the existence condition (4.115) for a decorrelating filter for bit i of User

k be satisfied. Let Di,k be the set of decorrelating filters for the i th bit of the kth user. Denote

the set of generalized inverses of R' by I(7R). Denote the set of (i,k)yh rows of elements in I(1) by

Gi,k. Then a vector v E L is a decorrelating detector if and only if v E Gi,k.

Proof : In other words we need to show D',k = Gi,k. The equality is to be interpreted as an

isomorphism between otherwise identical sets of row vectors and of column vectors (this is necessary

since generalized inverses do not have to be symmetric). We will use the defining property for a

decorrelating detector d for bit i of User k, namely that R~d = u ,k, and the equivalent existence

condition for a decorrelating filter given in (4.62), namely that the (i,k)th column of R is linearly

independent of the others.

a) Gi,k C Di,k : Let 6 E I(7Z) and S = SBZ - 2. By the definition of generalized inverse, it follows

that TZS = 0, i.e., every column of S is in the nullspace of 7R. But since the (i, k)"' column of 1Z

is linearly independent of the other columns of 1Z, it is necessary that the (i, k)h element of each

column of S be zero, i.e. that the (i, k) th row of S be zero. Hence S3Tk7Z - (ui'k)T - 0, which

implies that Bi,k is decorrelating.

b) Di,k g Gik : Let d E Di,k,x E Gi,k. Then, by the "decorrelating" property of d and that of x

established in a), TR(d-x) = 0. Besides implying, by the same reasoning as the one used in a), that

the (i,k) element of any kt b user decorrelating detector is equal, this equation shows that x differs

from d by an element in the nullspace of )?. But it can be readily checked that Dik + () - D ,k.
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1
It is easiest to think of the equivalent synchronous model when dealing with the case when

the LIA does not hold, and use the results obtained in the synchronous case for independent and

dependent users.

Appendix 4.3

Proof of Proposition 4.6: i) From a well-known theorem in linear algebra the eigenvalues of a

Hermitian matrix are real (e.g. Thin. 2.5.6. in [Horn]). Hence as a corollary the determinant of a

Hermitian matrix is real. Write

M-1(() = det Ckk (M(p)) / det M(p), (4.116)

where Ckk is the kth cofactor of a matrix, and note that both M(V) and (hence) Ckk (M( O)) are

Hermitian.

ii) Making the real and imaginary parts explicit we can write M(O) = A + jB, where we omit the

dependence on V for notational convenience. Then M-I(v) = C + jD, where C and D satisfy

AC-BD=I CA- DB = I
BC + AD = 0 CB+DA=o (4.117)

Hence if (C,D) corresponds to (A,B), then (C,-D) corresponds to (A,-B). On the other

hand A = R(O) + [RT(l) + R(1)] cos( and B = [RT(1) - R(1)] sinw, so that for V 27r - p,

(A, B) - (A, -B). Hence C, and therefore, with i), M' ( ), is invariant under the transformation

27r -V.

iii) Given the sets of normalized signature waveforms and delays, define a new set of waveforms as

follows:

3 i(t +T -ri) e) ,0 < t < r i (418
= { i(t), i =1X,...K~i~(t) =f i(tM-ri) ri < t -< (4.118)

Define the complex crosscorrelations

= J0k(t) 0(t) dt. (4.119)

Then
xTMx-T

j***~t**i* Al f) J IIxt) 112 dt > 0 (4.120)
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Therefore MO is nonnegative definite. Next we show that MO - M(v), which establishes the

desired result. First let k < j, and recall that the users have been numbered according to increasing

delays. Then

l - jok k(t + T- ,k) eJP 3,(t + T- -,) e-.' dt + j k 30t- rk) 3j(t + T- 7-) e-,' dt

+ 3k(t - rk) i(t - ri) dt

IT+rk rif
-- W kt - 'k) .i(t -rJ) dt +e-jv f k k(t - rk) 3j(t + T - -rj) dt

= Rkj(O) + Rkj(1) e- j . (4.121)

Similarly, for k > j, M = Rkj(0) + Rkj(-1) ej'. Hence

M" = RT(1) ej3 + R(0) + R(1) e- j  = M(o).

Proof of Corollary: The first two results are immediate consequences of the theorem and of (4.80,

81).

iii) By the LIA M(p) is invertible, hence, with point iii) of the theorem, positive definite. For a

positive definite K * K matrix M with MT = M*, and for any K-vector m such that

[ M m
M T  1 > 0, (4.122)

for any 1 < k < K, we want to express

M m*-1
[m ] in terms of M- . (4.123)

But, using formulas for the inverse of a partitioned matrix and then for the inverse of a small-rank

adjustment (e.g. [Horn, p. 18]),

M I (uTM-Im*) (m T M -
__

u k)  
_

1
_ _ k

S -J kk ' + mTM = a + I. (4.124)
T  kk 1 -MM m* 1-mTM-li n*

From here, using the connection between 74k and Af-k of (4.81), equation (4.86) is immediate. To

show mathematically that the asymptotic efficiency is nonincreasing we show that mTM - Im* <

1 (note that the asymptotic efficiency of a (K + 1)-user problem cannot decrease if additional
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information is available, e.g. if the additional user's information sequence is known, which reduces

to a K-user problem). For this note that (4.122) is equivalent to

XTMx*+Y m T x * +y*xTm*+yy * > 0, VxECK,YE C. (4.125)

In particular also Vy E B?,

xTMx* + y (mTx* + xTm , ) + y 2 > 0, Vx E CK, y E . (4.126)

The left hand side is a quadratic function in y which is strictly positive, therefore its discriminant

is strictly negative, i.e.

(mTx * +xTm*) 2 - 4xTMx* < 0 , Vx ECK .  (4.127)

Then letting x = (M - 1)Tm, we obtain

mTM-lm* > (mTM-lm*) 2  (4.128)

which implies that

0 < mTM-lm* < 1. (4.129)

Hence the integrand in (4.86) is nondecreasing when one user is added to the system, which estab-

lishes the desired result. u
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4.3 Numerical examples: Probability of error

In the sequel the performances of the conventional and of the decorrelating detector are com-

pared. Without loss of generality attention is focused on the error probability of User 1 in a channel

shared by several active users. The conventional detector decides for the sign of the first component

of the matched filter output vector, given by (4.14). Therefore its average error probability over

the bit sequences of the interfering users equals

, - IE [R(O)lj b3(O) + R(1)ji bi(-1)] Vi
22(f1) Q , (4.130)

bj(0), j(_1),j01 01

whereas its worst-case error probability over the interfering bit sequences equals

K

Q j-= - + (4.131)

aJ

The probability of error of the decorrelating detector equals, from (4.82),

Q(V~ (4.132)

where from (4.85)

w 1/ j R(1)Tej- + R(O) + R(1)e - j - 1 d. . (4.133).d rI
The delays and phases of the K users enter the above formulas implicitly via the crosscorrelation

matrices, which are functions thereof and of the chosen signature waveforms. In the following we

consider Direct-Sequence Spread-Spectrum (DS-SS) signaling, where the carrier modulated wave-

form is given by

Sk(t rk) = Vw ak(t - rk) cos (wet + Ok) (4.134)

where ak(t) is the code waveform, zero outside [0,T], with fT a2(t) - 1, rk is the delay of User k due

to propagation delay and lack of synchronism between the users, and Ok is the phase angle of the kt h

carrier. In DS-SS the code waveform ak(t) is a sequence of N, nonoverlapping rectingular pulses

of amplitude ±(1/j) 1/2 and duration T, = T/NC. called chips. so that the k th us(.r waveform is

characterized by a sequence of N, bits, called signature sequence, giving the chip polarities.

119



4.3.1 On the dependence on delays and phases

In order to compute average error probabilities for a specified set of signature sequences, the

average of the error probability expressions (4.130), (4.132) has to be taken with respect to the set

of phases and delays, assumed to be independent and uniformly distributed. If wT >> 1, then

Rkj(l) can be related to the baseband crosscorrelation coefficient, via

00

Rkj(1)= 1 a(+(t -I-k) 3j(t + IT - r()dt

Sos(Oj - ) ak(t - rk) aj(t + IT - rj)dt . (4.135)

Since the magnitude of the crosscorrelation coefficients, hence of the multiuser interference,

is maximized if the cosine term is unity, in the literature ([Ver 84c], [Var 88]) error probability

curves are given for the baseband case. In the case of the conventional receiver it is easy to see

from the dependence of the error probability on the crosscorrelation coefficients (4.130) that this

corresponds to worst-case conditions. In the case of more complicated detectors the nonlinear

dependence of the error probability on the crosscorrelation coefficients precludes a proof of this

fact. Nevertheless, intuition tells us that performance should become worse if the absolute values

of the crosscorrelations between the users increase. Researchers in the field have worked with this

intuitive assumption, e.g. [Ver 84c] for error probability curves of the maximum likelihood detector

and [Var 88] for the performance analysis of their M-stage iterative multiuser detector, where the

dependence of the error probability on the set of delays and phases is mentioned only for the first

stage, which is the conventional detector. This work adheres to this usage, which is supported by

the intuition of the problem, because analytical results on phase dependence of the decorrelating

detector performance have proved intractable.

Because of the symmetry of the problem assume ihat the user whose error probability is of

interest is User 1. Since only relative delays matter one can set rl = 0 and let rk E [0,T) denote

the delay of User k relative to User 1. Since the chip waveform is rectangular, the correlation

coefficients Rk3 depend linearly on the distance of the respective relative delay between users k

and j to the next chip boundary, and are linear combinations of the crosscorrelation values at the
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adjacent chip boundaries. More precisely, letting R', be the value of Rki when users are delayed/kJ

byr TkS = Irk -rj,

R (0) =RC(O) (1 )Tc + R tc 1 s- lkj= L J (4.136)

and

Rkj(1) = RMe(1) (1 -TC + R('+l)T(1) r - 1TC (4.137)

This property and the convexity of the Q-function imply that the error probability of the

conventional detector, averaged over continuous delays, is upper bounded by its average on the

discrete grid of time delays corresponding to the chip boundaries. A similar result for the max-

imum likelihood detector was conjectured in [Ver 84c] on the ground that the argument of the

Q-function in the error probability expression is affine (i.e. translated linear) in the vector of delays

in every cube [n2 Tc,(n 2 + 1)Tc]x... x [nKTc,(nK + 1)Tc]. However this argument is insufficient

because lkj $ lk - lj, i.e. we encounter nonlinearity, and dependence upon a set of grid boundaries

which do not correspond to one delay vector. The same difficulty arises for any detector whose

kth user performance depends on crosscorrelations other than those involving the k t h waveform,

in particular also for the decorrelating detector. Here an additional difficulty in characterizing the

delay dependence of the error probability arises because of the nonlinear operation of matrix inver-

sion involved in the expression for the asymptotic efficiency of the limiting decorrelating detector.

Probably due to similar difficulties [Var 88) skips the issue, and motivate averaging over the discrete

grid of chip delays with the endeavor "to conduct a meaningful comparison" with the conventional

and optimum receivers. For the decorrelating detector the following result holds in the two-user

case.

Proposition 4.14: For a 2-user DS-SS environment the error probability of the decorrelating

detector averaged over a continuous delay between the users is upper bounded by its average over

the discrete grid of time delays corresponding to chip boundaries.

Proof: First we show that i0k(r) is concave in r, i.e.

r(7) _ (1 - at)rld(ITe) + Qr rd((1+l)T,) • (4.138)

Then, since the function f(x) = Vx is concave

i4(r) 1-at d(lT,) + a, nV1 )T7 ) (4.139)
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and, denoting for simplicity

r "- a k )(4.140)

since the function Q(x) is convex and decreasing in x

Qr < (1 - a) QT + ar Q(i+I)T, V r E [lT,, (I + 1)Tc). (4.141)

Therefore the expected value of the error probability over r is upper bounded as follows.

Ne-1E [Q r] E E [Qr 'r E [ITc, (l-- 1)Tc)]] (4.142)

1=0

_LN,-1 +£ [Otr] N'_ (.13
Nc E QlTC+ _T Z E Q(1+1)TI - QtT~](44)

Nc-1
- Z QIT, = E [Q, I r Ef{ITc, I = 0,....Nc - 1}). (4.144)

It is left to prove that id(r) is concave in r. Fortunately, in the two-user case an explicit expression

for the asymptotic efficiency was found in Proposition 4.10, namely

7dk -/1 - (P12(r) + p21(r)) 2)[1 - (P12(r) - P21('r)) 2 ) • (4.145)

Since both the sum and the difference in this expression are linear combinations of the sum re-

spectively difference values at the chip boundaries, after an obvious change of variable it suffices to

show that the function of two variables

f(X, Y) = i 1 -

is concave on its domain of definition {IxI 1} x {yl < 1}. A necessary and sufficient condition for

the latter is that the Hessian matrix of f(.,.) be nonpositive definite ([Horn], p. 392). The Hessian

matrix of f(.,.) is

H 71( --T) 3  -77"-z 2 V - y2 (4.146)
V1 - X2 V/1 - y7 ( 1- y2)3

which is nonpositive definite since the determinant is nonnegative and the trace is nonpositive.

Therefore the asymptotic efficiency in the two-user case is a concave function of P12 and P21, as

can also be seen from its plot in Figure 22.

The reason why the two-user case is analytically easier to handle than the general case is

twofold. First, we have an explicit expression for the asymptotic efficiency, which means that we
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can avoid handling the complicated expression of (4.133). And second in this case we do not have

to worry about the fact that the parameters 1i do not suffice to specify the set {lii}, since there is

only one parameter I to consider. If rather than using the explicit expression for the asymptotic

efficiency, we try to show concavity using the concavity of the determinant in (4.133) in the two-user

case, we have not been able to show Proposition 4.14. This is evidence of the toughness of the

analytic problem in the general case.

However Proposition 4.14 gives an indication that its extension can be expected to hold in the

K-user case. In order to substantiate this assertion we have numerically compared the average

error probability of the limiting decorrelating detector for the cases of averaging over chip delays

and finer subdivision (of course continuous delays are not feasible numerically), for a three-user

DS-SS environment. The results are presented in the next section, and corroborate the expectation

that chip delays are worse than continuous delays. We do not know of any counterexample.

Finally, it is shown in [Pur 81] that the crosscorrelation magnitudes are maximized for values

of r which are integer multiples of T, (even for arbitrary time-limited chip waveforms). Proposition

4.14 in connection with this fact supports our intuition that worst-case conditions are those where

the crosscorrelations are maximized, which motivated our choice of baseband analysis.

4.3.2 Numerical Examples

In the following examples we have chosen a set of Spread-Spectrum m-sequences of length

31. First a three-user baseband environment where -for comparison purposes with previous works

([Ger 82], [Ver 86a])- we have used the set of 3 sequences reported in [Gar 801, Table 5 to be

optimal with respect to a signal-to-multiple-access interference parameter when the conventional

detector is used. To begin with we investigate the dependence on delays of the performance of the

decorrelating detector for infinite sequence length. Each chip interval has been subdivided into n

subintervals, and the performance has been averaged over the discrete grid of resulting delays, for

n = 1, 5 and 10. The case n = 1 corresponds to the case of delays which are integer multiples of

chip intervals, i.e. the case we have discussed in the previous section. Figure 24 shows the error

probability for User 1, averaged over the delays of the users, for the different sets of admissible

delays. We see that the error probability decreases if a finer subdivision is used, supporting the

claim that averaging over chip interval delays leads to an upper bound on error probability. The
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Fig. 24. Error probability of the limiting decorrelating detector for 3 users

using m-sequences cf length 31, where the average over delays has been made for

n subintervals per chip. a) n=1, b) n=5, c) n=10.

single user error probability is also shown for comparison. Observe the good performance of the

decorelating detector.

We have also computed the asymptotic efficiency for each of the (n * 31)2 possible delay con-

figurations. The resulting approximate probability density functions for n = 1, 5 and 10, i.e. for

961, 24025 and 96100 samples, are shown in Figure 25. They have been obtained by subdividing

the interval [0,1] into respectively 125, 300 and 400 bins, and plotting the probability that the

asymptotic efficiency takes values in the corresponding bin, normalized such that the total proba-

bility is 1. The number of bins to be used has been chosen by comparing different choices under

the criterion that an overly ragged curve probably means that there are too few points per bin

to give a reliable result, while an overly smooth curve, which changes a lot when the bin number

is increased, is too coarse. Therefore some of the edges in the curves shown may be due to the
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Fig. 25. Histogram of the asymptotic efficiency of the limiting

decorrelating detector for the setting of Fig. 24., over the
ensemble of discretely valued delays, with n subintervals

per chip. a) n=1, b) n=5, c) n=10.

unavoidable discretization due to the magnitude of the available sample sizes. However the bimodal

character of the p.d.f. was present for all bin choices in the cases b) and c).

Although these curves are only estimates of the true p.d.f. of the asymptotic efficiency of User

1 in this communication environment, several valid observations can be made. The first is that the

mass of the p.d.f. shifts towards higher asymptotic efficiencies as the subdivision becomes finer,

and at the same time the variance of the values decreases. Aside from the fact that all asymptotic

efficiencies have been in the range [.77,.999], their high sample mean and small sample standard

deviation is remarkable. The table in Figure 25 shows the respective values for n = 1,5 and 10.

For truly continuous delays as found in a real communication environment these curves indicate

that the performance will be superior to the one obtained here. Note the high insensitivity of
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the asymptotic efficiency of the decorrelating detector to the relative delays, as measured by the

small standard deviation of the ensemble. Also remember that these values are independent of the

transmissions or energies of the interferers, in contrast to the conventional detector.

After having given a basis for averaging over chip interval delays we will adopt this strategy in

the following examples, since it results in substantial computation savings. Our aim is to compare

the performance of the decorrelating and conventional detector, for selected communication envi-

ronments with 3 and more users. The computational difficulty using numerical evaluation of the

average error probability expression arises from the fact that the performance of the conventional

detector also depends on the transmitted bits, two consecutive of each interferer corrupting each

bit to be demodulated, therefore when averaging over them in a K user channel 22(K-1) terms

have to be averaged for each set of delays. This precludes large values of K. Of course for a real

system average error probability is easy to determine using a known transmitted sequence.

We consider a baseband environment with K - 1 active equal energy interferers, whose delay

relative to each other is fixed. Figure 26, for K = 3, shows the i t user error probability of the

conventional receiver versus SNR1 , the signal-to-background-noise ratio of User 1, for different

values of the energy ratio SNRj / SNR 1 , averaged over the bit sequences of the two interferers

and over the delay of User 1. Also shown are the user error probability of the decorrelating detector

for User 1 and the error probability of the single user channel.

From Fig. 26 we see the strong dependence of the performance of the conventional receiver

on the relative energies of the active users. While the error probability of the decorrelating de-

tector is invariant to the energy of interfering users, the performance of the conventional receiver

deteriorates rapidly for increasing interference, till for an energy ratio above 5dB the conventional

receiver becomes practically multiple-access limited. (For a sufficiently high level of non-orthogonal

interference the error probability of the conventional receiver can be seen to become irreducible.

E.g. in the two-user synchronous case, for /w-/1/w = (1 + A)/p, where p is the normalized

crosscorrelation coefficient between the two signature signals and A > 0, the error probability of

the conventional receiver tends to 1/4 if A = 0 and to 1/2 if A > 0 for increasing SNR of User 1).

Note that if the energies of all the users are equal the decorrelating detector is around two orders of

magnitude better than the conventional receiver at 10 dB. Only if the multiple-access interference

level plays a subordinate role compared to the background noise does the conventional detector
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Fig. 26. Error probability of User 1 with 2 active equal energy interferers,

each of energy wi, averaged over the interfering bit sequences and over the

delay of User 1, for the decorrelating and conventional receiver versus the SNR

of User 1, for m-sequences of length 31 and different interference levels.

outperform the decorrelating detector, which pays a penalty for combatting the interference in-

stead of ignoring it. Similar results were obtained regardless of the actual value of the relative

delay between the two interfering users.

Figure 27 shows the same setting as above, in the case K = 6. We have used the set of auto-

optimal m-sequences of length 31 found in [Pur 79, Fig. A.1], to be optimal with respect to certain

peak and mean-square correlation parameters which play an important role in the error probability

analysis of the conventional detector.

Comparing Fig. 27 with Fig. 26 we see the same qualitative error probability relation between

the two detectors, and again the strong near-far limitation of the conventional receiver. Since there

are more ac .>-e interferers the performance advantage of the decorrelating detector in a near-far

127



W) /W% OdS

W

~IC56
-10dB

00 -2OdB-. K
CONVENTIONAL
DETECTOR

-DECORRELATING
DETECTOR

.SINGLE USER

4 6 8 tO 12 14
SNR, (dB)

Fig. 27. Same as Fig. 10, with 5 active equal energy interferers.

environment is even more pronounced: if the energies of all the users are equal the decorrelating

detector is almost three orders of magnitude better than the conventional receiver at 10 dB.

The same sets of sequences of Figures 26 and 27, were used in Section 3.3, Figures 1 and 2, to

compare the error probability of the decorrelating and the conventional detector in the synchronous

case. Note that the single error probability curves are lower in the asynchronous case.

Finally, Figure 28 shows the worst-case probability of the conventional detector over the se-

quences of the interfering users, as given by (4.131), for K = 10. The signature sequence set used

for K = 6 has been expanded - without trying to optimize, as before, with respect to the perfor-

mance of the conventional detector. The shown error probabilities are typical, varying very little if

different sets of delays are used, because of the good crosscorrelation properties of m-sequences.

Overall the generated error probability curves show the pronounced superiority of the decor-

relating receiver in a near-far environment, and whenever sufficiently many users are active even if
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Fig. 28. Worst-case error probability of User 1 w.r.t the bit sequences

of the interfering users, with 9 equal energy interferers.

their energies are well below the energy of the desired user. Note, finally, that we have selected sig-

nature sequences which have emerged in the literature from attempts to optimize the performance

of the conventional receiver. It would be interesting to investigate the possible performance gain of

using the decorrelating detector in conjunction with a set of signature sequences optimized for its

use (under constraints on bandwidth or structure, e.g. as was done in the conventional case, under

the constraint that the sequences be maximal-length shift-register sequences).
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4.4 The one-shot decorrelating detector

We now consider a one-shot approach to the decorrelating detector for asynchronous channels,

recently suggested in [Ver 88] as an easier-to-compute alternative to the decorrelating detector. For

each user the idea is to restrict attention to one bit interval at a time. Let us consider bit 0 of User

1. This bit overlaps with two consecutive bits of each other user, over respectively a subinterval of

these bit's durations. Call them the "left sub-bit" and the "right sub-bit". Then if we isolate the

waveform received during bit 0 of User 1, the two partial bits corresponding to each interferer can

be viewed as two distinct interfering synchronous users, whose waveforms vanish on each other's

support set. This situation is equivalent to a (2K - 1)-user synchronous channel, (see Fig. 15)

where each left sub-bit respectively right sub-bit is a distinct user and the waveforms are given by

{s 1(t),s(t),sR(t),i -2, ...,K}, where

L s(t+T-Ir,-rl), 0 < t < fr,-rlsL~0) "- Or i -7" 1]-- t < T

R~t - ' 0, 0 < t < I - 1 (4.147)
1 s(t- Ir,- ri1), 1ri ri-1 -5 t < T.

These equivalent waveforms have energies {1,ei, 1 - ei, i = 2, ..., K}, where

= fJ s1(t+T-Jr,-rl1) dt (4.148)
0

is the energy of the left sub-bit. If the delays are continuously valued the probability that e i > 0 is

1. However, in practice, if ei is too close to 0, users 1 and i would be considered synchronous and

the left sub-bit would be discarded. The decorrelating detector for this synchronous (2K - 1)-user

problem is straightforward, and since the resulting matrix R is nonnegative definite the asymptotic

efficiency of User 1 will be strictly positive as long as User 1 is linearly independent of the other

users. This requirement is stricter than the LIA, since it requires that the received signal not vanish,

regardless of the energies, on each bit-interval, whereas the LIA requires it only for the whole

transmission length. However this constraint is still mild. In practice either signature sequences

that have this property for all relative delays have to be chosen, or, since the linearly dependent

case will occur very infrequently as a function of the relative delays (it will occur with probability

0 for continuously valued delays) in the event of its occurrence the conventional detector decisions
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can be used, without a measurable effect on error probability. As an example, in the 2-user case,

the one-shot matrix R has the form
(1 P21 P12)

R= P21 0 2 (4.149)

P12 0 1 - e2

The efficiency (and near-far resistance) of the 2-user one-shot decorrelating detector is

2 2
7703= 1 P21 P12 (4.150)e2  (1 - e2)

as can be checked by computing R 1 . The first row of the decorrelating detector is, up to a scale

factor,
(i P (4.151)

which means that for User 1 the received signal is correlated with

[s 1 (t) 21 L(t) _ P12 R(t)

e2  2 (1 - e2) 2  (4.152)

This means that in the absence of noise the output of the detector has a magnitude of

T 2J b1il(t) + b#49(t) + b~s() Lst - P1 L(t) P12 S()Jd=b 1 jl- P21 P?2 1
0 22 (1 -e2) - e2  (I1- e2)

(4.153)

which results in an error probability of Q(v/o r 21/ - /e2- p12 /(1 - e2 )). We recognize the

efficiency obtained in (4.150).

The one-shot decorrelating detector has a lower complexity than the decorrelating detector

[R(0) + RT(1)z + R(1)z-] - ', at the cost of reduced performance.

Proposition 4.15: The near-far resistance of the one-shot decorrelating detector is upper bounded

by that of the limiting decorrelating detector.

Proof: We have established that for a given CDMA environment the decorrelating detector is

the linear detector with highest, and moreover optimal, near-far resistance. Therefore for the

synchronous one-shot environment the one-shot decorrelating detector has the same attributes. The

decision statistic used by the full decorrelating detector is a sufficient statistic, while that used by

the one-shot detector is not. That means that the performance achieved by the maximum-likelihood

detector for the one-shot model is less or equal than the performance of the maximum-likelihood

detector which uses the sufficient statistic. Since this holds for all operating points, in particular the
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near-far resistance of the maximum-likelihood one-shot detector is less or equal than the near-far

resistance of the optimum multiuser detector. But the respective optimum near-far resistances are

achieved by the respective decorrelating detectors, thus establishing Prooosition 4.15. u

Corollary: For each operating point the efficiency of the one-shot decorrelating detector is upper

bounded by that of the limiting decorrelating detector, and therefore the error probability of the

former is higher or equal to that of the latter.

The first part of the corollary follows from the fact that the efficiency of the decorrelating

detector is energy independent, and therefore equal to the near-far resistance. The second is

immediate from the definition of efficiency. Note that the error probability of the decorrelating

detector is a Q-function. It can be upper bounded using Proposition 3.5.

The traits that distinguish the one-shot decorrelating detector are its memorylessness, its linear

time-complexity per demodulated bit, the fact that both its structure and its performance are

independent of interfering energies and its near-far resistance. If the relative performance trade-off

to the limiting decorrelating detector (which shares all but the first property) is not too severe, the

simplicity of the one-shot decorrelating detector makes it an attractive substitute for the limiting

decorrelating detector in situa.ions where receiver complexity is a limiting factor.

The following examples illustrate the performance relation between the two detectors. We

chose the same set of 3 sequences used when comparing the performance of the decorrelating and

conventional detectors in Sections 3.3 and 4.3, Figures 1 and 2. Figures 29 and 30 show the average

error probability of the one-shot and limiting decorrelating detector for User 1 for a 2- respectively

3- user baseband environment, averaged over the relative delays, with 10 subdivisions per chip.

Note that the average error probability of the one-shot detector is very close to that of the limiting

decorrelating detector. While there is always the possibility that the chosen examples might not

be representative, they encourage further performance analysis of the one-shot detector.

Figure 31 shows the efficiency of the two detectors as a function of the relative delay of User

1 and 2, for the two-user environment of Figure 29. Ten subintervals per chip were used when

discretizing the delay, and there are 31 chips per sequence. Note that the efficiency of the one-shot

detector is always less or equal than that of the limiting decorrelating .2etector, as established by

Proposition 4.15. For some delays the performances are equal.
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Fig. 29. Error probability of the one-shot and full decorrelating detector
for 2 users, averaged over the relative delay, with 10 subdivisions per chip.
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Fig. 30. Same as Fig. 29, for 3 active users.
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Fig. 31. Asymptotic efficiency of the limiting and of the one-shot decorrelating

detector, as a function of the relative delay, for the 2-user

environment of Fig. 29.
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5. An adaptive algorithm for synchronous channels with un-
known signature sequences

An interesting question to ask is what the receiver can do if it does not know all the modulating

waveforms, as assumed previously. Such a situation is typical of a decentralized setting, where each

receiver is interested only in the information sent by one user, or a proper subset of the user

population. Then it is unrealistic to assume that each decentralized receiver knows the waveforms

of all the interfering users. Therefore, in the sequel we consider a decentralized DS-SS situation

for which proper multiuser demodulation can be achieved despite lack of initial knowledge of the

interfering waveforms, due to cooperation between the users in the form of symbol synchronism

and usage of a common chip waveform. In this model, also considered in (Poor 88], the K users

use the same chip waveform, but the signature sequences of other users are unknown. [Poor 88]

gives the maximum likelihood receiver for the general asynchronous case, a receiver which is very

complicated for more than two users. Here we consider the case where the transmissions are

synchronous, and find an adaptive steepest descent algorithm which converges (in the sense in

which stochastic gradient algorithms converge to the solution of the corresponding true gradient

algorithm) to a detector which has the desirable property of being asymptotically eqaivalent to the

decerrelating detector as the signal-to-background-noise ratio tends to infinity, while converging to

the conventional detector as the interference level tends to zero.

The baseband version of the normalized modulating waveform of each user has the form

Z n c p (t - (n - 1)Tc) , t E [O, NTc)50() =-1
0 , else

where N and Tc are the number of chips per symbol respectively the chip duration, equal for all

users, and p(t) is the common unit energy chip waveform, zero outside (0, Tc). Thus each user

is characterized by his signature sequence ckn E {±1/vW}, n = 1,...,N. Since the users are

synchronous a sufficient statistic for decision on the transmitted information bit of each user is

obtained by passing the received waveform through a filter matched to the common chip waveform

and sampling at the end of each chip interval. Thus N samples Y1 ... , YN are obtained per symbol

interval. Analogously to the representation we had previously, the vector y E IRN of matched filter

output samples depends on the transmitted information vector b E IRK via

y = CWb + n, n , N(O,a I) (5.2)
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where (R Ci1  C21 .. CKI

C=:: : : (5.3)
ClN C2N ... CK N

i.e. the columns of C are the signature sequences of the users. As before, W E JRKxK is a diagonal

matrix containing the square roots of the received energies, b E BK is the vector containing the K'

interfering transmitted bits, and n E RN is the vector of noise components in the matched filter

outputs due to the white Gaussian background noise, and has uncorrelated elements because they

depend on the noise process on disjoint time intervals.

If the matrix C were known, the maximum likelihood detector for this problem would select

the decisions

b* E arg min 2 yTCWb - bTWCTCWb. (5.4)
bE{ 1,1}K

The case where C is not known is treated in [Poor 88], and leads to a detector with an extremely

complicated structure for more than two users. On the other hand the conventional detector for

User k simply decides for
N

b, = sgn Ck,, (5.5)

n=1

which is the particularization of the maximum likelihood detector to the single user case. Note that

the Cki, i = 1,..., N are known to the receiver of User k. In the following we derive the structure

of the decorrelating detector, i.e. the detector which has the highest near-far resistance among all

linear detectors, assuming for the moment that the matrix C is known.

Since the noise is spherically symmetric the worst-case kth user error probability Pk of the max-

imum likelihood detector is that of a binary decision between the two closest hypotheses differing

in the kth bit, i.e.
1 mn 1

Pk = Q ( mi mb CW(b1 - b2 )II)" (5.6)0o bl,b2  2
(b 1 )k #(b 2 )k

Therefore, the optimum asymptotic efficiency is

17k = I min CTWCTCWE (5.7)

Wk e(-1,0O1}K
(k=l

and the optimum near-far resistance is given by

TT = min 7k = min xTCTCx- 1 (5.8)
wo x4ERK (CTC) (5.8

j~k k=l
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where the last equality was proved in the proof of Proposition 3.2. and we have assumed that

the matrix cTc is invertible, i.e. that the signature sequences are linearly independent. A linear

detector v E UK decides for

bk sgn vT (5.9)

and has an error probability equal to

Pk = P(bk- I bk=-1) p(vTn > -vTcWbIbk=-1). (5.10)

Therefore its asymptotic efficiency and near-far resistance are, respectively,

71 = max 2 {0, 1 mi vTCWb(5

Wk bE{..1,IIK V=
bk=1

and -- vTCy}

7k = max2 {0, inf . (5.12)
Yk=l

The optimum near-far resistance achievable by an energy-independent linear detector is

77-"0 = max 2 {0, sup inf VTCY} (5.13)vERN YERK /vTv
IIv,110 Yk=1

Restricting v E S, where S = {x E ,RNI x = Cz, z E iRK, z 0),

-  > max 2 {0, sup inf vTCY (5.14)
yES yERK VV

Yk=l

max 2 {0, sup inf ,R CTC

=EK yER K  V!=zTR.

114;4 0 VY=

But the last equation is the particularization of (4.39) to the synchronous case, where we obtained

as a solution that the maximum is achieved by the decorrelating detector, z* = R- 1 uk, and that the

value of the maximum equals the near-far resistance i of the optimum multiuser detector (Section

4.2, property v)). Therefore from (5.14) ?k" >_ i7 , i.e. the near-far resistance of the best linear

detector is lower bounded by that of the optimum detector. This implies that the inequality in

(5.14) is an equality and the optimum linear detector v* = Cz* lies in the K-dimensional subspace

spanned by the signature sequences of the K users (this is because the information signal lies in
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this space and the receiver does not gain anything by correlating with a component outside this

space). Therefore the decorrelating detector for the k th user has the form

v* = C (crc) -
. Uk . (5.16)

Since the matrix C is not known to the kth user decentralized decorrelating detector of (5.9), (5.16)

can not be implemented. However, assuming an initial training sequence for the k h user (i.e. a

sufficiently long sequence of known transmitted bits), we will propose a stochastic gradient algo-

rithm, which has the property that the true gradient algorithm from which it is derived converges

to a detector which is asymptotically equivalent to the decorrelating detector as the Gaussian back-

ground noise level tends to zero, i.e. under the conditions for which optimality of the decorrelating

detector was derived.

First consider the following true gradient algorithm

vn+ = vn 3 b E (vTy - bk) 2 Ivfvn (5.17)

where

E (vTy - bk) 2 = vT (CW 2CT + a2I) v - 2 vTCW u k + 1, (5.18)

which is unrealizable because the derivative with respect to v depends on C, which is unknown.

The expectation is taken over the noise and the bits of the interfering users. Assuming that a

bypass to the difficulty of not being able to realize the expectation can be found, the behavior of v

as a function of n is as follows. Abbreviate for simplicity the N x N matrix

t = CW 2 CT +a 21 (5.19)

which is a positive definite matrix, and

p = CW Uk. (5.20)

With this notation (5.18) becomes

E (vTy - bk) 2 = v T tv - 2 vTp + 1 (5.21)

= (v -t-lp)T t (v -.- Ip) + 1 - pTt-p (5.22)

which is a quadratic form in the coefficient vector v and therefore achieves a unique minimum at

Vopt t-IP. (5.23)
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From (5.17) the coefficient vector v of the true gradient algorithm is updated according to

v v (v T A v - 2vTp + 1) lv--v (5.24)2 6v

= (I- t)v" + '3p. (5.25)

To see that v' converges to the minimizing value (5.23) of the associated cost function, define the

error vector

qn = v n _ Vopt. (5.26)

Then from (5.25), using (5.23)

qn+l = (I- O3) qn = (I - )nqO, (5.27)

which implies that qn - 0 as long as

2
0 < )3 < (5.28)< max(t)

where Amax = max{AiIAi is an eigenvalue of t}. With this we have shown that for the range of

'3 of (5.28) the coefficient vector of the true gradient algorithm converges to v' = Vopt, or, from

(5.23),

v =0 = (CW 2 CT + a 21) 1 CW Uk . (5.29)

It is intuitively apparent that the coefficient vector converges to the value which minimizes the

chosen cost function (here the expected value of the mean-square output error), if the step-size /3

is well chosen, since the coefficient vector is adjusted in a direction opposite to the gradient of the

cost-function at each iteration.

The reason why the unrealizable true gradient algorithm is interesting for the multiuser demod-

ulation problem at hand will become clear from Proposition 5.1 and the discussion thereafter. Here

we first address the realizability issue, in order to make clear that we are not assuming something

we want to obtain. The difficulty we are facing, namely that we want to adjust the detector such

as to minimize a cost function which depends on unknown parameters, is a standard problem in

adaptive filtering. A well-established and much used bypass consists in using a so-called stochastic

gradient instead of the true gradient. The corresponding (realizable) algorithm is obtained from the

true gradient algorithm by dropping the expectation, thus avoiding the need to know C. Denote by

bk(n) the nt h bit transmitted by User k, and by yn the matched filter output vector corresponding

to the nth bits. Let en denote the output error at each iteration, i.e. en = vnTy" - bk(n), which is
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a random variable. Then the stochastic gradient algorithm (SGA) derived from the true gradient

algorithm of (5.17) is the following.

v2 + 1  =v- e2 = vn- /e.y (.3)
(I - 3 ynynT) v n + /3 bk(n ) Y. (5.31)

Since we assume an initial training sequence, this algorithm is realizable. The question that arises

is whether the convergence of the expected.value of v n , the latter now being random, to voo of

(5.29) is preserved. The expected value of the coefficient vector vn evolves from (5.31) according

to

E [vn + l ] - E [(I - /3ynynT) v n ] + /3 E [bk(n) y n ] (.5.32)

= (I - /3 E [ynynT]) E [vn ] + /3 E [bk(n) y n] (5.33)

= (I- /0 ) E [vn] + /3 p (5.34)

which implies that the expected value of the error vector tends to zero since

E [qn+l) = (I- /30) E (qn] = (I -_3,)nE [qO), (5.35)

similarly to (5.27). Equation (5.33) makes use of the independence of the vectors vn and yn, which

holds since v n only depends on the past values of yn, which are independent of the present due

to synchronism. This independence is crucial for the convergence analysis of the SGA, and while

it is given in the problem at hand, this is not the case in most applications. Nevertheless the

independence assumption is made in the above references, though the authors elaborate on both its

necessity and its inaccuracy. The present problem is noteworthy in this respect for the fact that

the independence assumption is true.

Arother convergence measure of interest for an adaptive algorithm is the decrease in time

of the output error (this is usually done via a mean-squared error analysis). In the literature

the convergence of the output mean-square error of the SGA has been much studied, although a

rigorous analysis has apparently not yet been given (cf. [Hon, pg 247]). [Hon, 7.1] or [Ben, 8.2.3]

give a convergence analysis of the output mean squared error for a SGA of the form of (5.31), under

certain approximations. We showed via the proof of convergence of the mean coefficient value that

the problem at hand is better behaved than the problem treated in the references, while allowing

for an analogous solution.
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In the above references it is obtained that the minimum mean-square error of the SGA is higher

than that of the true gradient algorithm, due to the statistical fluctuation of the filter coefficients.

More precisely, if Emin is the residual mean-square error of the true gradient algorithm, which can

be seen to equal 1 - pTai-lp by inserting (5.23) into (5.22), then the excess mean-square error Eex

of the SGA is shown to converge to

N
_7Ai

Ee _ i=1 Emi, (5.36)
N

2-# ~Ai
i=1

as long as 3 is in the range
2

0 < K < (5.37)
Na 2 + F Wk

k=I

This condition on i is stricter than the one in (5.28), since

N N N
Amax( ) < ,I,) = = Z(CW 2CT+ a2I),z

i=l iti =1

N K K

N2 + k = Na K (5.38)
i=1 k=1 k=1

Despite the longstanding want of analytical results which do not make use of approximations,

the convergence of the SGA is a well-investigated issue. The SGA is widely used in practice and

versions with good convergence properties are well established. Therefore, we feel we are reducing

the problem we are examining to a known problem, if we reduce it to a solution in terms of the

true gradient algorithm of (5.17), and propose use of the stochastic gradient modification in its

implementation. (For the sake of completeness, the existence of other modifications should be

mentioned, e.g. time-averaging to substitute the expectation in (5.17)). In the following result,

we show that the true gradient algorithm has the property that the coefficient vector converges

to the decorrelating detector in the limit of a -+ 0, and converges to the conventional detector

in the opposite case, when the power of the multiuser interference goes to zero. While the first

property was what we were looking for, the second one is equally desirable, as will be explained in

the subsequent discussion.
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Proposition 5.1

lrn V, = C (CTC)-1 uk (5.39)

lim v, = CUk (5.40)Wj-o a"2 + WO/NCu (.0

i Ak

i.e., up to a scale factor the true gradient algorithm of (5.17) converges to the decorrelating detector

as the Gaussian background noise level goes to zero, and converges to the optimum single-user

detector as the power of the multiuser interference goes to zero.

Note that since a sign decision is taken, scale factors do not matter.

Proof : We first show that, from (5.29),

v = (CW 2 C T + a 2 I)-1 CW Uk (5.41)

1 i C (CTC + 0"2W- 2)-1 uk (5.42)

To show (5.42) we use the matrix inversion lemma (e.g. [Hay]), which says that for two positive

definite matrices B and D

(B - 1 + CD-'CT)- = B - BC(D + CTBC)-ICTB. (5.43)

Using this lemma
0 0 [ 1__ C (W - 2 + 12 CTC T ] W uk (5.44)

i2[CW uk - C+ + - )Wuk (5.45)

- C (CTC + 0,2W-2)- uk. (5.46)

From here (5.39) follows directly by taking letting a -- 0 in (5.46), and (5.40) follows by letting

wj -+ 0,j 6 k in (5.41), and noticing that

lim CW 2 CT = diag (xj I xj = 0, j 0 k, Xk = wk/N). (5.47)W j-0

j $

Returning to the true gradient algorithm, the decision statistic after convergence of the tap

weights is

V y (cwk + aW )-lw-lb + v= -n (5.48)
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and the resulting mean-squared error is given by

S(v, y - bk) 2 --- (CTC + a 2 W- 2) " • (5.49)

Wk

Hence unless the inverse is very ill behaved, the mean-squared error is very small in the high SNR

region and will matter very little above a certain SNR level, the more so since we are only interested
cT

in the sign of v00 y. To estimate the deviation of (CTC + 0.2W- 2)- 1 from (CTC)- 1 we expand

the former as

(CTC + =2W-2)- = [(CTC) (I + 0,2(CTC)-IW-2)-I

00
o a [-(CTC)- l W- 2]i (CTC) -1  (5.50)

i=O

which is possible iff the spectral radiuc of the matrix (CTC)-IW-22 is less than 1 ([Ben, p. 587].

[Horn, 5.8]), which is satisfied if the SNR is high enough. The first term in the above series is the

desired term. From here the error can be estimated as in [Horn, 5.8], to obtain

II(CTC) - - (CTC+oT2W-2)-I1 K 1 2W-2l CC II (1.T )
II(CTC)-11J < 1 - , 11 -  IIii CrC (5

2 / Wmin (5.52)

Amin (CTC) - / Wmin

as long as 0.2 < Wmin IICTCII, when Ii. 11 denotes the spectral norm. In this case K -

,\max(CTC)/Amrin (CTC), IICTCI1  = \max(CTC) and lia 2W- 211 = 0.2 /Wmin, and (5.52) results.

Hence, as long as Amin (CTC) is sufficiently large, the relative error is of the order of the inverse of

the smallest SNR ratio. A similar analysis can be carried out for the deviation from the conventional

detector.

Discussion: The mathematical relation between the unrealizable gradient algorithm of (5.17) and

its realizable stochastic modification according to (5.31) are well-known, and there is much evidence

that the average behavior of the stochastic algorithm is such that if the step size / is appropriately

chosen, the function of the desired unrealizable algorithm can be closely approximated. The un-

realizable detector of (5.19) was seen to converge to the decorrelating detector in the limit as the

Gaussian background noise level goes to zero, and to deviate little from it in the high SNR region.

This is desirable, since in this region the multiuser interference is the main impairment on the

common channel, and the decorrelating detector is the detector which eliminates this interference.
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However we have seen in Figures 1 and 2 for the synchronous case and Figures 26, 27, 28 for the

asynchronous case, that the conventional detector performs better than the decorrelating detector

it the multiuser interference is very low. This is because the conventional detector is not penalized

in this region for ignoring the interference from other users, whereas the decorrelating detector

eliminates this small interference at the expense of enhancing the background noise, which in this

region is the main distorting factor. Therefore, the property of the detector to converge to the

conventional detector in this region is desirable.

For these reasons, inasmuch as the true gradient algorithm can be approximated satisfactorily

by the SGA or an equivalent modification, we have obtained a detector which has the capability

of adapting to the dominant cause of channel distortion in the limit as one single effect (multiuser

interference respectively background noise) predominates. We conjecture that the compromise

achieved by (5.42) in the region where no single factor significantly outweighs the other is a good

demodulation strategy for an operating region where both distortion causes are of comparable

magnitude.

It would be interesting to find an equivalent adaptive algorithm which does not require an

initial training sequence ("blind adaptation"). Previous research on the subjec' has not been

successful. Since the decorrelating detector effectively inverts the channel transfer function, the

following citation from [Ver 84b] is pertinent to this problem: "no such function is known to result

in global convergence to the inverse of the channel when the input consists of binary data".
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6. Conclusions

The main contribution of this thesis is to have shown that the near-far resistance of optimum

multiuser detection of Code-Division multiplexed signals in white Gaussian channels can be achieved

by linear detectors, thus providing an effective remedy to the well-known near-far problem, which

- in contrast to the maximum likelihood detector - is implementable even for a large number of

users. This is possible due to the fact that the asymptotic efficiency functional of linear multiuser

detection has a saddle point, and the near-far resistance of the optimum multiuser receiver can be

written as that of a variable linear receiver which is optimally suited for the respective operating

point. Making use of the aforementioned saddle-point property the optimum near-far resistance is

equal to the highest near-far resistance achievable by a (fixed) linear receiver. This receiver is then

found explicitly. Thus there exists a linear detector which does not exhibit the main limitation of

the conventional single-user detector used in practice, which occurs even if signals with very low

crosscorrelations are assigned to the users, namely the near-far problem.

We considered both the synchronous and the asynchronous CDMA channel shared by simulta-

neous users: they use the same bit duration T when transmitting and have made their respective

signature sequences common knowledge. This setting is the same as that in (Ver 86a], (Ver 86b],

where the maximum-likelihood multiuser detector was derived. In a system where this knowledge

is restricted, the presented results predict significant performance improvement if the signature

sequences of the more powerful interferers are known to each user's receiver.

For the asynchronous channel we derived the near-far optimum linear receiver, the decorrelating

detector, which does not have the near-far problem of the conventional single-user receiver and,

it turns out, of any energy-independent linear receiver except the decorrelating one. Its structure

is that of an inverse to the equivalent transfer function between transmitter and receiver, such

that the users are decoupled before the sign decision. Obviously then, since each user's decision

statistic is now independent of other users transmissions, even very powerful interference can oe

combatted, evidently as long as the synchronization and carrier phase acquisition mechanisms of

the weak user's receiver do not fail. The price paid for eliminating the multiuser interference is

an increase in the variance of the Gaussian background noise, which is also the reason why the

decorrelating detector is not the optimum multiuser detector. This means that in applications a

decision first has to be made as to whether the background noise or the multiuser interference is
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the dominating factor. In the first case the single-user detector should be used, in the second the

d-correlating detector.

Three properties make the decorrelating detector particularly attractive in near-far environ-

ments with a large number of users: its linear time-complexity per demodulated bit, the fact that

its implementation does not require knowledge of the received energies, and the desirable attributes

of its bit-error rate, namely that it is independent of received energies and that it offers the same

degree of near-far resistance as the optimum multiuser detector.

We gave conditions for existence of the decorrelating detector and showed that for continuous,

independent delays - the usual conditions in a completely asynchronous channel - these conditions

are satisfied almost surely. Also, the decorrelating detector does not exist if and only if the optimum

multiuser near-far resistance is zero.

In a multiuser environment where K users transmit N-bit sequences, the decorrelating detector

was described as the inverse of an NK * NK equivalent synchronous system matrix. In this case

the receiver is the near-far optimum linear combination of the front-end matched filter outputs,

i.e. is a new matched filter, matched to the multiuser environment. It was shown that as the

transmitted sequence length tends to infinity the decorrelating detector tends to a time invariant

linear filter which is stable and noncausal. Since the filter is stable the noncausal part of the impulse

response can be truncated in practice after a suitable delay, to the desired degree of accuracy. In

applications where each receiver is interested in demodulating the information transmitted by only

one user, it is easy to decentralize the K-user decorrelating receiver since it can be implemented

as K separate (continuous-time) single-input (discrete-time) single-output filters. Each of those

filters can be viewed as a modification of the conventional single-user matched filter, where instead

of correlating the channel output with the signature waveform of the user of interest, we use its

projection on the subspace orthogonal to the space spanned by the interfering signals. Here a

comment is appropriate: if the filter is actually an approximation to the decorrelating receiver,

due to, for example, finite accuracy in the computation of the crosscorrelations or truncation of

the impulse response, it will no longer be orthogonal to the subspace of the interfering signals and

therefore it will not be near-far resistant in the worst-case sense adopted in this work. However, for

practical purposes we do not need near-far resistance with respect to all possible interfering energies

- even after the sync and acquisition mechanisms of the weak user have long failed - but rather with

respect to a region of interfering energies, e.g., dictated by the signal processing front-end. Since

decorrelating corresponds to a projection orthogonal to the multiuser interference, and truncation
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effects a tilt in the projection plane, by truncating appropriately far the effect on the bit error

rate can be made arbitrarily small, preserving near-far resis..ance with respect to the desired energy

range.

A general expression as well as a lower bound for the asymptotic efficiency achieved by the

limiting decorrelating detector were given. Since the asymptotic efficiency of the decorrelating

detector is a nonincreasing function in the number of users, it would be beneficial to investigate

a practical implementation where the size of the filter is modified to take into account only the

subset of active users, which could be significantly smaller than the total user population.

Computation of the transfer function of the limiting decorrelating detector for K users involves

inverting a K by K matrix whose elements are monomials in z respectively z- 1. This is due to

the memory involved in the observed multiuser process. As proposed in [Ver 88], a simple though

clearly suboptimal way to get around this difficulty is to take a one-shot approach, where the k th

user reteiver considers the received process during each symbol interval of User k independently

of all the rest, as if it had resulted from a synchronous process where the two interfering bits of

each asynchronous user are viewed as coming from two different synchronous users with smaller en-

ergy. We have investigated using this simple model and incorporating the decorrelating philosophy

to ensure near-far resistance, and have shown that the performance of the one-shot decorrelating

detector is upper bounded by that of the limiting decorrelating detector for each operating point.

The performance results obtained for a two- and three-user example yielded only a small perfor-

mance reduction compared to the decorrelating detector, and motivate consideration in practical

situations of the computationally much simpler one-shot approach.

The previous results can be particularized to the synchronous channel. For the latter case

the best linear detector has been derived, as a function of the received energies, for comparison

purposes with the decorrelating detector. One interesting result we obtained is that there is a

region of energies and crosscorrelations where the best linear detector achieves the asymptotic

efficiency of the optimum multiuser detector, while in another such region it coincides with the

decorrelating detector. Other precise analytic results were not feasible. The worst-case complexity

of the algorithm obtained in order to find the best linear detector is exponential in the number of

users. In a fixed-energy environment this computation needs to be carried out only once, hence

the real-time time-complexity per bit is linear, in contrast to the optimum multiuser detector.

Nevertheless, this feature and the energy dependence of both its structure and its performance

penalize the best linear detector in comparison with the decorrelating detector. The only requisitP
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necessary for the signal of a user to be detected reliably by the decorrelating detector regardless

of the level of multiple-access interference, is that it does not belong to the subspace spanned by

the other signals - a very mild constraint that should be compared to the condition necessary for

reliable detection by the conventional single-user detector, i.e. that the signal is orthogonal to all

the other signals.

An iterative decision-feedback scheme has been proposed, with the decorrelating detector in

the first stage to ensure near-far resistant initial decisions. Previous-stage decisions on the bits

transmitted by the other users are used to obtain estimates of the jth noise components in the

decision statistic for all j 5 k, then the correlation of the noise components is exploited to obtain

and then subtract an estimate of the kt h noise component. Lower bounds on the second-stage

asymptotic efficiency and near-far resistance of this scheme have been obtained and it has been

shown that unit asymptotic efficiency can be achieved in a given energy range. Conditions of the

received energies have been given to ensure a performance improvement over the decorrelating

detector. The scheme is no longer energy independent, and an example illustrated that there

is a range of energies where feedback can decrease performance, due to the fact that for that

specific parameter range the obtained estimates may not be reliable enough. However near-far

resistance was shown to be preserved. The benefits of partial feedback of previous decisions were

investigated, where feedback from unreliable users is omitted, and an algorithm was given which

finds the best feedback set. A special case thereof is the empty set, which corresponds to just the

decorrelating detector. The use of this algorithm guarantees optimum near-far resistance, together

with an asymptotic efficiency which is lower bounded by that of the decorrelating detector. The

only additional feature required by this algorithm is estimation of the operational energy range.

An example showed that performance can be significantly increased in this way.

Finally, the situation has been considered when the receiver for each user has no knowledge of

the modulating waveforms of the other users, a situation which is typical for decentralized reception.

For the special case of a synchronous channel and DS-SS signaling with common chip waveform

but unknown signature sequences, an adaptive algorithm has been found, which uses a training

sequence and converges to a detector which adapts to the communication impairment situation on

the channel. Namely, in the low background noise region it approaches the decorrelating detector,

while in the low multiuser interference region it approaches the conventional detector, each being

the detector of choice under the corrcsponding conditions. An interesting question for further
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work is whether an equivalent scheme can be found for the asynchronous channel, and/or without

knowledge of an initial training sequence (i.e., blind adaptation).
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