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Throughout this program we have been interested in the mechanical
properties of all kinds of microelectronic thin film materials. We have studied
stresses and mechanical properties in interconnect metals, passivation glasses
and semiconductors. Most of the experimental work to date has focused on
interconnect metals and passivation glasses More work will be done on
semiconductors in the follow-on grant. The wafer curvature technique, that has
proved so useful in the study of metals and passivation glasses, will be used in
the study of semiconductor thin films. In the present report we present an up-
date on our work on the wafer curvature technique. This includes a description
of the factors that control the sensitivity of this technique as well as a report on
the efforts we have made to develop better facilities for making these
measurements.

The films present in integrated circuit structures have irregular geometries
that complicate the understanding of mechanical behavior. In particular, it is
necessary to have an understanding of the - -sses that exist in these
structures. Here we report the results of a comprehensive study of the stresses
in interconnect lines bonded to substrates. The results are presented in a form
that should permit them to be used for a wide variety of thin film stress problems.



S

Table of Contents

. S um m ary ............................................................................................................. i

II. Research Report

A. Some Issues Concerning Curvature of a Plate Relevant To .........
* Thin-Film Stress Analysis (F. von Preissig)

B. Redesigned Furnace and Ambient Gas Control for Thin-Film ....... 25
Stress Measurement System (F. von Preissig)

C. Mechanical Properties of Thin Aluminum Metallizations ............. 28
(J.F. Turlo)

0 D. Finite Element Calculations of Thermal Stresses in an ................ 32
Unpassivated Line Bonded to a Rigid Substrate (A.I. Sauter)

III. Oral Presentations Resulting from AFOSR Grant No. 86-0051 ............... 43

IV. Publications Resulting from AFOSR Grant No. 86-0051 .......................... 44

Accesion For

NTIS CRA&
DTIC TAB 0
Unannounced 0

* Justjiiation

By
Distribution I

Availability Codes

Avail and/orDist Special

V C



I. SUMMARY

A fundamental study of the mechanical properties of microelectronic thin
film materials has been conducted at Stanford University. The work was
supported by AFOSR Grant No. 6-0051. In this final technical report we
summarize all of the findings of this research program by citing the papers and
oral presentations that have resulted from the work. The interested reader is
referred to these published papers for detailed descriptions of this work. In the
following sections, we describe some of the work, done in the last year, that has
not yet appeared in print. Much of the recent progress described in this report
will serve as a basis for the work of the follow-on grant.

It is appropriate to note that before this research program began, very little
work had been done in universities on the mechanical properties of
microelectronic thin film materials. As a result, much of our early work involved
the development of experimental techniques, such as sub-micron indentation
and wafer curvature measurement, to study stresses and mechanical properties
of thin films on substrates. Interest in these developments is indicated by the
accepted publications and invited oral presentations listed at the end of this
report. The recent MRS Symposium on "Thin Films: Stresses and Mechanical
Properties" was an outgrowth of the research work started under this grant.

Throughout this program we have been interested in the mechanical

properties of all kinds of microelectronic thin film materials. We have studied
stresses and mechanical properties in interconnect metals, passivation glasses
and semiconductors. Most of the experimental work to date has focused on
interconnect metals and passivation glasses. More work will be done on
semiconductors in the follow-on grant. The wafer curvature technique, that has
proved so useful in the study of metals and passivation glasses, will be used in

the study of semiconductor thin films. In the present report we present an up-
date on our work on the wafer curvature technique. This includes a description
of the factors that control the sensitivity of this technique as well as a report on
the efforts we have made to develop better facilities for making these
measurements.
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A. Some Issues Concerning Curvature of a Plate Relevant To Thin-
Film Stress Analysis

* (F. von Preissig)

1. Introduction

0 Thin solid films of many kinds, deposited or grown onto substrates, are used

in today's microelectronic devices and for other purposes. Mechanical sti asses
in these films arise from various causes, including thermal expansion
differences between film and substrate materials, the physical nature of the
as-deposited material, and chemical or structural changes occurring in the films
upon processing after deposition. These stresses can lead to cracking or
delamination of the films and can induce dislocation formation in the substrate.
The study of film stress is also of interest as a probe of the physico-chemical
nature of the film material.

In order to experimentally determine mechanical stresses in thin films on
substrates, it is common practice to use the formula

1 6 (1 - v)h
R Et (1)

where

C = curvature of substrate; R = radius of curvature
E = Young's modulus of substrate
v = Poisson's ratio of substrate

h = film thickness

t = substrate thickness
a = film stress.

Equation (1) has been derived 1,2 for the following case: The substrate is a plate
that is thin, elastically isotropic, and (when bare) flat. The single film has
uniform thickness, much less than t, and a uniform, isotropic plane stress. The

* temperature is uniform. The maximum deflection due to bending is less than
about V2. The composite plate (substrate plus film) is mechanically free.



The films present in integrated circuit structures have irregular geometries
that complicate the understanding of mechanical behavior. In particular, it is
necessary to have an understanding of the stresses that exist in these
structures. Here we report the results of a comprehensive study of the stresses
in interconnect lines bonded to substrates. The results are presented in a form
that should permit them to be used for a wide variety of thin film stress problems.
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Hence, by measuring the radius of curvature of a fiim/substrate composite (e.g.,
by an optical lever technique), film stress can, in principle, be calculated.

In practice, however, conditions arise that completely invalidate Eq. (1),
require it to be modified somewhat, or simply call its accuracy into question,

pending further analysis. For example, if the substrate is initially not quite flat, or
if it is subjected to small, reproducible deformations other than that caused by
the film stress, Eq. (1) may apply only after the non-film-stress effects are
subtracted out, e.g., by making a reference measurement of the bare-substrate
surface profile.3 Also, thick-film and multiple-film cases are covered by
extensions to Eq. (1) that have already been derived.4.5 In this report, I examine
(mostly theoretically) some of the effects of gravity, substrate shape, film
nonuniformity, substrate crystallinity, and temperature gradients on substrate

curvature.

2. Geometric Conventions, Definitions, and Basic Formulas

Geometric conventions for the composite plate as defined in Fig. 1 are
adopted. Radial symmetry about the z axis is assumed unless otherwise
indicated.

z
t

W 
¢(r

FIG. 1. Geometry (exaggerated, diametral cross section) of a
bent, circular plate with film. a - radius, r - radial position, w -
deflection, C' - level, and € - slope. Not shown are the cylindrical
coordinate 0 and Cartesian x and y axes.

The radial slope of the deflection surface is given by

2



=(r -dw
dr (2)

For small deflections, the local curvature is

d d2w

dr dr 2  (3)

(shown positive in Fig. 1).
If, in addition, C is constant over r, then

g r

O(r) = |C(r)dr = Cr
o (4)

and
1 2w f18 = aC. (5)

The substrate, unless otherwise noted, is considered to be a thin plate

subjected to small deflections, as defined below (from Ref. 6):

In the theory of thin plates, it is customary to make the following
assumptions: (1) The plate is initially flat. (2) The material is

elastic, homogeneous, and isotropic. (3) Thickness is small
compared to area dimensions. (4) Slope of the deflection

surface is small compared to unity. (5) Deformation is such that
straight lines initially normal to the middle surface remain straight

and normal to that surface. (Vertical shear strains are neglected.)

(6) Strains in the middle surface, arising from the deflection, are
neglected compared to strains due to bending. (7) Deflection of

the plate occurs by virtue of displacement of points in the mid-
surface normal to its initial plane. (8) Direct stress normal to the
middle surface is neglected. (9) Near edges and boundaries of
loaded areas, stress resultants rather than detailed stress

patterns are considered.

The flexural rigidity of the plate is defined as

H= 
Et 3

12(1- v 2) (6)
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The biaxial modulus is

B- E
1- V (7)

The state of stress at a point is called equi-biaxial if there exists a Cartesian

coordinate system for which two of the normal stress components are equal, the
third is zero, and all shear stress components are zero; there is simply an
isotropic stress acting in one plane. In this report, biaxial stress will refer to this
isotropic stress when it is acting within, and uniform over, a given surface. The
film is assumed to have biaxial stress acting parallel to the substrate surface
and having an average value uthrough the film thickness.

The effect of the film on the composite-plate thickness and rigidity is
negligible since h << twill always be assumed. The film stress is positive when
tensile, negative when compressive. Bending moments per unit length, M, are
positive if they tend to cause positive curvature in their plane of action.

3. Effect of Gravity

In real situations, the sample is not free, but is typically supported from
below and subjected to the downward pull of gravity. The manner in which this
uniform force affects the curvature depends on the position of the support
points. If the support points are reproducible, as they are in a tripod
arrangement of pins, then the effect of gravity on a given sample is constant and
can be subtracted out by making a bare-substrate measurement. If, however,
the sample sits on a flat surface (sometimes a tripod support is impractical), the
support points will depend on the sample's warp. In this case, it is desirable to
have an estimate of the maximum change in curvature associated with a

change in support points.

Take as two extremes a horizontal, round plate (1) simply supported from

below all around its perimeter and (2) supported only at its center. With q
defined as the uniform downward force per area, the deflection of the plate for
the edge-supported case is given by 6

4



qa r 25 + v r2

*w, _ a 1 )(1+ v a 2 (8)

The deflection for the center-supported case can be calculated by
superimposing the solutions to two different loading situations, as shown in

* Figure 2.

q p= xa2q

* minus

q

equals

FIG. 2. Demonstration of the way in which the center-supported
elastic plate-bending case is derived from the superposition of
two other cases.

The result is

W9. wfter g W9.dg.

qa 4 r2 -+ v
16H, a a 1+V a (9)

The difference between the edge and center cases is

A W = , .'P - N. -'.W
=q'' [2Z In (a r 3+ v (l_ rZ)].

16H [-a 2  a-1+v a. ) (10)

The corresponding local slope and curvature, after substituting q = pgt, where p
is the substrate mass density and g is gravitational acceleration, are

5



d(Aw.)

A4~g(r) = dr

pgtar I
4H 1+ v 'a/j

_3pga 2r [1(+v)ln(a)],

Bta

d2(Aw.)
AC,(r) = dr 2

- ta + in

4H I+ v
3 pga2

: -- 11 v +(I+ v)lnI(rI.
Bt a(12)

(The mathematical singularity at r= 0 makes Eq. (12) physically unrealistic very
near the center.)

The average of ACg from r= 0 to r= ron the wafer is

AC, (r) = r AC(r) dr

1=1r[o(r) - ao(r -+ 0)]

3pga2 - (1 + v)ln( r

B? 1 (1 3a)

For the whole radius (or diameter, due to symmetry), this average reduces to

AC (a) = . Bt 2 ). (13b)

Typically, however, what cL- ',ature measurement techniques actually record is
an average curvature that is calculated as the slope of a linear regression best-
fit line for a series of measured substrate-surface slope vs. diametral-position
data poinis. If the curvature is not constant, then the measured curvature, Cm,
will not in general equal the true average [as used in Eq. (1 3a)] of C from 0 to r,

6



C (,). The theoretical value of Cm can be derived from C(r). Taking C(r) to be
the gravity effect (ACg(r)) given by Eq. (12) and using ten slope measurements

* equally spaced on a wafer diameter to calculate the measured effect, ACgm,

one can derive that

ACO./ ACg (a) = 1. 237 + 0. 237v, (14)

which equals 1.27 for a quartz substrate (v = .16) and has a maximum possible
value of 1.36 (when v = .5). The ratio Cg,mI AC g(r) is closer to 1 for

measurements spanning less than the full diameter (i.e. r< a). We will

subsequently to refer to the gravity effect in terms of ACg(a), keeping in mind

that the magnitude of the effect as actually measured would be comparable.

In determining the film stress, we may view the maximum gravity effect as a
component of the experimental uncertainty. With Co defined as the curvature
due to film stress alone, as given by Eq. (1), then

A C. (a) pga 2

* CO  2ah (15)

Note that this relative variation is independent of substrate thickness and elastic
moduli, but is a strong function of diameter. To reduce the relative gravity effect,

one can simply use smaller substrates.

Take the example of a silicon (pg = 2.33 g/cm3 x 980.7 dyne/gram-force)

substrate with a typical film having a= 200 MPa = 2x10 9 dyne/cm2 and h = .5
Im = 5x1 0-5 cm. If the substrate is a 100-mm wafer (a = 5 cm), then Eq. (15)
gives a relative uncertainty of 29%. But a = 1 cm yields a very tolerable
uncertainty of 1.1%. For a substrate of quartz (p = 2.2 g/cm3, B = 8.6x 011
dyne/cm2, v = .16),7 the relative gravity effect is slightly less than it is for silicon,

although the absolute effect is larger.

Experimental confirmation of the gravity effect theory is shown in Fig. 3. In
this case, what is plotted is -d(Awg)/dx vs. x, where x is the diametral position,

7



with the center of the substrate being at x = 0. The appropriate theoretical

equation, a modification of Eq. (11), is

d(A w) W = a 2-0+ 0 1n11 a
dx Bt2 L (16)

Experimentally, slope vs. position data for a round quartz substrate were

obtained using a laser reflection technique. The slopes that were measured
while the substrate was supported at its center by a 2-mm square were

subtracted (for each position) from the slopes measured when the substrate
was supported around its edge by a foam ring. The resulting experimental
values fit the theoretical curve quite well.

• 5 • ," . . . . . . . . .I |.5

. 4 Edge-Supported Minus Center-Supported ..

.3 quartz substrate
a2 a50.5 mm "" -3* .2 t- 546i~ I/. " 8.03x10 .3 mW1

"!0 .1 , . " 9.81x10 3  M-1
E® .1

€,0
0 Ie

.. measured
-.;2 equation (16)

-.3 ......... linear regression
- - - average curvature

-.4 "(central 81 mm)

-60 -40 -20 0 20 40 60
Position (mm)

FIG. 3. Experimental confirmation of the gravity effect on a quartz
substrate.

It should be noted, however, that plate deflection is very sensitive to the

boundary conditions, and that in this case, a uniform, simple edge support was

8



hard to achieve. This difficulty resulted in some measurements varying as much

as 30% from those shown. In fact, in an experiment in which the edge of the
40 substrate was intentionally supported at only two points, on the line of

measurement, the edge-minus-center measured curvature was 2.17x10-2 M -1,

or 2.2 times what it was with the uniform edge support. Hence the "two
extremes" of support for which the equations of this section have been derived

0 do not represent the farthest extremes of gravitational bending of an elastically-
isotropic, round substrate (to say nothing of an anisotropic or rectangular one).

Nevertheless, our analysis explains the general magnitude of the gravity effect
and shows how it varies with substrate material and size. Such knowledge can

0 be useful in the design of experiments and the interpretation of their results.

Unless a tripod support or small substrates are used, the gravity effect is likely to

be a significant source of error in determinations of film stress based on
substrate curvature measurement.

4. Effect of Shape

Many researchers doing experiments that employ Eq. (1) use round
substrates. But the substrate does not need to be round for Eq. (1) to hold, as
the simple derivation presented here will demonstrate.

A circular plate with a uniform bending moment per unit length M applied at

its perimeter deforms into a spherical cap having a curvature

C M _ 12M
HOI+ 0) St3  (17)

and an internal bending moment isotropically and uniformly equal to M. 6

Hence, a plate of any shape will deform in accordance with Eq. (17) if M is

applied to its edges, since the same boundary conditions are applied to any
internal section of the circular plate.

In a "strength of materials" analysis (employing Saint-Venant's principle) of
the effect that a thin, stressed film has on a substrate, a force (F) and bending
moment (") per unit length acting on the perimeter of the substrate are found

9



that make the resultant force and moment at the edge of the film plus substrate
equal zero, as illustrated in Fig. 4. The bending moment per unit length is
approximately

M = 1 tah -M o.2 0(18)

The force per length Fo = -oh acting at mid-plane does not affect the substrate

curvature. Substitution of Eq. (18) into Eq. (17) yields Eq. (1). Thus, under
conditions in which Eq. (1) holds for a round substrate, it also holds for a sub-
strate plate of any other shape.

> F=ah

(2)Fcrh

M- t/2"rh =tM0

FIG. 4. Model of how a thin film exerts the approximate
equivalent of a bending moment per unit length MO on the edge
of a substrate.

However, the substrate must not be narrower than about 4t, or it will cease
to bend like a plate. 8 If the width is about equal to t or smaller, beam theory
applies and Et3112 replaces H (e.g., in Eq. (17)).

Although the film effect on plate curvature is independent of the shape of
the plate, the gravity effect is not; therefore, in experiments in which the gravity
effect is intended to be subtracted out, the substate shape should be the same
for primary and reference measurements.

10



5. Effect of Nonuniform Film Thickness

0 Thin films are sometimes not of uniform thickness over the whole area of the

substrate. One way to determine the stress in such films is to cut out and

measure the curvature of a section of the sample on which the film is

approximately uniform. An alternative approach that involves using appropriate

0 averages of curvature and film thickness is applicable in some cases. This

method is explained below.

If, as illustrated in Fig. 5, a radial bending moment per unit length Mis
0 applied to an elastically-isotropic circular plate at r= r., then for r r., the slope

is8

*~~~~ L() ~.{1+ v a)fj[i(. r2  (19a)

For r_5 r.,

0 4 (r)= - M f1  2 lv 1 - l'.
H (1 + v)l -1 2 a. I(19b)

M M

FIG. 5. Radial bending moment per length M applied uniformly to a
circular plate at r = r,.

In the previous section, we saw how a uniform thin film bends a substrate as
if a force per unit length ah were applied to the surface of the substrate at its

edge, causing an edge-applied moment M = tah/2. Similarly, a circular film of
thickness h but extending only to r= r. on a larger substrate (a > r.) would apply

M= tah/2, but at r. (the film's edge) instead of at the substrate's edge. Now the

applied moment is not the same as the internal moment, even at r, ,since

reactive moments are introduced. But the applied moment is the correct

quantity to use as M in Eqs. (19a) and (19b).

11



A film having a radially-symmetric (with respect to a round substrate)
* thickness distribution h(r) can be thought of as the superposition of an infinite

number of disks of infinitesimal (positive or negative) thickness dh(r). In
analogy with the macroscopic case, each of these disks exerts on the substrate
a bending moment equal to

d M~r. td h (r.
2020dM(ro) = -- -dh ., (20)

r, being the location of the disk edge and moment application. We can imagine

building the film up sequentially, starting with a disk of radius a and thickness
h(a), then adding progressively smaller disks of thickness

dh dh
dh(r)= -dr. (dr.<0).d r. (21)

The total combined effect of these films on the slope at the edge of the
substrate is

*(a) = 0 (r = a, r. = a, M = tah(a)/2)

+ J_(r= a,r.=r., M=dM(r)
(22)

where the 0 components (here more properly Ao and do) are calculated using
Eq. (1 9a). Making the indicated substitutions yields

+ r- = tah(a) 4a [+ 1- v()J[(

4H dL 1+ v a a

*_ ta [ Jad 10a h)a 'od ,k ] ".

-2H(1+ v)1~-
= (using integration by parts)

taa [2- + [rh r
4 2H(1+ V). v )

12
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But

2 2dr= J- fr. (r.(r) dr

2 fJ2xrh(r)dr =h(a)
a (24)

where h (a) is the average film thickness over the whole area of the substrate.
The average curvature over a full radial or diametral line is

C_(a) f 1 C(r)d r = l[0(a) - O (O) ]-a
0a (25)

Combining Eqs. (23), (24), and (25) yields

tah(a) 6(1- v)ah(a)C(a)= 2H (+ v) E (26)

Equation (26) is the same as the uniform-film formula (Eq. (1)), but with a line-
average curvature replacing C and an area-average film thickness replacing h.
Rearranged, Eq. (26) can be applied to estimate aof films that are roughly
radially symmetric in thickness on a round, elastically-isotropic substrate. (If a
itself is a function of r, oh (a) is used in the equation.)

Although the complete details are not shown here, C is not constant over r
when the film is not uniform. Hence, as with gravity bending, 4'a), as defined
by Eq. (25), is not exactly equal to the slope of a linear regression fit of 4 vs. r
data, except when O(a) and O(D) are the only points used.

It also should be noted that measuring curvature over less than the full
diameter and ignoring the effect that the rest of the substrate has on that
curvature can lead to erroneous calculations of stress when there is film
nonuniformity. Suppose, for example, that a substrate of radius a has a film of
thickness h from r= 0 to r= r. and is bare (h = 0) everywhere else. Then, with M
= tah/2, Eq. (19b) gives the slope for r< r. as

13



-- 6( --v r 1-v 1 2

*Et 2  a. (27)

so the curvature for r< r. is (using Eq. (3))

C(r) 611 - 1
Et 2  \a (28)

Note that although the curvature is constant, in this case, over the area where

the film is (it varies for r> r.), its magnitude is smaller than that given by Eq.(1)

by the fraction

Q = _2v1()& (29)

For v = .16 (quartz) and r,/a = .5, this curvature reduction is 31.5%.

* FIG. 6 shows experimental verification of these equations. The bending of a

100-mm diameter barium borosilicate glass substrate (v = .28) having a 50-mm

diameter circle of silicon nitride film at its center was compared to the bending of

the substrate covered uniformly by the same film. The gravity effect and intrinsic
* substrate curviness were subtracted out of the slope vs. x data by means of a

bare-substrate reference measurement. Equation (26) predicts that the average

curvature of the nonuniform sample should be one-fourth that of the uniform

sample, since its h (a) is one-fourth as large. The experimental ratio (CB/CA, for
0 a scan slightly smaller than the full diameter) is .26. Equations (28) and (29)

predict that the curvature over the central 50 mm of the nonuniform sample

should be constant and 27% smaller than the uniform sample's curvature. The

experimental value [(CA-Cc)/CA] is 29%, with the curvature confirmed to be
0 constant. Within experimental error, the experimental and theoretical results

agree.

14



S4

.3 glass substrate, a - 50 mm

.2 A uniform film (r, = 50 mm)
(D nonuniform film (r. - 25 mm) 13

E 0 co

.
0

-. 2
-3

4
" 60-50-40-30-20-10 0 10 20 30 40 50 60

Position (mm)

FIG. 6. Experimental measurements of nonuniform film effects.
C1 - curvature of the uniform sample, C2 - average curvature
over 96 mm of the nonuniform sample, and C3 - curvature of
central 50 mm of the nonuniform sample.

Although Eq. (26) was derived assuming radial symmetry of film and

substrate, one would also expect it to apply to the case of a film that is patterned

in any manner on a small scale but uniform on a large scale over a substrate of

any shape. However, when film features are narrower than about 15h, there is

a significant amount of stress relaxation in the film, 9 so the average value of a"

will not be the same as the pre-patterned value.

6. Effect of Crystallinity

At the outset, I stated that the derivation of Eq. (1) includes the assumption

that the substrate is elastically isotropic. Yet single-crystal substrates are often

employed in thin-film stress experiments. In this section, I show that the
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anisotropy associated with certain crystalline substrates is completely
consistent with the bending described by Eq. (1). But for gravity bending and
nonuniform-film bending, the isotropic-material equations are less applicable to
the anisotropic cases.

The state of stress in an isotropic plate with a uniform applied M at its edges
(as discussed in Section 4) is given by

OAM(O - 1 2MC

t (30)

where aM is a biaxial stress parallel to the surface of the plate. When the

bending is due to the presence of a stressed thin film, then M= Mo, and there is
an additional biaxial stress 'oF = FO/t (see Fig. 4). The total biaxial stress in the

substrate is then

12 M F. ah 6 C
0 + t t t t (31)

0
and there are no other stresses. Since the slope of the substrate is very small,
the stress state at all points in the substrate is described approximately by

a= a)= a2 a)= ac.

a3 a) a4 'rY a5 rII a6 TY 0 (32)

Application of Hooke's law yields the corresponding strain state:
0

-c,=-2 B -Bt
61 = E~ai(C 1

2va'o~-- 2vah

E Et t

'V4 = = =0. (33)

The stress state given by Eqs. (31) and (32) is correct and unique (in the
linear theory of elasticity) because1 o (1) it satisfies the equations of static
equilibrium, (2) it satisfies the traction boundary conditions given " for all
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surfaces, and (3) the strains, related to the stresses by the appropriate
constitutive equation (isotropic-material Hooke's law), satisfy the equations of
continuity (compatibility).12

The generalized form of Hooke's law for elastic anisotropic media is 13

c, = spaj (i, j = 1,2,... 6), (34)

in which the s~i (= sji) are the elastic compliances of the material. In using this
equation, we shall assume that the x and y axes are parallel to the plate at an
otherwise arbitrary initial orientation with respect to elastic symmetry elements
in the plate.

The state of stress in an anisotropic substrate bent by a film is identical to
that given [Eq. (31)] for an isotropic substrate because this state again satisfies
the conditions required for a unique solution. The boundary conditions and
equilibrium equations are the same as in the isotropic case, so they are
satisfied. The equations of continuity, which equate sums of second derivatives
of strain with respect to position, are satisfied because the strain components
are simply linear combinations [by Eq. (34)] of the stress components, which
vary linearly with position 14 (making all second derivatives zero).

* The state of strain in the anisotropic plate remains to be determined.

Substituting the stresses from Eq. (32) into Eq. (34) yields, for i = 1 and 2,

el = (0,, + s2)A,,o
*C = (S2 + S2)°a.o •  (35)

Converting the compliances to engineering elastic constants,15

s11+ S12 S1, -sI( 1- V12)-
11 E, 12

S12 + 2 2 S2 2 + 1 1_(, 2 1) =
S22 Ea B21 (36)
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The rest of the strain components are

C= (S14 + s)a,.0
e =(S 1 5 + S2,)ac,0
=5 ( S16 + S26) ac°" (37)

For materials that have third order or higher rotational elastic symmetry

("polysymmetry") about the z axis, the strain state is greatly simplified. For these

materials, S22 = Si1. 16 Thus, from Eqs. (35) and (36),

'2- B12  (38)

Also, S23 = S13, SO

2v,
--= 2s 3a,. =- --V3a. 0C3 1E(39)

Finally, the compliances are such that

E4= CZ= C =0. (40)

This strain state is precisely analogous to that given by Eq. (33) for an isotropic
substrate, with B12 replacing B and S13 replacing -vE. el and as,o are constant

for rotations of the coordinate system about the z axis, hence Eq. (38) implies

that B12 is similarly invariant. (s13 is invariant for z-axis rotations for all

materials.) Thus, for substrates having z-axis polysymmetry, the curvature of

any constant-C surface is uniform and given by an analogue of Eq. (1),

specifically

C- 6ahB,2t  '(41)
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where B12 is the in-plane biaxial modulus of the plate. Values of B12 for four
cubic semiconductor crystals in (100) and (111) wafer orientations are given in
Ref. 17.

The deflection of a simply-supported anisotropic circular plate subjected to
loading normal to its surface is extremely difficult to solve analytically.18 Hence,
I do not know the precise effect of crystal anisotropy on gravity bending.
Certainly, Eq. (12) cannot describe the deflection of (100)-Si (fourth-order
symmetric) since the equation contains v separate from B, and the in-plane v

(v12) varies with 0 for this substrate.17 Even for (111)-Si (third-order symmetric),
which has isotropic in-plane E and v (also sii and S12), a radially-symmetric
deflection is doubtful because shear stresses of the type q' exist and S15 varies
with 0. Nevertheless, for the purpose of estimating the magnitude of

experimental uncertainty due to the gravity effect, the equations of Section 3
(perhaps using directionally-averaged elastic moduli) should be adequate for
most substrate materials.

The nonuniform-film deflection equations presented in Section 5 also fail to
take into account the anisotropy of (100)-Si v12. But they are probably nearly
exact for (111)-Si, since, unlike the case of gravity loading mentioned above,
only o and q2 are nonzero (at least for an isotropic substrate).

7. Effect of Thermal Gradient

In some experiments, a film on a substrate is heated while the curvature is
being measured in order to determine the effect of temperat ire changes and
annealing on film stress. Thermal gradients may exist in the substrate, and their
effect on the curvature must be considered.

We will examine the case in which the substrate has a temperature that
varies linearly from Tat the top surface to T+ ATat the bottom surface. This
vertical thermal gradient contributes directly to curvature, since the thermal
strain varies linearly with . The thermally-induced curvature, which is uniform

over r, is 2 1
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c aAT
t T (42)

where a is the thermal expansion coefficient of the substrate.

In the following examples, we will use the material parameters given in

Table 1.19,20

Table 1

Thermal Exp. Coef. (10-6 °C-1) Thermal Conductivity (W/mC)

a, 25 0C a, 700 0C A, 300 °C A, 700 0C

Silicon 2.6 4.4 136 32

Fused Quartz .50 .39 1.7 2.7

Suppose we wish to know what ATwould cause a Cth of lx10 -3 m-1, which

is a small but significant curvature change, in a .5 mm-thick substrate. From Eq.
(42), AT = Ctht' -

for silicon: .19 CO at 25 °C, .114 CO at 700 °C;

for quartz: 1.0 CO at 25 0C, 1.28 CO at 700 °C.

Let us calculate how much power must pass vertically through a round 100-

mm wafer to cause the above effects.

Heat flow rate = 14AT•A~x' (43)

A = n(.05 M)2, Ax = t = 5xl 0-4 m. The required power is

for silicon: 406 watts at 25 0C, 57 watts at 700 0C;
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for quartz: 27 watts at 25 0C, 54 watts at 700 0 C

Hence, for silicon substrates at high temperatures and quartz substrates at all
temperatures, vertical thermal gradients within the substrate will have a
significant effect on curvature unless the furnace used has a low vertical heat
flux within the compartment holding the substrate.

Horizontal thermal gradients may also exist in the substrate. They induce

thermal stresses that can alter the curvature of an already-curved substrate, but
the analysis of this effect will not be attempted here.

8. Summary

We have seen that the standard equation relating substrate curvature to film

stress is theoretically accurate under certain experimental conditions and not
accurate under others. Gravitational forces can cause a large error, but one can
circumvent this problem by using small substrates or reproducible supports.
The shape of the substrate, as long as it is a thin plate, does not affect the
curvature-stress relation. Films of nonuniform thickness are amenable to
analysis by a simple analogue of the classical curvature-stress relation in
certain cases. The crystallinity of (111)- or (1 00)-oriented cubic-material
substrates, among others, necessitates another analogue. Thermal gradients
can significantly alter substrate curvature. These pieces of information should
be valuable to researchers measuring stresses in thin films on substrates.
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B. Redesigned Furnace and Ambient Gas Control for Thin-Film
Stress Measurement System (F. von Preissig)

1. Background

Currently, we have an apparatus that measures mechanical stress in
thin-film materials on substrates. Film stress is calculated from optically-
measured substrate curvature. Ours is one of the very few systems that attempt

to heat the sample while measuring its stress. This permits in-situ monitoring of

thermally-induced changes in the film material that are reflected in the changing
stress. Although our system has proved to be an important research tool, its
heating chamber has certain inadequacies and limitations that make it
unsuitable for the new generation of experiments that should be done. I have

* designed and am building a new furnace that should eliminate the problems
and add new capabilities. This furnace is now near completion. In addition, I
have created equipment to introduce argon-diluted steam into the sample

compartment.

2. Problems With the Current Furnace

* The sample substrate sits directly on a flat graphite susceptor. Since the

substrate is not perfectly flat, it contacts the surface discontinuously and in an
unpredictable way, causing two main problems. First, the effect of gravity on
curvature, which can be large, is not constant, so it cannot be subtracted out

* using a reference measurement. Second, the sample may shift and wobble
during the experiment, adding scatter to the data, due to unstable seating.

Since heat is supplied only from below, large thermal gradients exist in the

0 sample compartment. These temperature differences probably don't affect the
sample temperature much when the substrate sits on the graphite (containing
the measurement thermocouple). However, in order to counter the gravity and

stability problems, the substrate would need to sit on a tripod slightly above the
* graphite surface. But when this is done, the sample temperature differs

significantly from that measured by the thermocouple (40 CO at 400 °C). For

25



most studies of kinetic processes, even ten-degree errors are not tolerable.
Temperature gradients are also responsible for gas-density fluctuations, which

• deflect the laser beam, and can induce thermal-strain curvatures in the
substrate.

The sample is exposed to insulation material within the gas-tight
* compartment. This configuration reduces ambient gas (e.g., argon) purity.

3. Description and Capabilities of the New Design

The new furnace, shown schematically in Fig. 1, has a fused-quartz inner
chamber, including a gas-tight seal. Hence, the ambient gas remains pure, and
reactive gases such as oxygen and steam may be introduced.

Surrounding the quartz on all sides (leaving an optical opening) is a
thermally-conductive graphite sheath, heated from above and below. This
arrangement will essentially eliminate thermal gradients in the sample

* compartment.

The sample substrates rest on quartz tripods within the chamber, thus
sustaining a constant, subtractable gravity effect and attaining seating stability.

* Since there are no thermal gradients, the sample temperature is accurately
measured (at least in the steady state) by a thermocouple probe in the sample

compartment.

* The furnace opens in such a way that samples can be inserted and
removed (by means of a vacuum chuck assembly) quickly while the furnace is
hot (see Fig. 2). Samples will heat up to a constant annealing temperature in
about a minute instead of the 10-20 minutes currently possible. Annealing

0 temperatures up to 990 0C will be possible.

The ambient-control system shown and described in Fig. 3 complements
the new furnace's capability of handling steam for use in solid-gas reaction

0 experiments.
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FIG. 3(b). Gas control symbols.



All-Dry Md

For experiments requiring an inert-gas ambient, helium and argon can be

used. Typically, the furnace is purged of air by helium (A) immediately after

sample insertion. The high thermal conductivity of helium minimizes the time it

takes for the sample to reach furnace temperature. After the temperature has

stabilized, valve B is used to switch from helium to argon (C) flow, and argon is

used for the remainder of the experiment. The inert-gas flow rate is controlled

by flowmeter D. After leaving the furnace, inert gases percolate through
silicone oil in the bubbler to eliminate back-diffusion of air into the furnace. The

gas pressure in the furnace is always approximately one atmosphere.

Steam/Dry Mode

Pure steam is produced when de-ionized water from a storage tank situated

above the apparatus flows through flowmeter E at a controlled rate and is
vaporized at the same rate in the boiler. The steam can be diluted a desired

49 amount by argon controlled by flowmeter F. A separate argon cylinder (G) is

used for this purpose to prevent possible contamination of house argon by
water vapor. To reduce contamination of this cylinder, a plug valve (H) is

closed when no diluent argon is flowing. Diluent argon and pure steam mix at
0 junction I. The portion of this mixed gas to be used in the long term is controlled

by needle valve J. The rest either exits to the exhaust vent or is shunted toward
the furnace for use as an initial purge, depending on the setting of valve K. The

four-way valve (L) allows an instantaneous switch to be made between wet and
* dry gases flowing through the furnace (with the gas not currently selected going

directly to the exhaust). Valve M is used to send dry gas through the bubbler

and wet gas directly to the exhaust.

FIG. 3(c). Gas control operation.



4. Planned Experiments

Studies have begun on the following material processes: (1) Densification

and flow in borophosphosilicate glass (BPSG) films upon annealing. (2) Water

diffusion in BPSG films exposed to wet and dry ambients at various

temperatures. (3) Crystallization in amorphous silicon films upon annealing. It
may also be possible to monitor wet oxidation of silicon in-situ. Preliminary

results indicate that the associated stress changes are large and can be used to

learn about the kinetics of these processes.
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C. Mechanical Properties of Thin Aluminum Metallizations

(J.F. Turlo)

As the dimensions of integrated circuits continue to shrink, an
understanding of the mechanical properties of thin films becomes ever more
important to device manufacture, operation and reliability. Several methods

0 have been used to study thin film stresses. The variation of film stress with film

thickness has been monitored by measuring the deflection of thin cantilever

beams which act as the substrate during deposition. X - rays have frequently
been used to measure the elastic strain of the substrate and this can be related

0 to the stress in the film. Also, lasers have been used in several ways to
measure sample curvature, which can also be related to the stress in the film.

At Stanford, a laser based curvature measurement system has been
* designed for quick and convenient acquisition of thin film stress data. A laser

beam is aimed at a mirror that is mounted on a shaft whose rotation angle can

be precisely controlled. The beam then travels to the sample. As the shaft
rotates, the laser beam sweeps across the sample. In addition, the beam

* passes through a lens so that the beam will strike the sample at the same
incident angle regardless of shaft angle. After reflection from the sample, the

beam passes back through the lens which focuses it onto a position sensing
photodiode. The sample curvature is obtained from a plot of the shaft angle

• versus the photodiode signal. A single curvature measurement at room

temperature can be made in about 10 seconds. The system can also heat a

sample to 450 °C at 0 to 10 degrees per minute.

0 The system has a theoretical resolution of 25x1 0-6 m-1 , which corresponds

to a surface with a 40 kilometer radius of curvature. In practice, the system
displays a resolution of 1 X 0 -3 m- 1 or a 1000 meter radius of curvature. The

corresponding stress resolution is about 10 MPa but is sample dependent. The
0 overall system accuracy is roughly 5 %. A typical curve of stress versus

temperature obtained with this system is shown in Figure 1.
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Figure 1. A typical plot of stress versus temperature for a 1 micron
Al - 1% Si film on a silicon substrate. The open diamonds
are heating data and the filled diamonds are cooling data.

During heating, the stress changes by elastic deformation until a
temperature and compressive stress are reached that cause significant plastic
flow. The maximum compressive stress attained is about 120 MPa which
corresponds to about 17 ksi. Bulk aluminum samples typically yield between 5
and 15 ksi. During cooling, no notable elastic range is discernible but, the flow
stress in tension increases with decreasing temperature. A change in slope is
seen at about 2500C, which could be due to precipitation of silicon. The feature
is more apparent in samples that contain copper.

The results in Figure 1 are complicated by the fact that stress is a function
of both temperature and time. But, isothermal tests can also be performed. A
typical stress relaxation curve is shown in Figure 2.
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Figure 2. Stress relaxation data for a 1 micron aluminum film on a
silicon substrate.

The advantage of an isothermal test is that the data can be cast into a

standard rate form and compared to bulk data. In doing so for several samples,

the stress at a given strain rate is seen to be higher for thin film aluminum,

implying a higher resistance to plastic flow than in bulk samples. However, the

data is sparse and somewhat inconsistent. In fact, the log of stress was plotted

against the log of time for many isothermal tests to determine the stress

exponent in the simple equation,

ip C an

but the resulting exponent, n, varied between 7 and 40.

The inconsistencies in the above data could be caused by the furnace
which suffers severe wear and distortion during thermal cycling. At times, the

temperature has been found to be inaccurate by as much as 10 %. Another part

of the problem could be that the system can only accurately resolve a stress of

10 MPa. The stress in Figure 2 only varies 80 MPa in 24 hours at one third of
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the melting point of aluminum while tests at higher temperatures may begin at
only 50 MPa and vary by only 20 MPa. Lower temperature tests cannot be
performed.

Consequently, a system has been designed and is being built that will
allow a wider range of testing conditions with improved accuracy. The design
specifications include heating and cooling capabilities between -500C and
8000C at -200C to 200C per minute. The theoretical resolution is over 100
kilometers but, the actual resolution will be much less. The expected stress
resolution is less than 1 MPa with an accuracy of better than 1%.

Typical factors influencing the mechanical behavior of metals include
composition, grain size and structure but, thin films have also shown
dependence on film thickness, presence of oxides and interface quality. The
stress in a 0.2 micron thick aluminum film has been found to be 600 MPa, which
is five times the stress in a 1 micron thick film. And, as noted, precipitation
hardening seems to play some role in film strength but the effect has not been

quantified.

In an effort to obtain a greater understanding of the mechanisms goveming
the strength properties of aluminum thin films, a more complete study will be
conducted using the new curvature measurement device. General thermal
cycles, as in Figure 1, and isothermal tests, as in Figure 2, will be performed
over a range of film parameters to determine the magnitude of their effect. In
addition, isothermal results can be related to bulk data and established
deformation mechanisms.
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D. Finite Element Calculations of Thermal Stresses In an

Unpassivated Line Bonded to a Rigid Substrate
0 (A.I. Sauter)

1. Introduction

Stresses develop in integrated circuit structures during processing and
service as a result of a variety of effects. Thermal expansion coefficients of

neighboring materials may be sufficiently different that temperature changes
produce significant stresses. Also, adjoining materials may react in such a way

* that the product phases have a volume which differs from that of the reacting

phases. This, too, results in the generation of stresses. In addition, stresses
develop naturally in epitaxial films when their lattice parameters differ from that
of the substrate. In short, there are many possible sources of stresses in

0 integrated circuits. These stresses can lead to plastic flow, cracking, void

formation, and eventually failure of the circuit. It is therefore of interest to know

the magnitudes and concentrations of such stresses.

* Considerable attention has been focussed on the stresses in continuous
thin film layers. Stresses in thin films arising from epitaxial, thermal and growth
mechanisms have been well studied and are generally understood. However,

thin film materials used in integrated circuit technology are almost exclusively
0 found not as continuous films but as patterned films. Thus it is of interest to

study the stresses as they develop in irregular, patterned structures.
Interconnect metals are particularly susceptible to thermal stresses, because

their thermal expansion coefficients are so much greater than all of the other
* materials involved. The other materials are usually covalently bonded

insulators and semiconductors and have similar thermal expansion coefficients,

while the thermal expansion coefficients of the metals can be up to an order of

magnitude larger. For example, one of the most widely used metallization

* materials is aluminum. Its thermal expansion coefficient is 23.6x10 -6 / oC, while

that for Si is about 4x1 0-6 / 0C.

It is important to understand how stresses in patterned films differ from

* those in continuous films. As yet, the stresses in patterned films have not been

measured or characterized in a comprehensive way. It is often difficult to
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calculate the expected stresses under a given set of conditions because of the
often complicated geometries involved. However, the finite element method

* can be used to find the thermal stresses in these cases [1].

2. The Finite Element Method

* The finite element method is used in the present work to find the
distribution of stress in a long line of film bonded to a rigid substrate and
subjected to a thermal strain. The geometry involved and a sample mesh are
shown in Figure 1. The thickness of the line is h and its width is w. Calculations

*1 have been made for width to thickness ratios of w/h = 2, 4, 6, 8, and 10. Note
that the y-z plane is a plane of symmetry for the line, so the mesh only covers
the right half of the line. The left half of the line is simulated by the boundary
condition that there be no x displacements on the plane x = 0. Also, two

0 dimensional plane strain elements are used in the mesh. The strain in the z
direction is taken to be zero; this naturally causes azz stresses to develop in the

line.

* The MARC finite element program was used to solve the problem of

thermal stresses in a long thin line bonded to a rigid substrate. The meshes
used were generated using the MENTAT program. The material properties of Al
and a temperature change of -4750C (from 5000C to 250C) were used in the

0 calculation, but the results presented have been normalized to make them
material and temperature difference independent. In order to test whether the
meshes were fine enough to give accurate results, the element size was refined
by a factor of two; the results were not significantly different. It was concluded
that the original meshes were sufficiently fine to show the important features of
the stress distributions in the lines. All calculations were made using a
VAXstationll/GPX computer.
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Figure 1. (a) A schematic of the geometry of the problem. The y-z
plane is a plane of symmetry. (b) A sample mesh for an
aspect ratio of w/h = 8. The boundary conditions are
shown. Note that the left half of the line is omitted due to
symmetry.

3. Plane Stress vs. Plane Strain

In 1949, Aleck [2] numerically solved the problem of thermal stresses
induced in a thin rectangular plate clamped along one edge. The current
problem is very similar to Aleck's problem, except that Aleck used plane stress

conditions for his plate while the more suitable condition for a long thin line is
plane strain. Plane stress calculations were also made in order to compare

them with the previous numerical results. Figure 2 shows the distribution of
transverse thermal stress, ixx, in a line with an aspect ratio of w/h = 10. The

plane stress numerical results of Blech and Levi [3] obtained using Aleck's

method are compared with the finite element results. Good agreement between

the two methods is found. The main difference between the two is that the finite
element results do not show the stress at the interface (y/h = 0) returning to zero

at the edge of the line, but rather indicate a sharp increase in stress. In fact the
stress calculated at that point should depend on the path used to approach the
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point [4]. It should be zero, as Aleck shows, if the point is approached from
outside the line, or along the outer edge of the line. However, it may have some
other value if approached from inside the line, as a singularity exists there. So
the discrepancy is probably due to a difference in calculation paths. Thus,
except for this point, we conclude that the finite element method can give an
accurate solution to this problem.

2.0 *

Numerical and FEM Results
Transverse Stress (w/h = 10)

1.5

1.01.
. y/h,numerical

[- 0.00.5 0.25
0.5 • 0.5

0 0.75
13 1.0

0.0
FEM

-0.5

0 1 2 x/h 3 4 5

Figure 2. A comparison of numerical and FEM results for the plane
stress case, showing the transverse stress in a line of w/h
= 10 aspect ratio. The numerical results are those of
Blech and Levi [3].

For both the plane strain and plane stress cases, the stresses are
normalized by the value of uxx that would exist in the center of the line at the

interface between the line and the substrate if the line were very wide. These
values are computed as follows: For the case of plane stress (Ozz = 0), Oyy = 0

because there is no constraint in the y direction (Figure 3(a)). Since the line is
perfectly bonded to the substrate,at the interface the total strain in the x direction
must be zero, hence: Exx,elastic = "cxx,thermal. By Hooke's law,

* 8xx, elastic = E - v(E yy +aOz)] = (1)
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where E is Young's modulus of the film, and v is Poisson's ratio. The thermal

strain is given by -ActAT, where Aa is the difference in thermal expansion
coefficients between the film and the substrate, and AT is the difference
between the initial and final temperatures. Thus the transverse stress-at the
center of a wide line is given by

XX = EAaAT (2)

For the case of plain strain, ayy = 0 as before, but azz = axx, since the middle of

a long wide line should behave exactly like a thin film, and therefore have a
biaxial stress state (Figure 3(b)). As before,

=- V((y +0 0
xx, elastic E zz)J E (3)

so for the case of plane strain, the expected stress is given by

a- E Aa ATS(l-v) (4)

Thus, it is expected that near the center of a wide line the transverse stress
for plane strain will be larger than for plane stress by a factor of 1/(1 -v). This
prediction is borne out by the finite element results, as for both plane strain and
plane stress the normalized transverse stress approaches 1.0 at the center of
the line as the line width increases. In all of the figures showing normalized
stress, the normalization factor is given by equation (2) for plane stress and
equation (4) for plane strain.

Aleck's results have been used by others [5,6] to describe stresses in thin
film structures, however these authors left the calculation in plane stress form.
Although it is possible to approximate the plane strain results by dividing the
plane stress results by (1 -v), the exact form of the stresses cannot be obtained

by this procedure.
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plane stress paesri

(a) (b)

Figure 3. (a) Aleck's geometry, suitable for plane stress
calculations. (b) The geometry of a line of metallization,suitable for plane strain calculations.

4. Results

* The transverse, shear, normal, and longitudinal stresses (Gxx, Oxy, Oy and
azz) are shown for a line with aspect ratio w/h = 6 in Figure 4. They are plotted
for five different values of y/h. With the mesh that was used, it was not possible
to calculate the stresses at y/h = 0 and y/h=1, so the results are given for y/h =

0 0.00704 and y/h = 0.993 instead. Thus the stresses at the interface and at the
top surface of the line are not known exactly. The transverse stress, Figure 4(a),
approaches its expected value at the center of the line near the interface. The
stress drops to zero at the edge of the line (x/h = 3) except near the interface,

0 where there is a singularity.The shear stress, Figure 4(c), is zero at the top of the
line, becoming larger as one approaches the interface and having a maximum
at each y value near the edge. At the interface, the shear stress appears to
have a singularity at the edge. Again, this may be a matter of calculation path,

0 or it may be that there is a turn toward zero in this curve that is so near the edge
it is impossible to detect with the FEM program in use. The normal stress,
Figure 4(b), is very small for three-quarters of the width of the line, reaches a
maximum near the edge and returns to zero, except for at the interface where

5 there is an apparent singularity as with the other components. The longitudinal
stress, Figure 4(d), is fairly constant throughout the width and height of the line,
except for the sharp rise near the edge at the interface, and its value is very
near the biaxial normalizing stress.
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3
Normalized Transverse Stress (w/h =6)
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Figure 4(a) Normalized transverse stress at various y/h values for an aspect ratio of
w/h=6. The normalization factor in all cases is [E/(1 -v)]AaAT. All of these
stresses are calculated under plane strain conditions.

5 Normalized Normal Stress (wlh ='6)
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~2 0.00704
*0.25

* .0.5i

0.7

0 
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Figure 4(b) Normalized normal stress at various y/h values for an aspect ratio of
w/h=6. The normalization factor in all cases is (I-v)]AaAT. All of these
stresses are calculated under plane strain conditions.
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Figure 4(c) Normalized shear stress at various y/h values for an aspect ratio of
w/h=6. The normalization factor in all cases is [E/(1 -v)]AaAT. All of these
stresses are calculated under plane strain conditions.

4

Normalized Longitudinal Stress (w/h = 6)
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Figure 4(d) Normalized longitudinal stress at various y/h values for an aspect ratio of
w/h=6. The normalization factor in all cases is [E/(1 -v)]AaAT. All of these
stresses are calculated under plane strain conditions.
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Figure 5 shows a comparison of the transverse, normal and shear stresses
0 at y/h = 0.5 for the five different aspect ratios. The transverse stress clearly gets

closer to the normalizing value as the aspect ratio is increased; this is to be
expected, as a wider line more closely approximates a film than does a narrow
line. Also, it can be seen that the percentage of the line across which the stress

* is approximately constant increases with line width, being around 25% for the
w/h = 2 line and closer to 50% for the w/h = 10 line. It is evident that for the
normal stress the influence of the edge extends about one line height into the
line, so that for the w/h = 2 line, the normal stress varies greatly across the

0 whole line, whereas for the w/h = 10 aspect ratio line the stress is approximately
constant and close to zero between x/h = 0 and x/h = 4 , and there is only
significant variation between x/h = 4 and x/h = 5. Also note that the maximum
value of the normal stress does not change for aspect ratios greater than w/h =

0 4. The shear stress variations extend farther into the lines than do the normal
stress variations, but again the maximum value of the stress does not change
much for the wider lines. The negative values of shear stress are expected,
since a compressive thermal strain is imposed.

5. Conclusions

The finite element method has been shown to be an accurate way of
calculating stresses in thin film structures. Furthermore, while a fairly simple
geometry was used in this paper, it would not be difficult to extend the method to
complicated structures and to include passivations and compliant substrates.
Numerical solutions to problems of this sort would be extremely cumbersome.

It has been shown that as line widths decrease, thermal stresses vary
across larger percentages of the line, so that for a w/h = 2 line the stress cannot
be taken as constant across any of the line. The current frontiers of integrated
circuit technology require smaller and smaller line widths, so it is ever more
important to learn about the stresses in these lines. The current calculations
should provide useful information about the distribution of these stresses.
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1.4 Effect of Aspect Ratio on Distribution of

1.2 Transverse Stress in the Line (y/h = 0.5)
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Figure 5(a). Comparisons of transverse stresses at y/h = 0.5 for five different
aspect ratios.
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Figure 5(b). Comparisons of normal stresses at y/h = 0.5 for five different aspect
ratios.
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0.

Effect of Aspect Ratio on Distribution of
Shear Stress in the Line (y/h =0.5)
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Figure 5(a). Comparisons of shear stresses at y/h = 0.5 for five different aspect
ratios.
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