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Abstract

This thesis presents a study of the VHSIC Hardware Description Language (VHDL)

and its ability to accurately model digital hardware circuits. A brief background of Hard-

ware Description Languages and VHDL is presented followed by a detailed look at VHDL's

language features and semantics that support hardware modeling. This inlorination is ap-

plied to the design and development of a VHDL simulator that supports a subset of the

language. A discussion of the simulator design and implementation issues is presented.
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HARDWARE MODELING WITH

VHDL SIMULATION

I. Introduction

1.1 Background

The Department of Defense (DoD) formed the Very High Speed Integrated Circuits

(VHSIC) program in 1979 to promote the use of high density integrated circuits (ICs)

in military electronic systems [Dewe86, Myrv85]. The goal of the VHSIC program is to

reduce the design time for developing VHSIC class digital systems. To achieve this goal, a

standard means of designing, documenting, and verifying digital systems is needed. These

needs motivated the DoD to sponsor the development of the VHSIC Hardware Descrip-

tion Language (VHDL) to become the standard method for describing and documenting

electronic and digital hardware devices.

In 1983, the VHSIC program contracted Intermetrics, Inc. to develop VHDL along

with an computer aided design (CAD) environment to help design and test VHDL models

via software analysis and simulation. The acceptance of the language by the engineering

community led to a concerted effort by the government and the Institute of Electrical

and Electronics Engineers (IEEE) to further enhance the language and establish it as a

standard [Bart88I. The standardization effort began in February 1986 and was supported

by experts from engineering, computer, manufacturing, and other technical fields [IEEE88].

This effort culminated in the approval of what is now known as IEEE Standard VHDL

1076-1987.

The development of VHDL not only helps the DoD with its goal of advancing the

technology of its military system, but as a standard hardware description language (HDL),

VHDL will promote the advancement of technology across a wide spectrum of digital

electronic applications. VHDL is touted as being an "extremely important vehicle for the
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development and insertion of VHSIC technology in the 1990's" [Koda87, Dewe86]. As

such, use of VHDL by engineers and circuit designers must begin now to breed familiarity

for use as a system specification and design language. Additionally, adding VHDL training

to academic curriculums will help make future engineers and circuit designers proficient in

VHDL before they enter their profession [DeGr88].

To promote the use of VHDL in an educational environment, research at AFIT was

consolidated to develop the AFIT VHDL Environment (AVE) [Cart87]. AVE was devel-

oped with the intention of providing all the necessary tools to use VHDL under the UNIX1

operating syitem. AVE includes both a VHDL analyzer [Berk88] and simulator along

with a graphical interface program (Mate88] (Figure 1-1). The analyzer checks the VHDL

source code for correct syntax and converts it into a form that can be efficiently simulated.

The simulator allows the designer to test circuit designs by viewing their operation under

computer simulation. The graphical interface program lets the user create digital designs

graphically, and when fully implemented, will automatically generate VHDL source code

from the design layout.

GVUI VHLAnalyzer VI Simulator

user Editor

Figure 1-1. AFIT VHDL Environment

'UNIX is a trademark of AT&T.
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1.2 Problem Statement

The objective of this thesis is to: 1) analyze VHDL in terms of its ability to ac-

curately model digital hardware circuits and 2) design and implement a subset simulator

that adheres to the hardware modeling semantics of the language. The simulator imple-

mentation will be based upon a prototype VHDL simulator developed by Maj William

Lynch [Lync86] and a subset simulator developed by Lt Harvey Kodama [Koda87], both

of which worked with VHDL version 7.2. The new simulator will extend the capabilities

of the existing simulators and redefine their operation to support VHDL as defined under

IEEE Standard 1076-1987. The AVE simulator must be compatible with the other com-

puter aided design tools used in the AFIT VHDL Environment. Lastly, a complete set of

documentation must be written to support the simulator's release to universities and other

government agencies.

1.3 Scope

This thesis must consider the changes to VHDL 1076 from version 7.2 and analyze

the impact of these changes on the AVE simulator. The simulator software development

will include updating the current simulator to conform with the new IEEE standard for

VHDL, restructuring of the simulator design to improve efficiency, and the addition of

critical VHDL features. The final version of the AVE simulator will not support the

complete language, but it will provide a full range of functions to support the simulation

of realistic designs.

The software will be written using the C programming language and will be imple-

mented on a VAX or an ELXSI computer operating under the UNIX operating system.

Although the primary target machine for running the simulator during this thesis will

be a VAX or an ELXSI, the software will be developed to allow it to run under any C

programming environment.
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1.4 Current Knowledge

The AFIT VHDL software simulator has been the topic of two previous theses. In

1986, Maj Lynch began the development of the AVE simulator by generating a preliminary

design and a prototype simulator that worked with a subset of VHDL [Lync86]. One of his

objectives was to determine the feasibility of simulating Very Large Scale Integrated (VLSI)

circuits that were modeled using VHDL. He found the number of individual elements

making up a VLSI circuit too great for all components to be efficiently simulated at the

same time. He concluded VLSI circuits can be efficiently simulated using an event-driven

simulation.

Maj Lynch's success not only proved that simulation of VLSI circuits modeled with

VHDL was feasible, but he also paved the way for continued research and development in

this area. In his concluding remarks, Maj Lynch stated that the prototype simulator has

provided: "1) a proof of design concept for development of a complete VHDL simulator

for the UNIX Environment, and 2) an established baseline upon which future research and

development efforts can build" [Lync86:94].

In 1987, Lt Kodama extended the work of Maj Lynch and produced a simulator that

accommodated the use of a subset of VHDL [Koda87]. Lt Kodama's work was significant

in developing a functional AFIT environment that allowed both the analyzer and simulator

to work together in providing an integrated tool to analyze and test circuit designs. One

of Lt Kodama's objectives was creating a modular design for the simulator that facilitates

implementation of the full language. The impact of Lt Kodama's work helps pave the

way towards a complete simulator as he successfully produced a design that will readily

accommodate future additions or changes to VHDL.

1.5 Approach

The simulator is but one portion of the AFIT VHDL Environment; therefore, the

general design philosophy is to implement simulation support for VHDL language features

incrementally in coordination with other AVE tool development. Developing the simulator

1-4



in this fashion allows for comprehensive testing of each feature of the design along with

ensuring total compatibility between the simulator and other AVE tools.

Once the software development is complete, comprehensive system level testing will

be conducted. At issue are accuracy of the design, proper software implementation, and

runtime efficiency. Proper implementation of VHDL modeling issues must be validated,

and the software implementation aspects must be reviewed and verified to judge the soft-

ware's integrity. Lastly, runtime efficiency must be analyzed to determine if it meets

expectations.

Judging the efficiency of computer software can be subjective; therefore, during the

development process, the AVE simulator will be benchmarked against the Intermetrics

simulator to ensure complete accuracy with regards to proper simulation of VHDL. The

AVE simulator will also be benchmarked against the Intermetrics simulator to provide

a comparison of processing capabilities between the two. Intermetrics' simulator is an

established simulator and will provide a good model against which to judge the accuracy

and efficiency of the AVE simulator.

As was previously mentioned, one of the major mot.vating factors for developing the

VIA simulator and associated tools is to provide an integrated set of UNIX-based VHDL

development tools for universities and government agencies. To support the release of

the simulator to these institutions, complete documentation for all areas of the simulator

must be provided. This documentation will include the details of the requirements and

design analysis, fully documented source code, an installation guide, a user's manual,

and a programmer's manual. The documentation will give the user information to fully

understand how to run the simulator, along with providing information specific to the

principles behind the simulator and how it operates. This information will allow users to

modify the simulator to meet their individual needs.

1.6 Assumptions

VHDL Intermediate Access (VIA) is the form taken by the VHDL source code after

it has been compiled by the AVE analyzer. This form can be readily interpreted by the
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simulator for the purpose of modeling a circuit described with VHDL source code. VIA

facilitates the efficient execution of the simulator; therefore, the simulator is restricted to

using VIA and cannot simulate a circuit directly from a description made with VHDL

source code. This dependency on VIA makes implementation and testing of the simulator

with each VHDL feature dependent upon the successful development and implementation

of the analyzer for the same feature.

1.7 Standards
0

One of the major objectives of this thesis is to provide simulation facilities for VHDL

as the language is defined under the new IEEE Standard 1076-1987. This standard was

published in December 1987 and was unavailable for use by Maj Lynch and Lt Kodama in

*1 their work on the simulator. Now that this standard is available, the work accomplished

by Maj Lynch and Lt Kodama will have to be reviewed and changes made where features

do not conform to the standard.

0 Until a formal standard for the C programming language is adopted, de facto stan-

dards will be used to ensure that the simulator will run under any C programming environ-

ment. Presently, an ANSI standard for the C programming language is being developed;

therefore, the direction provided by the draft of this standard will be the guide for devel-

oping the C source code for the simulator.

1.8 Thesis Overview

* Chapter I has given the background, motivation, and direction for this thesis. The

problem and its scope has been defined along with a overview of the approach to the

solution.

* Chapter II looks at HDLs, their history and impact and how VHDL was created to

fill a void among existing HDLs.

Chapter III looks at VHDL and its ability to properly model hardware. Language

constructs and semantics are compared to those desirable in an HDL.

Chapter IV provides a problem analysis and system design for the simulator.
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Chapter V details the design and implementation of the simulator. Elements such

as modeling code generation and simulation control are discussed.

Chapter VI reviews the design and implementation of the simulator in regards to the

original design and requirements.

Chapter VH summarizes the work and provides conclusions and recommendations

for further research with VHDL simulation and the AFIT VHDL Environment.
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II. Hardware Description Languages and VHDL

2.1 Hardware Description Languages

2.1.1 Background. A hardware description language (HDL) is a special com-

puter language used to describe digital circuit designs. HDLs provide a detailed, yet

concise description of the design and serve as a means for engineers and circuit designers

to convey their ideas to each other [Chu74]. Similar to programming languages, HDLs

have a formal structure and syntax which helps to reduce ambiguity while detailing de-

sign specifics. Before HDLs were used, most designs were accomplished with pencil and

paper. Diagramming on paper is fine for simple designs, but as designs become complex,

the details can become confusing.

Early HDLs were typically developed as needed [Lipo77]. Most early HDLs were

created for a specific application and were not general enough for another design engineer

to use in a separate design. This forced circuit designers to develop HDLs to document

their work rather than try to use one of the existing languages. The abundant use of

application specific HDLs made it difficult for engineers to understand another's design.

Unique HDLs also made it difficult to integrate two separate designs that used different

languages. Some of these difficulties were eventually offset by the advent of general purpose

HDLs.

2.1.2 HDLs and Simulation. Probably the biggest advantage to using HDLs

over designing on paper is their suitability for computer simulation [Chu74]. A design

created using an HDL can be simulated and tested on a computer prior to being con-

structed. This added step is very beneficial in making sure that the design is correct and

complete. Finding errors before circuit construction allows for quicker and easier changes

to the design and can result in substantial savings in both time and cost of developing the

circuit.

As time and technology progressed, many of the original HDLs were unable to provide

simulations of the ever-advancing hardware technology [Dewe86]. As hardware progressed

from discrete components to integrated circuits, it became necessary to develop a new HDL
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that would support the latest chip technology. This language must also have the ability

to support yet undeveloped technology as it becomes available. This need was the driving

force behind developing VHDL.

* 2.2 VHSIC Hardware Description Language

2.2.1 Background. VHDL was developed under Department of Defense (DoD)

guidance to become a standard HDL for DoD use. The proliferation of existing HDLs

made it difficult to review designs submitted by contractors. Additionally, it was difficult

to integrate two designs that were developed using different HDLs. In 1981, the Institute

for Defense Analysis was tasked with the job of analyzing the requirements for a standard

HDL. Part of their job was to survey the many existing languages and ensure that necessary

* features of these languages were incorporated into the new language [Aylo86]. After the

language requirements were established, the VHDL program was begun in 1983 with the

awarding of the contract to Intermetrics [Dewe86].

The primary need for a language such as VHDL was to enhance the ability to design

and develop VHSIC technology for military systems [Dewe86]. Having a common language

for the many and varied military applications addresses the issues of providing a means of

communicating design specifics and supporting the integration of separate designs. VHDL

* is particularly suited to supporting a variety of applications because it is not restricted to

any particular hardware technology or design methodology [Lips86]. Additionally, VHDL

was designed to be intuitive in nature and suitability for simulation [Lips86]. Hardware

designers find it easy to work with VHDL because the language supplies a natural method-

ology for modeling hardw .re technology.

Although VHDL was originally intended for use in DoD applications, other non-DoD

institutions acknowledged its potential and began using it also. These institutions recog-
nized the need for a standard HDL and saw VHDL as one that can meet th(y requirements

for standardization. The motivation for VHDL "came from the Departmeit of Defense,

but the need is universal" [Waxm86].

0
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2.2.2 The Language. VHDL allows the designer to use varying levels of abstrac-

tion in describing a design [Lips86]. At the highest level, the designer can describe a

design as a function of the overall system. At the lowest level, a design can be described

as a compilation of individual gates. Due to the generic nature of its language semantics,

VHDL can even support descriptions below the gate level; this capability, however, was

not required as part of the language requirements [Shiv85].

2.2.2.1 Design Entity At the highest level of a hardware component de-

scription is the design entity. The design entity constitutes a hardware component as a

whole. It can be used to model a simple logic gate, complex computer system, or a level

of hardware abstraction somewhere in between [Lips86]. A design entity can be comprised

of other design entities. This hierarchical approach allows systems to be designed using

existing components. Common components, such as simple logic gates, can be created

and copied by other engineers for use in separate designs. This is analogous to building a

circuit from existing off-the-shelf components.

The design entity is divided into two parts: an entity declaration and an architec-

ture body. The entity declaration describes how the hardware component interfaces with

other components external to itself. A entity declaration can be used to define a class of

components, all of who's interfaces are the same but who's internal implementation may

be different. In support of this component classification, the entity declaration is also used

to define declarations and statements that can be shared by any design entities that may

come under this class. Figure 2-1 shows the entity declaration for a full adder. The port

list defines the input and output interface elements of the full adder.

The architecture body is the portion of the design entity that describes organization

and/or operation and provides a "view" of the component. Just as hardware designs can

take different approaches to implementation, VHDL descriptions can be expressed in more

than one way. The different views of the same component may reflect different levels of

abstraction, different types of implementations, or different styles of description [Int85b].

Three basic views provided by VHDL are structural, dataflow, and behavioral.
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entity full-adder is
port( x, y : in BIT;

cin: in BIT;
sum: out BIT;
cout : out BIT)

end full-adder;

Figure 2-1. Entity Declaration for a Full Adder

A structural view describes the physical structure of the design and is analogous to

mapping a circuit using a schematic. It describes the individual elements and how they

interconnect. Figure 2-2 shows a VHDL description that gives a structural view of a full

adder. In this example, lower level design entities such as the and, zor, and or gates

are used to describe the full adder. Instantiating these components to help describe the

full adder is an example of the hierarchical approach to hardware description that was

discussed earlier.

The dataflow view uses signal assignment statements to show component connections

and signal activity internal to the component. Figure 2-3 gives a dataflow description of

a full adder. In this example, signals representing intermediate results are used to help

describe the operation. These intermediate signals are local to the design entity and are

not visible to other design entities.

At the opposite extreme from the structural view is the behavioral view. The behav-

ioral view is an abstract description that represents the component entirely as a function. It

describes the output of a hardware component as a function of the input. Figure 2-4 shows

a VHDL behavioral view of a full adder. Procedural statements are used to implement an

algorithm that describes the function of the component.

The three full adder descriptions discussed represent views that are solely of one

type. VHDL also allows the circuit designer to mix structural, dataflow, and dataflow
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architecture structural-view of full-adder is

-- component declarations
component and-gate port(a, b: in BIT; C out BIT);
end component;
component and-gate port(a, b: in BIT; C out BIT);
end component;
component and-gate port(a, b: in BIT; C out BIT);
end component;

-- configuration specifications
for xl, x2 : xor.gate use entity xor.gate(data-flowview)

port map(a, b, c);
for al, a2 : and-gate use entity and -gate(data.flow-view)

port map(d, e, f);
for ol, o2 : or.gate use entity or-gate(data-flow-view)

port map(g, h, i);

signal sl, s2, s3 : BIT; -- local signal declarations

begin
xl : xor.gate port map(x, y, si);
x2 : xor-gate port map(sl, cin, sum);
al : and-gate port map(cin, si, s2);
a2 : and-gate port map(x, y, s3);
ol : or.gate port map(s2, s3, cout);

end structural -view;

Figure 2-2. Structural View of Full Adder

statements to form a hybrid view. This flexibility allows the design engineer to develop a

description that will more accurately meet the design specifications.

The same flexibility that VHDL offers the design engineer is what makes VHDL well

suited for simulation. VHDL allows the engineer to isolate and concentrate on particular

aspects of a design such as component functions, signals, or interfaces for verification and

validation via computer simulation. Since VHDL supports behavioral descriptions at all

levels of the design, a component can be analyzed at a high level of operation without

being burdened with lower level details. Freeing high level descriptions from the lower

levels allows for improved simulation capabilities [Aylo86].
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architecture data-fAow-view of full-adder is
signal si, s2 :BIT;
begin

si <= xxor y;
s2 <= si and cin;
sum <= s1 xor cia;
cout <= s2 or (x and y);

end data-Jlow-iew;

Figure 2-3. DataFlow View of Full Adder

architecture behavioral-view of full..adder is
begin

process(x, y, cin)
variable s : BIT..VECTOR(1 to 3) :=x & y &z ci;
variable num : INTEGER range 0 to 3 := 0;

begin
for I in 1 to 3 loop

if s(I) = '1' then
num: num + 1;

end if;,
end loop;
case num is

when 0 =>
cout <= '0';
sum <= '0';

when 1 =>
cout <= '0';
sum <= '1';

when 2 =>
cout < = ' 1';
sum <= '0';

when 3 =>
cout <= '1';
sum <= '1';

end case;
end process;

end behavioral-view;

Figure 2-4. Behavioral View of Full Adder
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III. VHDL and Hardware Modeling

3.1 Introduction

VHDL was developed with the purpose of achieving "faithful semantic modeling

of hardware" [Lips85]. It serves to describe designs from the gate level up through the

system level with flexibility to support both a behavioral or structural view (Hine871.

VHDL's strength lies in a full set of language constructs from which to model hardware

characteristics along with well-defined semantics to guide model behavior. This chapter

looks at VHDL in terms of its ability to model hardware by examining VHDL's constructs

and semantics.

3.2 VHDL Language Constructs

3.2.1 Introduction. VHDL offers the circuit designer many language constructs

to accurately model a digital system. The language supports data abstractions, process

control, and expressions that parallel hardware designs. At the heart of VHDL is the

signal assignment statement from which the designer can produce a structural, behavioral,

or dataflow description.

Based on the Ada programming language, VHDL inherits much of Ada's structural

and procedural aspects. The ability to describe hardware characteristics algorithmically

gives VHDL additional power and flexibility. Users familiar with Ada or other high-order

languages will recognize VHDL's procedural features. The high-order language nature of

VHDL also help make it tool and machine independent.

To provide data abstraction, process control, and expressions to model hardware

designs, VHDL offers a range of language constructs. These constructs are presented

and discussed under language feature categories identified as being desirable for an HDL:

data types, operations, statement types, operator definitions, order of execution, block

structure, instantiation of components, and process structure [Barb81].
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3.2.2 Data Types and Objects

3.2.2.1 Data Types. A data type is a declaration of an object, such as an

integer, and a set of operations that are associated with this class of objects [IEEE88]. An

HDL should support a range of data types that map well to hardware. Besides common

data types such as integer, real, character, and string, an HDL should support hardware

associated types such as bit, boolean, and bit vector.

VHDL is a strongly typed language and supports four classes of data types: scalar,

composite, access, and file [IEEE88]. Scalar types include integer, floating point, enumer-

ated, and physical types. Integer and floating point are numeric types and are similar to

those of other programming languages. An enumerated type is an explicit list of literal

values that are to be associated with a declared instance of an enumerated type. Prede-

fined enumerated types for VHDL are bit, boolean, and character. Each of these types

is defined by declaring all instances of the type. For example, if type bit was not already

predefined in package standard, a user could create it by declaring:

type bit is ('0', '1');

Physical types are used to denote objects that have a physical unit of measure. The

physical type declaration defines incremental measures of some base unit. Figure 3-1 shows

how a physical type declaration can be used to define units of resistance. The base unit

for this declaration is nOhm; other resistance measures are defined as multiples of this

base unit. The underlying representation of a physical type's base unit is the integer

value 1. Each incremental measure of the physical type's base unit is represented by an

integer that is equal to the ratio of the incremental measure to the base unit. The range

of the physical type is dependent upon the largest integer supported by the host machine.

Physical types support two aspects of hardware modeling. First, they permit the user

to use common terms to define physical units. Secondly, the underlying integer value

representation facilitates simulation by making computations on units of physical type

integer operations.
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type resistance is range 0 to 2**31-1
units

nOhm;
uOhm = 1000 nOhm;
mOhm 1000 uOhm;
Ohm = 1000 mOhm;
kOhm = 1000 Ohm;
megOhm = 1000kOhm;

end units;

Figure 3-1. Declaration of a Physical Type [CLS87a:37]

Composite types are made from a collection of one or more types. VHDL composite

types include arrays and records. Composite types can be used to represent a collection of

objects from the model. For example, an array of type bit can be used to model a bus.

An array of type bit is actually predefined by VHDL and is called a bit-vector. Arrays

can be used to model other objects such as registers, memory locations, or buffers.

Records are a collection of elements that must be of the same class of objects. These

elements, however, may be of different types from that class. Figure 3-2 shows an example

of a record that is used to describe a component description.

type component is
record

name : string(1 to 30);
id : natural;

end record;

Figure 3-2. Declaration of Type Record
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Access types are comparable to pointer types in other languages. These are used

to dynamically create and delete objects of type variable. File types represent disk files

as defined under the host operating system and define the type of objects to be stored in

these disk files. The user can use files to inject signal values into the model to test for

various conditions. Files also let the user extract specific information about the model and

store this information into a disk file for later evaluation. These options help isolate the

information of interest to the user, or they can be used to help debug the design.

VHDL also supports user-defined types. User-defined types allow the circuit designer

to create objects that map directly to hardware objects. For example, a user-defined type

can be used to represent a signal that has multi-valued characteristics such as one that

assumes the following states: high, low, high impedance, and undefined. Figure 3-3 shows

how a multi-valued signal can be described with VHDL. This type includes an error state

that is used to signal an error condition during simulation.

type multi-value-logic is
('U' -- undefined state

'0', -- low logic
'1' -- high logic
Z' -- high impedance

'E') -- error condition

signal A : multi-value-logic;

Figure 3-3. Multi-Valued Signal

3.2.2.2 Objects. An instance of a type assumes that type's characteristics

and is called an object. With VHDL, the user can create objects of four classes: constants,

variables, signals, and files. At any given time during simulation, the values assumed by

all objects in the VHDL model signify the current state of the model [CSL87a].
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Constants and variables refer only to a value of an object. Constants are initialized

at the start of the simulation and remain unchanged throughout the simulation. Vari-

able objects may change value during simulation via the variable assignment statement.

[CSL87a]

Signals also have an associated value which corresponds to its current state at any

given point during the simulation. A signal differs from a variable by its associated signal

attributes. These attributes include a history of past values and a set of projected future

values. A signal also inherits attributes associated with digital signals.

Attributes are not specific to just signals. The attribute construct "is a value, func-

tion, type, range, signal, or constant that may be associated with one or more entities

in a description" [IEEE88:4-14]. VHDL supports two types of attributes: predefined and

user-defined. Predefined attributes denote characteristics of the model such as high and

low bound values of an object. User-defined attributes provide model characteristics also,

but they are explicit to the user's needs. One application for user-defined attributes is

to permit designers to extract circuit information that can be used to drive various CAD

tools [Lips86].

3.2.3 Primitive Operations. The definition for a data type implies that objects

of a specific type inherit certain operations. Some operations reflect the procedural aspect

of the language while others provide mechanisms to describe hardware behavior. Classes of

primitive operations for an HDL should include logical, arithmetic, and relational functions

[Barb8l]. Logical operations include such functions as and, or, and not that can be used

to model a network of logic gates. Arithmetic operations such as addition, subtraction,

multiplication, and division operate on numeric and some physical types. These operations

permit functional descriptions that utilize procedural statements. Relational operations

permit comparison between objects of the model and also support functional descriptions.

The VHDL Language Reference Manual [LRM] defines an expression as a "formula

that defines the computation of a value" [IEEE88:7-1]. The expression's operand types

determine the type of value being computed. VHDL supports a full set of primitive op-

erators for its pre-defined types. Table 3-1 lists the classes of primitive operators and
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their associated operations. Provisions for logical, arithmetic, and relation operations are

present. The LRM details the rules and priorities of expression evaluation for the different

classes of operations [IEEE88:7-2].

Table 3-1. VHDL Operators

Logical and or nand nor xor
Relational = 1= < <= > >=

Adding + - &
Sign +

Multiplying * / mod rem
Miscellaneous ** abs not

3.2.4 Statement Types. For an HDL, a statement should "describe both the

operator of the system and the connection of components" [Barb8l]. There are three

types of statements: data, control, and declarative. Data statements cover the processing

of data; control statements control the ordering and execution of operations; declarative

statements define the structure and interfaces of the system. [Barb8l]

Signal and variable assignment statements are the means by which values are passed

among objects of a VHDL model. These are primitive VHDL statements upon which
circuit descriptions are built. A more detailed look at the assignment statement is given

in section 3.3.2.

VHDL offers a set of control structures that permit repetitious, selective, or alterna-

tive execution of statements. Conditional statements such as the if-then-else, and case

statements are mechanisms to provide alternative processing based upon current circuit

parameters. The loop construct offers the ability to repeat operations based on circuit

conditions or for a range of values. The selected and guarded signal assignment statements

bring conditional control to the primitive level of description. Execution control statements

such as the wait, next, and exit provide explicit user control for process execution.

The declarative statement is used in VHDL to define various entities used to model

hardware. The forms of the declaration include type, suajpe. object, integer, component,
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entity, and package declarations [IEEE88]. Each declaration associates an identifier with

the entity type of the declaration. Some declarations in VHDL provide for an initialization

clause. This permits the user to specify the value an object is to assume at the start of

simulation.

3.2.5 Operator Definitions. To create the behavioral description of a system, it

may be necessary to represent operations in more abstract terms than can be described with

primitive operators. User defined operations, functions or macros permit the description of

hardware at levels that can accurately characterize behavior without being burdened with

individual primitive operations [Barb8l]. The abstract operations also permit the user to

describe unique or complex operations of a system that cannot be modeled with primitive

operators. VHDL offers two methods for creating user-defined operators: overloading and

resolution functions.

3.2.5.1 Overloading. VHDL's primitive operators are defined only for its

predefined types. For example, the and operation is defined only for types bit and

boolean. This means that the primitive and operator may not be use for user-defined

types such as that of Figure 3-3. Instead, circuit designers may define a new and operator

to be used for their new multi-valued type. This redefinition of an existing operator is

called overloading. Figure 3-4 shows how the and operation can be overloaded for the

multi-value type that was defined in Figure 3-3. Note that overloaded operations may be

used in either infix or prefix notation.

3.2.5.2 Resolution Functions. The resolution function determines the re-

sultant value for a signal that is being driven by more than one source. One application

for a resolution function is to determine the value of the signal on a data bus that is being

driven by more than one source. Whenever a source asserts a value, the resolution function

must take into consideration all other sources before determining the resultant value for

the bus. The resolution function can be used to detect conditions of error and report such

instances. Signals that are to be resolved must have the resolution function specified in

their declaration.
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function and(A, B : multi valuelogic) return multi valuelogic is
signal temp.signal : multi-valuelogic;

begin
temp.signal <= 'U' when (A 'U') or (B = 'U');
tempsignal <= '0' when (A = '0') or (B = '0');
temp.signal <= '1' when (A = '1T ) and (B = '1');
temp.signal <= 'U' when (A = Z') or (B = 'Z');
temp-signal <= 'E' when (A - 'E') or (B = 'E');
return temp.signal

end

signal A, B, C, D : multi valulogic;

C <= and(A,B);
D <= A and B;

Figure 3-4. Example of Overloading

3.2.0 Order of Execution. Support for both concurrent and sequential oper-

ations are necessary to properly model most digital hardware devices. The fact that a

language is procedural, nonprocedural, or a combination of both directly impacts its abil-

ity to support concurrent and sequential operations. In addition, control over statement

execution should be available.

VHDL provides both procedural and nonprocedural constructs. Concurrent VHDL

statements such as the concurrent signal assignment statement imply no order of execution

and correctly model independent behavior of a circuit. For sequential characteristics, the

process statement may be used. The process statement allows the use of the full set of

VHDL procedural constructs.

3.2.7 Block Structure. VHDL is a hierarchical language with various constructs

to support modular designs. At the lowest levels of description, VHDL uses the block

statement to group common statements or organize the structure of the design. At a

higher level, the design entity concept facilitates a modular organization of the design.
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The design entity usually represents a component and may itself be composed of other

design entities.

VHDL borrowed the package language concept from Ada to provide a means to

group similar portions of the design [Nash86]. Additionally, packages can be used to

isolate technological dependencies of the design (Nash86]. Figure 3-5 shows how circuit

attributes can be grouped in a separate package to facilitate changes necessary to model

under different hardware conditions.

package hardware-attributes is
constant word.size; integer 32;
constant data.bus.width; integer 16;
constant addressbus.width integer 32;

end hardware-attributes;

Figure 3-5. Package

3.2.8 Instantiation of Components. Modeling hardware often correlates to

the actual building of the components where a building block approach is taken. Many

of the components used in digital hardware are based upon common components such

as gates, registers, etc. Just as the hardware engineer takes parts off the shelf to build a

component, VHDL components can be taken from a common design library and included in

various designs. The component instantiation statement permits the user to include pre-

existing design entities. VHDL supports a multi-dimensional hierarchy of instantiation.

Instances of a component that are included into a design may themselves use component

instantiation. Component instantiation simplifies the design process, and it reduces design

error by giving the circuit designer a library of fully tested desigr entities from which to

draw.
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3.2.9 Process Structure. The instance of a process in hardware usually refers

to the behavioral aspects of discrete portions of the component. Although these processes

usually operate concurrently, often they must interface with one another to pass values or

to synchronize their operation. It is important that an HDL be able to model such activity.

The basic unit of action of the VHDL model is the process [Bart88]. The signal

assignment statement and the process statement axe examples of this process model. The

signal assignment represents discrete signal activity within the hardware while the process

statement gives the designer the tool to describe behavior in a more abstract manner.

The coding of a process using the process statement is similar to a coding a procedure

with a typical high order language such as Ada or Pascal. The statements within a process

statement are executed sequentially with procedural type statements such as conditional

and iterative statements used to help describe the behavior. Figure 3-6 shows a conditional

signal assignment statement and its equivalent process statement.

S <= "01" when A < B else process(A,B)
"10" when A > B else begin
"00"; if A < B then

S <= "01";
elsif A > B then

S <= "10"
else

S < = "00";
end if;

end process;

Figure 3-6. Signal Assignment Statement Versus Process Statement [Lips86:30]
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3.3 VHDL Timing Concepts

3.3.1 Introduction. An HDL should support accurate description of timing char-

acteristics when describing a hardware model [Aylo86]. Most HDLs serve to support sim-

ulation of digital circuits, but often the issue of hardware timing is left to the simulator.

VHDL, on the other hand, has well defined timing semantics inherent in the language

[Hine87]. These timing semantics include specific language features to give the circuit de-

signer the power to truly describe the circuit operation plus a well defined model which

the language must follow to simulate true hardware operation.

This section analyzes VHDL with respect to its ability to model the various timing

characteristics found in digital circuitry. Since much of the timing aspects of VHDL are tied

to the signal assignment statement, their role will be discussed first. The signal assignment

statement is the primitive expression upon which all descriptions are built. They allow

the designer to describe a full range of circuit characteristics and control the basic timing

aspects of the circuit.

3.3.2 Signal Assignment Statements

3.3.2.1 General. VHDL uses an expression called the signal assignment

statement to assign a value to a signal. An example of a signal assignment statement that

represents an AND gate is:

A <= B and C;

There are three types of signal assignment statements supported by VHDL: timed,

conditional, and guarded [Bart88].

3.3.2.2 Timed Signal Assignment Statements. To properly model dig-

ital hardware, an HDL must have the ability to specify timing characteristics of the com-

ponents. One such characteristic is the delay associated with the transfer of input signals
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to an output signal. Again using an AND gate, VHDL can describe the same expression

as above but for an AND gate that requires 10 nanoseconds (ns) to propagate the signal:

A <= B and C after 10 ns;

This 10 ns delay is taken from the time the statement is executed. The delay may also

be specified as a variable or function. This permits the modeling of hardware that has a

variable delay or a delay that is dependent upon other factors of the circuit. Figure 3-7

shows how VHDL can model a component with a variable delay. This example uses the

function gate-delay to compute the delay based on temperature conditions at the time of

execution.

function gate-delay(temp : temperature) return time is
begin

if temp <0
return(iOns);

else
return(15ns);

end;

A <= B and C after gate-delay;

Figure 3-7. Variable Timing Delay

3.3.2.3 Conditional Signal Assignment Statements. There are two sig-

nal assignment statements that assign values to signals based upon circuit conditions

[Bart88]. The first is the conditional signal assignment statement. This statement lists a

sequence of expressions that may be used to determine the assigned value for the signal.

The conditions -re tested in order of presentation until one is found to be true. The expres-

sion associated with this true condition is then executed. Figure 3-8 shows a description of

an R-S flip-flop using a conditional assignment statement. In this example, UNDEFINED

is a user defined function used to determine the value under this undefined condition.
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signal q, r, s : BIT;

q <= q when (r '0') and (s = '0') else
q <= '1' when (r = '1') and (s = '0') else
q <= '0' when (r = '0') and (s = '1') else
UNDEFINED;

Figure 3-8. R-S Flip Flop [Bart87:42]

The second conditional signal assignment statement is the selected signal assignment

statement. This statement lists values for the expression along with conditions to be

met for each value to be assigned to the signal in a manner much like a case statement.

Figure 3-9 shows a description of an eight- input inverted multiplexer using the selected

signal assignment statement.

signal dO, dl, d2, d3, d4, d5, d6, d, a, b, c, w BIT;

with (a & b & c) select
w <= not dO when "000",
w <= not dl when "001",
w <= not d2 when "010",
w <= not d3 when "011",
w <= not d4 when "100",
w <= not d5 when "101",
w <= not d6 when "110",
w <= not d7 when others;

Figure 3-9. Eight-Input Inverted Multiplexer [Bart87:41]
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3.3.2.4 Guarded Signal Assignment Statements. For synchronous cir-

cuits, signal behavior is controlled by a clock [Bart88]. The same clock state may affect a

group of common signals. VHDL permits the grouping of related signals using the block

statement. Each block statement may have an optional guard expression that must eval-

uate to true for the guarded signal assignment statements contained within the block to

be evaluated. The guard expression is enclosed in parenthesis and is placed immediately

after the block statement. Figure 3-10 shows a VHDL description of a D flip-flop that

utilizes a guard expression. The keyword guarded is used with expressions that are to be

evaluated only when the guard expression is true. For the D flip-flop of Figure 3-10, the

input signal is clocked to the output only when CLK is high.

signal CLK, q, qb, d BIT;

flipflop: block(CLK - '1')
signal s : BIT;
begin

s <= guarded d;
q <= s;
qb <= not s;

end block flipflop;

Figure 3-10. D Flip-Flop [Bart87:42]

3.3.2.5 Waveforms. A waveform is represented by the expression on the

right hand side of a signal assignment statement [CLS87a]. This waveform reflects values

being asserted by a signal's driver (see next section). Each waveform may contain one

or more waveform elements with each waveform element specifying a signal value and the

delay after which the signal value is to be assigned. Figure 3-11 shows a signal assignment

statement with multiple waveform elements for an integer, A:
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signal A : integer;

A <= 1 after 10 ns, 2 after 20 ns, 3 after 30 ns;

Figure 3-11. Multiple Waveform

3.3.2.6 Drivers. Each signal has one or more drivers which contain its cur-

rent value and associated waveform. Again, each waveform element contains a value and

the time at which the signal assumes this value; therefore, a driver not only lists the current

signal value, but also all values it will assume in the future. Signals with multiple drivers

must have their value resolved from those being asserted by all drivers (see sect 3.2.5.2).

Figure 3-12 pictures a driver for signal A of Figure 3-11 and shows how future values are

queued to be resolved when their projected future time arrives. Waveforms and drivers

are discussed further in section 3.4.3.2.

1 2 3
A 0

-, + 10 ns + 20 ns + 30 ns

Figure 3-12. Picture of Driver
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3.3.3 Delay

3.3.3.1 General. There are two time delay models supported by VHDL:

inertial and transport [IEEE88]. These two models help the circuit designer to accurately

model digital hardware as it would actually operate.

3.3.3.2 Inertial and Transport Delay. Inertial delay represents the delay

attributed to switching circuits [IEEE88]. This delay period corresponds to the time needed

for a component to propagate the input signal to the output. If the input signal remains

valid for a time greater than the inertial delay, then its value is propagated; otherwise, no

change is made at the output. Since inertial delay is common in digital circuits, it is the

default delay model in VHDL (CLS87a].

The transport delay model is optional for signal assignments and is used to model

hardware that exhibits no inertial delay [IEEE88]. These devices have a nearly infinite

frequency response and changes in input, no matter how short, are always reflected on

output. Since this time model is optional, the keyword transport must be used with the

signal assignment statement to indicate a transport delay.

Figure 3-13 shows two signal assignment statements, one with an inertial delay and

one with a transport delay. The transients of the originating signal, S, have a shorter

duration than the specified inertial delay and are ignored by the inertial model. In this

example, propagation of transients signals are undesirable; therefore, the inertial model

should be used.

When all changes in the input signal are significant, the transport model should be

used. Figure 3-14 shows a signal, S, that represents a signal to be sent over a transmission

line. This signal carries bits of information that are represented by short signal pulses.

Each pulse is significant even though they they last for a period of time that is shorter

than the line delay. To correctly model the transmitted signal, the transport model must

be used. The resulting waveform is represented by signal B and reflects a 5ns delay for the

line. If the inertial delay model was used, the resulting signal would not reflect the code

groups. Signal A shows the result if the inertial delay model was used.
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transients

A <= S after 5 ns;

A

B

time, I I I
now + 10 + 20 + 30 +40

Figure 3-13. Modeling Propagation Delay Through a Buffer [CLS87a:59]

3.3.3.3 Delta Delay. When no timing clause or a zero delay timing clause

is specified, VHDL assumes an infinitesimally small unit of time for the delay. This delay,

called delta delay, is greater than zero but smaller than the smallest measurable unit of

time. Any number of delta delays added together are as a whole still smaller than the

smallest measurable unit of time. This delay accurately models hardware where some

minimal amount of time is required for changes of state within the hardware model. This

delay also gives order to sequential events that occur at the same simulation time. Fig-

ure 3-15 shows an example of VHDL code that assumes delta delay along with the signal

waveforms generated for this model.
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serial code groups

* S

A
0 B <= transport S after 5 ns;

B ................

0 time, nsI

now + 10 + 20 + 30 + 40

Figure 3-14. Modeling Transmission Line Delay [CLS87a:60]

A <=C or D
B <=not A;

Bi Delta L

SC _ _ _I ________ s11

Figure 3-15. Delta Delay
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3.3.4 Timing Characteristics

3.3.4.1 Constraints. Normal digital devices operate under constraints that

can be attributed to hardware operation. Typically, hardware operation incurs constraints

such as set-up times, hold times, and pulse width minimum/maximum values. The set-up

time for a component is the length of time that a signal must be stable before a dependent

signal can change state. For example, the set-up time for a D flip-flop is the length of

time the D input of the flip-flop must be asserted before it can be clocked to the output.

Figure 3-16 shows the set-up time for a D flip-flop in relation to the clock and D input

while Figure 3-17 shows how VHDL can model this set-up time.

D *I- Set-up Time

C L K ..............

50 100 150 200

Figure 3-16. Set-Up Time

D-ff:block(CLK = '1')
begin

Q <= guarded D after Ions;
end block DJf;

Figure 3-17. VHDL Modeling Set-Up Time
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The hold time for a signal is the time which a signal must be asserted after the

propagation of the input signal has begun. For a D flip-flop, the hold time for the D input

is the length of time D is asserted after it has been clocked. This assertion gives the flip-flop

enough time to propagate the value. If the minimum hold time is not met, then an invalid

output may be generated. Figure 3-18 shows hold time for the D input to a D flip-flop.

Figure 3-19 gives the VHDL description that will model the hold time characteristics.

0Q

D LHold Time

CLK __
II I I

50 100 150 200

Figure 3-18. Hold Time

process
begin

wait on D;
if(CLK = '1') then

wait for 5ns;
if(D'Stable(5)) then

Q <= D after 5ns;
end if;

end if;
end process

Figure 3-19. VHDL Modeling Hold Time
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Pulse widths are often critical for proper operation of digital devices. For a transmis-

sion line, there m-y b- a minimum pulse width that must be met for a signal to be detected.

VHDL allows the design engineer to specify pulse width conditions when modeling such

devices.

3.3.4.2 Rise and Fall Times. VHDL offers the ability to describe the edge

characteristics of signals. In particular, the designer can model rise times, fall times, and

periodicity. With VHDL, the designer can specify transition times between states with

both constant delays and variable delays.

Signal transitions in a circuit do not occur instantaneously; there is some amount of

time required for the signals to change states. In the case of boolean logic, the rise time is

that which is needed for a signal to change from 0 to 1. The fall time is the reverse-the

time needed for a signal to change from 1 to 0.

With VHDL, the designer can model both rise and fall times for hardware compo-

nents. For example, the VHDL selected signal assignment statement can be used to model

an inverter that has a rise time different than its fall time. Figure 3-20 gives the VHDL

description of an inverter with such characteristics.

B <= not A after 1Ons when B = '0' else
not A after 5ns;

Figure 3-20. Inverter with Differing Rise and Fall Times

3.3.5 Clock Definitions. VHDL supports several methods for generating a clock.

The VHDL Tutorial [CLS87a] gives examples of some of these methods. First, a delayed

signal assignment may be used to generate a simple clock. Figure 3-21 shows the VHDL

description for generating a clock with a specified period. The constant declaration

establishes the period for the clock; this value will not change during the simulation. The

initialize clause used with the clock declaration initializes the clock to '0' at the beginning
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of the simulation while the statement at label OSC inverts the clock at every half period.

This code will generate a square wave pulse as shown in Figure 3-22.

If the duty cycle for a clock is other than 50% then the duration for the high portion of

the dock will be different than that of the low portion. This characteristic can be modeled

with VHDL using the conditional signal assignment statement as shown in Figure 3-23.

high-time and low-time can be either constant values that were predefined or variable

delays.

entity Period-Clock is
port(clk : out BIT);

end Period-Clock;

architecture SimpleOsc of Period-Clock is
constant period : Time := 100ns;
clk : BIT := '0;

begin
osc: clk <= not clk after period/2;

end SimpleOsc;

Figure 3-21. A Simple Square-Wave Clock [CLS87a:68]

cik

time, ns

50 100 150 200 250 300

Figure 3-22. Waveform of Simple Square-Wave Clock
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clk <- '0' after high-time when clk = 1' else
'1' after low.time;

Figure 3-23. VHDL to Model Clock

For more complex clocking, a selected signal assignment statement can be used to

explicitly specify the clock characteristics. For example, the clock waveform shown in

Figure 3-24 can be modeled with the selected signal assignment as shown in Figure 3-25.

The wait statement at the end of the process suspends the process for 150ns so that each

signal assignment can take affect.

clk

time, ns

50 100 150

Figure 3-24. Complex Clock Waveform

Multiphase clocks can be easily modeled using a VHDL process. Figure 3-26 shows

the waveform for a multiphase clock. The VHDL description for such a clock is given in

Figure 3-27. Each phase is represented as a signal and their waveforms are determined by

signal assignment statements.

VHDL also supports the concept of a global clock. Placing a clock definition in a

separate package where it can be accessed by multiple design entities achieves this result.
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complex-.single: process
begin

cik < = '1 after 10 ns,
'0' after 2Ons,
'1 after 4Ons,

* '0' after 5Ons,
'I' after 70ns,
'0' after 8Ons,
'1 after lO0ns,
'0' after l4Ons,

wait for 15Ons;
end process complex-.single;

Figure 3-25. Complex Waveform Clock [CLS87a:701

phasel

0hse

phase2

time, ns

100

* Figure 3-26. Multiphase Clock Waveform
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three-phase: process
begin

phasel <= '1' after 10ns,
'0' after 50ns;

phase2 <= '1' after 60ns,
'0' after 90ns;

phase3 <= '1' after 2Ons,
'0' after 30ns;
'1' after 70ns;
'0' after 80ns;

wait for lOOns;
end process three-phase;

Figure 3-27. Multiphase Clock [CLS87a:71]

3.3.6 Modes of Operation. Digital circuitry operates in synchronous, asyn-

chronous, or a combination of the two. Particular to synchronous operation is the use

of a clock to provide synchronization. The previous subsection showed how the generation

of various clock signals can be accomplished using VHDL. Attributes of the clock signal

such as rising and falling edges can also be modeled. If the designer wants to model a

edge-trigger D flip-flop, the edge characteristics of the clock must be determined to model

the operation. Figure 3-28 shows the VHDL description for an edge trigger D flip-flop.

The guard expression is used to control the evaluation of the signal assignment statement.

The CLK = 1' portion of the guard expression means that the clock must be high for the

expression to evaluate to true. The not CLK'Stable portion means that the clock signal

must not be stable. Taken together, these two expressions mean that the clock signal must

have just changed to a high state for the guard expression to be true. This condition

corresponds to the rising edge of the clock.

The process model of VHDL assumes no order of execution; therefore, the concurrent

signal assignment statement and the process statement, which are instances of the process
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D-f:block(not CLK'Stable and CLK = '1')
begin

Q <= guarded D after 10ns;
end block D.ff;

Figure 3-28. Edge-Triggered D Flip-Flop

model, assume no order of execution. Building a model based on these statements can be

used to model asynchronous operation.

3.4 The VHDL Simulation Cycle

3.4.1 General. One of the objectives for developing VHDL is to support CAD

tools. Since VHDL descriptions model digital hardware, a simulator to analyze the model

becomes a natural extension. The language provides varied constructs for the designer to

build a model. When it comes time to execute the model under simulation, some mea-

sures of control must be undertaken by the simulator to mimic the hardware's operation.

This control is inherent in the language and is clearly defined by the requirements of the

language.

The VHDL Tutorial summarizes the VHDL model [CLS87a:55:

Two important principles determine the course of simulation in VHDL and
make VHDL suitable for modeling the course of events in the physical world.
First, cause always follows effect; a change in a signal value causes the execution
of signal assignments that effect changes in the values of their targets. These
effects may in turn cause additional changes, so that a sequence of events re-
suits. Many independent sequences of events can occur simultaneously. Second,
changes can be made to take effect after some delay.

The cause-effect relationship inherent in VHDL makes an event-driven simulation

model the logical choice for implementation. A simulator kernel contains the simulator

executive and support routines that control the simulation. The user's model is simulated

by linking the model to the kernel for execution. Execution of the model is started with

an initialization phase followed by repeated execution of the model's processes.
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3.4.2 Initialization. The first phase of simulation is initialization of the model.

This phase consists of the following steps[IEEE88:12-141:

1. The driving value and the effective value of each explicitly declared signal is com-
puted, and the current value of the signal is set to the effective value. This value is
assumed to have been the value of the signal for an infinite length of time prior to
the start of simulation.

2. The value of each implicit signal of the form S'Stable(T) or S'Quiet(T) is set to True.

3. The value of each implicit GUARD signal is set to the result of evaluating the cor-
responding guard expression.

4. Each process in the model is executed until it suspends.

Before even the above initialization steps can be taken, the objects of the model

must assume some initial value. For signals and variables, an initialization clause may be

specified to give each object an initial value. If no initial clause is present in the object

declaration, the object assumes a value equal to the leftmost value for this type. For

example, type bit has a leftmost value of '0' while the rightmost value is '1'. Initializing

all objects of type bit to '0' may not give a true reflection of the hardware. User-defined

types that are extensions of predefined VHDL types, such as a multi-valued logic signal

(see Figure 3-3), give the user the option of defining additional states that better reflect

the hardware. User defined types together with overloaded operators give the user the

flexibility to define a range of varied hardware designs.

3.4.3 Simulation Cycle.

3.4.3.1 General. The simulation cycle is the process of executing the user-

defined model by repeated evaluation of the model's signals and propagating these values

to other dependent signals. The steps of the cycle include [IEEE:12-14]:

1. If no driver is active, then simulation time advances to the next time at which a driver
becomes active or a process resumes. Simulation is complete when time advances to
TIME'High.

2. Each active explicit signal in the model is updated. (Events may occur on signals as
a result.)

3. Each implicit signal in the model is updated. (Events may occur on signals as a
result.)
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4. For each process, if P is currently sensitive to a signal S, and an event has occurred
on S in this simulation cycle, then P resumes.

5. Each process that has just resumed is executed until it suspends.

3.4.3.2 Updating Explicit Signals. Each signal in the model has one or

more drivers that determine its value. With each signal assignment statement comes a new

projected future value for the driver of the signal involved. The future time is determined by

the delay associated with the signal assignment statement. All projected future values for

a driver form a waveform for that driver. When the simulation time reaches the scheduled

time for one of the projected future values, the driver's signal immediately assumes the

projected value. The assignment of a projected value to a signal is called a transaction.

If this new value is different from the signal's current value, then this signal assignment is

considered an event.

Updating a driver's projected waveform requires more than just inserting a value

at the proper time. New projected values can have an impact on other projected values.

This is true for components with inertial delay whose input value changes before the value

can be propagated. To properly determine future values, VHDL uses a concept called

preemptive semantics to update the projected output waveform [Luc86b]. Under this

concept, a projected value will preempt existing projected values if the existing projected

values are no longer valid due to the new projected value. Figure 3-29 shows an inverter

where preemptive semantics are necessary to model correct circuit operation.

The inverter in the example has a delay (10ns) associated with the propagation of an

input value to the output. At time 1Ons, the input value goes high and creates a projected

future value of '0' for the output. This projected future value is scheduled to occur at time

20ns. At time 17ns, the input value goes low. This event creates a projected future value

of '1' to occur at time 27ns. Since the first input value changed before the necessary iOns

delay needed to propagate it to the output, it's projected output waveform is no longer

valid. The model must recognize the first input as a transient and delete it's projected

output waveform. At time 20ns, the input goes high again. This time, the input is asserted

for the necessary 1Ons, driving the output low at time 30ns.
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B <= not A after 10 ns;

B

A
I I I -

* 10 20 30

Figure 3-29. Inverter

The requirements for VHDL detail the process by which the model must follow to

update the projected output waveform [IEEE88:8-5]:

1. All old transactions that are projected to occur at or after the time at which the
earliest new transaction is projected to occur are deleted from the projected output
waveform;

2. The new transactions are then appended to the projected output waveform in the
order of their projected occurrence.

If the reserved word transport does not appear in the corresponding signal
assignment statement, then the initial delay is considered to be inertial delay,
and the projected output waveform is further modified as follows:

1. All of the new transactions are marked;

2. An old transaction is marked if it immediately precedes a marked transaction and
its value component is the same as that of the marked transaction;

3. The transaction that determines the current value of the driver is marked;

4. All unmarked transactions (all of which are old transactions) are deleted from the
projected output waveform.

If a simulator follows these steps when updating projected output waveforms, then

erroneous signal values will be avoided. The first two steps keep erroneous values from

being propagated when events occur that produce projected future values that are to

occur before other projected future values.
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The last four steps provide additional guidance to updating the projected output

waveforms when the inertial delay model is used. The existence of a projected future value

in the waveform means that the propagation time for this future value has not been met.

Adding a new and different projected future value to the waveform means that the input

value has changed before the first projected value can be propagated. This means that

any different projected future values that are scheduled to occur before the new projected

future value are to be preempted and must be removed from the waveform.

3.4.3.3 Updating Implicit Signals. The VHDL model assumes various

implicit signals that help to define circuit characteristics. For example, the signal attribute

'Stable represents an implicit signal that has a value of TRUE when its associated signal's

value has remained unchanged for a specified time. All implicit signals are re-evaluated

during simulation if one of their reference signals dictates re-evaluation.

3.5 Summary

This chapter has taken a look at VHDL and the features it provides in support

of hardware modeling. One of VHDL's strengths is its flexibility in supporting a range

of descriptions and styles. This chapter also looked at the inherent modeling aspects

of the language. VHDL's cause-effect relationship among objects along with preemptive

semantics present an accurate time-based model for hardware simulation.
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IV. Simulator Design Overview

4.1 System Overview

The AVE simulator is but one tool in the AFIT VHDL Environment. It allows

users to simulate and verify designs that were described with VHDL. The first step of the

simulation process is to have the VHDL description processed by the AVE analyzer. The

analyzer parses the VHDL source code and checks for correct syntax and usage. As it

parses the VHDL, the analyzer generates an intermediate form called VHDL Intermediate

Access (VIA) which contains the operational characteristics of the design.

The intermediate form is formatted to facilitate usage by other development tools

such as the simulator. The simulator extracts information from the VIA to build a model

for simulation. This information is used to generate modeling code that is compiled and

linked with the simulator kernel for execution.

4.2 Simulator Methodology

The AVE simulator is a precompiled, event-driven simulator. Previous AFIT research

[Lync86, Koda87] found the number of individual elements making up a VHSIC circuit too

great for all components to be efficiently simulated at the same time; however, since only

10 to 15 percent of a typical digital circuit is active at any point in time, it would be very

inefficient to try to simulate all elements [dAbr85]. Event-driven simulation is a concept

that uses this circuit characteristic and analyzes only the active portions of the circuit

during simulation. Each signal change constitutes an event and triggers the evaluation of

the changed signal and any other signals that are dependent upon this new signal value.

Another design decision for the AVE simulator concerned the use of a precompiled

simulator versus an interpretive simulator. Since VHDL is for use in modeling VHSIC

class circuits, the AVE simulator must be able to model circuits in this class. Due to the

large size of VHSIC class designs (up to 100,000 components), simulation usually requires

large amounts of memory and very long execution times, even on large minicomputers and

mainframe computers. This type of resource usage can stifle productivity and have a direct
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impact on users, particularly in timesharing environments found at many universities. A

method to reduce the resource demands of modeling VHSIC circuits was needed, and it

was determined that a precompiled simulator could achieve the desired results.

A precompiled simulator helps reduce the memory requirements and long execution

times inherent in VHSIC class simulation by providing more efficient execution than can be

realized in an interpretive environment. Interpretive simulators are typically more efficient

to set up, but they become less efficient as the number of test patterns to be simulated

increases into the VHSIC realm of designs [Inte84]. Figure 4-1 shows the difference in

efficiency between interpretive and precompiled simulators.

CPU TIME

SIIMULATORS

SNUME OF
___________________________-TEST PATTERNS

OSI CLAS

Figure 4-1. Precompilation Trade-Off Graph [Inte84:4-441
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4.3 System Requirements

4.3.1 Overview. Targeted for use by universities and government agencies, the

AVE simulator must have a simple but powerful user interface to efficiently simulate re-

alistic designs. The simulator will be developed to run under UNIX on VAX 11/785 and

ELXSI computers with specific guidelines to enhance compatibility and portability to both

workstation and personal computers. This section details the requirements for the simu-

lator.

4.3.2 General Requirements. The general requirements cover those that are

not directly software related. Included in this category is the support documentation for

the simulator and its environment.

0 A User's Manual will be supplied to detail the operation of the simulator.

* An Installation Guide will be supplied to explain how the software is to be installed.

* A Programmer's Guide will be supplied to detail the elements of the simulator and
provide iuLformation to be used for maintaining and updating the software.

4.3.3 Functional Requirements. The functional requirements relate to the ex-

ecution of the simulator as it pertains to proper modeiing of VHDL.

a The simulator must correctly implement the VHDL 1076-1987 timing paradigm as
specified by the requirements for the language.

a Behavioral aspects of the description must be accurately modeled to reflect the de-
scription.

e Language features to be supported:

- Types

* Integer

* Enumerated
* Bit

Character
* Arrays

Bit Vector
.String
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- Sequential Statements

* Wait

* Signal Assignment

* Variable Assignment

*If
* Case

* Loop

* Next

* Exit

* Null

- Concurrent Statements

* Block

* Process

* Signal Assignment

* Component Instantiation

4.3.4 Implementation Requirements. The implementation requirements fo-

cus on the construction of the simulator software and how it will be implemented. These

provide a basis from which design decisions may be made.

* The simulator will be precompiled and event-driven.

9 The simulator will be implemented as two packages: Build and Simulate. The Build
package will generate modeling code while the Simulate package will link the modeling
code to the simulator kernel for execution.

e The simulator will operate under the UNIX operating system on a VAX 11/785,
ELXSI 6400, or Sun workstation as a minimum. Operation under MS-DOS on an
IBM or IBM compatible computer will be optional.

* Machine and operating system dependent portions will be isolated to enhance porta-
bility.

4.3.5 Operational Requirements. The operational requirements are those that

affect the operation of the simulator from a user's standpoint. These include operational

standards and user selectable options to be provided.

" The user may specify the output file to be used to store the signal transaction infor-
mation.

" The user may specify the time which the model will assume at the start.
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9 The user may specify the model time at which the simulation will terminate.

9 The user can simulate the model under specified parameters in a batch mode.

* The simulator will have the option to operate in interactive mode.

- Setting and releasing of simulation breakpoints will be supported.

- The user will be able to view signal values from the model when the simulation
is suspended.

- The user will be able to change signal values when the simulation is suspended.

- The user will have the option to abort the simulation.

e The user can specify an input stimulus file used to initialize or alter object values
during simulation.

* The user may specify specific signals to be traced during the simulation. Options
include tracing by transaction or by event.

e On-line help will be available in both batch and interactive mode. The on-line help
will be limited to listing available options.

4.3.6 System Requirements. The system requirements are those that pertain

to how the simulator interfaces with its environment. Included are the interfaces between

the simulator and other AVE tools and the interface between the simulator and the host

machine.

9 Design description input will be in VHDL Intermediate Access (VIA) format.

* Common C library functions may be used.

4.4 Simulator Design

4.4.1 Design Overview The AVE simulator is composed of two packages: Build

and Simulate. The Build package generates C source code to model the design while

the Simulate package compiles and links this modeling code with a simulator kernel for

execution. Figure 4-2 shows the top-level structural analysis and design technique (SADT)'

diagram for the system.

'Trademark of Softech, Inc.
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VIA
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Vector VIA Messages

File Simulator output
Trace File

File

Figure 4-2. Top Level SADT View of Simulator

4.4.1.1 Build. The Build package (Figure 4-3) reads VIA and creates the

data structures and modeling code for the simulation. The first step of the Build phase is to

read the VIA into internal data structures for parsing. The VIA contains information in the

form of a symbol table, an operation table, and a string table. The symbol table contains

information about objects, such as signals and variables, used in the circuit description

while the operation table contains information about the circuit operation. The symbol

table also contains string literals used in the circuit description. Each of these tables is

constructed by the analyzer so it can be parsed by the Build package in one pass.

4.4.1.2 Simulate. The Simulate package (Figure 4-4) begins by compiling

the C source code created by the Build package and then links this modeling code to

the kernel of the simulator. All circuit information translated from VIA is contained in

the C modeling code and there is no need for the simulator to directly access the VIA.
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Command Interactive
Line Responses

0

* Error

VIA Build Messages

Package Modelin

Code

0

0

Figure 4-3. SADT View of Build Package

Thp 5imuilator kernel contains contains support routines that control the simulation cycle,

0 record circuit transactions and events, and provide control of the simulation to the user.

The central element of the VHDL model is the process. A process may be as simple

as a signal assignment statement, or it may be a more abstract behavioral description using

* a process statement. In either case, the concept of the process is the same. All processes

are independent from each other in the sense that there is no order in which they must

execute; however, the execution of one process may trigger the execution of another. This

is the cause-effect relationship among processes that was mentioned in section 3.4.
0

The cause-effect relationship among VHDL processes is depicted by processes being

sensitive to certain signals. A process is sensitive to a signal when the signal is used to

determine the value of another signal internal to the process. A change in the first signal

* may affect other dependent signals. The signal assignment statement
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Command Interactive
Line Responses

0

Code 
Error

Vector Simulate Messages
File Package Output
Trace File

File

Figure 4-4. SADT View of Simulate Package

A <= B and C:

is a process that is sensitive to signals B and C. A change in either B or C forces a

re-evaluation of the signal A. If after this re-evaluation, signal A changes value, then

all processes sensitive to A must be re-evaluated also. This chain reaction mimics the

propagation of signals in a circuit.

The simulation begins by executing every process in the model. When each process

executes, signals are evaluated and projected future values are established for each of theses

signals (see section 3.4.3.2). Later, when these signals assume their projected future values,

they in turn trigger the execution of all processes sensitive to the newly changed signals.
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4.4.2 Language Selection

4.4.2.1 Simulator. C was the language of choice for developing the sim-

ulator. The availability of C programming environments for a range of computers and

operating systems makes this a good choice to enhance portability.

4.4.2.2 Modeling Code. Choosing the language for the modeling code

must take into consideration portability of the language, its ability to link with the lan-

guage of the simulator kernel, and its ability to assimilate the source language. It makes

sense to use the same language for the modeling code as was used for the simulator kernel

since it would simplify the linking process. C supports a full range of language constructs,

most of which are comparable to the procedural constructs of VHDL. C offers flexibility

in the manner in which it can be implemented. It is not strongly typed, making data

conversions relatively simple. C provides support for a range of data abstractions from bit

level to complex user-defined data structures.

4.5 Summary

This chapter has presented an overview of the AVE simulator. The methodology to

be followed was discussed, giving some background into why a precompiled, event-driven

simulator was chosen as the type to be implemented. The requirements for the simulator

were listed and a design overview was given. The next chapter will continue the discussion

about the simulator as it moves into implementation details.

0

0
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* V. Simulator Implementation

5.1 Introduction

The previous chapter discussed the requirements and principles for implementation

of the AVE simulator. This chapter follows with a more detailed look at the elements of

the simulator and their role in the execution of the model.

* 5.2 Pre-Processing

Before the AVE simulator can begin execution, the VHDL description to be modeled

must be run through the AVE analyzer. The analyzer checks for syntax and static semantic

* errors. If no errors are found, the analyzer creates an intermediate form that represents

the model. This intermediate form, called VHDL Intermediate Access (VIA), is a series

of records that contain information about the original design. The VIA is stored as an

ascii text file with one record per line. An intermediate form such as VIA provides a
representation of the design that can be readily used by all AVE tools.

The VIA is composed of four parts: the header, the symbol table, the operation

table, and the string table. The header lists the number of records in the symbol and

0 operation table and the number of characters in the string table. The symbol and string

tables translate into the objects of the model while the operation table parses into the

modeling code. A detailed explanation of the VIA can be found in Berk's work with the

AVE analyzer [Berk88].

5.3 Build

The purpose of the Build phase is to generate the modeling code for simulation. The

steps of the build process are as follows:

1. Read VIA File

2. Parse Symbol Table

* 3. Parse Operation Table
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5.3.1 Read VIA File. The first step of the build phase is to read the VIA from

disk file. The entire VIA description is read into memory for the sake of processing speed.

Each record of the VIA is read into an internal data structure, one for each of the three VIA

record types: symbol table record, operation table record, and string table record. The

fact that the VIA operation table is parsed in one pass would allow the input routines to

be modified to read the information as it is processed. This modification may be necessary

for systems where available memory restricts from reading the entire VIA description into

internal structures.

5.3.2 Parse Symbol Table. Once the VIA is read, processing begins by parsing

the symbol table to establish the objects of the model. A VHDL model's constants,

variables, signals, and files are considered its objects. For those objects which asstme

dynamic characteristics, the simulator must create a variable that assumes that object's

attributes and characteristics during the simulation.

Since there are four types of objects, and each of these objects may be one of several

different types, the simulator must generate a variable that is comparable to the model's

original object. For example, if the model has a variable that is of type integer, the

simulator will generate an integer variable to represent this object. Specific properties of

the object, such as valid range of values, must be controlled by runtime checks performed

by the simulator.

Constants are values declared by the user in the VHDL source code. Since these

objects have no dynamic characteristics to be modeled, the analyzer "hard codes" their

value at every instance of their use. No data structure is needed by the simulator to

maintain these objects.

Generation of objects becomes more difficult as the objects assume more complex

data types. If the object in the above example was a variable that was an array of integers,

then the model of the object must reflect the nature of the array. A more detailed expla-

nation of how the simulator models VHDL data structures is given later in this chapter.
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5.3.2.1 Signals. Signals are the most complex of the objects. Not only

do signals assume a current value, they also assume a history of past values and a set

of projected future values. The data structure used for a signal must either contain all

relevant information or have links to where this information can be found. Figure 5-1

shows the representation used for a signal. Stored within the signal structure are current

value, last value, time of last event, time of last transaction, size, element, and low bound.

Current and last values reflect the signal's current and previous states. Time of last event

and last transaction store the simulation times of these activities. Size, element, and low

bound are used for composite structures and refer to the size of the structure, what element

this signal occupies in this structure, and the first element of the structure. The signal

structure also contains links to other related structures. These include links to structures

that represent the signal drivers along with a link to an array of processes that are sensitive

to this signal.

Signal Name Pointer - - Signal Name

Current Value

Last Value

Last Event

Last Transaction

Size

Low Bound

Flement

Driver Pointer 0 Driver Structure

Sensitive Process Ptr 0 Sensitive Process List

Figure 5-1. Signal Structure
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The signal drivers are represented by separate structures that hold information used

to determine their respective signal's values. Figure 5-2 depicts the structure used for

the driver. All elements of this structure are pointers to other structures. Foremost is

the pointer to the signal structure to which the driver is associated. Also included is

a transaction pointer that links the projected future values associated with this driver.

Lastly, for signals that have multiple drivers, a link to related drivers is present.

Signal Pointer 0 Signal Structure

Transaction Pointer 0 Transaction Structure

Driver Pointer 0 Other Driver Structures

Figure 5-2. Driver Structure

The transaction pointer element for each driver structure points to a list of structures

that represent waveform elements. Figure 5-3 shows how the waveform element structure

is represented. The waveform elements hold the future values for the driver and the times

at which these values are to be assumed. Also included in the waveform element structure

is a link to the next waveform element.

Future Value

Future Time

Next Waveform Ptr Waveform Structures

Figure 5-3. Waveform Structure
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Certain signal attributes, such as 'Stable, 'Quiet, and 'Delayed are themselves treated

as signals by the VHDL model and can be treated as such. They assume characteristics of

signals and subsequently have drivers and attributes of their own. Since these attributes

are defined by their drivers, they may be used recursively. This means that for signal S,

S'Stable'Stable is a valid expression [CLS87b].

5.3.2.2 Variables. Variables are similar to constants in that they represent

only a value; they differ from constants in that this value may change. To maintain the

current value for a variable, the simulator must create and maintain a data structure for

each instance of a variable.

5.3.3 Parse Operation Table. The operation table contains the information

about the behavior of the model. This behavior is expressed in terms of VHDL processes

with each process utilizing VHDL expressions to describe particular circuit behavior. The

simulator must translate these VHDL expressions into C source code that will accurately

mimic the VHDL description.

A VHDL process may be a single expression such as a signal assignment statement,

or it may be set of sequential statements that form the body of a process statement. In

either case, a C function is generated to model the behavior described by the original

VHDL source code. As was shown in Chapter III, VHDL supports a range of language

constructs to support hardware modeling. The simulator must generate modeling code to

model these constructs and their usage.

5.3.3.1 Data Types. Matching instances of VHDL data types is fairly di-

rect. The scalar types integer and floating point are primitive data types for C and can

be matched in a one-to-one translation. Enumerated types can be modeled in C using a

list of objects. The values declared with a physical type are converted by the analyzer to

provide constant values for the simulator.

Instances of a VHDL composite type are split into their component elements since

each element represents a unique object. Links are maintained between objects of a com-

posite type to keep order and provide a reference between the objects. For example, a
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biltvector is represented by a linked list of signals. Each signal element has a corre-

sponding driver to provide direct access to the signal. The links are used only when the

bit-vector is to be operated upon as a whole. An array could have been used to represent

VHDL arrays except that VHDL supports user-defined indices for arrays while the indices

must begin with zero for all C arrays. As a result, VHDL arrays with negative indices have

no equivalent in C.

There are two additional cases where a direct conversion from VHDL is not made.

First, type bit is modeled using an integer type. Using an integer simplifies the model

by being able to use a simpler representation than that for a typical enumerated type. It

also makes bit and boolean operations more efficient. Naturally, extra care must be taken

to ensure the values other than '0' or '1' are detected. The other instance where a direct

conversion is not made is for type boolean. Since C does not support flags, type boolean

is represented by a character in C. A character value of 0 is used for false while all other

values are considered true.

5.3.3.2 Primitive Operations. C provides directly equivalent operations

to match VHDL's relation, adding, and sign operators (refer to Table 3-1). Other opera-

tions such as the boolean operators can be modeled with C functions. Since C supports bit

operations, the complete range of VHDL boolean operations can be modeled. Figure 5-4

shows a C function that computes the value for signal C based on the following expression:

C <= A or B;

char or(sl,s2)
int sl,s2;

0{
return ((char) si I (char) s2 & Ox01);)

Figure 5-4. C Function to Model or Operation
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5.3.3.3 Statement Types. The variable assignment and signal assignment

are the two statements used to pass values among objects. Since the variable objects only

represent a value, the variable assignment statement can be modeled with C's assignment

operator. The signal assignment statement, however, entails more than just the assignment

of a value to a signal. As was discussed in section 3.3.2, the signal assignment statement

projects a waveform that includes both a future value and a future time at which this value

is assumed. Adding the delay specified by the delay clause to the current simulation time

gives the projected future time. If no delay is specified, delta delay is assumed. In addition,

the signal assignment statement specifies whether the inertial or transport delay model is

to be followed. The delay model used has a direct impact on determining the projected

future waveform for the signal. All of these factors must be considered when modeling

a signal assignment statement. For each signal assignment statement, the new waveform

element must be created and properly inserted into the driver's waveform. Figure 5-5

shows the C function that would be generated to model the following signal assignment

statement:

A <= B and C after 20ns;

Signals B and C are passed to the function as elements of the array slist. The

function Newtrans is called to create the new waveform element for the driver of signal

A. The projected future value is determined by the function and as it performs the and

operation on signals B and C (passed to the function as slist[O] and slist[1]). The projected

future value and time are stored in the waveform structure. Lastly, the waveform element

is inserted into the waveform by calling the procedure post-trans.

VHDL control structures are used to control the execution of procedural statements

as would be found in the body of a process statement. C offers a complete set of control

structures that map directly to those of VHDL. Table 5-1 lists the VHDL control structures

-r"1 thpir r ad.-1;vwlpnts.

A unique sequential control statement is the wait statement. Implementing the

wait statement is critical in support of the VHDL process model. The wait permits the

suspension of a process until certain conditions are met. The wait statement can be used
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p14(dlist,slist)
Driver *dlist[ ];
Signal *slist[ ];
I
Transact *NewtransO;
extern TIME simtime;
if(1) {
{
BOOLEAN transport = FALSE;
Transact *newtransl; /*wave*/
newtransl = NewtransO;
newtransl- >futuretime = simtime + 20;
newtransl- >val = and(slist[O]- >curval,
slist[l]- >cur-val);
post -.trans(dlist [0], newtrans 1 ,transport);}
} else { ; }

Figure 5-5. C Source to Model Signal Assignment Statement

in three forms: wait-on, wait-until, and wait-for. The wait-on form suspends a process

until an event has occurred on one of a set of specified signals. The wait-until suspends

a process until a specified boolean expression becomes true. The wait-for suspends a

process for a specified amount of time.

To implement the wait statement, a method is needed that will suspend a process

and continue the same process from the suspended location once the wait condition has

Table 5-1. VHDL/C Control Structures

VHDL L

if if
case case
loop loop
next continue

exit break
return return

null null
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been met. This can be realized by using a case statement to section the process and direct

entry into the process to the proper location. When a wait statement is encountered, a

variable is set to indicate where the process was suspended. This variable is used by the

case statement to continue the process from where it was suspended when the process is

re-entered.

After a process has been suspended, it must be scheduled for execution once the wait

condition has been met. When a wait-on statement is encountered, the suspended process

is entered on a special signal sensitivity list. This list references processes by signals to

which they are sensitive. If an event occurs on a signal, all processes sensitive to this signal

are executed. When a wait-until statement is encountered, a dummy signal is created,

and it's value is defined by the boolean expression of the wait statement. When an event

occurs on this dummy signal, the process is scheduled for execution in the same manner

as with the wait-on statement. When a wait-for statement is encountered, the process

is entered on a time-based list of processes to be executed. The time for the process to

be suspended is added to the current simulation time to determine the time at which the

process is to be continued. When this time is reached, the suspended process is reactivated.

The last of the statement types are declarative statements. VHDL declarative state-

ments are translated into objects by the analyzer and are stored in the symbol table. The

analyzer links these objects to an expression in the operation table whenever an initial-

ization clause is present in the declaration. VHDL initialization clauses have a direct C

equivalent since C also supports use of an initialization clause in the declaration of vari-

ables.

Since VHDL variables are static in the sense that they hold their values during times

that a process is inactive, the variable equivalent in the modeling code must also retain its

values while the modeling functions are inactive. C supplies the static variable which is

directly equivalent to the VHDL variable in that it always holds its value during times of

inactivity.
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5.3.3.4 Operator Definitions. User-defined functions such as those used

for overloading and resolution functions are defined in terms of VHDL expressions. The

ability to generate modeling code for these functions is dependent upon the ability to

generate modeling code for VHDL expressions. The previous sections have shown how C

can fully model VHDL operators and statement types. Since these primitive operators

and statements are used to compose the various VHDL expressions, there is no problem

matching modeling code to the expressions of a user-defined function.

5.3.3.5 Order of Execution. The VHDL model incurs both concurrent

and sequential evaluation of expressions. The processes of a model are concurrent and

must execute without respect to any order. On the other hand, statements within a process

statement must be executed sequentially, in the order in which they are presented. Using

a separate C function to model each process allows for both concurrent and sequential

execution. Just as each process is to execute without reference to order, each C function

is scheduled and executed randomly. The sequential nature of the process statement is

modeled by the sequential nature of C expressions within a function.

5.3.3.6 Block Structure. The block structure of the VHDL source code

is kept intact as represented by VIA. Knowing the scope of VHDL blocks is important

for declaring local variables, establishing design entities, and controlling guard statements.

The modeling code is generated in blocks equivalent to that of the original VHDL source

code. C uses the I and ) brackets to enclose blocks of code and define the scope of

execution.

5.3.3.7 Instantiation of Components. Each C function that models a

VHDL process receives two parameters. The first is a list of signals to which the process

is sensitive, and the second is a list of drivers that are affected by the execution of this

process. In this manner, multiple instances of the same component, such as would be found

with component instantiation, can be modeled using the same C function.

5.3.3.8 Process Structure. As has been discussed in previous sections,

the process is the central element of the VHDL model. It is the basic unit of action from
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which all descriptions are built. The two statements that represent a VHDL process are

the signal assignment statement and the process statement. For each occurrence of these

statements in the VHDL description, a C function must be created to model its behavior.

Figure 5-5 showed how a C function is used to model a signal assignment statement which

represents an AND gate. Other signal assignment statements generate similar functions;

the only difference is the driver element which determines the projected future value.

VHDL process statements are a little more involved since they are usually composed

of procedural statements that must also be modeled. The body of a process statement may

contain signal assignment statements which must be modeled as in Figure 5-5, but it may

also have variable and control statements that must also be modeled. These procedural

type statements are used to describe behavior in an abstract manner. To correctly model

this behavior, the modeling code must directly reflect the VHDL procedural statements.

Previous sections have shown that C can directly model VHDL statements; therefore,

the generation of the modeling code is a matter of converting the VHDL statements into

the equivalent C statements. Figure 5-6 shows a process statement that utilizes some of

VHDL's procedural statements. This process statement can be modeled by the C function

found in Figure 5-7.

5.4 Simulate

The simulate phase is the portion that is executed to simulate the original design.

Code that has been generated to model the circuit design is linked with the simulator
kernel and executed. The kernel directs the execution in a manner that follows VHDL's

inherent modeling semantics. The steps of this phase include:

1. Create and initialize the model's objects.

2. Invoke all model processes.

3. Update signals.

4. Execute processes sensitive to signals which incurred events.

5. Repeat stems 2 and 3 until simulation is complete.

When simulation begins, all objects of the model are created and initialized. Initial

values are determined by the object declaration if an initialization clause was included
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process (Al)
variable Bi : integer;

begin
if(Al > 10) then

Al <= Al + 1;
elsif (Al > 5) then

Al <= Al + 2;
else

Al <= Al + 3;
end if;

while (BI < 10) loop
B1 := B1 + 1;

end loop;

end process;

Figure 5-6. VHDL Process Statement

in the description. Default values are assumed if the initialization clause is not present

(see section 3.4.2). The modeling code contains a call to an initialization routine for each

object of the model. This routine dynamically allocates the structures needed to create

the object and initializes the representation to the proper initial value.

Once the objects are declared and initialized, all processes of the model are executed.

Process execution is accomplished by calling all the C functions that were generated to

mimic the individual processes of the model. During execution, the processes will cause

transactions to occur for each driver internal to its process. These transactions generate a

projected future value for each driver and in turn determine the value of their respective

signals. A signal may have more than one driver, such as may be the case for a wired-or,

and the projected future value must be resolved using the signal's associated resolution

function (see section 3.2.5.2). The AVE Analyzer/Simulator only supports single drivers

for each signal.

When a projected future value is generated, its waveform element is inserted into the

list of projected future values for that driver (see section 3.4.3.2). This list is ordered by

simulation time, with the earliest projected waveform elements coming first. The projected
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p54(dlist ,slist)
Driver *dlljst []
Signal *slist[I

Transact *Newtranso;
extern. TIME simtime;
static int v47 = 0; /* B1 ~
if(GT(slist[0]- >cur..val, 10))

BOOLEAN transport = FALSE;
Transact *newtransl; /*wave*/
newtransl = Newtranso;
newtransl- >future-.time = simtime + 0;
newtransl- >val = ADD(slist[1]- >cursval, 1);
post ..trans(dlist (0], newtransl1,transport);

* else if( GT(slist[2] - >cursval, 5))

BOOLEAN transport = FALSE;
Transact *newtransl; / *wave*/
newtransl = Newtranso;
newtransl- >future..time = simtime + 0;

* newtransl- >val = ADD(slist[31- >cur-va1, 2);
post -trans(dlist[(1], newt rans 1 ,transport);

else if(1)

BOOLEAN transport = FALSE;
*Transact *newtransl; I *wave*/

newtransl = NewtransQ;
newtransl- >future-tirne = simntime + 0;
newtransl- >val = ADD(slist[4J- >cur-.val, 3);
post trans(dlist [2], newtransl,transport);

while(LT(v47, 10))

v47 = ADD(v47, 1);

* Figure 5-7. C Function to Model VHDL Process Statement
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future values are stored in a waveform element structure that holds the value along with

the projected future time and a link to the next waveform element. Figure 5-8 depicts this

signal/waveform relationship.

The time of the first projected future value for a driver determines its position in

the time queue. The time queue is a global list of times when one or more transactions

are scheduled to take place. Each entry in the time queue may have one or more drivers

whose first transaction is scheduled to take place at this entry's simulation time. This list

of drivers is called an event list and is depicted by Figure 5-9.

Driver Waveform Waveform
Signal Pointer Future Value Future Value

Transaction Ptr e- Future Time Future Time

Driver Pointer Next Next

NULL

Figure 5-8. Driver with Projected Waveform Elements

Driver Driver Driver
--e Previous - Previous Previous

Next -.. Next e-- Next

NULL NULL

Figure 5-9. Event List
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The time queue is a binary tree structure with each node pointing to an event list.

The order of the time queue is based upon the transaction time of each event !t. Figure 5-

10 depicts a time queue with an associated event list having a projected future simulation

time of 50ns. When the simulation time reaches 50ns, the value of each driver is assumed by

that driver's associated signal. If a signal assumes a value that is different from its original

value, then an event has occurred. The occurrence of an event triggers the activation of

any processes that are sensitive to the signal which has incurred the event. This forces an

evaluation of all signals that are dependent upon the signal that had the event. This is

the cause-effect relationship among objects in the VHDL model.

5.5 Summary

This chapter has presented the implementation details about the AVE simulator. The

Build package was discussed from the point-of-view of how C modeling code is generated

to model the behavior described by the VHDL source code. The Simulate package was

discussed in regards to the execution of the simulation model. The next chapter will

compare the results of the implementation against the original requirements and design

objectives.
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Simtime == 50ns Simtime == 50ns

Next Event Ptr 0- Next Event Ptr

Tail Pointer Tail Pointer
Head Pointer Head Pointer

NULL

Driver
L Prey Next

Driver
Prey Next

Driver
Prey Next

NULL

Figure 5-10. Time Queue with Event List
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VI. Analysis and Results

6.1 Introduction

This chapter reviews the accomplishments of this thesis. The design and implemen-

tation of the simulator is compared against the original requirements and design objectives.

Next, the methods used to test the software are discussed in regards to validating the re-

quirements and verifying proper software operation. Finally, performance measures using

the simulator on different hardware platforms are presented.

6.2 Requirements

The requirements for the simulator are listed in Chapter IV. These requirements

were divided into five areas: general, functional, implementation, operational, and system.

6.2.1 General Requirements. The general requirements dealt with miscella-

neous considerations about the simulator that were not directly software related. These

included documentation such as a User's Manual, an Installation Guide, and a Program-

mer's Guide. These three documents were completed to provide information on how to

operate, maintain, and install the simulator. Copies of these manuals can be found in
0

Appendices A-C.

6.2.2 Functional Requirements. The functional requirements relate to the proper

operation of the simulator in regards to accurate simulation of VHDL. Included in these

requirements were proper modeling of the VHDL language features along with the inherent

simulation characteristics of the VHDL model.

The final version of the simulator fulfills the stated functional requirements. Vali-

dation to show that the software meets the functional requirements is discussed in more

detail in section 6.4.

6.2.3 Implementation Requirements. The implementation requirements fo-

cused on how the simulator was to be constructed. These were directives to be followed to
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provide standards and to form a basis from which design decisions can be made. The first

requirement was that the simulator be precompiled and event-driven. Research showed

that a precompiled, event-driven simulator was most efficient for use in simulating large

digital designs. In addition, the VHDL model's cause-effect relationship of signal propa-

gation makes event-driven simulation the logical choice for implementation.

The next implementation requirement dealt with how the software was to be imple-

mented to support a precompiled simulator. The precompiled notion implies a simulator

kernel to direct and control the simulation process. Modeling code for VHDL must be

generated and linked to the kernel. This process requires two steps-one to generate

the modeling code and one to execute this code via the simulator kernel. Following this

methodology meant implementing the software to model these two process steps. The

Build and Simulate packages were the outgrowth of this design decision.

The next requirement concerned the platform from which the simulator was to op-

erate. As was discussed earlier, the AVE simulator was targeted for use in an educational

environment. Since the UNIX operating system is common to many of these environments,

it was chosen as being the primary operating system for the simulator development. The

requirements that the simulator operate on a VAX 11/785, an ELXSI 6400, and a Sun

workstation were made because these systems are commonly found at universities. Opera-

tion of the simulator on each of these computers was successful. The simulator was tested

while running under UNIX bsd versions 4.2 and 4.3 with no noted problems. Meeting the

requirement of operating under MS-DOS on a PC compatible computer was met, but with

reduced capabilities for the simulator. The limitations with operating under MS-DOS were

due to the 64 kilobyte limitation for data structures. This data structure limitation means

that the simulation models cannot be built for VHSIC class chips; however, simulation of

common components such as a full adder can be efficiently executed.

The requirement to enhance portability and expandability was met by providing a

design of highly cohesive modules with the isolation of machine/operating system depen-

dent code. Changes necessary to port the software to other computer environments should

be minimal. The Programmer's Guide provides a more detailed look at how this can be

accomplished.
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6.2.4 Operational Requirements. The operational requirements were those

that affected the operation of the simulator from a user's standpoint. These included

operational standards and options to be provided. The simulator features that directly re-

late to the operational requirements are described below. A more comprehensive discussion

of the simulator operation is presented in the User's Manual (see Appendix A).

The simulator operates in one of two modes: batch and interactive. In either mode,

the user can specify the start time, the termination time, and the output file into which the

simulation results are to be stored. In batch mode, the simulator runs to completion based

upon the specified timing parameters. In addition, the user may specify a vector file as

input to the simulation. This file allows the user to specify signal values to be used during

the simulation. These values can be used to initialize the circuit, provide input stimulus

to the circuit, or to analyze the circuit under "what if..." conditions. The user may also

specify a trace file that is used to specify which signals are to have their values recorded

during the simulation. Trace options include recording signal values with each transaction

or event. Specifying the signals of interest and how they are to have their values recorded

will help reduce some of the overhead of tracking signal values and improve simulator

efficiency.

6.2.4.1 Interactive Features. In the interactive mode, the user has the

option of setting breakpoints, viewing signal values, changing signal values, setting and

locking a signal to a value, and unlocking a previously locked signal. These options are

particularly useful to engineers who are using VHDL to test and debug their designs. The

user can control execution with commands to run the simulation to the next breakpoint,

run until the next time in the time queue, run until completion, or to terminate the

simulation without further processing.

6.2.5 System Requirements. The system requirements cover the requirements

to be met to interface the simulator with its environment. This includes interfaces be-

tween the simulator and AVE tools and the interfaces between the simulator and the host

machine. The VHDL Intermediate Access is used as the interface medium for tools within

AVE. It holds the syntactic and semantic information of the VHDL description in an ab-
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stract syntax tree structure to facilitate parsing by other tools. The requirement to use C

library functions was made to reduce the amount of original code needed for the simulator.

Most C programming environments include a set of common C functions; therefore, their

use should not affect portability.

6.3 Design

The design specifications were based upon those provided by Lt Kodama in his

* Owork [Koda87]. Changes in the design pertained to extensions and modifications to the

existing simulator that were necessary to implement new features and to make the simulator

conform with IEEE Standard 1076. Changes to model objects were made to extend existing

features such as implementing signal attributes. New model objects were created to add

features such as composite types. The design of the simulator kernel had to be modified

slightly to accommodate the modeling guidelines presented by IEEE Standard 1076.

6.4 Testing

Testing for the AVE simulator was accomplished for two reasons: to validate the

requirements and to verify the correctness of code execution. Validation testing was con-

ducted to ensure that the software functions in accordance with the specified requirements.

This type of testing is mainly black-box or functional type testing that ensures that the

output of the system is correct for the type of input used. The main requirement for the

simulator is to correctly model circuits described using VHDL. The simul.z.or must be able

to correctly model each feature of VHDL as is defined by IEEE Standard 1076. Additional

requirements such as full compatibility with UNIX, efficient use of CPU time, and efficient

use of disk space were also validated. The criteria for efficient performance is be based

upon performance of similar systems such as Intermetric's VHDL environment.

Verification testing was used to monitor code execution so that errors in the design

logic and code implementation could be identified. This testing was conducted at the

software module level to test the structure and code execution within the module for

correct operation. Test cases were created to detect errors with the module interfaces, local
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data structures, code execution and control flow, boundary conditions for data, and error

handling. Verification testing was also conducted at a higher level to test the integration

of the software components. Critical to this integration is the interface specification for

each module. Although the interface requirements for each module was tested during unit

level testing, it was tested again during integration testing on a much larger scale.

The existing simulator software was complete in the sense that it provided complete

functionality for the simulation of a subset of VHDL. Extending the simulator required the

creation of new routines along with the modification of existing routines. With an existing

prototype simulator from which to work, the new software could build on existing software

and be developed in a rapid prototype approach. This approach follows the strategy

outlined by the spiral software development cycle [Boeh88]. In this manner, features were

designed, implemented, and tested individually. When one feature was fully implemented

and tested, work on the next feature was begun. New features added to the simulator were

implemented into the existing software framework and fully tested under actual operational

conditions.

At the completion of each spiral of the development cycle, a series of tests were

conducted for validation and verification. Implementing language features incrementally

permitted the isolation and testing of each feature as it was implemented. In addition, a

set of regression tests were conducted at the completion of each spiral cycle to ensure that

new feature implementations had no adverse effect on other simulator operations.

At the conclusion of the software development, a suite of tests were conducted to

verify proper integration of all language features. Although code execution was monitored

for anomalies, the primary purpose for these tests was to ensure that the simulator oper-

ated in accordance with IEEE Standard 1076 for VHDL. The majority of test cases used

during this test came from the VHDL repository at SIMTEL20. This repository contains

a comprehensive suite of test cases that exercise each feature of VHDL. The test cases that

contain features not supported by the AVE simulator were not run.
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6.5 Performance

The relative efficiency of the simulator's operation in regards to resource usage was

of great concern during development. Targeting the AVE environment for the educational

community meant that its toolset must operate in environments that may have very limited

resources. The concerns centered on the amount of disk space and time needed to build

and execute the simulation model.

To measure the simulator's resource usage with varying host computers, a simulation

model for a full adder was built and executed on a VAX 11/785, an ELXSI 6400, and a

Sun workstation. Table 6-1 shows the disk usage and operational times for these tests.

Table 6-1. AVE Simulator Resource Usage

ELXSI VAX 11/785 Sun
Phase CPU Time File Size CPU Time File Size CPU Time File Size

(Sec) (Bytes) (Sec) (Bytes) (Secs) (Bytes)
Build 0.1 9397 1.2 9397 2.7 9397
Compile 3.0 43302 3.3 37888 3.9 38943
Simulate 0.1 1 0.3 1 0.4 1

6.6 Summary

This chapter reviewed the outcome of the development of the AVE simulator. This

review compared the final product against the original requirements for the software. It

also presented a look at developmental aspects such as the design, testing, and performance

measures and their impact on the project.
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VII. Conclusions and Recommendations

7.1 Introduction

The purpose of this thesis was to analyze VHDL in regards to its suitability for

hardware modeling and to use this knowledge in developing a simulator to complement

the CAD tools within the AFIT VHDL Environment. This chapter presents conclusions

reached during this effort and suggest future research areas for simulation with VHDL.

7.2 Conclusions

The groundwork for this thesis was the study of VHDL and its support for hardware

simulation. As discussed in Chapter III, VHDL provides both the explicit and implied

constructs to model hardware structure and behavior. In addition, VHDL provides the

needed flexibility through user-defined constructs and operations to describe unique struc-

ture and behavior. VHDL is not limited to any hardware technology or any design style.

It supports a range of hardware descriptions, from structural to behavioral, through vary-

ing levels of abstraction. Its acceptance as a standard hardware description language will

promote the sharing of information among design engineers and further the advances of

integrated circuit technology.

The implementation of the AVE simulator was successful in that it meets the es-

tablished requirements. Developing a simulator that adheres to the new IEEE Standard

1076 is a big step in keeping the AVE abreast with current technology. The simulator's

portability to other operating environments will facilitate the distribution of AVE tools to

the education community and promote the use of VHDL.

7.3 Recommendations

7.3.1 Parallel Simulation As integrated circuit technology continues to progress

and chip integration become more dense, simulation of hardware becomes more time con-

suming on conventional, single processor computers. One method to overcome the limita-

tions of a single processor computer is to use parallel simulation. The VHDL process model

7-1



maps well to a parallel implementation. Since each VHDL process executes independent

of one another, they can be assigned to separate processors for execution. Spreading the

workload across a number of processors would greatly speed simulation.

7.3.2 AFIT VHDL Environment. For the AFIT VHDL Environment to con-

tinue to grow, additional CAD tools must be researched and implemented. Tools that

would have a direct impact on the AVE simulator include a design library management

tool and a graphical interface. In addition, developing environment tools such as a syntax-

directed editor would improve efficiency for creating VHDL descriptions.

7.3.3 Library Management Tools. For the AFIT VHDL Environment to con-

tinue to grow in an integrated fashion, a library manager to organize and control design

entities is needed. Currently, the AVE analyzer produces VIA from VHDL source code to

be used by other AVE tools; however, the use and control of the design entities is left up

to the individual tools. A library manager would control the use of existing design entities

and promote component reuse. The existence of a library manager would also improve

such capabilities as separate compilation of design entity components, and component

instantiation.

7.3.4 Graphics Back-end A possible extension to the current simulator is a

graphical interface to represent the simulation results. The AVE simulator provides simu-

lation reports in a text-only format. To be able to visually see the circuit under simulation

would increase the understanding of the circuit's operation.

7.3.5 Syntax-Directed Editor Development of a syntax-directed editor for VHDL

would serve two purposes. First it would provide a tool that would improve the efficiency

of developing VHDL descriptions by helping eliminating time lost to correcting syntax

errors. Secondly, a syntax-directed editor would make learning VHDL easier. With a need

to promote the lise of VHDL, any tool that may encourage its use and widen its acceptance

would be very valuable.
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7.4 Summary

The importance of having a standard HDL such as VHDL is to promote compatibil-

ity across a wide spectrum of digital circuit designs and to help further the advancement

of integrated circuit technology. To achieve these goals, use of the language must b3 pro-

moted by developing and distributing VHDL tools for the engineering and educational

communities. This type of promotion was the motivation for developing the AVE simu-

lator. Its distribution to universities and other interested parties will introduce VHDL to

researchers and students and promote a better awareness of the language.
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Appendix A. User's Manual

A.1 Introduction

The AFIT VHDL Environment (AVE) is a set of CAD tools that support the use of

the VHSIC Hardware Description Language (VHDL). Central to this environment is the

AVE analyzer and simulator. The analyzer is used to parse VHDL descriptions and check

for syntax and static semantic errors. If no errors are found in the VHDL description,

the analyzer generates an intermediate form that represents the model described by the

original VHDL source code. This intermediate form, called VHDL Intermediate Access

(VIA), is a series of records that contain information about the original design.

The VIA is used as input to the AVE simulator. The simulator parses the information

contained in the VIA and generates a model for simulation. The simulator is executed in

two phases: Build and Simulate. The Build phase generates C source code that is used to

model the behavior of the original VHDL description. The Build phase is complete when

the modeling code has been compiled and linked with the simulator kernel for execution.

The Simulate phase is begun with the execution of the model created during the Build

phase.

Use of the AVE analyzer and simulator as described in this manual are for use in a

UNIX environment. The details of how to install the software are explained in the AVE

simulator's Installation Guide.

A.2 Getting Started

To use the AVE analyzer and simulator, you must have access to their respective files.

In a UNIX environment, the AVE tools will reside in a single directory that is accessible

to all. Executing the programs from this directory will require that a path be set to this

directory by using the UNIX set path command. For example, on AFIT's bsd system, the

user gains access to the tools by entering the following at the UNIX prompt:

set path = ($path /cad/vhdl)
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This command gives access to the AVE directory, but only for the current login session. If

the AVE tools are to be accessed on a regular basis, the set path command can be added

to the user's .login file (See the UNIX manual for additional information).

A.3 Analyze

To analyze a VHDL description, the user issues the following command:

vhdl filename [-1 I -n]

where filename is the name of the VHDL source file. VHDL source files to be used in the

AVE environment must have a .vhd extension, but the user may specify the filename with

or without the extension on the command line.

The two options available on the command line pertain to list file generation. The

list file will identify errors detected by the analyzer. The list file options are:

-1 Produce a list file whose name has the same root name as

the source file but with a .1st extension. This file will be

placed into the current working directory.

-n Produce no listing.

If no option is specified, then the analyzer defaults to displaying the listing to the user's

terminal.

In addition to the list file, the analyzer generates the VIA file to be used by the

simulator. The filename for the VIA file will have the same root name as the source file,

but with a .via extension. This file will be placed in the user's current working directory.
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A.4 Simulate

There are two steps to simulating a VHDL description: Build and Simulate. But

before these steps can be taken, the VHDL description tc be simulated must be analyzed

first. The analyzer produces a VIA file that is used as input to the simulator.

A.4.1 Build. To build a simulation model, the user must enter the following

command:

build filename

where filename is the name of the VIA file. All VIA filenames must have a .via extension,
but the user may specify the file with or without this extension on the command line.

The user will be notified when the build is complete. The Build produces a file that is

used to simulate the original VHDL description and places it in the user's current working

directory. This file will have the same root name as that of the VIA file, but with a .sim

extension.

A.4.2 Simulate. To execute the simulator for a given model, the user's enters:

* filename [-bI-i][-o ofile][-s stime][-t ttime [-v vfile][-n nfile]

Where:

filename is the name of the simulation model

-b specifies batch mode

-i specifies interactive mode

* -o identifies the output file used for the simulation report

-s identifies the simulation start time

-t identifies the simulation termination time

-v identifies the vector input file

-n identifies the no-trace file
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Default values for these options are:

Simulation mode = "batch"

Output file = "output.trn"

Start time = 0 ns

Termination time = 1000 ns

A.4.2.1 Batch Mode. If no options are present on the command line, the

simulator will display a help screen of options. If a mode option is not selected with

other options, the simulator will default to batch mode. The batch mode will execute the

simulation unattended under the specified and/or default options.

A.4.2.2 Interactive Mode. When the interactive mode is chosen, the user

can direct control of the simulation through the use of a menu-driven interface. Figure A-1

shows the menu with the interactive options available.

?- Help
b - Set a breakpoint
v - View signal Values(s)
c - Change signal value(s)
1 - Set and lock a signal to a value
u - Unlock a previously lock signal
r - Run the simulation to next breakpoint or completion
n - Run the simulation until time advances
x - Terminate the simulation

Figure A-1. Interactive Simulation Menu
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Help. This option displays information about the options.

Set a Breakpoint. The user may specify a time at which the simu-

lation will suspend. Suspending the simulation permits the user to use other interactive

options such as viewing and changing a signal value.

View Signal Value(s). Anytime the simulation is suspended, the user

may view the value of any signal in the model. The user is prompted for the name of the

signal to be viewed. This name must be the same as was used in the original VHDL

description.

Change Signal Value(s). When the simulation is suspended, the user

may change the value of any signal in the model. The user is prompted for the name of

the signal to change and is then prompted for the new value.

Set and Lock a Signal to a Value. In addition to changing the

value of a signal, the user may lock the signal to this value. This means that the signal

will always assume this locked value and will never change. This provides a means of doing

fault testing.

Unlock a Previously Locked Signal. The unlock option simply re-

verses the effects of the lock option. When the signal is unlocked, it regains normal signal

characteristics and assume new values when applicable.

Run the Simulation to Next Breakpoint or Completion. This

option permits the user, to execute the simulation from one breakpoint to the next.

Run the Simulation Until Time Advances. This option is used to

execute the simulation until the next transaction occurs. At this time, the simulation is

suspended, and the interactive menu is redisplayed.

Terminate the Simulation. The user selects this option to abort the

simulation at its present suspended state.
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A.4.2.3 Start and Stop Times. The simulation time will begin at the

specified start time and will stop at the specified termination time. If these values are

not specified on the command line, the simulation will assume Ons at the start and will

terminate at simulation time 10OOns.

A.4.2.4 Vector Input Files. A vector input file is used to specify values

for signals of a model. These values can be used to initialize signals to a certain value or to

change signal values during simulation. The vector input file provides a simple method to

generate the inputs to a component as might occur during normal operation. The structure

of the vector input file is shown in Figure A-2.

2 A B
20 0 1
40 1 0
60 1 1
80 0 1
-1

Figure A-2. Vector Input File

The first line of the example specifies the number of signals whose values are to be

specified, along with the names of these signals. The signal names must be the same as

those used in the original VHDL description. The following lines specify a simulation time

and values to be assumed by the signals at this time. The order in which the signal values

are presented must match the order of the signal names on the first line. The last line of

the example shows a -1. This value signifies an end-of-file.

A.4.2.5 Trace File. The trace file is used to specify which signals are to be

traced and reported in the transaction output file. Without a trace file, the simulator de-

faults to all signals being traced, with output being generated for every signal transactiron

The user may narrow the analysis by specifying the signals to be traced. Figure A-3 shows

an example trace file. The trace options are used to specify report generation for each
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signal transaction or for each signal event. The keyword *event must precede a list of

signals that are to be traced by event. The keyword *trans must precede a list of signals

that are to be traced by transaction. As the example shows, separate *event and *trans

lists may appear within the same file.

*event
A
BC
*trans
DE
*event
F
G

Figure A-3. Signal Trace File

0
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Appendix B. Installation Guide

B.1 Introduction

This guide gives instructions on how to install the AVE simulator software. These in-

structions assume a UNIX environment where the simulator is located in a unique directory

that may be accessed by all.

B.2 Directory Structure

A unique directory should be created to establish the AVE. This directory be acces-

sible by all who plan to use the AVE tools. The immediate AVE directory will hold the

executable files that need to be accessed by the users. All support files will be located in

directories below this main directory. Figure B-1 shows the structure of the AVE directory.

A UNIX shell called installave can be used to build the AVE directory. This file should be

found with the other simulator files.

ae jvhdl-librarYl analyzer I s im u la t r  .wr]

simulate
vhdlbin src bin cd

behavioral-viewl daaiw.view srcuaLviewl buid mnsi

0 Figure B-i. AVE Directory Structure
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The AVE directory should contain the following files:

Readme Explains the files/subdirectories of the current directory.

ave This is a UNIX script that provides a menu driven
interface to the AVE tools and utilities.

build This is a UNIX script that invokes the build phase of
the simulator

simulator This is a UNIX script that executes the AVE simulator.

vhdl This is a UNIX script that invokes the AVE analyzer.

The AVE directory should contain the following subdirectories:

.work This directory is used to store miscellaneous work files

used by the analyzer or simulator.

analyzer This directory contains all the analyzer files.

simulator This directory contains all the simulator files

vhdIlibrary This directory holds a library of VHDL descriptions.

The analyzer directory should contain the following subdirectories:

bin Directory for the anayzer's executable files.
src Directory for the anayzer's source files.

The simulator directory should contain the following subdirectories:

bin Directory for the simulator's executable files.
code Directory for the simulator's source and object files.
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The code directory under simulator should contain the following subdirectories:

build Directory for the simulator's build routines.
cmn Directory for the simulato,'z common routines.
sim Directory for the simulator's simulate routines

B.3 Copying Source Files

Once the AVE directory structure has been established, the source code and sup-

porting files for the simulator can be moved into the AVE directories. These files should

come from an archived set of baselined files.

The following files should be placed into the /simulator/code/build subdirectory of

the AVE directory:

Readme bldsim04.c build.c makefile

blddummy.c bsimmhb.c cleanup.c read-via.c

bldsim0l.c bopeval.c cmdlineb.c vhdl.h

bldsim02.c bopwalk.c f.insig.c vhdlyacc.h

The following files should be placed into the /simulator/code/cmn subdirectory of

the AVE directory:

Readme newstru.c site-unique.h strfcn.c

makefile simstru.h
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The following files should be placed into the /simulator/code/sim subdirectory of the

AVE directory:

Readme findevti.c read-tra.c simmain.c

addevit.c flib.c read..vct.c simtime.c

buildsim intmenu.c report.c simulate.c

cmdlines.c intopt.c rmevliit.c up.timeq.c

deLtran.c makefile sfindsig.c updateeq.c

dohelp.c posttrns.c simlOO.c upprojwv.c

dque.c procme.c

B.4 Initialization

After all the simulator files have been moved into their proper directories, some

initialization processing must be accomplished. This process has been automated and can

be accomplished by executing the UNIX script called installsim. This file should be found

with the other simulator files. A copy of this script should be placed into each of the three

simulator code subdirectories:

<ave>/s imulator/code/build

<av,>/simulator/code/cmn

<ave>/simulator/code/s im

where <ave> was the directory chosen for AVE.

The installsim script will compile the source code and produce executable files. It

will also handle other initialization processes that will customize the software to work from

the new AVE directory.

The first step towards initialization is to enter the <ave>/simulator/code/cmn

subdirectory and execute the installsim script.
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The second step is to enter the <ave>/simulator/code/build subdirectory and

execute the installsim script.

The last step is to enter the <ave>/siuulator/code/sim subdirectory and execute

the installsim script. Installization is complete. The AVE simulator is now ready to use.

i"

0
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Appendix C. Programmer's Guide

C.1 Introduction

This guide explains the concepts and operation of the AVE simulator from a pro-

grammer's perspective. This information should be useful for maintaining and enhancing

the existing software. This guide presents an overview of the system and then looks at

each portion in more detail.

C.2 System Overview

The AVE simulator is composed of two packages: Build and Simulate. The Build

package generates C source code to model the design, compiles the modeling code, and

links it to the simulator kernel. The Simulate package is the combination of the compiled

modeling code and the simulator kernel. The kernel contains routines that control the

simulator model and provide access to the user.

Another portion of the simulator software is the group of common files. These include

header files and common functions used by both phases of the simulation. These files are

discussed first.

C.3 Common Files

C.3.1 sim.stru.h This file contains all the common structures used by both

the build and simulate packages. Included are the signal, variable, driver, transaction,

event queue, time queue, time list, process table, and VIA structures. Also included are

definitions for constants and aliases used by all routines.

C.3.2 site.unique.h This file contains definitions for constants and aliases that

may vary from installation to installation. These items were separated from sim-stru.h to

make changes easier when porting the software.

C.3.3 new.stru.c This file contains routines to dynamically create the struc-

tures that were defined in sim-stru.h. These routines are called during simulation as each
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structure is needed. These routines also initialize the structures using the values passed

by the simulator kernel.

C.3.4 strfcn.c This file contains common string functions used by both pack-

ages. Although these routines may appear in a C library at some installations, providing

them as part of the simulator software will avert problems that would arise when the soft-

ware is ported to an environment that does not provide these functions as library routines.

C.4 Build Package

The Build package reads VIA and creates the data structures and modeling code for

the simulation. The first step of the Build phase is to read the VIA into internal data

structures for parsing. The VIA contains information in the form of a symbol table, an

operation table, and a string table. The symbol table contains information about objects,

such as signals and variables, used in the circuit description while the operation table

contains information about the circuit operation. The symbol table also contains string

literals used in the circuit description.

Using the information contained in the VIA, the Build phase generates C source code

that, when compiled and linked with the simulator kernel, will mimic the behavior of the

original VHDL description. Six files are generated by the build phase: sim0l.c, sim02.c,

sim03.c, sim04.c, simO5.c, and simmhb.c . These are the files that contain the modeling

code.

Following is a list of files that form the Build package. A description accompanies

each file listing the routines contained in the file along with each routine's function.

C.4.1 blddumrny.c This file contains one routine: build-dummy-signal. Its

purpose it to build dummy signals for elements of the model such as guard statements

that assume signal characteristics, but are not actually signals. A dummy signal is also

built for the expression of a wait-until statement. This makes it possible to monitor the

expression and reactivate the suspended process when the expression becomes true. The

dummy signals are put into the sim05.c portion of the modeling code.
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C.4.2 bldsim0l.c This file contains two routines: bsim0la and bsim0lb. Their

function is to generate the sim0l.c portion of the modeling code. sim0l.c contains the

routine siminitialize which is used during execution of the simulator to initialize the model.

bsim0la generates some of the declaration for sim.initialize. The declarations include the

* signal array and process table array. bsim0la also generates statements to declare the

pointers to each signal structure. bsim0lb generates statements to declare pointers to

each driver of the model. bsim0lb also generates the statements that dynamically allocate

the signal and driver structures.

C.4.3 bldsimO2.c This file contains two routines: bsim02a and bsim02b. Their

function is to generate the sim02.c portion of the modeling code. sim02.c contains decla-

rations for the senoproc array for each signal. This array points to all processes that are

sensitive to a 'iven signal. sim02.c also contains a table of the processes in the model.

C.4.4 bldsim04.c This file contains two routines: bsim04a and bsim04b. Their

function is to generate the sim04.c portion of the modeling code. sim04.c contains extrns

and includes to be used by the modeling code. sim04.c also contains the Signal and Driver

declarations to be used by the modeling code.

C.4.5 bopeval.c This file contains one routine: op.table-eval.node. Its function

is to parse the operation table portion of the VIA and generate modeling code. As the

modeling code is generated, it is placed into the file, sim03.c.

C.4.6 bopwalk.c This file contains one routine: op-table-walk. Its function is

to direct the VIA operation table parsing. VIA stores operation information in a binary

tree structure with common information occupying a branch. The tree structure of VIA

permits it to be parsed in a recursive fashion. op.table-walk directs the recursive parsing

down the proper branches.

C.4.7 bsimmhb.c This file contains one routine: bsimmhb. Its function is to

generate the simmhb.c portion of the modeling code. simmhb.c contains declarations for

the modeling code that are unique to the particular model to be simulated.
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C.4.8 build.c This file contains one routine: main. This routine is the driver

for the build phase. It calls the subordinate routines to build the modeling code and

controls the opening and closing of the files that hold the modeling code.

C.4.9 cleanup.c This file contains one routine: cleanup. Its function is to

perform cleanup activities whenever the program is to be exited.

C.4.10 cmdlineb.c This file contains one routine: cmdlineb. Its function is to

parse and validate the parameters passed from the command line. This routine sets a file

pointer to the VIA file specified by the user on the command line.

C.4.11 finsig.c This file contains four routines: ins-sig-ref, ins-sigalf-ref,

build-sig-lists, and get -object.attributes. The first three routines are used to parse the

symbol table portion of VIA and build a linked list of signals. The get -object -attributes

is used to extract attribute information from the symbol table when a signal is found.

C.4.12 read.via.c This file contains one routine: read-via. Its function is to

read the VIA records stored on disk into an internal representation.

C.5 Simulate Package

The simulate package contains the simulator kernel. These routines control the sim-

ulation cycle, record circuit transactions and events, and provide control of the simulation

to the user.

C.5.1 addevit.c This file contains one routine: add-event. This routine adds

an event to the event list. This is accomplished by inserting the driver of the signal that

incurred the event into the event list.

C.5.2 cmdlines.c This file contains one routine: cmdline. This routine parses

and validates the parameters passed from the command line. Values such as start time,

stop time, vector input filename, trace filename and simulation mode are saved and passed

to other executive routines of the simulator kernel.
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C.5.3 del-trane.c This file contains one routine: del.trans. This routine is

called to delete a transaction from a driver's transaction list. This routine is called when the

transaction has taken place, or when another transaction preempts a previous transaction.

* C.5.4 dohelp.c This file contains one routine: dohelp. This routine provides

additional help information about the simulator's interactive help commands.

C.5.5 dque.c This file contains two routines: dque and d.sigval. These two

* routines provide debugging information during simulation. They generate information

about the queues and signals and store this information into a file called output.out.

C.5.6 findevti.c This file contains one routine: find -eventq.time. When a

• transaction occurs, the event queue must be searched for an entry that matches the trans-

actions projected future time. find.eventq.time searches the event queue for a given time,

and if one is not found, a new entry into the event queue is made for the new time.

C 0.5.7 flib.c This file contains the C functions used to model VHDL operations.

Included are functions to model VHDL logical, relational, and arithmetic operations.

C.5.8 intmenu.c This file contains one routine: intmenu. This routine is the

driver for the interactive menu. It provides the menu and invokes other interactive routines

based upon user input.

C.5.9 intopt.c This file contains seven routines: setobp, change-sig, view.sig,

dispmenu, showtime, lock.sig, and unlock-sig. These routines are used to provide the

interactive features.

C.5.10 main.c This file contains one routine: main. This is the driver routine

for the simulator kernel. This routine initializes the model and invokes the simulation

process.

• C.5.11 posttrns.c This file contains two routines: post.trans and post-new-trans.

These routines are used together to add a new transaction to the proper driver waveform.
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C.5.12 procme.c This file contains two routines: mark.proc-tbl and exec-proc-tbl.

When an event occurs for a signal, all processes sensitive to that signal must be marked for

execution. mark.proctbl accomplishes this task as it searches a signal's sensitive process

list and adds these processes to a list to be executed. exec-proc.tbl is called to invoke all

* processes marked for execution.

C.5.13 read-tra.c This file contains one routine: read-trace-file. This routine

is called whenever a trace file is specified on the command line. It's function is to read the

0 trace file and flag the signals that are to be traced.

C.5.14 read_.vct.c This file contains two routines: read-vectorjfile and post -change.

This routine is called whenever a vector file is specified on the command line. It's function

is to read the vector file, and assign the input values to signals within the model.

C.5.15 report.c This file contains one routine: report-trans. This routine is

called to generate the output report on the transactions as they occur during simulation.

C.5.16 rmevliit.c This file contains one routine: rm.event-list-item. This

routine is called to remove drivers from the event list.

C.5.17 sfindsig.c This file contains one routine: find-signal. This routine is

used to search a list of signals based upon a given signal name. When the signal is found,

a pointer to that signal is returned.

C.5.18 siml0O.c This file is used to merge the modeling code files. Each

modeling code file is included into simlOO.c for compilation.

C.5.19 simtime.c This file contains two routines: update-simtime and min.

These routines are called to update the simulation time. In general, the simulation time

is set to the next projected time for a transaction, but other factors such as breakpoints,

the time queue, and vector file inputs must be considered.
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C.5.20 simulate.c This file contains one routine: simulate. This routine is the

center of the simulator kernel and controls simulation execution.

C.5.21 updateeq.c This file contains one file: updateoeventq This routine is

called to add an event to the event list. It calls fine.eventqAime to find the appropriate

place for insertion, and then it calls addevent.item to do the insertion.

C.5.22 upprojwv.c This file contains two routines: update-proj -out-wave and

precede.marked. These routines are used to update a driver's output waveform. New

transactions may make previous transactions invalid (as is the case when the minimum

inertial delay for a circuit is not met). These routines search a driver's output waveform

and remove invalid transactions. Refer to IEEE Standard VHDL Language Reference

Manual, page 8-5, for more information.

C.5.23 up-timeq.c This file contains one routine: update-timeq. When a

process includes a wait-for, update.timeq schedules this process for execution based upon

the time clause of the wait statement. These suspended processes are kept on a time queue

in the order in which they are to execute.
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