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CHAPTER 1

INTRODUCTION

In the field of underwater sound, the ability to model acoustic propagation
is an essential part of most practical applications. For example, the development
of passive and active sonar systems, the estimation of ranges at which targets can
be detected, and the study of the effects of ambient noise sources all require an
understanding of how sound propagates in complex ocean environments.

In recent years, the advent of ever more powerful computers has enabled
researchers to develop and implement sophisticated propagation models that nu-
merically solve the acoustic wave equation or approximations to it. Such models
rely on a thorough description of the environment, which must include the geome-
try (bathymetry, layering in the ocean bottom, and sea surface state, for example),
as well as the acoustic properties of the media (sound speed, density, and attenua-
tion, for example). However, even if the environment were known exactly, models
typically have limitations associated with them, such as the ability to properly
account for (1) dependence of the environmental parameters on range, (2) propa-
gation in three-dimensional environments, (3) energy propagating at angles near
vertical, (4) shear wave propagation in the ocean bottom, (5) scattering from
rough surfaces, and (6) nonlinear effects. Practical limitations, such as the range
of frequencies that can be modeled, often arise simply because the computation
time is too large or the storage capaci'; of the computer is exceeded.

A problem with the development of any model is the evaluation of its
accuracy. There are always factors that can introduce error in the results of a
propagation model, such as approximations in the theoretical formulation, errors
arising from numerical methods used in the computer algorithm, or simply er-
rors in the coding of the program. One way to verify the accuracy of a model
is to compare its solutions with those of another model that relies on a different
method. This technique for model verification requires the definition of certain
*benchmark” problems to which different models can be applied and their solu-
tions compared. Recently, the Underwater Acoustics community of the Acoustical




Society of America proposed benchmark problems that address propagation in
range-dependent environments. More specifically, the problems consist of a point
source in a two-dimensional, isovelocity wedge of shallow water, surrounded above
by air and below by sand. One concrete result of the present research is a new,
accurate, and physically intuitive method for acoustic propagation modeling that
can be applied to these benchmark problems.

The goal of the research in this dissertation has been to develop a method
based on ray theory that is accurate in shallow water ocean environments. Since
classical ray theory is based ou a high-{frequency approximation to the wave equa-
tion, it is not valid in shallow water, where the water depth is typically on the
order of tens of wavelengths or less. In order to adapt classical ray theory, we
begin with an exact formulation for the reflection and transmission of a spheri-
cal wave incident on a single plane interface. Preserving as much as possible the
intuitive notions of ray theory, we develop a method for solving the single inter-
face problem accurately, even it low frequencies. We then extend the method
to calculate the field due to rays that undergo multiple reflections. Using these
tools, we can calculate the total field in ocean environments with flat or sloping
bottoms by summing together all of the significant rays. Unlike most numerical
models, which provide little or no physical insight into the paths and mechanisms
of propagation, the ray method developed here can be analyzed in terms of ray
arrival angles, travel times, and propagation paths.

This dissertation is organized as follows. In Chapter 2 the basic method
for finding the reflected and transmitted fields due to a point source in the presence
of a single plane interface is developed. The extension to oceanic environments
with flat and sloping bottoms is made in Chapter 3. In Chapter 4 we address in
detail the benchmark wedge problems and show comparisons between solutions
obtained from the ray model and from a two-way coupled mode model. The
problem of propagation in a three-dimensional wedge, where sound travels across
the sloping bottom rather than straight up or down the slope, is discussed in
Chapter 5. In Chapter 6, we demonstrate how the methods we have developed
for modeling a point source can be used to model a directional source. Several
cxamples of the reflected and transmitted fields due to a beam incident on a fluid-
fluid interface near the critical angle are given. Concluding remarks are made in
Chapter 7.

Three of the chapters of this dissertation are based on manuscripts that
were submitted for publication in the Journal of the Acoustical Socicty of Amer-
ica in 1988. Chapter 2 is based on the manuscript! entitled “Complex ray meth-
ods for acoustic interaction at a fluid-fluid interface,” Chapter 3 is based on the
manuscript? entitled “Ray methods for flat and sloping oceanic waveguides,™ and
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Chapter 4 is based on the manuscript® entitled “Ray model solutions to the bench-
mark wedge problems.” The results in the last manuscript were first reported at
the 115th Meeting of the Acoustical Society of America in Seattle, Washington,
in May 1988.4




CHAPTER 2

COMPLEX RAY METHODS FOR ACOUSTIC INTERACTION AT
A FLUID-FLUID INTERFACE

2-1 INTRODUCTION

One of the most basic problems in acoustics is that of the reflection and
transmission of a spherical wave at a plane, fluid-fluid interface. In the case of un-
derwater acoustics, this problem represents an idealized model for the interaction
of a point-source field with the ocean bottom. More specifically, one isovelocity,
constant-density halfspace (water) overlies another (sand, for example). In shal-
low water ocean environments, the lower medium usually has the higher velocity,
which results in the presence of a critical angle in the plane wave reflection coef-
ficient. Plane waves incident on the interface at angles “steeper” than the critical
angle (closer to normal incidence) are partially reflected back into the water and
partially transmitted into the bottom. Plane waves incident on the interface at
angles “shallower” than the critical angle (closer to grazing incidence) are totally
reflected back into the water. When the incident wave is a spherical wave, en-
ergy incident near the critical angle produces a wave that travels parallel to the
interface in the bottom. As it propagates, it continually excites a wave called the
lateral wave or head wave, which travels at the critical angle in the water.

The initial step in the mathematical analysis of the two-fluid model is
to represent the incident spherical wave as a sum of (integral over) plane waves.
An integral expression for the reflected or transmitted field at a given receiver
point is then ou.ained by multiplying each plane wave in the integrand by the
appropriate plane wave reflection or transmission coefficient. In the classic work
of Brekhovskikh,’ the author primarily uses the method of steepest descent to
solve the integral. Briefly stated, this method involves finding the saddle point,
deforming the contour of integration into the steepest descent path, and deriving
an approximate solution to the integral. When viewed in terms of rays, the saddle
point corresponds to the angle of the eigenray, a specific ray connecting the source
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and receiver. The major complication ir this analysis arises from the presence of
the critical angle, which in mathematical terms corresponds to a branch point
singularity in the reflection or transmission coefficient. When the saddle point
lies sufficiently close to the critical angle, the usual methods for estimating the
field break down.

Various improvements to the solution in the neighborhood of the critical
angle have been developed. In Sec. 31 of Ref. 5, Brekhovskikh derives expres-
sions for the reflected and lateral wave fields in the vicinity of the critical angle.
Bleistein® derives uniform asymptotic expansions for integrals involving station-
ary points near algebraic singularities. In the present case, a saddle point lies
near a branch point of order 1/2. Stickler” cefines the formulation by allowing
for the possibility that the critical angle is close to grazing incidence. Chin-Bing
and Davis® apply Bleistein’s technique to the lateral wave expression and point
out errors in Brekhovskikh’s treatment. In all of these investigations, asymptotic
expansions involving parabolic cylinder functions are derived.

In the preseut work, we wish to develop a method for finding the reflected
and transmitted fields that (1) can be interpreted in terms of rays, (2) is applicable
even at very low frequencies, and (3) can be extended to environments where more
than one interface is present. The above-mentioned asymptotic expansions do not
satisfy these criteria because (1) there is no physical interpretation of the terms
in the expansion, (2) an expansion with a fixed number of terms will fail at a
sufficiently low frequency, and (3) the treatment of multiply reflected fields would
require a rederivation of the asymptotic expansion.

The approach we take in this dissertation is based on the saddle point
method outlined by Brekhovskikh.® In one variation on this method, Brekhovskikh
(Sec. 31.3) allows the phase of the reflection coefficient to influence the location
of the saddle points. The result is a phenomenon commonly referred to as beam
displacement, where totally reflected rays have a horizontal displacement along
the interface before they are reflected back into the water. (Since the term “beam
displacement” originated from the displacement of a beam incident on an interface,
a more appropriate term for the present case would be ray displacement.) In recent
years, the phenomenon of beam displacement has been included in ray theory
calculations, and the resulting method successfully applied to the flat, isovelocity,
penetrable-bottom waveguide (the Pekeris model)®!'%!! and to the sloping-bottom
waveguide.'?

The one deficiency in the beam displacement formulation, however, is that
it is not accurate in a certain “transition” region, where eigenray angles are close
to the critical angle. At shorter ranges, the field can be expressed in terms of a
single partially reflected cigenray, and at longer ranges, the field can be expressed
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as a sum of two separate rays: a totally reflected eigenray and a lateral wave
eigenray. But in the transition region, the field is more complicated and cannot be
expressed as a simple ray field or even as a sum of simple ray fields. In this region
the ray formulation breaks down — it predicts infinite intensity at caustics, points
in space where two rays coalesce into one. Special caustic correction factors!!:!?
based on uniform asymptotics are used to attempt to “patch up” the ray solution
in this problematic region.

In the approach developed in this chapter, the key modification is to al-
low the entire reflection coefficient (amplitude as well as phase) to influence the
locations of the saddle points. The result is that the saddle points become, in gen-
eral, complex, corresponding to eigenrays that have complex angles of incidence 4.
In the neighborhood of the critical angle, the saddle point approximation to the
integral still fails. However, in this region we find the exact field by numerically
integrating along the steepest descent path in the complex 6-plane. The num-
ber of integration points is made independent of frequency by choosing step sizes
appropriately. In work done concurrently with the present research, Plumpton
and Tindle'? formulate an identical complex saddle point criterion for the single
reflection problem and develop improved caustic correction procedures.

The notion of incorporating the reflection and transmission coefficients
into the saddle point formulation is attractive because it allows the full effects
of the interaction with the interface to be included. For example, in the case
of the water-sand interface, our method accounts for the reflected lateral wave
field as well as the evanescent wave field in the bottom. In cases where the total
field is composed of several different ray fields, the individual contributions can
be isolated.

In this chapter we develop our ray method while solving for the reflectcd
field, and then apply it in a straightforward manner to the transmitted field. In
Sec. 2-2 we derive the plane wave integral for the reflected field. In Sec. 2-3 we
review the method of steepest descent and apply it in the usual way to the reflected
field integral to obtain classical ray theory. In Sec. 2-4 we obtain the complex
ray formulation by including the plane wave reflection coefficient in the saddle
point criterion. The resulting saddle point structure is discussed in Sec. 2-5, and
the technique for evaluating the field is summarized in Sec. 2-6. In Sec. 2-7 we
interpret the saddle point formulation in terms of eigenrays. Scction 2-8 contains
the solution for and analysis of the transmitted field. Concluding remarks are
made in Sec. 2-9.




2-2 PLANE WAVE INTEGRAL REPRESENTATION OF THE RE-
FLECTED FIELD

In this section we derive the plane wave integral representation for the
reflected field. The derivation follows the treatment by Brekhovskikh in Secs. 26
and 28 of Ref. 5. The first step is to express the pressure field from an acoustic
point source in free space as an integral over plane waves. This type of formu-
lation is attractive because the interaction of individual plane waves with planar
interfaces is mathematically tractable and well understood.

We begin with the linear, scalar wave equation for the acoustic pressure
p in a homogeneous medium of sound speed c:

2= L &P
c? ot?

We consider the following solution to Eq. (2-1), which represents the field due to
a harmonic point source at the origin of a Cartesian coordinate system:

ei(kR-wt)
pzyz)=po——p— ,  where R=yz?+y?+2240 . (2-2)

The quantity py in Eq. (2-2) is a constant (in units pressure-distance) that gives
the pressure at unit distance from the origin. After substituting Eq. (2-2) into
Eq. (2-1), carrying out the partial derivatives with respect to ¢, and expressing
the spatial derivatives in Cartesian coordinates, we obtain the scalar Helmholtz
equation

(2-1)

0? 0? *p
p %
0z? Oy? 0z
where the wavenumber is defined as k = w/c.
In order to derive a plane wave representation of the spherical wave in

Eq. (2-2), we first write the pressure field in the z = 0 plane as

+k2p 0 , (2-3)

tkr

= £ = Jr2 4 42 _
p(z,y) = — where r=\/r24+y2#0 . (2-4)

In Eq. (2-4), the e time dependence of the field has been suppressed, and, for
conveni. \ce, we have taken py to be unity. We now express the field in the (z,y)
plane as a double Fourier integral over the transform variables {k,, k,):

lkr
= / / (ke k,) e®sTtb0 d dk (r £0) (2-5)




where o
1 e'*r —i(ksz+kyy)
A(lc,,ky)=(—2—’r—);// e Wdrdy . (2-6)

The integral in Eq. (2-6) is solved by converting from (z,y) coordinates
to polar coordinates (r,¢) and solving the two integrals analytically (see Ref. 5,
pp. 228-229). The result is
t

2, k2 — k2 — k2

Using Egs. (2-5) and (2-7) in Eq. (2-4), we may write the pressure field in the
z = 0 plane as

Alkz, k) = (2-7)

T l t(kez+kyy) . ‘
pzy) = [ [ SR dk b, (r#0) . (28)
', 2y k2 — k2 — k2

We now construct an expression for the spherical wave field off the 2 =0
plane by formally multiplying the integrand of Eq. (2-8) by e***:? for +2 > 0:

t

= Hkezthyytken) dk_ dk >0 2-9
I’ ’ 2 € X st} .
p(z,y,2) [L%J“~ﬁ—% y (2-9)

This “continuation” is valid because the integrand of Eq. (2-9), and therefore p
itself, satisfies the Helmholtz equation (2-3) and reduces to Eq. (2-8) when z = 0.
Substitution of Eq. (2-9) into the Helmholtz equation yiclds the relation

K4kl =4 (2-10)
Recognizing the radical in Eq. (2-9) to be
k. = \Jk? — k2~ k2 | (2-11)

we may rewrite the expression for the spherical wave

kR T (kort byt koc)
. o) — _ _— . I+ +k;z . . « B
p(r,y.~)——1{—_// o S ek, 220 L (212)
N - z
‘The exponential term in Eq. (2 12) represents a plane wave whose di-

rection is given by the three wave numbers k., k,, and k., the last of which is




dependent on the first two by way of Eq. (2-11) (see Fig. 2-1). Each point in
the (k:, k,) plane can be viewed as representing a plane wave that contributes to
the spherical wave representation in Eq. (2-12). The fraction in the integrand
of Eq. (2-12) can be viewed as a weighting function for each plane wave. Points
inside the circle of radius k in the (k;, k) plane correspond to the usual, propa-
gating (homogeneous) plane waves since, by Eq. (2-11), k, is real. Points outside
the circle correspond to “inhomogeneous” plane waves, for which k, is imagi-
nary. By substituting a positive imaginary value for £, into the plane wave form
e'ksz+hyy+kiz) it can be seen that inhomogeneous plane waves are attenuated in
the positive z-direction. The inclusion of the inhomogeneous plane waves is nec-
essary to mathematically complete the description of the spherical wave in terms
of plane waves.

-
N

k sin 8 do

~

~—¢ k cos 0 d6
Ky

Figurc 2-1 CHANGE OF VARIABLE FROM RECTANGULAR COORDINATES (k;,ky,k,) TO POLAR
COORDINATES (k,0,4). THE DIFFERENTIAL ELEMENT OF AREA IN THE (k;,k,) PLANE 1s
SHOWN.

We now convert the wave number coordinates from rectangular (k., k,, k.)
to polar (k,9,¢) by way of the relations

k., = ksinfcos¢
k, = ksinfsing . (2-13)
k., = kcosd
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These relations are shown graphically in Fig. 2-1. From Fig. 2-1, the differential
element of area dk, dk, transforms to

dk, dk,  (ksin0dg) (kcos0df) | (2-14)

where the first term reflects the ¢-dependence and the second term the 8-depend-
ence. To cover the whole (k., k,) plane, ¢ must vary from 0 to 2r. The inside of
the circle of radius £ is covered when  varies from 0 to n/2, while the outside of
the circle is covered when 8 varies from 7 /2 to 7 /2 —ioco. The imaginary part of 8 is
chosen to go from 0 to —200 in order to make the amplitudes of the inhomogenecous
plane waves in the integrand of Eq. (2-12) exponentially decreasing rather than
increasing, which can be seen by writing

k, = kcos@ = kcos(Op + i0;) = k(cosOg cosh@; —isinOrsinh@;) . (2 15)

For 8; negative, Im[k,] is positive, and €'*: represents an exponentially decrcas-
ing amplitude. Introducing the change of variables given by Eqgs. (2-13) into
Eq. (2-12) results in

ik
p(r.,y,~) - g j;

where the dependence of k;, k,, and k, on 8 and ¢ is summarized in Eqs. (2-13).

We consider now a point source S at coordinates (0,0, z,), located a dis-
tance z, above a plane interface separating two fluid media with sound speeds ¢
and ¢;, densities p and p;, and wave numbers k and k;, respectively (see Fig. 2-2).
The field at a given receiver R at horizontal range r = /z? 4+ y? and height z,
above the interface is composed of a direct path contribution and a reflected con-
tribution. The reflected pressure field p(r,z,) at R is constructed by multiplying
each of the plane waves in the integrand of Eq. (2-16) by the plane wave reflection
coefficient V(8) and by taking into account the total vertical distance 2z, = z, + z,
each plane wave must travel:

Z—1i00

2T
/ eithemtbouthkaz) sin g dg dO z2>0 (2-16)
=0

L4
2
=0

3 -t

 k P, ) ) .
p(r,z;) = ® / / e'ksrtkyythize) V(0) sin0dpdo . (2 17)
2n Jo=o  Jy=0
The planc wave (Rayleigh) reflection cocfficient for the fluid-fluid interface is

_ 2 o
mcos n sin“ 0 ) 18)

V(0) = , , (2
mcosh + Vn? —sin’0

where

n=cley , m=p/p . (2-19)
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Figure 2-2 GEOMETRY FOR THE REFLECTED FIELD.
The critical angle introduced by V/(0) is defined as
6., = arcsin(c/c;) = arcsin(n) . (2-20)

The ntegral over ¢ in Eq. (2-17) can be performed analytically by sub-
stituting for k, and k, from Eqgs. (2-13) and expressing the receiver coordinates
z and y in terms of polar coordinates r and ¢,:

T =rcos¢; y=rsing, . (2-21)

The result is

=0

I, = /2’ e'k==+hvy) gy
¢

_ /21‘ eikr sin 8(cos ¢ cos $+sin ¢1 sin ¢) d¢
¢=0

— /2* eilrr sin 8[cos(¢$—¢,)) d(ﬁ
¢=0

= 2nJo(krsinf) . (2-22)

Introducing this result in Eq. (2-17), we obtain

p(r,2.) = ik / T Jo(krsin0) €% <=0V (0) sin0d0 . (2-23)
0
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Equation (2-23) is an exact representation of the reflected pressure field.
However, in order to apply the method of steepest descent, we need to manipulate
the integral once more. We use the following identity'* for the Bessel function:

Jo(w) = (1/2) (HP(w) + H (u)]
= (1/2) [H"(v) — H(~u)] (2-24)

where Hé” and Héz) are Hankel functions of the first and second kind, respec-
tively, of order zero. After substituting Eq. (2-24) into Eq. (2-23), we obtain two
integrals in terms of H((,‘) . A change of variable from 6 to —8 is then introduced
into the second of the two integrals. Since V(8) and cos @ are even functions and
sin @ is an odd function, the resulting integrand is the same as that of the first in-
tegral, but the integration runs from —x/2+ 100 to 0. Therefore the two integrals
may be added together by simply combining the limits of integration:

p(r,z) =2 / T B (krsin 8) €% @0 V(6) sin0df . (2-25)
}-+wo
The contour of integratior: in the complex 8-planc is shown in Fig. 2-3.

The first approximation introduced into Brekhovskikh’s analysis is the
use of the asymptotic expansion for the Hankel function

(1) : ~ 2 —~in/4 _ikrsind N
Hy ' (krsin @) "——rkrsinO € € . (2-26)

Substituting for the Hankel function in Eq. (2-25), we obtain

(T,Zt)—\/-é;e"‘ / L, chonormo V(6) Venbds | (2-27)

valid for large krsin 8. Although the contour of integration for Eq. (2-27) passes
through § = 0, where the above condition clearly is not satisfied, we shall see in
Sec. 2-5 that in the application of the method of steepest descent, the contour of
integration is deformed in such a way that it does not pass through ¢ = 0. The
condition of large krsin@ is also not satisfied at short ranges r; this issue will be
discussed in Sec. 2-7.2.

Recognizing from Fig. 2-2 that r = R, sin§ and z, = R, cos§y, we may
write the reflected pressure field as

e skR; cos{8-8q) _
(0o, Ry) = \/ e / 1o V(8) VeinGdd | (2-28)
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where the receiver position is now specified by the incident angle 6, and the
distance R, from the image source (see Fig. 2-2). Equation (2-28), finally, is
the correct form of the integral for application of the method of steepest descent,
which will be described next.

2-3 THE METHOD OF STEEPEST DESCENT

2-3.1 General formulation

The method of steepest descent (see Ref. 5, Sec. 27) is used to approxi-
mate integrals of the form

I= / I8 dl | (2-29)
C

where C is a general contour in the complex 8-plane, p (unrelated to the density
in m) is real, and f(6) and F(@) are analytic functions of the complex variable
6.* The method of steepest descent consists of three basic steps: (1) finding one
or more saddle points, (2) deforming the path of integration into the steepest
descent path(s), and (3) estimating the value of the integral. Saddle points are
important because they mark particular regions of the complex 6-plane where the
integrand makes a distinct contribution to the integral. The path of integration is
deformed into the path of steepest descent (which, by definition, passes through
the saddle point) because the contribution to the integral is made over a relatively
short interval. To obtain an estimate of the integral, the integrand is replaced
by its Taylor series expansion about the saddle point, and the simpler integral
that results is then performed analytically. In our applications of the method of
steepest descent to acoustic field integrals, we find that saddle points represent
eigenray angles.
Saddle points, which we will call 4 throughout this work, are defined by
the criterion
f'(8)=0 at =+ (2-30)

where prime indicates differentiation with respect to 8. Expressing the phase
function f in terms of its real and imaginary parts

f(8) = fr(0) +1f1(8) (2-31)

we define the steepest descent path as the path in the complex §-plane that passes
through the saddle point 4. and along which fg decreases most rapidly. By the

* We will often refer to f(6) as the “phase function,” with the understanding that it is actually
related to the phase of the exponential by the constant factor i/p.
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properties of the real and imaginary parts of an analytic function, f; remains
constant along the path of steepest descent of fg. Since

P10) _ ofnld) ginfi®) (2-32)
we see that along the steepest descent path the amplitude of the exponential de-

creases rapidly as one moves away from the saddle point, while the phase remains
constant. Mathematically, the steepest descent path is defined by

f0)=f(n)~s" (2-33)

where s is a real number that parameterizes the path.

To obtain an approximation to the integral, we equate a Taylor series
expansion for f(8) about the saddle point 4 to the steepest descent path definition
in Eq. (2-33):

) = f(n) s
l "
= SO+ SO -N+5/ M-+, (2-34)
where the sec: nd term in the Taylor series is zero due to the saddle point definition

Eq. (2-30). Keeping only the terms shown and solving for s in terms of 8, we
obtain the change of variable

s = —_—f-—;(i) @-7) . (2-35)

The change of variable in Eq. (2-29) yields

I=y _f"(7 | A Fisyas (2-36)

Note that the integrand is small at all values of s except in the neighborhood of
s = 0. If we assume F(s) is slowly varying in this neighborhood, F(s = 0) = F(7)
can be brought outside the integral, leaving only the definite integral

/ e " ds=\/r/p . (2-37)

The first order saddle point approximation to the integral is, then,

2r
-pf"(7)

I = L X CY (2-38)
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The correct sign of the square root in Eq. (2-38) is fouid by considering Eq. (2-35)
and verifying that s is positive in the forward direction of integration from the
saddle point. In the case at hand, the real part of the radical should be positive.
Brekhovskikh derives higher order approximations in Sec. 27 of Ref. 5. Additional
terms include factors of p‘i‘, p'?, and so forth.

2-83.2 Classical ray theory

A straightforward application of the method of steepest descent to the
integral for the reflected field in Eq. (2-28) yields a result consistent with classical
ray theory. In terms of the parameters given in Eq. (2-29), we rewrite Eq. (2-28)

k "1 %-:oo . . .
pl6o, Ry) = \’-2?_- e /;;“m exp{[kR,}[i cos(9'— 002]} Y(O)ﬁ'\/smq do
P

1(8) F(#8)
(2-39)
where
p = kR, (2-40a)
f(8) = ticos(8 — 6) (2-40b)
F@) = V(@)Vsinf . (2-40c)

Upon setting f'(y) = —isin(y — 8) = 0, we find the saddle point to be v =
6o. Using the saddle point approximation in Eq. (2-38) and recalling that r =
R, sin 8y, we write the reflected pressure field

k - % 27r kR X
= e 68T | e ¥ \ /
P(0o, Fr) Vorr © V ikR, e V{bo)sin o

e'kR
= V(Oo) Rl y

(2-41)

which represents the field due to a point source at the image S’ (see Fig. 2-2),
whose strength is multiplied by the factor V(6;). This solution expresses the
reflected field in terms of spherically spreading rays that emanate from the (ac-
tual) source S and specularly reflect from the interface, acquiring the plane wave
reflection coeflicient factor V(6;) in the process.

Comparisons between classical ray theory [Eq. (2-41)] and the exact so-
lution [obtained by numerically integrating Eq. (2-23)] at various frequencies are
shown in Fig. 2-4. The interface, typical of a water-sand interface, is characterized
by n = 0.866 (0 = 60.0°) and m = 1.67. The vertical axis is the magnitude of
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the reflected pressure field in decibels (dB), where 0 dB corresponds to the ficld
at unit distance from a point source in free space. The field in Fig. 2-1 has been
normalized by removing the spherical wave factor ¢*f' /R, at cach point. All
that remains is the effect of the reflection process, which, according to classical
ray theory, is just V() [scc Eq. (2 41)]. The horizontal axis specifies receiver
location by giving the angle of incidence 0y from the image source, where =, in
wavelengths A is constant for each plot. Note that the classical ray result does not
include the oscillations in the exact ficld at incident angles larger than critical.
We will see in See. 2-5 that these oscillations are caused by interference between
the totally reflected field and the lateral wave field. The largest error in classical
ray theory occurs at the lowest [requency (smallest z) and at angles close to the
critical angle,
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2-4 COMPLEX RAY FORMULATION

2-4.1 Rearrangement of the integral

In a variation on the method of steepest descent (Sec. 31.3, Ref. 5),
Brekhovskikh allows the phase of the reflection coefficient to influence the locations
of the saddle points. Expressing V in terms of its magnitude |V| and phase ¢,,
we may write Eq. (2-28)

oo,R,)._,/—e'r / FI0 kR conl0-00)+40) |1/ (9)| Vi B dO . (2-42)

+|oo

The phase function in the exponent of Eq. (2-29) is now
£(6) = i cos(0 — o) + ——o,(8) (2-43)
kR,
and the saddle point criterion is
f'(6) = —isin(8 — 6,) + —-—¢ 0 =0 at 0 =7 . (2-44)

This formulation results in saddle points on the real axis, each of which corre-
sponds to the angle of the eigenray that starts at the source and passes through
the receiver. It is the formulation used in Refs. 9-11.

In the present work, we take Brekhovskikh’s variation one step further
by allowing both the amplitude and phase of the reflection coeflicient to affect the
saddle point location.* To do this we express

V() = eV (2-45)

and rewrite Eq. (2-28)

p(00,R, /— /-_.oo kR,[icos(o—ao)+r},-l-an(o)] r——sin0d0 , (2—46)
7”‘

—-+xoo

“A careful reading of Sec. 31.3 of Ref. 5 suggests that Brekhovskikh may have intended just
this step. He sets V(8) = ¢'**(®) and states that “the phase coefficient of reflection can be
a complex function.” However, he does not consider complex saddle points, and later in the
section he applies this formulation only to the case of total reflection, writing the phase ¢, as a
rcal quantity.
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where the associations with Eq. (2-29) are now
p = kR (2-47a)

1
f(8) = icos(6—8)+ R InV(6) (2-47b)
1
F(6) = +sin@ . (2-47¢)
The saddle point criterion is
N — i 1 V(o) _ _

f(0)——zsm(0-—00)+le V(0) =0 atfb=v , (2-48)

and the second derivative f”, which is nceded for the saddle point approximation
Eq. (2-38), is

1 VvV —(V')?
R, Ve

f'(8) = ~icos(@ — ) + . (2-49)
The result of the rearrangement of the plane wave integral and reformulation of
the saddle point criterion is that the saddle points v are, in general, located at
complex values of 8. The motivation for incorporating V(0) into f(#) is that we
want the saddle point criterion Eq. (2-48) to include the complicated effects that
the reflection process introduces.

The saddle point approximation to the integral for the reflected field in
Eq. (2-46) is obtained by substituting the appropriate quantities into Eq. (2-38).
After simplification, we obtain

0 ’ R _ sy : V 1tk Ry cos(v—6p) , 2_50
Poor ) == Vim0 12:59)

where f” is given in Eq. (2-49).

2-4.2 Branch cuts in V(6)

The dependence of the plane wave reflection coefficient V' on incident
angle 0 is what makes the reflected field much more complicated than the simple
classical ray theory result in Eq. (2-41). In particular, the square root term
q(0) = Vn? —sin? 0 = \/4(0) in Eq. (2-18) for V(0) introduces branch points and
branch cuts in the complex 8-plane. Branch points lic at values of 0 for which the
radicand ¢ is zero. It is easy to see that the branch points lie at

0 = tarcsin(n) = £0,, , (2-51)
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where 8. is the critical angle. The branch cuts are chosen to be along lines
for which () lies on the positive real axis. This imposes the following two
requirements:

Re[§(0)] = n% —n? —(sin®Op cosh?8; — cos? Bpsinh?0;) > 0 (2-52a)
Im(§(8)] = 2(ngni+sinfrcosfpsinhf;coshb;) =0 , (2-52b)

where, to allow for the possibility of attenuation in either medium, the index of
refraction is written as the complex number n = ng + in;. For the case of no
attenuation (n; = 0), solution of Eqs. (2-52a) and (2-52b) for 0 results in the
branch cuts shown in Fig. 2-3.

Since the square root operator is double valued, the evaluation of V()
introduces two Riemann sheets, where

> 0 on the upper Riemann shect

Im(q(6)) { < 0 on the lower Riemann sheet (2-53)

The branch cuts are significant in our problem because in order to keep the func-
tion ¢(6) [and therefore V/(8)] continuous, cne must change Riemann sheets when
an integration path crosses a branch cut.

The contour of integration for the reflected field integral Eq. (2-46) begins
on the upper Riemann sheet at § = —w/2 + 100 and ends on the upper Riemann
sheet at § = 7/2 — ico. By Cauchy’s theorem the original contour may be de-
formed into the steepest descent path as long as no singularities are crossed in
the deformation and the path starts and ends on the correct sheets at the correct
points. Therefore, when applying the method of steepest descent, it is essential to
verify that the deformed path of integration, which may cross the branch cuts one
or more times, is equivalent to the original contour. When the steepest descent
path of a saddle point ends on the wrong sheet, we must locate another saddle
point whose path completes thc required contour.

2-5 SADDLE POINT STRUCTURE OF THE REFLECTED FIELD

The saddle points and steepest descent paths for the reflected field along
a horizontal line are shown in Fig. 2-5. The interface is characterized by 8., = 60°
and m = 1.67. The source-receiver geometry is characterized by 2z, = 5, and 6, is
varied from 50° to 80° in increments of 2.5°. The saddle point angles v [obtained
by numerically solving Eq. (2-48)] as a function of receiver position (given by 6,)
are indicated by the bold dots. Each saddle point represents the angle at which
an eigenray arrives at the receiver. The physical picture of the eigenray paths for




TOTALLY REFLECTED
PLUS LATERAL
WAVE RAYS
8, —deg
)
20
LATERAL
s . WAVE RAYS
b YRV PARTIALLY
N REFfliEAsTED
107 0N
\\ AN
. TOTALLY
5- BRANCH SO\ REFLECTED RAYS
40 |

~ v
-10 PARTIALLY
REFLECTED RAYS

=157 8g = 70°

-20 -

Figure 2-5 SADDLE POINTS AND STEEPEST DESCENT PATHS FOR THE REFLECTED FIELD. THE
GEOMETRY IS DESCRIBED IN THE TEXT, AND THE INTERFACE IS THE SAME AS IN FiG. 2-4.
STEEPEST DESCENT PATHS ARE SHOWN FOR THE SADDLE POINTS IN THE REGION OF THE
CRITICAL ANGLE. DASHED PORTIONS LIE ON THE LOWER RIEMANN SHEET. THE INSET
ILLUSTRATES THE COMPLETION OF THE REQUIRED CONTOUR OF INTEGRATION FOR THE TWO
BASIC CASES.

AS-89-231

—



22

both the reflected and transmitted fields is shown in Fig. 2-6. For small 6, (short
ranges) the field is made up of a single partially reflected eigenray. For large 6,
(long ranges) the field is made up of a totally reflected eigenray plus a lateral wave
eigenray. The origin of the lateral wave will be discussed shortly.

REFLECTED FIELD

PARTIALLY REFLECTED LATERAL WAVE
EIGENRAY EIGENRAY

\’0\\ \
BN\
A\‘A\. AN
/ R
e EVANESCENT FIELD

RAY BUNDLE
THAT GENERATE!
LATERAL WAVE

TRANSMITTED RN EIGENRAY
EIGENRAYS .
TRANSMITTED FIELD

Figure 2-6 EIGENRAY PICTURE FOR THE REFLECTED FIELD IN THE UPPER MEDIUM (sEE
SEC. 2-5) AND TRANSMITTED FIELD IN THE LOWER MEDIUM (SEE SEC. 2-8.2).

Recall that classical ray theory predicts saddle points to lie at v = 6.
However, from Fig. 2-5 we see that saddle points of the partially reflected eigenrays
are complex, lying slightly below and to the left of 8, and that saddle points of the
totally reflected eigenrays lie on the real §-axis, but at angles noticeably smaller
than y. In Sec. 2-7 we will see that these shifts in eigenray angle away from 8, are
due to displacements in the ray trajectories along the interface upon reflection,
as shown in Fig. 2-6. Finally, saddle points of the lateral wave eigenrays lie next
to the critical angle. As the horizontal range to the receiver increases, the lateral
wave saddle points move closer and closer to the critical angle. There are 6 lateral
wave ray saddle points in Fig. 2-5 (to match the 6 totally reflectcd ray saddle
points), but since they all lie very close to f,,, it is not possible to draw them
distinctly.

Steepest descent paths are shown for the saddle points in the region of
the critical angle.® The paths of the first seven saddle points, corresponding to

*The paths drawn in Fig. 2-5 are those along which the numerical integration technique,
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partially reflected eigenrays, cross the branch cut on the real -axis. Since these
paths cross the branch cut again on the positive imaginary axis (see inset of
Fig. 2-5), they begin on the correct (upper) Riemann sheet and thereby complete
the required contour. However, the path of the first totally reflected eigenray,
for the receiver at 6, = 67.5°, does not cross the branch cut on the real axis, so
it begins on the wrong (lower) Riemann sheet.! At this point it is necessary to
seek an additional saddle point [an additional root of Eq. (2-48)] whose steepest
descent path completes the contour. Such a saddle point is found on the real 8-axis
close to the branch point 8., = 60°. The saddle point represents the contribution
from the lateral wave, and its steepest descent path loops around the branch point
such that it starts on the upper Riemann sheet and ends on the lower Riemann
sheet (see inset of Fig. 2-5). Thus, when the lateral wave ray and totally reflected
ray are added together, their integration paths complete the required contour.

The physical interpretation of the lateral wave, illustrated in Fig. 2-6,
is well known (see, for example, Sec. 30.2 of Ref. 5). It is generated by energy
incident on the interface in the region of the critical angle. Some of this energy
penetrates into the bottom and travels almost parallel to the interface at the
bottom sound speed. Since the pressure across the interface must be continuous,
the horizontally traveling energy in the bottom continuously excites a wave, the
lateral wave, that travels at the critical angle in the water. The lateral wave
arrives at all receivers that lie beyond a certain range from the source, and its
wavefronts are conical about the S-S’ axis in Fig. 2-6.

The transition from a field composed of one saddle point at a complex
angle (representing a partially reflected eigenray) to a field composed of two saddle
points at real angles (representing the totally reflected eigenray and the lateral
wave eigenray) occurs at a ray theory caustic. Caustics, which can be caused by
the bending of rays as they are continuously refracted by a sound speed gradient
in the medium, are points in space where two rays coalesce into one. In the present
case, the caustic is caused by the reflection process, where two separate rays are
formed upon reflection. When only considering rays with real angles, the caustic
is the transition point between the shadow zone, into which no rays penetrate,
and the insonified zone, where two rays arrive at every point. Mathematically,
caustics are defined as saddle points [f'(y) = 0] at which f"(y) =0

In Fig. 2-5 the caustic saddle point is recognized as the point where the
totally reflected rays merge with the lateral wave rays (7. & 62°). The location

described in Sec. 2-0, 1s perforined.

! Although the transition from total to partial reflection is, in reality, a gradual process, we
use this criterion of steepest descent paths crossing, or not crossing, the branch cut to distinguish
between partially and totally reflected rays.




24

of the caustic in physical space is given by z; = 5\ and 6, ~ 66.5° (obtained by
interpolating between the value of 6y = 65° for the last partially reflected ray
shown and 6, = 67.5° for the first totally reflected ray shown). Since f"(v.) = 0,
the saddle point approximation for the field given by Eq. (2-50) is infinite at the
caustic. In the following subsection we summarize our method for finding the field
in such regions where Eq. (2-50) is invalid.

Attenuation in the bottom can be included by introducing an imaginary
part to the sound speed c,.* As a result, the index of refraction n = ¢/c, in
Eq. (2-18) is complex, the critical angle 8, = arcsin(n) acquires a positive imag-
inary part, and the saddle points are shifted. Figure 2-7 is the same as Fig. 2-5,
except the lower medium has an attenuation of aqpg=0.5 dB/A. Notice that in this
case there is a smooth transition between the partially reflected and the totally
reflected ray saddle points. Since there is no receiver location where two saddle
points coalesce into one, there is no caustic. The lateral wave saddle points have
followed 0. (the branch point) off the real axis, and the corresponding eigenrays
suffer attenuation as they travel along the interface in the bottom. The totally
reflected ray saddle points have a small negative imaginary part, and the eigenrays
are attenuated to a lesser degree.

2-6 COMPUTATION OF THE EIGENRAY FIELD

The saddle point approximation in Eq. (2-50) is based on the assumption
that, in the neighborhood of 7, the phase function f(6) is quadratic and the
steepest descent path is a straight line in the complex 8-plane. But this assumption
is invalid when there is significant curvature in the steepest descent path (see, for
example, Fig. 2-5). At the caustic itself, Eq. (2-50) predicts an infinite eigenray
magnitude.

One way to find the correct field in the caustic region would be to apply
caustic corrections that are based on uniform asymptotic expansions.!**®¢ However
this approach is not attractive for several reasons. First, it is difficult to smoothly
join the shadow-zone field with the field due to the partially reflected rays. Second,
the asymptotic expansions become extremely cumbersome as one is forced to
include higher order terms. In our case, low frequencies and the proximity of the
caustic to the singularity at the critical angle would make the calculation of higher
order terms necessary.

*This procedure is summarized in Sec. A8.4 of Ref. 15. We define a complex sound speed
¢ = cg + ic;. For small attenuations, we set the imaginary part ¢; = —[(ln 10)/(407r)]cnad3,
where cp s the usual (real) sound speed and ag4g is the attenuation in the medium in units

db/A.
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To find the eigenray field for saddle points in the region of the critical
angle we simply integrate numerically along the steepest descent path. The ad-
vantages of this technique are that it works at any frequency, it can be used to
determine when more than one saddle point must be found, and it can be applied
to any integrand for which the phase function f and its derivatives f’ and f” can
be computed.

Points along the steepest descent path are found sequentially, working
away from the saddle point in one direction, then the other. The procedure is to
determine desired values of f along the path, and then use a Taylor series for f
to obtain an initial guess for each successive 8 point on the path. The first-order
Taylor series at the previous point 8, on the steepest descent path is

f(8) = f(6,) + f(6,)(6 - 6,) . (2-54)

Given a desired value of f(#) at the next point on the path, fy, the initial guess,
0,, is obtained by solving Eq. (2-54):

0, =0, + [fa — f(op)] /f’(op) . (2-55)

At the saddle point itself, 8, = v and f'(6,) = 0, so a second-order Taylor expan-
sion is needed. The result is

o=+ V2l - F ") (2-56)

where the real part of the square root term is chosen to be positive in the forward
direction of integration and negative in the opposite direction.

The remaining question is how to choose the desired values f;. The
imaginary part of f; must be held constant at f;(7), the value at the saddle point,
in order to keep the phase of the exponential constant at pf;(7) [see Eq. (2-32)].
The real part of f; is chosen so as to sample the amplitude of the exponential factor
at desired levels, referenced to the maximum of An., = €?/R1Y) at the saddle point.
For example, if the first sample away from the saddle point is desired to have an
amplitude of 0.99A,..., then we would set

Re(fs] = fr(7) + In(.99)/p . (2-57)

The desired levels at which to sample the amplitude factor are chosen so that a
linear interpolation between samples gives a good approximation to a Gaussian,
the approximate shape of the amplitude function along the steepest descent path.
We use a total of 37 sample points in the numerical integration, resulting in an

e
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error in the pressure field on the order of £0.01 dB. The end points of the inte-
gration paths drawn in Figs. 2-5 and 2-7 are determined by the criterion that the
exponential factor have an amplitude of 0.005A,,,; there. The integration algo-
rithm must include special provisions for sections of paths that change direction
rapidly, such as those associated with the lateral wave, which loop tightly around
the critical angle.

The results using numerical integration along the steepest descent path
for the cases in Fig. 2-4 are indistinguishable from the exact results shown. For the
case of z; = 5\, the steepest descent method is approximately twice as efficient as
the direct numerical integration of Eq. (2-23). However, the latter requires more
sample points as the frequency is increased, while the number of sample points
for the steepest descent method is independent of frequency. When the saddle
point approximation can be used instead of steepest descent path integration, the
efficiency of computing the field improves greatly.

It is difficult to determine from the saddle point characteristics alone how
accurate the saddle point approximation is in a particular case. The method we
employ is to begin in the area where the approximation is the poorest, the region
of the critical angle, and work away from it in both directions. At each point
we compare the result from steepest-descent integration with the saddle point
approximation. When the latter is sufficiently close to the “exact” answer, we
do not need to perform the numerical integration for any more receivers in that
direction.

The accuracy of the method of numerically integrating along the path of
steepest descent begins to deteriorate only when the frequency becomes extremely
low. For z; = 1), the steepest descent method differs from the exact solution
[obtained by numerical integation of Eq. (2-23)] by less than 0.1 dB at all angles.
For 2z, < 0.5\, we find that, instead of proceeding directly to the end point of the
integration path at 7/2 — ioo, the steepest descent paths can end at the angle of
intromission, 6, where V(6,,) = 0 and Re[f] approaches —oo. For the interface
considered in Fig. 2-5, 6, = 90° —i21°. In such cases, another saddle point that
lies ncar 0;,, must be found. Its steepest descent path begins at 8;,, and ends in the
correct dircction, thus completing the contour of integration. In Sec. 2-8.2 and
Fig. 2-12 we encounter a similar phenomenon for the transmission case, caused
by the fact that the transmission coefficient is zero at a particular angle.
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2~7 GEOMETRIC INTERPRETATION

2-7.1 Derivation of eigenray characteristics

One of the most attractive features of the saddle point approach is that
the mathematical solution car be interpreted in terms of intuitive ray quantities,
such as the path of propagation, the geometric spreading loss, the reflection loss,
and the travel time. By moving the reflection coefficient V(8) into the phase
function f in Eq. (2-46), we have incorporated the reflection process into the
calculation of these ray characteristics.

The geometric interpretation of the ray path is shown in Fig. 2-8. The

p c
P €

Figlll‘(‘. 2-8 FEIGENRAY INTERPRETATION OF THE SADDLE POINT Y FOR THE REFLECTED
FIELD

eigenray at angle 7 is traced from the source S to the interface at A and backward
from the receiver R to the interface at B. The resulting ray displacement AB is
defined as A. Although the angle v is, in general, complex, we can only draw
it as a real angle. In cases where v is complex, we must use trigonometric func-
tions defined for complex arguments in the derivations that follow. The physical
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interpretation of eigenrays with complex angles will be discussed in Sec. 2-7.3.
We begin by deriving the general form for the ray displacement A. Using
the geometrical relation

sin(y = 6o) = ~S'D/R, = —Acosv/[R; (2-58)

in the saddle point criterion

1 Vi)
= — , 2-59
we obtain )
: g
= . 2-60
Al) = k cos y Viv) ( )
Equation (2-60) reduces to Brekhovskikh’s result in Eq. 31.30 of Ref. 5 for the
special case where v is real and |V| = 1 (total reflection). In this case, A =

—¢! /(k cosv), where ¢, is the phase of V.

We can convert the saddle point criterion Eq. (2-59) to an eigenray equa-
tion by (1) substituting for V'/V in terms of A, (2) expanding the sin(y — 6,)
term, and (3) using the geometric relations R, sinf = r and R, cosfy = 2, + 2,:

f'(v) = —i(sinycosby —sinfycosvy) + k—;l— (—tkAcosy) =0
1
( 2l ) f'(7) = Rycosbptany — Rysinfy + A (2-61)
cos vy
0 = (z,tany+ A+ 2 tany)—r . (2-62)

By Fig. 2-8, we interpret Eq. (2-62) as the eigenray equation
r=r(7)+A0) +r(y) - (2-63)

Equation (2-63) gives the horizontal range r covered by a ray launched at complex
angle 4. Note that any of the three intermediate range terms r;, A, and r, shown
in Fig. 2-8 may be complex, but their sum must be the real quantity r.

Upon using the geometric relation (see Fig. 2-8)

Rycos(y—0,)=DC +CB+ BR=3A+ Asiny+ BR (2-64)

for the phase factor in the saddle point approximation Eq. (2-50), we obtain the
reflected field in terms of eigenray characteristics:

o(60, 1) = /sm‘r /ZR f" V(‘y) explt lc(_S_+ Asiny + BR)]

reﬂcct\on ray path phase ®
loss

(2-65)
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The factors G4 and G4 are geometric spreading factors and will be described in
detail in the next section. The reflection loss factor in Eq. (2-65) is just the plane
wave coefficient. The ray path phase ® shows that the ray travels along segments
54 and BR at the water sound speed c, but along the interface at the speed

ca =c¢/siny . (2-66)

Thus, lateral wave rays (see Sec. 2-5), for which siny = sin ., = ¢/¢;, travel the
distance A along the interface at the bottom sound speed, while rays at grazing
incidence, v = 90°, travel at the water sound speed. Totally reflected rays, for
which 8., < v < 90°, travel at speeds somewhere between ¢ and ¢,.

2-7.2 Analysis of the geometric spreading factors

The first two factors in Eq. (2-65), G4 and Gy, are the geometric spread-
ing factors in the two orthogonal directions ¢ and 6 shown in Fig. 2-1. The
spreading of a ray bundle in the f-direction is illustrated in Fig. 2-9(a), which
is drawn in the plane of incidence of the ray (the plane containing the ray and
the normal to the interface). The bundle has width Af and is centered about
the eigenray angle 7. Its cross section at the receiver is r'(y)cos yA#, where »/
is the derivative of r in Eq. (2-63) with respect to 4. Since the geometric loss is
inversely proportional to the square root of the variation in the cross section of
the bundle, we expect Gy = /1/r/(7) cosv. This is indeed equivalent to the ex-
pression in Eq. (2-65) because differentiation of Eq. (2-61) results in the relation
1R, f"(v) = r'(v) cosy. Carrying out the differentiation, one can express

1 1
Go=|———= — -
’ \/T'(‘Y)Cos7 VSA+ A'cosy+ BR (2-67)
where \
.1 VYT — (V) .
Al = Feoss 0z + Atany . (2-68)

Near the caustic Eq. (2-67) is invalid because r’ approaches zero, and Gy therefore
approaches infinity. In this case, the exact field p must be obtained by numerical
integration «long the steepest descent path. If desired, the value of Gy may be
obtained by rearranging Eq. (2--65):

p(6o, Iy)

(/g =
"7 GeV(9) exp(i®)

(2-69)
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Figure 2-9 GEOMETRIC SPREADING OF AN EIGENRAY (a) IN THE f-DIRECTION, AND (b) 1N
THE ¢-DIRECTION.
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The spreading of a ray bundle in the ¢-direction is illustrated in Fig.
2-9(b). A ray bundle of angular width A¢, when projected on the plane of the
interface, has angular width A¢/sinv. Cylindrical symmetry dictates that the
center of curvature of the various portions of the ray path lie on the line through
the source S and perpendicular to the interface. Thus, the (linear) cross section
of the bundle at the receiver is simply rA¢/sin~y. In terms of the path lengths
along each segment of the ray trajectory, G4 can be expressed as

siny 1
= — ] . 2_7
Go V' r \/m+A/sin7+BR (2-70)

Note that when the reflection coefficient is not a function of incident angle, A = 0
and Gy = G4 = \/1/R,. In such a case, the classical ray result Eq. (2-41) is exact.

At this point it is worthwhile to recognize the origin of the spreading loss
factor G,. The spreading in the ¢-direction can be traced back to the change
of variable in Eq. (2-14). The first factor on the right hand side of Eq. (2-14)
accounted for the ¢-spreading and introduced the sin 8 factor inside the double
integral of Eq. (2-16). The integral over ¢ eventually resulted in the Hankel
function factor in Eq. (2-25), which was then replaced by its asymptotic form in
Eq. (2-26). Combination of the asymptotic form of the Hankel function with the

sin @ factor resulted in the factor y/sin @/r.
When viewed geometrically as in Fig. 2-9, it makes sense to separate the
spreading factors in the two independent directions. This is achieved by evaluating

the ¢-spreading factor Gy = \/sin8/r at the saddle point v and taking it outside

the integral over 8 in Eq. (2-46), which accounts for the §-spreading factor G,.
With the G, factor removed, the Hankel function approximation (krsiné not
small) no longer causes errors at short ranges and low frequencies. As we shall
see in Chapter 3, separation of the two spreading factors in this way enables
our basic method for evaluating the field to be extended to more complicated
environments, where ray paths may have multiple reflections at possibly different
angles of incidence.

2-7.3 Interpretation of complex eigenrays

As we have seen, saddle points, and therefore eigenray angles, can be
complex. When 7 is complex, the eigenray characteristics in Eq. (2-65) have non-
zero imaginary parts that may not have a clear physical interpretation. When
saddle points are complex due to attenuation in one or both media, as is the
case for the saddle points representing the totally reflected and lateral wave rays
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in Fig. 2-7, the imaginary parts of the eigenray characteristics may be viewed
as simply accounting for the attenuation along the eigenray paths. However,
even with no attenuation, partially reflected eigenray angles have small imaginary
parts, as seen in Fig. 2-5. The largest imaginary parts of 4 occur at receivers near
0o = 0.,. The significance of the complex saddle points in this region is that the
field does not behave like a simple (classical ray theory) ray fieid there. At lower
frequencies (source and receiver closer to the interface in terms of wavelengths) the
field in this region behaves less like a simple ray field, and the imaginary parts of
the saddle points 4 are correspondingly larger. Although we can assign no simple
physical interpretation to complex-valued eigenray characteristics, we can deduce
the approximate path of the energy the “ray” represents from the real part of the
eigenray angle.

The possibility of complex-valued saddle points makes the process of “ray
tracing” more difficult. An eigenray with a complex angle begins and ends in
real space at the source and receiver, respectively, but otherwise travels through
complex-valued spatial coordinates. Thus, in regions where eigenrays are complex,
we may not use the usual practice of launching a series of real rays and tracing
them through real space.

2-8 THE TRANSMITTED FIELD IN THE BOTTOM

In this section we solve for the transmitted field in the bottom using the
same method used for the reflected field. After developing the plane wave integral
for the field in the bottom, we summarize the saddle point structure and interpret
the field in terms of eigenray characteristics.

2-8.1 Integral representation of the transmitted field

The derivation of the plane wave integral for the field at a point in the
bottom begins with the representation of the spherical wave in Eq. (2-16). A
plane wave incident on the interface at angle 6 is transinitted into the bottom at
angle 6, according to Snell’s law

sinf; =sinf/n . (2-71)

Figure 2-14 shows the geometrical configuration of the source and receiver. We
express distances in the bottom as well as in the water in terms of the wavelength
A in the water.

The pressure field in the bottom is constructed by multiplying each plane
wave in the integrand of Eq. (2-16) by the transmission coefficient W(8) and by
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Figure 2-10 GEOMETRY FOR CALCULATION OF THE TRANSMITTED FIELD IN THE BOTTOM.

taking into account the total phase in the water k,z, and in the bottom k;,z,:
—$00 2r
plr, 20, 2,) = / : / glhsthyvthezcthie) W 9) sin0dgdd |, (2-72)
9= ¢=

where k,, k,, and k, are given in Egs. (2-13), ki, = kycosb, is the vertical
component of the wave number in the bottom, and the fluid-fluid plane wave
transmission coeflicient is

2m cos 6
mcos® + v/n? —sin’ 0

Following the derivation for the reflection case, we perform the integration over ¢
analytically, with the result

w(9) =

(2-73)

—uoo

p(r, 20,2,) = ik / Jo(kr sin 8) %= +41:5) Q) singdf . (2-74)

Next, we express the Bessel function in terms of Hankel functions and use the
asymptotic form of the Hankel function. Finally, after rearrangement such that
W (8) appears in the phase function, we obtain

p(6o, Ry, 2,) \{ Er-;e" / 4o exp {kR, [tcos(d — 6,) — z;r(cosﬂ —ncos@,)

+m—an 0)]} Vsin0do . (2-75)
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The integration contour and branch cuts are the same as for the reflection case
in Fig. 2-3. The choice of .lie Riemann sheet [see Eq. {2 53)] applies to the term
ncos8, = vVn? —sin’ 0 = q in the exponent of Eq. (2-75) and in W(8). Note that
the transmitted field depends on z, as well as 6, and R,;.

The phase function in the transmitted field integral Eq. (2-75) is

12,

f(0) = tcos(8 — bp) — -ﬁ—(cosa —ncost)+ —InW() , (2-76)

kR
the saddle point criterion is

1 W)

= 7
W =" at 0 =1, (2-77)

f'(6) = —isin(8 — 6p) + —(sm0 +¢)+ —

and the second derivative required by the saddle point approximation is

1 WW" — (W')?

f'(8) = —icos(0 — 6y) + —(c050 +4") + iR T ,

R,

(2-78)

where

= —sinfcosf/(ncosb;)
¢" = [sin®0 — cos® 0 — (¢')?]/(n cos 6,)

2-8.2 Saddle point structure of the transmitted field

The saddle points and steepest descent paths are found in a manner
analogous to the reflection case. In Fig. 2-11 we show the situation in the complex
0-plane for a low frequency case where z, = 4, z, = 1), and the angle 6, specifying
the receiver position is varied from 50° to 80° in increments of 2.5°. We see
that for the seven receivers closest to the source, the steepest descent path for
the transmitted ray completes the required contour of integration by itself. But
for receivers farther from the source, the path turns back up and to the left
instead of down and to the right. For these receivers the steepest descent path of
an additional saddle point, corresponding to the evanescent field, completes the
contour. The evanescent field is produced by energy that is totally reflected at the
interface, but that nevertheless causes a disturbance in the bottom. The complex
angle of the “evanescent ray” has a real part that is slightly greater than 8, and
an imaginary part that is positive. The eigenray interpretation of the field in the
bottom is shown in Fig. 2 6.

When the source and receiver are very close to the interface and some-
what far apart, a complication in the steepest descent path of the evanescent ray
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Figure 2-11 SADDLE POINTS AND STEEPEST DESCENT PATHS FOR THE TRANSMITTED FIELD.
THE GEOMETRY IS DESCRIBED IN THE TEXT, AND THE INTERFACE IS THE SAME AS IN FiG. 2-4.
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saddle point can arise. Instead of ending in the correct direction, the path ends at
6 = 90° +10°, where W by Eq. (2-73) is zero and Re[f] by Eq. (2-76) approaches
—o00. When this happens, we must search for an additional saddle point +.,; whose
path of integration completes the required contour of integration (see Fig. 2-12).
We call «4.,.2. which lies slightly below and to the right of 90° in the complex

0, —deg
8- "EVANESCENT RAY"
6 - SADDLE POINT
4 -
24 75 a5
0125 615 1l L 1 i 1
e \ 0, —deg
*“TRANSMITTED RAY"
—4 1 SADDLE POINT
_6 -
-8 1 SECOND "EVANESCENT RAY"
-10- SADDLE POINT

Figure 2-12 SADDLE POINTS AND STEEPEST DESCENT PATHS FOR A CASE WHERE AN AD-
DITIONAL “EVANESCENT RAY” SADDLE POINT MUST BE FOUND. THE PARAMETERS ARE:
n = 0.886, m=1.67, z, = z, = 0.25), r = 40A.

0-plane, a second “evanescent ray” saddle point because it represents an inhomo-
geneous plane wave that travels parallel to the interface (Re[7e,2] & 90°) and is
exponentially decreasing in the bottom (Im[y.,2] < 0). For the case in Fig. 2-12,
the field due to <.,2 is just 5 dB weaker than that due to the usual evanescent
field saddle point, so the contribution of the former cannot be ignored. We do not
believe, however, that the additional saddle point represents any distinct mech-
anism of propagation, but simply that it is sonetimes required to complete the
description of the evanescent field.

It is interesting to note how the saddle point structures of the reflected
and transmitted fields arc related at the interface, where the total pressure field
must be continuous. At short ranges (small 6o), the saddle point corresponding
to the partially reflected ray becomes, as the interface is crossed, the saddle point
corresponding to the transmitted ray. At long ranges (large 6), it is the reflected
lateral wave ray that evolves into the transmitted ray, both of which lie near the
critical angle. In addition, the totally reflected ray above the interface becomes
the evanescent ray in the bottom. Of course, the incident field must be added to
the reflected field to obtain continuity with the transmitted field at the interface.
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A comparison between classical ray theory and the exact result [obtained
by numerical integation of Eq. (2-74)] for the transmitted field along a horizontal
line is shown in Fig. 2-13. As in Fig. 2-4 for the reflected field, the geometric

~N
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zs=4k,zr=1k\

z;=64,2z,
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Figure 2-13 COMPARISON BETWEEN CLASSICAL RAY THEORY AND THE EXACT RESULT FOR
THE NORMALIZED TRANSMITTED FIELD. VALUES OF z, AND z, IN WAVELENGTHS A ARE SHOWN
FOR EACH PLOT. THE INTERFACE 1S THE SAME AS IN FiG. 2-4.

spreading and phase terms predicted by classical ray theory have been removed
from the total field, so that only the effect of the transmission process remains.
The geometric parameters z, and z, for each plot are indicated on the figure.
Note that the ratio z,/2, = 4 is held constant so that the classical ray result is
the same for each geometric configuration. Classical ray theory is less accurate
at lower frequencies (source and receiver closer to the interface in terms of wave-
lengths) because the evanescent field is more significant. The interference evident
at the longer ranges (larger 8,) is between the transmitted and evanescent rays.
Attenuation in the bottom would enhance the importance of the evanescent ray
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in comparison with the transmitted ray because the latter has a much longer path
length in the bottom.

2-8.3 Geometric interpretation of the transmitted field

The interpretation in terms of eigenrays is slightly more complicated for
the transmitted field than for the reflected field. In Fig. 2-14 we have drawn an
eigenray from the source S to the interface at A at angle 4 and backward from
the receiver R to the interface at B at the angle v, found from Snell’s law in
Eq. (2-71). As in Fig. 2-8 for the reflection case, we allow for the possibility of a

D

Figure 2-14 INTERPRETATION OF THE TRANSMITTED FIELD IN TERMS OF EIGENRAYS.

displacement along the interface by not assuming that points A and B coincide,
and we define as A the resulting ray displacement AB. The same comments made
in Sccs. 2-7.1 and 2-7.3 regarding the possibility of complex eigenray angles v
apply in the present casc.
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To find an expression for the ray displacement A, we manipulate the
saddle point criterion in Eq. (2-77). Using Snell’s law and geometry, we can write
the factor (sin 8 + ¢') as

( : sin ¥y cos 7) —sin(1 —9) -BE/BR -BE
siny — ————— | = - —

cos v, z,/BR 2,
Substituting for sin(y — 6p) = —CE/R, in the first term of Eq. (2-77), we obtain
iCE __i7515_+ 1 W'(v) _

R, R, kR, W(y)
Multiplying by —iR; and recognizing that CE — BE = A cos+, we find
W)

A(v) = Feoss W3 (2-81)

(2-79)
n cos ¥,

fi(y) = 0 . (2-80)

Thus, the ray displacement for the transmission case Eq. (2-81) is obtained from
the reflection case Eq. (2-60) by simply replacing W for V.

As before, the eigenray equation is obtained by substituting A into the
saddle point criterion. Taking our cue from the reflection case, we multiply
Eq. (2-77) by iR,/ cos ¥ and expand the sin() terms:

Ry, R, sin(y -6, z,sin(y; —
Lfiy) = sl =) zsinn =) 5
cos y cos ¥ COS 7y COS 7,

= Rytanvycosly — Ry;sinfy + z, tany, — z, tanvy+ A =0 .
(2-82)

After substituting Ry cosfp = 2, + 2z, and R, sinfp = r (see Fig. 2-14), we obtain
the eigenray equation

r = ztany+ A+ 2z tany
n(y) +A(r) +r2(v) - (2-83)

The characteristics of the transmitted eigenray are obtained from the
saddle point approximation in the same manner as for the reflected eigenray:

i 1 o
P00, Ry, 20) = \[ =L /- W(y) expli (kT4 + kAsiny + k BR)]
r lR]f”(")‘) S ~ ’
"(\:-’ [ ———
T4

e trans- ray path phase @
'0 mission
loss

i

(2-84)
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The ray path phase ® in Eq. (2-84) is obtained as follows:

®(7) = kR;cos(y — ) — kz,(cosy —ncosy,)
k(SA + AC + CD) — kBR cos 1(cosy —ncos 11)
kSA + kAsiny + kBR [cos(v; —7) = cosy, cos 7] + ky BR cos? v,
= kSA+ kAsiny+ kBRsinysiny, + ki BE cos® 7,
= kSA+ kAsiny+ k,BR . (2-85)
The geometric spreading factors in Eq. (2-84) have the same interpretation as for

the reflection case shown in Fig. 2-9. In terms of the ray path lengths, they can
be written

il

1 1
S R — 2-86
Gl \/ ) cosy \/SA + A’cosy + BRcos? y/(ncos?y) (2-56)

/sm'y ' (2-87)
SA+ A/sm‘y + BR/n

In the reflection case, the ray displacement A (at a lossless interface) turns
out to be real for totally reflected and lateral wave eigenrays. In the transniission
case, however, the displacement A turns out to be complex, which means that
the simple interpretation of a real displacement upon transmission, as depicted in
Fig. 2-14, does not hold. Using the case illustrated in Fig. 2-11 as an example, we
find that A is largely imaginary for transmitted rays. Its magnitude is very smal}
at short ranges (indicating the accuracy of classical ray theory there) but larger at
longer ranges. For example, the eigenray for the receiver at 8y = 60° and z, = 1A
in Fig. 2-11 has angle y = 55°—10.5° and displacement A = (0.03+1:0.28)A. Recall
that classical ray theory may be obtained by neglecting the displacement. From
Fig. 2-13 we see that neglecting the displacement for the receiver at 6, = 60° and
z, = 1 results in an error of 0.6 dB. Thus, although the displacement is complex
and cannot be interpreted physically, we must include it in the mathematical
treatment of the transmitted field. Real displacements are found only for receivers
at long ranges on the interface (z, = 0), where A is the same as for the reflected
lateral wave ray on the opposite side of the interface.

For the saddle points in Fig. 2-11 that represent the evanescent ficld
(which is not accounted for by classical ray theory), the magnitude of A is on the
order of 1.5-6), and the real part is somewhat larger than the imaginary part.
By Snell’s law the plane waves in the bottom that correspond to the “evanescent
ray” saddle points are inhomogeneous, with real parts close to 90°. The fact that
the eigenray characteristics have significant imaginary parts is an indication that
the evanescent field in the bottom cannot be represented as a simple ray field.

Gs
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2-9 CONCLUSIONS

In this chapter we have developed a systematic method for finding the
reflected and transmitted fields due to a point source in the presence of a plane,
penetrable interface. The basic technique is to allow the plane wave reflection and
transmission coefficients to influence the saddle point location by moving them
into the phase function f before taking this function’s derivative to find the saddle
points. The result is that the saddle points are, in general, complex. Complicated
effects of the reflection and transmission processes, such as the reflected lateral
wave field in the water and the evanescent field in the bottom, are now included
in a natural way in the saddle point formulation. By tracking the steepest descent
paths in the complex @-plane and comparing them with the required contour of
integration, one can determine whether multiple eigenrays exist at a given receiver.
Numerical integration along the steepest descent paths provides a robust and
frequency-independent method for evaluating the eigenray field when the usual
saddle point approximation is not valid.

An attractive feature of our approach is that each saddle point can be
associated with an eigenray having a certain path of propagation. Characteristics
such as ray travel time, geometric spreading losses, and reflection or transmis-
sion loss provide one with physical insight into the problem. In certain transition
regions, the field is too complicated to be simply expressed as a single ray field
or even the superposition of several ray fields. Examples are the reflected field
in the region of the critical angle and the transmitted field in the region where
the transmitted ray is first accompanied by the evanescent ray. In such regions
steepest descent paths are curved and contributions to the field integral come
from a range of angles. Since the saddle point approximation is not valid, nu-
merical integration along the steepest descent path must be used to evaluate the
field strength. Despite the fact that a detailed physical interpretation of complex
eigenray characteristics is not always possible, the real parts of the eigenray angles
do indicate the approximate path of the energy represented by the eigenray.

The overriding motivation for this work has been to develop a method
for solving the single interface problem in a way that could be extended to more
complex environments. In the following chapter we will apply the ray method to
a flat waveguide (the Pekeris model) and to a sloping waveguide (the penetrable
wedge problem). For these environments, the total field is expressed as a sum
of ray fields, each of which can be evaluated using the methods outlined in this
chapter.




CHAPTER 3

APPLICATION OF THE RAY METHOD TO FLAT AND SLOPING
WAVEGUIDES

3-1 INTRODUCTION

In the previous chapter, a method was developed for finding the field
due to a point source in the presence of a single plane, penctrable interface. The
method involves allowing the plane wave reflection or transmission coefficient to
influence the location of the (possibly complex) saddle points, as well as their
associated steepest descent paths. In this chapter we find the field in flat and
sloping waveguides by using the same saddle point method to cvaluate each one
of the ray fields that contributes to the total field.

The so-called Pekeris waveguide serves as a simple model for acoustic
propagation in shallow water ocean environments. It consists of a flat, homoge-
neous fluid layer (water) that is bounded below by a homogeneous fluid halfspace
of higher velocity (sand, for example) and above by a pressure-release interface.
Traditionally, this model has been analyzed using normal mode theory, beginning
with the classic work of Pekeris.!” Brekhovskikh’s treatment of the problem, in
Chapter 5 of Ref. 5, includes both the ray and mode approach. Most computa-
tional implementations of normal mode theory include only the discrete modes,
which limits the validity of the solution to long ranges. In more recent years,
closer attention has been paid to the remainder of the solution, referred to as
the continuous spectrum or the branch line contribution.'® In the case where a
mode is near cutoff (the transition from the discrete spectrum to the continuous
spectrum at the critical angle), normal mode theory can be invalid at all ranges.
The concepts of “virtual modes™!®
as means for correcting the theory in this case.

The modeling of the Pekeris waveguide in terms of rays with beam dis-
12198 Although this ray formu-
lation has been successfully applied in various circumstances, it does not model

and “pseudoresonances”® have been proposed

placement has been carried out by Tindle, et a
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the field accurately in the region of the critical angle. In this region, a ray theory
caustic is formed, and correction formulas based on uniform asymptotic expan-
sions must be used. However, the caustic corrections do not completely solve the
problem because the field predicted from the shadow-zone formula does not match
up well with the partially reflected field at shorter ranges. As can be seen in Fig. 1
of Ref. 12, the field at ranges shorter than the caustic range is not correctly ac-
counted for by the shadow-zone formula alone. From Fig. 1 of Ref. 11, we see that
partially reflected rays undergo no beam displacement and are abruptly cut off
at the critical angle. Adding the partially reflected ray field to the shadow-zone
field only corrects the field at short ranges; closer to the critical angle the field is
still incorrect, and there is a discontinuity where the partially reflected rays are
cut off at the critical angle. The reason that good results have been obtained
using the usual beam displacement formulation®!%!! is that the partially reflected
field, corresponding to the continuous spectrum in mode theory, is very weak at
sufficiently long ranges in a flat waveguide.

In the present approach, as described in Chapter 2, we find the correct
field in the problematic region of the critical angle by incorporating the entire
reflection coefficient (rather than just its phase) in the saddle point criterion,
finding complex saddle points, and numerically integrating along the paths of
steepest descent. The field calculated in this way matches smoothly with the field
at shorter ranges due to partially reflected rays, as well as with the field at longer
ranges due to totally reflected rays plus lateral wave rays. For lossless interfaces,
the representation of the field at long ranges is equivalent to the previous beam
displacement formulation.

The second environment to which we will apply our ray method is the
sloping waveguide or wedge, which is a useful model for coastal and continental
shelf areas. The wedge problem has received considerable attention from the
underwater acoustics community in recent years. Jensen and Kuperman?! have
used a parabolic equation model to demonstrate the cutoff of modes in upslope
propagation. Pierce?? and Kamel and Felsen?® have studied the same issue from a
theoretical standpoint. Arnold and Felsen?* discuss the field in a wedge in terms
of rays and local medes, and Arnold, et al.,*>?% have developed the theory of
intrinsic modes for the penetrable wedge. Xiang, et al.,® have recently reported
progress in simplifying the intrinsic mode formulation.

The work of Tindle and Deane'? was the first successful application of
ray theory to a shallow water wedge. Using the beam displacement formulation
from Ref. 10, good general agreement was found between ray theory and adiabatic
normal mode theory for cases where the adiabatic approximation is valid (small
slopes and no mode cutoff). In such cases, the problem in the beam displacement
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formulation in the area of the critical angle apparcntly did not alfect the results
significantly. According to Sec. 1 of Ref. 12, partially reflected energy was ac-
counted for by way of the shadow-zone caustic correction factors, and no partially
reflected rays were included in the calculations. For moderate and large ocean
bottom slopes, however, proper accounting of energy incident on the bottom at
angles near and steeper than the critical angle is essential because, due to the
change in ray angle upon each bottom reflection, many rays important to the
field calculation are reflected from the bottom at such angles. In contrast to the
flat waveguide, these partially reflected rays are important at all ranges from the
source in the wedge, not just at short ranges.

The first three sections of this chapter deal with the flat waveguide. See.
tion 3-2 describes the ray method for calculating the ficld, Section 3 3 contains
comparisons of the ray model with the SAFARI model and a normal mode model,
and Section 3-4 reviews the structure of the cigenrays at several receivers in the
waveguide. The next three sections treat the sloping waveguide. Section 3 5 con
tains a derivation of the integral expression for the ray ficlds, Section 3 6 contains
a comparison of the ray model with a two-way coupled mode model, and Sec.
tion 3-7 gives examples of the eigenray structure. Concluding remarks are made
in Sec. 3-8.

3-2 RAY METHOD FOR THE FLAT WAVEGUIDE

The environment assumed is the standard Pckeris waveguide illustrated
in Fig. 3-1(a). The parameters needed to describe it are the ratio of sound specds
n = c/c, the ratio of densities m = p;/p, and the water depth h. In the waler,
the wave number £ is related to the wavelength A, the frequency f, and the sound
speed ¢ by k = 27r/) = 2xf/c. The source-receiver gcometry is specified by the
horizontal range r and the source and receiver depths z, and z,, respectively. All
distances are expressed in terms of the wavelength A. We assume that n < 1,
which is typical for water-sand interfaces in shallow water occan environments. In
such a case, the critical angle 8., = arcsin(n) is real. Attenuation may be included
in either medium by allowing the appropriate sound speed to have an imaginary
part (see Sec. 2-5), which causes n to be complex as well.

The total field at a receiver in the Pekeris waveguide is expressed as a sum
of ray fields due to the source and its images, which are illustrated in Fig. 3-1(b).
The straight lines connecting the image sources with the receiver represent the ray
paths of classical ray theory. We specify each ray path by the number of bottom
reflections N,, the number of surface reflections N,, and the ray's direction of
travel at the receiver. The ray field due to each image source is represented as
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Figure 3-1 GEOMETRY FOR THE FLAT WAVEGUIDE. (a) SOURCE-RECEIVER GEOMETRY.
(b} SYSTEM OF IMAGE SOURCES, EACH OF WHICH REPRESENTS A DIFFERENT RAY PATH. THE
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IMAGED OCEAN BOTTOMS.
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a contour integral over plane waves in the complex 8-plane, where 6 is the plane
wave angle of incidence. We solve the integrals in terms of eigenrays, which are
specific rays at specific angles that travel from source to receiver. It is important
to realize that there may be more than one eigenray with a given ray path (a
given sequence of reflections). For example, we saw in Chapter 2 that a lateral
wave eigenray always accompanies a totally reflected eigenray.

The expression for the field reflected once from a plane, penetrable in-
terface is given by Eq. (2-28). To modify this expression for a ray path that has
N, bottom reflections, with plane wave reflection coefficient V, and N, surface
reflections, with reflection coefficient —1, we write

k ‘¥ F-ico T
0o R) = (<)) gt [0 MR (o)) VeinGdo ,  (3-1)
-7 100

where V is given by Eq. (2-18). For each of the image sources in Fig. 3-1(b) the
appropriate values of the incident angle §; and the distance R; that specify the
receiver location can be calculated from simple geometry. The total field is given
by an infinite sum of ray fields of the form in Eq. (3-1) due to the infinite number
of image sources that exist. In practice, the sum can be truncated after 8y has
become sufficiently small and N, sufficiently large that the ray is insignificant due
to multiple partial reflections at the bottom.

As in Chapter 2 we use the method of steepest descent to solve the integral
for each ray field. Before applying the method we incorporate the reflection process
into the saddle point criterion by expressing

[V(O) = MVE) (3-2)

so that we may write the ray field as
k ¢ & oo s cos(0—~ N :
(6o, By) = (—1)"”\/2——” ¢t /’ tulicos6=blt gy VO \ /GG do . (3-3)
—§+ioo

The phase function in the steepest descent method (see Sec. 2-3) is now
: N,
f(0) =1cos(8 — 0) + ——InV(0) (3--4)
kR,

and the criterion for the saddle point v is

F1(0) = —isin(0 — 0p) + %% =0 atl=17 , (3-5)
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where prime indicates differentiation with respect to 8. It can be seen by compar-
ing Eq. (3-5) to Eq. (2-48) that it is no more difficult to find the saddle points
for the multiply reflected field than for the singly reflected field since the only
difference is the factor N,.

As in Sec. 2-7.1, Eq. (3-5) can be interpreted geometrically as an eigenray
equation, where a horizontal displacement

_ V() )
A(y) = kcosy Viv) (3-6)

occurs at each of the N, bottom reflections. The structure of the saddle points as
a function of herizontal receiver range r is similar to that for the singly reflected
field illustrated in Figs. 2-5 and 2-7.

Once the saddle point v is found. the integral in Eq. (3-3) is evaluated
in one of two ways, as detailed in Chapter 2. The first method is to apply the
first-order saddle point approximation given in Eq. (2-38) to Eq. (3-3). The result

18
— (_1\M sin 7 1 Nbo 1kRy cos(v—60) Q.
p(6o, Ry) = (-1) \/ - ET () V(y)™ e , (3-7)

where f” is obtained by taking an additional derivative of Eq. (3-5). The second
method, which is required when the saddle point is near the critical angle, is to nu-
merically integrate along the path of steepest descent in the complex §-plane. As
discussed in Sec. 2-7.2, the v/sin 6 term in the integrand of Eq. (3-3) is evaluated
at the saddle point v and taken outside the integral before the integration is per-
formed. We do so because the integral over f represents the geometrical spreading

Gy of the ray bundle in the plane of Fig. 3-1, while the factor G4, = y/sin y/r rep-
resents the spreading in the perpendicular plane. We will see that the separation
of the spreading factors in this way is useful when constructing the integral for
the sloping waveguide in Sec. 3-5.

The algorithm for finding the field at a series of receivers at constant
depth z, proceeds as follows. First, the field due to the direct path arrival is
found at all the receivers. The amplitude of this field serves as a reference for
deciding when to neglect rays that are significantly weaker. Next, the algorithm
loops through the image sources [see Fig. 3-1(b)], finding the field at all receivers
for each ray path. The ray field calculation starts at the receiver for which 6, = 6.,,
and the field is found by numerical intcgration along the steepest descent path.
The field at longer ranges (larger angles 8 > 6.,) is found next, each time checking
if a lateral wave ray also exists. Once the lateral wave exists also, the saddle point

approximation is compared to the exact (numerical) result. If the approximation is
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accurate enough, it can then be used for all the receivers farther out in range. This
procedure for testing the accuracy of the saddle point approximation is applied
to the lateral wave ray as well as to the totally reflected ray. In addition, the
strength of the lateral wave ray is compared to the reference strength, and when
the lateral wave ray is sufficiently weak, it can be neglected for receivers at longer
ranges.

The same type of procedure is used for the partially reflected ray field at
the shorter ranges, for which 6y < 6.,. As N, gets larger, the partially reflected field
drops off more and more sharply with decreasing range r. When N, is sufficiently
large that the ray field at all the receivers is insignificant due to numerous partial
reflections, the process is terminated and the total field has been found.

The field in the bottom of the flat waveguide may be found using the
same approach. Since all the energy arrives from above, only the upper half of
image sources in Fig. 3-1(b) contributes. From the expression for the transmitted
ficld at a single interface Eq. (2-75), we derive the following for the flat waveguide

case:
p(6o, Ry,2,) = (—1)V Y, Er_; /::mo cxp{kﬂ, [i cos(0 — 6,)

1z,
- 7;—1-(c050 ~ncosb;)
1
+ ——-(N,, In V(6) + In W(9)>] } o (3-8)
kR

where N, is the number of bottom reflections of the ray path (not including
the final transmission), W is the plane wave transmission coefficient given in
Eq. (2-73), z, is now the positive distance below the bottom interface, and 6, is
the plane wave angle in the bottom given by Snell’s law, sin 6, = sin8/n. In solving
Eq. (3-8) in terms of saddle points, we always find a saddle point corresponding
to the usual transmitted ray. When 6, is large there may also be a saddle point
that accounts for the evanescent leakage of energy into the bottom, as discussed

in Sec. 2-8.

3-3 COMPARISON OF MODELS FOR THE FLAT WAVEGUIDE

In order to test the validity of the ray model, which we refer to as the
ACCURAY model, we have compared its predictions of propagation loss with
those of other models, namely the SAFARI fast field program® developed at
the SACLANT Centre in La Spezia, Italy, and a normal mode model called
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NEMESIS® developed at the Applied Research Laboratories, The University of
Texas at Austin. The SAFARI model, whose algorithm solves the Bessel trans-
form of the wave equation in range-independent environments by direct numerical
integration, should be accurate at all frequencies and all but very short ranges.
The normal mode model includes the discrete spectrum in its calculations, but
does not account for the branch line integral.

The first case for comparison of the models was chosen so that a mode
would be just on the verge of cutoff. The bottom parameters are n = 0.9375
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Figure 3-2 COMPARISON OF THE RAY MODEL (ACCURAY), THE SAFARI MODEL, AND
A DISCRETE NORMAL MODE MODEL FOR A FLAT WAVEGUIDE OF DEPTH h = 3.6A. THREE
TRAPPED MODES EXIST, BUT MODE 3 1S VERY CLOSE TO CUTOFF. THE EXTREMELY CLOSE
AGREEMENT BETWEEN THE ACCURAY AND SAFARI MODELS MAKES THEIR PLOTS DIFFI-
CULT TO DISTINGUISH.

(8 = 69.6°) and m = 1.25, and the source and receiver depths are z; = 0.72\ and
z, = 0.60A. Figure 3-2 shows a comparison of the three models for a water depth
of h = 3.60A, which is slightly deeper than the cutofl depth for the third mode
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hea = 3.59X. The figure shows that the ray model and the SAFARI model agree
so closely that the plots can barely be distinguished. The normal mode model,
however, is typically off by 4 dB at the peaks and 15 dB at the valleys of the plot.
The reason for its poor performance in this case is that the pole corresponding to
mode 3 is very close to the branch point singularity at the critical angle. These
results demonstrate that SAFARI and the ray model correctly account for energy
in the neighborhood of the critical angle, while normal mode models with only
the discrete spectrum do not.

The second case for comparison is the same as the first except the water
depth has been lowered to k = 3.5, so that only the first two normal modes are
trapped. It can be seen from Fig. 3-3 that there is still near perfect agreenient
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Figure 3-3 As IN FiG. 3-2, EXCEPT THE WATER DEPTH HAS BEEN REDUCED TO h = 3.5A.
MODE 3 1S NOW CUT OFF, BUT STILL CONTRIBUTES SIGNIFICANTLY AT THE SHORTER RANGES.

between the ACCURAY and SAFARI models. The mode model’s performance is
somewhat better than for the previous case, but it is still quite poor, especially at
the shorter ranges. Although not trapped in this case, Mode 3 does, nevertheless,
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influence the field quite strongly out to a range of at least 200, which corresponds
to 57 water depths.

Since most realistic ocean bottoms possess some attenuation, we consider
in Fig. 3-4 the same case as in Fig. 3-2 except that an attenuation of 0.5 dB/A has
been included in the bottom. The continued close agreement between the ACCU-
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Figure 3-4 As IN FiG. 3-2, EXCEPT THE BOTTOM HAS AN ATTENUATION ofF 0.5 dB/A.
THE IMPORTANCE OF MODE 3 DECREASES WITH RANGE DUE TO THE ATTENUATION.

RAY and SAFARI models indicates that attenuation has been properly included
in the ray model approach.* The important difference from the lossless case is that
the normal mode model’s results are somewhat more accurate, especially beyond
a range of 140X, or 39 water depths. The improvement is due to the fact that
mode 3, whose proximity to the critical angle causes the poor performance in the
lossless case, is now significantly attenuated with increasing range.

*The ACCURAY and SAFARI models both account for attenuation by way of complex sound
speeds or wave numbers.
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In Ref. 31 Mannseth shows comparisons of propagation loss in shallow
water between the formulation of ray theory with beam displacement given in
Ref. 10, the discrete normal mode solution, and the exact solution (obtained by
adding the branch line integral to the discrete modes). Similar conclusions are
made regarding the inadequacy of the discrete mode solution when a mode is
near cutoff. In addition, it is shown that the solution using rays with beam
displacement is also quite poor in the region of mode cutoff. For cases where no
modes are near cutoff the ray solution is better, but not as good as the discrete
mode solution. Thus, the method presented here for obtaining a ray solution is
an improvement over the formulation used in Refs. 9-11. The main difference is
that the present method accounts correctly for the transition from total to partial
reflection.

Our final comparison of models appears in Fig. 3-5, where the water
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Figure 3-5 COMPARISON OF THE RAY MODEL (ACCURAY) AND THE SAFARI MODEL FOR
A FLAT WAVEGUIDE OF DEPTH h = 0.5A. NO TRAPPED MODES ARE PRESENT.

depth has been reduced to A = 0.5 and the maximum range considered is 100,
or 200 water depths. The source and receiver depths are z, = 0.2\ and 2z, = 0.4,
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respectively. Since no trapped modes are present (h, = 0.72)), the discrete
normal mode model cannot be applied. Agreement between the ACCURAY and
SAFARI models is still very good. The field in this case decays much more rapidly
with range than in the other cases considered. The ray solution at the longest

range requires the inclusion of ray paths with up to 40 bottom reflections, resulting
in a total of more than 160 eigenrays. Despite the fact that each individual ray is
quite strong, the destructive interference between rays results in a weak field. The
reason that the ACCURAY solution is not smooth at long ranges is that small
errors in the individual ray fields cause imperfect interference between rays.

3-4 EIGENRAY STRUCTURE IN THE FLAT WAVEGUIDE

Figure 3-6 shows the saddle points and their corresponding steepest de-
scent paths in the complex 8-plane for receivers at ranges of 50\ and 200\ for the
environment modeled in Fig. 3-2. Each of the saddle points, indicated by the bold
dots, represents the conwribution of oue eigenray to the total field at the receiver.
The physical path that each eigenray takes in the waveguide is indicated in the
figure by the number of bottom bounces N,. The steepest descent paths drawn in
Fig. 3-6 are the actual ones that would be used to find the field from numerical
integration. The magnitude of the integrand of Eq. (3-3) is weaker by a factor
of 0.005 at the end points of the steepest descent paths than at the saddle points.

The two eigenrays at the largest angles, for which N, = 0, are the direct
and surface-reflected rays. Their fields are simply calculated according to the
spherical wave expression e*f1/R,. For N, > 0 there are four eigenrays with the
same number of bottom interactions, and as NN, increases the eigenrays become
steeper (their angles of incidence become smaller). For each totally reflected ray
with a given ray path, there is a lateral wave ray with the same path whose
saddle point lies next to the critical angle. As explained in Sec. 2-5, its steepest
descent path loops around the critical angle and serves to complete the contour
of integration for the integral representing that ray field.* The saddle points at
smaller angles, whose steepest descent paths cross the branch cut, correspond to
the partially reflected eigenrays. Although the transition from total to partial
reflection is, in reality, a gradual process, we use the criterion of steepest descent
paths crossing, or not crossing, the branch cut to distinguish between partially

and totally reflected rays.

The eigenray structure for the receiver at the short range of 50\ (14

*To avoid confusion, only one of the four lateral wave paths has been drawn in Fig. 3 -6(a),

and only three of the 28 lateral wave paths have been drawn in Fig. 3-6(b).
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water depths) in Fig. 3-6(a) indicates that relatively few eigenrays make up the
total field. Only those with Ny = 1 are totally reflected. Those with N, = 2 are
partially reflected, but their strengths are only 1-6 dB weaker than the totally
reflected rays. Additional reflections at subcritical angles introduce much more
loss: eigenrays with Ny = 2 and N, = 3 are approximately 24 dB and 46 dB
weaker, respectively, than the totally reflected rays. The lateral wave rays (with
Ny=1) are 20-23 dB weaker than the totally reflected rays. Neglect of these rays
would change the total propagation loss by about 0.8 dB.

For the receiver at the longer range of 200X (56 water depths) in
Fig. 3-6(b), eigenrays with up to ten bottom interactions are shown. Those with
Ny > 8 are partially reflected at the bottom. With no attenuation in the bottom,
the strengths of all the totally reflected eigenrays are essentially the same. The
total horizontal (beam) displacement at the bottom of these totally reflected rays
varies from 24 to 35X, The ray displacement per reflection decreases from 24\ for
Ny = 1to 5A for N, = 7. The lateral wave rays with Ny = 1 are 39 dB down from
the totally reflected rays, while those with Ny = 7 are 6-8 dI3 down. When an
attenuation of 0.5 dB/X is included in the bottom, as in Fig. 3-4, the lateral wave
rays at both ranges are severely attenuated. For r = 200\ the totally reflected
rays with N, = 7 suffer an additional attenuation of about 10 dB.

On both of the plots in Iig. 3-6 the angles associated with the trapped
normal modes (sce Sec. 35.2 of Ref. 5) are indicated by arrows. A comparison of
the two plots points out the basic difference between the ray and mode descriptions
of the field. At short ranges, few rays describe the field accurately, while several
discrete modes describe the field only approximately. The continuous spectrum
would be required to complete the mode description. At long ranges, many rays
but only a few modes are required to describe the field. The mode solution would
be accurate if either no mode were near cutoff or if the bottom had significant
attenuation. A good description of how the interference between rays forms a
mode may be found in Ref. 9.

3-5 RAY METHOD FOR THE SLOPING WAVEGUIDE

3-5.1 Derivation of the plane wave integrals

We now consider the sloping, or wedge, environment illustrated in
Fig. 3-7(a). Parameters requited to describe this waveguide are n = ¢/c,
m = p;/p, and the wedge angle «. The source-receiver geometry is given by
the vertical water depth at the source hy, the source and receiver depths z, and
z,, and the range r. The image sources, which lie on a circle centered at the apex
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Figure 3-7 GEOMETRY FOR THE SLOPING WAVEGUIDE. (a) SOURCE-RECEIVER GEOMETRY.
(b) SYSTEM OF IMAGE SOURCES, EACH OF WHICH REPRESENTS A DIFFERENT RAY PATH. THE
THIN DASHED LINES REPRESENT IMAGED SURFACES, AND THE THIN SOLID LINES REPRESFNT
IMAGED OCEAN BOTTOMS.
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of the wedge, are shown in Fig. 3-7(b). The lines connecting the image sources
to the receiver again represent the ray paths of classical ray theory. We consider
the case of upslope propagation here, but the downslope case poses ne additional
problems. Diffraction of the acoustic energy incident directly on the apex of the
wedge cannot be included in the present approach, but this effect is negligible in
typical ocean environments, where a is small and the bottom is penetrable.

The field associated with each image source (or, equivalently, ray path)
is constructed by appropriately modifying the plane wave integral for the flat
waveguide, Eq. (3-3). For a given image source in Fig. 3-7(b), the distance R,
and the angle of incidence at the first bottom reflection 6y can be computed from
simple geometry. The main difference from the flat waveguide is that plane waves
undergo successive bottom reflections at incident angles 2a steeper (smaller) than
the previous one, as illustrated by the ray path drawn in Fig. 3-7(b). For the
general ray path with N, surface reflections and Ny bottom reflections, we may
write the pressure field as

plbo. 1) = (D)™ G \/‘ /_:;"ZGXP{A.RI[iCOS((,_00)
LRIZIHV[B 2(j = 1a ]]}dt? : (3-9)

A discussion of the factor G, will be given below. Again, there mayv be more than
one saddle point (eigenray) when we solve Eq. (3-9).
The phase function of the integrand in Eq. (3-9) is

Ny
£(6) = icos(0 — 6) + }TIEZIn V(o - 2(j - 1)a] (3-10)
1j=1

and the saddle point criterion is now

) - 1 2V —2( - 1a
f(8) = —isin(6 — 6,) + AR]Z‘[[O_)“ 1)) ]]—o at § =+4. (3-11)
=1 =

Using the same method as in Sec. 2-7.1, the saddle point criterion can be inter-
preted geometrically as an eigenray equation. The result is that on the jth bottom
reflection from the source. j = 1,.V,, the eigenray undergoes a displacement par-
allel to the interface of

V')

S() = kcosq, V{(a,)

where 79, =5 -2() -~ a . (3-12)




59

Note that in going from Eq. (3-3) to Eq. (3-9), the v/sin@ factor has

been taken outside the integral and combined with the \/1/r factor to get G, a
geometric spreading factor that was discussed 1 Sec. 3-2 for the flat waveguide.
In Eq. (2-70), this factor was derived for the single reflection case and expressed

as
Gy = \/i/_I: 3 (3-13)

where L was related to the ray path segments between source and receiver. For
the sloping waveguide, L is more complicated due to the change in direction of
the ray. It takes the form

& Ay,)

o1 s

L= Z(ray path lengths in water) + (3-14)

The ray field in the bottom of the wedge can be derived from Eq. (3-8)
in a manner similar to the derivation of Eq. (3-9). The result is

e i .
plo, Bz) = ()% Gyyf5o et /_“_ cxp{kR,[zcos(O—Oo)

Ny

2. | , .
- %(cosﬁ—ncosﬂl) + m(j;fn Ve —2(7 — 1)a]
+ In W[0—2Nba]>]}d0 : (3-15)

where N, is the number of bottom reflections of the ray path (not including
the final transmission), W is the plane wave transmission coeflicient given in
Eq. (2-73), 2, is now the (positive) perpendicular distance from the bottom inter-
face to the receiver, and 8, is the plane wave angle in the bottom given by Snell’s
law, sin @, = sin 8/n. The geometric spreading factor (i, for this case again takes
the form given in Eq. (3--13), where the quantity [ is derived from Eq. (2-87) and
is given by

- A
L. = ) (ray path lengths in water) + Yy —=
;o1 osiny;

ray path length in bottom

(3-16)

n

where the final term in the summation over j is to be evaluated according to
5q. (2 81) for the ray displacement upon transmission.
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3-5.2 The mathematical basis for the multiplicity of lateral waves

An interesting aspect of propagation in a sloping environment is the mul-
tiplicity of lateral waves, caused by the change in bottom angle upon cach succes-
sive reflection. Figure 3-8(a) shows the three possible cigenrays for the ray path
with Ny = 2 and N, = |. Onec is totally reflected at both bottom reflections. and
the other two are lateral waves, each of which strikes the bottom near the eritical
angle on one of its two reflections. Note that the lateral wave at the first bottom:
reflection subsequently undergoes a partial reflection, whercas the lateral wave on
the second reflection has alrcady undergone a folal veflection. Clearly, the latter
is stronger under normal circumstances.

Mathematically, these lateral waves are acconnted for by keeping track of
the Riemann sheets on which V7 is calculated for the various bottom reflections. As
described in Sec. 2-4.2, the square root term Va2 —sin? 0 in V [sce K. (2 18)] may
be evaluated such that its imaginary part is cither positive (the upper Riemann
sheet) or negative (the lower Riemann sheet). The two sheets are connected along
branch cuts that begin at the branch points at £0... as shown in IMig. 2 3. Fvery
time an integration path crosses a branch cut in the complex 0-plane, one must
change Riemann sheets in order to preserve continuity of the function V(0).

In a sloping environment the reflection coeflicient V' is evaluated at differ-
ent angles for each bottom reflection. For the ray path with N, = 2, 1" is evaluated
at 0 on the first reflection, giving rise to branch points at +0... and at 0 — 2a
on the second reflection, giving rise to branch points at 0., + 2a. A choice of
Riemann sheet must be made for each of these two evaluations. Figure 3 8(b)
shows the saddle points and steepest descent paths in the complex ¢-plane for the
eigenrays traced in Fig. 3-8(a). In the figure, the axes representing the angle at
the second reflection are simply shifted to the right by an amount 2a compared
to the axes representing the angle at the first reflection. Thev have also been
artificially shifted upward shightly to allow one to distinguish the two overlapping
branch cuts.

The Riemann sheets on which various portions of the steepest descent
paths i Fig. 3 8§(b) lie are indicated by the plus and minus signs inside paren-
theses. For example. (4 ) means that evaluation of Vs on the upper Riemann
sheet for the first reflection, V(0). and on the lower Ricmann sheet for the second
reflection, V(0 = 2a). The contour of mtegration in Fq. (3 9) requires that the
path hegin and end on all positive sheets (4 4). Keeping in mind that a change
in the appropriate Ricmann sheet ocenrs whenever a path crosses a branch cut, it
can be seen that Ly adding the two fateral wave rays fo the totally reflected ray.,

the correet contour of integration is completed. Note tha b three saddle points
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lie on both positive sheets (+ +). In the general case, there may be as many as
N, lateral wave rays plus one totally reflected ray for a ray path with N, bottom
reflections.

The algorithm for evaluating the total field at a series of receivers along
a horizontal line in a wedge is similar to that for the flat waveguide outlined in
Sec. 3-2. In the present case, evaluation of the field for each ray path begins at
the receiver for which 6y = 0o + 2(Ny — 1)a. The ray at this angle has total
reflections at all interactions except the last, at which the interaction is near the
critical angle. We use the same procedure of finding the field at longer ranges
first, then shorter ranges. At each successive range, we check for the validity of
the saddle point approximation and for the weakness of the eigenray. Presence of
the lateral wave rays is detected by checking whether the steepest descent path
crosses the appropriate branch cut.

3-6 COMPARISON OF MODELS FOR THE SLOPING WAVE-
GUIDE

The application of the ray method to acoustic propagation in sloping
waveguides is the subject of Chapter 4, in which we compare the results predicted
by the ray model with those predicted by a two-way coupled inode model. Here,
we show just one of the model comparisons. The problems considered are the
benchmark problems proposed as a result of a special session for Underwater
Acoustics at the 112th Meeting of the Acoustical Society of America in Anaheim,
California, 8-12 December, 1986.3* The environment considered is a wedge of
angle o = 2.86°, with n = 0.882, m = 1.5, h, = 3.33), and z, = 1.67). We show
in Figure 3-9 a comparison for a case of upslope propagation, where z, = 0.5\ and
r = 0-67A. The agreement is almost perfect, even for receivers in the bottom at
ranges beyond 56.67 A. The close agreement is stong evidence that the theoretical
approach outlined here is valid and has been correctly implemented.

3-7 EIGENRAY STRUCTURE IN THE SLOPING WAVEGUIDE

Figure 3-10 illustrates the saddle point structure for a case of upslope
propagation in a wedge of angle a = 2°, with n = 0.866 (6., = 60°) and m = 1.67.
The geometric parameters are h, = 5), z, = 1A, and z, = 0.5A. Part (a) of the
figure shows the saddle points and their steepest descent paths in the complex
6-plane for the particular ray path with N, = 3 bottom reflections and N, = 2
surface reflections. The receiver range is varied from r = 30\ to r = 60\ in
increments of 2.5, as labeled. Recall that 8 is the plane wave angle at the first
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bottom reflection, so the critical angle lies at 8, = 60° for the first reflection,
at 0. + 2a = 64° for the second reflection, and at 85 + 4a = 68° for the third
reflection.

From Fig. 3-10(a) we can deduce that, as a function of range, the reflected
(non-lateral wave) eigenray has all (three) partial reflections for r < 404, two
partial reflections and one total reflection beginning at r = 42.5A, one partial
reflection and two total reflections beginning at r = 50, and all total reflections
for r > 57.5A. This implies that there are lateral waves at the first bottom
reflection for ranges r > 42.5), at the second bottom reflection for r > 50, and
at the third bottom reflection for r > 57.5A. Since the steepest descent paths of
the lateral wave rays tend to overlap, we have drawn only one for each of the three
bottom reflections.

Part (b) of Fig. 3-10 shows the saddle points at the particular range
r = 55A. Saddle points that correspond to eigenrays with zero to five bottom
interactions are indicated. As in Fig. 3-6 for the flat case, there are groups of
fcur saddle points for each value of N, representing the four multipath eigenrays.
As N, increases, the eigenray incident angles become smaller. An eigenray with
saddle point v undergoes its jth bottom reflection at angle v, = v—2(j —1)a, so it
is easy to determine the number of partial reflections a given eigenray suffers. For
example, all four eigenrays with N, = 2 experience no partial reflections, those
with N, = 3 experience one, and those with N, = 4 experience three. Again, only
one of the 16 lateral waves at # = 60° is shown, and only one of the eight lateral
waves at § = 64° is shown.

This phenomenon of eigenrays with larger numbers of bottom interactions

gradually” undergoing more partial reflections is in contrast to the flat waveguide
case, in which the transition from rays with all total reflections to all partial
reflections is sudden. An important consequence is that, in a wedge, eigenrays
with one or more partial reflections are significant, even at long ranges. In terms
of mode theory the partially reflected contributions correspond to modes that are
beyond cutoff and in the process of penetrating into the bottomn. In the example
of Fig. 3-10(b), the rays with one partial reflection (N, = 3) are just 2-4 dB
weaker than the totally reflected rays, whereas those with three partial reflections
(Ny = 4) are 12-16 dB weaker.

3-8 CONCLUSIONS

In this chapter we have applied the complex ray methods developed in
Chapter 2 to the flat and sloping waveguides cotumon in underwater acoustics
applications. For the flat waveguide (the Pekeris model) agreement between the
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ray model and the SAFARI model is nearly perfect. Whereas normal mode models
that calculate only the discrete spectrum are in error when a mode is near cutoff,
the ray model is valid at all ranges. The ray model is also valid when the water
depth is as low as half a wavelength.

In the case of a sloping waveguide we have derived the integral expression
for each ray field, and have shown the mathematical origin of the multiple lateral
waves. In contrast to the flat waveguide, rays in a wedge change angle upon
each reflection. Thus, a given ray that is totally reflected on its initial bottom
interactions remains significant even after one or two partial reflections. As a
result, successful modeling of a wedge environment, even at long ranges, requires
accurate calculation of the field in the transition region from total to partial
reflection. The validity of the ray method presented here has been demonstrated
in Sec. 3-6 by its close agreement with an independent model.

Although the environments considered in this chapter are simple ideal-
izations of the real ocean, the solutions presented here in terms of eigenrays are
valuable because they provide physical pictures of the propagation. In conitast,
models that numerically solve for the field usually provide little information about
the actual mechanisms of propagation. Computationally intensive models, such as
those based on finite element methods, the parabolic equation approximation, or
coupled mode theory, can be difficult to use with confidence because the accuracy
of their solutions may depend on the initial choice of mesh size, number of sample
points, number of integration points, or number of modes to consider. Thus, a
simple model like the ray model can be very useful in verifying the accuracy of
these more versatile and powerful models.




CHAPTER 4

RAY MODEL SOLUTIONS TO THE BENCHMARK WEDGE
PROBLEMS

4-1 INTRODUCTION

In this chapter we present in more detail the results of applying the ray
method developed in Chapters 2 and 3 to the benchmark wedge problems. These
results were first reported in Ref. 4. Benchmark problems were proposed at a
Special Session for Underwater Acoustics at the 112th Meeting of the Acoustical
Society of America in Anaheim, California, 8-12 December, 1986.%2 Their purpose
was to assess the validity and accuracy of propagation models currently in use.
In the case of the penetrable-bottom wedge, an analytical solution does not exist,
so only by comparing approximate solutions obtained from independent methods
is it possible to verify the correct solution. In Ref. 33 Jensen and Ferla compare
solutions from one-way and two-way coupled mode models and from two models
that solve the parabolic wave equation. These models are quite flexible in the
environmental geometries to which they can be applied, but they provide limited
physical insight into the problem. The ray approach not only constitutes an
independent method for solving the problem but, more importantly, provides the
user with a physical picture of the propagation paths and mechanisms.

One attractive feature of the ray model is that it provides detailed in-
formation about the various eigenrays (rays between source and receiver) that
contribute to the total field. The relative strengths of the eigenrays indicate
which paths and mechanisms of propagation are significant and which are not.
For example, from the eigenray arrival angles one can determine whether the phe-
nomenon of backscatter is important. In a wedge, backscattered eigenrays have
paths that travel up the slope, past the receiver, and then back down the slope
before striking the recciver. This propagation in the “backward” direction is rele-
vant because some models are intrinsically unable to include such a phenomenon.
In fact, in Ref. 33 the difference (of 2 dB or less) between the one-way and two-
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way versions of coupled mode theory is assumed to be due to backscatter. But in
Sec. 4-5 we will show that backscatter is definitely not a factor in the penetrable
wedge problems proposed.

Another practical aspect of wedge propagation addressed by the ray
model is the importance of the lateral wave field. The strengths of the vari-
ous lateral wave contributions to the field at a particular point can be evaluated
for lossy as well as lossless wedge bottoms. Besides the eigenray strengths, the
ray model also computes eigenray travel times, which indicate what the transient
response to a narrowband pulse would be. Since the lateral wave contributions
arrive earliest, their presence may be noticeable in the time domain even if their
amplitudes are much weaker than those of the waterborne eigenrays. When mea-
suring a transient signal in an oceanic wedge, comparisons of lateral wave arrivals
with ray model simulations might be used to determine the acoustic parameters
of the bottom.

The ray model differs from most numerical models in several key respects.
First, it is able to find the field in a pointwise manner; t.e., it is not based on
a marching algorithm that must find the field at all points between a particular
source and receiver. Thus, for applications where the field at only a handful of
points is desired, the ray approach is likely to be the most efficient. Second, the
ray model is more efficient at higher frequencies, and its memory requirements are
independent of frequency. Most numerical models require more computation time
at higher frequencies and are limited at high frequencies by the storage capacity
of the particular computer on which they are implemented. Further details on
efficiency considerations will be given in Sec. 4-4.

4-2 THE BENCHMARK WEDGE PROBLEMS

Three wedge problems were proposed as benchmarks. The first, which we
will not discuss, is the “ideal” wedge, which has a pressure-release bottom as well
as surface. The second two problems represent more realistic models for coastal
and continental shelf regions of the ocean, where the bottom is usually sandy. In
the second benchmark problem the bottom is penetrable but with no zttenuation,
while in the third problem the bottom possesses an attenuation of 0.5 dB/A.
The wedge geometry is shown in Fig. 4-1. The wedge angle is a = 2.86°; the
frequency is 25 Hz; the sound speeds in the water and bottom are ¢=1500 m/s
and ¢,=1700 m/s, respectively, such that n = 0.88235 and 0., = 61.93°; and the
density ratio is m = p;/p = 1.5. A point source is located 100 m below the
surface at a range where the total water depth is 200 m. Propagation loss is to be
calculated in the upslope direction along horizontal lines 30 m and 150 m below
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Figure 4-1 GEOMETRY FOR THE BENCHMARK WEDGE PROBLEMS PROPOSED BY THE ACOUS-
TICAL SOCIETY OF AMERICA.

the water surface. The horizontal range r extends from zero at the source to 4 km
directly below the apex of the wedge. At the depth of 30 m, receivers are in the
water for r < 3.4 km and in the bottom for r > 3.4 km. At the depth of 150 i,
receivers enter the bottom at a range r=1.0 km.

When the dimensions of the wedge are expressed in terms of the wave-
length A=60 m, one sees that this is indeed a low-frequency environment. The
total water depth decreases from just 3-1/3 A at the source to zero at the apex,
and the total horizontal range from source to apex is 66-2/3 A. If normal modes
are calculated at each range as though the water depth were constant (modes for
the Pekeris model), then at the source there would be just three trapped modes.
Mode 3 would be cut off at a range of r=0.81 km, mode 2 would be cut off at
r=2.09 km, and mode 1 would be cut off at r=3.36 km.

4-3 COMPARISONS BETWEEN MODELS

At the time the benchmark problems were proposed (December 1986) the
following propagation models that could be applied to range-dependent environ-
ments were available:®® (1) adiabatic normal mode models, (2) coupled normal
mode models [one-way and two-way versions|, (3) models based on the parabolic
equation (PE) approximation [narrow or wide-angle formulations and split-step
or finite-difference implementations|, (4) finite-difference solutions to the full wave
equation, and (5) finite-element solutions to the full wave equation. Solutions pro-
vided by the adiabatic mode models are not expected to be accurate due to the
simplifying assumptions on which the models are based. The PE models should
be reasonably accurate, but their intrinsic limitation on the angular spectrum may
introduce error in a sloping environment. The finite-difference and finite-element
methods should, theoretically, provide exact solutions, but according to Ref. 33
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the existing programs were too computer intensive to apply to these problems.
The most accurate solution available is from a two-way coupled mode model,
originally developed by R. B. Evans,33> and run for the benchmark problems by
Jensen and Ferla.®® There is also a one-way version of the coupled mode model
which is more efficient but which ignores propagation in the backward direction.
In this section we compare solutions from the ray model to solutions from
the two-way coupled mode model. The latter set of solutions was kindly provided
to the author by Dr. Finn B. Jensen of the SACLANT Undersea Research Center,
La Spezia, Italy, in March 1988. Comparisons between the ray model and the two-
way coupled mode model for the two receiver depths appear in Fig. 4-2 for the
lossless case (Benchmark 2) and in Fig. 4-3 for the lossy case (Benchmark 3).
The propagation loss in Figs. 4-2 and 4-3 is referenced to a field of 0 dB at 1 m
from a point source in free space. The overall agreement between the two solutions
is excellent. In all of the figures, the difference is less than 1 dB. The agreement
1s especially good at receivers in the water, where the two methods differ by the
line thickness or less. The maximum difference of 1 dB occurs deep in the bottom
for the lossy case [Fig. 4-3(b)]. Since the methods used by these two models are
completely different, their close agreement strongly indicates that each is correct.
To calculate the field at the 400 points in each of the figures, the ray model
requires from 8 to 10 minutes on a Cyber 180-830 computer. Jensen and Ferla®
report that the two-way coupled mode model (run on the FPS-164 array processor)
requires 24 hours for the Benchmark 2 cases and 8 hours for the Benchmark 3 cases.

4-4 ACCURACY AND EFFICIENCY CONSIDERATIONS

The accuracy of the ray model is governed by two separate factors: first,
the validity of the approximations that were introduced into the theoretical for-
mulation of the problem; and second, the accuracy with which the computer
algorithm calculates the ray fields given by the approximate integrals.

As discussed in Sec. 2-7.2, two approximations were introduced into the
derivation of the plane wave integral Eq. (3-9) for the ray field in a wedge: (1) the
substitution of the asymptotic form of the Hankel function and (2) the evaluation
of the Vsinf term at the saddle point 4 and its subsequent removal from inside
the integral over 8. The ultimate result of these approximations was to separate
the ray spreading terms Gy and G in the two orthogonal directions. Since prop-
agation straight upslope (or downslope) does not introduce any coupling between
the ray tube spreadings in these two directions, there should be very little error
in this formulation.

As mentioned in Sec. 3- 5, we do not account for the field diffracted from




71
_40 ! 1 L 1 L 1 1
T WATER BOTTOM [
- — — &
g 50
P 8
3
O 601 -
-
= !
q -707
Q.
e ————— ACCURAY -
a (a)
.4  =mae- TWO-WAY COUPLED MODE -
=90 T T T T T T
0 2 3 4
RANGE - km
_40__ | 1 1 1 1
1 —— ACCURAY -
(b)
27T HIN /N - TWO-WAY COUPLED MODE -
©
T -
a
q 607 R
z WATER BOTTOM i
o} -—
% 70- I
Q -70
a
o |
c
O.
80 L
-90 T T T T - T
0 2 3 a4
RANGE - km

Figure 4 2 COMPARISON BETWEEN THE RAY MODEL AND THE TWO-WAY COUPLED MODE
MODEL FOR BENCHMARK 20 (a) 30-m RECEIVER DEPTH. (b) 150-m RECEIVER DEPTH

AS-89-241




72

PROPAGATION LOSS - dB

PROPAGATION LOSS - dB

_‘O_LUA 1 1 1 1 1 1 1
_ WATER BOTTOM |
-5 - —— —g
—60
—*
-70
——— ACCURAY
i (@) \
-4  m=ees TWO-WAY COUPLED MODE
_{
-90 T T T T T T T
0 1 2 3
RANGE - km
JO“M i L 1 i i 1 1
] ‘ —— ACCURAY
(b)
-4 W\ [\ 7= - TWO-WAY COUPLED MODE
-60
~70 WATER BOTTOM
-SOT
-90 T T T T — T T
0 1 2 3
RANGE - km

Figure 4 3 COMPARISON BETWEEN THE RAY MODEL AND THE TWO-WAY COUPLED MODE
MODEL FOR BENCHMARK 3: (a) 30-m RECEIVER DEPTH, (b) 150-m RECEIVER DEPTH.

AS-89-242




73

the apex of the wedge. This field is produced by energy that travels directly from
the point source to the apex and is diffracted from the discontinuity in geometry
and boundary conditions there. The existence of the diffracted field is more easily
seen when considering wedges with angles greater than 180°, where the diffracted
field can be a significant part of the total field. In ocean environments, however,
the diffracted field should be insignificant because the wedge angles of interest are
typically small and the bottom is penetrable. The diffracted field should not be
confused with the backscattered field that consists of rays that travel up the slope,
“turn around,” and travel back down the slope.

The accuracy with which the computer algorithm calculates the total
field can be controlled by the user of the ray model. For each receiver the pressure
amplitude of the direct path eigenray is used as a reference, and any eigenrays
suff.ciently weaker than this reference are discarded. The cutoff amplitude is taken
to be a certain number of dB (specified by the user) below the reference. For the
plots in Figs. 4-2 and 4-3, this “cutoff margin” was set to a very conservative
50 dB, which corresponds to ignoring any eigenray whose pressure amplitude is
less than 0.3% of the reference. Including such an eigenray would change the
propagation loss by just 0.027 dB. In practical cases, where one may choose to
ignore eigenrays that are weaker than 5% of tiie reference amplitude, a cutoff
margin of 26 dB would be specified. Including such an eigenray would change the
propagation loss by 0.42 dB. With a less stringent cutoff margin, fewer cigenrays
need to be found, and the computation time decreases accordingly.

The time required to find the field at a single receiver depends on the
number of significant eigenrays, which in turn depends on the receiver location.
At short ranges in the wedge, there are fewer significant eigenrays. Those with
a sufficiently large number of bottom interactions are weak because they strike
the bottom at steep (small) angles where only partial reflection occurs. At longer
ranges these eigenrays are significant because their bottom interactions are at
shallower (larger) angles where total reflection occurs with little or no loss. For
example, the field at a range of 0.5 km in Fig. 4-2(a) requires 5 seconds computa-
tion time and is composed of contributions from just 14 rays, having up to three
bottom interactions. Only seven of these rays are within 26 dB of the strength of
the direct ray. In contrasy the field at a range of 3 ki requires almost 60 seconds
computation time and is composed of contributions from 71 rays (having up to
seven bottom reflections), of which 22 (having up to five bottom reflections) are
within 26 dB of the reference strength,

Another factor that influences the computation time is the frequency. At
higher frequencies the ray algorithm is more efficient because the saddle point
approximation to the integral (rather than the numerical integration along the
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path of steepest descent) can be used more often to evaluate the strengths of the
eigenrays. In this respect the ray model is unique since models based on normal
mode theory, the PE approximation, or the finite element method can become
computationally unfeasible at sufficiently high frequencies.

Finding the field at multiple receivers along a horizontal line is more
efficient than finding the field at each receiver separately. One reason is that an
eigenray found for one receiver can serve as an initial guess for the corresponding
eigenray at a nearby receiver. A second reason is that in order to use the more
efficient saddle point approximation to the integral for the eigenray strength, one
must first verify its accuracy by comparing it with the result from numerical
integration. With just one receiver the numerical integration method must be
used all the time. A final reason is that eigenrays weaker than the cutoff level
need to be found and evaluated before they can be recognized as being too weak.
For example, in the field calculation at the single range of 3 km, 91 eigenrays were
actually found, even though only 71 were within 50 dB of the reference strength.
For a multiple-receiver computation, the algorithm recognizes that the 20 rays
that are too weak do not need to be found at the other receivers.

Increased efficiency is also realized by interpolating eigenrays in range.
The field due to a single type of eigenray, specified by its number of surface
and bottom reflections, is quite smooth. (It is only when the fields dve 10 rays
of different types are added together that the complicated interference patterns
evident in Figs. 4-2 and 4-3 emerge.) Consequently, it is possible to find eigenrays
exactly at fairly large range intervals and then fill in the intermediate points
by interpolating eigenray characteristics such as travel time and geometric loss.
Interpolation of eigenrays as a function of frequency can also be used to greatly
reduce the computation cost of simulating the propagation of broadband pulses.

Eigenray interpolation resulted in a significant improvement in efficiency
when Figs. 4-2 and 4-3 were produced. Eigenrays were found exactly at range
intervals of 120 m, but interpolation was used to narrow the interval to 10 m.
Thus, the “exact™ field was computed at only 1/12 the number of total points.
We estimate that the total number of eigenrays required to calculate the field at
the 400 points 1n Fig. 4 2(a) is on the order of 20,000. Using the interpolation
scheme, only 1700 of these need to be found and evaluated.

4-5 ANALYSIS OF THE FIELD IN THE WEDGE

An attractive feature of the ray model is that it provides physical insight
into how acoustic energy travels from souree to receiver. For each receiver position

im the wedge, the rav model compiles a list of eigenravs that contribute to the
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total field. Mathematically, each eigenray corresponds to a saddle point in the
complex 8-plane. Geometric interpretation of the quantities associated with the
saddle point yield eigenray characteristics such as departure and arrival angles,
geometric spreading loss, reflection and transmission loss, and ray travel time (sce
Sections 2-7 and 3-5). In this section several issues of acoustic propagation in a
wedge will be addressed by analyzing the field in terms of eigenrays.

4-5.1 Characteristics of eigenrays in the wedge

As an example of the eigenray information available, the eigenrays for the
receiver at arange of 3 km in Fig. 4-2(a) are given in Tables 4-1 and 4 -2. Table 1 1
lists the reflected rays while Table 4- 2 lists the lateral wave rays. For brevity, only
tnose rays with six or fewer bottom reflections are included in Table 4-1. Rays
with more reflections are at least 26 dBB weaker than the direct ray. In Table 4 2,
only lateral waves with four or fewer bottom reflections are included.

One interesting observation from Table 4-1 is that rays with one partial
reflection are still quite strong (ravs 15-18 are within 3-8 dB of the direct ray).
This indicates that part:ally reflected energy, corresponding to untrapped or “vir-
tual” modes, cannot be ignored in wedge environments. We also see that cach
additional partial reflection results in a loss of 10-11 dB. Another observation is
that the eigenray arrivals are quite close together in the time domain. Rays with
up to six bottom reflections arrive within four periods of the direct arrival. This
is an indication that the field due to the interference between many ray arrivals
can be described in terms ~f just several normal modes.

From Table 4-2 we see that there are a very large number of lateral wave
ray arrivals, but that very few of them are significant compared to the direct ray.
The reason for the large number is that a lateral wave is excited whenever energy
is incident on the interface at angles close to the critical angle (6, = 62° in this
case). The transmitted energy travels in the bottom parallel to the interface and
continuously reradiates energy back into the water at an angle near 0,. In a
wedge, a great number of lateral waves are excited by energy that has undergone
different numbers of surface and bottom reflections (see, for example, Fig. 1 of
Ref. 21). There may be as many as N), different lateral wave eigenrays having N,
bottom interactions. From Table 4 2 we see that the strongest lateral wave ray
(ray 22) is about 14 di3 weaker than the direct ray. It arrives very close in time
to the reflected ray with the same path (ray 14 in Table 4 ). The reflected ray
15 the last one that does not undergo any partial reflections. The ecarliest lateral
wave ray {ray 1) arnves alimost five periods before the direct arrival. Although it

1x 35 dB weaker, its temporal separation from the stronger arrivals can make it
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Table 4~1 LIST OF THE REFLECTED EIGENRAYS AND THEIR CHARACTERISTICS FOR THE RE-
CEIVER AT A RANGE OF 3 KM IN FI1G. 4-2(a). INITIAL DIRECTION, d;, SPECIFIES WHETHER
THE RAY LEAVES THE SOURCE IN AN UPWARD (U) OR DOWNWARD (D) DIRECTION. ALSO
GIVEN ARE THE NUMBER OF SURFACE AND BOTTOM REFLECTIONS, N, AND Nj; THE NUMBER
OF BOTTOM INTERACTIONS AT WHICH PARTIAL REFLECTION OCCURS, .N,; THF AMPLITUDE
OF THE RAY A IN dB; THE ANGLES OF INCIDENCE AT THE FIRST AND LAST BOTTOUM INTER-
ACTIONS, @y AND 6;; THE LOSSES DUE TO GEOMETRIC SPREADING, A,, AND REFLECTION,
A,; AND THE TRAVEL TIME 7, EXPRESSED IN NUMBER OF PERIODS OF THE 25 Hz WAVE AND
REFERENCED TO THE ARRIVAL OF THE DIRECT EIGENRAY.

8, 6 A A, A, 1
- 695 695 0.0 0.00
- - 696 -696 0.0 0.03
86.6 86.6 —69.6 -69.6 00 0.0l
82.8 828 -69.6 -69.6 0.0 0.09
854 85.4 -69.6 -69.6 0.0 0.1
81.7 817 -69.7 -69.7 0.0 026
§3.7 78.0 -69.7 -69.7 0.0 0.20
80.0 743 -69.8 -698 0.0 0.39
326 769 -69.8 -69.8 0.0 0.43
73.3 -69.8 -69.8 0.0 0.68
81.0 69.6 -69.8 -69.8 0.0 0.59
772 658 -69.6 -69.6 0.0 0.88
80.0 68.6 -69.8 -69.8 0.0 0.95
76.1 64.7 -696 -69.6 0.0 1.29
785 61.3 -729 -67.0 -59 1.20
75.3 58.1 -750 -66.9 -8.1 161
778 607 -736 -67.1 6.5 1.69
743 570 -77.3 -67.8 -96 2.14
773 544 813 -662 -151 205
739 510 -863 -66.8 -19.5 2.54

I = et et = et e e e s e ;
SO0 N W — O W© 00 ~1 D U —|E
«1c:cucvc:ovcn.acn.:-Au-awwmwmw'—w»—-'—o'—o‘?

S e i I I R R e = | =
;-:.:-:-uwmmm»—-»—-»—»—cooooooooocooo\?
-
©
b

21 7.5 53.6 -82.1 -66.4 -15.7 2.63
22 U 733 504 -87.* -66.8 -20.6 3.19
23 D 76.0 474 -91.7 -659 -25.8 3.0v
24 U 2.9 443 977 666 -31.2 3.65
25 D 2 466 937 669 268 3.74
26 U 244338 988 668 320 4.3%
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Table 4-2 LIST OF THE LATERAL WAVE EIGENRAYS AND THEIR CHARACTERISTICS FOR THE
RECEIVER AT A RANGE OF 3 KM IN F1G. 4-2(a). SEE TABLE 4-1 FOR AN EXPLANATION OF
THE EIGENRAY CHARACTERISTICS.

61.9 448 -123.0 98.7 243 0.27

ray d.' N, N(, Np 0j 01 A Ay A, T
1 D 0o 1 0 619 619 -104.0 -104.0 0.0 -4.96
2 U 1 1 0 619 619 -102.0 -102.0 0.0 -3.54
3 D1 1 0 619 619 -103.5 -103.5 0.0 -4.44
4 U 2 1 0 619 619 -1014 -101.4 0.0 -3.02
5 D 1 2 0 677 619 -989 -989 0.0 -2.27
6 D 1 2 1 619 56.2 -1096 -103.2 -6.4 -4.07
T U 2 2 0 677 619 -959 -959 0.0 -1.16
8 U 2 2 1 619 56.2 -1075 -101.1 -6.4 -2.65
9 D 2 2 0 677 619 -982 -98.2 0.0 -1.76

100 D 2 2 1 619 56.2 -109.1 -102.7 -6.4 -3.47
11 U 3 2 0 67.7 619 -949 -94.9 00 -.64
12 U 3 2 1 619 56.2 -1069 -100.5 -6.4 -2.05
13D 2 3 0 734 620 -90.7 -90.7 0.0 -20
14 D 2 3 1 677 562 -1042 -978 -64 -1.38
15 D 2 3 2 619 505 -117.2 -1023 -14.8 -3.05
16 U 3 3 0 735 621 -852 -85.2 0.0 0.60
17 U 3 3 1 677 5.2 -1009 -945 -64 -.27
18 U 3 3 2 619 505 -1150 -100.2 -14.8 -1.63
199 D 3 3 0 734 620 -894 -894 0.0 031
20D 3 3 1 677 562 -103.5 -970 -6.4 -.79
20 D 3 3 2 619 505 1167 -101.9 -14.8 -2.37
22 U 4 3 0 736 622 835 -835 00 1.12
23 U 4 3 1 67.7 562 -999 -935 -64 0.33
24 U 4 3 2 619 505 -1144 -996 -14.8 -95
25 D 3 4 1 734 563 -953 -89.0 -6.3 0.69
26 D 3 4 2 677 505 -1114 -96.6 -148 -.36
27 D 3 4 3 619 448 -1259 -101.6 -24.3 -1.90
28 U 4 4 1 736 5.5 -89.5 -838 -57 150
29 U 4 4 2 67.7 50.5 -107.8 -93.0 -148 0.75
30 U 4 4 3 619 448 -1236 -99.2  -243 - .48
31 D 4 4 1 735 563 -94.0 87.7 -6.3 1.29
32 D 4 4 2 677 505 -110.7 959 148 032
33 D 4 ¢4 3 619 448 -1255 -101.1 243 -1.15
34 U 5 4 2 67.7 50.5 -106.9 921 -148 1.43
u 5 4 3
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detectable when the source is a transient pulse.

Althouth the lateral wave eigenrays are weaker in the presence of bottomn
attenuation, it is still necessary to include them to obtain an accurate solution.
Along the interface, lateral wave rays travel at the speed of sound in the bottom
and are attenuated according to the attenuation in the bottom. The eigenray list
for Benchmark 3 shows that ray 1 from Table 4-2 suffers an additional 23 dB loss
due to the attenuation of 0.5 dB per wavelength A in the bottom. This translates
to a path length along the interface of 46\ or 2.76 km, which is reasonable for
a receiver at a total range of 3 km. The strongest lateral wave ray in Table 4- 2
(ray 22) is reduced by 6 dB as a result of attenuation, which makes it 20 dB
weaker than the direct ray. Ignoring such a ray would have a noticeable effect on
the total propagation loss.

4-5.2 Eigenrays in the bottom

The eigenrays that make up the total field at a receiver in the bottom
are listed in Table 4-3. The receiver is at a range of 3.45 km and a depth of 30 m;
it lies about 2.5 m, or 0.042A, below the interface. Only eigenrays with 7 or fewer
bottom reflections are included in the table. The number N, does include the final
bottom interaction at which transmission (or evanescent leakage) takes place. The
four types of rays (see Sec. 2-8.2) listed in Table 4-3 are: “TR” for transmitted,
“LW?” for lateral wave, and “EV” for evanescent. The two rays labeled "EV,”
represent additional evanescent ray saddle points and are described in Sec. 2-8.2.

Some general characteristics of the eigenrays in Table 4-3 will now be
described. In upslope propagation the evanescent rays have total reflections at
all of their bottom interactions. At a fixed receiver, the strongest evanescent
eigenray (ray 20) is the one with the most reflections and the stecpest angle.
Compared to the transmitted rays with the same ray path, the evanescent rays
arrive later due to the fact that more of their paths are in the slower medium.
This is most apparent for the rays that travel direct from the source into the
bottom: evanescent ray 2 arrives 6 periods later than transmitted ray 1. For the
present case, where the receiver is very close to the interface, the evanescent rays
are stronger than the corresponding transmitted rays. For reccivers deeper than
several wavelengths, the evanescent rays are typically negligible.

The lateral wave rays listed in Table 4-3 arise from encrgy that undergoes
a lateral wave reflection and then a subsequent transmission into the bottom. For
example, rays 9 and 12 are reflected as lateral waves at the critical angle 0., = 61.9°
on their first bottom interaction and are transmitted into the bottom on their
second bottom interaction at angle 0., — 2ac = 56.2°. Rays 15 and 18 have total
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Table 4-3 LIST OF EIGENRAYS AND THEIR CHARACTERISTICS FOR THE RECEIVER IN THE
BOTTOM AT A RANGE OF 3.45 KM IN Fi1G. 4-2(a). SEE TABLE 4-1 FOR AN EXPLANATION
OF THE EIGENRAY CHARACTERISTICS.

ray type di N, Ny N, 0, 9, A A, A, T
1 TR D 0 1 1 619 61.9 -1056 -111.6 6.0 .00
2 EV D 0 1 0 866 8.6 -839 775 -64 6.01
3 EV, D o0 1 0 91.2 91.2 917  -82.0 -12.7 597
4 TR U 1 1 I 619 61.9 -1041 -110.] 6.0 1.42
5 EV U 1 1 0 842 842 -76.8 -T3.6 3.1 6.04
6 EV, U 1 1 0 904 904 -102.3 -36.1 -16.2 5.80
7 TR D 1 2 1 676 619 -101.7 -107.7 6.0 2.69
8 EV D 1 2 0 859 80.2 -71.8 73.0 1.2 6.07
9 LW D 1 2 1 619 56.2 -102.9 -106.3 34 A9

10 TR U 2 2 1 676 61.9 994 -105.5 6.0 350
11 EV U 2 2 0 827 T71.0 -69.7 -T25 28 6.15
12 LW U 2 2 1 619 56.2 -101.2 -101.6 3.4 191
13 TR D 2 3 1 734 619 -957 -101.7 6.0 1.795
14 EV D 2 3 0 842 728 -680 -725 1.6 6.22
15 LW D 2 3 I 677 562 -986 -101.9 34 317
16 TR U 3 3 1 734 619 -919 -979 6.0 5.55
17 EV U 3 3 0 810 696 -669 -72.2 5.3 6.36
18 LW U 3 3 1 677 56.2 -96.0 -994 . 34 1.29
19 TR D 3 4 I 791 620 -852 -91.2 59 G.18
20 EV D 3 4 0 825 654 -658 -72.1 6.3 6.17
2 LW D 3 4 1 734 56.2 -920 -954 34 524
22 TR U 4 4 1 790 61.8 663 -70.1 39 6.64
23 LW U 4 4 1 734 56.3 -87.7 -91.2 34 6.04
24 TR D 4 5 1 81.0 581 -67.0 -69.6 26 6.82
2 LW O 4 5 1 794 56.5 -80.7 -84.3 3.7 6.69
26 TR U 35 5 2 783 554  -TI.O -638.] 2.8 710
210 LW U 5 H 2 734 505 -91.0 ~90.4 3.5 659
288 TR D 5 6 2 3801 515 -753  -6R.2 7.1 T3l
29 LW D 5 6 3 734 4138 1063 -91.0 123 6.12
30 TR U 6 6 3 T7T.7 491 9.1 -67.5 116 7.01
31 LW U 6 6 3734 448 101.8 89.7 12,2 7.22
32 TR D 6 T 3796 453 ST 67.0 178 790
33 LW D 6 7 4 734 39.1 1151 931 20,9 7.1
34 TR U 7 T 1772 429 IRy 672 217 820
3 LW U 7 7 t 734 39.1 1108 9.0 208 Tl
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reflections at 0, + 2a = 67.7° on their first interaction and then follow the type of
path just described. Rays 21 and 23 undergo two total reflections, followed by the
lateral wave reflection and subsequent transmission, while ray 25 undergoes three
total reflections before the lateral wave reflection and subsequent transmission. As
a last example, ray 27 undergoes two total reflections, a lateral wave reflection, a
partial reflection, and then a transmission into the bottom. Most of the lateral
wave rays are weak, but the strongest one from Table 4-3 (ray 25) has a strength
of —80.7 dB, which is just 15 dB weaker than the strongest ray on the list (ray 20).
The multiplicity of lateral waves is an indication of the complexity of the field in
the bottom.

The strongest transmitted (TR) rays listed in Table 4-3 are those having
four and five bottom interactions. Ray 22 is within 0.5 dB of being the strongest
ray at the receiver. Transmitted rays with few bottom interactions (rays 1 and 7,
for example) strike the bottom on their last interaction at angles near 8, pen-
etrate at very shallow angles, and suffer much loss due to geometric spreading
(Ag). Those with many bottom interactions (rays 30 and 34, for example) suffer
much loss due to multiple partial reflections (A,).

4-5.3 Backscatter

An important issue in the penetrable wedge problem is the phenomenon
of backscatter. Backscattered energy corresponds to rays that leave the source
traveling upslope and eventually strike the receiver traveling downslope. The
change in direction occurs as the result of multiple reflections off the sloping
bottom. A backscattered eigenray is easily recognized as one that has a negative
incident angle at its last bottom reflection (6, in Tables 4-1 and 4-2). A brief
analysis of the eigenrays at various ranges indicates that backscatter is totally
insignificant for the penetrable wedge problems. For the receiver at a range of
3 km in Fig. 4-2(a), the steepest eigenray within 50 dB of the reference strength
arrives at an incident angle of 33°. From Table 4-1 we see that the steepest
eigenray within 29 dB arrives at 43.8° (ray 26). It is only at very short ranges
(less than 0.1 km) that eigenrays traveling vertically are significant.

Using the image method it is easy to find the approximate path of the
eigenray that would arrive at the receiver traveling vertically. In Fig. 4-4 we see
that the image sources in a wedge lie on a circle centered at the apex. The ray
arriving vertically at the receiver is imaged backwards to the closest image source
on the circle. From geometry this image source lies approximately at the angle 3
given by

B = arccos(RA/SA) . (4-1)
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Figure 4-4 IMAGE METHOD REPRESENTATION OF A BACKSCATTERED RAY. THE ANGLE ,J

IS USED TO FIND THE APPROXIMATE NUMBER OF BOTTOM REFLECTIONS Ny THE BACKSCAT-
TERED RAY UNDERGOES.
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The approximate number of bottom reflections experienced by the first backscat-
tered ray is then N, = 3/2a. For the receiver at 3 km, § = 75° and N, = 13
bottom reflections. Since the final reflection is at an incident angle close to 0°
and the critical angle is at 62°, the last ten reflections are at angles steeper than
critical (62° + 2a = 10). With about 11 dB loss at each partial reflection, it is
clear that the backscattered eigenrays are negligible for the present case.
Although backscatter is not a factor for the typical water-sand coastal
wedge specified in the benchmark problem, the previous analysis indicates the
conditions under which backscatter may be a factor. First, in a wedge of larger
angle a, fewer reflections are required to make a ray “turn around.” Second,
a wedge with a higher velocity bottom has a smaller critical angle of incidence,
resulting in fewcr partial reflections at the bottom interface. And finally, backscat-
tered rays experience less loss when the wedge bottom has less attenuation.

4-6 CONCLUSIONS

The excellent agreement between the ray model and the two-way coupled
mode model is strong evidence that both are capable of predicting the acoustic
field in a realistic penetrable wedge with an error that is typically much less than
1 dB. The ray model is unique in that it expresses the total field at a point as a sum
of ray fields. From a list of eigenrays and their characteristics, the user can gain
much insight into the relative importance of the various paths and mechanisms of
propagation. Unlike most other models, the ray model is more efficient at higher
frequencies and is able to find the field at a single point without the need to march
through the entire region between the source and receiver.

For the realistic wedge problems that were propesed as benchmarks, an
eigenray analysis demonstrates conclusively that backscatter is not a significant
mechanism of propagation. This raises a basic question regarding the one-way and
two-way versions of coupled mode theory. The intuitive assumption has been that
the one-way version neglects energy propagating in the “backward” direction, so
that the difference between the two versions is due to the phenomenon of back-
scatter. However, in the benchmark wedge problems the absence of backscatter
calls into question the reason for the difference of up to 2 dB between the one-way
and two-way solutions observed in Figs. 5 and 9 of Ref. 33.

The two-way coupled mode model has already been shown to be in good
agreement with the anaytical solution for the idcal wedge (one having perfectly
reflecting boundaries).’® However, propagation in a penetrable wedge is quite dif-
ferent in that the reflection process at the bottom is very complex. For example,
the entirely new mechanism of lateral wave propagation is introduced, and there
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exists a complicated field in the bettom of the wedge that is generated not only
by transmission but also by evanescent leakage of totally reflected energy. With
such a profound difference between the two problems, it is not clear that the va-
lidity of a model for one necessarily guarantees its validity for the other. Thus,
the corroboration of the two-way coupled mode model by the ray model for the
penetrable wedge is an important result.




CHAPTER 5

THE THREE-DIMENSIONAL WEDGE PROBLEM

5-1 INTRODUCTION

The three-dimensional wedge problem is the same as that considered in
Sec. 3-5 and Chapter 4 except that the receiver is not required to lie straight
upslope or downslope from the sorce. Detailed theoretical work on this type
of geometry has dealt mainly with the special case of perfectly reflecting surface
and bottom boundary conditions, a case we shall call the “ideal wedge.” In the
works of Bradley® and Bradley and Hudimac,® the authors provide a general
review of the literature on the ideal wedge, going back to Sommerfeld’s classic
work.®® They go on to present both the ray and mode formulations of the problem
as applied to underwater acoustics and to provide approximate mode solutions
for various source-receiver configurations. Buckingham*® derives a similar normal
mode formulation but obtains solutions with a more extensive range of validity.

In Ref. 41, Weston studies the phenomenon of horizontal refraction in a
wedge, where ray paths, as viewed from above, are bent due to repeated reflections
at the wedge surface and bottom. He derives some geometrical characteristics of
ray paths in a wedge and qualitatively analyzes the effects of a more realistic
bottom possessing attenuation. Harrison*? analyzes shadow zones in three dimen-
sional environments by restricting ray elevation angles to the discrete values that
correspond to the angles associated with the norinal modes at the source. In the
work of Doolittle, et al.,*» experimental evidence of horizontal refraction is given.
Ray theory and Buckingham’s normal mode technique are used to analyze the
data theoretically. Although the existence of a three-dimensional model based on
the parabolic equation approximation®® was noted, the model was not available
for use.

In this chapter we apply the ray methods developed earlier to find the
ficld in the three-dimensional wedge. We find that the dependence of a ray’s
incident angle at the bottom on both angular variables 8 and ¢ prevents the

84
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integral over ¢ from being performed analytically. An approximate method of
solution is proposed.

5-2 DERIVATION OF THE PLANE WAVE INTEGRAL

The geometry for the three-dimensional wedge problem is illustrated in
Fig. 5-1(a). The z = 0 plane contains the ocean-air interface, the y-axis is the
shoreline or wedge apex, and the ocean bottom makes an angle a with the sur-
face. The source lies in the y = 0 plane at (z,,0,2,), and the receiver lies at
(2+,9r,2,). The system of imaged sources is illustrated in Fig. 5-1(b). As in
the two-dimensional problem of Sec. 3-5, the images lie on a circle centered on
the wedge apex, and each line, of length R,, connecting an image source to the
receiver represents a ray path of classical ray theory. The direction of the line is
specified by the angles 8§y and ¢o, obtained by translating the line to the origin
and defining the usual polar angles 8 and ¢ as in Fig. 5-1(a). For an image source
at coordinates (z,,0, 2,/), the three quantities associated with the ray path are
computed from simple geometry:

R = @ —za) + 32 + (2 — 20)? (5-1a)

cosf, = z,,—zz,: 0<by<r (5-1b)
1

cos¢y = Ir :x,' sin ¢p = % R . (5-1c)

where r = \/C — )+ y2
The field at the receiver due to a given ray path is constructed by return-
ing to the expression in Eq. (2-16), rewritten here for convenience:

eikR; ik F~ico r2x (ks ztkyy+kaz)
z,y,z)= = — e EETRVYTEE) sinf do db > . (5
p(z,9,2) R, 2r /o.—.o /¢=0 ¢ 220 (5-2)
Equation (5-2) expresses the field at receiver position (. y, 2) due to a point source
at the origin as an integral over plane waves. Translating the source position
from the origin to (z,,0.z,), setting the receiver position to (re Yry 2, ), and
substituting for k., ky, and k., from Egs. (2-13), we rewrite Eq. (5 2) as

2 —~100

2
/ 00 Gin0dpdo (5 3)
=0

n
2
=0

1k
P(l'nyr, z.,,) - 2_7l' ‘/;
where

®(0,9) = k{sin0f(z, ~ z,)cos ¢ + y, sin ] + (z, — zy) cos O} . (5 4)
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Introducing ¢, from Eq. (5-1c) into the expression for ®, we obtain

®(0,4) = k[rsinf(cos docos P + sin ¢gsin @) + z cos 0] (5-5)
= k[rsinfcos(¢ — ¢o) + zcosb] . (5-6)

After substituting r = R, sinfy and z = R, cos y, we finally express ¢ as
(0, $) = kR,[sin Oy sin 0 cos(¢ — ¢o) + cosfycosb] . (5-7)

The next step is to multiply the integrand of the plane wave integral
Eq. (5-3) by the appropriate plane wave reflection coefficients. In order to find
the angle of incidence with which a given plane wave strikes a given interface, we
use the direction cosine representation of a vector v:

U (cosﬂI , cos 3, , cos ﬂ,) , (5-8)

where 3, is the angle between v and the positive r-axis, and 3, and 3, are defined
analogously. The angle ¢» between vectors v; and v, is then given by

cosy = v -V . (5-9)

From simple geometry, it can be shown that the direction cosine repre-
sentation of the ray with angles 8 and ¢, as shown in Fig. 5-1(a), is

Uray (9, @) : (sin0cos¢ , sinf@sin ¢ , cos 0) . (5-10)

This ray is perpendicular to the wave fronts of the associated plane wave. We also
require the representation of the normals to the interfaces. For the jth bottom
reflection (as counted from the receiver), the normal to the imaged ocean bottom
has dircction cosines

U, (sin{(‘Zj —1a}, 0, % cos[(2) - l)a]) . (5-11)

The positive sign is taken for imaged bottoms that lie below the : = 0 plane
(rays traveling upward at the receiver), and the negative sign is taken for imaged
bottoms that lie above the = = 0 plane (rays traveling downward at the receiver).
The signs are taken so that the normal to each interface points in the same direc-
tion as the passage of the ray from source to receiver (/2 < ¥, < 7/2). From
Fq. (5 9), the incident angle ) of a plane wave, with angles 8 and ¢, at the jth
bottom reflection is then given by

cos gy (0, ¢) = sin@cos dsinf(2) — 1a] + cosbcos|[(2) — o] . (h 12)
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Note that ¢; = 8 £ (2j — 1)a for the two-dimensional wadge problem, where
cos¢d = %1.

We now construct the integral representation of the ray field in the three-
dimensional wedge for the ray path with N, surface reflections and N, bottom
reflections. To do so, we multiply the integrand of Eq. (5-3) by the reflection
coefficients V evaluated at the angles 1; given in Eq. (5-12):

ik e Ny | .
p(0o, $0, Ry) = (—1) 5 /0:0 -/¢=0 € (,—1:11 V(v;(9, ¢)]) sinddédf
(5-13)

where @ is given in Eq. (5-7). Unlike the two-dimensional case, we cannot per-
form the integration over ¢ analytically because the incident angles ¢; are now
dependent on ¢ as well as 8. This dependence is an indication that the spreading
factors of the ray tube in the - and ¢-directions are not independent.

As we have done with the previous plane wave integrals, we move the
reflection coefficient terms into the exponential factor and write

vk F-ioo f2x .
p(bo, 4o, R1) = (—I)N'%ﬂ-’ ./o=o ./:o /08 sinfdg¢dy (5-14)
where
p = kR (5-15)
f(8,8) = 1[sinbgsin 6 cos(¢ — do) + cos b cos 0]
1 &
o LI VI (6,9)] (5-16)

1 =1

Note that the phase function f is now a function of two angular variables 8 and ¢.
Application of the method of steepest descent in this case is not straightforward
because (1) there are two variables of integration and (2) all of the limits of
integration are not infinite.

5-3 AN APPROXIMATE METHOD OF SOLUTION

We now propose an approximate method for evaluating the ray field given
in Eq. (5-14). The first step is to find all the saddle points of the function f in
Eq. (5-16), where a saddle point now consists of a pair of possibly complex angles
defined by i i

af(6,¢) _ 9f(6,9) _
90 9

0 atf=-+,6¢=y. (5-17)
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In order to be able to perform the integration over ¢ for each saddle point, we
evaluate the reflection coefficient terms at ¢ = x and take them outside the
integral over ¢. This approximation yields the integral

p(6o, b0, B)) = (=1)™ ik / 100 {/2" eikR,linﬂolinecou(¢-¢o)d¢}

27r =0 ¢=0

Ny
explkR,{icosfycosf + 1 InV[y,(0,x)] )] sinfdb
kR, ’
=1
(5-18)

and allows the integral over ¢ to be performed analytically as in Eq. (2-22). At
this point, the remainder of the derivation given in Sec. 2-2 follows. The result
is an expression very similar to that constructed for the two-dimensional wedge
problem in Eq (3-9), except that the reflection coefficients are evaluated at angles
¥;, which depend on the saddle point angle x:

p(0o, b0, 1) = (=M G, \/—_ /___:: exp[/cH, (i cos(f — 6,)
m Zln Viy,(6 x)])] g . (5-19)

This integral may be solved using the same saddle point methods used in Sec. 3-5
for the two-dimensional wedge.

A problem arises, however, when applying the saddle point method to
Eq. (5-19), where the function f has the form

f(0) =1cos(8 — 6) Zln Viv;0,x)] . (5-20)

Note that the saddle point  found from the function f in Eq. (5-16) is a saddle
point for f in Eq. (5-20) only if x = ¢o. This condition may not be satisfied
exactly, especially if the eigenray undergoes displacements at the bottom. We
could find a new saddle pomt v for f, or we could keep the old saddle point from

f by replacing f in Eq. (5-20) by

f() = f(o ¢ = \ = ¢[sin g sin 6 cos(\ — @) + cos O, cos 0]

m]Zlnvmou

—
[l §
[
—
~——
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The latter choice appears to make more sense since the saddle points ¢ and x that
satisfy the original saddle point criterion are preserved.

Some of the details of the calculations required for this problem will now
be given. To find the saddle points defined in Eq. (5-17), the partial derivatives
of f in Eq. (5-16) must be calculated. The required expression are

%g = i[sin 6, cos 6 cos($ — ¢o) — cos G sin b
1 &% V9,06, 9)] dy; 5-99
TR L Vio,0.9)] 99 (5722)
of ..o 1N V(0,0 00,
3 —isinfysinfsin(¢ — ¢o) + R, E V['/);(o,fb)] o (5-23)

where the partial derivatives of ¥;, obtained from Eq. (5-12), are:

%‘%i = ~(cos0cosd>sin[(2j — 1)a] Fsinf cos[(2] — l)a])/sin ¥; (5-24)
‘73_"; = (sin®sin ¢sin[(2j — 1)a]) /siny; . (5-25)

The algorithm for finding saddle points would use Taylor series expansions of a
function of two variables rather than one.

5-3.1 An analysis of the approximation

By removing V[¢;(0, ¢)] from the integral over ¢ in Eq. (5-18), we are
effectively ignoring any coupling between ray-tube spreading factors in the 4- and
é-directions. In reality, this coupling does occur for rays that do not travel straight
upslope or downslope (those not confined to the y = 0 plane in Fig. 5-1). Coupling
between ray-tube spreading factors corresponds to the phenomenon known as
horizontal refraction, where the path of a ray as viewed from above the ocean
surface appears to bend as the ray undergoes successive reflections. Horizontal
refraction occurs when a ray’s plane of incidence (the plane containing the ray
and the normal to the interface) changes at successive bottom interactions. The
approximation we have introduced may result in errors in the calculation of the
two eigenray spreading factors Gy and G4 defined in Sec. 2-7.1, but the eigenray
paths themselves are not affected since the full, two-dimensional saddle point
criterion in Eq. (5-17) is used.

The validity of the approximation made to arrive at Fq. {(5-18) depends
on how strongly V varies with ¢ in the neighborhood of the saddle points v and
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x- Since V' is large in the neighborhood of the critical angle, the approximation
is potentially poorest when an eigenray undergoes a lateral wave reflection on one
of its bottom interactions (where ¢, ~ 6). But since the lateral wave rays make
up a small part of the total field, slight errors in their evaluation should not harm
the total calculation significantly. It should also be noted that when propagation
is mainly upslope or downslope, ¥; does not vary significantly with ¢ (as will
be shown in the next paragraph), so the lateral wave calculations should exhibit
smail errors for these cases.

For the more important rays that have saddle points somewhat removed
from 8, the validity of the approximation introduced in Eq. (5-18) depends on
how strongly the incident angles ; vary with ¢. Thus, the magnitude of dvy;/0¢
from Eq. (5-25) should be small. We see that this is true when® (1) ¥ is small,
(2) x is small, or (3) (2j — 1)a is small. Again, the second condition is satisfied
for mainly upslope or downslope propagation. The third condition, which holds
for small wedge angles and few bottom reflections, can be satisfied even in the
cross-slope case; for example, if 0 is not small and the range between source and
receiver is not too large, then eigenrays with large N, are not important because
they suffer multiple partial reflections.

In cases where eigenrays undergo significant horizontal refraction, the
approximation we have outlined here may not be acceptable. In such cases, it
appears that a two-dimensional integration must be performed. One problem
that arises when attempting to formulate the integrals in terms of the saddle point
method is that the limits of integration in Eq. (5-14) are not infinite. When the
integral over ¢ cannot be performed analytically, it appears difficult to manipulate
the integral over 8 such that the contour starts at —v/2 + ioo instead of 0. It
remains to be investigated if the method of steepest descent can be applied to the
integral whose contour starts at 0.

*The denominator of Eq. (5-25) can make 0v; /3¢ large only if ¢; is close to zero. But this
condition implies that the cigenray must be traveling straight upsiope or downslope, in which
case we have shown that the approximation is valid.




CHAPTER 6

THE MODELING OF A DIRECTIONAL SOURCE

6-1 INTRODUCTION

The methods described herein for modeling a uniform acoustic point
source may be extended to a directional source by allowing the spatial coordi-
nates of the point source to take on complex values. It was first observed by
Deschamps*® that the solution exp(tk R;)/ R, to the Helmholtz equation represents
the field of a Gaussian beam when the distance R; is calculated from a complex
source position to a real receiver position. By analytic continuation, known exact
or asymptotic solutions to point source problems can then be extended to direc-
tional source problems by simply introducing the appropriate complex quantities.
This method is used in Refs. 46 and 47, where asymptotic forms for the reflection
and transmission of electromagnetic beams at a dielectric interface are given and
discussed.

6-2 THE FIELD DUE TO A COMPLEX POINT SOURCE IN FREE
SPACE

We begin by describing the nature of the field produced by a point source
in complex space. Referring to Fig. 6-1, we initially assume the point source to
be located at Cartesian coordinates (0,0,:b) and consider the field at coordinates
(2,0, z). (We have restricted our attention to the r-z plane with the understanding
that the field is cylindrically symmetric about the z-axis.) The non-zero imaginary
part & of the source coordinate results in a beam whose axis is in the z-direction.
Denoting the source-receiver distance R;, we find

Ry = J(z —ib)? + 22 , (6-1)

where R, is now complex. Since we are most often interested in the field near the
axis of a directional source, we concentrate on the paraxial region r? < 2% + b2,
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Figure 6-1 GEOMETRY FOR THE DIRECTIONAL SOURCE. A POINT SOURCE IS PLACED AT
(z,y,2) COORDINATES (0,0,ib), WHICH PRODUCES A BEAM IN THE POSITIVE z-DIRECTION.

where we can make the approximation

b z?
R = z--1 +_—2(z—ib)
. z%(z +1b)
= z—zb+m (6-2)

Using this expression for R, in the exponential of the field due to a point source,

we find

2 2
R kel 2 :x___ﬁ_} i
e ~ exp(kb) exp {tkz [1 + T bz)]} exp{ 2 @ ) (6-3)

The first exponential factor on the right hand side of Eq. (6-3) is a constant that
can be very large or small, so we normalize the field by the factor exp(—kb). The
second exponential factor gives the mathematical form for the phase fronts in the
paraxial region. The final exponential factor represents a Gaussian amplitude
distribution of the beam about the z-axis.

The square root operation required to calculate the complex distance R,
in Eq. (6-1) introduces a branch cut in real space. If we do not limit ourselves to
the z — z plane and define the radicand as

s(z,y,2) = (z —ib)? + 2 + y? = (22 = b* + 2% + %) — i(2b2) (6 1)

then the branch points are located at (r,y,z) values where both the real and
imaginary parts of s vanish. It is easily seen that the branch points form a circle
of radius b in the z = 0 plane defined by z? + y? = 6*. We define the branch
cuts for the square root operation to be at points where Im[s] = 0 and Re[s] < 0.




94

The first condition implies that z = 0, and the second condition implies that
z? + y? < b%. The branch cut surface is, therefore, a disk of radius b in the z — y
plane, lying in real space perpendicular to the beam axis (see Fig. 6-1).

With the branch cut as defined above, the evaluation of R, can be made
either on the upper Riemann sheet, for which Re[R;] > 0, or on the lower Riemann
sheet, for which Re[R,] < 0. When we include the suppressed time dependence
exp(—iwt), we see that

A ikrion _ 1kl ikRelR)-wt) (6-5)

R, R,

From the last exponential factor in Eq. (6-5), we see that on the upper Riemann
sheet we have an outgoing wave, while on the lower Riemann sheet we have an
incoming wave. The significance of the branch cut is that the ficld is discontinuous
across the cut if all calculations of R, are made on the same Riemann sheet.
Therefore, points on the branch cut disk in real space may be viewed as equivalent
sources that together represent the single point source in imaginary space.

6-3 DETERMINATION OF COMPLEX SOURCE PARAMETERS

The method described here for modeling a directional source may be used
to investigate the behavior of beams from a theoretical standpoint or to model
an actual acoustic source. In determining the parameters of the complex source
to be used, it is appropriate to consider two basic characteristics of the beam to
be modeled: (1) a measure of the beamwidth and (2) a measure of the phase
front curvature of the beam along its axis. From these two quantities we derive
expressions for z and b. The latter can be thought of as the distance into imaginary
space the source is placed, while the former is the axial distance in real space from
the source to the region where the beam has the desired characteristics.

We define the spatial “variance” or width of the Gaussian beam described
in the last exponential factor of Eq. (6-3) by

22 12
o=l (6-6)

For z = o the field is down by e~!'/2 = 0.6065, or —4.34 dB, from its peak at
z =0; for z = +20 the ficld is down by —17.32 dB.

The radius of curvature of the phase fronts in the paraxial region can
be found from the second exponential factor in Eq. (6-3). The equation for the
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curves of constant phase in the z-z plane is
z? .
kz(l + m) = const . (6-7)

The radius of curvature of these phase fronts on the z-axis may be found by
considering a point on the front a small distance Az from the z-axis, drawing
the tangent to the wavefront at that point, and finding the intersection of the
perpendicular to the tangent with the z-axis (see Fig. 6-2). The distance from

% = 1/2"(0)
-1
2"(0) A x

slope =

/

PHASE FRONT

2 * slope = z"(0) A x

Figure 6-2 CALCULATION OF THE RADIUS OF PHASE FRONT CURVATURE R..

the intersection point to the phase front in the limit of small Az is then the radius
of curvature R.. Some simple calculations based on Fig. 6-2 reveal that

1
Ro=—r |
2"(1 — 0) (6 8)
where z(z) is the functional form of the phase front and z(x = 0) is its seccond
derivative with respect to r evaluated at r = 0. After taking (implicitly) two
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derivatives of Eq. (6-7) with respect to z and evaluating the resulting function at
z = 0, we find that the radius of curvature of the phase fronts on the z-axis is

2 2
R=11Y (6-9)

z

Equations 6-6 and 6-9 can be solved simultaneously for the two variables
z and b:

(k Z)ZRC
* R GoT (010
_ (k)R (6-11)

R+ (k™)

Thus, given the quantities o and R, that characterize a beam in a certain region
of interest, one can solve for z and . To model the beam by a complex-valued
point source, one would place the point source a distance z in real space and a
distance b in imaginary space away from the region of interest.

6-4 REFLECTED AND TRANSMITTED FIELDS DUE TO AN IN-
CIDENT BEAM

The problem in which we are interested is that of modeling the reflection
and transmission of an acoustic beam at a fluid-fluid interface lying in the z = 0
plane. We consider a beam that strikes the interface at the origin of our coordinate
system with angle of incidence 9g (sce Fig. 6-3). Values of the heamwidth o and
the radius of phase front curvature R. in the region of the origin are to be specified
or estimated from experimental measurements. Equations (6-10) and (6-11) are
then used to calculate z (which, to avoid confusion with the z-axis in the present
case, we will refer to as pg) and b. After the appropriate rotation and translation
of the coordinate system, the point source is placed at [z, 2] coordinates

((=po + ib)sin 65, (—po + ib) cos 5] . (6-12)

Note that we cannot allow the disk of radius b perpendicular to the beam axis
to intersect the interface or else the equivalent sources would extend into the
bottom. This restriction requires bsinfg < pgcosfg. The result is that it may
not be possible to model a narrow beam (b large) incident at small grazing angles
(6p near 90°).
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The method for finding the reflected and transmitted fields due to the
directional source is the same as for the point source, except that certain geometri-
cal quantities are complex. Since the source coordinates have been made complex.
the distances r and R, and the incident angle 8, in the reflected field expression
Eq. (2-46) and in the transmitted field expression Eq. (2 75) are also complex.
The fact that R, is now complex requires a slight redefinition of the quantities p
and f(#) associated with the method of steepest descent in Eq. (2-29). For the
directional source case we call these quantities 5 and f() . In order to keep p
real, we set

5= |p| = kR (6 13)
and
z _ P _ kh’] .
f(8) = ;f(O) = ~——|le|](0) : 6 11)

where f(0) is defined in Eq. (2- 47b) for the reflection case and in Eq. (2 76) for
the transmission case. Note that Eqs. (6-13) and (6 11) do not constitute an
approximation because pf = jf. As before. we find the saddle point(s) 3 as the
value(s) of 8 for which f'(8) vanishes. The field is then evaluated by either the
saddle point approximation or by numerical integration along the path of steepest
descent.

6-5 EXAMPLES OF COMPUTED FIELDS

Examples of the acoustic field due to the reflection and transmission of
a beam incident at a fluid-fluid interface are shown in Figs. 6-4 to 6-6. The
figures show contour lines of constant pressure amplitude of the reflected field
(z < 0) and the transmitted field (= > 0) for beams incident on the fluid-fluid
interface at angles 85 = 55°, 62°. and 638°. The beam axis intersects the interface
[characterized by n = 0.866 (6., = 60°) and m = 2.0] at the origin. The beam
is specified to have a variance of 0 = 5\ and a radius of wavefront curvature of
R. = 50A. These characteristics result in an imaginary source coordinate of b =
14.5A and py = 45.4A. Note that the fields across the interface in Figs. 6 1 to 6 6
are discontinuous. This is because the incident field due to the beam source has
not been added to the reflected field above the interface. To test the computer
algonthm that produced the contour plots, the total tield above the interface was
calculated, and there was less than a 0.01 dB discontinuity across the iaterface.
The condition of pressure continuity is one of the two boundary conditions imposed
at a fluid fluid interface.
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The fields shown in Figs. 6-4 to 6-6 are intended to illustrate some ba-
sic characteristics of beam interaction at a fluid-fluid interface when the angle of
incidence is near the critical angle. Rather than attempt to undertake a compre-
hensive study of this phenomenon, we mean to show that (1) the complex source
approach can be used with few restrictions to find the field due to a directional
source, (2) basic characteristics of the reflected and transmitted fields, such as
the beam angle and beam displacement at the interface, can be analyzed, and
(3) che relative importance of different contributions to the total field at individ-
ual points can be evaluated. With regard to the second item, the axes of the
reflected and transmitted beams have been estimated by roughly connecting the
extremal points on successive contour lines. The beam displacements, which we
call A for reflection and A, for trausmission, are found by extending the beam
axes back to the interface. Although this procedure is not rigorous, it does give a
good estimate of the beam characteristics.

In Fig. 6-4 the beam is incident on the interface at an angle of 55°, which
is 5° steeper (smaller) than critical incidence. In this case both the reflected and

-5
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Figure 6-4 REFLECTED AND TRANSMITTED FIELD FOR AN INCIDENT BEAM WITH ANGLE
g = 55°.

transmitted beams are well defined, even near the interface. The reflected beam
has an apparent displacement of A = 2.6\, while the transmitted beam has an
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apparent displacement of A, = 2.0A. These results may seem surprising at first
because the formulas in Eqgs. (2-60) and (2-81) indicate that the ray displacements
at these angles should be zero. However, it appears that these phenomena may be
explained consistently by considering the facts that the incident beam is actually
composed of a spectrum of plane waves about the beam axis and that rays drawn
perpendicular to these plane waves strike the interface at different points. For
example, the rays incident at § = 55° strike the interface at the origin and are
reflected with a plane wave reflection coefficient V of 0.61, while those at the
critical angle 8 = 60° strike the interface to the right of the origin and are reflected
with a coefficient of 1.0. Although the latter rays are initially weaker than the
former due to the fact that they are 5° off the beam axis, their larger reflection
coeflicient could make them stronger after reflection. This may explain not only
why the reflected beamn axis has been shifted to the right, but also why its angle
is slightly larger (57°) than that of the incident beam.

In the case of the transmitted beam in Fig. 6-4, one must also consider the
spreading introduced by refraction according to Snell’s law. For incident angles
slightly stecper than critical, a small change in incident angle results in a large
change in transmitted angle. The resulting spreading is largest near the critical
angle and diminishes toward steeper angles. This factor may explain why the
transmitted beam in Fig. 6-4 has a measured angle of 67.4°, while Snell’s law
predicts an angle of 71.1° for an incident beam at 55°. The shift to a steeper
angle may be due to the decreased spreading upon refraction at steeper angles.
However, since the steeper rays strike the interface to the left of the beam axis,
one might expect the displacement upon transmission to be negative rather than
the indicated positive value. Clearly, the present arguments are inadequate to
account for both the displacement and angle of the transmitted beam.

Figure 6-5 shows the reflected and transmitted fields for a beam incident
at 62°, which is 2° larger than the critical angle. The reflected beam is displaced
by 4.9) and has an angle slightly larger than the incident beam. These phenomena
can be explained using the same argument as for the 55° beam: the effective beam
center is shifted to shallower angies and to the right because the steeper angles
experience more loss upon reflection. The ray displacement at 62°, according to
Eq. (2-60), should be A = 1.9A. The measured value of A = 4.9 is larger due
to the additional effect of the beam center being shifted to the right.

The transmitted beam in Fig. 6-5 is displaced 1.8X to the left and has
an - 'gle of 75.4°. By checking the eigenray list for receiver positions along the
beam axis, it is apparent that the main contribution to the field is from eigenrays
that are incident on the interface at angles slightly steeper than the critical angle.
These eigenrays represent a part of the beam that strikes the interface to the left
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Figure 6-5 REFLECTED AND TRANSMITTED FIELD FOR AN INCIDENT BEAM WITH ANGLE
g = 62°.

of the main beam axis. Therefore, the apparent displacement of the transmitted
beam is negative. The beam angle in the bottom is due to a combination of the
following factors: (1) the decreasing spreading loss upon refraction as the incident
angle becomes steeper than critical, (2) the decreasing strength of the incident
beam for angles steeper than the beam axis, and (3) the decreasing transmission
coefficient [see Eq. (2-73)] as the incident angle becomes steeper than critical. The
transmitted beam at 62° incidence is shallower than at 55° incidence, as expected.

The final example appears in Fig. 6-6, where the incident beam angle
is 68°. The reflected beam has an angle of 65.6°, compared to the value of 68°
predicted from Snell’s law, and a measured displacement of 1.1\, compared to a
predicted ray displacement of 1.8). By virtue of the fact that the incident beam is
8° shallower than critical, one would expect there to be little shift of the eflective
beam center due to unequal reflection on opposite sides of the incident beam axis.
One possible explanation is that the deviation is due to interference from the
lateral wave field. A check of the eigenray list shows that the lateral wave ray is
typically 30 dB down from the totally reflected ray along the beam axis. On the
interface side of the beam axis the lateral wave ray becomes relatively stronger.
This may account for the apparent asymmetry of the reflected beam.

The transmitted beam in Fig. 6-6 has an angle of 80.5° and a negative
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Figure 6-6 REFLECTED AND TRANSMITTED FIELD FOR AN INCIDENT BEAM WITH ANGLE
fp = 68°.

displacement of 14.2)A. The displacement to the left is larger in this case than
the previous because energy incident at angles steeper than critical strikes the
interface farther to the left. The transmitted beam is significantly weaker in this
case because the penetrating energy is farther off the beam axis. As expected,
incident beams at shallower angles excite transmitted beams at shallower angles.

In both Figs. 6-5 and 6-6, the evanescent field in the upper wavelength
or so of the bottom is evident. In the latter case an interference pattern between
this field and the transmitted field can be seen, particularly at a range of 4\ and a
depth of 1). These effects can make it impossible to trace a beam axis all the way
back to the interface. The transmitted beam in such cases is only distinguishable
a sufficient distance from the interface.

6-6 SADDLE POINT STRUCTURE

The saddle points and their associated steepest descent paths for receivers
along several horizontal lines are shown in Figs. 6-7 and 6-8. In each figure both
the reflected and transmitted ficlds two wavelengths from the interface (z, = £2X)
arc sampled ten times from horizontal ranges of =5\ to 25X. Figure 6-7 is for the
incident beam at 55° shown in Fig. 6-4, and Fig. 6-3 is for the incident beam at
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68° shown in Fig. 6-6.

The general effect of the source directionality on the saddle point loca-
tions is to shift the saddle points farther off the real §-axis as the eigenray angle
moves farther off the beam axis. The computer algorithm for finding the cor-
rect saddle points must be more sophisticated in the present case because there
are more possibilities for how the saddle points migrate and evolve and how the
worrect contour of integration is completed. For example, in Fig. 6-7(a) the par-
tially reflected eigenrays evolve smoothly into the lateral wave eigenrays, whereas
they usually evolve into the totally reflected eigenrays, as they do in Fig. 6-8(a).
Another possible scenario is that for the transmitted field, the steepest descent
path of the transmitted ray can loop around the critical angle, but both endpoints
terminate towards m/2 — ioco instead of —7/2 + ioco. In this case, an evanescent
ray saddle point must be found on the lower Riemann sheet. Its steepest descent
path completes the contour of integration.

In Fig. 6-7(a) we see that the reflected field at the largest three ranges
requires two saddle points, while the other ranges require only one. The lateral
wave rays are about 12 dB weaker than the totally reflected rays. In part (b)
of the figure we see that the transmitted field at the largest two ranges requires
two saddle points: one transmitted and one evanescent. The latter rays are about
40 dB weaker than the former.

In Fig. 6-8(a) for the reflected field, we see that all but the first receiver
have a lateral wave saddle point. Note how the saddle points cross the real §-axis
around 68°, which is the angle of the incident beam. For the transmitted field in
part (b) we see that all but the first receiver have the evanescent ray as well as
the transmitted ray. The evanescent field, however, is 20-29 dB weaker than the
transmitted field, despite the fact that the transmitted rays near 60° are quite far
off the incident beam axis.

6-7 CONCLUSIONS

In this chapter we have demonstrated how our method for modeling
acoustic propagation in terms of eigenrays can be modified to accommodate dircc-
tional sources. We have described the nature of the directional field produced by
placing a point source in complex space, and we interpret the associated branch
cut surface as a disk of sources in real space equivalent to the point source in
complex space. One method for modeling a beam with a given radius of phase
.ront curvature and beamwidth has been proposed. Finally, we have given sev-
eral examples of the reflected and transmitted ficlds due to a beam incident on a
fluid-fluid interface near the critical angle. The same techniques described in this
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chapter for modeling a beam incident on a single interface could be used to model
a directional source in a flat or sloping waveguide by simply using the appropriate
plane wave integrals given in Chapter 3.




CHAPTER 7

CONCLUSIONS

The contribution of the research presented in this dissertation is the im-
provement of ray techniques to model acoustic propagation in shallow water. In
Chapter 2 we developed a method for computing tiie ficld due to a point source
in the presence of a fluid-fluid interface. After formulating planc wave integral
representations of the reflected and transmitted fields, we use a variation on the
method of steepest descent to solve the integrals. By allowing the reflection and
transmission coefficients to influence the saddle point criterion, we obtain a formu-
lation that includes such wave phenomena as the reflected lateral wave field in the
water and the evanescent field in the bottom. Each saddle point of a given plane
wave integral corresponds to the angle of an eigenray that contributes to the field,
and eigenray characteristics such as travel time, propagation path, and reflection
or transmission losses are derived. The simple ray interpretation breaks down to
a certain degree when the saddle point represents a complex eigenray angle. This
occurs when the field is composed of several ray contributions merging into one,
or when the field is evanescent. Although saddle point approximations to the
integral for the field are usually adequate, a technique for numerical integration
along the path of steepest descent must be used in certain cases.

The prime motivation behind developing the ray method for the single-
interface problem is to apply it to simple shallow water ocean environments. In
Chapter 3 we extended the method to flat and sloping waveguides by construct-
ing the multiple image sources that account for the multiple ray paths between
source and receiver in a waveguide. The field due to each ray path is constructed
as a plane wave integral in a manner analogous to the single-interface problem.
Each integral contains multiple reflection coefficient factors (evaluated at differ-
ent angles for the sloping case), corresponding to the reflections encountered by
the ray path whose contribution the integral represents. We use the same algo-
rithm to evaluate the ray fields in terms of saddle points and tiweir corresponding
eigenrays, and we obtain the total ficld in the waveguide by simply summing the
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contributions of the important rays.

We have evaluated our ray model algorithm by comparing its field calcu-
lations with those produced by other computer models. For the flat oceanic wave-
guide, the ray model and the SAFARI fast field program predict almost identical
fields. Results from normal mode theory are also compared, and we find that if
only the trapped normal modes are calculated (as is usually the case), the mode
results can be poor when a mode is near cutoff. We find good agreement between
results from the ray model and the SAFARI model even in the very low frequency
case where the depth of the water is only half of the acoustic wavelength.

For the sloping waveguide, or wedge, the ray model has been applied to
benchmark problems proposed in December 1986 by the Underwater Acoustics
community of the Acoustical Society of America. In Chapter 4 we demonstrated
exccllent agreement between results from the ray model and a model based on
two-way coupled mode theory. The independence of the two models’ approaches
assures us that their common solution is indeed correct. Since there are always
uncertainties in the formulation and implementation of any propagation model,
the development of a new and independent technique is a valuable contribution to
the modeling effort in general. For example, the availability of the coupled mode
results was much appreciated when the author was initially implementing the ray
algorithm as a computer program.

Besides constituting an independent means of calculating acoustic fields
in shallow water, the ray model provides physical insight into the composition of
the field in terms of eigenrays and their characteristics. In Chapter 4 we addressed
the issues of backscatter, the importance of lateral waves, and the importance of
partially reflected rays by analyzing the eigenrays at a particular receiver position
in a wedge.

The ray algorithm differs from most numerical models in that it can find
the field in a pointwise manner, as opposed to “marching” algorithms that must
compute the field at all points between a given source and receiver. In applications
where the field at only a handful of points is of interest, the pointwise algorithm
can be very advantageous. Another unique feature of the ray method is that it
is more efficient at high frequencies than at low frequencies. In addition, the ray
method has no large computer memory requirements that are sensitive to the
acoustic frequency being modeled.

Ray modeling of propagation in a three-dimensional wedge with a pen-
etrable bottoin was described in Chapter 5. In deriving the plane wave integral
for each ray field in this case, we find that a double integral over two independent
plane wave angles niust be evaluated. As a consequence, the saddle point crite-
rion requires partial derivatives with respect to two angular variables to vanish.
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A more complete investigation of the feasibility of solving the two-dimensional
integral remains to be done, but an approximate method that would be straight-
forward to implement is proposed. Three-dimensional propagation problems are
of great interest to the underwater acoustics community, but they pose serious
problems to all modeling approaches. Successful application of the ray model to
even the simplest three-dimensional problem, the isovelocity wedge, would provide
a valuable tool in evaluating other modeling methods.

The final application of the ray method, described in Chapter 6, was to
model a directional source by assigning complex spatial coordinates to a point
source. Although a point source in complex space is difficult to interpret physi-
cally, the mathematical formulation of the problem results in branch cut surfaces
in real space that can be viewed as containing equivalent sources. The reflected and
transmitted fields due to a beam incident on a fluid-fluid interface are computed
using the same techniques as for the point source problem. The only modification
required is that certain parameters describing the source-receiver geometry must
be made complex. Several examples of fields due to beams incident near the crit-
ical angle have been computed, and brief analyses have been given. A directional
source in a flat or sloping waveguide could be modeled using the same techniques.

The development of the ray methods described in this disseration has
focused on simple environmental models. For example, the ocean water has been
assumed isovelocity, interfaces have been assumed flat, the media have been as-
sumed to be fluids, and ocean bottoms have been assumed homogeneous. As a
research tool, it is valuable to be able to address such idealized problems with
great precision; in practice, however, it is desirable to describe real ocean en-
vironments more accurately by including sound velocity gradients in the media,
interface roughness, and shear velocities and layering in the ocean bottom. Fu-
ture research may involve applying some of the concepts and numerical methods
developed here to tackle these more difficult problems.
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