P EIEUENpIRE S

AD-A206 048

DISCRETE EVENT SIMULATION
MODEL DECOMPOSITION
THESIS -

Scott R. Matthes
Captain, USAF

AFIT/GOR/ENS/88D-13

DEPARTMENT OFVTHE AIR FORCE -
" AIR UNIVERSITY '

NOLOGY

'AIR FORCE INSTITUTE OF TECH

Wright-Parterson Air Force Base, Chio

DISTRIBUTI ST

Approved for public release;
rj-tribution Unlimited

"89 3 29 o6%

AFIT/GOR/ENS/88D-13

DISCRETE EVENT SIMULATION
MODEL DECOMPOSITION
THESIS

Scott R. Matthes
Captain, USAF

AFIT/GOR/ENS/88D-13

Approved for public release; distribution unlimited.

DTIC

ELECTE
- MAR 2 0398'3«

cr
H

AFIT/GOR/ENS/88D-13

DISCRETE EVENT SIMULATION MODEL DECOMPOSITION

THESIS
Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment fo the
Requirements for the Degree of

Master of Science

DIIC TAB
Unannoinzead

For

Accension
RTIS (RAXL E

Justificatica !

a
a

Scott R. Matthes, B.S.

LDy

Captain, USAF e

December 1988 E 9’ ‘

Approved for public release; distribution unlimited.

Sl tpikution/

5 ~
Litity Cndey

waljior

e .

S O S

Acknowledgements

This thesis is a result of the efforts and encouragements of many
people. I would like to thank all who contributed. Special thanks are
due to my thesis advisor, Major Kenneth Bauer, for his significant
contributions and insights into this research. My reader, Dr. James
Chrissis, also merits thanks for his efforts in making this thesis a
readable document.

I also would like to thank my wife, Denise, for helping me to put
things in proper perspective. Her gentle nudges to work harder were
needed when I was approaching the burn-out stage. 1 also want to thank
my father, mother, and little sister for their support during these past
19 months.

Most of all, I want to express my gratitude to the Lord Jesus
Christ for His mercy and faithfulness. It is indeed true that "the
faithfulness of the Lord endures forever" (Psalm 117:2b). Praise the
Lord!

Scott R. Matthes

ii

Table of Contents

Acknowledgements . ¢ . ¢ 4 ¢ v v 4 e v e e e e e e s

List of Figures . . « « « v + « o« & o o o« o o

List of Tables . . . « . « v « v ¢« ¢ ¢« ¢ v o« 0

Abstract . « « v 0 0 0 0 0 e e e e e e s

1. Introduction o v o0 0.
Background e e v e h e e e e e .
Problem Specification

IT.

I1I.

Iv.

Scope of the Problem . « + + +« « + « «
Research Objectives
Overview . o v ¢ ¢ v ¢ ¢ o« o 0 4 e e e e

Literature Review and Background

Introduction . « « v ¢« v ¢« ¢ ¢ ¢ ¢ ¢ o 4 e
Related Literature and Background . . .

Methodology « « v ¢ ¢« ¢« v ¢« ¢ ¢« s ¢ v 4 4 4 o

Introduction . . . & « ¢ ¢« ¢ « ¢« ¢ ¢ 4 . e
Decomposition Procedure . . « « ¢« « « + o« .
Automating the Procedure « « « + . .
Diagnostics . ¢« ¢« v ¢ 4 v 4 e 0 e 4 e e e
Syntax Requirements . . « ¢« « « ¢« o ¢« o o &

Analysis of Example Transition Specifications . .
A Simple Example « « « ¢« 4 ¢ ¢ o .
A More Complicated Example
A Brief Examination of Time-Based Signals

Findings . ¢« o o . ¢ 0 o s . .

Conclusions .+ ¢« « +v o o+ v & « o s o 4 o »
Recommendations . « « + ¢« ¢« ¢« « « v v 4 .

Appendix A: How to Implement the Computer Program .

Appendix B: Repairman Example Transition Specification

Appendix C: Repairman Example Diagnostics

Appendix D: Repairman Example SAS Input File

iii

Page

ii

vi

vii

b L O =

14
14
14
18
25
29
34
34
40
46
49

49
50

52
56
58
61

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

Bibliography

Vita . .

K:

L:

Repairman Example SAS Qutput File
Manufacturing Example Transition Specification .

Manufacturing Example Diagnostics

Manufacturing Example SAS Input File .

Manufacturing Example SAS Output File

Time Based Example SAS Input File

Time Based Example SAS Output File .

Computer Program Code

iv

Page
62
71
73
79
81
94
95
98

115

117

List of Figures

Figure Page
1. Simple Directed Graph . . ¢« ¢« v ¢ ¢ v v ¢« ¢« ¢« o s v e e e 9
2. Sampie SAS File . & v v v v v v vt e e e e e e e e e e e e 26
3. Network Representation of Repairman Example 36
4. Network Representation of Manufacturing Example 44

List of Tables

Table Page
1. Rotated Factor Loadings . « « v « o« ¢ ¢« o o o & ¢ o o « o 10
2. Types of Statements . . .+ + 4 ¢« ¢« ¢ ¢« vt ¢ o 0 w00 e 16
3. Repairman Example Nodes .+ . . . ¢« v ¢ ¢« ¢ v ¢ o o o o « o 35
4. Rotated Factor Pairings (Example 1 - Case 1) 35
5. Rotated Factor Pairings (Example 1 - Case 2) N . 38
6. Rotated Factor Pairings (Example 1 - Case 3) . 39
7. Repairman Example Factor Names . . « « + « ¢ ¢ « o o o ¢ « o 39
8. Manufacturing Example Nodes « ¢« « ¢« ¢ ¢« ¢« v « « « & 41
9. Rotated Factor Pairings (Example 2 - Case 1) 41

10. Rotated Factor Pairings (Example 2 - Case 2) 42

11. Rotated Factor Pairings (Example 2 - Case 3) 45

12. Manufacturing Example Factor Names ¢« « + ¢« « « « + & 46

13. Rotated Factor Pairings (Time-~Based Example) 48

vi

AFIT/GOR/ENS/88D-13

2 Hd bro, L g
W L pbstrace

This research focused on interpreting a discrete event simulation
model’s condition specification primitives and their associated
actions. A network representation was created using these condition
action pairs (CAPs) as network nodes. The arcs, or edges, of the
network represent information being transferred such as specific
attributes of the CAPs. This network representation was decomposed into
smaller networks, or sub-networks, by taking advantage of the structure
of the network. The structure of the network was translated via a
software interface into an edge-incidence matrix (E-matrix). The E-
matrix was then transformed into a pseudo-covariance matrix (C-matrix).
The C-matrix was used in the creation of a SAS data set which served as
the input necessary to do principal components analysis. Two examples

were used to demonstrate this procedure.—1‘$UL:SLL§5, (;FLL1§>

vii

DISCRETE EVENT SIMULATION MODEL DECOMPOSITION

L I. Introduction

Background

h ’%imulation models are currently being used for a multitude of
purposes. Some simulation models are concise and well organized thereby
facilitating their usage. However, some of these models may be quite
lengthy and complex which causes development costs to rise beyond an
acceptable level. The creation of an effective development environment
has helped to eliminate this problem. Tools which are used to support
modeling and analysis have been incorporated into this environment.

Such an environment uses a model specification language which has

condition specifications as its basic constru%fg, Condition

T

specifications an?/fifjf’figggigjed»actf6ﬁ§‘are called condition action
pairs (CAPs).)

< One distinct advantage of using these condition specifications is

that it allows the developer of a discrete event simulation to establish
an intermediate form of the simulation while the simulation is being
developed. This intermediate form is a bridge between the conceptual
stage and the executable stage. When progressing from the concept of
the simulation to its intermediate form, objectives of the simulation
are identified. Each objective necessitates the completion of one or
more processes. The particular steps of these processes need to then be
established. At this time, the condition specifications of these steps

1

are constructed, and the complete simulation is formulated as a single
model. This intermediate form is useful in determining if there are
errors in the design of the simulation. Finding errors early in the
development of a simulation is both cost effective and time efficient
for the developer.

Another use of this intermediate form is in establishing the
structure of the model., The condition specifications can be transformed
into a network representation. A network representation can then be
developed directly from the definitions of the systems and objectives of
the simulation. This network representation allows for the building of
a run-time-efficient implementation as well as the design of statistical
analysis procedures. A network representation can be obtained by
expressing the CAPs as network nodes. This network representation will
then be decomposed into smaller networks, or sub-networks, to take
advantage of the structure of the network. The arcs, or edges, of the
sub-networks represent information that is being transferred, such as
specific attributes of the CAPs. The structure of each sub-network is
translated into an edge-incidence matrix (E-matrix), and this E;natrix
is converted into a pseudo-covariance matrix (C-matrix). The C-patrix
can then be used in the creation of an IMSL or SAS data set. Computer
aids are not generally available for this type of procedure. However,

once this procedure is completed the data set will then be used as the

input necessary to analyze the network and its structure.
Currently, a network representation of a simulation can only be
accomplished by a non-automated effort. For even relatively small

networks, this manual effort is extremely labor intensive. Upon

2

completion of the development of the network representation, the network
can be decomposed. The decomposition of the network is also a laborious
task. Because of the degree of manual effort involved in this entire
process, errors are likely to occur. These errors obviously make the
results inaccurate and can, in fact, render the entire effort useless.
If the errors are not discovered, as is often the case, potentially
misleading work on the simulation continues.

Once the simulation has been properly decomposed, analysis can be
performed to identify the sub-networks. This analysis usually requires
mathematical and/or statistical software. To use these software
packages, information obtained from the structure of the sub-networks
must be manually transferred to a file and formatted to be compatible
with the software package that provides the computations.

Problem Specification

Representing a discrete event simulation model’s condition
specifications and their associated actions as a network is an error-
prone, labor-intensive process. Analysis of the network representation
necessitates examining the structure of the network and its sub;
networks. This analysis is often inaccurate due to the size,
complexity, and/or sophistication of the network.

Scope of the Problem

This research focuses on interpreting a discrete event simulation
podel’s condition specifications and their associated actions. This
procedure was translated into a computer program to facilitate its use.
One statistical procedure, principal components analysis, was used for

the analysis phase.

A simple existing simulation model was used for gathering
preliminary information. A computer program was then developed to
automate the procedure of interpreting the CAPs. A more complex model
was then used as a test case upon completion of the computer program.
This was done to verify the program’s ability to create a network
representation of a simulation model and determine its structure.

Research Objectives

The primary objective of this research was to represent a discrete
event simulation model as a network and then decompose that network into
sub-networks. The structure of the network representation was
translated into an edge-incidence matrix. This entire process was
accomplished by means of a computer program. This program will greatly
aid the analysis of the discrete event simulation model.

A secondary objective of this research was to develop some basic
error checking techniques to ensure the accuracy of the condition
specification and its network representation. Diagnostics generated by
the computer program provide information necessary to correct any
deficiencies that are discovered, such as storing information tﬁat is
not used anywhere in the model.

Overview

This research reviewed literature concerning the concepts of model
decomposition and computer specification language. A model
decomposition methodology was then developed and translated into a
compute. program. Two examples were then decomposed and analyzed to

demonstrate the effectiveness of the methodology and the computer

program. Potential areas of related research were also identified in

this research.

I1I. Literature Review and Background

Introduction

The concept of model decomposition is but one major area that
provided insight into potential methods for pursuing this research.
Other areas of interest include computer specification language and
computer assisted modeling. Network theory was also applied throughcut
the solution process. Information on network structures and methods of
their decomposition prove to be beneficial in this research.

Related Literature and Background

Formal logic has been used in the field of mathematics for problen
solving to enhance the creation of prototype models. Defined
relationships between entities allows for the use of a specification
language in model definition. The specification language facilitates
the rapid development of prototypes by combining object programming and
logic programming (de Freitas and others, 1986:844-849).

Two early attempts to automate the formulation of a discrete event
simulation model led to the development of an expert system. The first
attempt led to a prototype system that used formal logic but was not
flexible. This inflexibility led to the second prototype system which
used a more informal approach (Doukidis and Paul, 1985:79-90). The
experience obtained from these efforts helped to alleviate potential
problems. While some constraints are to be expected when using a
computer program, such as an expert system, minimizing the degree of
awkwardness and the inconvenience to the user is a major consideration.

To create the computer program to interpret condition specifications,

some syntax requirements will be necessary. However, these will be as
flexible as possible.

The idea of using a model development environment (MDE) was
introduced to try to alleviate some of the modeling costs. This was
done by bridging the gap between the model as it was conceived and the
actual executable representation of the model. As a result, condition
specifications are well defined in this approach (Overstreet and Nance,
1985:190-201). This set of condition specifications was one of the
cornerstones for this research. Pre-defined conventions were observed
to the greatest extent possible.

A model development environment is used for rapid prototyping in
the requirements specification phase. The operating system and hardware
are major parts of this environment and can be thought of as a first
layer of the MDE. A kernel MDE is a second layer to be followed by a
minimal MDE and then the MDE itself (Balci, 1986:53-67).

The Conical Methodalogy can be used in evaluating software
development methods. This methodology entails analyzing the objectives,
principles, and attributes of a discrete event simulation lodel; The
manner in which these elements are linked together is evaluated as a key
component of these software development methods. The method is compared
with the software tools available that comprise the environment (Nance,
1987:38-43). Despite the fact that this was initially developed for
lar#e-scale simulation model development, the concepts are applicable in
part to smaller models.

A method developed to represent modular discrete event models in
distributed simulator architectures was extended to facilitate modular,

7

hierarchical model specification. These specifications are transformed
into a logical form called abstract simulator architecture (Zeiglar,
1985:3-7). This architecture can be evaluated to shed light on the
decomposition of the network representation of the CAPs into modules or
sub-networks.

Once the CAPs have been decomposed into their primitives and
properly interpreted, the network representation is complete. A
framework was then designed to facilitate statistical analysis.
Principal components analysis, & special case of factor analysis, allows
for finding the linear combination of factors that explains the greatest
part of the variance in the data. This was the method of statistical
analysis used. Usually the magnitude of the eigenvalues obtained from a
correlation matrix determine how many factors are to be considered
significant.

Kaiser developed a criterion which is the most frequently used
method for determining the number of factors to retain. This criterion
states that components whose eigenvalues are greater than unity should
be retained. However, this research uses a covariance matrix iﬁstead of
a correlation matrix because all of the units in the system are
identical, allowing more information to be obtained from the results.
The numerical value of the information is not converted into a range
from -1 to +1. Instead, the values of the covariance matrix are used.
These values represent actual information in the network
representation. Also, the values in the covariance matrix have
dimensions associated with them. This enhances the interpretability of
the results. Because the covariance matrix was analyzed, Kaiser’s

8

criterion was not used. Instead, the number of factors to be retained
was based on a specified percentage of the variance of the data
explained. Component loadings were used to determine which factors were
significant and what attributes comprise these factors (Dillon and
Goldstein, 1984:23-107).

This method is demonstrated using a simple directed graph as in
Figure 1. Arcs represent information that is being transmitted from one

node to another. These arcs are used in the formulation of an

Figure 1 - Simple Directed Graph

edge-incidence matrix (E-matrix). The E-matrix can be converte& into a
pseudo-covariance matrix (C~matrix) where C = E - ET. Different C-
matrices may be obtained by applying various weighting schemes to the
problem. This might be done to account for the number of arcs going
from one node to another or to account for the amount of information
being passed along the arcs. Weighting schemes are translated into a
weight matrix (W-matrix). When this is done, C = E *+ W ET. If no
specified weighting scheme is used, the W-matrix defaults to the
identity matrix. Once a C-matrix is obtained, factor analysis can then

be used to determine the principal components of the system. In this

9

example, a pseudo-correlation matrix was used. Therefore, the number of
factors to be retained was determined by using Kaiser’s criterion.

Three factors are retained. Using the varimax rotation during factor
analysis yields the factor loadings shown in Table 1. Three nodes load
on each of the factors, as circled in the table. Notice that the nodes
that load on each factor interact heavily with each other. These
factors defines the structure of the network. These interactions
illustrate how this directed graph can be decomposed into three distinct
sub-graphs. This information provides a low complexity solution to the

model decomposition problem (Bauer and others, 1985:185-188).

Table 1. Rotated Factor Loadings

Node Factor 1 Factor 2 Factor 3
1 .08294 .08294 . 75994
2 -.02441 -.02441 .80475
3 -.02441 -.02441 .80475
4 . 75994 .08294 .08294
5 .80475 -.02441 -.02441
6 .80475 -.02441 -.02441
7 .08294 75994 .08294
8 -.02441 .80475 -.02441
9 -.02441 .80475 -.02441

The CAPs are composed of condition specifications and their
associated actions. The condition specification is an attempt to relate
a general description to a formal set of guidelines. These condition
specifications are either Boolean expressions or time-based signals.

The condition specification primitives are the basic constructs which
make up the formal set of guidelines. The primitives can be treated as
statements in a computer language. Each primitive has a specific

10

function with which it is associated. An example of a CAP is the
following statement:

When Alarm(end_repair)
In this case, "When Alarm” is the name of the primitive, and the
function "end_repair"” is a time-sequencing condition. Initialization
and termination primitives must be present when formulating a series of
CAPs to be interpreted. Each primitive must be written in a specific
manner using precise punctuation. This syntax facilitates the
interpretation of the primitive (Nance and Overstreet, 1986:1-14).
Nance and Overstreet illustrate this concept with an example. This
example was used as a test case for the computer program that was
developed in this research.

One means of measuring the complexity of a simulation model is by
using the control and transformation metric. This metric uses a network
representation and is based on the number of arcs and variables that
communicate between nodes. Model complexity (MC) is defined as:

MC =i£1(2 x Rwi + 1.5 % Wi + Ri) * Ai / N
where

number of variables in node i read and written

ol

x
[N

]

¥W. = number of variables in node i writen only
R. = number of variables in node i read oniy
A. = number of arcs entering or leaving node i
N = total number of nodes
This metric may be of interest in the network decomposition process

(Wallace, 1987:597-602).

11

An example of using condition specifications as the bridge between
the conceptual model and the executable model is derived from the
illustration of Computerized Manufacturing Systems (Lenz and Talavage,
undated:3-8). This illustration provides for a moderately in-depth
application of condition specifications. Doubly-subscripted variables
are the norm, and triply-subscripted variables are not uncommon in this
derived set of condition specifications. This led to an opportunity to
use different weighting schemes based on the amount of information,
contained within the subscripts, communicated between nodes when
obtaining the C-matrix (Talavage, 1986:1-3). This example of condition
specifications was used as a second test case due to its level of
complexity.

Properly diagnosing condition specifications is important. Because
this diagnosis is not automated, errors may be overlooked. Thus, it is
important to automate diagnostic functions to ensure that the condition
specifications are properly interpreted. Three primary categories in
which automated diagnostic support is needed are analytical functions,
comparative functions, and informative functions. Analytical fﬁnctions
aid in determining the existence of a property of a model
representation. Comparative functions measure the differences among
multiple model representations. Informative functions yield
characteristics that can be extracted or derived from model
representations (Nance and Overstreet, 1987:590-595). The research
herein provides automated support in the diagnostic areas of analytical
and informative functions. The analytical functions addressed are
attribute utilization, attribute consistency, and connectivity. The

12

informative functions addressed are attribute classification and
decomposition.

Using a computer specification language facilitates model
decomposition. Methods of model decomposition currently exist that were
used in this research. The decomposed network can then be analyzed
using available statistical techniques. A methodology that combined

these aspects was developed and formed into a computer program.

13

III. Methodology

Introduction

A methodology was developed to decompose a discrete event
simulation model. The first step was to interpret the model’s CAPs.
After this interpretation, a network representation was developed. This
network was then analyzed using principal components analysis. This
process was then automated by developing a computer program to perform
the steps of this methodology.

Decomposition Procedure

A condition specification for a model consists of interface
specifications, object specifications, report specifications, and
transition specifications. The interface specifications identify the
input and output attributes. Attributes record information about the
objects of the simulation that are needed for the model. They also have
values assigned to them to account for changes in the state of the
associated objects. Object specifications consist of the object name, a
list of attributes associated with the particular object, and a -range
for each of the attributes. Report specifications are produced to
provide information about the behavior of the model. Because the
complexity of the data collection and computation process varies, the
form of this specification is not prescribed. Transition specifications
are made up of ordered pairs called condition action pairs (CAPs). The
transition specification may also include a set of functions which are
used to simplify expressions in both the conditions and actions., The
construct of ordered pairs is a property which facilitates the
decomposition of a discrete event simulation into a network

14

representation. Each CAP has a condition and an associated action. If
the condition of the CAP is true, then the associated action occurs.
The action continues to occur until the condition is no longer true.
Several CAPs may have conditions which are true at the same time. CAPs
that have identical conditions are grouped into an action cluster
(Overstreet and Nance, 1985:190-201).

Interpreting CAPs is the foundation for decomposing a discrete
event simulation into a network representation. This process begins by
determining the type of attribute used in a transition specification
statement.

The three types of attributes that exist in the transition
specification are control, input, and output attributes. An attribute
is a cont:ol attribute of an action cluster if it appears in the
condition expression of the action cluster. The first statement in an
action cluster is a CAP. The condition of the CAP is either a "WHEN" or
"WHEN ALARM" statement. By identifying the statement as the beginning
of a new action cluster, the attribute in the statement is determined to
be a control attribute. The input attribute is an attribute th;t
affects one or more output attributes of the associated action cluster.
Output attributes of an action cluster are those attributes which can be
changed by the actions within the action cluster.

Consider the following simple action cluster:

WHEN ALARM(need_re-stock);

quantity :== quantity + resupply;

END WHEN;
The attribute "need_re-stock” is a control attribute. When this
condition exists, this action cluster will become active. The first

15

A A

v

"quantity" in the second statement is an output attribute. Its value is
incremented (changed) by the action that occurs within this action
cluster. The second statement has two input attributes -- "quantity"
and "resupply.” Both of these input attributes affect the value of the
attribute "quantity" on the left side of the assignment statement (the
second statement in this action cluster).

In addition to an assignment statement, several other types of
statements may exist in a transition specification. The statements
which can be identified by the computer program developed in this

research are summarized in Table 2.

Table 2. Types of Statements

Statement Syntax

Assignment output :== input expression

Set Alara SET ALARM(alarm name[[argument list]], time delay)

Create CREATE(object typel[, object id])

Destroy DESTROY(object typel, object id])

When Alarm WHEN ALARM(alarm name expression|[, parameter list})

New Node {name of a new action cluster to follow}

Comment any statement that does not follow the above
conventions

Each action cluster can be thought of as a node in a network
representation. Each attribute within an action cluster is identified
as being part of the composition of a node. After each action cluster
has had all of its attributes identified, communication between action
clusters is determined. Communication occurs when the value of an
output attribute of a node is used in another node’s control or input
attributes. These communications are represented as arcs in a network

16

representation. The value of the attribute that is being communicated
® represents the information that is flowing along the arcs of the
network.
The network representation can be represented in an edge-incidence
e matrix (E-matrix). The dimension of the E-matrix is the number of nodes
by the number of arcs or edges. Each column of this matrix consists of
two ones and the rest zeroces. The ones are placed in the rows
o corresponding to the nodes which the arc connects. If two or more
columns are identical, then all but one of them are discarded. This
vields an E-mpatrix in which all of the columns are unique. An example
o of an E-matrix in which nodes one and two, one and three, and two and

three communicate is:

O b
— O
- — O

where each column represents an edge, and the rows represent the
different nodes.

® Once the E-matrix has been constructed, the network representation
(NR) can be derived by the equation NR = E ET. It is often désirable
to apply a weighting scheme to the network representation equation to

® account for various features of the network such as the number of arcs
between two nodes or the amount of information being passed between two
nodes. The dimension of the weighting matrix (W-matrix) is the number

® of edges by the number of edges. The W-matrix is a diagonal matrix.
Thus, the generalized network representation equation becomes NR = E « W

. ET. If no weighting scheme is desired, an identity matrix can be

17

assumed as the W-matrix. This allows the generalized network
representation to be used.

The resulting NR-matrix is symmetric and positive semi-definite,
Because of this, it can be treated as if it is a pseudo-covariance
matrix (C-matrix). Eigenvalues and their associated eigenvectors can be
extracted from this C-matrix. Using the eigenvalues, an examination is
made to determine if it is feasible to reduce the dimensionality of the
C-matrix. This examination is performed by using principal components
analysis. The Statistical Analysis System (SAS) software was used to do
the principal components analysis. The results of the principal factors
analysis were interpreted in an attempt to shed light on the inherent
structure of the network representation.

Automating the Procedure

This decomposition process was automated by developing a computer
program. This program was written in the language BASIC. The major
reasons for choosing this language were the language’s ability to
manipulate strings of data, the researcher’s familiarity with the
language, and portability. This program was developed on an IB&/AT-
compatible personal computer running under MS-Dos 3.20.

This program was developed in three stages that directly parallel
the decomposition process. These stages were 1) identify action
clusters and their associated attributes, 2) create a network
representation from the information obtained in the first stage, and 3)
create the appropriate C-matrix to analyze using principal components

analysis.

18

The transition specification, which is in a standard ASCII text
file, is read by the program to identify the action clusters and their
associated attributes. Each line of the transition specification is
categorized into one of the statement types given in Table 2. The type
of statement is identified by examining the characters in the
statement. The entire statement is read into one variable. After this
is done, a search is made for strings of characters that uniquely
identify the statement type. This is accomplished by searching for key
words that appear in each statement type. For example, the string "WHEN
ALARM" only appears in a "WHEN ALARM" statement. In this manner the
statement types are identified. For an assignment statement, the string
":=2=" js the object of the search. The beginning of a node is
determined by finding a "{" character. Once the "{" has been found, the
expression inside the braces is assumed to be the name of that
particular node. If the line of the transition specification being
examined is not one of the statements found in Table 2, then the
statement is considered to be a comment statement.

If the statement is identified to be from Table 2, the att;ibutes
of the statement are then identified. This is also done by examining
the characters in the statement. If the statement is a "WHEN" or "WHEN
ALARM" statement, the control attribute(s) is identified according to
the syntax of the statement. Input attributes may be present in these
two statements if the condition is given as an expression. If the
statement is an assignment statement, the output attribute is to the
left of the assignment indicator (":=="). Input attributes are to the
right of the assignment indicator. It is quite possible to have more

19

than one input attribute in the same statement, particularly when the
input side of the statement is given as a mathematical expression. The
"CREATE" statement has only one attribute and that is an output
attribute. Likewise, the "DESTROY" statement has one attribute;
however, this is an input attribute. The "SET ALARM" statement contains
both output and input attributes. The alarm name is an output
attribute, and the time delay is an input attribute.

When an attribute is found, it is entered into an array of
attributes. This is a three dimensional array consisting of the node in
which the attribute is found, the type of attribute that is found, and a
number representing the specific occurrence of that type of attribute in
that particular node. This is done so that it is possible to determine
which attributes are passed from one node to another.

After all of the attributes of a transition specification have been
obtained, the network representation of the transition specification is
created. To create the network representation, the arcs between the
nodes need to be established. This is accomplished by taking an
attribute from one node and checking all of the other nodes for’a
matching attribute. If a match is detected, the type of attribute is
checked to ensure that communication is viable. Viable communication
occurs when an output attribute matches a control or input attribute of
another node. However, matching attributes do not communicate with each
other if they are the same type (ie, both output) of attribute. Input
and control attributes do not communicate with each other because

neither attribute causes a change in the other.

20

Once all of the arcs have been established, the E-matrix is
created. The E-matrix (nodes by edges) is initialized as a zero
matrix. A specific column of the E-matrix is associated with each arc
as the arc is identified. Rows are identified with the nodes in the
network. Thus, E(2,5) represents the value of node two ana edge five.
A value of one is placed in the element if it corresponds to one of the
nodes that is being connected by the arc for the given edge. If the
same arc is identified more than once, only one column is placed into
the E-matrix. Duplicate arcs are temporarily discarded. The network
representation is obtained by matrix multiplication; NR = E ET.

The C-matrix is obtained by using the generalized network
representation formula, NR = E * W ET. This is also a simple matrix
multiplication operation. The W-matrix (edges by edges) is initialized
as a zero matrix. The element of the W-matrix that provides a weight
for a particular edge is the element that is on the diagonal of the W-
matrix and is in the appropriate column. For example, if the third edge
needs to have a weight of two, then the element W(3,3) = 2. Each weight
is determined and then placed in the diagonal of the W-matrix. .

This research allows for the application of three different
weighting schemes. The first case is the simplest; the identity matrix
is used as the W-matrix (W1 = I). The resulting NR-matrix {(nodes by
nodes) yields a general description of the network. The elements on the
diagonal of the matrix indicate the number of nodes with which a
particular node communicates. For example, if element NR(3,3) = 5, then
node three communicates with five other nodes in the network

representation. Off-diagonal elements indicate whether or not

21

communication exists between the node represented by the colusn and by
the row. In this case, the element is either a one or a zero, a one
indicates that communication exists. The sum of the elements of a row
or column, excluding the element on the diagonal, is equal to the
element that is on the diagonal in that particular row or column.

The sccond weighting scheme (W2) examined in this research takes
into account the number of attributes that are communicated between two
nodes. While the E-matrix consists of only one entry for a specific
edge, the diagonal of the W-matrix is the nuamber of occurrences of that
particular edge. Suppose that nodes one and three form the fifth edge
in the E-matrix. If three different attributes are communicated from
node one to node three, then the element W(5,5) = 3. The NR-matrix that
results from using this weighting scheme is similar to the NR-matrix
that resulted in the first case. The elements on the diagonal of the NR-
matrix indicate the number of arcs that communicate to and from the
particular node associated with the element. For example, if element
NR(4,4) = 7, then seven arcs exist between node four and the other
nodes. Unlike the previous case, off-diagonal elements may havé any non-
negative value. If, for example, element NR(4,2) = 2, then two arcs
exist between node two and node four. This indicates that two different
attributes are being passed between these nodes. As in the previous
case, the sum of the elements of a row or column, excluding the element
on the diagonal, is equal to the element that is on the diagonal in that
particular row or column.

The third weighting scheme (W3) examined in this research takes
into account the actual number of pieces of information being passed

22

throughout the network representation. Subscripts are often used to
indicate how many of a particular attribute exist. In a transition
specification, these subscripts are often generalized by using a
variable as the subscript. Subscripts are identified as part of the
attribute. Usually, the communicating attributes have the same
subscripts. On occasion, however, they do not match exactly. When this
happens, the subscript of the control or input attribute is used instead
of the subscript that is associated with the output attribute. This is
because only the quantity of information used in the control or input
attribute is needed regardless of how much information of a particular
kind is available. Suppose that aircraft[i] is an output attribute and
that aircraft(1] is a control attribute, Only the value of aircraft[1]
would be passed along the edge connecting the nodes of these

attributes. If all of the subscripts in a transition specification were
equal to one, then this weighting scheme would be the same as in the
second case. The W-matrix is formed as in the pievious case except that
the number of pieces of information transferred along each arc is taken
into account instead of merely counting the arcs. If three arcg exist
between nodes two and six, then the quantity of each arc’s information
is added together and placed on the appropriate diagonal. For example,
suppose aircraft[i), pilot[j], and loadmaster[k) are the attributes
being passed from node two to six. Now suppose that in this particular
case i = 3, j =4, and k = 5. Suppose further that the eighth column in
the W-matrix represents the edge existing between nodes two and six; the
value of element W(8,8) = 12. The NR-matrix that results from using
this weighting scheme is similar to the NR-matrix that resulted in the

23

—

second case. The diagonal elements of the NR-matrix indicate the number
of pieces of information that are communicated to and from the
particular node associated with the element. For example, if element
NR(7,7) = 17, then 17 pieces of information are being communicated
between node seven and the other nodes. Off-diagonal elements may have
any non-negative value. If element NR(7,5) = 3, then three pieces of
information are being passed between nodes seven and five. Again, the
sum of the elements of a row or column, excluding the element on the
diagonal, is equal to the element that is on the diagonal in that
particular row or column.

Once the NR-matrix is obtained, it is used as the basis for the
principal components analysis. The NR-patrix is actually the C-matrix
used in this analysis. For this analysis, SAS will be used. This
necessitates that the C-matrix be placed in a file that can be used by
SAS. Two options exist for this. The first option is to merely create
an ASCII data file that contains the C-matrix. In this case, the file
that causes SAS to perform the principal components analysis must read
in the data file. The second option is to create a SAS file th;t
contains the C-matrix without having to call it in from another file.
This research utilized option two because it is simpler to transfer one
file than two. The need for this will be discussed shortly.

The SAS software has a procedure for doing factor analysis. In
this procedure is an option that enables an analyst to do principal
components analysis. Several principal component options are included
in the SAS file that are needed for analyzing the obtained C-matrix.
The first option used is to specify that a covariance matrix is to be

24

analyzed rather than a correlation matrix. This covariance matrix is
the C-matrix. The correlation matrix derived from the C-matrix could be
used, but because all of the entries in the C-matrix are based on the
same units, the covariance matrix is used. Another option used is the
"number of factors to be retained" feature. This is used in lieu of
Kaiser’s criterion because a covariance matrix is being used. The
computer program that creates the SAS file asks the user to input this
number. The last option used in the SAS file is a varimax rotation.
This option yields a set of rotated component loadings. This is useful
because it prevents all of the component loadings from loading on the
first few factors. This rotation maximizes the variance explained by
each of the factors. These component loadings are then examined for
interpretation. This aids in the explanation of the network being
considered.

An example of the SAS file that is created by the computer program
is given in Figure 2. Any lines that begin with an asterisk are comment
lines. Comments are used to remind the user which type of weighting
scheme was employed for this particular SAS run. They are also.used
when the weighting scheme accounts for each piece of information as the
comment statements identify the value given to each of the subscripts.
Diagnostics

Two ASCII files in addition to the "NODE.CMP" file will be found in
the currently logged directory of the user’s computer when the program
has finished executing. These files, "INF.DAT" and "ERRORS.DAT", aid

the user in interpreting the results from the computer progran.

25

OPTIONS LINESIZE = 80;
x;

*ExE;

x;

DATA CONDSPEC;

INPUT N1 N2 N3 N4;

CARDS;
2110
1 2 0 1
1 0 1 0
01 01
PROC PRINT;

PROC FACTOR Cov NFACTORS = 2 ROTATE = VARIMAX ;
VAR N1 N2 N3 N4;

Figure 2. Sample SAS File

The file "INF.DAT" contains information about the network
representation of the transition specification. Each attribute is
listed and the edge that it forms is given by the numbers of the
associated action clusters (node numbers) for reference. The type of
attribute is also given in this file. A numbering system has been
established for convenience. Control attributes are identified by the
number one. Input attributes are identified by the number two,'and
output attributes are identified by the number three. The number of the
attribute type is listed next to the node number of the associated
attribute. Also given in this file is the number used in the W-matrix
that corresponds to the specified edge. If the same edge is encountered
more than once, the number corresponding to the last time an edge is
found will be used in the W-matrix. Notice that two numbers for the W-
matrix are given per attribute. The first of these is the value used in
the second weighting scheme, and the second is the value used in the

26

third weighting scheme. No number is needed for the first weighting
scheme because the identity matrix is used. An example of what an entry
in this file looks like is

aircraft) 3 1 7 3 4 27
In this case, the attribute "aircraft" is found in nodes three and
seven. In node three, it is a control attribute. In node seven, it is
an output attribute. The number four represents the fourth occurrence
of the edge connecting nodes three and seven. The number 27 represents
the quantity of information being passed along this particular edge. At
the end of the "INF.DAT" file is listed the number of unique edges that
exist in the network representation.

The file "ERRORS.DAT" contains error messages that have been
generated throughout the course of the computer program’s execution.
This program identifies two types of inconsistencies so that the user
will have the information necessary to make sure that he has a valid
transition specification. In this research, a valid transition
specification is defined to be a transition specification in which there
exist no unmatched attributes. Unmatched attributes are attribﬁtes that
do not form an edge anywhere in the network representation. Attributes
that are key words or 1e2serve words are exempt from this restriction.

The first type of inconsistency that is recorded in the error file
deals with subscripts. Subscript errors occur in two distinct ways.

The first way in which a subscript error can happen is if an attribute
that creates an edge does not have the same dimensions in both of the
connecting nodes. For example, attribute "automobile[i,j]" is
incompatible with attribute "automobile[i]" because the former is two

27

C

dimensional and the latter is one dimensional. Should this occur, it

® must be concluded that one of the attributes is incorrect, and an error
message is written to the error file. This message lists the attribute
with the subscripts and the two nodes involved in the edge. The message

® also lets the user know that this is a fatal error because it results in
an incorrect assessment of the transition specification. Even though
this is a fatal error, the program will continue to run. This allows

® the user to have a complete error file so that he may make all of
necessary changes at one time.

The second way in which a subscript error can occur is when the

® subscript does not agree in the connecting nodes. For example,
attribute "part{[i]" does not have exactly the same subscript as
attribute "part{j]" does. This may or may not be by design. Because

o this may be what was intended, a warning message will be written to the
error file indicating that the subscripts are not an exact match.
However, the user must determine the accuracy of the statements in the

® transition specification. One case where this may be what is desired is

when a numerical value is given in a subscript. Attribute "part[i]" may

actually communicate with "part{3]" in the transition specification.

® This edge will not be considered in the case where both subscripts are
different numbers. For example "part([2]" does not communicate with
"part[3]" in this environment.

® The second type of inconsistency recorded in the error file exists
when an attribute in a node does not communicate with another node
anywhere in the transition specification. This may occur because the

Py user changed the name of the attribute in the middle of his work and

28

failed to change all occurrences of that attribute. Perhaps a more
likely reason for this error is that a typographical error was committed
when entering the transition specification. When this inconsistency is
discovered, the name of the attribute is written to the error file. The
node where this attribute is located is given for reference. The type
of attribute (control, input, or output) is also given. This is not
considered a fatal error because this inconsistency may or may not be
intentional. It could result from neglecting to include an attribute in
with the key words or reserve words that should have been put into one
of these categories. The computer program continues to create the
desired network representation until completed.

Syntax Requirements

It was the intent of this research to keep the syntax requirements
of the transition specification to a minimum. Another goal was to keep
them in harmony with previously published requirements. Any changes
made were for the reason of creating a standardized requirement or
simplifying an existing requirement. One major requirement is that each
statement end with a semicolon. This convention is used becausé it
greatly simplifies locating the end of a statement. The basic syntax
requirements are listed in Table 2. However, a more in depth
explanation of them is given in this section.

Subscripts are placed in square brackets, [], for ease of
interpretation. This is so that they can be readily distinguished from
called routines such as "poisson(time)" and statements such as "WHEN

ALARM(load_cargo)" which use parentheses. If an attribute has more than

29

one dimension, no space is used between the subscripts. For example,
"part[i,j]" is acceptable whereas "part{i, j]" is not.
The assignment statement is relatively free formatted. The

”

assignment indicator is ":==" for this statement. Usually a space
precedes and follows the assignment indicator. On the left of the
indicator is the attribute to which a value is being assigned. The
value is on the right of the indicator. This value may be a numerical
value or an expression involving attributes. The expression may use -,
+, ¥, or / as operators. If the expression will not fit on a single
line, a second line may be used with no continuation character
necessary.

The "SET ALARM" statement is more complex than the assignment
statement. This statement is distinguished by the "SET ALARM" which
occurs at the beginning of the statement. The parameters that are
associated with the statement are included in parentheses. There is no
space between the "M" and the "(" in this statement. The first
parameter in the statement is the name of the alarm to be set. This is
an output attribute and may, of course, contain subscripts. Thé second
parameter is the length of time required to set this alarm. This may be
a numerical value or an attribute. If it is an attribute, it is of the
input variety. A ", " separates these two parameters. Notice that a
space exists after the comma. Both of these parameters are required in
this statement.

The "CREATE"” and "DESTROY" statements are nearly identical to each
other. The "CREATE" statement is distinguished by the word "CREATE"
which occurs at the beginning of the statement. The word "DESTROY"

30

indicates that particular statement. Two parameters are included inside
parentheses. Again, no space is allowed between the opening parenthesis
and the last letter of the word preceding it. The first parameter is
the object or attribute that is being either created or destroved. This
attribute is given without the subscript. The second parameter is the
subscript that is associated with the attribute. Again, a comma
followed by a space separates the two parameters. However, in this case
the second parameter is not required. If it is not used, simply place
the closing parenthesis after the first parameter. Do not place a comma
after the first parameter in this case. An output attribute is
associated with the "CREATE" statement, and an input attribute
corresponds to the "DESTROY" statement.

The "WHEN ALARM" statement is distinguished by the words "WHEN
ALARM"” at the beginning of the statement. Its parameters are enclosed
in parentheses with the same restrictions as the other statements. The
first parameter is an expression involving an attribute. This
expression may be given in two forms. The first form is merely naming
the attribute. For example, "WHEN ALARM(eject{i]);" enables this action
cluster whenever "eject[i]" is encountered. The second form of the
expression involves relational operators. For example, "WHEN
ALARM(eject[i] = 2);" enables this action cluster when the value of
"eject[i]” = 2. A space precedes and follows the relational operator.
Two conditions may be in the same statement if connected by an

ampersand. For example, "WHEN ALARM(eject[i] = 2 & fire[i] = true);" is

a valid statement. A space precedes and follows the ampersand. The

attribute on the left of the operator is a control attribute while the
) one of the right is an input attribute.
A statement that is related to the "WHEN ALARM" statement is the
"WHEN" statement. However, this statement does not use parentheses. It
o does have a conditional expression that activates the statements in the
action cluster. This expression follows the same syvntax as in the "WHEN
ALARM" statement. It also may have two conditions in the same
o statement.
A new action cluster or node is distinguished by an opening brace,
{, at the beginning of the statement. What follows the brace is taken
® to be the name of the node. A closing brace, }, designates the end of
the node name. If the node is the initialization or termination point
in the transition specification, it should be so named. When the node
@ names "Initialization" or "initialization" or "Termination" or
"termination" are found, the action cluster is disregarded in the
decomposition process. This is because often these nodes communicate
® with a majority of the nodes merely to start or finish the simulation.
Therefore, these nodes lend no structure to the model. This pha:se of
the syntax structure is slightly different than what has been done in
o the past. However, it does not deviate from the former conventions to
an extent that this researcher considered unacceptable.
Comment statements are the last type of statement to be
® considered. This is a free formatted statement with one exception. It

cannot conform to the syntax of one of the previously discussed

statements. These statements are read by the computer program but not

® considered in the decomposition process.

The methodology developed in this research was tested using two
different transition specifications. The results from the testing,
given in the next chapter, verify the procedures that were used in this
technique. A simple guide on how to use the software developed can be

found in Appendix A. The actual BASIC code is listed in Appendix L.

33

IV. Analysis of Example Transition Specifications

Introduction

Two example transition specifications were decomposed in this
study. The first example was a simple transition specification which,
when represented as a network, consisted of six nodes. The model in the
second example had 15 nodes in its network representation. In each of
these examples, the three different weighting schemes were used vielding
three distinct C-matrices for each example. The C-matrices were then
independently analyzed using principal components analysis.

The simple example was also used to examine the effects of
considering the time delay involved in the flow of information from one
node to another. In this brief look at how time affects the network
structure, the only time delay taken into account was the delay incurred
from the setting of an alarm until the alarm was activated.

A Simple Example

The first transition specification examined was the Repairman
Example (Nance and Overstreet, 1986:11). The transition specification
was slightly modified so that it conformed to the syntax required to
utilize the newly developed decomposition software. This transformed
transition specification can be found in Appendix B.

The program provided the diagnostics given in Appendix C. An
illustration of the network representation for this transition
specification is given in Figure 3. The action clusters or nodes for
this transition specification were defined as shown in Table 3 below.
When prompted for a subscript value, the value five was used. This is
the number of facilities in the simulation. Each of the weighting

34

schemes was used (option seven of the matrix multiplication menu). The
SAS file that was created by the software is given in Appendix D. This
file was uploaded to a Vax 11/785 using Xmodem protocol. The SAS file

was executed and yielded the results given in Appendix E.

Table 3. Repairman Example Nodes

Node Node Name

1 Failure

2 Begin repair

3 End Repair

4 Travel to idle

5 Arrive idle

6 Travel to facility

For the first of the three matrix multiplications (E : E’), four
factors explained 92.21 percent of the variance of the model. Three
factors explained only 75.24 percent of the variance, so four factors
were retained for the analysis. After the varimax rotation, the nodes

that loaded on each factor are shown in Table 4.

Table 4. Rotated Factor Pairings (Example 1 - Case 1)

Factor Nodes
1 End repair, Arrive idle
2 Failure, Begin repair
3 Travel to facility
4 Travel to idle

The six nodes have been decomposed into four factors which when
interpreted provide insight into the structure of the network
representation. The "Arrive idle" node occurs when the repairman has

completed all of the repair work that has been called in, arrives at his

35

Figure 3.

Network Representation of Repairman Example

36

office, and is waiting to go on another call. The fact that this node
is paired with "End repair" makes perfect sense. One possible name for
factor one is "Finished work orders” because the two nodes combined
represent just that. The second factor combines the "Failure" and
"Begin repair" nodes. This is logical because the beginning of a repair
is quite dependent upon the time that the system fails. '"Work needed”
is a possible name for the second factor. This is because work is
required when a system fails and when the repair process is started.
Because factors three and four have only one node associated with them,
a simple way to name these factors is just to retain the node name as
their factor name.

The number of factors chosen was based on retaining the fewest
factors which would sufficiently explain the structure of the network.
This explanation included a lngical interpretation of the factors as
well as explaining a reasonable amount of the model’s variance. More
than one SAS run was made to acquire this information. When nodes
loaded consistently on factors in more than one SAS run, a degree of
structure was indicated in the model. |

For the second of the three matrix multiplications (E «+ W2 :+ E’),
three factors‘?xplained 83.98 percent of the variance of the model. Two
factors explained only 69.70 percent of the variance, so three factors
were retained for the analysis. After the varimax rotation, the nodes
that loaded on each factor are given in Table 5.

Notice that in this case, the "Failure" node does not load on any
factor. This node had weak loadings on the first and second factors,
but never had a loading with a magnitude greater than or equal to 0.5

317

which was used as the criterion for factor loading. As in the previous
case, factor one is comprised of the "End repair"” and "Arrive idle"
nodes. This factor can again be labeled as the "Finished work orders"”
factor. The second factor in this case combines the "Begin repair" and
"Travel to facility” nodes. This is reasonable because the beginning of
a repair depends on when the repairman travels to the facility where the
repair work is needed. "Work needed" is again a possible name for the
second factor. This is because work is still outstanding while a
repairman is traveling to the repair site and when the repair process is
started. Because factor three has only one node associated with it, the

obvious choice for a factor name is the same as the node name.

Table 5. Rotated Factor Pairings (Example 1 - Case 2)

Factor Nodes

1 End repair, Arrive idle
2 Begin repair, Travel to facility
3 Travel to idle

For the third of the three matrix multiplications (E :« W3 ; E’),
three factors explained 86.63 percent of the variance of the model. Two
factors explained only 71.65 percent of the variance, so three factors
were retained for the analysis. After the varimax rotation, the nodes
that loaded on each factor are given in Table 6.

As in each of the previous cases, factor one is comprised of the
"End repair" and "Arrive idle" nodes. This factor can again be label as
the "Finished work orders"” factor. The second factor in this case
combines the "Travel to idle" and "Travel to facility"” nodes. This is

38

logical in light of the fact that a repairman will often have to go to
his office to await a call. Once a call is received, he then must
travel to the facility to do his job. "Between work orders" is a
possible name for the second factor. The third factor "Failure" and
"Begin repair" has an obvious relationship. These two nodes combine
into a factor which could be called the "Time awaiting repairman”

factor.

Table 6. Rotated Factor Pairings (Example 1 - Case 3)

Factor Nodes

1 End repair, Arrive idle
2 Travel to idle, Travel to facility
3 Failure, Begin repair

The three different weighting schemes used in this simple example
provide similar, although not exactly the same, results. The factors
may be compared in Table 7. The factor names could very well have been
something else as they are merely an interpretation of the rotated
factor pairings. These factors break the network representatioﬁ of the
transition specification into sub-networks which could be used as a
means of distributing work load in the development of the full

simulation model.

Table 7. Repairman Example Factor Names

Factor Case 1 Case 2 Case 3

1 Finished work orders Finished work orders Finished work orders

2 Work needed Work needed Between work orders

3 Travel to facility Travel to idle Time awaiting repairman
4 Travel to idle

39

A More Complicated Example

The second transition specification examined was the computerized
manufacturing systems model (Talavage, 1986:1-3) or Manufacturing
Example. The transition specification was modified so that it conformed
to the syntax required to utilize the newly developed decomposition
software. This transformed transition specification can be found in
Appendix F.

The program provided the diagnostics given in Appendix G. Despite
the fact that several fatal errors occurred, the analysis was continued
because this research was not concerned with the correctness of the
simulation, but rather with illustrating how a simulation can be
decomposed. An illustration of the network representation for this
transition specification is given in Figure 4. The action clusters or
nodes for this transition specification were defined as shown in Table
8. When prompted for a subscript value, the value five was used. Each
of the weighting schemes was used (option seven of the matrix
multiplication menu). The SAS file that was created by the software is
given in Appendix H. This file was uploaded to a Vax 11/785 using
Xmodem protocol. The SAS file was executed and yielded the results
given in Appendix I.

For the first of the three matrix multiplications (E + E’), six
factors which were retained for analysis explained 81.96 percent ;f the
variance of the model. After the varimax rotation, the nodes that

loaded on each factor are given in Table 9.

40

Table 8. Manufacturing Example Nodes

Node

1 oper
2 part
3 part
4 oper
5 next
6 next
7 find
8 move
9 cart
10 part
11 cart
12 part
13 part
14 part
15 next

Node Name

ation completed for part i on machine j

i to off-shuttle position k of machine j
i in off-shuttle position k of machine j
ations completed for part i

operation for part i

station for next operation for part i
cart for part i

cart j to pickup part i

J arrives to pickup part i

i arrives onto cart j

J arrives to drop off part i at machine k
i arrives into on-shuttle

i can move into machine

i moves into machine

part from queue selected to move into machine

Alias

opcomnm
of fshul
of fshu2
opcom
nextop
nextsta
findcart
mvcart
cartarrp
part-cart
cartarrd
onshu
mchldl
mchld2
mchld3

The 15 nodes have been decomposed into six factors which, when

interpreted, provide insight into the structure of the network

representation.

The four nodes that make up factor one are related to

each other as they are the completion of a part’s cycle in the model.

One possible name for factor one is "Part Operations Completed" because

the four nodes combined represent just that.

The second factor is

composed of nodes that deal with the getting a cart ready so that it can

carry a part from one location to another.

At this point, a cart is

Table 9. Rotated Factor Pairings (Example 2 - Case 1)
Factor Nodes
1 opcomm, offshu2, opcom, nextop
2 findcart, mvcart, part-cart
3 nextsta, cartarrp, cartarrd
4 mchldl, mchld2
5 offshul
6 onshu
41

found, summoned, and then loaded. The name "Get Cart for Part" can be
applied to this factor. The third factor involves moving the part from
one machine to another. A cart picks up the part and moves it to the
next station where it drops it off. The name "Move Part to Next
Station" can be applied to factor three. The fourth factor combines the
"mchld1l” and "mchld2" nodes. This makes sense because both of these
activities are required to load a part into a machine. "Load Part Into
Machine" is a possible name for the fourth factor. Because factors five
and six have only one node associated with them, the obvious method of
naming these factors was to give them their respective node name. The
node "mchld3" did not load well on any of the six factors retained in
this analysis.

For the second of the three matrix multiplications (E ' W2 : E’),
six factors retained for analysis explained 85.84 percent of the
variance of the model. After the varimax rotation, the nodes that

loaded on each factor are given in Table 10.

Table 10. Rotated Factor Pairings (Example 2 - Case 2)

Factor Nodes
1 nextop, mvcart, cartarrp, part-cart
2 cartarrd, onshu
3 opcom, mchld2, mchld3
4 opcomm, nextsta, findcart
5 offshul, offshu2
6 mchldl

The four nodes that make up factor one are related to each other as
each is a step in a process to get a part ready for the upcoming
operation., One possible name for factor one is "Prepare Part for Next

42

Operation" because the four nodes that are combined perform this
function. The second factor is composed of two nodes which together
enable a part to arrive at the on-shuttle. The name "Part Arrives On-
Shuttle” can be applied to this factor. The third factor encompasses
the completion of operations for a part. The name "Part Operations
Completed” can be applied to factor three. The fourth factor consists
of the "opcomm", "nextsta" and "findcart" nodes. These three nodes
ensure that a part is ready for the next operation. "Part Ready for
Next Operation” is a name that could be given to this factor. This
factor is slightly different than factor one. Factor one is a process
of preparing a part for the next operation, whereas factor four is
indicative of a part that is ready for the next operation. The fifth
factor combines the "offshul” and "offshu2” nodes. This make sense
because both of these activities are required for a part to be in the
off-shuttle position of a machine. "Part Off-Shuttle” is a possible
name for the fifth factor. Factor six has only one node associated with
it, so again the factor was given the same name as its only node.

For the last of the three matrix multiplications (E ' W3 -'E’),
seven factors retained for analysis explained 99.61 percent of the
variance of the model. After the varimax rotation, the nodes that
loaded on each factor are given in Table 11.

In this case, the 15 nodes were decomposed into seven factors. The
two nodes that combine to become factor one make a logical pair because
dropping a part off at a machine and the part going into the on-shuttle
position are activities which are closely related. One possible name
for factor one is "Part Arrives On-Shuttle." The second factor is

43

Figure 4.

Network Representation of Manufacturing Example

44

composed of two nodes that deal with the getting a cart ready for its
next operation. The nodes "nextop” and "nextsta” combine to form a
factor which could be called "Part Ready for Next Operation.” The third
factor includes four factors that prepare a part to be placed in the off-
shuttle position of a machine. These factors include loading the part
into a cart and putting the part in its position. The name "Part Off-
Shuttle” can be applied to factor three. The fourth factor is one in
which the cart is obtained for the part to be transported. "Get Cart"
is one name for factor four, which is made up of the "findcart” and
"mvcart” nodes. The fifth factor combines the "mchld2" and "mchld3"
nodes. This makes sense because both of these activities are required
to load a part into a machine. "Load Part Into Machine"” is a possible
name for the fifth factor. Once again, two of the factors have only one
node associated with them. By previous convention, these factors (six
and seven) keep the node name as their factor names. The node "opcom”

did not load well on any of the seven factors retained in this analysis.

Table 11. Rotated Factor Pairings (Example 2 - Case 3)

Factor Nodes

cartarrd, onshu

nextop, nextsta

cartarrp, part-cart, offshul, offshu2
findcart, mvcart

mchld2, mchld3

opcomm

mchldl

=IOy e W=

The three different weighting schemes used in this example provide
similar, although not exactly the same, results. Table 12 summarizes

45

5

®
the factor interpretations. These factor names could very well have
o been something else as they are merely an interpretation of the rotated
factor pairings. As in the previous example, these factors break the
network representation of the transition specification into sub-networks
o which could be used as a means of distributing work load in the
development of the full simulation model. Instead of having to work
directly with 15 nodes, the model developer need only work with the
@ number of factors involved in a specified case.
Table 12. Manufacturing Example Factor Names
® Factor Case 1 Case 2
1 Part Operations Completed Prepare Part for Next Operation
2 Get Cart for Part Part Arrives On-Shuttle
3 Move Part to Next Station Part Operations Completed
4 Load Part Into Machine Part Ready for Next Operation
o 5 Part to Off-Shuttle Position Part Off-Shuttle
6 Part Arrives On-Shuttle Part Can Move Into Machine
Factor Case 3
® 1 Part Arrives On-Shuttle
2 Part Ready for Next Operation
3 Part Off-Shuttle
4 Get Cart
5 Load Part Into Machine
6 Part Operation Completed on Machine
o 7 Part Can Move Into Machine
A Brief Examination of Time-Based Signals
@ Another type of weighting scheme is one based on the length of time
information takes to travel along the edge between nodes. In the "SET
ALARM" statement the second parameter is the time required until the
o alarm is activated. This parameter was used as an input (t) to a
46
®

e_'025t. This

weighting function. This function was Weight = 10 -
function was chosen because more emphasis was desired on events that
happen in the near future versus the distant future. The value 10 is a
scaling constant, and the value -.025 reflects the rate of declining
emphasis placed on time-based information.

The Repairman Example examined previously was again used. It has
four "SET ALARM" statements. Each of these required an input for the
time delayv. A mean of 520 hours was chosen as the time delay between
the repairing of a system and its failure. This number was based on 13
weeks at 40 hours per week of system utilization. The mean time chosen
for travel to the facility and travel back to the office was one hour.
The amount of time required to perform the repair work needed was
estimated to be three hours. These times were entered into the weight
function as needed. A new C-matrix was then obtained to analyze.
Because this involves the pieces of information flowing on an edge, the
W-matrix used was merely a modified version of the W-matrix used in the
third case in the Repairman Example considered previously. The SAS input
for this example is in Appendix J.

Three factors explained 83.37 percent of the variance of the
model. After the varimax rotation, the nodes that loaded on each factor
are given in Table 13.

The six nodes have been decomposed into the same three factors
which occurred in the third case of the simple example. (The SAS output
from this example is in Appendix K.) This is not totally unexpected due
to the small number of nodes and time-based signals in the network. It
was anticipated that this weighting scheme would shed some light on

47

which of the three world views would provide the best means of
formulation -- event scheduling, activity scanning, or process
interaction. Because the time-based signal results do not differ from
the results that were not a function of time, the results obtained may
indicate that the Repairman Example is not sensitive to time and should

be considered from the event scheduling viewpoint.

Table 13. Rotated Factor Pairings (Time-Based Example)

Factor Nodes

1 End repair, Arrive idle
2 Travel to idle, Travel to facility
3 Failure, Begin repair

V. Findings

Conclusions

Representing a discrete event simulation model’s condition
specification as a network is beneficial. This network can be
decomposed so that the individual developing the model can take
advantage of the structure of the model. Once the network
representation is translated into an edge-incidence matrix, the
developer can perform so matrix calculations in order to obtain a pseudo-
covariance matrix (C-matrix). The C-matrix was then used as the input
data set during principal components analysis.

Applying various weighting schemes to the C-matrix enabled the
analyst to have a better understanding of what exactly was happening in
the network representation. Using the first weighting scheme resulted
in obtaining information necessary to illustrate the network
representation. The second weighting scheme provides the analyst with
information concerning the number of attributes that are being sent
along each edge in the network. The third weighting scheme yields
results which enable a network representation to illustrate the flow of
every piece of information in the simulation.

Performing principal components analysis on the C-n#trix enabled
the analyst to ascertain what the key factors were in the network
representation. These factors formed logical clusters of nodes which
decomposed the model into meaningful sub-models. Once these factors
have been determined, the results are interpreted based on their factor

composition.

49

Automating the decomposition process tremendously enhances the
overall effectiveness of analyzing a discrete event simulation model.
This eliminates the numerous mistakes that often occur when not taking
advantage of the computer’s ability to extract data and perform
calculations without error.

Several types of diagnostics have been included in the computer
program. These diagnostics provide the user with feedback on the
composition of the network representation of the model as well as alert
the analyst to any inconsistencies that may be present in the transition
specification.

Recommendations

This research has opened several potential areas for further
research. Improving diagnostics is one area of interest. Being able to
correct]ly create a transition specification is vital to doing any kind
of work in the area of model decomposition. It is important to detect
errors at the earliest possible time so that the analyst does not
continue to work in an errant uirection with potentially misleading
results. Real-time error handling and correction procedures co;ld be
added to computer programs that will further automate the decomposition
process. Other possible enhancements may become obvious as the computer
program developed in this research is utilized.

Another potential area in which enhancements to this research may
be made is the incorporation of additional transition specification
statements into the decomposition software. Two types of statements
that were not included in this research are the "AFTER ALARM" and
"CANCEL ALARM" statements. These and any statements which may be

50

developed in the future can and should be incorporated into a computer
program, perhaps as an extension to the one developed in this research.

An additional area of interest is the manner in which W-matrices
are constructed. Weighting schemes play an important role in the
decomposition process. This is, perhaps, the area with the greatest
potential for improvement. One particular weighting scheme that should
be examined in the future is weighting edges based on the length of time
it takes to pass information along a given edge. An extremely brief
attempt at employing this type of scheme was developed in this
research. Much nore attention should be given to this area,
particularly with large examples.

One final area of interest is the comparison betweer the sub-models
that are obtained from a transition specification. Although the
difference in the sub-models is slight, the manner in which the sub-
models would be partitioned out to computer programmers would vary.

When these sub~models are assimilated into the final simulation model,
the efficiency and validity of the model should be compared to those
aspects of a model that is comprised of similar, but different,.sub-

models.

51

o

Appendix A. How _to Implement the Computer Program

Once a SAS file has been created, it needs to be uploaded to a
mainframe computer which has SAS resident on it. This step is necessary
b to do the principal components analysis. Uploading the SAS file is done
by using a file transfer program. Two common means by which to upload
files from a personal computer to a mainframe are using the Kermit or
- Xmodem file transfer programs. After the SAS file has been uploaded to
the mainframe, make sure that SAS has been invoked on the mainframe. If
the SAS filename is NETWORK.SAS, then the file may be processed by

entering the statement "SAS NETWORK" into the computer. This is but one
r way to run SAS. This may vary among mainframe computer systems. It is
best to check with people who are familiar with the local computer
P facility.

Naturally it is necessary to first create the SAS file so that it
can be uploaded. To do this requires implementing the computer program
. written as a part of this research. After placing the floppy disk into
the disk drive, type "DECOMP" to begin the program. .

The first input that the user is required to give is the number of

key words used in the transition specification. Key words are any words
which the user does not wish to have classified as an attribute. For
example, "system_time" would normally appear as an input attribute.
"System_time" is an attribute that will not affect the network
representation because it is used only as an input attribute. Therefore
it is not possible to make an edge with this attribute. Once the number
of key words has been entered, the user is asked to input those key

52

words into the computer. This must be exactly what the user intends.
This program does not ignore the case of letters. Upper case and lower
case letters are not interpreted to be the same., If the user enters a
"0" for the number of key words, he will not, of course, be prompted to
enter any key words. An ASCII file called "RESERVE.WRD" has been
created for key words that frequently occur in various transition
specifications. To add words to this file the user must edit the file
before running the "DECOMP" program. Key words may also be deleted from
this file as desired.

After the user has finished inputting information about key words,
the computer will prompt the user for the name of the transition
specification to be analyzed. This transition specification needs to
have been created before running this program. It also has to be in
ASCII format., The program will then open the file containing the
transition specification and read it into memory.

Once this operation is completed, the action clusters and their
associated attributes are identified. These are written to an ASCII
file called "NODE.CMP" (a diagnostic file) and also displayed oﬁ the
screen of the personal computer. After the user has finished viewing
the last action cluster’s attributes, the program examines each of the
attributes for any subscript notation. If one or more subscripts are
found, a determination is made to find out if the subscript is a
variable. If it is a variable, then the user will be asked to input the
maximum value of the subscript. For example, if the attribute
"aircraft[i]" is found, then the "i" is determined to be a subscript.

The program realizes that this is not a numeric value, so it prompts the

53

user for a value, If 13 aircraft were involved in this transition
specification, the user would enter a value of 13 at this point. After
all of the subscript maximum values have been entered, the program finds
the network representation of the transition specification. The E-
matrix is then created from the network representation. Once the E-
matrix has been created, a menu appears on the screen giving the user a
choice of which weighting scheme is to be employed. This menu is
illustrated in Figure 5. All three weighting schemes may be examined
with only one run of this program. It does not matter in the
development of the SAS file if more than one weighting scheme is

chosen. Only one SAS file will be created, but the desired principal
components analysis will be performed on each of the chosen weighting
schemes. The user is prompted by the program to supply a name for the
SAS file. After the user chooses which weighting scheme he will use, he
is prompted to enter the desired percentage of the variance to be
explained. This will determine how many factors are retained in the
principal components analysis. The SAS file is then created using the
user’s input for both the weighting scheme and the number of faétors to
be retained. As each C-matrix is calculated, the results are printed on
the computer screen., After viewing these results, type any key to
continue the program. After the program finishes writing the SAS file,

the program is completed.

54

1.
2.

3'

OPTIONS OF MATRIX MULTIPLICATIONS

ExE

E x W2 x E’
E x W3 x E’
BOTH 1 & 2
BOTH 1 & 3
BOTH 2 & 3

ALL 3 (1 & 2 & 3)

ENTER CHOICE

Figure 5. Matrix Multiplication Menu

55

Appendix B. Repairman Example Transition Specification

{Initialization}
WHEN Initialization
INPUT(n, max_repairs, mean_uptime, mean_repairtime);
CREATE repairman AN object WITH

location :== idle;
status:== avail;
END WITH

CREATE facility A p_set WITH INDEX i : 1..n ALSO
failed[i] :==false;
total _downtime[1] :== 0;
SET ALARM(failure[i], neg_exp(mean_uptime));
END WITH;
DEFINE down A d_set OF facility WITH failed[i] = true;
num_repairs :== 0;
* END WHEN

{Termination}
WHEN num_repairs r max repairs
FOR i :== 1 TO n DO
percent downtime{i] :== total downtime[i] / system time;
OUTPUT(i, total downtime[il,)};

* END FOR
STOP
* END WHEN
{Failure}
WHEN ALARM(failure(i]);
failed[{i] :== true;
begin_downtime[i] :== system_time;
* END WHEN

{Begin repair}
WHEN ALARM(arr_facility[i]);
SET ALARM(end_repair[i], neg_exp(mean_repairtime));

status :== busy;
location :== 1i;
* END WHEN

{End repair}

WHEN ALARM{end_repair([i]);
SET ALARM(failure(i], neg_exp(mean_uptime));
failed[i] :== false;
total downtime[i] :== total_downtime[i] +

(system_time - begin_downtime[i]);

status :== avail;
num_repairs :== num_repairs + 1;

* END WHEN

56

{Travel to idle}
WHEN failed{[i] = true & status = avail & location <> idle;
SET ALARM(arr_idle, traveltime(location, idle));
status :== travel;
* END WHEN

{Arrive idle}

WHEN ALARM(arr_idle);
status :== avail;
location :== idle;

* END WHEN

{Travel to facility)
WHEN status = avail & failed[i] = false;
i :== closest_failed_fac(failed[i], location);
SET ALARM{arr_facility[i], traveltime
(location, i));
status :== travel;
* END WHEN

57

NODE.CMP
NODE

CONTROL
OUTPUT
OUTPUT

NODE

CONTROL
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT

NODE

CONTROL
OUTPUT
INPUT
OUTPUT
INPUT
INPUT
OUTPUT
OUTPUT
INPUT
OUTPUT

NODE

CONTROL
CONTROL
CONTROL
OUTPUT
INPUT
OuUTPUT

NODE
CONTROL

OUTPUT
OUTPUT

Appendix C.

3 Failure

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

4 Begin repair

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

5 End repair

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

6 Travel to idle

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

7 Arrive idle

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

Repairman Example Diagnostics

failure{i]
failed[1i]
begin_downtime[i]

arr_facility[i]
end_repair{i)
mean_repairtime
status

i

location

end_repair(i]
failure[i]
mean_uptime
failed{i])
total_downtimef[i]
begin_downtime[i]
total_downtime{i]
status
num_repairs
num_repairs

failed[i])
status
location
arr_idle
location
status

arr_idle
status
location

58

NODE 8 Travel to facilit
CONTROL ATTRIBUTE
CONTROL ATTRIBUTE
INPUT ATTRIBUTE
INPUT ATTRIBUTE
OUTPUT ATTRIBUTE
OJTPUT ATTRIBUTE
INPUT ATTRIBUTE
INPUT AT™RIBUTE
OUTPUT ATTRIBUTE

ERRORS . DAT
NON-MATCHING SUBSCRIPTS

NODE ATTRIBUTE

ATTRIBUTES WITHOUT A COUNTERPART

ATTRIBUTE

Rean_repairtime
meon_uptime
total_downtime
num_repairs
total_downtime
num_repairs

INF.DAT

ATTRIBUTE
failure
failed
failed
begin_downtime
arr_facility
i
end_repair
status
status
location
location
failed
failed

. W e e e W e e W w e w -

y

status

i)

failed[1]
location

i
arr_facility[i]

location
i
status
NODE
NODE
4
5
5
5
5
5
NODE C/1/0
3 1
3 3
3 3
3 3
4 1
4 2
4 3
4 3
4 3
4 3
4 3
5 3
5 3

59

ATTRIBUTE

TYPE
INPUT
INPUT
INPUT
INPUT
OUTPUT
OUTPUT

NODE C/1/0 W1
5 3 1
6 1 1
8 1 1
5 2 2
8 3 1
8 3 2
5 1 1
6 1 1
8 1 3
6 1 2
8 2 4
6 1 1
8 1 1

w2

NNDNNI= O

status
status
status
status
location
arr_idle
status
status
location

NUMBER OF EDGES = 22

B RS Mo sl e M e B e M e IS 34
W W W == WwWw
OO0 ~2~20 20N
B = bt et GO O O = e
N =N WK =N
BN =N W = =N D

“* W v e e e e e .

Appendix D. Repairman Example SAS Input File

OPTIONS LINESIZE=80;

*;

¥ ExE;

*;

DATA CONDSPEC;

INPUT N1 N2 N3 N4 N5 N6 ;

CARDS;

O O W
=Rl AN =
= R e
et b IV b b
[l e el o]
O bk = b b ek

PROC PRINT;
PROC FACTOR COV NFACTORS = 4 ROTATE=VARIMAX ;

VAR N1 N2 N3 N4 N5 N6
¥;
* E x W2 x E’;
X,
DATA CONDSPEC;
INPUT N1 N2 N3 N4 N5 N6 ;

CARDS;
4 0 2 1 0 1
0 7 1 2 0 4
2 1 7 2 0 2
1 2 2 10 3 2
0 0 0 3 5 2
1 4 2 2 2 11

PROC PRINT;

PROC FACTOR COV NFACTORS = 3 ROTATE=VARIMAX ;
VAR N1 N2 N3 N4 N5 N6

%;

* Ex W3 xE’;

x;

DATA CONDSPEC;

INPUT N1 N2 N3 N4 N5 N6 ;

CARDS;
20 0 10 5 0 5
0 15 5 2 0 8
10 5 27 6 0 6
5 2 6 18 3 2
0 0 0 3 5 2
5 8 6 2z 2 23

PROC PRINT;

PROC FACTOR COV NFACTORS = 3 ROTATE=VARIMAX ;
VAR NI N2 N3 N4 N5 N6 ;
*i = 5;

61

Appendix E. Repairman Example SAS Output File

SAS 20:44 FRIDAY, NOVEMBER 4, 1988 1

OBS N1 N2 N3 N4 N5 N6

N LD
O O W
—_O WO
— O b
— bt N b b
—_—N MO0
(3 I S SN

62

SAS 20:44 FRIDAY, NOVEMBER 4, 1988 2

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

PRIOR COMMUNALITY ESTIMATES: ONE
EIGENVALUES OF THE COVARIANCE MATRIX: TOTAL = 10.2667 AVERAGE = 1.7111

1 2 3 4 5 6
EIGENVALUE 3.200000 2.724364 1.800000 1.742303 0.800000 0.000000
DIFFERENCE 0.475636 0.924364 0.057697 0.942303 0.800000
PROPORTION 0.3117 0.2654 0.1753 0.1697 0.0779 0.0000
CUMULATIVE 0.3117 0.5770 0.7524 0.9221 1.0000 1.0000

4 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION
FACTOR PATTERN

FACTOR1 FACTORZ FACTOR3 FACTOR4

N1 -0.00000 -0.19707 0.86603 0.21094
N2 -0.00000 -0.19707 -0.86603 0.21094
N3 -0.00000 -0.77013 -0.00000 0.54749
N4 0.77460 0.46214 -0.00000 0.43177
N5 0.00000 0.75988 -0.00000 -0.35012
N6 -0.77460 0.46214 0.00000 0.43177

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3 FACTOR4
WEIGHTED 3.200000 2.724364 1.800000 1,742303
UNWEIGHTED 1.200000 1.675350 1.500000 0.884174

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 9.466667 UNWEIGHTED = 5.259524

N1 N2 N3 N4 N5 N6
COMMUNALITY 0.833333 0.833333 0.892857 1.000000 0.700000 1.000000
WEIGHT 1.200000 1.200000 1.866667 2.666667 0.666667 2.666667
63

SAS 20:44 FRIDAY, NOVEMBER 4, 1988 3
ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3 4
1 -0.00008 -0.00000 -0.70713 0.70709
2 -0.80002 0.00000 0.42428 0.42421
3 0.00000 1.00000 0.00000 0.00000
4 0.59997 -0.00000 0.56565 0.56575
ROTATED FACTOR PATTERN
FACTOR1 FACTORZ FACTOR3 FACTOR4
N1 0.28422 0.86603 0.03570 0.03574
N2 0.28422 -0.86603 0.03570 0.03574
N3 0.94461 -0.00000 -0.01706 -0.01695
N4 -0.11074 -0.00000 -0.10743 0.98803
N5 -0.81798 -~0.00000 0.12435 0.12426
N6 -0.11062 -0.00000 0.98804 -0.10739

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR]l FACTOR2 FACTOR3 FACTOR4
WEIGHTED 2.370860 1.800000 2.647972 2.647835
UNWEIGHTED 1.747438 1.500000 1.006076 1.006010

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 9.466667 UNWEIGHTED = 5.259524

N1 N2 N3 N4 N5 - N6
COMMUNALITY 0.833333 0.833333 0.892857 1.000000 0.700000 1.000000
WEIGHT 1.200000 1.200000 1.866667 2.666667 0.666667 2.666667
64

20:44 FRIDAY, NOVEMBER 4, 1988 4

SAS

N1 N2 N3 N4 N5 N6

OBS

et NN
-

COOMWBLN

~ANNO MmN
—i

N~ NO N

O~ NO =

O N - O -

—ANM e W

65

SAS 20:44 FRIDAY, NOVEMBER 4, 1988 5

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

PRIOR COMMUNALITY ESTIMATES: ONE
EIGENVALUES OF THE COVARIANCE MATRIX: TOTAL = 44.8 AVERAGE = 7.46667

1 2 3 4 5 6
EIGENVALUE 18.241880 12.982349 6.400000 5.389726 1.786045 0.000000
DIFFERENCE 5.259530 6.582349 1.010274 3.603680 1.786045
PROPORTION 0.4072 0.2898 0.1429 0.1203 0.0399 0.0000
CUMULATIVE 0.4072 0.6970 0.8398 0.9601 1.0000 1.0000

3 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION
FACTOR PATTERN

FACTOR1 FACTOR2 FACTOR3

N1 -0.33934 -0.63298 0.07329
N2 0.72778 0.19465 0.39034
N3 -0.16171 -0.53780 0.63777
N4 -0.40546 0.82464 0.36485
N5 -0.17743 0.71286 -0.56980
N6 0.92711 0.16996 -0.01975

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3
WEIGHTED 18.241880 12.982349 6.400000
UNWEIGHTED 1.726389 1.944871 1.022672

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 37.624229 UNWEIGHTED = 4.693932

N1 N2 N3 N4 N5 N6
COMMUNALITY 0.521194 0.719921 0.722135 0.977550 0.864312 0.888819
WEIGHT 2.266667 7.466667 5.866667 11.066667 4.266667 13.866667
66

SAS 20:44 FRIDAY, NOVEMBER 4, 1988 6
ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3
1 -0.06883 0.92202 -0.38097
2 -0.60766 0.26412 0.74899
3 0.79121 0.28305 0.54210

ROTATED FACTOR PATTERN

FACTORl FACTOR2 FACTOR3

N1 0.46598 -0.45932 -0.30509
N2 0.14047 0.83293 0.08013
N3 0.84254 -0.11062 0.00454
N4 -0.18452 -0.05277 0.96991
N5 -0.87179 -0.13660 0.29263
N6 -0.18272 0.89412 -0.23661

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTORZ FACTOR3
WEIGHTED 8.886661 16,926245 11.811323
UNWEIGHTED 1.774207 1.737870 1.181855

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 37.624229 UNWEIGHTED = 4.693932

N1 N2 N3 N4 N5 N6
COMMUNALITY 0.521194 0.719921 0.722135 0.977550 0.864312 -0.888819
WEIGHT 2.266667 7.466667 5.866667 11.066667 4.266667 13.866667
67

0BS

OV WO DN

N1
20

10

SAS

N2

68

OO

20:44 FRIDAY, NOVEMBER 4, 1988 7

N3

10
5
27
6
0
6

N4

—
NWoOoOMMMNOD

N5

DN WO OO

N6

WNMNDMMOWb»

10

SAS

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

EIGENVALUES OF THE COVARIANCE MATRIX:

EIGENVALUE
DIFFERENCE
PROPORTION
CUMULATIVE

20:44 FRIDAY,

PRIOR COMMUNALITY ESTIMATES: ONE

1

2

3

TOTAL = 281.6

4

5

115.735 86.030914 42.193668 24.161913 13.478646
29.703945 43.837245 18.031756 10.683267 13.478646
98 0.0858 0.0479
63 0.9521 1.0000

0.4110
0.4110

0.3055 0.14
0.7165 0.86

AVERAGE =

NOVEMBER 4, 1988 8

46.9333

6
0.000000

0.0000
1.0000

3 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION

N1
N2
N3
N4
N5
N6

WEI

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS

FACTOR
FACTOR1

0.78273
-0.39169
0.86629
0.27951
-0.53188
-0.30376

PATTERN

FACTOR2

0.03569

0.6464

6

0.36788

-0.6298

6

-0.55696
0.84262

VARIANCE EXPLAINED BY EACH

GHTED

FACTOR1

TOTAL COMMUNALITY: WEIGHTED =

COMMUNALITY
WEIGHT

N1

N2

N3

FACTOR2
115.735 86.030914 42.193668
UNWEIGHTED 1.969839 1.971451 0.787178

243.959

N4

FACTOR3
-0.58222
0.46963
0.32042
0.19649
-0.06460
-0.28671
FACTOR

FACTOR3

UNWEIGHTED =

N5

4.728468

N6

0.952913 0.791884 0.988469 0.513453 0.597271 0.884477
56.666667 33.600000 88.000000 37.200000 4.266667 61.866667

69

SAS 20:44 FRIDAY, NOVEMBER 4, 1988 9

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3
1 0.79508 -0.33867 0.50314
2 0.49894 0.83689 -0.22511
3 0.34484 -0.43002 -0.83437

ROTATED FACTOR PATTERN

FACTOR1 FACTORZ FACTOR3

N1 0.43937 0.01515 0.87157
N2 0.17307 0.47172 -0.73445
N3 0.98281 -0.12330 0.08570
N4 ~-0.02427 -0.70628 0.11848
NS -0.72305 -0.25820 -0.08834
N6 0.08004 0.93134 -0.10330

VARIANCE EXPLAINED BY EACH FACTOR
FACTORl FACTORZ FACTOR3
WEIGHTED 99.595452 81.331629 63.032361
UNWEIGHTED 1.718714 1.670849 1.338905

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS

TOTAL COMMUNALITY: WEIGHTED = 243.959 UNWEIGHTED = 4.728468
N1 N2 N3 N4 N5 N6
COMMUNALITY 0.952913 0.791884 0.988469 0.513453 0.597271 0.884477
WEIGHT 56.666667 33.600000 88.000000 37.200000 4.266667 61.866667
70

Appendix F. Manufacturing Example Transition Specification

{operation completed for part i on machine j}
WHEN ALARM(op_com([i,j]);

curr_opli,j] :== done;

opn_comp[i] :== opn_comp{i] + 1;

{part i to off-shuttle position k of machine j}
WHEN curr_op(i,j] = done & off_shu_pos[j,k] = 0;
SET ALARM(mov_offshuli,j,k], mach_off_time);
mach_time _busy[j] :== mach_time_busy[j] + (svstem_time - mach_
start_time);
SET ALARM(next_op[i], 0);

{part i in off-shuttle position k of machine j}
WHEN ALARM(mov_offshuli,j,kl);

off_shu_pos{j,k] :== i;

mach_status[j] :== idle;

SET ALARM(next_prt(jl, 0);

{operations completed for part i}
WHEN ALARM(next op[i] = tot_opn[part_typel[i]] &
opn_compl[i] = tot_opnl[part_typelil]);
part_time sys[i] :== part_time_sys[i] + (system_time - part_
start_time[i]);
DESTROY(part_type,i);
CREATE({part_type,i);
SET ALARM(next opfil, 0)};

{next operation for part i}
WHEN ALARM(next_op[i] < tot_opn[part_typel(il] & opn_comp[i] <
tot_opn[part_typel[il]);
next_opn[i] :== olookup(i, opn_comp[i]);
SET ALARM(next_stt[i,next_opnl[il], 0);

{next station for next operation for part i}
WHEN ALARM(next_stt[i,next_opn[ill);
next_stat{i] :== slookup(i, next_opn[il]);
SET ALARM(find_cart[i], 0);

{find cart for part i}

WHEN ALARM(find_cart[i] = idle & cart_stat{j] = idle);
cart_assign[i] :== j;
SET ALARM(wov_cart[j,i,1], 0);

{move cart j to pickup part i}
WHEN ALARM(mov_cart(j,i,1]);
cmov_time[j,i,1] :== mtime_calc[j,i];
SET ALARM(cart_arr{j,i,1], cmov_time(j,i,11);

{cart j arrives to pickup part i}
WHEN ALARM((cart_arr([j,i,1]) & off_shu_pos[curr_stat[i],1] = i);
SET ALARM(to_cart[j,i], off_cart_time);

{part i arrives onto cart j}
WHEN ALARM(to_cart(j,il);

cart_stot{j] :== busy;
xxx%% For all off-shu positions n;
off_shu_pos[n-1] :== off_shu_pos[n];

SET ALARM(mov_cart{j,i,2], 0);

{cart j arrives to drop off part i at machine k}
WHEN ALARM((cart_arr(j,i,2]) & on_shu_pos[next_stat{[i],k] = 0};
SET ALARM(to_onshul[j,i,next_stat{i),k], cart_onshu_mvtim
[next_stat{i]]);

{part i arrives into on-shuttle}

WHEN ALARM(to_onshulj,i,next_stat[i],k]);
on_shu_pos[next_stat{i],k] :== i;
cart_stat[j] :== idle;

SET ALARM{chk_mach_stat[next_stat{i],i], 0);
curr_stat[i] :== next_statf{i];

{part i can move into machine}
WHEN ALARM((chk_mach_stat([j,i}) & on_shu_pos[j,1] = 1 & mach_stat{j] =
idle;

SET ALARM(shu_mach{[j,i], shu_mach_time);

{part i moves into machine}

WHEN ALARM(shu_mach[j,1]);
For on-shu positions 2 to n;
on_shu_pos[j,n-1] :== on_shu_pos[j,n];
For last on-shu position n;
on_shu_pos([j,n] :== 0;
mach_stat[j] :== busy;
mach_start_time :== system_time;
SET ALARM(op_com{i,jl, 0);

{next part from queue selected to move into machine}

WHEN ALARM((next_prt{j)) & on_shu_posi{j,1] = i & i = 0);
SET ALARM(shu_mach[j,i]}, shu_mach_time);

72

NODE. CMP
NODE 1

CONTROL
OUTPUT
INPUT
OUTPUT

NODE 2

CONTROL
CONTROL
OUTPUT
INPUT
INPUT
INPUT
OUTPUT
OUTPUT

NODE 3

CONTROL
INPUT
OUTPUT
OUTPUT
OUTPUT

NODE 4

CONTROL
INPUT
CONTROL
INPUT
INPUT
INPUT
OUTPUT
INPUT
OUTPUT
OUTPUT

NODE 5
CONTROL

INPUT
CONTROL

Appendix G.

Manufacturing Example Diagnostics

operation completed for part i on machine j

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

part i

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBLTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

part i

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

op_com{i,j]
curr_opli,j]
opn_comp[i]
opn_comp[i]

to off-shuttle position k of machine j

curr_opli,j]
off_shu_pos|[j,k]
mov_offshuli,j.k]
mach_off_time
mach_time_busyl[j]
mach_start_time
mach_time_busy({j]
next_op[i]

in off-shuttle position k of machine j

mov_offshuli.j,k]
i

of f_shu_pos{j,k]
mach_status[j]
next_prt[j]

operations completed for part i

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

next_opf{i]
tot_opn[part_type(i]]
opn_conp[i}
tot_opn[part_type[i}]
part_time_sys(i]
part_start_time[i]
part_time_sys[i]
part_type

part_type

next_opfi]

next operation for part i

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

next_op[i]
tot_opn|[part_type[i]]
opn_comp(i]

73

INPUT
INPUT
INPUT
OUTPUT
OUTPUT

NODE 6

CONTROL
INPUT
INPUT

OUTPUT
OUTPUT

NODE 7

CONTROL
CONTROL
INPUT
OUTPUT
OUTPUT

NODE 8

CONTROL
INPUT
OUTPUT
OUTPUT
INPUT

NODE 9

CONTROL
CONTROL
INPUT
OUTPUT
INPUT

NODE 10

CONTROL
OUTPUT
INPUT
OUTPUT
OUTPUT

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

tot_opn[part_typelil]

i

opn_comp|i]

next_opn{i]
next_stt{i,next_opn(i])

next station for next operation for part i

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

next_stt[i,next_opn(i])
i

next_opn{i]
next_stat[i]
find_cart{i]

find cart for part i

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

find_cart[i]
cart_stat[j]

J
cart_assign[i]
mov_cart(j,i,1]

move cart j to pickup part i

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

cart Jj

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

part 1

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

mov_cart[j,i,1]
mtime_calc[j,i]
cmov_time[j,1,1]
cart_arr[j,i,1]
cmov_time[j,i,1]

arrives to pickup part i

cart_arr[j,i,1]

of f_shu_pos[curr_stat(i],1]
i

to_cart[j,i]

of f_cart time

arrives onto cart j

to_cart[j,il
cart_stat(j)
off_shu_pos([n]
off_shu_pos(n-1]
mov_cart[j,i,2]

NODE 11 cart j

CONTROL ATTRIBUTE
CONTROL ATTRIBUTE
OUTPUT ATTRIBUTE

INPUT ATTRIBUTE

NODE 12 part i

CONTROL ATTRIBUTE

INPUT ATTRIBUTE
OUTPUT ATTRIBUTE
OUTPUT ATTRIBUTE
OUTPUT ATTRIBUTE

INPUT ATTRIBUTE
OUTPUT ATTRIBUTE

NODE 13 part i

CONTROL ATTRIBUTE
CONTROL ATTRIBUTE
INPUT ATTRIBUTE
CONTROL ATTRIBUTE
OUTPUT ATTRIBUTE
INPUT ATTRIBUTE

arrives to drop off part i at machine k

cart_arr(j,1i,2]
on_shu_pos[next_stat[i],k]
to_onshu(j,i,next_stat[il, k]
cart_onshu_mvtim [next_stat[i]]

arrives into on-shuttle

to_onshulj,i,next_stat[i],k]
i

on_shu_pos{next_stat[i], k]
cart_stat{j]
chk_mach_stat[next_stat{i],i]
next_stat[i]

curr_stat[i]

can move into machine

chk_mach_stat[j,i]
on_shu_pos([j,1]

i

mach_stat(j]
shu_mach(j,i]
shu_mach_time

NODE 14 part i moves into machine

CONTROL ATTRIBUTE

INPUT ATTRIBUTE
OUTPUT ATTRIBUTE
OUTPUT ATTRIBUTE
OUTPUT ATTRIBUTE
OUTPUT ATTRIBUTE
OUTPUT ATTRIBUTE

NODE 15 next part from queue selected to move into machine

CONTROL ATTRIBUTE
CONTROL ATTRIBUTE
INPUT ATTRIBUTE
CONTROL ATTRIBUTE
OUTPUT ATTRIBUTE
INPUT ATTRIBUTE

shu_mach[j,i]
on_shu_posij,n]
on_shu_pos{j,n-1]
on_shu_pos[j,n]
mach_stat[j]
mach_start_time
op_com[i,j]

next_prt{j]
on_shu_pos([j,1]
i

i

shu_machfj,i)
shu_mach_time

75

ERRORS . DAT

NON-MATCHING SUBSCRIPTS

NODRE ATTRIBUTE NODE ATTRIBUTE
FATAL ERROR!!! Subscripts are not compatible! Results will be
inaccurate!!!

2 off_shu_pos(j,k] 10 off_shu_pos{n-1]
Warning: Subscripts do not match exactly

3 off_shu_pos[j,k] 9 off_shu_pos{curr_stat[i],1]
FATAL ERROR!!! Subscripts are not compatible! Results will be
inaccurate!!!

3 off_shu_posl[j,k] 10 off_shu_posin]

Warning: Subscripts do not match exactly
8 mov_cartfj,i,1] 10 mov_cart{j,i,2]

*¥*x The above edge has been disregarded **#%

Warning: Subscripts do not match exactly
8 cart_arr(j,i,1] 11 cart_arr(j,i,2]

¥¥*x The sbove edge has been disregarded *¥%

FATAL ERROR!'!! Subscripts are not compatible! Results will be
inaccurate!!!
9 off_shu_pos[curr_stat[i],1] 10 off_shu_pos(n-1]

Warning: Subscripts do not match exactly
11 on_shu_pos{next_stat[i],k] 14 on_shu_pos([j,n-1]

Warning: Subscripts do not match exactly
12 on_shu_pos[next_stat[i],k] 13 on_shu_pos(j,1]

Warning: Subscripts do not match exactly
12 on_shu_pos[next_stat{i],k] 14 on_shu_pos[j,n]

Warning: Subscripts do not match exactly
12 on_shu_pos[next_stat[i], k] 15 on_shu_pos(j,1]

Warning: Subscripts du not match exactly
12 chk_mach_stat[next_stat{i],i] 13 chk_mach_stat{j,i]

Warning: Subscripts do not match exactly
13 on_shu_pos(j,1] 14 on_shu_pos(j,n-1]

Warning: Subscripts do not match exactly
14 on_shu_pos([j,n-1] 15 on_shu_pos(j,1]

76

ATTRIBUTES WITHOUT A COUNTERPART

® ATTRIBUTE

mach_off_time
mach_time_busy
h mach_time busy
) i

mach_status
tot_opn
part_time_sys
part_start_time
L part_time sys
® tot_opn

i

i

J

cart_assign
mtime _calc

H. cmov_time
cmov_time

i

off_cart_time
cart_onshu_mvtim
i

i

shu_mach_time

i

shu_mach_time

INF.DAT

ATTRIBUTE
op_com
curr_op
opn_comp
opn_comp
of f_shu_pos
mach_start_time
mov_offshu
next_op
next_op
off_shu_pos
next_prt
part_type
next_op
next_opn
next_stt
next_stat

W W W e W W e W W e W e e w e w

77

oIS R Rt R K I B T e

NODE C/1/0

W LW WL W WWWDN M W L

NODE

W WO 00 00 ~J =IO UT U & bbb QN AN

TYPE

INPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
INPUT
INPUT
OUTPUT
INPUT
INPUT
INPUT
INPUT
OUTPUT
INPUT
INPUT
OUTPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
CONTRO
INPUT

NODE cC/1/0

14

[

>
DD OO W DB L LN

—

L

DO b B b DD b b b b s G) b b 0D

next_stat
find_cart
cart_stat
cart_stat
mov_cart
cart_arr
curr_stat
to_cart
on_shu_pos
on_shu_pos
next_stat
to_onshu
next_stat
on_shu_pos
on_shu_pos
on_shu_pos
chk_mach_stat
on_shu_pos
mach_stat
shu_mach
shu_mach
on_shu_pos

NUMBER OF EDGES = 38

A R R T o T

78

CO = O b pmd LD LD LD W O W N = d LD DD G GO b GO CD

12

10
12

12
10
12
14
12
12
12
13
14
15
13
14
14
14

15

Lo O B VL IR U R SR AU U U IR U R VP CRN SR S ()

P = OB DD s st = ol GO DD bbbk b b fd ped ped ek bed b

19
19

57
57

57
19
19
20
1103
1122

15
60
63

57
60

o CO~MO OO OO OO O M “ COOOCOODOOCOO~ON-
[V
4 —4
z z.
]
-« AT O OO OOOOO ™=~ m -« ~~E O OO OOO0OO MO N
— -
z, =z
~—
[¥ . COO0COOoOOCOOOOO~N~O m - QOO OO0 OO0OOOOOON MO
- .
o —t ~—
(&9 -4 o =z,
- O OOOCOHE ™ O™ O v~ rvrv — COOOOrriOwiO < v O\ v v
=} o~ -4 N -
a = =
= z =z
i (2]
- COO0OOOCHOOODOM—O—O oo Z, - COOCOOCrHOODOOWTO~O
-
- — -]
(/2] =z VA8 z
Lm o COOOOO0OO=TOr~NOOOOO MN o OO O0COO0OO O mNOOOOO
—~
[— [>1 -
B z d 4
o o> e~
rﬂ o OO OO O0OHAIF—O~OO0O0O rFN o OO 1O O OO MY mO~OOO0O
=z B~ z
Ll -
= Ev ©
= <))
+ o~
3] o~ Te) [
.m =z COOOCOOCmHIPTmO~NO—~00OO0 O Z =z COOOO OO P miO™~mO=-O OO0
=1
=1 [7e] 1 @0
o z - 4
= COO0OO~HF~1O0OCO~~0O00O0 “N COO0OONULHOODO OO0
I¥e) Ie))
. z [3 z
== Om
o -« Hert O~ OO0 O0O0O0OO0OOO0O0C0 WA..N - A O N VOVNOOOOOOOOOO
..1“ % z, A z
= " FHOM OO0 O0O0O0O0 ~ HHOTNOOOOOOOOOO
Q = e D - 2 - .o en)
Q. o~ Oz (@) - O =
Q, bt 3] (&) [<3] 23]
< wn o OrM MO OO0 OO0 [Te) [~¥ ONTOOOOLOOO0OO0O00CO
3] [— - o [/}
=z o (=4 o &2 ax .o
— - =z, = O [\ z =
- =3 [@] WD HETA A OO0 OO0OO0O0OO0OO O Z B~ = o HONSOOO0OO0O0O0OO0OO~O z
O — — - [—
wn b3 z e <€ - ted 4 [- 4
4 v D.FMN .o a.
o =3 N A O A OO0 000000 ~O = EFENSL O =~ 00000000 ~0
— < D0 (GO B4 < D Q Q
le. = Qe x [eNe] ™ = Q. Qo
- ~ < Z < [l — e -~ 2Z < o
O ¥ # % O3 =0 oo 04 A Zok 0O on By

PROC FACTOR COV NFACTORS = 6 ROTATE=VARIMAX ;
VAR NI N2 N3 N4 N5 N6 N7 N8 N9 N1O N11 N12

N13 N14 N15 ;
x5
* Ex W3 xE';
*o

DATA CONDSPEC;

INPUT N1 N2 N3 N4 N5 N6 N7 N8B N9 NI10O N11 N12 N13 N14 N15 ;

CARDS;
152 57 0 19 19 0 0 0 0 0 0 0 0 57
57 156 60 19 19 0 0 0 0 0 0 0 0 1
0 60 82 0 O 0 0 0 19 0 0 0 0 0
19 19 0 58 20 0 0 0 0 0 0 0 0 0
19 19 0 20 438 380 0 0 0 0 0 0 0 0
0 0 o0 0380 419 19 0 0 0 1 19 0 0
0 0 0 O o0 19 182 57 0 3 0 3 0 0
60 60 0 0 o 0 57 114 57 0 0 0 0 0
0 0 19 o0 o© 0 0 57 134 57 0 1 0 0
6 0 0 o0 O 0 3 0 57 60 0 0 0 0
0 6 0 0 o0 1 0 0 0 0 1142 1122 0 19
0 0 0 o0 o0 19 3 0 1 0 1122 1223 60 15
60 0 0 o0 O 0 0 0 0 0 0 60 123 63
57 1 0 0 0 0 0 0 0 0 19 15 63 215
0 0 3 0 o0 0 0 0 0 0 0 3 0 60
PROC PRINT;

PROC FACTOR COV NFACTORS = 7 ROTATE=VARIMAX ;
VAR NI N2 N3 N4 N5 N6 N7 N8B N9 NI10O N11 N12

N13 N14 N15 ;
% j = 19 ;
*j = 3;
¥ k = 1 ;
¥ n = 5 ;
¥ n-1 = 4 ;

80

DN

OO WOOOOO0ODOOOWOO

Manufacturing Example SAS Output File

Appendix I.

1

10:25 THURSDAY, NOVEMBER 17, 1988

SAS

N15

N2 N3 N4 N5 N6 N7 N8 N9 NI1O N11 N12 N13 N14

OBS N1

COr"OO0O0O0QCO0CO~O-M

FHE OO OO OO OO v v vl WD v

COO0OO0OO0OODOOO0OOmN-=O

COO0OO0OO ™M riO v O rdt~ v vt

CO0CO0OO~TO0OO0OO0OOMNMrO O

COOOCOO O NOOODODOO

CO—OODOOmawO~OOO

COO0OO0ODOO - N—ODOODOOO

COO0O0O™MT—~O~NO~OOO

COO0O0O I —~TOOO—=mOOO

O NSO 00000000

T OMeEOO0OOOO0ODO0OOOOO0

OmrMMOOO0OO0OrOOOOO

AW A A AT OO0 000000 MO

FEH O~~~ OOOQODOOO —

15 0

o o
HANMTIODW~-ONO N =
L] L R]

11

®
SAS 10:25 THURSDAY, NOVEMBER 17, 1988
l® INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS
PRIOR COMMUNALITY ESTIMATES: ONE
EIGENVALUES OF THE COVARIANCE MATRIX
TOTAL = 16.4667 AVERAGE = 1.09778
o
1 2 3 4 5
EIGENVALUE 4.323441 3.234584 2.129941 1.628266 1.115005
DI FFERENCE 1.088857 1.,104643 0.501675 0.513261 0.050260
PROPORTION 0.2626 0.1964 0.1293 0.0989 0.0677
CUMULATIVE 0.2626 0.4590 0.5883 0.6872 0.7549
6 7 8 9 10
EIGENVALUE 1.064745 0.831503 0.571358 0.515635 0.322260
DIFFERENCE 0.233242 0.260145 0.055723 0.193376 0.036545
PROPORTION 0.0647 0.0505 0.0347 0.0313 0.0196
CUMULATIVE 0.8196 0.8701 0.9048 0.9361 0.9557
11 12 13 14 15
EIGENVALUE 0.285714 0.254303 0.169131 0.020781 0.000000
DIFFERENCE 0.031412 0.085172 0.148350 0.020781
PROPORTION 0.0174 0.0154 0.0103 0.0013 0.0000
CUMULATIVE 0.9730 0.9885 0.9987 1.0000 1.0000

6 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION
FACTOR PATTERN

FACTOR1 FACTORZ FACTOR3 FACTOR4 FACTOR5 FACTOR6

N1 -0.52781 0.38475 0.25344 0.08427 0.42059 -0.28469
N2 -0.59838 0.36968 0.07619 0.42346 0.00595 0.50793
N3 -0.18124 -0.09971 -0.54514 0.41027 -0.47303 0.25012
N4 -0.57871 0.07059 0.34237 0.30099 0.22851 -0.16163
N5 -0.50586 -0.03318 0.62535 0.19318 -0.07910 -0.22910
N6 0.29372 -0.24227 0.68342 -0.22922 -0.38791 0.07974
N7 0.34781 -0.44891 0.19375 -0.35889 0.42055 0.52575
N8 0.08814 -0.48495 -0.31566 -0.19450 0.35990 0.07980
N9 0.23090 -0.39245 -0.56946 0.34217 0.11025 -0.27821
N10 0.08814 -0.48495 -0.31566 -0.19450 0.35990 0.07980
N11 0.40944 0.28020 0.25879 -0,27003 -0.38629 -0.10703
N12 0.86746 0.19397 0.21169 0.38859 0.11340 0.01424
N13 0.41611 0.46137 -0.05335 -~0.03141 0.13250 -0.09578
N14 0.12105 0.90072 -0.17072 -0.30581 0.05523 0.01553
N15 0.29091 0.33273 -0.32154 0.12107 -0.36642 (.05847

82

SAS 10:25 THURSDAY, NOVEMBER 17, 1988 3
VARIANCE EXPLAINED BY EACH FACTOR
FACTOR1 FACTORZ FACTOR3 FACTOR4 FACTOR5 FACTOR6
WEIGHTED 4.323441 3.234584 2.129941 1.628266 1.115005 1.064745
UNWEIGHTED 2.728954 2.436301 2.150841 1.189819 1.374657 0.877623
INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 13.495981 UNWEIGHTED = 10.758195

N1 N2 N3 N4 N5
COMMUNALITY 0.755891 0.937880 0.794609 0.626049 0.744124
WEIGHT 1.123810 1.666667 0.685714 0.685714 1.123810
N6 N7 N8 N9 N10
COMMUNALITY 0.821404 0.942115 0.516310 0.738249 0.516310
WEIGHT 1.123810 1.123810 0.352381 1.123810 0.352381
N11 N12 N13 N14 N15
COMMUNALITY 0.546707 0.998992 0.416572 0.951917 0.451065
WEIGHT 0.685714 3.066667 0.352381 2.314286 0.685714

ROTATION METHOD: VARIMAX
ORTHOGONAL TRANSFORMATION MATRIX
1 2 3 4 5 6

-0.47627 0.18182 0.14979 0.16450 -0.39327 0.73209
0.10481 -0.46684 0.06642 0.81930 0.27757 0.13555
0.53898 -0.05628 0.75994 -0.22185 0.03827 0.27954
0.08322 -0.38974 -0.43607 -0.42593 0.40450 0.55316
0.57220 0.63211 -0.37395 0.26625 0.02961 0.24785

-0.37060 0.44089 0.25622 0.01311 0.77610 0.01094

DOV LN =

83

SAS

10:25 THURSDAY, NOVEMBER 17, 1988

ROTATED FACTOR PATTERN

FACTOR1 FACTOR2Z FACTOR3 FACTOR4 FACTORS FACTORG
N1 0.78149 -0.18235 -0.12787 0.24453 0.14965 -0.11566
N2 0.21521 -0.22300 -0.06393 0.01542 0.90653 -0.12538
N3 -0.54718 -0.30435 -0.38598 -0.28798 0.36880 -0.18615
N4 0.68326 -0.20157 -0.07993 -0.18280 0.26336 -0.09703
N5 0.63022 ~0.33798 0.28390 -0.35548 0.11166 -0.11528
N6 -0.06752 0.00733 0.81271 -0.30639 -0.19892 0.15117
N7 -0.09235 0.89941 0.30347 -0.08182 0.02134 0.15940
N8 -0.10277 0.59867 -0.28821 -0.13307 -0.18744 -0.10696
N9 -0.26337 0.C7091 -0.68596 -0.27725 -0.29578 0.17021
N10 -0.10277 0.59867 -0.28821 -0.13307 -0.18744 -0.10696
N11 -0.22999 -0.25705 0.51139 0.25026 -0.27706 0.16379
N12 -0.18677 -0.01823 0.09548 0.11953 -0.10761 0.96374
N13 -0.06988 -0.08296 -0.00796 0.50568 -0.12074 0.36667
N14 -0.05487 -0.22793 0.06490 0.94091 0.08586 0.00769
N15 -0.49824 -0.33736 -0.07947 0.24343 0.04915 0.14498
VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTORS FACTORG6
WEIGHTED 2.157557 1.754417 1.876781 2.767642 1.829716 3.109869
UNWEIGHTED 2.267939 2.100347 1.926875 1.792805 1.372511 1.297717

TOTAL COMMUNALITY: WEIGHTED = 13.495981

FINAL COMMUNALITY ESTIMATES AND VARITABLE WEIGHTS

COMMUNALITY
WEIGHT

COMMUNALITY
WEIGHT

COMMUNALITY
WEIGHT

N1
0.755891
1.123810

N6
0.821404
1.123810

N11
0.546707
0.685714

N2
0.937880
1.666667

N7
0.942115
1.123810

N12

0.998992
3.066667

84

N3
0.794609
0.685714

N8
0.516310
0.352381

N13
0.416572
0.352381

N4
0.626049
0.685714

N9
0.738249
1.123810

N14
0.951917
2.314286

UNWEIGHTED = 10.758195

N5
0.744124
1.123810

N10
0.516310
0.352381

N15
0.451065
0.685714

10:25 THURSDAY, NOVEMBER 17, 1988

SAS

N12 N13 N14 N15

N2 N3 N4 N5 N6 N7 N8 N9 NIO NI11

OBS N1

COMO0OO0O0O0OO0DOOO~ON
AT OOOOOODOOO—~NHMODAN

COCO0OOCOQCOOOOONLMO

COQOO - OO < v v v
—t

COO0O0CO-OOSOVITO~D
OO0 O0OO0OO O ~NOOOOO

OCO OO0 N ~mO~OOO
OO 0O OQOO - N-HOOODODOO
OCOO0OOO -t =IO~ Om~OOO
COOOONHOOOr-e=OOO
A ONONOCOOOOCOCOOO
HH O NOOOODOOODODODOOO
ONIFTOODOOOHOODOOO ™
O NN~ O OO0 OO0OO0O—O

PO O OO0 OOQ —

14
15 0

(=N
NN DO~ DNDO M
— e e

85

SAS

10:25 THURSDAY, NOVEMBER 17, 1988

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15

PRIOR COMMUNALITY ESTIMATES: ONE

EIGENVALUES OF THE COVARIANCE MATRIX
TOTAL = 33.7333 AVERAGE = 2.24889

1 2 3 4
EIGENVALUE 11.492141 7.199870 3.877136 3.104295 1.
DIFFERENCE 4.292272 3.322734 0.772841 1.31989%6 O.
PROPORTION 0.3407 0.2134 0.1149 0.0920
CUMULATIVE 0.3407 0.5541 0.6690 0.7611

6 7 8 9
EIGENVALUE 1.499537 1.367259 1.121034 0.768699 O.
DIFFERENCE 0.132278 0.246224 0.352335 0.128771 O.
PROPORTION 0.0445 0.0405 0.0332 0.0228
CUMULATIVE 0.8584 0.8990 0.9322 0.9550

11 12 13 14
EIGENVALUE 0.315758 0.285714 0.249753 0.027811 O.
DIFFERENCE 0.030044 0.035961 0.221941 0.027811
PROPORTION 0.0094 0.0085 0.0074 0.0008
CUMULATIVE 0.9833 0.9918 0.9992 1.0000

5
784399
284862
0.0529
0.8140

10
639928
324170
0.0190
0.9739

15
000000

0.0000
1.0000

6 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION

FACTOR PATTERN

FACTOR1 FACTOR2
-0.30178 0.19888
-0.37059 0.17186
-0.28584 0.03628
-0.40986 -0.14151
-0.38940 -0.27218
0.07775 -0.43033
0.07306 -0.32088
-0.15844 -0.19421
0.02531 -0.22474
-0.15844 -0.19421
0.79085 -0.23104
0.94480 -0.22765
0.48696 0.60981
0.29763 0.92097
0.21226 0.46834

FACTOR3

0.41712
0.20439
-0.34932
0.57622
0.79694
0.46265
-0.29345
-0.52256
-0.58020
-0.52256
0.17755
0.06261
0.08549
0.15021
-0.14424

86

FACTOR4

0.17228
0.79669
0.68119
0.16384
-0.10337
-0.39817
-0.42509
-0.29545
0.04721
-0.29545
0.13158
0.13461
-0.16722
-0.08182
0.07229

FACTORS

-0.25038
0.06801
0.24160

-0.39802

-0.07484
0.45974
0.07547

-0.12322

-0.25229

-0.12322
0.31046

-0.11978

-0.37876
0.10387
0.33262

FACTOR6

-0.42386
0.21580
0.31144

-0.25059
0.12952
0.36724
0.23276

-0.05273

-0.00426

-0.05273

-0.32735
0.07836
0.32421

-0.02992
0.01790

SAS 10:25 THURSDAY, NOVEMBER 17, 1988
VARIANCE EXPLAINED BY EACH FACTOR
FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTORS FACTORG6
WEIGHTED 11.492141 7.199870 3.877136 3.104295 1.784399 1.499537
UNWEIGHTED 2.580833 2.123196 2.573990 1.757311 0.976396 0.817046
INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 28,957376 UNWEIGHTED = 10.828772

N1 N2 N3 N4 N5

COMMUNALITY 0.576644 0.894549 0 824425 0.768100 0.893895
WEIGHT 1.123810 2.457143 1.266667 1.266667 2.600000
N6 N7 N8 NS N10

COMMUNALITY 0.910053 0.434985 0.441152 0.453684 0.441152
WEIGHT 1.809524 1.123810 0.352381 1.123810 0.352381
N11 N12 N13 N14 N15

COMMUNALITY 0.931208 0.986998 0.892841 0.977709 0.401379
WEIGHT 3.171429 8.123810 2,.238095 5.457143 1.266667

ROTATION METHOD: VARIMAX
ORTHOGONAL TRANSFORMATION MATRIX
1 2 3 4 5 6

-0.00018 0.85938 0.24732 -0.18651 -0.20622 0.35070
-0.14255 -0.32604 0.71657 0.34453 0.02347 0.49056
-0.87804 0.08066 -0.33137 0.28149 -0.15802 0.09236
0.00024 0.32637 -0.01676 0.392923 (.85622 -0.07547
-0.41042 0.03906 0.53819 -0.38946 0.12057 -0.61169
-0.20070 -0.20156 -0.16008 -0.67912 0.42930 0.49796

Dol WD

87

SAS 10:25 THURSDAY, NOVEMBER 17, 1988

ROTATED FACTOR PATTERN

FACTOR2

-0.15866
-0.13885
-0.11666
-0.17118
-0.24439
0.05842
-0.03896
-0.20560
0.05464
-0.20560
0.89034
0.91467
0.09184
-0.04899
0.05106

FACTOR3

-0.14013
-0.04752
0.13981
-0.57055
-0.61470
-0.24713
-0.10414
-0.05812
-0.09841
-0.05812
0.18848
-0.02947
0.27614
0.74584
0.61082

VARIANCE EXPLAINED BY

FACTOR1
N1 -0.20667
N2 -0.27493
N3 0.14010
N4 -0.27201
NS -0.65618
N6 -0.60739
N7 0.22560
N8 0.54763
NS 0.64589
N10 0.54763
N11 -0.18479
N12 0.01077
N13 -0.07174
N14 -0.29988
N15 -0.08024
FACTOR1
WEIGHTED

UNWEIGHTED 2.215042

TOTAL COMMUNALITY: WEIGHTED = 28.957376

FACTOR2

1.882314

FACTOR3

FACTOR4

0.69528
0.32586
-0.07045
0.57946
0.10375
-0.61744
-0.56127
-0.21674
-0.12577
-0.21674
-0.02403
-0.19070
0.00496
0.25179
-0.03213

EACH FACTOR

FACTOR4

3.496379 9.672114 5.381773 3.003144

1.875214 1.848540

FINAL COMMUNALITY ESTIMATES AND VARIABLE

COMMUNALITY
WEIGHT
COMMUNALITY
WEIGHT
COMMUNALITY
WEIGHT

0'
1.

0.
1.

0‘
3.

N1

576644 0.894549
123810 2.457143

N6

910053 0.434985
809524 1.123810

N11

931208 0.986998
171429 8.123810

N2

N7

N12

88

0.
1.

0.
0'

0.
2.

N3
824425 0.7
266667 1.2

N8
441152 0.4
352381 1.1

N13
892841 0.9
238095 5.4

FACTORS

-0.06365
0.83114
0.86108

-0.02514

-0.09395

-0.22708

-0.23117

-0.17977
0.08937

-0.17977

-0.18701

-0.07562

-0.14928

-0.13387
0.09970

FACTOR5
3.167626
1.714230

WEIGHTS

N4

FACTOR6

-0.04066
-0.02105
-0.15882
-0.05362
-0.07841
-0.20941
-0.05707
-0.12769
-0.00632
-0.12769
-0.18243

0.32759

0.88357

0.49778

0.09086

FACTOR6
4.236341
1.293432

UNWEIGHTED = 10.828772

N5

68100 0.893895
66667 2.600000

N9

N10

53684 0.441152
23810 0.352381

N14

N15

77709 0.401379
57143 1.266667

OBS N1

OO0 MO WM

152
57

o

19

—
o w0

[$4)
O~NO0OOO0OOOO0OO0O

N2

57
156
60
19

[
O OO O0OOO0OOOOwWw

N3

0
60
82

0

0

et
OO

WOOODOO WO

SAS
N4

19
19

58
20

o Qo

OO0 O0OO0OOOQ

NS
19
19

20
438
380

QOO0 OOOOOO0O

N6

10:25 THURSDAY, NOVEMBER 17, 1988

N7

OO OO0

19
82

OCOO0OWO WO

89

N8

N9 N10 N11
0 O 0
0 O 0

19 0 0
0 O 0
0 © 0
0 O 1
0 3 0

57 O 0

134 57 0

57 60 0
0 0 1142
1 01122
0 o 0
6 0 19
0 O 0

N12 N13 N14

(3]

—
QrHOWWOOOOO
OO OO OOOO =

—
p—t
[\]
[\
D
QOO0 O OCODODOOO0O

—
o O

1223
60 123
15 63 215

3 0 60

[=2]
w

N1

(=2 2K}

5

DOOWOODOOOODOOWOO

o

@
SAS 10:25 THURSDAY, NOVEMBER 17, 1988
o INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS
PRIOR COMMUNALITY ESTIMATES: ONE
EIGENVALUES OF THE COVARIANCE MATRIX
TOTAL = 379931 AVERAGE = 25328.7
o
1 2 3 4 5
EIGENVALUE 327830 39240.1 4653.97 3251.5 1389.33
DIFFERENCE 288589 34586.1 1402.47 1862.17 203.735
PROPORTION 0.8629 0.1033 0.0122 0.0086 0.0037
CUMULATIVE 0.8629 0.9661 0.9784 0.9870 0.9906
®
6 7 8 9 10
EIGENVALUE 1185.59 888.862 744.777 289.529 173.706
DIFFERENCE 296.733 144.085 455.249 115.822 41.763777
PROPORTION 0.0031 0.0023 0.0020 0.0008 0.0005
CUMULATIVE 0.9937 0.9961 0.9980 0.9988 0.9993
L
11 12 13 14 15
EIGENVALUE 131.943 90.105628 55.008382 6.696376 0.000000
DIFFERENCE 41.837076 35.097246 48.312006 6.696376
PROPORTION 0.0003 0.0002 0.0001 0.0000 0.0000
CUMULATIVE 0.9996 0.9998 1.0000 1.0000 1.0000
[
7 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION
FACTOR PATTERN
FACTOR1 FACTOR2 FACTOR3 FACTOR4
@
N1 -0.19877 -0.13432 0.48148 0.57186
N2 -0.20292 -0.12832 -0.02040 0.90593
N3 -0.17795 -0.20742 -0.23014 0.57578
N4 -0.20330 0.05244 0.00065 0.46980
N5 -0.18529 0.97969 0.02225 0.02766
® N6 -0.15126 0.98542 0.00832 -0.03640
N7 -0.15648 -0.04137 -0.37989 -0.33006
N8 -0.18335 -0.21959 -0.53517 -0.42400
N9 -0.18757 -0.24079 -0.56378 -0.36333
N10 -0.15900 -0.19680 -0.42700 -0.28972
N11 0.99920 0.01775 -0.00492 0.00842
o N12 0.99927 0.02109 0.00468 -0.00557
N13 0.18058 -0.16843 0.56240 -0.34228
N14 -0.06707 -0.24514 0.90319 -0.23811
N15 -0.12555 -0.20739 0.62719 -0.26956
o
90

SAS

10:25 THURSDAY, NOVEMBER 17, 1988

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

N1
N2
N3
N4
NS
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15

WEIGHTED

FACTOR PATTERN

FACTORS

0.48150
-0.10483
-0.31322

0.02453

0.01882
-0.00566

0.12181

0.32605

0.30511

0.20166

0.02301
-0.01867
-0.54089

0.15721

0.10366

FACTOR6

-0.05756
0.04619
0.25739

-u,. 10222
0.01837

-0.00707

-0.76069

-0.35581
0.54148
0.66573
0.00074

-0.00001
0.05579
0.06314
0.05253

FACTOR7

0.34620
0.05145
-0.21500
0.03281
0.00964
-0.00083
0.05687
0.22584
0.19610
0.09108
-0.01930
0.01876
0.43959
-0.06602
-0.53021

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1
32783

FACTOR2
0 39240.1

UNWEIGHTED 2.379254 2.290014

WEIGHTED

FACTORS
1389.3

FACTOR6
3 1185.59

UNWEIGHTED 0.925751 1.534032

FACTOR3 FACTOR4
4653.97 3251.5
2.742125 2.453347
FACTOR7

888.862
0.750323

FINAL COMMUNALITY ESTIMATES AND VARTABLE WEIGHTS

TOTAL COMMUNALITY: WEIGHTED =

COMMUNALITY
WEIGHT

COMMUNALITY
WEIGHT

COMMUNALITY
WEIGHT

N1
0.971407 O
1725.92

N6
0.995415 0
19562

N11
0.999704 0
158259

N2

378439

N3

.894545 0.669756 0
1815.6 635.781

N7

N8

.876172 0.831927 O
611.352 1144.89

N12

N13

.999733 0.983341 0
168568 1333.11

91

N4
.276938
256.352

NS
.967773
1430.55

N14
.970099
3235.95

UNWEIGHTED = 13.074847

N5
0.996177
20443.4

N10
0.822432
421.286

N15
0.819428
486.6

11

SAS

ROTATION METHOD: VARIMAX

N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15

NN W =

=IO DN

ORTHOGONAL TRANSFORMATION MATRIX

1

0.97862
0.07795
0.01545
-0.01426
0.17838
0.05876
0.02281

5

-0.06113
-0.12170
0.71039
-0.38745
0.31704
0.11527
-0.46139

10:25 THURSDAY, NOVEMBER 17, 1988

2

-0.10489
0.97525
0.08443

~-0.09429
0.09466
0.09908
0.05562

6

-0.10623
-0.07018
0.34420
0.53772
0.57280
-0.02960
0.49719

3

-0.04100
-0.02533
-0.21935
-0.55574

0.39333
-0.65129

0.24864

7

0.06240
-0.06353
0.43574
-0.34603
-0.49561
0.09732
0.65373

ROTATED FACTOR PATTERN

FACTOR1

-0.11530
-0.23663
-0.24773
-0.20236
-0.10035
-0.07201
-0.17920
-0.15636
-0.11514
-0.09623

0.98272

0.97679

0.09398
-0.03714
-0.11601

FACTOR2Z

-0.06429
-0.19348
-0.27344

0.02228

0.97829

0.97975
-0.08557
-0.19196
-0.13505
-0.09386
-0.08753
-0.08405
-0.12467
-0.11587
-0.12520

92

FACTOR3

-0.09892
-0.54594
-0.60125
-0.16969
-0.03964

0.00182

0.83170

0.78224

0.15548
-0.06544
-0.04125
-0.04211
-0.07606
-0.05252
-0.10264

4

-0.10351
-0.13565
-0.36267
-0.35079
0.36092
0.73411
0.21709

FACTOR4

-0.12975
-0.26475
-0.04273
-0.21003
-0.10912
-0.11568
-0.22675

0.29709

0.93420

0.88092
-0.10235
-0.10871
-0.13857
-0.11508
-0.13080

12

SAS 10:25 THURSDAY, NOVEMBER 17, 1988 13
ROTATION METHOD: VARIMAX
ROTATED FACTOR PATTERN

FACTORS FACTOR6 FACTOR7

N1 0.13526 0.95340 -0.00987
N2 -0.38913 0.47484 -0.23679
N3 -0.32089 -0.03007 -0.25772
N4 -0.19453 0.30438 -0.17916
N5 -0.09918 -0.01151 -0.07492
N6 -0.09289 -0.07325 -0.05426
N7 -0.20270 -0.16815 -0.15568
N8 -0.21981 -0.06773 -0.13255
N9 -0.15029 -0.09636 -0.08666
N10 -0.05876 -0.13096 -0.05884
N11 -0.05371 -0.10100 0.03222
N12 -0.07274 -0.11039 0.08649
N13 0.17372 -0.09076 0.94634
N14 0.85538 0.26252 0.37241
N15 0.86646 -0.10697 -0.02096

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3 FACTOR4
WETGHTED 314247 41017.1 2577.23 6108.56
UNWEIGHTED 2.209478 2.164373 2.054335 2.018439

FACTORS FACTOR6 FACTOR7
WEIGHTED 4987.52 6061.13 3440.07
UNWEIGHTED 1.965219 1.403774 1.259229

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS

TOTAL COMMUNALITY: WEIGHTED = 378439 UNWEIGHTED = 13.074847
N1 N2 N3 N4 N5

COMMUNALITY 0.971407 0.894545 0.669756 0.276938 0.996177
WEIGHT 1725.92 1815.6 635.781 256.352 20443.4
N6 N7 N8 N9 N10

COMMUNALITY 0.995415 0.876172 0.831927 0.967773 0.822432
WEIGHT 19562 611.352 1144.89 1430.55 421.286
N1l N12 N13 N14 N15

COMMUNALITY 0.999704 0.999733 0.983341 0.970099 0.819428
WEIGHT 158259 168568 1333.11 3235.95 486.6

93

Appendix J. Time Based Example SAS Input

OPTIONS LINESIZE=80;
b X3

* E x TIMEBASED WEIGHT x E’;

*;

DATA CONDSPEC;

INPUT NI N2 N3 N4 N5 N6 ;

CARDS;
150.0001 0 50.00011 50 0 50
0 132.2815 33.516 20 0 78.7655
50.00011 33.516 203.5161 60 0 60
50 20 60 179.7531 29.7531 20
0 0 0 29.7531 49.7531 20
50 78.7655 60 20 20 228.7655

PROC PRINT;

PROC FACTOR COV NFACTORS = 3 ROTATE=VARIMAX ;
VAR N1 N2 N3 N4 N5 N6

¥ j = 53

* 10 x EXP(~.025 x T)

94

10

OBS

(23S B JUN L

Appendix K.

N1 N2

150 0.000
0 132.282
50 33.516
50 20.000
V] 0.000
50 78.766

SAS

N3

50.000
33.516
203.516
60.000
0.000
60.000

95

N4

50.000
20.000
60.000
179.753
29.753
20.000

Time Based Example SAS Output File

N5

0.0000
0.0000
0.0000
29.7531
49.7531
20.0000

19:15 TUESDAY, NOVEMBER 15, 1988 1

N6

50.000
78.766
60.000
20.000
20.000
228.766

SAS 19:15 TUESDAY, NOVEMBER 15, 1988 2
INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS
PRIOR COMMUNALITY ESTIMATES: ONE

EIGENVALUES OF THE COVARIANCE MATRIX: TOTAL = 20880.9 AVERAGE = 3480.14

1 2 3 4 5 6
EIGENVALUE 8596.65 5476.26 3335.78 2277.38 1194.78 0.000000
DIFFERENCE 3120.39 2140.48 1058.4 1082.6 1194.78
PROPORTION 0.4117 0.2623 0.1598 0.1091 0.0572 0.0000
CUMULATIVE 0.4117 0.6740 0.8337 0.9428 1.0000 1.0000

3 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION
FACTOR PATTERN

FACTOR1 FACTORZ FACTOR3

N1 -0.23659 0.44903 0.81477
N2 0.73082 -0.08798 -0.45729
N3 -0.07492 0.93681 -0.31347
N4 -0.71392 0.15703 -0.07350
N5 -0.22437 -0.59802 -0.01519
N6 0.90824 0.21594 0.21135

VARTANCE EXPLATNED BY EACH FACTOR
FACTOR1 FACTORZ FACTOR3
WEIGHTED 8596.65 5476.26 3335.78
UNWEIGHTED 1.980602 1.515894 1.021533

FINAL COMMUNALITY FSTIMATES AND VARIABLE WEIGHTS

TOTAL COMMUNALITY: WEIGHTED = 17408.7 UNWEIGHTED = 4.518030
N1 N2 N3 N4 N5 N6
COMMUNALITY 0.921457 0,750958 0.981484 0.539740 0.408201 0.916190
WEIGHT 3000 2712.02 4925.92 3711.13 422.074 6109.71
96

SAS 19:15 TUESDAY, NOVEMBER 15, 1988 3

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3
1 0.96530 0.08168 -0.24805
2 -0.00667 0.95723 0.28925
3 0.26107 -0.27755 0.92456

ROTATED FACTOR PATTERN

FACTOR1 FACTORZ FACTOR3

N1 -0.01866 0.18436 0.94187
N2 0.58666 0.10240 -0.62952
N3 -0.16041 0.97763 -0.00026
N§ -0.70938 0.11240 0.15456
N3 -0.21656 -0.58655 -0.13137
N6 0.93045 0.22222 0.03258

VARIANCE EXPLAINED BY EACH FACTOR
FACTOR1 FACTORZ FACTOR3
WEIGHTED 8237.95 5332.18 3838.56
UNWEIGHTED 1.786114 1.406289 1.325626

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS

TOTAL COMMUNALITY: WEIGHTED = 17408.7 UNWEIGHTED = 4.518030
N1 N2 N3 N4 N5 N6
COMMUNALITY 0.921457 0.750958 0.981484 0.539740 0.408201 0.916190
WEIGHT 3000 2712.0z 4925.82 3711.13 422,074 6104 7]
97

Appendix L. Computer Program Code

10

20 ' THIS PROGRAM DECOMPOSES A DISCRETE EVENT SIMULATION MODEL
30 ' AND AIDS IN ANALYZING THE MODEL'S STRUCTURE

40’

50 ' THE PROGRAM WAS WRITTEN BY SCOTT MATTHES AT AFIT/EN, WPAFB, OH
60 ' AS PART OF MY MASTFR’S THESIS EFFORT

70 !

80 ' INITIALIZATION

90 °

100 wWSTRS="s3 \ \ %

\ \"

110 wWST$ ="NODE ATTRIBUTE NODE
ATTRIBUTE"

120 MATHS$=" ATTRIBUTE NODE C/1/0 NODE
C/1/0 LY wW3"

130 MATPS$="\ \ , #% &% ¢ k&
g8 sspgs’

140 BIG = 0

150 °

160 ' OPEN NODE COMPOSITION FILE

170 ?

180 OPEN "NODE.CMP" FOR OUTPUT AS #5

190 KEY OFF

200 DIM RSVW$(100), A$(2000)

210’

220 ' READ IN RESERVE WORDS

230 °

240 RWDN = O

250 OPEN "RESERVE.WRDS" FOR INPUT AS #1

260 WHILE NOT EOF(1)

270 RWDN = RWDN + 1

280 LINE INPUT#1,RSVWS$(RWDN)

290 WEND

300 CLOSE #1

310

320 ' ADD RESERVE WORDS

330 °’

340 CLS

350 LOCATE 10,20:INPUT "HOW MANY KEY WORDS DO YOU HAVE? " ,KW
360 DIM KWRD$(KW)

370 CLS

380 FOR J=1 TO KW

390 LOCATE 10,20:PRINT "KEY WORD NUMBER";J;:INPUT"IS : " KWRDS$(J)
400 CLS

410 NEXT J

420 INAT$ = " INPUT ATTRIBUTE

\ \"
430 OTAT$ = " OUTPUT ATTRIBUTE

\ \"
440 K=1

450 REM NN$ IS NODE NAME

460 CV$ = " CONTROL ATTRIBUTE

\ \"
470 NN$ = " NODE ##

\ \"
480 CLS

490 °

500 * ENTER FILE TO BE DECOMPOSED
510 °

527 LOCATE 10,20:PRINT "NAME OF FILE TO BE DECOMPOSED: ":LOCATE
12,26:INPUT " ",INPF$

530 CLS

540 °

550 ' WORK ON NODES

560 °

570 FOR KTR = 1 TO 2

580 NE = 0

590 NODE = 0

600 NL = 0

610 OPEN INPF$ FOR INPUT AS #1
620 WHILE NOT EOF(1)

630 NL = NL + 1

640 LINE INPUT#1,A$(NL)

650 WEND

660 CLOSE #1

670 FOR I=1 TO NL

680 BL2 = O

690 BL=INSTR(AS$(I),"{")

700 EL=INSTR(AS$(1),"}")

710 °

720 ° NODE NAMES

730

740 IF BL = 0O THEN GOTO 870

750 BN=BL+1

760 EN=EL-BN

770 N$ = MID$(AS$(I),BN,EN)

780 IF BL<>0 THEN CN$=N$

790 IF KTR = 2 THEN 830

800 IF NI > BIG THEN BIG = NI
810 IF NO > BIG THEN BIG = NO
820 IF NC > BIG THEN BIG = NC
830 NI = 0
840 NO = 0
850 NC = 0

860 NODE = NODE + 1

870 IF CN$="INITIALIZATION" OR CN$="Initialization" OR CN$="TERMINATION"
OR CN$="Termination" THEN 3160

880 IF BL=0 THEN GOTO 1050

890 IF KTR 1 THEN LOCATE 10,20 : PRINT "FINDING ATTRIBUTES"

900 IF KTR = 1 THEN 1010

910 IF K=1 THEN 960

920 LOCATE 23,28:PRINT "TYPE ANY KEY TO CONTINUE"

99

930

940

950

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1180
1390
1400
1410
1420
1430
1440

PRINT#5, : PRINT#5, : PRINT#5,
WHILE INKEY$="":WEND
CLs
PRINT USING NN$;NODE,N$
PRINT#5,USING NN$;NODE,N$
PRINT:PRINT
PRINT#5, : PRINT45,

K=K+1

GOTO 3160

1]

' CREATE STATEMENT

?

BL=INSTR(AS$(I),"CREATE")

IF BL=0 THEN 1260

BN=BL+7

MP=INSTR(A$(1),",")
OV$=MID$(A$(I),BN,MP-BN)
NO=NO+1

IF KTR=1 THEN 1220

PRINT USING OTATS$;OV$
EP=INSTR(AS$(1),")")
CRSB$=MID$(AS$(1),MP+1,EP-MP-1)
OPEN "TEMP.DAT" FOR OUTPUT AS #2
PRINT#2,0V$;" (" ;CRSBS;"]"

CLOSE #2

OPEN "TEMP.DAT" FOR INPUT AS #3
LINE INPUT#3,WM$(NODE, 3,NO)
CLOSE #3

PRINT#5,USING OTAT$;0V$

GOTO 3160

’

’ DESTROY STATEMENT

H

BL=INSTR(AS$(I),"DESTROY")

IF BL=0 THEN 1470

BN=BL+8

MP=INSTR(AS$(I),",")
IV$=MID$(AS(I),BN,MF—BN)
NI=NI+1

IF KTR=1 THEN 1430

PRINT USING INATS$;IV$
EP=INSTR(AS$(I),")")
DESB$=MID$(AS$(1),MP+1,EP-MP-1)
OPEN "TEMP.DAT" FOR OUTPUT AS #2
PRINT#2,1V$;"[";DESBS;"]"

CLOSE #2

OPEN "TEMP.DAT" FOR INPUT AS #3
LINE INPUT#3,WM$(NODE,2,NI)
CLOSE #3

PRINT#5,USING INATS;IV$

GOTO 3160

100

|
»

1450 ' NODE CONTENTS

1460 °

P 1470 BL=INSTR(AS$(I),"WHEN ALARM")
1480 IF BL=0 THEN 1650

1490 KIND = 1

1500 SOP=INSTR(AS$(I),"((")

1510 IF SOP=0 THEN 1620
1520 ESP=INSTR(SOP,A$(I),")")
1530 CVW$=MID$(AS$(I),SOP+2,ESP-SOP-2)
1540 NC = NC + 1

1550 IF KTR = 1 THEN 1590

1560 PRINT USING CV$;CVW$

1570 WM$(NODE,1,NC) = CVW$

B 1580 PRINT#5, USING CV$;CVWS$

1590 LOOP=0

1600 ECV=ESP-2

1610 GOTO 1880

1620 BN=BL+11

1630 GOTO 1710
1640 GOTO 3160

L 1650 BL=INSTR{A$(I),"END WHEN")

1660 IF BL<>0 THEN 3160

1670 BL=INSTR(A$(I),"WHEN")

1680 IF BL=0 THEN 2160

1690 KIND = 2
1700 BN=BL+5

b 1710 EN = INSTR(AS$(I),");")

1720 IF EN = O THEN EN = INSTR(A$(I),";")
1730 IF EN = O THEN GOSUB 7210

1740 SPCH = 1

1750 ° \
1760 ' TEST FOR OPERATOR

1770 °

1780 LOOP = 0

1790 GOSUB 6340

1800 IF ECV = 0 AND LOOP = 0 THEN 2060
1810 IF ECV = O THEN 3160

1820 CVw$ = MID$(A$(I),BN,ECV-BN)

1830 NC = NC + 1

1840 IF KTR = 1 THEN 1880

1850 PRINT USING CV$;CVW$

1860 WM$(NODE,1,NC) = CVW$

1870 PRINT#5,USING CV$;CVW$

1880 SPCH = ECV + 2

1890 BN = INSTR(SPCH,A$(I)," & ")+3

1900 FOUR = 4

1910 IF BN = 3 THEN BN = INSTR(SPCH,A$(I),");")+3
1920 IF BN = 3 THEN BN = INSTR(SPCH,A$(I),";")+3
1930 IF BN = 3 THEN 3160

1940 IF ESP<>0 THEN 2030
1950 IF CASE = 2 THEN BN = BN + 1 : FOUR = FOUR + 1 : SPCH = SPCH + 1
1960 1V$=MID$(AS$(1),SPCH+1,BN-SPCH~FOUR)

101

1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480

GOSUB 6990

IF TEST=0 THEN NI = NI + 1

IF TEST=0 AND KTR = 1 THEN 2030

IF TEST=0 THEN PRINT USING INATS;IV$S
IF TEST=0 THEN WM$(NODE,2,NI) = IV$
IF TEST=0 THEN PRINT#5,USING INAT$;IV$
LOOP = LOOP + 1

ESP=0

GOTO 1790

CVws = MID$(AS(1),BN,EN-BN)

NC = NC + 1

IF KTR = 1 THEN 2120

PRINT USING CV$;CVW$

WMS{NODE,1,NC) = CVW$

PRINT#5,USING CVS$;CVW$

GOTO 3160

?

' SET ALARM STATEMENT
BL=INSTR(A$(1),"SET ALARM")

IF BL=0 THEN 2600

KIND = 3

BN=BL+10

SOP=INSTR(BN+3,A8(1)," (")
COMA=INSTR(A$(I),", ")

IF SOP > COMA THEN 2250

IF SOP>0 THEN CP=INSTR(BN+3,A$(1),")")
1F SOP>0 THEN MP=INSTR(CP,A$(I),",") : GOTO 2270
MP=INSTR(A$(I),"], ")+1

IF MP < 2 THEN MP=INSTR(A$(I),",")
OV$=MIDS(AS(1),BN,MP-BN)

NO = NO + 1

IF KTR = 1 THEN 2330

PRINT USING OTAT$;OV$

WM$ (NODE, 3,N0) = OV$

PRINT#5,USING OTATS$;0OV$
EP=INSTR(AS$(I),");")
EPP=INSTR(20,A$(1)," ")
IF EP<>0 THEN 2490
MP=INSTR(A$(1),"], ")+1

IF MP < 2 THEN MP=INSTR(AS$(I),",")
A$(I)=MID$(A$(1),MP+2,60)

BN=1

GOSUB 7210

GOSUB 6480

NI = NI +1

IF KTR = 1 THEN 2470

PRINT USING INATS;IV$

WM$ (NODE,2,NI) = IV$

PRINT#5,USING INATS;IV$

TEMP$=""

GOTO 2590

102

2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000

IVE=MID$ (AS$(I),MP+2,EP-MP-2)
GOSUB 6480

GOSUB 6990

IF TEST=1 THEN 3160

IF 1vs="" THEN 2590

NI = NI +1

IF KTR = 1 THEN 2590

PRINT USING INATS$;IVS
WMS(NODE,2,NI) = IVS
PRINT#5,USING INATS;IVS

GOTO 3160

?

' INPUT ATTRIBUTES

1

BL = INSTR(AS$(I),":=")

1F BL=0 THEN 3160
KIND = 4
HOLD$=A$(1)

BN=BL+4
EN=INSTR(A$(I),";")

IF EN<>0 THEN 2810
GOSUB 7210
GOSUB 6720
EN = INSTR(IVS,")")

IF EN = 0 THEN EI = INSTR(IVS$,";")
IV$ = MID$(IV$,BN,EN-BN)
NI = NI +1

IF KTR = 1 THEN 2800
PRINT USING INATS;IVS
WM$ (NODE,2,NI) = IV$
PRINT#5,USING INATS;IVS
GOTO 3040

IV$ = MIDS(A$(I),BN,EN-BN)
GOSUB 6500

GOSUB 6720

GOSUB 6990

IF TEST = 1 THEN 3040

NI = NI + 1

IF KTR = 1 THEN 2910
PRINT USING INATS;IVS
WM$ (NODE,2,NI) = IV$
PRINT#5,USING INATS;IV$
IV$=TEMP$

TEMPs - "

GOSUB 6990

IF TEST = 1 THEN 3040

IF IV$="" THEN 3040

NI = NI +1

IF KTR = 1 THEN 3040
PRINT USING INATS;IVS$
WM$ (NODE,2,NI) = IVS$
PRINT#5,USING INATS;IV$

103

3010 '

3020 * OUTPUT ATTRIBUTES

3030 °*

3040 FOR J=1 TO 50

3050 IF MID$(HOLDS$,J,1)=" " THEN 3070

3060 BO=J:J=50

3070 NEXT J

3080 EO=BL-BO-1

3090 KIND = 5

3100 OV$=MID$(HOLDS$,BO,EO)

3110 NO = NO + 1

3120 IF KTR = 1 THEN 3160

3130 PRINT USING OTAT$;O0V$

3140 WMS(NODE,3,NO) = OV$

3150 PRINT#5,USING OTATS$;0V$

3160 NEXT I

3170 IF KTR = 1 THEN BIG=BIG+4:DIM

WMs$ (NODE, 3,BIG) ,WMR$ (NODE, 3,BIG),SUBS$ (NODE, 3,BIG,7),SUBS$ (NODE*3*BIG*7),T
E(NODE, 3),SB(NODE, 3,BIG)

3180 IF KTR=2 THEN LOCATE 23,28:PRINT "TYPE ANY KEY TO CONTINUE":WHILE
INKEY$=""":WEND

3190 CLS

3200 NEXT KTR

3210 CLOSE #5

3220 °

3230 ’ FIND SUBSCRIPTS

3240 °

3250 LOCATE 10,20:PRINT"IDENTIFYING SUBCRIPTS OF ATTRIBUTES"
3260 OPEN "EDGE.INF" FOR OUTPUT AS #4

3270 NOV = O

3280 ERASE A$,RSVW$,KWRDS

3290 FOR A=1 TO NODE

3300 FOR B=1 TO 3

3310 TE(A,B)=0

3320 FOR C=1 TO BIG

3330 SB(A,B,C)=1

3340 NEXT C

3350 NEXT B

3360 NEXT A

3370 DIM NSUB(NODE, 3,BIG)

3380 FOR C = 1 TO NODE

3390 FOR B =1 TO 3

3400 FOR A = 1 TO BIG

3410 IF WM$(C,B,A)="" THEN 3500

3420 PRINT#4, USING "## & ## ";C,B,A;:PRINT#4,WM$(C,B,A)
3430 BEG=INSTR(WM$(C,B,A),"[")

3440 IF BEG = 0 THEN WMR$(C,B,A)=WM$(C,B,A):GOTO 3490
3450 WMR$(C,B,A)=MID$(WMS$(C,B,A),1,BEG-1)

3460 PRINT#4, USING "## # #% ";C,B,A;:PRINT#4,WMR$(C,B,A)
3470 GOSUB 7390

3480 NSUB(C,B,A)=D-FS

3490 NOV = NOV + 1

104

3500 !

3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930

,D) = "" THEN 3630
E=zE+1

SUBS$(E)=SUB$(A,B,C,D)

NEXT D

NEXT C

NEXT B

NEXT A

DIM SUS(E)

F=0

FOR A=1 TO E

FOR B=1 TO E

IF SUBS$(A)=SUBS$(B) THEN TMP$=SUBS${(A) ELSE 3770
CK =0

FOR C=1 TO F

IF TMP$=SU$(C) THEN CK=2:C=F
NEXT C

IF CK=0 THEN F=F+1:SU$(F)=TMP$
NEXT B

NEXT A

ERASE SUBSS$

SUBS=F

DIM SUBS$(F),SUB(F)

FOR G=1 TO F

SUBS$(G) = SU$(G)

FOR A=0 TO 9

TEST = 0

IF SUBS$(G)<>CHR$(48+A) THEN 3900
SUB(G)=1

TEST=1

A=9

NEXT A

IF TEST=1 THEN 3950

IF G=1 THEN BEEP:BEEP:BEEP
LOCATE 10,10:PRINT"ENTER A MAXIMUM VALUE FOR THE SUBSCRIPT

";SUBS$(G);:INPUT " ";SUB(G)

3940
3950
3960
3970
3980
3990
4000

CLS
NEXT G

]

' FIND NETWORK REPRESENTATION
?

LOCATE 10,20:PRINT"FINDING NETWORK REPRESENTATION"
ERASE SU$

105

4010 FOR A=1 TO NODE
4020 FOR B=1 TO 3
4030 FOR C=1 TO BIG
4040 FOR D=1 TO 7

4050 FOR G=1 TO F

4060 IF SUB$(A,B,C,D)<>SUBS$(G) THEN 4090

4070 SB(A,B,C)=SB(A,B,C)*SUB(G)

4080 G=F

4090 NEXT G

4100 NEXT D

4110 NEXT C

4120 NEXT B

4130 NEXT A

1140 °

4150 * WRITE DIAGNOSTICS

4160 °

4170 OPEN "INF.DAT" FOR OUTPUT AS #4

4180 PRINT#4, MATH$

4190 DIM W1(NODE,NODE),CM(NODE,NODE) ,W2(NODE, NODE)

4200 FOR C=1 TO NODE

4210 FOR D=1 TO NODE

4220 W1(C,D)=0

4230 wW2(C,D)=0

4240 NEXT D

4250 NEXT C

4260 OPEN "ERRORS.DAT" FOR OUTPUT AS #5

4270 PRINT#5, " "NON-MATCHING SUBSCRIPTS":PRINT#5,

4280 PRINT#5,WST$:PRINT#5,: PRINT#5,

4290 FOR C=1 TO NODE

4300 FOR B=1 TO BIG

4310 FOR A=1 TO BIG

4320 IF WMR$(C,1,B)=WMR$(C,2,A) AND WMR$(C,1,B)<>"" THEN WMR$(C,2,A)=""
4330 IF A <= B THEN 4370

4340 IF WMR$(C,1,B)=WMR$(C,1,A) AND WMR$(C,1,B)<>"" THEN WMR$(C,1,A)=""
4350 IF WMR$(C,2,B)=WMR$(C,2,A) AND WMR$(C,2,B)>"" THEN WMR$(C,2,A)=""
4360 IF WMR$(C,3,B)=WMR$(C,3,A) AND WMR$(C,3,B)<>"" THEN WMR$(C,3,A)=""
4370 NEXT A
4380 NEXT B
4390 NEXT C
4400 FOR C

4410 FOR B = 1 TO 3

4420 FOR A = 1 TO BIG

4430 IF WMRS(C,B,A) = "" THEN 4680

4440 FOR X=1 TO NODE

4450 IF X < C THEN 4670

4460 FOR XY = 1 TO 3

4470 IF (X=C AND XY<B) OR (B=XY) OR (B=1 AND XY=2) OR (B=2 AND XY=1)
THEN 4660

4480 FOR Y=1 TO BIG

4490 IF X=C AND XY=B AND Y=C THEN 4650

4500 IF WMR$(C,B,A) <> WMR$(X,XY,Y) OR C = X THEN 4650

1 TO (NODE-1)

106

4510 IF WM$(C,B,A)<>OWMS$(X,XY,Y) AND WM$(C,B,A}<>"" AND WM$(X,XY,Y)OO""
AND NSUB(C,B,A)<>NSUB(X,XY,Y) THEN PRINT#5,"FATAL ERROR'!! Subscripts
are not compatible! Results will be inaccurate!!!"

4520 IF WM$(C,B,A)<>OWMS$(X,XY,Y) AND WM$(C,B,A)<>"" AND WMS{X,XY,Y)O""
AND NSUB(C,B,A}<>NSUB(X,XY,Y) THEN PRINT#5,USING
WSTR$;C,WM$(C,B,A),X,WM$(X,XY,Y): PRINT#5,:GOTO 4650

4530 IF WM$(C,B,A) <> WM$(X,XY,Y) AND WM$(C,B,A} <> "" AND WM$({X,XY,Y)
<> "" THEN PRINT#5,"Warning: Subscripts do not match
exactly":PRINT#5,USING WSTR$;C,WM$(C,B,A),X,WM$(X,XY,Y):PRINT=5,

4540 CR1=0

4550 FOR L = 1 TO NSUB(C,B,A)

4560 IF SUB$(C,B,A,L)=SUB${X,XY,Y,L) THEN 4580

4570 1F SUBS$(C,B,A,L)>"/" AND SUB$(C,B,A,L)<":" AND SUB$(X,XY,Y,L}>"/"

AND SUBS$(X,XY,Y,L)<":" THEN CK1=1:L=NSUB{(C,B,A):PRINT#3," **%* The
above edge has been disregarded ***":PRINT#5,
4580 NEXT L

4590 IF CK1=1 THEN 4650

4600 W1(C,X) = W1(C,X) + 1

4610 IF B <> 3 THEN SBS = SB(C,B,A) ELSE SBS = SB(X,XY,Y)
4620 W2{(C,X) = wW2(C,X) + SBS

4630 PRINT#4, USING MATPS;WMR$(C,B,A),C,B,X,XY,W1(C,X),W2(C,X)
4640 EDG = EDG + 1:Y=BIG:XY=3

4650 NEXT Y

4660 NEXT XY

4670 NEXT X

4680 NEXT A

4690 NEXT B

4700 NEXT C

4710 ERASE SUB$

4720 PRINT#4,:PRINT#4,"NUMBER OF EDGES =";EDG
4730 CLOSE #4

4740 NWE=0

4750 FOR C=1 TO NODE

4760 FOR D=1 TO NODE

4770 IF W1(C,D)>0 THEN NWE=NWE+1

4780 NEXT D

4790 NEXT C

4800 CLS

4810 LOCATE 10,20:PRINT"CREATING EDGE MATRIX"
4820 OPEN "INF.DAT" FOR INPUT AS #4

4830 LINE INPUT#4, D$

4840 DIM B$(EDG)

4850 FOR A = 1 TO EDG

4860 INPUT#4, B$(A),D,D,D,D,D,D

4870 NEXT A

4880 CLOSE #4

4890 PRINT#5,CHR$(12):PRINT#5,"ATTRIBUTES WITHOUT A
COUNTERPART" : PRINT#5, : PRINT#5,"

ATTRIBUTE NODE TYPE" : PRINT#5, : PRINT#5,
4900 FOR D = 1 TO NODE

4910 FOR E = 1 TO 3

4920 FOR F = 1 TO BIG

107

4930
4940
4950
4960
4970
4980
1990
5000
5010
5020
"\

MACH = 0

FOR C = 1 TO EDG

IF B$(C) = WMRS$(D,E,F) THEN MACH = 1:C=EDG
NEXT C

IF MACH=1 THEN 5030

IF MACH = 0 AND WMRS$(D,E,F) = "" THEN 5030
IF E=1 THEN TYP$="CONTROL"

IF E=2 THEN TYP$="INPUT"

IF E=3 THEN TYP$="OUTPUT"

IF MACH = 0 THEN PRINT#5, USING

\";wWMRS(D,E,F),D,TYP$

5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5219
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420

NEXT F

NEXT E

NEXT D

CLOSE 85

ERASE BS,WMS,WMRS

DIM EM(NODE,NWE),WM(NWE,NWE),IM(NODE,NWE)
FOR C=1 TO NODE

FOR D=1 TO NWE

EM(C,D}=0

NEXT D

NEXT C

B=1

FOR C=1 TO NODE

FOR D=1 TO NODE

IF W1(C,D)>0 THEN EM(C,B)=1:EM(D,B)=1:B=B+1
NEXT D

NEXT C

b

* GET WEIGHT FOR MATRIX

’

DIM SUM(NODE),DIA1(NWE),DIA2(NWE)
FOR C=1 TG NODE

SUM(C)=0

FOR D=1 TO NWE
SUM(C)=SUM(C)+EM(C,D)

IF SUM(C)>0 THEN D=NWE

NEXT D

NEXT C

B=0

H1=0:H2=0

FOR C=1 TO NODE

IF SUM(C)=0 THEN 5430

B=B+1

FOR D=1 TO NWE

EM(B,D)=EM(C,D)

NEXT D

FOR A=1 TO NODE

IF W1(C,A)>0 THEN H1=H1+41:DIA1(H1)=W1(C,A)
IF W2(C,A)>0 THEN H2=H2+1:DIA2(H2)=W2(C,A)
NEXT A

108

5430 NEXT C

5440 ERASE SUM

5450 NODE=B

5460 CLS

5470 '

5480 ' CREATE SAS FILE

5490 °’

5500 LOCATE 3,15:PRINT"OPTIONS OF MATRIX MULTIPLICATIONS"
5510 LOCATE 6,22:PRINT"1. E x E'"

5520 LOCATE B8,22:PRINT"2. E x W2 x E'"
5530 LOCATE 10,22:PRINT"3. E x W3 x E""

5540 LOCATE 12,22:PRINT"4. BOTH 1 & 2"
5550 LOCATE 14,22:PRINT"5. BOTH 1 & 3"
5560 LOCATE 16,22:PRINT"6. BOTH 2 & 3"
5570 LOCATE 18,22:PRINT"7. ALL 3 (1 & 2 & 3)"

5530 BEEP:BEEP:BEEP

5590 LOCATE 21,22:INPUT "ENTER CHOICE ",CH

5600 IF CH > 7 THEN CLS:SYSTEM

5610 NT=1

5620 CLS

5630 LOCATE 10,10:INPUT"ENTER SAS FILENAME (ie COND.SAS) " ySASF$
5640 OPEN SASF$ FOR OUTPUT AS #2

5650 PRINT#2,"OPTIONS LINESIZE=80;"

5660 CLS

5670 IF CH <> 1 AND CH <> 4 AND CH <> 5 AND CH <> 7 THEN 5890
5680 CLS

5690 LOCATE 3,10:PRINT "FOR E x E’"

5700 LOCATE 10,15:INPUT"ENTER NUMBER OF FACTORS TO BE RETAINED ",PV
5710 CLS

5720 PRINT#2,"*;"

5730 PRINT#2,"* E x E’;"

5740 PRINT#2,"%;"

5750 PRINT " E x E’":PRINT

5760 FOR A=1 TO NODE

5770 FOR B=1 TO NODE

5780 CM(A,B)=0

5790 FOR C=1 TO NWE

5800 CM(A,B) = CM(A,B) + EM(A,C) * EM(B,C)

5810 NEXT C

5820 PRINT USING " ##";CM(A,B);

5830 NEXT B

5840 PRINT

5850 NEXT A

5860 GOSUB 8100

5870 BEEP:BEEP:BEEP

5880 LOCATE 1,50:PRINT"*** HIT A KEY TO CONTINUE ***":WHILE
INKEY$="":WEND

5890 DIM DIA(NWE)

5900 IF CH <> 2 AND CH <> 4 AND CH <> 6 AND CH <> 7 THEN 6040
5910 CLS

5920 LOCATE 3,10:PRINT "FOR E x W2 x E*"

5930 LOCATE 10,15:INPUT"ENTER NUMBER OF FACTORS TO BE RETAINED ",PV

109

5940 CLS
5950 PRINT#2,"*;"
5960 PRINT#2,"* E x W2 x E’;"
5970 PRINT#2,"*;"
5980 FOR C=1 TO NWE
5990 DIA(C)=DIA1(C)
6000 NEXT C
6010 GOSUB 7740
6020 BEEP:BEEP:BEEP
6030 LOCATE 1,50:PRINT"**%* HIT A KEY TO CONTINUE *¥*":WHILE
INKEY$=""":WEND
6040 IF CH <> 3 AND CH <> 5 AND CH <> 6 AND CH <> 7 THEN 6280
6050 CLS
6060 LOCATE 3,10:PRINT "FOR E x W3 x E'"
6070 LOCATE 10,15:INPUT"ENTER NUMBER OF FACTORS TO BE RETAINED ",PV
6080 CLS
6090 PRINT#2,"%;"
6100 PRINT#2,"* E x W3 x E';"
6110 PRINT#2,"%;"
6120 FOR C=1 TO NWE
6130 DIA(C)=DIAZ(C)
6140 NEXT C
6150 GOSUB 7740
6160 FOR A=1 TO SUBS
6170 TEST=0
6180 FOR B=0 TO 9
6190 IF SUBS$(A}<>CHR$(48+B) THEN 6220
6200 B=9
6210 TEST=1
6220 NEXT B
6230 IF TEST=0 THEN PRINT USING "\ \ =
6240 IF TEST=0 THEN PRINT#2, USING "* \
6250 NEXT A
6260 BEEP:BEEP:BEEP
6270 LOCATE 1,50:PRINT"*** HIT A KEY TO CONTINUE ***":WHILE
INKEY$="":WEND
6280 CLS
6290 CLOSE #2
6300 SYSTEM
’

##4";SUBS$(A),SUB{A)
\ = ### ;";SUBS$(A),SUB(A)

6310

6320 ' OPERATOR TEST ROUTINE
6330 °*

6340 CASE = 1

6350 ECV = INSTR(SPCH,A$(I)," = ")

6360 IF ECV <> O THEN RETURN

6370 ECV = INSTR(SPCH,A$(I)," > ")

6380 IF ECV <> O THEN RETURN

6390 ECV = INSTR(SPCH,A$(1)," < ")

6400 IF ECV <> O THEN RETURN

6410 ECV = INSTR(SPCH,A$(I),"O")

6420 IF ECV <> O THEN CASE = 2:ECV=ECV~-1:RETURN
6430 ECV = INSTR(SPCH,A$(1),"<=")

110

6440 IF ECV <> O THEN CASE = 2:ECV=ECV-1:RETURN
6450 ECV = INSTR(SPCH,AS$(1),">=")
6460 IF ECV <> 0 THEN CASE = 2:ECV=ECV-1:RETURN
6470 RETURN

]

6480
6490 ' INPUT PARAMETER ROUTINE
6500 °*

6510 SAIP = INSTR(IVS,"(") + 1

6520 SAEP = INSTR(IVS,")}")

6530 IF SAEP = O THEN RETURN

6540 SAP = SAEP - SAIP

6550 IV$ = MID$(IV$,SAIP,SAP)

6560 INPP = INSTR(IVS,", ")

6570 IF INPP = O THEN RETURN

6580 TEM3$=1V$

6590 TEMP$ = MIDS(TEMS,INPP+2,SAEP-INPP-2)
6600 IV$ = MID$(IVs,1,INPP-1)

6610 IF KIND <> 3 THEN RETURN

6620 GOSUB 6990

6630 IF TEST=1 OR IV$="" THEN 6690

6640 NI=NI+1

6650 IF KTR=1 THEN 6690

6660 PRINT USING INATS;IVS$

"670 WM$(NODE,2,NI)=1V$

6680 PRINT#5,USING INATS;IVS

6690 ' TEMP$ = MIDS$(TEMS,INPP+2,SAEP-INPP-2)
6700 1V$ = TEMPS

6710 RETURN

6720 SEP = INSTR(IV$,"+")

6730 IF SEP = O THEN SEP = INSTR(IVS,"-")
6740 IF SEP = 0 THEN SEP = INSTR(IV$,"x")
6750 IF SEP = 0 THEN SEP = INSTR(IVS$,"/")
6760 1F SEP = 0 THEN RETURN

6770 FOR J=1 TO 50

6780 IF MID$(IV$,J,1)=" " THEN 6800

6790 BN = J :J=50

6800 NEXT J

6810 IF SEP = 0 THEN 6510
6820 IVT$ = MID${iV$,BN,SEP-2)
6830 IF LEFT$(IVTS,1)="(" THEN IVT$=MID$(IVS,BN+1,SEP-3)
6840 HLD$ = MID$(IV$,SEP+2,50)
6850 1V$=1VT$

6860 GOSUB 6990

6870 IF TEST = 1 THEN 6930
6880 NI = NI + 1

6890 IF KTR = 1 THEN 6930
6900 PRINT USING INATS$;IVS$
6910 WM$(NODE,2,NI) = IVS$

6920 PRINT#5,USING INATS$;IV$
6930 IV$ = HLD$

6940 GOTO 6720

6950 RETURN

111

6960 °’

6970 ° CHECK FOR RESERVED , KEY WORDS , AND / OR NUMBERS
6980 '’

6990 TEST = 0

7000 FOR M = 1 TO RWDN

7010 IF IV$<>RSVW$(M) THEN 7040

7020 M = RWDN

7030 TEST = 1

7040 NEXT M

7050 1F TEST = 1 THEN RETURN

7060 FOR M = 1 TO KW

7070 IF Iv$ <> KWRD$(M) THEN 7100

7080 M = KW
7090 TEST = 1
7100 NEXT M
7110 IF TEST = 1 THEN RETURN

7120 FOR M = 0 TO 9

7130 IF LEFT$(IV$,1) <> CHR$(48+M) THEN 7160
7140 M = 9

7150 TEST = 1

7160 NEXT M

7170 RETURN

7180 °’

7190 ' TwWO LINE ROUTINE

7200 °

7210 FOR J = 1 TO 50

7220 1F MID$(AS$(1+1),J,1)=" " THEN 7240
7230 BL2=J: J=50

7240 NEXT J

7250 1VP1$ = MID$(A$(1),BN,65)

7260 IVP2$ = MID$(As$(1+1),BL2,50)
7270 OPEN "TEMF.DAT" FOR OUTPUT AS #2
7280 PRINT#2,IVP1$;1VP2%

7290 CLOSE #2

7300 OPEN "TEMP.DAT" FOR INPUT AS #3
7310 LINE INPUT#3,1VS$

7320 CLOSE #3

7330 A$(I) = IV$: BN=1

7340 KILL "TEMP.DAT"

7350 RETURN

7360 '’

7370 ' SUBSCRIPT ROUTINE

7380 °’

7390 D=0

7400 FS=0

7410 BEG=BEG+1

7420 COMA = INSTR(BEG,WM$(C,B,A),"[")
7430 I = 1000

7440 CM=0

7450 IF COMA > 0 THEN I=COMA

7460 COMA = INSTR(BEG,WM$(C,B,A),",")
7470 IF COMA < I AND COMA > O THEN I = COMA

112

7480 COMA = INSTR(BEG,WM$(C,B,A),"]")

7490 IF COMA < I AND COMA > O THEN I = COMA:(CM=2
7500 IF I = 1000 THEN RETURN

7510 COMA = I

7520 D=D+1

7530 IF COMA-BEG=0 THEN RETURN

7540 SUB$(C,B,A,D)=MID$(WM$(C,B,A),BEG,COMA-BEG)
7550 IF LEN(SUB$(C,B,A,D)) > 3 THEN GOSUB 7610
7560 IF CM < 2 THEN BEG=COMA+1 ELSE BEG=COMA+2
7570 GOTO 7420

7580
7590 ’ SUBSCRIPT THAT IS NOT A SUBSCRIPT ROUTINE
7600 '

7610 IF SUBS(C,B,A,D):"" THEN 7700

7620 J=B

7630 IF J<3 THEN J=2

7640 WMR$(C,J,BIG-TE(C,J))}=SUBS${(C,B,A,D)

7650 PRINT#4, USING "#&# # ##% ";C,J,BIG-
TE(C,J);:PRINT=4,"*" ;wMR$(C,J,BIG-TE(C,J));"*"
7660 PRINT#4,"THE PRECEDING IS A FORMER SUBSCRIPT"
7670 FS=FS+1

7680 SUBS(C,B,A,D)=""

7690 TE(C,J)=TE(C,J)+1

7700 RETURN

7710 °

7720 ' MATRIX MANIPULATION

7730 °

7740 CLS

7750 LOCATE 10,20:PRINT"CREATING WEIGHT MATRIX"
7760 FOR C=1 TO NWE

7770 FOR D=1 TO NWE

7780 WM(C,D)=0

7790 NEXT D

7800 NEXT C

7810 °’

7820 FOR C=1 TO NWE

7830 WM(C,C)=DIA(C)

7840 NEXT C

7850 °

7860 CLS

7870 IF NT=2 OR CH=3 OR CH=5 THEN PRINT " E x W3 x E'" ELSE PRINT
" E x W2 x E'"

7880 PRINT

7890 FOR A=1 TO NODE

7900 FOR B=1 TO NWE

7910 IM(A,B)=0

7920 FOR C=1 TO NWE

7930 IM(A,B)=IM(A,B) + EM(A,C) * WM(C,B)

7940 NEXT C

7950 NEXT B

7960 NEXT A

7970 °*

113

7980 FOR A=1 TO NODE

7990 FOR B=1 TO NODE

8000 CM(A,B)=0

8010 FOR C=1 TO NWE

8020 CM(A,B) = CM(A,B) + IM(A,C) * EM(B,C)

8030 NEXT C

8040 PRINT USING “ ###z";CM(A,B);

8050 NEXT B

8060 PRINT

8070 NEXT A

8080 PRINT

8090 NT = NT + 1

8100 PRINT#2,"DATA CONDSPEC;"

8110 PRINT#2,"INPUT ";

8120 FOR A=1 TO (NODE-1)

8130 IF A>9 THEN PRINT#2, USING " N## ";A; ELSE PRINT#2, USING " N#
YA

8140 NEXT A

8150 IF NODE>9 THEN PRINT#2, USING " N## ;" ;NODE ELSE PRINT#2, USING "
N# ;" ;NODE

8160 PRINT#2,"CARDS;"

8170 FOR A=1 TO NODE

8180 FOR B=1 TO NODE

8190 PRINT#2, USING " ####";CM(A,B);

8200 NEXT B

8210 PRINT#2,

8220 NEXT A

8230 PRINT#2,";"

8240 PRINT#2,"PROC PRINT;"

8250 PRINT#2,USING "PROC FACTOR COV NFACTORS = ## ROTATE=VARIMAX
;" PV

8260 PRINT#2," VAR ";

8270 FOR A=1 TO NODE

8280 IF A>9 THEN PRINT#2, USING " N## ";A; ELSE PRINT#2, USING " N#
"3 A;

8290 NEXT A

8300 PRINT#2," ;"

8310 RETURN

114

Bibliography

Balci, Osman. "Requirements for Model Development Environments,"”
Computer and Operations Research, 13: 53-67 (January 1986).

Bauer, K. W., B. Kochar, and J. J. Talavage. "Simulation Model
Decomposition by Factor Analysis.” 1985 Winter Simulation
Conference Proceedings. 185-188. San Francisco, CA, December 1985.

Chvatal, V. Linear Programming. New York: W. H. Freeman and Company,
1983,

de Freitas, V. L. B., A. J. M. G. Rodrigues and J. C. F. M. Neves.
"Formal Logic as a Model Specification Language for a Discrete Event
Simulation,” Proceedings of the 1986 Summer Computer Simulation
Conference, pp. 8441-819, (Julyv 1986).

Dillon, William R. and Matthew Goldstein. Multivariate Analvsis Methods
and Applications. New York: John Wiley & Sons, 1984.

Doukidis, G. I. and R. J. Paul. "Experiences in Automating the
Formulation of Discrete Event Simulation Models," Proceedings of the
European Simulation Conference, pp. 79-90, (February 19835).

Lenz, John E. and Joseph J. Talavage. "A Generalized Simulator for
Computerized Manufacturing Systems,"” Technical Paper. Purdue
University, West Layfayette, IN, pp. 3-8, (undated).

Nance, R. E. "The Conical Methodology: A Framework for Simulation
Model Development,” Proceedings of the Methodology and Validation
Conference, pp. 38-43, (April 1987).

Nance, Richard E. and C. Michael Overstreet. Diagnostic Assistance
Using Digraph Representations of Discrete Event Simulation Model
Specifications. Technical Report SRC-86-001. Systems Research
Center and Department of Computer Science, Virginia Polytechnic
and State University, Blacksburg, Virginia, 1986.

————— . "Exploring the Forms of Model Diagnosis in a Simulation Support
Environment," Proceedins of the 1987 Winter Simulation Conference,
pp. 590-595, (December 1987).

Overstreet, C. Michael and Richard E. Nance. "A Specification Language
to Assist in Analysis of Discrete Event Simulation Models,"
Communications of the ACM, 28: 190-201 (February 1985).

Talavage, Joseph J. Personal Correspondence. Purdue University, West
Layfayette, IN, 5 August 1986.

115

wallace, Jack C. "The Control and Transformation Metric: Toward the
Measurement of Simulation Model Complexity,” Proceedins of the 1987
Winter Simulation Conference, pp. 597-602, (December 1987).

Zeiglar, B. P. "Discrete Event Formalism for Model Based Distributed
Simulation,” Simulation Series, 15: 3-7 (January 1985).

116

Captain Scott R. Matthes, _

A - = tended

Okaloosa Walton Junior College in Niceville, Florida. Double-majoring
in mathematics and computer information science, he received a Bachelor
of Science degree from Troy State University, Troy, Alabama, in 1984.
Upon graduation, he received his commission through Air Force ROTC and
was assigned to the Air Force Human Resources Laboratory at Wright-
Patterson AFE, Ohio. He served there until entering the School of

Engineering, Air Force Institute of Technology, in June, 1987.

117

——

UNCLASSIFIED
U TASSIFICATI F TRIS PA
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited.
4, PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GOR/ENS/88D-13
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
School of Engir ering AFIq“f /ﬁ@’s""b’" &
;a"":.qgﬁ’.:
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) &' ¢ o~
Air Force Institute of Technology (AU) D -&vi '_..-\
Wright-Patterson AFB, OH 45433-6583 ot A
Sy
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9 PROCUREMENT INSTRUM FICATION NUMBER
ORGANIZATION (If applicable)
[8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO.] NO. NO ACCESSION NO.
11. TITLE (Inciude Security Classification)
DISCRETE EVENT SIMULATION MODEL DECOMPOSITION
12. PERSONAL AUTHOR(S)
Scott R. Matthes, Capt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day)]15. PAGE COUNT
Thesis FROM TO 1988 December 125
16. SUPPLEMENTARY NOTATION
17. COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Discrete Event Simulation,
12 03 Simulation, Discrete Event Simulation, Model Decomposition,
12 04 Principal Components Analysis
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This research focused on interpreting a discrete event simulation model's condition
specification primitives and their associated actions. A network representation was created
using these condition action pairs (CAPs) as nodes. The arcs, or edges, of the network
represent information being transferred such as specific attributes of the CAPs. This
network representation was decomposed into smaller networks, or sub-networks, by taking
advantage of the structure of the network. The structure of the network was translated
via software interface into an edge-incidence matrix (E-matrix). The E-matrix was then
transformed into a pseudo-covariance matrix (C-matrix). The C-matrix was used in the creation
of a SAS data set which served as the input necessary to do principal components analysis.
Two examples were used todemonstrate this procedure.

Thesis Advisor: Major Kenneth W. Bauer, PhD
Associate Professor of Operational Sciences
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
g uncLassiFieouNUMITED [T SAME AS RPT._ [J DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) [22¢. OFFICE SYMBOL
Kenneth W. Bauver, Major, USAF 513-255-3362 AFIT/ENS
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY_CLASSIFICATION OF THIS PAGE

