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A Visual Object-Oriented Unification System

Abstract

- This report introduces a software design platform which departs
from the style of most design tools by acting as an extension to,
rather than a replacement for, existing design tools. The ultimate
goal of this system is to unify and integrate the various functions pro-
vided by text editors, graphics editors, text formatters, hypertext and
structured decomposition tools. It uses a very general data structure
which can manifest itself in a variety of visual forms while enabling
the user to easily create and manipulate the objects it represents.
This tool is useful for creating large, general purpose, hierachically
structured programs, data structures, documents, and other similar
objects. Moreover, this system is designed to allow for a wide variety
of functions to be performed on these data objects (such as graph
traversal or functional mapping), both from within the environment
as well as externally (for example, mapping concurrent computations
onto parallel architectures using a post-processor). This system is also
considered to be a springboard for investigating future directions in
software design and information management. (
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A Visual Object-Oriented Unification
System

Joseph Oliger

Ramani Pichumani
Dulce Ponceleon*

March 16, 1989

1 Introduction

There are many tools in existence today which help programmers design
and implement large scale software systems. In addition to the plethora
of editors, compilers and debuggers, there are a wide variety of software
tools which help programmers design code in a structured and methodical
fashion. This report introduces VO US, a software design platform which
departs from the usual approach by acting as an extention to, rather than
a replacement for, current design techniques.

In conjunction with the main goal of allowing users to organize and pro-
cess various sources of information in a unified manner, several additional
goals were targeted:

e Software should be designed to organize disparate data entities such
as source files, picture files, design notes, TpX [1] documents, project

*The authors are in the Center for Large Scale Scientific Computing, Department of
Computer Science, Stanford University, and have been supported in this work by the Office
of Naval Research under contracts N00014-86-K-0565, N00014-87-K-0384 and N001I-82-
K-0335 and the NASA-Ames University Consortium Agreement NCA2-150.
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reports, data sets, etc, into a single document that reflects their use
in a unified structure. At present, the main reason why there are
so many types of documents is to simplify matters for the computer,
rather than for the user.

" The number of commands and concepts that need to be mastered in
order to receive maximum benefit from the system should be kept to a
minimum. However, power and sophistication should not be traded-
off for the sake of simplicity. Instead, the power of a system should
be masked by its simplicity.

* The user should be supported in the task of writing software by having
access to a rich set of resources and a framework for linking them
together in a structured fashion.

" Software should accomodate the user by allowing for design strategies
that the user is most comfortable with. For instance, some may pre-
fer top-down strategies while others may prefer (or need) bottom-up
strategies at times to build on existing software.

" The interface and functionality of the system should be alterable and
extensible by the user in a simple and natural manner. This exten-
sibility goal has not been implemented in the current version but is
being advanced here as a future goal.

Upon invokation of VO US (pronounced voo), the user may notice that
it looks and behaves very much like a text editor. In fact, it is a wysiwyg
text editor. Users can write programs or compose TJEX documents much
like they would in an emacs editor (the current version supports a subset of
the emacs commands). In addition, users can augment text with pictures,
icons, buttons and structured graphical objects. The text and graphics
can be decomposed into logical pages with icons or buttons linking them
together. Documents can be constructed either in a linear sequence or
a structured top-down hierarchical fashion, depending on the complexity
and nature of the document. VO US can also be used to design templates
which can be used just like HyperCard [2] [3] [4] documents to organize
information. The unique feature of VO US is its ability to support various
types of objects within a single document. For the purposes of this report,
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the term graph refers to a collection of nodes and arcs while graphics refers
to anything visualized on a two-dimensional surface (e.g. graphic arts,
computer graphics, etc).

Any large software project involves various stages of design, each with
their own composition tools. The first stage is the theoretical analysis and
preliminary design stage. This stage usually involves a lot of pencil and
paper designs with calculations scribbled into notebooks. Next, flow charts
or pseudo code fragments are written to outline the structures and algo-
rithms of the program. This is soon followed by the actual coding and
debugging stage. Next, test sets are created and used to check the correct-
ness and robustness of the code. Once the project approaches completion,
users manuals are written and technical reports are published. All of these
activities could conceivably be incorporated into one environment in which
duplication of effort is minimized and each stage is logically induced from
the previous stage. Furthermore, the environment itself should provide a
flexible, programmable extension mechanism much in the same way that
gnuemacs [5] utilizes LISP [6] as a programmable user interface. As comput-
ers become more and more powerful, greater degrees of project automation
can be introduced. For instance, the initial design notes can be used as a
declarative specification for an automatic software application generator.
That is, the user could enter a list of specifications and constraints which
need to be met and the computer would then generate code that would
satisfy the requirements.

It is important to emphasize that the current implementation of VO US
is designed as a springboard for future directions in software design. The
following list summarizes the functions that are supported in the first release
of the system:

" Simple wysiwyg editing.

" Hierachical text/graphics editing (a la MacDraw).

" Hyper card simulation.

" Directed graph editing and traversing.

" Generating data structures for other programs.

" Structured decomposition of programs, files, etc.
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" PostScript previewing.

" File and directory browsing.

While the system is very functional in its present state, it is intended to
be an ongoing research effort in the evolution of software tools and design
methodologies of the future.

2 Motivations for VO US

One of the major goals of VO US is to provide a facility for building higher
order systems out of existing tools and programs. Since most high order
systems are built hierarchically out of smaller systems, it is useful to con-
sider both programs and their data structures as a collection of directed
graphs and to specify their operations as traversals of such graphs. One can
view this paradigm as a visual mapping of recursive symbolic expressions
from LISP onto a visual domain. While this is not the first implementation
of a visual, recursive programming environment, it should be noted that
VO US represents a general solution to a specific design requirement. The
visual domain allows certain operations (by no means all) to be specified in
a simpler and more intuitive manner with less rigor needed in their compo-
sition. A set of information protocols have also been defined to provide a
simple yet powerful mechanism for exchanging data via software portals [7].
In particular, this standard is currently being used to design a system in
which three dimensional surfaces can be specified from a Mathematica [8]
window, hierarchically connected and viewed on a VO US window, passed to
a three dimensional grid generation system and finally sent to a composite
adaptive grid solver. The adaptive grid solver will then modify the grids,
send the modifications back to the grid generator which sends it data struc-
tures back to VO US which in turn displays the state of the new system.
Such a system will be very useful for modeling and predicting weather pat-
terns, ocean currents and other dynamic fluid flow computations. The user
will be able to query the system and look at contour plots or surface plots
as the solution unfolds over time. The data structures generated by VO US
can be mapped onto various machine architectures (e.g., mainframes, dis-
tributed workstations, parallel data flow machines, etc) by postprocessors
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so that the actual computations will be performed in a manner that is
transparent to the user.

3 Data Model and Operator Set

The fundamental paradigm of VO US is the traversal of a directed graph
whose nodes represent data objects or operators. Just as compilers em-
ploy a back-end that operates on an abstract syntax tree representating
a program, VOUS enables the construction and execution (i.e., traversal)
of directed graphs whose semantic meanings can be defined by the user.
Hence, a visual computation environment need not be limited to dealing
with just abstract syntax trees which represent programs. In fact, visual
programming environments have not proved to be as useful as designers
had once envisioned. On the other hand, systems such as HyperCard and
HyperTalk from Apple [9] have demonstrated that visual environments are
quite useful for tasks that are more general than traditional computer pro-
gramming. VO US basicaily generalizes these systems by providing a means
to visually construct, edit and traverse directed graphs of polymorphic data
nodes. Having a visual representation of an abstract polymorphic tree can
be very useful for many of the following applications:

1. A general dataflow programming "language" in which a variety of ex-
isting tools can be ordered and connected together graphically. This
can provide a procedural specificaion for combining many large pro-
grams together and passing information back and forth between them.
As mentioned earlier, a program such as Mathematica can be used to
manipulate equations of surfaces which can then be visually pieced
together by VO US which in turn passes its hierarchical information
to a program that actually solves the underlying system.

2. A graphical UNIX "make" facility where files are represented by icon
nodes and dependencies are formed by linking icons with arcs. Inner
nodes can represent "actions" which are invoked in order to transform
dependent files into target files.

mmm m mm n mm m 5



3. An "n-dimensional" spreadsheet where polymorphic data cells are
formed out of recursive lists rather than just simple arrays. The lists
can also represent n-dimensional arrays whose elements can in turn
be other lists or arrays.

4. Hypertext [10] [11] [12] [13] and "hyper-card" based systems, where
textual information can be linked to external references and sources.

5. Higher-level shell programming. UNIX shell scripts involving pro-
grams such as awk (pattern matching and substitution), sed (stream
editing), grep, etc can be "mapped" onto a graph much in the same
manner that "mapcar' is used on s-expressions in LISP.

6. Creation of complicated data structures and data sets for existing
programs. E.g., composing hierachical, composite grid structures for
use in computational fluid dynamics. Many data structures can be
created more easily in a g-aphical form than with a data definition
language (DDL). With a DDL, the user must not only know the
correct syntax for the language, but must also construct error free
sentences in that language.

7. Outline editors for writing books or other large publications.

8. Structured painting and drawing programs along the lines of Mac-
Draw.

The underlying data model of VO US is a directed graph consisting of
node elements and pointers to link the nodes together. The model is very
similar in concept to s-expressions used in LISP. The primary difference
is that instead of each element containing a first and a rest field (car and
cdr in LISP), a linked list of pointers is associated with each node. In
theory, such a structure can be represented by a simpler s-expression, but
it has the advantage is that it yields a more isomorphic relationship between
the representation of the data structure and the semantic as well as visual
meaning of a graph. This basic data structure enables users to create and
visualize very general directed graphs in a very straightforward fashion.
While the implementation of lists in VOUS differs from those in LISP, the
execution of lists is essentially compatible. McCarthy [24], in his seminal
paper introducing LISP, illustrated how a graphical flowchart representing
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any computation with a single entry and a single exit can be transformed
into a recursive function of s-expressions. This, in conjunction with the
fact that an s-expression can be represented by a graph, provides a basis
for a graphical programming environment [25].

VOUS enables the user to visually construct and traverse a directed
graph using three basic primitives: push, pop and link. Push, when exe-
cuted on a leaf node, causes a new context to be created and allows for the
creation of a subgraph which is then associated with the leaf. This allows
for graphs to be specified in a top down fashion if desired. Pop returns
to the context which was established prior to the push operation. If no
such context exists, then a new one is created. This allows for graphs to be
specified in a bottom up fashion. The link operation allows any arbitrary
leaf node to be connected to any subgraph. Using these three operations,
graphs can then be constucted in a top down, bottom up, or ccmbirued
fashion.

While flowcharting has fallen out of favor for writing structured code
(and not without good reasons), the ubiquity of graphical workstations has
caused a renewed interest in visual programming. Figure 1 shows a sim-
ple example illustrating the common underlying paradigm of all structures
represented in the system. In this example, the graph represents the set of
dependencies among files comprising a simple program. Alternatively, one
could construct a graph consisting of parallel computation nodes where the
dependencies are implied by the arcs connecting nodes. In this case, the
structure can be viewed mathematically as a partially ordered set which
has many properties of interest in the field of graph theory (14].

The graphical structure can also be used as a basis for a object-oriented
programming system along the lines of languages such as Self [201. These
types of languages handle classes in a slightly different fashion than Small-
talk [27] [28] [29] style languages. Self allows objects to be "cloned" from one
another rather than being "stamped" out of a class specification. This sort
of object-oriented style is more intuitive for graphical environments since
the graph itself contains enough information for new objects to be cloned,
subclassed and combined into new objects. New objects can be derived by
adding or overriding parts of existing objects [30]. Multiple inheritance can
be achieved by creating links from existing objects and combining them into
new objects. In VO US, the notion of classes and objects can be uniformly
derived from a single entity, namely, the graph itself.
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Figure 1: A graph representing file dependencies in a program.
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4 Editing Modes

4.1 Graphic Editing Capabilities

VO US is capable of generating a wide variety of graphical objects. At the
lowest level, graphical objects are built on a set of basic primitive operations
such as lines, rectangles, circles and curves. Each line, whether straight or
curved can have a width parameter which specifi s the thickness of the line.
The primitive operations can be used to construct drawing paths which can
then be filled with a pattern. The primitive operations can also be grouped
together to form a structured object and structured objects can in turn be
grouped to form larger structures. This process can be repeated indefinitely
to create arbitrarily complex graphical entities. The resulting objects can
also be cut, pasted and copied like any other object in VO US.

Since VO US utilizes the underlying PostScript [161 [17] [18] [19] imaging
model of the windowing system, there is a strong isomorphic relationship
between the graphical objects the user constructs and PostScript operands.
However, due to the fact that all of the current PostScript servers have
virtually no error recovery whatsoever, the user is only allowed, by default,
to form syntactically and semantically correct PostScript phrases. Even
minor errors in the PostScript source can cause the server to terminate
ungracefully. At present, there is a "power user" mode that allows users
to define nodes which read in PostScript files. The inclusion of this feature
enables VOUS to also integrate the functions of a PostScript previewer.
However, the implemention of PostScript under NeWS [21] [22] severly
limits the range of valid PostScript programs that can be previewed. The
authors are hoping to achieve better results on the more recent windowing
systems such as the Next Computer's Next Step system which employs a
more faithful rendition of the PostScript model. Another primitive object
that deserves mention is the bitmap. There is a library of bitmap objects
which represent useful icons and symbols which can be copied and pasted
into user documents. File and folder icons can be sprinkied anywhere in the
document to allow users to view other files, directories and even to execute
programs.

There exist a number of predefined structured graphics objects which
can be used to simplify the task of constructing certain graphs. These
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objects include nodes, arcs, grids and form sheets. Nodes and arcs are useful
in constructing the classic structures of trees and flow diagrams. Grids
are useful for generating two-dimensional arrays of coordinate values and
form sheets are helpful in generating and editing structured data. Figure 2
shows an example of a composite grid created from VO US. Figure 3 shows
a screen snapshot taken from a sample session on the system. Another
set of predefined objects allows VO US to emulate many of the features of
Hypercard and Hypertext (discussed in the next section).

The unique feature of VO US is its ability to synthesize the many dif-
ferent text, graphics and structured objects into one uniform platform (see
Figure 4. When the user double clicks on the icon of myfile, the system
will invoke the editor on that file. If the file happened to be executable,
the system would have executed the file. If the icon was a folder instead,
the current directory would have been set to that value. Because VO US
supports the inclusion of executable files, documents are not only visually
more appealing, but they can exhibit a much more dynamic characteristic
than ordinary text documents.

4.2 Other Emulation Modes

Since VO US uses a very generalized list-expression data structure to repre-
sent all of its objects, it is capable of simulating a wide range of programs.
One of the programs that is easiest to simulate is hypercard. Since nodes
can contain objets that can point to (be linked to) other objects and
objects can consist of text, graphics and programs, VO US is capable of
affecting the behavior of a hypercard user interface. However, the similar-
ity stops at the user interface. Since VO US data structures are modelled
after lisp s-expressions, the hypercard simulator can approach the expres-
siveness of any Turing equivalent programming language. Figure 5 shows
an example of a hypercard structure.

All document files created by VO US are stored in ASCII form. Although
it is highly discouraged, this allows for the ability to edit the documents
using an ordinary text editor. More importantly, it allows documents con-
taining text and graphics to be mailed electronically and edited with most
UNIX mail programs. The Berkeley UNIX mail program (also known as

10



Multiple grids we useful for arbitaiy shaped I
domains.

grids/ reportfigI1.2

Example of a non-rectagular
multple grid.

Figure 2: Example of a multiple grid structure created by VO US.



4444b~ruary1,

I~A. .. .. .. .. Redmdata:~ retofig.1. 1 2 3
124 1*4 1 ~Is 1617 1,Multiple grids are useful for arbitrarily shaped g1d# rprttg1z~9 20 21 22 23 24 25

domains. 2

= . ..........

44.'~, ... ~*..4, W44 .........,'+ 4 44

A0,RX.44+4 + .*,,........

* 4 .,0':..~ 4444 4444.444444444.4*+

44444 ~ ~ + 44*44 + + +t: ++ 44

+ + + ...............

QEdi P t
Fucin . .....

Fbuctn

Look Right 4

Look Up ,
4

Set View...
..... ..... Zoom In

~~Fiur 1. Eapeof a non-rectagular Zo u :~~ ~:* Fgure ExapleDisplay ve> ':. .....~
multiple grid structure. Fns ie-> :.:.,...

4444~or ......4.4

4...........

.:a4 vous .....

+ ..........

~~bI~+ + 4+4,4,

4444+ +.. ...4...4.....
4.... ~.44 4 44444444444444 .4444444

Figure 3: A typical session using VO US to create a multiple grid object.

12



/ This is the usual way of writing C programs: 1

#include "myfile.h"
#include ourfile.h"

/* Now you can write:

INCLUDE FILES:

#include "myrile.h" mp'e.h

#include yourfile.h" youQl-h

Figure 4: Example of writing source programs with text and graphics.

Clicking on file icons invokes the editor on those files. Hence, source pro-

grams can contain links to other files.

13



ot a *up of coffee

Log In to system

Reid mall

net.humor not.sodll

Log out of sysem

Go home

Go windsurfing

Figure 5: An example of the hyper card simulation capabilities of VO US.
Clicking on icons can invoke the editor on files, execute system programs,

or traverse links to other pages.
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1 Duke Poncelon salsa music 710 chars) ,, ,,,,,,,":Z'

2 Joseph Ofer Wednesday lunch meeting (400 chars)
3 Operior NVw h edtores fordvi2ps (1022 chal e
4i perator Calendar for Thursday November eS v257 chars f
5 MailDelivety Retuned m bl: user unvao l c1662edUrso

: : 

...........

Subjet: sasa music at La Handerni tis Friday

You're u invited to a sal music festial at La Hacienda this Friday.
Direction to L Hacienda: n apb t o

sedadrciedcmnscetdbMu dtr(e Foutigue6.nh s

_ 123 Main siret -

Figure 6: An example of hypermail on O eS.

milx on System V) has two editors which we call the e editor and the v

editor [23 . The e editor is defined by the variable in the mailrc file called
aDITOR whil oe v editor is defined by the variable called VISUAL. Nor-
eally users define the e editor to be emacs and the v editor to be vi. We
have set our v editor to be VO US and now have the capability to compose,
send and receive documents created by our editor (see Figure 6). The use
of this editor enables users to create much richer rail messages since the
full power of VO US is available for composing and reading mail. In fact,

one can think of this as a "hypermail" application as well.

The hypercard emulation feature is a very convienent way of facilitating

a general purpose user interface and data structure entry. Suppose for

example, one were to construct an electrical circuit where components are

represented by nodes. A node for a transistor might have the appearance

depicted in Figure 7.



' -0

Component#: 012
Description: NPN Bipolar Junction Transistor

Generic: 2N2222

he: 120

Ib: 5 mA

Ic: 600 mA

Voe: 12.5V ft- 22Mhz
Vbe: 0.6 V requency response

Comments: This is a general purpose, low power, commonly used transistor.
Its combination of low cost, small size and high gain makes

it an ideal choice for most low power applications.

Figure 7: A transistor node and its hyper card data structure. Users can
enter and edit parameters or create complicated data structures for other
programs (in this example, a circuit simulator).

16



If the user were to double click on the transistor node, a form sheet
would appear containing the various parameters that represent that ele-
ment. The user can now view and edit parameters of the transistor to see
what effects this would have on the circuit response. For instance, simply
clicking the cursor in the field called beta (transistor amplification factor)
allows the user the change the value very simply and directly. Also note
the inclusion of free text descriptions of the node as well as file icons which
point to references that may be of use to the user. This method of data
entry and editing has many advantages. First of all, the user can see ex-
actly what the parameters are and knows how to edit them without having
to learn a set of commands and related syntax requirements. Secondly, the
information appears exactly where the user wants it (in this example, right
next to the transistor in question). Thirdly, the application builder can
easily modify or extend the data structures without having to rewrite the
graphical interface program. If the circuit solver reads the data structure
produced by the system, when the data field requirements of the solver
change, the designer can simply change the form using the system itself.
Furthermore, different applications can share data files since the format of
VOUS data structures is known. That is, it can provide a very consistent
medium for transporting structured data from one application to another.

4.3 Desktop emulator

Since VO US provides for file and folder icons, one might logically wonder
if it is possible to implement file and directory browsers. The answer is
yes - there are two slightly different browsers provided. The first variation
performs a directory list of the contents of the current directory (hidden
files and all). The second variation performs the same function but removes
all the hidden files, relocatable files (ones with .o extensions in UNIX) and
emacs auto-save and backup files. This last variation (dubbed the "ls -sane"
option by the authors) is probably the most useful form of the directory
list feature. Figure 8 shows a sample of the browsing facility.

Files are represented by file icons while directories are represented by
folder icons. Double clicking on a folder icon changes the working directory
to the selected folder and performs another directory listing. Clicking on

17
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D D D 1)asserth comon.h complex.h caypo h curses.h

ID D ID
01hP.hdirenth ermoh taiflh

D 0 ID IDftwh generic-h grp.h Idfai.h Ib

ID ID I D ID
mallc hmath h memory.h onhnhst h

ID ID ID pwd1
osfcn h p10th pw.h pdhrand48.h

ID 1) ID
search h betmp h sanh sk h Uh

ID ID ED C]
sklhb h stmamnh stiing.h Sys/ ts

ID I ~ I D IDtime h unistd h ustath utime h utmnp h

varars h vectr.h

Figure 8: An example of the file and directory browser. Clicking on file
icons invokes the editor on those files while clicking on folder icons browses
the selected directory.
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the "../" folder switches to the parent of the current directory. Clicking on
the "./" folder re-executes the list feature on the current directory. Jump-
ing to a random directory can be accomplished by creating a new directory
folder and double clicking on it. Double clicking on a non-executable file
icon invokes the users text editor on that file. Double clicking on an ex-
ecutable file executes that file in a separate window. Double clicking on
a file that has a ".g" extension causes VO US to read the contents of that
file, which then becomes the new active fie. Unlike the MacIntosh file
system, changing the name of a file icon does not change the file name in
the operating system. For example, if the file "foo" was changed to "bar",
the actual file called "foo" would still exist on the system but would now
be inaccessible by VO US. This is because VO US is currently designed to
implement browsing of files rather than explicit file management. Like-
wise, in the present implementation, creating a new folder which did not
exist in the file system would not actually create a corresponding directory.
Even though this would be simple to implement, the authors decided not
to include this feature at the present time.

Since the file and folder icons are represented as nodes, whatever oper-
ations are allowed on the latter are also allowed on the former. In addition,
work is currently underway to perform UNIX commands on an aggregation
of files. For instance, searching and replacing in a string in a collection of
files is one such example. The goal is to eliminate the ne-d for writing shell
scripts to perform common useful functions in the UNIX operating system.

4.4 Text editing features

One of the characteristics shared by every node is that they contain a
variable length text string which can be displayed and edited in an emacs-
like fashion (i.e., control characters are used to move a cursor forward and
backward and characters can be inserted and deleted at the cursor point).
The presence of this feature suggested a very simple implementation of
a wysiwyg emacs based editor. While the text editing capability is not
nearly as powerful as GNU emacs, the ability to handle multiple fonts
(including variable width fonts) and variable point sizes makes for a very
attractive editing environment for a wide variety of uses (see Figure 9).
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Like most wysiwyg editors, the mouse can be used to set the cursor point
anywhere on the screen. However, unlike most other editors, the viewed
text region can also be zoomed-in, zoomed-out and panned about. One
consequence of representing nodal information as a text string is that the
entire documented can be viewed and edited as a structured text file if one
choses to do so.

The wysiwyg features are easy to implement because VOUS is based
on the PostScript imaging model which comes with a very rich set of fonts
as well as scaling and viewing transformations. In addition, since the list
structure of VO US is inherently hierachical, it is also possible to perform
outline style editing where nodes can be used to represent sections and
subsections with links to text elsewhere in the document. Combining this
with all of the other features of VO US provides a multi-faceted composition
environment.

It has been said that one of the limitations of wysiwyg editing is i hat
"what you see is all you've got" [26] and no more. This is the reason
why programs such as TEX are very popular. TtX is capable of generating
very sophisticated typesetting output that is beyond the capability of any
known wysiwyg editor. This is because TEX can be thought of as a pro-
gramming language in addition to a typesetting language. However, the
success of LaTeX [26] has shown that virtually the same level of sophis-
tication can be achieved by using a smaller set of macro commands and
reserving the more general TEX commands for handling exceptional cases.
The goal is to view VO US as a simple, easy to use editor/typesetter but
yet, utilize the underlying list expression model to provide very powerful
programming control structures. The ultimate goal of VO US is to be as
simple to use as a menu driven wysiwyg editor (such as MacWrite) with the
text manipulation capability of GNU emacs and the output quality of TeX.
Combining the powerful yet orthogonal features of TeX, GNU emacs and
MacWrite/MacDraw into one uniform environment results in a highly syn-
ergistic and expressive composition tool. While the current implementation
of VO US is far from this ideal, it is nonetheless headed in that direction.
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4.5 Support for programming

It should be noted that one of the prime motivations for creating VO US
was to facilitate graphical specification and decomposition of large scale
programs (in particular, those involving parallel computation algorithms).
While the scope of VO US has grown much larger in the course of its de-
sign, it nonetheless contains several features which are useful towards this
original goal. The simplest feature is file concatenation in which leaves of a
graph representing a top down decomposition of a program correspond to
collections of program modules which can be concatenated together into a
single file. For example, suppose we wish to write a program that consisted
of three modules, a data input module, a data processing module and a
data output module. One possible strategy is to build a makefie consisting
of these three modules plus the main procedure and do a "make" command.
Alternatively, we could construct the graph shown in Figure 10.

The node called read would contain the following code fragment (in C):

read(args) {

while (notempty)
/* read in data */
input-data ()
while (processready)

send-datao;

The process module would look like:

process(args) {

while (data-ready)
receive-data()
/* process the data */
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Figure 10: An example of structured program composition.
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while (outputready)
send-data(0

And not surprisingly, the output module would look like:

output(args) {
while (data-ready)
receive-data()
/* print out the processed data */
while (not_-full)
output.data()

}

Selecting the file concatenation function would cause the three files to be
concatenated together into a single file which could then be compiled. There
are also two special types of nodes called "recurance nodes" and "concur-
rent nodes". If we want to specify that certain computations may done in
parallel, we can place each computation node inside a "concur" node. For
instance, if we wanted to compute the following line,

Result = f6(fl,f2,f3, f4, f5)

where each of the computations f, "'" fs are to be executed in parallel, we
could construct a graph as shown in Figure 11.

The concurrent node specifies that the leaf nodes all execute concur-
rently. Presently, the implementation of concurrency is not addressed in
this system. It simply provides a mechanism to specify the presence of
concurrency (while preserving the logical structure of the graph) to a back-
end program which would read the data structure generated by VO US and
implement the concurrency. The "recurrance node" specifies that the child
nodes will be executed repetitively in a do or while loop. Again, VO US
does not implement the recurance but defers it to the back-end routines.
At present, the system merely provides the user with a visually interactive
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method of generating and viewing certain properties of algorithms. Thus,
the user may specify a"ud map the &et of dependencies generated by the
system onto any target environment in a machine independent fashion.

VO US allows for graphs themselves to be decomposed into subgraphs
and viewed as separate graphs. It allows subgraphs to be constructed on
separate pages with nodes on one page refering to graphs on another page.
This allows for the construction of ver, large graphs from simpler and
more manageable ones. Furthermore, it allows graphs to be constructed
top-down, bottom-up, or in some combination of the two. If a leaf node of
one graph refers to a graph on another page, then double-clicking on that
node will cause the system to switch to the refered graph. This process
is referred to as "pushing" a node. Likewise, graphs can be "popped" to
return to the graph containing the leaf nodes that reference them. In short,
graphs can be linked together to form arbitrarily larger and complex graphs.
The resulting data structure reflects the linkages in these graphs so that
back end functions can view such graphs as a single, monolithic graph.

Some care should be exercised in constructing graphs to ensure that no
unintentional cycles are introduced. Intentional cycles can be introduced
to implement recursive or cyclical algorithms. However, there are a large
class of applications which do not permit cycles to appear in a graph. Some
examples of these are directed acyclic graphs (also referred to as DAGs) and
trees (probably the most restrictive of commonly used graphs). VO US has
a feature which will detect the presence of such cycles and will alert the user
to their presence. The goal is to allow the user to select the type of graph
to be constructed (DAG, tree, dataflow, etc) and allow the cycle detection
feature to forbid the creation of cycles in certain graph modes.

An additional feature to aid program development is the ability to read
in makefiles and convert them to into graphs. Work is also underway to
perform the reverse function, i.e., convert graphs into makefiles. The goal
here is to eliminate the need to create makefies that must be maintained
separately from the program modules. That is to say, makefiles should
be automatically induced from the structural composition of their target
programs.

VO US does not attach a semantic significance to the names or the con-
tents of the leaf nodes. Hence, one could also view this as a way to contruct
large documents such as books or dissertations. Each leaf could consist of
chapters contained in separate files. The leaf nodes in a graph can also rep-
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resent other graphs in addition to other files. While technically, this causes
a leaf to loose its leaf status (by definition), they can still be viewed as
leaves for the purpose of simplifying the view of the graph. In this manner,
a book can consist of a graph representing all the chapters as leaf nodes
and each leaf node can consist of a graph consisting of section nodes and
so on ad infinitum.

4.6 Hardcopies

One of the strongest advantages to using a PostScript based windowing
system is the ease with which hardcopies of windows can be generated.
Because PostScript utilizes a device independent imaging model, the hard-
copy output is significantly superior to that available on even a high resolu-
tion workstation display. Virtually any document that can be created and
viewed in VO US can be printed on a PostScript based output device. The
most commonly available PostScript printers provide anywhere from 300
to 400 dots per inch r solution (dpi) while commercial typesetters provide
in excess of 4000 dpi. !n addition, VO US allows entire documents to be
scaled and translated before printing. For instance, one may choose to have
a magnified printout of a small section of a graphical documeaL.

5 The Making of VO US

VOUS is comprised of about 8000 lines of C++ [31] code and an addi-
tional 2500 lines of object-oriented PostScript code. It was written on a
Sun 3 workstation under the NeWS windowing system. NeWS was selected
as the original windowing environment due to the fact that it contains a
very powerful imaging model coupled with a very extensible programming
platform. The amount of time initially diverted to having to learn object-
oriented PostScript turned out to be insignificant compared to the amount
of time that was saved by using a very productive windowing system. In
fact, the first version of VOUS (which was a smaller subset of the current
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version) was written in C under the Sunview windowing system. This ver-
sion contained approximately 7500 lines of source code and produced an
800 Kbyte executable binary. The original features were limited to those
pertaining to the construction of directed acyclic graphs. An entirely new
editing system was then designed and rewritten for the new windowing sys-
tem and all the features mentioned above were implemented in a fraction
of the original time and resulted in an executable binary of 500 Kbytes.
The authors attribute this enhancement in productivity to (1) the extensi-
ble object-oriented window system, (2) the PostScript imaging model used
by the windowing system, (3) C++, which is not a true object-oriented
programming language but nonetheless proved to be a vastly superior pro-
gramming language to either C or Pascal, and (4) experienced gained from
the initial implementation of a directed acyclical graphic editor.

The extensible object oriented windowing system enhances productivity
since it is based on an intrepretive graphical language which includes a wide
variety of objects to aid the development of application programs. These
graphical objects can be used "as is" or can be subclassed, modified and
combined with other objects to create new objects. Unlike most window-
ing systems where there is a dichotomy between the window server and the
application programs, NeWS application programs tend to be a continuous
outgrowth of the windowing system itself. The dichotomy only appears at
the interface between the PostScript server and the host language (an in-
terface which behaves like remote procedure calls). The PostScript imaging
model allows for a very rich and powerful combination of graphics primitives
and support for typesetting. The NeWS windowing system also provides an
object-oriented extension to the PostScript language making it conform to
the SmallTalk-80 paradigm. The imaging model is made accessible through
a very simple yet complete interpretive programming language. The fact
that the language is interpretive enables designers to rapidly experiment
with the look and feel of the application program. While PostScript does
not make a very good general purpose programming language, it does make
the task of generating graphical output easier and more enjoyable.

The C++ programming language contributed greatly both to the re-
quirements of the system and the productivity of software writing [32].
While lack of multiple inheritance and dynamic binding were greatly missed,
the support for abstract data types (ADT's) and encapsulation of state and
behavior of ADT's was very useful. Also, the compiler does quite of bit of
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work to "keep the programmer out of trouble" while at the same time, al-
lowing the programmer to write programs that are as equally powerful as
those written in C. There are many other object-oriented languages such as
Trellis/Owl [33], Eiffel [34] and Objective-C [35] which could have served
equally well but were not ac'ess'ible at the time of implementation.

Since the X windowing system is a far more accepted standard than
NeWS, the authors hope to be able to port VO US to this environment in
the near future. It is also hoped that the Next Step windowing environment
will be much easier to port to since it is based on Display PostScript and
Objective-C.
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6 Conclusion

While VO US in its current form provides a great deal of functionality, it
is nonetheless intended to be the start of an ongoing evolution. With the
future incorporation of an extensible programming language, we hope a
greater proliferation of user applications will arise. A programmable user
interface will allow VO US to move quickly into the domain of end user
applications, much in the same fashion that hypertext and hypercard are
now being used. Software portals can provide a means for processing and
exchanging information over a network of distributed, heterogenous envi-
ronments consisting of information bases, computational engines, graphics
engines and a variety of other servers. The inclusion of these software
portals will enable VOUS to facilitate better communication with exist-
ing programs and provide more transparency, better communication, and
synergy of functionality among a wide variety of software design tools and
application programs.
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