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optimal gain matrix for large time for the fractiona! state-space
system.

Unfortunately, in the general time case, no Riccati equation
can be derived because of coupling between the optimal gain matrix

and the state vector due 3}0 fractional derivatives of the control

Only when @
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vector. atrices are asymptotically constant for

Thgtheory is illustrated t;;l two examples. A simply-supported
viscoelastic beam with controllers illustrates the solution process
in Example 1. The beam example incorporates the fractional
calculus viscoelastic behavior in a structure element, while an
axially deforming rod in Example 2 incorporates the behavior through
a viscoelastic shear force applied at a node by a damping pad. The
example equations of motion are numerically solved using the
commercially-available control analysis software package called
MATRIXx.
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AFIT/GA/AA/88D-12
Abstract

The objective of this thesis is to develop a control law for
structures incorporating both passive damping vié viscoelastic
materials modelled by a fractional calculus stress-strain law and
active damping by applied forces and torques. To achieve this,
quadratic optimal control theory is rnodified to accecmoudate systems
with fractional derivatives in the state vector. Specifically, linear
regulator theory is modified. -~ |

The approach requires expanding the structure's equation of
motion into a fractional state-space system of order 1/n, where n is
an integer based on the viscoelastic damping material constitutive
law. This approach restricts the theory to materials which have
rational, fractional derivatives in their constitutive laws. An
equivalent first-order system is then formed and used to derive the
opiimal control theory in linear regulator problems. The quadratic
performance index used in linear regulator theory is used, and
equations similar to those derived for linear regulator oroblems
using first-order systems are developed. The optimal control law is
asymptotically linear feedback of the state vector for time large.
An equation which defines the optimal gain matrix for the feedback
is derived and is asymptotically an algebraic Riccati equation for
long time and for gain matrices which are asymptotically constant
for large time. Since an algebraic Riccati equation can be defined,

current enlving routines can determine the asymptotically constant




optimal gain matrix for large time for the fractional state-space
system.

In the general time case, no Riccati equation can be derived
because of coupling between the optimal gain matrix and the state
vector due to fractional derivatives of the control vector. Only when
time is large and gain matrices are asymptotically constant, do they
uncouple .

The theory is illustrated by two examples. A simply-supported
viscoelastic beam with controllers illustrates the solution process
in Example 1. The beam example incorporates the fractional
calculus viscoelastic behavior in a structure element, while an
axially deforming rod in Example 2 incorporates the behavior through
a viscoelastic shear force applied at a node by a damping pad. The
example equations of motion are numerically solved using the
commercially-available control analysis software package called

MATRIXx.
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QUADRATIC OPTIMAL CONTROL THEORY FOR VISCOELASTICALLY
DAMPED STRUCTURES USING A FRACTIONAL DERIVATIVE
VISCOELASTICITY MODEL

l. Introdyction

Control of large fiexible structures is currently of interest
because of, in part, the possible use of large space structures in the
Strategic Defense Initiative. Fine pointing and position
requirements drive the need for fast, accurate control of a
structure's state. Primary emphasis in the past has been on purely
elastic structures controlled by various applied forces and torques
in feedback. Unfortunately, large flexible structures have large
numbers of vibrational modes at low frequencies which are easy to
excite. The modes are also very closely spaced in frequency, so that
control of one often excites one or more other close modes. Thus,
control accuracy is degraded. The incorporation of viscoelastic
materials into structures holds promise to improve active control
performance considerably.

One primary reason that viscoelastic materials have not been
readily included is that classical models of viscoelastic behavior
are complex. The classical stress-strain law uses a sum of integer
order, ordinary derivatives to describe the weak frequency

dependence of the viscoelastic behavior:
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it ot =1 ot

where o is stress, € is strain, ajand b; are constants, and m and p are
integers. More or less derivatives are employed to fine tune the
mode! to the precision required. High precision requires a large
number of derivatives, implying also a large number of parameters
(aj and bj). The large number of derivatives also expands the state
vector which must be observed and fed back for control. This
resulting calculations with large matrices are nct condusive to fast
response systems.

An alternate viscoelastic model uses fractional derivatives of
time describe the material response. The fractional derivative of

g(t) of order o, where a is taken to be a real fraction, is defined as

d®g() __ 1 g_f‘g(t—r) 4

dt* (1<) dt G , 0<a<1 (1)

Its Laplace transform is [sG(s)-g(t=0))/s'-@, where s is the Laplace
variable and the capital letter indicates the Laplace transform of
g(t). The firactional calculus model of the constitutive law is

B aa

c €
c+b—=Ee+a—

B ot*
ot (2)

For this thesis b is chosen to be equal to zero; and a = m/n, where m
and n are integers. Such a model is commonly called a "power-law”
constitutive model (5). Bagley and Torvik (3:918) have shown that
this mode! is accurate over four or more decades in frequency for

over 130 viscoelastic materials. The virtue of this model is that it




requires only four parameters. However, it too requires expanding
the state vector to include fractional derivatives, but the fractional
derivatives are lower order than those used in the classical model.
The effects of noise and uncertainities are not as dramatically
amplified through the lower order diferentiation. Consequently, the
fractional calculus model appears to be a better choice to
incorporate into a control law.

The objective of this thesis is to attempt to incorporate the
fractional calculus viscoelastic model into optimal control theory,
such that an optimal control law for an active controller, which is
optimal in a sense to be described, can account for and complement
passive damping. Current state-space optimal control theory uses a
performance index to optimize. Indices with quadratic terms are
commonly used because energy is described by the square of the
velocity and displacement. This is quadratic control theory. A
special case, linear regulator theory, assumes a quadratic form for
the optimal value of the performance index, J, i.e. J = 1/2 X' KX ,
where X is the state vector, K is a matrix of gains, and the asterisk
indicates an optimal value. In this special case quadratic control
theory produces optimal control as linear feedback of the state
vector. Because the feedback is linear, the analysis and its
implementation is relatively straightforward. Therefore, this work
focuses on deriving the equations in the linear regulator theory for a
system using fractional state-space.

The current linear regulator equations are derived by the

application of a first-order state-space system of the form:
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X() = A()X() +B(Y (Y (3)
where

X(t) = state vector

X(9) = first derivative of the state vector with respect to time

u(t) = vector of control forces and torques

A(), é(t) = matrices of functions

The approach taken in this thesis is to formulate a first-order
system which is based on an expanded equation of motion of a
structure (3:921-922) and derive the equations for the linear
regulator theory. The expanded equation of motion is developed from
converting a structure's finite element model into a state-space
system. A finite element model which includes viscoelastic
materials described by a fractional calculus model will generate a
state vector which includes both integer and fractional derivatives.
The general form of a system created by expanding a structure's
equation of motion is a system of fractional order less than one and
is

Dy " X(9) = A(YX(9 +B() T(Y (4)
where D‘t " is a fractional differential operator of order 1/n
operating on the state vector in which n is the positive denominator
integer of the material's rational fraction in the fractional
derivative model of the material's viscoelastic behavior. The state
vector includes fractional derivatives. It is shown herein that this

approach leads to a simple control law.




For clarity in this thesis the term "classical” will refer to use

f first-order m_in f m_of order 1/n. For
example, the "classical" eigenvalue problem refers to the eigenvalue
roblem_ which first-order m.




1. Background

In the last ten years there has been a lot of work on the
fractional calculus model of viscoelasticity. Bagley and Torvik
(1,2,3,4,15) have published a number of papers on the model's use
and accuracy. Bagley's PhD dissertation (1) details the calculation
of material response for structures using the fractional calculus
model. His research shows that the model predicts both oscillatory
and non-oscillatory relaxation motion for viscoelastic materials
(1:92-104). This latter motion is due to the characteristic
relaxation which deformed viscoelastic materials exhibit in
returning to a less stressed state over time. For example, the
internal structure of a rubber band which has been left stretched for
a long time will slowly adjust, such that the stress is relieved.
This has been observed to be closely modelled by power-law
phenomenon over finite observation times (20:681). Furthermore,
Bagley (3:918) has experimentally determined the model parameters
for over 130 materials and has found the model accurate over four or
more decades in frequency. In their 1985 paper (3:921-923) Bagley
and Torvik also illustrated a method to convert a finite element
equation of motion for a structure incorporating elements using a
model of order a, where a = m/n (m, n = integers), into a fractional
state-space system of order 1/n. This forms the basis for building

the first-order system required to develop the control theory.




Thus far, Skaar, Michel, and Miller (24:348) and Hannsgen,
Renardy, and Wheeler (12:32-34) have investigated system ccntrol
using the fractional calculus model. Neither use optimal control
theory to develop an optimal control law. Both assume feedback
forms and analyze the effects. The former restrict the feedback
control law to a fractional derivative of the same order as the
constitutive law, Pgs(o)=P¢(e) , where Ps; and P, are differential
operators, Pg=1 + adv/otv and P¢=E + bov/otv, E is Young's modulus, a,
b, and v are constants, and v is a rational fraction. The work focuses
on the use of the root locus technique to analyze the system
response. They derived the transfer function in terms of a new
parameter, h, which is defined in the Laplace domain by
h2 = s2P4(s)/P¢(s), where s is the Laplace variable. The poles of the
transfer function, therefore, are values of h instead of s, the Laplace
variable, and, as such, cannot be used directly to find the response.
The poles must be mapped back to values of s through the definition
of h, before the response can be calculated. A similar situation
arises in the application of the control theory developed in this
thesis and is demonstrated in the example problems. Furthermore,
Skaar also noted that general stability criteria can be defined in the
complex h-plane, so that the poles could be used directly to assess
general characteristics of the system stability. Specificly, Skaar
maps the imaginary axis from the complex s-plane to the h-plane
and proves that all poles must lie to the left of this mapped line to

have a stable system. Similar criteria are shown in this thesis.




In the latter work referred to above, Hannsgen, Renardy, and
Wheeler investigate the response of a viscoelastic torsional rod
subjected to linear feedback of the angular displacement. In a
special case, they use the fractional derivative model for the
constitutive law of the rod. High and low modes of vibration
experienced different effects as control gain varies from low to
high for this constitutive law. Specifically, for low gains the low
frequency modes are least damped; but, as gain increases, higher
frequency modes become the least stable. Optimal gain is defined as
that gain which makes the poles of the least stable mode most
stable compared to other gain value least stable pole locations, i.e.
stability is classified by the least stable mode's most-negative-real
location over the range of gains investigated. They define optimum
is when it is most stable. This is a performance index, which

optimizes a predetermined control law instead of creating one.




. Theory

Performance Index

Optimization requires some measure of performance to
minimize or maximize. This performance index (Pl) contains
expressions which represent important system characteristics, e.g.
kinetic energy, and which are written in terms of system and control
law parameters. Furthermore, these expressions are weighted, so
that their effect on the overall performance index can be varied to
emphasize certain parameters to find some "hest" cumbination.

To create a performance index one must identify the important
system characteristics and their representations of the system of

interest. i i i - m_of

Dy/" () = AX() +B(Y (5)

where X (1) is the state vector, which includes both integer and
fractional derivatives of position, and u(1) is the control vector. The
matrices A and B must be constant and real, because the system
represents a finite element model of a structure. The structure
equation of motion has constant, real coefficients. When the
equation is expanded into a state-space system, matrices A and B
are formed using these constant, real coefficients.

Structures are normally characterized by the amount of energy

which the configuration, including control inputs, stores at any point




of time. Consequently, a performance index based on energy would
be appropriate. Current optimal linear control theory gives a
starting point. Kirk (15:91) uses a general Pl of the following form
for first-order linear systems of continuous linear regulator
problems:
J=%;th X (tf) +—J-x Qx+uRu)d

(6)
where J is the performance index, X(t) is the state vector, U(1) is
the control vector, and ﬁ, 5 and R are real, symmetric weighting
matrices, in which R is positive definite and Hand Q are positive
semi-definite. Values of ﬁ, 6 and R are chosen for an optimization;

consequently, each set of weighting matrices defines an optimized

value of the performance index, J. For_ this thesis ﬁ (~) and R are
hosen nstant matrices. Since the state vector contains
both position and its first derivative, 1/2 4 6; includes measures
for both the strain and kinetic energies of the structure. Similarly,
12 GTRU is a measure of energy in the controller. The expression
with H merely represents the energy in the desired final state.
Although the extra fractional states are now included in the system,
the classical definitions of strain and kinetic energy are assumed to
still be valid. Furthermore, the extra fractional states are not
known to represent any energy storage system. That is, the
structure stored energy is still described by kinetic and strain
energies. Consequently, a quadratic performance index should still

be suitable for optimizing the 1/nth-order system. Weighting

10




matrices H and Q, however, must be chosen such that the fractional
states have zero weight. This eliminates these states from the
index.

For the problems of interest, a slightly modified form of this
Pl is desireable. For simplicity the transient solution of the state
vector is not addressed, and only the steady-state solution is
sought. Therefore, let time be large and let t; tend to infinity.
Furthermore. when the desired final state is static equilibrium of
the structure, 1/2 XT(%) HX(%) is assumed to be equal to zero.
Therefore, the actual performance index used herein to optimize

fractional-order systems of the form of Eq (5) is

(=~

s=1 d[ &'&% + 0TR Dy

(7)

Modified Hamilton-Jacobi-Bellman Equation and Optimal Control Law
Kirk (15:86-90) thoroughly discusses the optimization of his

general Pl, which is a more general form of the chosen performance

index,

t
JX(Y, t u(r)) = R(X(Y), t) + { g(x(t), u(z), ) dt
tssty h (8)

for a general first-order system of the form

X () =AY, (D,
If the 1/nth-order system can be posed as a first-order system, then
the optimization process for our performance index has already been

outlined by Kirk. The development can be followed, and equations

11




pertaining to the system of order 1/n can be found. The linear
regulator problem is specificly followed because it uses the same
performance index as has been chosen for this thesis and results in
linear feeback of the state matrix. It will be shown that the
modified control law will also be linear or asymptotically linear for
steady-state (t — o).

Once a structure has been built, the orly way to affect its
stability is through applying some control force or torque, u(t). The
state vector, X(t), is just a statement of the location and motion of
the structure's parts, i.e. it is a description of the state of the
structure. The control U(t) is what is being implemented to cause a
change in the state of the structure. It is also the quantity for
which the physical control system is going to be designed.
Therefore, the control law which minimizes the performance index
is what is being sought. Consequently, the performance index is
minimized with respect to the control, u(t). The Pl is minimized,
because the control objective is minimum structural motion and
minimum energy used by the controllers, all of which is
characterized by minimum energy in the system. The control u(t)
which minimizes the index is designated the optimal control, u"(t).
The relation between U°(t) and its variables (e.g. X(t) and t) is called
the optimal control law. Therefore, the basic concept behind the
development of this optimal control theory for systems of order 1/n
is the determination of an optimal control law by minimization of

the performance index with respect to the control, u(t):

12




(9)
where Jt(i'(t) 1) is the optimal performance index function. It is no
longer a function of U(t), since the minimum over all admissible
controls has been taken; i.e. J* specifies u’(t) as the optimal
control.

Eq (9) defines J (X(#)t). However, the equation includes two
unknown functions, because the optimal performance index function
is unknown as well as the optimal control. There is, thus far, one
equation for two unknowns; consequently, an expression for one of
the unknowns must be assumed. A function is chosen for J*(i'(t) 5 to
emphasize system characteristics whcih are believed to be
important, and the corresponding u°(t) is found.

I, instead, the minimization is performed with J (X(1)
unspecified, the optimal control will be a function of J*(Y(t),t), X (1),
and t. Depending on its form, J'(i'(t) 1) may have one or more
constants of proportionality between itself and its variables;
therefore, one or more equations are still necessary to completely
describe the optimal control. If a simple form for the optimal index

function is assumed, e.g. J (X(§1) = 1/2 X

K(§X . then one equation
for R(t) and one for U'(t), including K( and X(1), are required. This
is the case for the Iinear regulator problem. R(t) is often called the

optimal "gain" matrix, because it is the matrix of gains, i.e.

13




amplification factors applied to a feedback state, for the assumed
optimal performance index function. Both equations are found
through the minimization of the index as shown in the next section.
Kirk illustrates the optimization of a general performance
index with the general first-order system, Eq (9). If there is an
equivalent first-order system for the 1/nth-order system, it can be
used the general equations that result from the optimization. Since
the optimization is simple and Kirk (15:86-87) describes it well, it
is not repeated here. Instead, this thesis will start from the
resulting equation, the Hamilton-Jacobi-Bellman equation, and will
detail the modification of the linear regulator theory equations for a

system of order 1/n.

Modified Hamilton-Jacobi-Bellman Equation and Optimal Control Law

Kirk's development leads to the important Hamilton-Jacobi-
Beliman (H-J-B) equation, which must be satisfied by the optimal PI,
JT(X(Y, B

-

(X(9, der 1), b 1 (10)

»

0 = G (XM, ) +H (Y, T

where the assumed final value is J (X(%), §) = 0 and H, called the

Hamiltonian, is

- — -

H (R0, 000, &, 9 =g(X(), T, §+d (X0, 9E (X(V,T(0. O] (11)

where a (X(9,u(?, t) is a first-order system. The Hamiltonian is

minimized by the optimal control, U"(t):

14




H GO, T R0k 0 kg =min (H @0,300,% 9
u(t) (11a)
Eq(10) and Eq (11a) are important, because the minimization of the
Hamiltonian yieids the optimal control law and the H-J-B equation
yields an equation for the optimal gain matrix in the performance
index. Hence, these are the two equations sought in the previous
section to describe the optimal control law.

The H-J-B equation is the relation that defines the general
optimal performance index, J*(X(1), f). However, as noted earlier, a
form must be assumed for J*(X(1), 1), e.g. 1/2 X' K(t) X where K(t) is
the optimal gain matrix. If the Pl is chosen appropriately, the H-J-B
equation will give an equation for R(t). Kirk pursues this approach.
First, he minimizes the Hamiltonian with respect to a general J* and
finds that the optimal control law which minimizes it is given by
linear feedback of the partial derivative of J° with respect to X (4.
Thus, the linear regulator problem is defined. If J*(x(1), t) is chosen
to be equal to 1/2 XT K(t) X, the optimal control is linear feedback
of the state vector. Using this optimal control and PI, the H-J-B
equation leads to a nonlinear ordinary differential equation for the
optimal gain matrix, R(t). For the linear regulator problem this -
equation is a Riccati equation. If the 1/nth-order system could be
posed as a first-order system, then a development parallel to Kirk's
can be used to define modified versions of the H-J-B equation,
optimal ccntrol law, and Riccati equation. Therefore, the problem

reduces to writing the 1/nth-order system in the form of a first-

15




order system. Then substitute this expression and the index form,
Eq (6), chosen for this thesis, into the general Riccati and
Hamiltonian equations, and complete the minimization for this
specific linear regulator problem.

The first-order system can simply be rewritten recursively in

terms of the derivative of order 1/n which was defined in Ey (1):
> 1M [ 1 Mm ( 1 M= H .
x=Dy "Dy " .. Dy M(X) ] (n times) (12)

Successive replacement of D! "X by A X(t) +BU(Y, as in Eq (4),
and application of the next derivative operator yields a general
first-order system of the form:

~n_ 1~ —~

- ~n. - ~N-2= — -3 — ~~ - -
X=A"X+A" 'Bi+A" “BDI"G + A" B2 "G +... + ABD" 2 "G

~ (n-1)m—
+BD\" "G

n-1
— ~N ~n-p- 12 —
X=A"%+ Y AP B} "G

p=0 (13)

where DY u(t) = u(y). This is illustrated by an example of a

1/3-order system with constant matrices A and B:

u( Y ] (14.a-q)

16




X= A D}"‘*()+ABD}’3”(t) +BD2RE
x=A° (AX()+BG(y)+ABD. " u(t)+BD%BG(t)
X= ACX(Y) +A° é ()+K§D‘t’36(t) +BDRRG(Y

The resulting expression can be used with the H-J-B equation to
develop the optimal control law and a modified Riccati equation
governing the gain R(t) in the 1/nth order system. An important
point is that this development is restricted to systems of rational
1/nth-order since n must be an integer to apply the derivative n
times in the recursive relation for X.
The first step in using this equivalent form in the H-J-B

equation is minimization of the Hamiltonian with respect to the

control vector; a necessary condition is vanishing of the first

oH aH 2H .
variation: E‘ O . If the second variation, ., » is a positive-
ou

definite quadratic form, the control vector which solves this is the
desired optimal control vector. The minimum value of H is found by
evaluating it at the optimal control vector.

Using the equivalent first-order system, Eq (13), the

Hamiltonian becomes

T 1
GTRG + & +3 AP B G
p=0 (135)

H=13"ax +

N =
N |-

To find the first variation with respect to U , evaluate H at U + h:
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.T

T ~n_, 1~ =
H- 1T ;—(u+h) R(d+n)+k | A%+ ):A”" oG +n)
o . ~T~, o = .
Simplify, using ;—h Ru =1 TRh (which is a scalar); the result is
2
- 200 -
H -H (@ + 22 () a—%(h)
ou i (16a)
where
- T T _,-T ~n. n-1 ~n-p-1~ /N
H(u)=;—x Q(+;—u R« (A X+ A~ BO

p=0 (16b)

- T n-1 __ -
HiR)-iRh+d Y A" 'BOY"h
ou p=0 (16¢)

2
— —0T~-o

a_’_:_ h) = ;_ h Rh

ou (16d)

This is an the expansion of H evaluated at u + I.n. The first variation,
or derivative, of H operating on ﬁ corresponds to the terms linear in
h . The second variation corresponds to the terms quadratic in h .
With the requirement that R be positive definite, the second
variation is always positive. Therefore, a solution of the first
variation will give a minimum value.

The first variation, Eq (16c), operating on t-'; must equal zero

for any admissible rT
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~— -o'T n'1 ~n_p_1~

i"Rh+d 3 AP BDY"h-0
p=0 (17)

where admissible controls and variations are taken to be functions
h(1) which are continuous for 0 <t<oeo. Since Eq (17) must be true

for all admissible variations, F{(t) , it must, in particular, be true for

the admissible variation
h(t)=H(t 1 (18)

where H(t) is the Heaviside step function which is zero for t <0 and
1 for t > 0; the vector T is the constant vector having the value 1 for
all components. For this admissible variation, the fractional

derivative is

t
D" h(t) =D "H(§ T=—1 A | Htr)rPndr1
t (9 t 9 r'(1p/n) dt (tr) §

0 (19)
which yields
- -
0} " h(9) = Tpn (1 1 (20)
where
0, 1 <0
Ton () = 1, p=0,t>0
__t-_p/_n_, p>0,t>0
r(1p/n) (21)

Using Eq (20) in Eq (17), the optimal control 0 must be
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R §;B(~"°W1;n)l(ﬂnw

Observe that the large-time behavior of 0 is
~n-1
iy~ R TBTAT) KR Lt e (23)

The small-time form of U includes singular factors through Tpn(t)
which must be dominated by appropriate behavior of :Jx‘ for small
values of t, in order for U to be an admissible control. This
constraint on J will appear in initial conditions on the gains K

obtained from a Riccati equation.

The Riccati Equation for the Gains

The goal of this section is to derive the Riccati equation which
governs, for large time, the gain matrix, R(t), ' r.r lator
problems in which gains are asymptotically constant. Upon choosing
an appropriate form for the optimal Pl and applying it to the control
law, Eq (22), the Riccati equation is derived with an application of
the H-J-B equation. Using Eq (16b) in Eq (9), the H-J-B equation is

now

wl~_ * -T ~n - ~ -
RO+ Ax+ZAnp1D°/n
p=0 (24)

O=..i+ TX+1§

1x 13
2 2

Recall, linear state feedback is achieved if J* is quadratic in X.

Furthermore, it is logical that the Pl may be related to the
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expressions representing the system characteristics of interest.

Therefore, it is commonly assumed that the Pl takes the form

*

JX(, 9 =1X"K(H X

|\>|-s
™
(6)]

where R(t) is real, symmetric, and positive-definite. Then

»

-» ~
KX

(26)
and
§ =177
2 (27)
Using Eq (26) in Eq (22), the optimal control law becomes
~ —~ 1 ~
y=-R ZB &™) Tontty R0 %0
(28)

(From this result, the large-time behavior of U can be viewed in
terms of the behavior of X, since K is asymptotically constant.
Furthermore, the initial behavior of K can be ascertained to
dominate the singular nature of Tpa(t).)

When Eq (27) and the optimal control, U , in Eq (28) are
inserted into the H-J-B equation, Eq (24), the result after
simplification is

571 K+Q+K Y, }i"“"BTp,,(t)R‘BTZ( )T n(t) K + 2KA" |3
p=0 q=0 f
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L - n-1 ot T [~ ~
=15T2K Y A"'B Df’"[ 3 RBT(A™) T Ket 'i(t)J

At this point, we note that a commonly-employed technique saying
"if X TMX =0 for any X, then M = 0" cannot be used since the
differential operator Df/n operates on both X and R; they cannot be
separated in Eq (29) to use this argument to get an equation which K
must satisfy. However, consideration of the individual terms
summed over p in the right side of Eq (29) reveals that, for gains K
which are asymptotically constant for large time, there are states,
X(t), for which the leading order behavior of this sum is given by its
p=0 term. In effect, the fractional derivatives of order greater than
zero are subdominant to the undifferentiated (p=0) summation over
g. Relying on "regularly-varying" function theory (Appendix A),
Warhola (27) illustrates states for which this is true, so that the
theory presented hereafter is not empty. Proceeding with this

Eq (29) yields
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1T & X ~ ~n-p-15 ~q=T Y ~n-q-1\T. ~ ~~nl| .
LR R Qe R Y, AT BT, BB Y, (A7) Toal) K + 2RA™) %
p=0 Q=0
~ ~ ~ n-1 ~ AT~ \T ~_,
~ TRT2KA™E RIBTA™) Toat) KX, t— oo
g=0 (30)

The leading order of the sum over q is clearly the zeroth term, so

-'T‘ v o~ U ~n-p-12s ~q~7 U ~n-g-1\T. ~ ~~n\_.
1T K+QeK D AP BT R'BT Y, (A™") Ton(t) K + 2KA™ %
2 \ p=0 q=0 f
1 2T 7M1 SIgT{zNY 7=
~ Lx'2KA" BR B \A KX ,t— o0
2 ( ) (31)
Now this must be true for all states, X(t), so
s o~ ~n-p-1g ~ 4T ~n-g-1\T. ~ ~~n
K+e@+K Y A" BT R'BT Y, (A% Tontt) K + 2KA
p=0 q=0
~ owi™g slaT{zm\
KA™B R'BTA™) K ,t— oo (32)

Similar examination of the terms in the left side of Eq (32) reveals
that the p=q=0 term dominates for large time, at least for
asymptotically constant gains, F<, which have a regulariy-varying
derivative, R (In fact, theR term is subdominant to all terms with

p+gq < n on the left side of Eq (32).) Thus,
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~—~n

~T(~n 1) |'~(+2KA

~ o~ ~ e 4T~ T -
~ RA"BRBA R Lt oo 33)

In the limit as t - oo, the algebraic Riccati equation governing the
steady-state gains, K, is obtained as

~ ~—~ ~ o~ o~ 1\ T~
Q+2KA" - BRIBT(A" ) K=0 (34)

Now, the matrix KA" can be split into its symmetric and anti-

symmetric parts
~~ ~ ~~ ~—~ ~~n\T
kA" -1 1 [RA" 4 (kA" 4 1 [ " (RA"]
Using the fact that the transpose of a scalar is itself, i.e

TKA"R = X7 (KA") %

then ZRKn can be written as

2RK" RX” +(~~n)T

Substituting Eq (35) into Eq (34) and, again, using the fact that the

transpose of a scalar is itself, the result is the final form for the

I raic_Ri i ion verning the limit of -
(asymptotically constant) gains, R for 3 system of orderi/n
- QuRA" KR kA R TBTAM 'R
(36)

24




It is important to note that the constant-K Riccati equation

for first-order systems is

0= fi+5+ RX1 +(RK1)T -R§1ﬁ1§-1rk (37)
where
X() =Aqy X() +By (Y 4 (38)
Consequently, ifi -Qr ion can
i ' irst-
-~ ~n
A=A (39)
B =A""B. (40)

The significance of this result is that current algebraic
Riccati equation solving routines for first-order systems can be
used to solve the modified, constant-K, steady-state equation for
1/nth-order systems. The tools to do this analysis are already

available and in common use.
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Solution Process for System Response

Once K has been found by solving the Riccati equation (36), the
solution for the state vector, X(1), can be completed. This solution
is typically called the response of a system, because the state
vector describes how a structure reponds to a given input. By
substitution of the steady-state optimal control expression,

Eq (29), into the system of order 1/n, Eq (5), the steady-state

system equation becomes
- |~ =a=T[>n T~}_.
D’t'hx=[A-R B(An 1)K X (41a)

The Laplace transform of Eq(41a), assuming zero initial conditions,

is
s' "X(s) =[K -ii"éT(K"”)TR] X(s) (41b)

where s is the Laplace variable and capital letters on the vectors
indicate transforms. In the structure examples, the state vector is

actually a composite of fractional order derivatives of displacement

vectors, e.g.
3
Di Q{X}
. | Dix) |
X=\1r
Dy “{x}
D} (x)
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where (x) is a vector of displacements. The solution technique is
discussed next in general terms and is illustrated in detail in the
example problems in Chapter 4.

If the system eigenvalues, A, are defined by A =s1/n | then the
solution process is reduced to an eigenvalue problem, i.e. AX = CX ,

where C is a real matrix for structures:

AX(S) = {K -ﬁ"éT(K"")TR]i(@ (42)

Insight to solving Eq (42) for the state vector response can be
gained by reviewing the eigenvalue problem of a first-order system.
In the classical first-order system eigenvalue probiem
eigenvalues are defined in the Laplace domain by the relation w = s,

which results in the solution of the state vector as X = ge“" ,
where 5 is a vector of coefficents and w is a complex number. The
vector 5 is called an eigenvector, and each eigenvalue defines one.
The complex plane in which the eigenvalues lie will be called the
s1-plane, where the superscript indicates the power of the Laplace
variable s in the definition of the eigenvalue. If Eq (42) were an
eigenvalue problem of a first-order system, by substitution of the
transform of the general solution of the state vector, Eq (42) can be

written as

0 = [K ARk - fJ?»T (43)
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where | is the identity matrix. [f the eigenvector is not the trivial
solution, Eq (43) has a solution if and only if the determinant of the

matrix of coefficents of the eigenvector is zero (18:78).

o - | & -A R - AT s
Eq (44) yields a polynomial equation in the eigenvalue A, and the
roots of this polynomial are the eigenvalues. Because all
coefficients of the polynomial are real, the eigenvalues may include
real values or pairs of complex conjugate numbers. Once the
eigenvalues are determined, the eigenvectors, 5 can be determined
from Eq (43). The vectors are unique in that the ratio between any
two elements is constant, but the values are not unique (18:78). The
ratio is dependent on the eigenvalue, but the values are arbitrary
because c<;, where ¢ is an arbitrary constant, is also a solution of
Eq (43). In typical equations of mction for structures X, hence 5 are
displacements. Since only the ratio of elements in the eigenvector
iIs constant, the eigenvector represents relative displacements
between nodal ponts in the structure. If the eigenvector is real
valued, this gives a shape of the structure. Consequently, the
eigenvector is called a mode shape, i.e. the shape of a mode of
motion. These modes are quantized in that they only occur in
conjunction with specific eigenvalues. It can be shown that the
eigenvalues correspond to frequencies of vibration, if the motion is
oscillatory (complex eigenvalue), or reciprocals of time constants,

if the motion is non-oscillatory (real eigenvalues) (18:78).
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Therefore, structures may vibrate in a specific shape at one of these
"natural" frequencies or have a specific shape as the motion decays
or grows with a specific time constant. Modes are named by the
type of motion and eigenvalue ranking, when eigenvalues are ordered
starting with the lowest value for that type, e.g. the second
vibrational mode corresponds to the next eigenvalue higher than the
lowest vibrational eigenvalue. If the eigenvector is complex, the
mode shape changes as time passes. Finally, the total structural
response may be expressed as a linear combination of responses due
to individual modes (19:164). The lowest modes have the greatest
influence because displacements, hence energy, are greater than the
higher numbered modes. Once eigenvalues and eigenvectors are
known in the classical eigenvalue problem, one can go directly to
response.

Consequently, eigenvalues, called poles in control analysis, and
eigenvectors are typically the focus in structural and control
analysis. Because the pole affects the exponent of the exponential
in the solution, X = 69“" , its value determines stability, i.e.
bounded motion, of the response. If wis complex, the exponential
can be written as a product of two exponentials: one with a real
exponent and one with an imaginary exponent. The Euler formula
(17:584) staes that the latter can be written in terms of a real
cosine part and an imaginary sine part. Therefore, a complex pole
produces oscillatory response, in which the magnitude of the
imaginary coefficient of time, t, in the exponent is the frequency of

oscillation. Oscillatory motion is bounded, so it is the real

29




e

component of the pole which must determine the boundedness of
motion. If the real part is positive, its exponential, which is the
amplitude of the oscillatory motion, grows without bound. [f the
real part is negative or zero, the response is bounded, and the
system is stable. Therefore, pole location can give a general idea of
the resporise of the function, e.g. a pole in the second quadrant is
stable and produces oscillatory motion, and is a primary tool in
analysis of structural motion and control. The criteria that non-
positive real parts of poles produce bounded motion only applies
when the poles are expressed in this plane. Other criteria will be
derived for eigenvalues expressed in other planes.

For systems of order 1/n, the eigenvalue is defined herein by
A =s'/n | where A is the eigenvalue and the eigenvalues lie on a
complex plane called the sl/n-plane. The general form of the time-
domain state vector response is no longer the exponential; it is
something more complex. A solution to Eq (42) can still be found
relatively easily by mapping the eigenvalues for the system of order
1/n to a first-order system. Recalling the recursive equation for an
equivalent first-order system, Eq (12), one can determine that for
an eigenvalue, A, which is defined by first-order system, X = .
This implies two important ideas. First, one can determine the
eigenvalues, A, map them to w, and determine system response from
w as described for the classical system. Second, because the
eigenvalue A is the nth-root of the eigenvalue w, there are n
A-eigenvalues corresponding to a single w-eigenvalue. These A-poles

actually produce more than just the response described by the
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w-eigenvalue. Some of the A-poles produce the exponential response
desribed by a corresponding w-eigenvalue, but the others have been
shown to generate terms of negative powers of time in the response
(1:92-104). This power response correspunds to the relaxation or
creep response observed by Nutting in viscoelastic materials (2:746,
20:681). If the equations of motion for the system of order 1/n are
transformed into the Laplace domain, the complex plane will be
called herein the s1/N-plane, where the superscript denotes the
order of the derivative in the eigenvalue definition.

The type of response due to a pole in the s1/n-plane can be
determined from pole location, just as in the s!-plane. Because the
A-poles will be mapped into the sl-plane to determine response, it
is important to recognize which regions of the s!/N-plane map to the

four quadrants of the s'-plane (Figure 1).

sl-plane in s'/n-plane

Figure 1. Mapping Regions Between s'/n-plane and s'-plane
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The type of response due to poles in these regions of the s1/N-plane
is determined by the type in the corresponding s'-plane quadrant.
Poles will also lie outside these regions, and it has been shown that
these poles produce relaxation response described by the terms of
negative powers of time (1:92-104). The next section addresses

poles and mapping in more detail.

Mapping BRegions

Starting from the s1/n-plane and mapping to the s'-plane, the
mapping function is

z1 = (z1/n)" where z1/n = complex number in s!/N-plane

z1 = complex number in sl-plane

If one considers the inverse mapping, i.e. z1/n=(z1)1/", it is evident
that each quadrant of the s!-plane maps to a region of less angular
width in the s'/N-plane. The kth quadrant, (k-1)r/2 < arg(z1) < kn/2
for k=1to 4, maps to the smaller sector (k-1)rn/2n <arg(zy) <
krn/2n. It is easy to identify which sectors of the s!/M"-plane map to
each of the quadrants in the sl-plane. The ra.ys in the s'/N-plane and
the sl-plane axes, to which they correspond (or map), bound the

sectors in their respective plane:
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s'/n-plane | - s':plane
maps

The ray on which s1/n = Al/n g i0 - + real axis
to
maps
The ray on which s1/n = Al/n e zin - real axis
to
maps

The ray on which s1/n = Al/neiw2n  _, 4 imaginary axis

to
maps

The ray on which s1/n = Al/n g-iW2n  _, - imaginary axis
to

where A is an arbitrary magnitude. This mapping is shown
graphically in Figure 1. It is important to recognize that regions do
not reduce or increase in size. The regions just appear differently
on the two planes. The s!/N-plane view only shows more regions so
that the relaxation response can also be seen.

 To understand to what these other regions refer, it is
necessary to discuss the concept of a Riemann surface and sheets of
complex numbers (17:621). Complex numbers be considered as on a
spiral surface like an infinite corkscrew, because the angular
parameter of a complex number is not unique. The angle is the same
if 2rp radians, where p is an integer, are added or subtracted. Each
complete twist of the screw represents one cycle of 2r radians.
This twist is a sheet, often called a Riemann sheet, of complex
numbers. Where the sheet begins and ends depends on the branch cut,
which is defined by the specific problem and function singularities,
in the plane. For example, since in this thesis the branch cut is
assumed along the negative real axis, a sheet may be defined by

those complex numbers whose argument (angle) lies between n and
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.. An analytic complex function requires a closed Riemann surface
in order to satisfy the requirement of differentiability everywhere.
The surface is composed of sheets joined together at the branch
cuts, such that a continuous surface is formed. Because the function
w = z N maps one sheet to n sheets, i.e. numbers with argument 2x
become numbers with argument 2n=x, the corresponding Riemann
surface consists of n sheets linked together at the branch cuts like
a chain. The first and last cuts join to make a continuous surface,
like a loop of chain.

In the classical first-order system eigenvalue problem in
which the eigenvalue, A, is defined by D;X =AX and there are no
fractional powers of A, the mapping function is w = z!, and there is
only one sheet. Hence, the reader may not be familiar with poles on
other Riemann sheets. Once the eigenvalue problem is defined by
D} "X =AX , there are n sheets on whichthere are have poles; the
s1/n-plane view shows them all as sectors of angular width 2x/n
radians. Considering the sheets as a stack, it is easy to visualize
the plane representation as the projection of all the poles in the
stack onto a planar surface. Often, because one is interested in
poles on only one sheet, the mapping is applied to only those poles,
and the poles are represented alone on a plane. This plane really
only corresponds to the one sheet, but such a representation removes
confusion concerning other poles of no current interest. Hence, this

is done in this thesis. An example is the mapping in Figure 1.
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‘The systems in the example problems which follow are of
order one half and, thus, require surfaces of two sheets. One sheet
is taken as

So={z!|-n < arg(z) < n}

In order to avoid the confusion of jump discontinuities experienced
by poles moving across the branch cut joining cuts defined at the
extremes of the arg(z) range, e.g. 0 and 4x , this thesis uses two
half-sheets:

S.q={z|-2x < arg(z) <-n}

Si={z!| n <arg(z) < 2n}

S.1 and Sy are joined at arg(z)=2r and arg(z)= -2r. S.1is joined to
So at the branch cut where arg(z) = -r, and Sy is joined to Sp at the
branch cut where arg(z) = . The advantage of this choice of sheets
is that mapping to the sl-plane is done by halving the argument of
the quantity being mapped and no poles move across the branch cut
joining the extreme argument values. Consequently, the jump
discontinuities in the argument are avoided. In summary, the poles
lying in the s1/n-plane outside the sectors corresponding to the Sg
Riemann sheet, considered the sl-plane in this thesis, reside on
other Riemann sheets. These poles have been shown to contribute
terms of negative powers of time to the response (1:92-104), and
these terms appear to correspond to creep or relaxation response in
viscoelastic materials (2:748, 20:681). As such, this response is
stable and non-oscillatory. Therefore, the poles lying on the Sg
sheet are solely responsible for the system stability and oscillatory

motion, because their response is exponential, Ae®t, which can be
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oscillatory and stable or unstable, accordingly as Rew <0 or

Re o > 0, respectively.

Calculation of Total Response

Finally, to complete the discussion of the solution for system
response, the method of actually calculating the total response is
necessary. A detailed description of the calculation of the inverse
Laplace transform of the state vector transform, )-Z(s), is given at
the end of Example 1 in Chapter |V after the reader has become more
familiar with the pole structure of systems of order 1/n. The

calculation involves the evaluation of a contour integral in the

sl-plane.
Summary of Solution Process

1. Formulate the system of order 1/n (as illustrated in the
examples). '

2. Determine the optimal gain matrix K through an algebraic Riccati
equation solver, such as RICCAT! in MATRIXx , by using the
equivalent first-order system, Eqgs (37-40).

3. Solve the eigenvalue problem for the eigenvalues, A, and

eigenvectors, ¢ , in the s1/n-plane.
4. Map the poles, A, to the s!-plane poles, .

5. Calculate the total response (as illustrated in Example 1).
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V. Example Problems

In this chapter the theory is demonstrated by numerical
solution by finite element analysis of two examples of simple
controlled structures. An iterative solution of the open loop
equation of motion for the first mode eigenvectors and eigenvalues
allows cross-checking the open loop eigenvalues and eigenvectors
computed by matrix manipulation with MATRIXx. The first example
is a beam of viscoelastic material, pinned to allow only rotation at
both ends. Both rotations are controlled. The second example is a
long, thin aluminum rod, clamped at one end and damped by a
viscoelastic pad at the other. Displacement is constrained to
longitudinal motion and is controlled at the damped end.

These problems illustrate the method of applying the control
theory to structures, as well as the technidue of expanding the
structure equation of motion into a differential system of order 1/n.
The first problem has a lot of symmetry (damping, control, boundary
conditions, geometry), while the second does not. The second shows
how to incorporate both viscoelastic and elastic materials into a
problem. The basic concept of finite element analysis does not
change; viscoelastic materials are included in the element equation
of motion and boundary conditions. The problems also show the
technique of using MATRIXx to solve the Riccati and eigenvalue

equations.

Example Problem 1: Simply-Supported Beam
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roblem ment: Given a simply-supported beam (pinned <!
both ends to allow only rotation) made of butyl B252 rubber as
shown below, determine the open and closed poles to illustrate the
effect of the linear feedback theory on system response, as

described by rotational displacements 61 and 62 at nodes 1 and 2.

¢ | v, — EI(1) Yo _’b -
%1 r ) \ %2 h
® \:::é:&“:' \:::G:E:::: X-sectiofn
- : .

Figure 2. Example 1. Simply-supported Beam

) Geometry:

L=10m
b=01m
® h=01m

| = bh3/12 = 8.33E-6 m4 (Moment of Inertia)

E = a time-dependent modulus to be described later in the Laplace
L domain

Boundary Conditions:

vi =v2 = 0 (transverse linear displacements of nodes)

ui = contro! torque, determined by optimal control, u’, on 64




us = control torque, determined by optimal control, u’, on 8,
Stress-Strain Mode!

As Bagley (3:920) demonstrated, Butyl B252 rubber's tensile
stress-<train relation, can be written in terms of a fractional
derivative model of crder o, which is determined by experiment

involving sinusoidal excitation over a range of frequency 0 <w < 104

cps:

o(t) +bDYo () = Eoe(t) + E1DYe(t) (2)
where o(!) is the normal stress, €(1) is the normal strain, a = m/n (m,
n are integers), and Eg and E1 are positive, constants. For this work
b equals zero. In the time domain an operator, PE, acting on the

strain, £(1), can be defined such that Eq (2) can be written as

o(Y) = PE(e(t) ) (45)
In the Laplace domain, this operator can be described as a funtion,
E(s), where the overbar denotes the Laplace transform domain, of the
Laplace variable, s. This can easily be seen if one takes the Laplace
transform of the general stress-strain model, which can be done

since the model is linear. Assuming zero strain at t=0,

3(s) = Eo () + 151 s&(9)]
gl-a

o(s) = (Ep + Eys%) &(9)

o(s) = E(s) &(s) (46)

The function E—E(s) is not a transform; it corresponds to an operator in

the time domain and not to a function. This form of the time-
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dependent modulus, i.e. E(s), is useful for applying the
viscoelasticity correspondence principle (5:42). This principle
states that in tie Laplace domain the time-dependent modulus can
be substitutea for a presumed-elastic (constant) modulus, E, in an
equation. Because the operator PE(e(t)) can be expressed merely as
an polynomial expression in s in the Laplace domain, it can be
grouped as one term, as shown above. The correspondence principle
says that E can be replaced by E(s) in the Laplace domain when
viscoelastic loads are calculated using convolution which
corresponds to multiplication in the Laplace domain. ‘When
visccelastic materials are used in finite element models, the
equationi of motion (EOM) for an element is first derived assuming a
constant modulus, E. The correspondence princigle is then applied to
the transform of the EOM. The resulting equation is solved ‘or the
response.

Based on Madigowski data, Bagley (3:920) has determined o« and
positive shear coefficients Gg and G1 in the shear stress-strain

relationship for butyl rubber and several other materials:

() = Goy(t) +G1Dyyv(d (47)

where 1 is shear stress and Y is the shear strain. To determine Eg
and Eq one applies the basic relation between Ey, Young's modulus,
and G, shear modulus, i.e. Ey = 2(1+v)G, where v is the material's
Poisson's ratio, and uses Gg and Gy to determine Eg and Ejq,
respectively. For this work the rubber was assumed incompressible,

so v = 0.5. Therefore,
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Butyl B252 Rubber Values

p= 092 g/cm3 = 920 kg/m3

a=05

Go = 760,000 N/m2

G1 = 295,000 Ns'/2/m?2

Eo = 2,280,000 N/m2

Eq 885,000 Ns1/2/m2

These figures are valid for 0 < frequency < 10* Hz.

Elastic Formulation of Equation of Motion

In finite element modelling the general equation of motion for
a sturcture is formed by assembling the equations of motion of
individual elements into one large system equation. The
correspondence principle is applied to the element equation of
motion for those elements containing the viscnelastic material.
These modified equations are assembled into the system equation of
motion, and the EOM is solved for the system response.

The general form of the equation of motion for an elastic

finite element is
md+kd =T (48)
where

m = element mass matr x (umped or consistent)
d = element displacement vector
k
r

—~
-

= element stiffness matr ix
= element applied nodal loads
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Cook (7:87) gives the stiffness matrix for an elastic beam element

as

12 6L -12 6L
~ _EL| 6L 4L%-6L 2L?
L3{-12-6L 12 6L
L 6L 2L2 -6L 4L2]
where E is the presumed-elastic modulus and the displacement

vector is arranged by alternating translational and rotational

displacements for each degree of freedom, i.e.

Since rotational displacements are of interest, Cook's consistent

mass matrix must be used:

| 156 22U 54 -13L
q_.m | 22L 4L® 13L -3L®

420/ 54 13L 156 -22L
L -13L -3L%2 -22L 4L2% |

where

m = pAL (A = cross-sectional area)
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Since there is only one element in the structure, the assembled
matrices, hence the equation of motion, are the element mass,
stiffness, and force matrices. Applying the aisplacement boundary

conditions reduces the system to two degrees of freedom:

9&{ 42 -312 V 81(9 } . Q_[MZ 2.2 |/ e1(Y } _ { us (9|

420 312 412 [ ea0 | L3212 a2\ 62y uz(9 |
or )
gle |, gl e } i { us () |
\ 92(1) } | 82(1 ua(t) | (49)
where
ﬁ:pALS{ 4 -3 }
420 | .3 4
K =g_|_{2 1 }
Li12

Because E will be replaced by E(s), the stiffness matrix, R, has been

identified as EK'.

Application of the Correspondence Principle
The Laplace transform, denoted by capital letters of functions,

of the system is

Ms2@(s) + EK'O(s) = U(s) (50)

where s is the Laplace variable and
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— O (s
&(s) =] 1(s) }
| ©2(s)
U(s) = {U1(S)1
Uz(s) |
E(s) replaces E and gives the equation of motion in the Laplace
domain:
[ Ms2 + Es! 2 K' + Eog } (_-'5(5) = D(S) (EOM) . (51)
Open Loop Response

Recall from Chapter Il that the Laplace variable s corresponds
to the eigenvalue for a first-order system. Because the fractional
derivative transforms have s to fractional powers, an eigenvalue A
is defined in the s1/2-plane by A =s1/2, in order to have a
polynomial with only integer powers. The eigenvector, ; is given by
the specific value of @)(s) for the eigenvalue A. Then the open loop

or homogeneous ecuation of motion is

[F|\\/|d7»4+E17»R;+EoR;:|¢=6 (52)
which can be solved recursively for its first mode eigenvalue, A1,
and eigenvector, ¢, in the s1/2-plane via an iterative routine (3:922-

923):

—~ ~ )1~ —=(n) —=(n+1)
[K1(H)E1K'+EOK'] Moy =-—1—— o :
4{n +1)
Aq (53)

where (n) and (n +1) are iteration steps. The routine steps are
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1. Estimate A;‘" ;1(1 ). Quality of guess only affects speed
of convergence. For this thesis 1+i was simply used for M(”.
Undamped open lcop first mode eigenvectors were used for 51(

2. lterate on 1 holding A1‘"? constant until the eigenvector
converges, i.e. changes less than a tolerable difference.

—~(n+1)

( —~(n)
3. Use new A" *" and ¢4

as estimates for A"} o1

4. Repeat steps 2 to 3 with until 2" converges.
Because it is a quartic equation, there are four values of M(" +1)
generated each iteration: A1/n = A1/n{ cos [(Q + 2rk)/n] + i sin [(Q +
2nk)/n] } where Q is the argument of A, A is the magnitude of A, and k
is an integer ranging from 0 to n-1. One value must be chosen for
the iteration. Since each value corresponds to the possiblé solution
on its branch or sector of the plane, the same solution must be
pursued to gain convergence to the valid eigenvalue. Identification
of branches is not difficult for open loop poles if one assumes that
the pole argument does not vary greatly. Because fourth-roots are
separated by n/2 radians, two can never lie in the same quadrant.
Therefore, each branch can be identified by the signs of the real and
imaginary parts. To maintain the same branch, always iterate with
the root with the specified signs. This works wéll for open loop
poles, but closed loop poles may move drastically from the open loop
positions and into other quadrants. Improved algorithms for this

situation have been studied currently by Captain Michele Devereaux

(8).
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Furthermore, because it is a quartic equation, there are four
distinct eigenvalues for each eigenvector. The algorithm converges
to only one at a time, so the iteration must be completed for each.
Eigenvalues will always be real or occur in complex conjugate pairs
because the coefficients are real. Moreover, there should be an open
loop pole in each quadrant, because the viscoelastic model yields |
both exponential and power time response. The right two quadrants,
because they map to the s'-plane, give exponential response (stable
or unstable); while the left two quadrants of the s1/2-plane
correspond to other planes in which poles give power response.

Hence, one set of poles should be in the first and fourth quadrants;

and one set should be in the second and third quadrant. There may be

two negative real poles which correspond to lying on planes not
shown in s'/2-plane presentation. This procedure must be modified
slightly for higher eigenvalues (3:922-923, 1:76-78).

Applying the problem values to the EOM matrices gives

M = 0.0219 kng{ 4 '3}
3 4

E\K = 14.75 N-m {2 1 }
12

EoK = 38.0 N-m[z 1}
12

The mass matrix M is multiplied by rad/sec? in the equation of
motion. Thus, the final units are N-m, i.e. torque which is balanced

in the equation of motion.
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The controls analysis package (code) MATRIXx (14) was used to
perform the iterative solution. MATRIXx has a feature called a
command file (14:7-3 - 7-6) which allows a series of commands to
be stored in an executable file. It is basically the equivalent of
program. A MATRIXx command file entitled, 4th-order BEAM
EigenValue Solver or 4BEAMEVS.EXC, was created to solve the
recursive equation for the beam open loop eigenvalues of the first
mode. The user supplies the assembled mass and stiffness matrices,
as well as estimates for the first mode eigenvector and one of the
eigenvalues. The program is interactive, and the user is asked to
identify the desired root from the output and input it for iteration.
The difference between past and present step values of the desired
eigenvalue is displayed for both real and imaginary parts, and the
user is queried about continuing the iteration on the branch. This
could be automated, if desired. For this work the iteration was
continued until the difference between past and present step values
of the desired eigenvalue was less than 10-5 on both real and
imaginary parts.

Because of the symmetry of the problem, especially the
damping, the damping is expected to be proportional damping, i.e. the
damping matrix E{}Z can be written as a linear combination of the
mass and stiffness matrices (19:197). By inspection it is obvious
that E1K can be written in terms of the EOR. In this case, the
equations comprising the system can be decoupled, and the
eigenvectors are the same as those for elastic system. The elastic

first mode (19:213) is known to be
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o={ "]
-1 (54)

and the first guess of the eigenvalue was A; = 1 + i. Two conjugate

pairs for the first mode result from the iteration:

A = 29747 £ 41150i and -2.9747 + 0.8740i

The poles with the positive real part correspond to vibrational
motion, while the poles with the negative real part correspond to
relaxational motiosi.

The iteration also gave the elastic first mode eigenvector,
Eq (54), for all eigenvalues. This occurs because of the proportional
damping.

These values can be checked because the first eigenvector is
known. By premultiplying by the transpose of the jth eigenvector

Eq (52) reduces to a fourth-order scalar polynomial in Aj:

-

o) | A2V + 2 EqKe EoK | 9 = 0

By using a root finding routine, such as the ROOTS command
(14:4-16) in MATRIXx , the eigenvalues are found to be the same. The

elastic second mode is also known:

w-{!]
1 (55)

and the eigenvalues can be found by the same method:

A2 =7.1139 £ 11.0272iand -11.6288, -2.5989
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The poles with the positive real part correspond to vibrational

motion, while the poles with the negative real part correspond to

relaxational

motion.

1/2-Order System Formulation

The general problem can be posed in a fractional state-space

by a 1/2th-order system (3:921-922). A fractional state-space is

defined as a state-space in which fractional as well as integer

derivatives of variables are included in the state vector, e.g.

or

D> 29 (1)

D6 (1)
D! o (Y

6 (1

3 ’26(3)
s1(:5(s)
s! 2@(s)

(:5(5)

whedm states:

Z ol o) o)
o)l ) o o}

o] o) =) o)
m
}lozozzz

g3 @ (:5(3)

s! @(s)

sl 2 (:5(5)
O(s)

J

ol o) z) ol
°) o) o) z)

ol z) o1 o}
Sx"z o] o] o)

I
L

$20(y
s! (:5(5) |
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—p1 O] O] ©)
|
i

(s)

L1 (56)
~ o0 ~ 10 -
where 0= and | = . This is rearranged to
00 0 1
s' 20(s) = A ©(s) + B U(s) (57)
where
o 0o o M I To o -M 0]
T, 0 0 M o0 0 M 0 0
O M 0 0 M 0 0 0
LM 0 0 EK]L O 0 0 EKJ
0 0 o M ['0]
R
0O M 0 0 0
M 0 o0 EKJ LT

To complete the system, it is assumed that all states are outputs

and that there is no feedforward to the output, i.e.

-

Y(s) = CO(s) + DU(s)
where

(~3= 4m x 4m dentity matr
D=m x q null (zero) matrix (q =number of control inputs)
For the specific problem m=2 and g = 2, so the system has

eight states and two control inputs.
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Open Loop Poles via MATRIXx

If the control vector is set to zero, i.e. 6 in the 1/nth-order
system, Eq (57) reduces to an eigenvalue problem. However, there
will be m sets of eigenvalues, where m is the number of degrees of
freedom again. Eigenvalues and eigenvectors of the A matrix were
determined by the EIG command of MATRIXx (14:4-23). These
corresponded to the first two modes. The first mode eigenvalues
and eigenvectors determined by the recursive solution of the open
loop equation of mation, Eq (52), match those determined by
MATRIX.

Closed Loop Poles via MATRIXx
Solution for closed loop poles and eigenvectors is quite easy
on MATRIXx. First, the system must be posed for the Riccati

. . . ~n-1 . .
Equation solver in the appropriate A" -A"'B form, as indicated in

Chapter il

—~

I ~n-1~

8() = A"a() + AT BU(Y

Therefore, for this example

(= A28(t + ABG(Y (58)

The MATRIXx Riccati solving command, called RICCATI
(14:14-19), was used to determine the optimal gain matrix, 5, such

that
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. ~A~T~n1 T~ =
i'(y = -RBA" Pa( (59)

However, the routine also output the overall gain matrix, Ré where

—_ ~ A~T~n. 4T ~
kc = R'BA™' P

and this matrix was used in the calculation of closed loop poles.
RICCATI(§,FENS) requires three inputs: a system matrix (5), a
performance index weighting matrix (Ef), and the number of states

(NS) in the state vector. These are

~n ~n-17=~
~ A A
C D
rRa=| @ Mr
No R
NS =4m
where

Nq =4m x 4m null matr x (same dimensions as Q)

Nr =4m x g null matrix (same dimensions as ﬁ)
m= 2 for this problem
q = 2 for this problem

For this problem m= 2 and q = 2. The closed loop system, Eq (58),
becomes an eigenvalue problem once the gain matrix for the optimal
steady-state linear feedback is known. The Laplace transform of
Eq (58) is

s'26(9 = (A -BRTBTATR)6(y (59)
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For this specific problem the inputs to RICCATI are

~ e A e A~
~ s Ao e A
A~ e A A~ A

L0000 [J

NS =8

MATRIXy then gives P and KC:

P = 1000 *

T 0.0000 0.0000 <£.0001 0.0001 00002 0.0001 00025 0.0008]
0.0000 0.0000 ©.0001 0.0001 00002 -0.0001 00025 0.0008
0.0000 0.0000 0.0001 £.0001 -0.0001 00002 -0.0008 0.0025
00001 00001 0.0005 0.0003 -0.0025 0.0008 0.0000 0.0000
0.0001 0.0001 0.0003 00005 00008 <0.0025 0.000 0.0000
0.0002 -0.0001 0.0025 0.0008 0.0186 0.0021 0.0409 0.0091
00001 00002 0.0008 -0.0025 00021 00186 0.0091 0.0409
0.0025 -0.0008 0.0000 0.0000 -0.0409 0.0091 22763 1.7681

| 00008 00025 0.0000 00000 0.0091 0.0409 1.7681 22763

KC =
06380 0.1986 5.6916 0.6239 48.2600 -26.8662 0.0088 -0.0044
101986 06380 0.6239 5.6916 26.8662 48.2600 0.0044  0.0088

MATRIXx's EIG command (14:4-23) solves the closed loop eigenvalue
problem for the closed loop poles and eigenvectors of both modes.

The poles are given in a jumbled order:

7.2744 +11.2328i
7.2744 -11.2328i
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-0.2318 + 3.0553i
2.9596 + 4.2008i
2.7549 + 4.6337i

-0.2318 - 3.0553i
2.9596 - 4.2008i
2.7549 - 4.6337i

The command EIG does not identify which closed poles correspond to
which open loop poles. In general, if the open loop poles are known
for each mode, the closed loop poles for each mode can be identified.
Starting from the open loop system, feedback gain is increased from
zero to full value in small enough steps to see the poles move from
open loop to closed loop positions. The tracks map each open loop
pole to its closed loop position. In controls analysis this plot is
t-Iccus. The eigenvalues for each mode of the specific

problem are

2.9596 + 4.2008i and -0.2318
7.2744 + 11.2328i and 2.7549

3.0553i
4.6337i

Sz
o
H

The eigenvectors, as determined by the EIG command, remain
the same as the open loop eigen vectors, which are the elastic
eigenvectors Egs (54) and (55). This makes identification of the
poles easy.

The closed loop poles can be determined by creating a scalar
equation using the known eigenvectors, as in the open loop case. The
control vector is replaced in the system, Eq (58), by the optimal
control vector, which is }P(E&; The vector is brought to the left-
hand side of the equation. The scalar equation of motion is given by

the bottom m rows, where m is the number of degrees of freedom,
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of the system equation and now has non-zero coefficients for A3 and

A2 and becomes

;j [l?ﬁ+k?kam+k?@m +X,( E1R+R63m)+(EoR+E64m )];1 =0
where Réqm is the gth set of m columns of KC. The first and second
mode eigenvalues are found to be the same as the quoted above. The
Bagley and Torvik algorithm can be modified to solve this new
eigenvalue problem. Unless the eigenvectors are known, the only
other means of determining which eigenvalues belong to which

modes is the iterative method of increasing gain.

Measures of Change in Stability

A quick check for increased stability can be done by comparing
pole positions: are closed loop poles further left (i.e. real part) than
open loop poles, and do closed loop poles have a larger ratio of
imaginary to real components?

In the s1-plane the real component equals -{wn, where { is the
damping ratio and wn is the natural frequency. The amplitude of the
response is driven by e-tont.  Consequently, pole movement further
left on the real axis results in a more negative exponent; and, the
system amplitude dies faster. A measure of this motion is given by
the difference between open and closed loop real components.
Mapping poles between the s'/2. and sl-planes will effect the
magnitude of the value but will not change the sign which identifies

the direction of motion (plus means left and negative right).




The imaginary component of the pole in the sl-plane is wg, the
damped frequency. Therefore, the ratio of imaginary to real
components gives a measure of both the damping ratio and the
damped frequency with respect to the natural frequency. Moreover,
the cosine of angle between the negative real axis and a line drawn
between the pole and the origin is the damping ratio, {. The larger
the angle the smaller is the damping ratio, which means less
damping. The ratio of real to imaginary parts, thus, is also a
measure of {. Since stable response poles lie in the two s'/2-plane
sectors m/4 <0< n/2and =/2 <6< -w/4 |, a higher ratio puts a
pole closer to the imaginary axis (larger tan 8; hence, larger 6) than
another. Therefore, it maps closer to the real axis in the s!-plane
and has a lower damped frequency and higher damping ratio, .

Because the poles in the left half s1/2-plane do not lie on the
sl-plane and, thus, do not contribute to typical stability measures,
their movement with respect to stability is less clear. These poles
cause negative-power time response which decays slower than an
exponential response. If they move right or increase their
imaginary-to-real ratio, they move toward the sl-plane. If they
move onto the left half of the s'-plane, their response is more
stable than before, because the poles now cause decaying
exponential response. Therefore, motion right and increasing ratios
of poles in the left half s1/2-plane would seem to indicate increased
system stability. Under these rules these two measures, difference
between real components and imaginary-to-real ratio, give

measures of the change in stability of the system.
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Comparison of Open and Closed Loop Poles

The open loop eigenvalues of the first and second modes are shown

in Figure 3.
12+ o
8+
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Figure 3. Example 1 Open Loop Poles for Both Vibrational and
Relaxation Modes 1 and 2.

and the closed loop eigenvalues are shown graphically in Figure 4.
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Figure 4. Example 1 Closed Loop Poles for Both Vibrational and
Relaxation Modes 1 and 2.

Real components of the open and closed loop eigenvalues, Re(O)

and Re(C) respectively, the difference between the open and closed

loop real parts, denoted by Re(O)-Re(C), and ratios of the imaginary

to real parts, denoted by I/R, for the first twoc modes are tabulated

in Table 1. A negative number in the Re(O)-Re(C) column indicates

the poles have moved right.

Table |. Stability Measures for Example 1
Mode Re(O) Re(C) Re(0)-Re(C) Open I/R Closed /R
1 2.9747 2.9596 0.0151 1.3833 1.4194
-2.9747 -0.2318 -2.7429 0.2938 13.1808
2 7.1139 7.2744 -0.1605 1.5501 1.5442
-11.6288 2.754¢ -14.3837 0.0 1.6820
-2.5989  2.7549 -5.3538 0.0 1.6820
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The data from this table shows that optimal control does not
necessarily mean most stable for all poles. The first two
eigenvalues, which represent the exponential response of the s'-
plane, of the first mode increased in stability, as indicated by the
motio\n left of the real part (positive difference Re(O)-Re(C)) and by
the increase of the imaginary-to-real ratio, I/R. However, the
positive-real-part eigenvalues of the second mode destabilized
slightly, as shown by the motion right of the real part (negative
difference Re(O)-Re(C)) and a decrease in the I/R ratio. The second
mode poles which have negative real parts moved right far enough to
enter the region corresponding to the left half s'-plane. Therefore,
these poles, which
formerly gave non-oscillatory relaxation response, now give a
vibrational response! Furthermore, the poles lie nearly on top of the
positive-real-part poles of the first mode. Because of the first and
second mode eigenvectors, Eqs (54) and (55), there is constructive
interference at node 1 and destructive interference at node 2.
Finally, the negative-real-part eigenvalues of the first mode also
destabilized by moving right but has increased its damping ratio and
lowered its damped frequency, as indicated by the increased I/R
ratio.

Most of the closed loop poles are not very far from the open
loop poles. It would appear that these values are already fairly
optimal under the current evenly-weighted performance index. The

problem appears to be heavily, perhaps overly, damped, and the
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destabilization of the one pole may represent a desire for the
system to be less damped. By destabilizing the pole the system
would appear more flexible.

The system is stable with the optimal feedback, which
produces significant changes in the response. However, this system
is not very indicative of large, flexible space structures because of
the geometry, i.e. this system is heavy weight. Furthermore, there
is so much damping material that the system is probably overdamped
and does not need much feedback, if any. Therefore, a problem more

representative of the structures of interest is needed.

Modified Beam Geometry to Represent a Flexible Space Structure
Such a problem can be achieved by a modification of the
geometry to represent a more slender beam. Therefore, letb = h =
0.01m . This divides M by 100 and divides K' by 104. The open loop

eigenvalues are

AMoL = 0.8936 = 1.0333i
0.8936 + 0.7276i

and

2oL = 1.9573 £ 2.5320i
-1.9573 + 1.1183i

and are shown graphically in Figure 5.

60




37
(o]
2 -+
g oo . & VIBRATIONAL 1
. © VIBRATIONAL 2
3 2 ; 1 2 3 | m RELAXATION1
a -1 ¢ O RELAXATION2
.24
(o]
- 3 - .

Figure 5. Modified Example 1 Open Loop Poles for Both Vibrational

and Relaxation Modes 1 and 2.

By following the same procedures outlined earlier, the gain matrix

IF<\C‘: is determined to be

C -
0.0007 0.0001 1.0008 -0.0007 -0.0036 -0.0014 0.9924
0.0001 0.0007 0.0007 1.0009 0.0014 0.0036 0.0038

The closed loop eigenvalues are

11 = 0.2583 £ 25.5363i
0.0000 £ 1.0000i

and
Aot = 1.3870 £ 67.5522i

0.0000 £ 1.0000i

and are shown graphically in Figure 6.
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Figure 6. Modified Example 1 Closed Loop Poles for Both Vibrational
and Relaxation Modes 1 and 2.

The stability measures for the poles are shown in Table Ii.

Table Il. Stability Measures for Modified Example 1

Mode Re(O) Re(C) Re(O)-Re(C) Open I/R Closed I/R

1 0.8936 0.2583 0.6353 1.1563 98.8630
-0.8936 0.0 -2.7429 0.8142 oo

2 1.9573 1.3870 0.5703 1.2936 48.7038
-1.9573 0.0 -1.9573 0.5713 oo

The data in Table |l shows stability increases with the optimal
feedback control for the positive-real-part poles of both first and

second modes. These poles have moved left (positive Re(O)-Re(C))
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and have dramatically increased their imaginary-to-real (I/R)
ratios. The latter indicates a significant increase in damping ratio,
£, as will as a significant decrease in the damped frequency. Once
again, the negative-real-part poles moved right (negative Re(O)-
Re(C)) as well as increased their I/R ratios. In fact, these poles
achieved the maximum value of the I/R ratio. They have moved to
the imaginary axis and will map to the negative real axis in the sl-
plane. Therefore, these poles, which previously gave relaxation
(power-law) response, now give purely monotonically decaying
exponential response.

The positive-real-part poles produce the characteristic
damping and frequency parameters for the oscillatory motion. The
eigenvalues in the s1/2-plane and s!-plane, denoted by EV s1/2 and
EV s1 respectively, and oscillatory motion parameters, which are
damping ratio ({), natural frequency (wn), and damped frequency (wg)

, are shown in Table Ili.

Table Ill. Example 1 Oscillatory Motion Parameters
EV s1/2 EV st d n 0%
Open Loop

0.8936 + 1.0333i -0.2692 + 1.8467i 0.1442 1.8669 1.8467
1.9573 + 2.5320i -2.5800 + 9.9118i 0.2519 10.2422 9.9118

Closed Loop
0.2583 + 25.53631 -652.04
1.3870 + 67.5522i -4561.4

13.192i 0.9998 652.17 13.192
187.39i 0.9992 4565.1 187.39

+
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The data shows a tremendous improvement in system response. The
damping ratio, {, becomes nearly equal to one, i.e. critical damping,
which causes the system response to approach equilibrium faster
than any other damped response. The resonant frequencies have been
driven up to much higher frequencies. Therefore, the oscillatory
motion dies much faster, because e-t@nt governs the decay of the
envelope of the motion amplitude. Also, the ability to excite the
structure, by simple handling or operation, has been reduced, e.g. it
would not be excited by merely walking on it. Furthermore, the
resonant mode separation has been increased from 8.375 rad/sec to
3913 rad/sec. This effectively isolates one mode from another, and
controllers can neutralize one mode with less excitation on another.
These resuits show conclusively that the optimal linear feedback
control utilizing fractional state-space can successfully and

significantly increase system stability.

Contribution of Each Derivative to Pole Structure

Structures have been controlled by position, velocity, and
acceleration feedback in the past. What benefit lies in also feeding
back fractional states? Insight to the answer can be gained by
feeding back only one derivative at a time.

For example, feeding back only velocity (using the optimal
gains determined for the fractional state model) yields poles further
left than those from feeding back the entire state matrix:

0.0007 + 25.5571i and 0.0022 + 67.5737i which map to
-653.16 + 0.0358i and -4566.2 + 0.2973i. Although these have a

64




better damping ratio, they do not minimize the performance index.
More highly damped is not necessarily optimal. However, this does
show that the velocity is a major player in shifting the poles left.

If the 3/2-derivative is fed back alone, the s1/2-plane poles
are 1.0466 + 1.0243i and 2.9034 + 2.3290i. The poles have moved
right and have even become unstabie! Tnerefore, the 3/2-derivative
would counteract some of the strong stabilizing influence of the
first derivative, so that the performance index is minimized further
than by using velocity alone. This last statement derives from the
fact that the optimization of the gain did not zero the gain for the
3/2-derivative. If the poles of the velocity-only feedback
minimized the performance index, then this zeroing would occur.

If both 3/2-derivative and first derivative are fed back, then
the poles become nearly the final optimal values: 0.2590 *+ 25.5558i
and 1.3892 + 67.5595i where 0.2583 + 25.5363i and
1.3870 + 67.5522i are the optimal poles in the s1/2-plane. Hence,
these derivatives are responsible for the majority of the movement
of the poles.

If the other derivatives are fed back individually, a pattern
emerges. The odd half-derivatives (1/2, 3/2, etc) move the poles
right, and the even half-derivatives (0, 1, etc) move the poles left.
Furthermore, the higher the derivative the greater is its effect in
each category. So, a 3/2-derivative moves the poles more than a
1/2-derivative. The gains of each are traded off to minimize the

performance index with the lower derivatives acting as fine tuners.
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Because the higher derivatives result in higher order
polynomials in the feedback transfer function, they can contribute
more poles to move the root-locus left in the s1-plane. Take, for
example, a general negative feedback system with plant transfer
function G(s) and feedback transfer function H(s) in the s1/2-plane.
The characteristic equation is 1 + G(s)H(s) = 0. If h(t) is a
1/2-derivative, then its transform in the s!/2-plane is H(s) = As,
where A is a constant. H(s) can generate only one pole (root of the
characteristic equation) for the system, because H(s) increases the
orderof the characteristic equation by only one. However, if h(t) is a
3/2-derivative, then H(s) equals As3 and generates three poles
because it raises the order by three. Location of the pcies moves the
root-locus left or right, but more poles will cause more effect than
less. Therefore, the higher derivatives have more of an effect on the

pole structure.

Calculation of Total Response

Finally, to complete the discussion of system response and
stability, the method of actually calculating the total response is
necessary. This will hopefully clarify how the poles which have
been neglected so far (i.e. those not on the s'-plane) are accounted
for in the total response.

Bagley, in his dissertation (1), and Bagley and Torvik (2:747-
748) describe the calculation of a system response to impulsive
loading. Fundamentally, the inverse Laplace transform of the

displacement vector, L-T[)—E(s)], where s is the Laplace variable and

66




the capital X indicates the Laplace transform of the state vector.
must be calculated. By definition, the inverse transform is a
contour integration in the sl-plane, as shown in Figure 3. Segments
3, 4, and 5 are required because of the branch cut on the negative

real axis.

1
s -Plane +Im

. /

+Re

e
N
',

)

\
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Figure 7. Integration Contour to Calculate Response
The inverse Laplace transform of )2(3) is defined as

- YHie
L' [X(9)] = J—f et X(s) ds.
2ni )y i

The segment of the contour which produces the inverse transform

L-1[)?(s)] is segment 1. The transform )?(s) can be written as a

67




summation of the 4m eigenvalues and eigenvectors, where m is the

number of degrees of freedom.

. am o TE(e) (14bs®) -
X(s)= 3 & o
n=t Mn (51 o)

Ay

where

on = nth eigenvector of the non-expanded equation of motion

—

F(s) = ransform of the non-expanded applied force vector

on = nth eigenvector of the expanded equaton of moton

ﬁ = the expanded mass mat x which is the coefficient matrix
associated with the s/2 term in Eq (56), an early form
of the expanded system, Eq (57)

-T ~

Mn = ¢n M_gn = a modal constant

Since both open and closed systems have the form of an unforced
(homogeneous) system, the response is determined by examining the
impulse response. This also assumes that all initial conditions are
zero. Therefore, _F-:(s) = ? vector of ones, because the impulse is
applied to all nodes. Also recall that b=0 for this problem. Another
important point is that there are eight eigenvalues and eigenvectors
from the expanded equation of motion but only two modes. The
eigenvectors of the expanded equation of motion are distinct, but the
mode shapes of physical deflection are not. If the eigenvectors had

complex elements, we would have seen complex conjugate pairs of
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eigenvectors. This is shown in Bagley's and Torvik's example in
their paper (2:746).

By including the transform in the contour integration and using
the residue theorem from complex calculus, the transform can be
written in terms of a sum of the integrals for the other five

segments and a sum of the residues:

Y+ioco - -
—Lf eS‘X()ds—-—LZIeS‘X ) ds+ 3, b
- K

271 )y e 2ni i

where Bj are the residues of the poles enclosed by the contour. The
residues can be shown to produce the exponential response related
to the s'-plane poles. Bagley (4:141-143) has shown that the
integrals for segments 2, 4, and 6 are zero, when radii of 2 and 6
increase toward infinity and the radius of 4 approaches zero. He has
also shown that over long time the integrals for segments 3 and 5
asymptotically approach t" for t large, where n > 1. It is in these
integrals that the effect of the poles not on the s!'-plane becomes
included in the overall response. Only here are they included in the
response calculation because of the form of ;((s). As has been noted
eariier, this portion of the response correlates to the power-law

stress relaxation observed by Nutting (11) in deformed materials.
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Figure 8. Example 2. Fixed-Shear Rod Diagram

Geometry and Properties

L=1m

b=h=00Im

p = 2796 kg/m3

E = 6.894 x 1010 N/m2

Ac = 0.0001 m (area of contact between shear pad and rod)

th = 0.01 m

G(s) = Gg + G1s1/2  (shear modulus defined in the Laplace domain)
Gg = 7.6 x 105 N/m?

G1 = 2.95 x 105 Ns1/2/m2

di =0

1t = shear stress applied by pad on node 3

u = control force applied at node 3
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Formulation of Equation of Motion

The formulation follows like any other finite element
formulation again with the added time-dependent modulus as in

problem 1. The basic equation of motion for an element is again

Wd+kd =T (39)
From Cook the elastic rod element mass and stiffness matrices are
~ _pAL [2 1 }
6 L12
Q=A£{ 1 -1 }
LL-1 1

The derivation of the general equation of motion by summation
of forces on nodes is important to review here, in order to
understand the inclusion of the shear force boundary condition in T.

Consider node 3, shown in Figure 9.

d
"%
FRod FD'Alembert
o 3
<+
F
Node 3 Shear
Figure 9. Free Body Diagram of Node 3 in Example 2
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A positive displacement of the node is assumed to stretch the rod,
like a spring, so the force on the ncde is in the negative direction.
Furthermore, the rod mass is lumped on the node, so there is inertia.
This creates the D'Alembert's force resisting the node motion.
Finally, the shear force created by the shear pad is assumed to be a
nodal point load. It too resists the positive displacement of node 3.

Hence, the equation of motion for node 3 is

Mmads +kad3z + Act=0

Of course, node 2 does not have the shear force, so its equation is

-

Modo +kodp = 0
The derivation of the shear stress, t, equation can be seen from

Figure 10.

W

Figure 10. Diagram for Shear Force Equation Derivation

Fcr small d3 compared to th. the small angle approximation for the
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shear strain, v, applies, i.e. Y =tan ¥ = da/th,and = = G(t) ¥ =

G{t)d3/th. This stress is applied over the contact area, Ac.
Therefore, assembling the matrices and apgplying the boundary
conditions gives the elastic system equation of motion. Taking the
Laplace transform of the system and applying the correspondence

principle to the shear modulus in the shear pad force gives

2 M D(s) +Ke D(s) = - G(s)K'y D(s) + U(9) (60)
where
= Da(s) |
D(s)J
| Das) |
— { o \
U(s) =
iws)f
o _PAL [ 4 1}
6 h 2
Re=£{ 2 -1 ]
Ll-1 1|
K, = A O o}
th [o1

where the dj values are displacements of the ith node. The
displacement di was eliminated by the zero displacement boundary
condition. M is the assembled mass matrix, Re is the assembled
matrix of stiffness corresponding to elastic elements (only the rods

in this problem), and G(t)R"V is the assembled matrix of stiffness
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due to viscoelastic elements (the shear pad). Using the value of

G(s), the system equation of motion (EOM) is
(M 24+GiKys' 2+ (GoK'y + Ko} | D(s) = U(s) (EOM) (61)

Values for the matrices in this problem are

M = 0.04660 {4 1}kg
12

R9=6.894x106[ 2 -1 ]N/m

11
GoK', = 7600 | © OJN/m
L0 1
G1PA(7V=2950 0 O}N—sec1 2/ m
LO 1

Open Leop Response

The eigenvalue problem is once again set up in the sl/2-plane

by defining A = s1/2 | where A;and ¢; are the jth eigenvalue and

eigenvector. This gives

-

[M 7\.?+G1 K'v}\,j+(GoK'v+Ke”¢j(s)=O (62)
which can be solved by the iteration scheme process described in

Example 1. The first four eigenvalues and eigenvectors are shown in

Table V.
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Table IV. First Four Open Loop Eigenvalue
and Eigenvectors, Example 2

Eigenvalue Eigenvector
" .
44.7541 + 45.4687i 0.7162 £ 0.0088i |
1.0000 |
. .
44,7542+ 44.0009; | 0-6990%0.00841 |
1.0000 [

1/2-Order System Formulation

The expansion into the 1/2-fractional state space follows

from the first example:

‘ooomMl|sen | [0 o M 0 |]s2Dw
ge|00MO || s'DE || 0 -M 0 0 s D(g
OMO0O s' 2 D(s) M 0 0 0 s' 2 D(s)
MO0 0Kl D 0 0 0 Ko J| D(s
0
= 3 U(s)
0
LT (63)
where
R'o—GoR"v+‘|Ze
K1=G1K'v
i-{]
0
r_/ol
\ 1/
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Again let the expanded state vector be denoted by an underscore, i.e.

D(s). Note that U(s) is a scalar, because there is only one control

force in this example. This is rearranged to the appropriate

s' 2D(s) = A D(s) + B U(s) form, where

o o0 o M['[o o -M 0]
A-. 0 0 M o0 0 -M 0 0
0O M 0 0 -M 0 0 0
LM 0 0 KiJ LO 0 0 Kol (64)
-
0 0 0 M 0
5. 0 0 M 09
0 M 0 0 0
M 0 0 Ky LT (65)

—

U(s) = U(s)
To complete the system, it is assumed that all states are outputs

and that there is no feedforward to the output, i.e.

Y(s) = CD(s) + DU(s) (66)

where

§= 8 x 8 dentity mat ix
D =8 x 1 null (zero) matr ix

Open Loop Poles Vig MATRIXx

The above system reduces to the eigenvalue problem for open
loop poles when the control vector, U(s), is set to zero. The

eigenvalues of the A matrix are then the open loop poles. The first
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eight eigenvalues are found by using the EIG function on A. These
are shown in Table V with the closed loop poles. Having already
found the firs: four by the iteration solution of the EOM, the second
set of four can be identified. Notice that the first four are the same
as found by the iteration method. Unfortunately, the mode shapes
(eigenvectors) for the second set must be found by modifying the
iterative solution of the EOM. The poles are shown graphically in

Figure 11.

100
a 80 °
60
L 40 d
20

VIBRATIONAL 1
VIBRATIONAL 2
bt |

-80-60-40-20,0 20 40 60 80 100 RELAXATION 1
a -40 . RELAXATION 2
-60
o -80 °
-100

o =& © e

100

Figure 11. Example 2 Open Loop Poles for Both Vibrational and
Relaxation Modes 1 and 2.

Closed Loop Poles Via MATRIXx

The system is posed in the appropriate form for the Riccati

, ~2 = ~= .
equation solver: D(f) = A D() + ABu(t) . There are two weighting

77




matrices, because two cases are studied to show the effect of
varying weights. This is also required to get a significant change in
the pole locations - an example of the usefulness and arbitrariness
of weighting to get a desired pole structure. The inputs for the

Riccati function are

e
§={A AB
C D
o o o0 o o |
_ o 10°I 0 0 0
RQ: =| ¢ 0O o0 0 0
0 0 0 10°1 O
L 0 0 0 0 1
"0 o o0 o0 o |
N 0 10°1 o0 0 0
RGz =| ¢ 0 o o0 0
0 0 0o 10°1 o0
L o 0 0 0 1
NS = 8

MATRIXx then gives KCy for RQy:
KC =
[ .0.3709 -0.4680 14.986 1205.8 731.18 -3083.4 -3.1086D406 1.5543D406 .

and the eigenvalues of the system, s! ’25(5) = (K -5}261 )ﬁ(s) , are
found by applying EIG(; to ( A - 6@1 ) The mode to which each

closed loop pole corresponds is determined by marching through
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increasing feedback gain and observing the evolution of the poles

e
from the open loop ones. The poles are shown in Table V.
MATRIXx gives KCp for RQu:
[-0.3667 -0.4311 3376.1 33925 1937 -3293-2.6028D+08 1.3014D+08 |
e The corresponding eigenvalues are also shown in Table V.
Table V. sV/2-Plane Open and Closed Loop Poles for Example 2
¢ Open_ﬁoop Closed Case 1 Closed Case 2
44 7541 £45.4687i  29.1442 + 59.8026i 2.10 £ 631.92i
-44.7542 + 44 0099i -26.8325 + 58.4049i 0.01 £ 9.89i
p 83.6001 £ 84.0417i 64.9435 + 95.0618i 54.06 + 77.67i
-83.6000 £ 83.1657i 64.9542 + 93.3355i -54.08 = 77.71i
® The closed loop poles are shown in Figures 12 and 13.
o 100p °
@ sot
. m 608 [
40¢ & VIBRATIONAL 1
23 " © VIBRATIONAL 2
. -éo-éo-io-éod 20 40 60 80100 |® RELAXATION?
100 .40¢ D RELAXATION 2
o w0} o
-804 J
o -100l o ;
o |
® Figure 12. Example 2 Case A Closed Loop Poles for Both Vibrational

and Relaxation Modes 1 and 2.
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Figure 13. Example 2 Case B Closed Loop Poles for Both Vibrational

and Relaxational Modes 1 and 2.

Comparison of Open and Closed Loop Poles

The stability measures based on the s'/2-plane open and

closed looo poles are shown in Table VI, and the oscillatory motion

parameters are shown in Table VII.
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Table VI. Stability Measures for Example 2
Mode Re(O) Re(C) Re(O)-Re(C) Open I/R Closed I/R
Case 1
1 44.7541 29.1442 15.6099 1.0160 2.0520
-44 7542  -26.8325 -17.9217 0.9834 2.1766
2 83.6001 64.9435 18.6566 1.0053 1.4638
-83.6000 -64.9542 -18.6458 0.9948 1.4369
Case 2
1 44,7541 2.1 42.6541 1.0160 300.91
-44.7542 -0.01 -44.7442 0.9834 989.00
2 83.6001 54.06 29.5401 1.0053 1.4367
-83.6000 -54.08 -29.5200 0.9948 1.4369
Table VII. Example 2 Oscillatory Motion Parameters
EV s1/2 EV st 4 on o
Open Loop
44 7541 + 4546871 64.473 £+ 4069.8i 0.0158 4080.6 4069

83.6001 + 84.0417i -74.031

Closed Loop Case 1
29.1442 + 59.8026i -2727.0

64.9435 + 95.0618i

Closed Loop Case 2

2.1000 + 631.921
54.0600 + 77.67i

399318
3110.1

-4819.1

+

+

*

+

14052.71 g 0053

3485.81 o g1g2
12342.3i 3537

2654 .1i
8397.7i

=1.0000
0.3473

14053.3 14052

4425.7 3485
13249.4 12342

399318 2654
8955.1 8397

Both closed loop cases show improvement in stability over the open

loop case. Mode one damping ratio increases from 0.0158 to 0.6162

and approximately 1.0.

Its natural frequency also increases from

4080.6 rad/sec to 4425.7 rad/sec and 399318 rad/sec, in cases A
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and B respectively. Although the damping ratio increases for Mode 2,
its natural frequency decreases. Interestingly, the damped
frequency for both modes decreases. Therefore, resonance occurs at

lower frequencies but at a reduced magnification factor,
1R

|G(iw)| = “1 '(w/ﬁ)n)z]z + (2Lwlon)® . In fact, for case 2 the system
is approximately critically damped, so there would be no resonance
for that mode. Mode 2, interestingly, has a better damped response
in case 1 than in case 2 because of a lower G(iw) and faster decrease
in the amplitude envelope. Al resonance the larger { results in a
lower magnification factor, and the larger {wp product causes the
amplitude to die faster (e-t@,!) . Furthermore, case 1 has a better
separation of resonance frequencies than case 2, but neither has |
better separation than the open loop. Evidently, minimizing ‘e
performance index does not mean that all stability parameturs will
improve. It is possible that controlling mode 1 is having an effect
on mode 2 such that the latter is being destabilized. Nevertheless,
even at resonance the system is displaying reduced motion.

Closed loop cases 1 and 2 demonstrate how weighting can
significantly change results. In the modified example 1 equal
weighting was sufficient to create a significant dfference in the
pole structure, while here in example 2 weights of 106 and 10°
were required to make significant changes. Hence, the guideline for
weighting is the desired pole structure at the end. Furthermore,
varicus combinations of weights can result in similar pole

structures. For exampie, weighting velocity at 106 and controi at
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10-3 yields results similar to weighting velocity at 10%. For a
guideline on weighting remember from example 1 that the velocity
and derivative of order 3/2 in feedback have strong effects on poles,
while the derivatives of lesser order have much less effect.
Therefore, to make a significant change in pole location, one should
weight the velocity or derivative of order 3/2 ; while weighting
position should only make small changes to the pole structure. Since
the centrol vector becomes full state feedback, weighting it has
mixed effects, because it includes all derivatives. However,
example 2 results indicate that the conrol vector effect is
dominated by the higher order derivatives, which allowed weighting
velocity at 106 and control at 10-3 to yield results similar to

weighting velocity at 10°-
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V. nclusion

Quadratic control theory can be used to find an optimal
feedback centrol law at steady state conditions for a structure
incorporating a fractional calculus model of viscoelasticity.
Following linear regulator control theory, it has been shown that
under large time conditions the optimal control law is linear state
feedback, assuming an optimal time-varying gain matrix, K, which is
asymptotically constant for large time, for the minimized
penarmance index. A Riccati equation is created, such that a
fractional derivative system of order 1/n (n an integer) can be
represented by an equivalent first-order system in Riccati equation
solving routines. Therefore, current tools can be used to easily
solve problems of this kind. By expanding the structure's equation of
motion into a fractional state-space system, the control theory can
be applied to structures incorporating both passive and active
damping. This has been illustrated in two example problems.

The theory is limited to optimal gain matrices which are
asymptotically constant for large time. The optimal control , as
determined by linear regulator theory, is asymptotically linear
feedback as time tends to infinity. The evaluation of the Hamilton-
Jacobi-Bellman equation cannot produce a Riccati equation in
general time for a time-varying optimal gain because of coupling of
the gain matrix and the state vector due to fractional derivatives

acting on the control vector. Only when time tends to infinity can
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these derivatives be neglected. Then the optimal gain matrix can be
decoupled from the state vector, and an algebraic Riccati equation
can be identified for time large and for an optimal gain matrix which

is asymptotically constant for large time.
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VI. Recommendation for Further Work

The next step is to test the theory by experiment. Captain
Kevin Klonoski's thesis research (16) has developed a prototype
sensor for fractional derivative motion, and a design useful for
experimentation should be developed. Response of a simple beam
structure should then be predicted using the theory and compared to
experimental results using such a sensor to feed back the fractional
state vectors. This will also require the development of a discrete-
time model and theory, if digital control is to be used. Thus,
verification requires:

1. Design cf a fractional derivative sensor suitable for
experiment instrumentation;

2. Development of a discrete-time version of the theory in
order to apply digital control (if desired);

3. Comparison of the predictions with experimental data for a
simple system.

Further theoretical research could examine the effect of
optimal performance index forms other than that used in linear
regulatory theory. There is evidence that time delay in feedback
loops can cause exponential instability. Hence, further research
could siudy the effect of time-delayed feedback on systems using
this theory.

Another possible area of interest is the investigation of the

effect of this theory on modes over a large range of frequencies. |
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have only worked with the first and second modes and there are
significant differences in results between the two example
problems. Examination of the effect on a larger range of modes and
comparison with physical theory on how those higher modes should
be effected could give insight to the accuracy and utility of this

control model.

87




Appendix A Regularly-Varying Functions

The presentation in this appendix is excerpted with minor
changes from Warhola (26).
"Regularly-varying" functions are those functions, f(t), for

which f(ct)/f(t) approaches a finite non-zero limit as t —» oo ; for

any such function, the limit is necessarily of the form cP as a
function of the parameter c, with . co < p < o (10). In this limit, f

has the asymptotic behavior:

fct)ar cP f(t), t— o0 (A.1)

For such a function, the notation P(f) = p indicates that p is the
"power" of f.

If Eq(A.1) holds with p = 0, the function is "slowly-varying."
To suggest a logarithm, L(t) is used to denote any otherwise

unspecified slowly-varying function. Then

Lct)~ L(t), t o oo (A.2)

Any regularly-varying function f(t) can be expressed in the form

f(t) = L(t) tP (A.3)
For many purposes, L can be treated as if it were a constant, even
though it may converge to zero or civerge to infinity. For exariple,
powers and products of regularly-varying functions are also
regularly-varying, with the obvious exponents. In particular, any
function which approaches a non-zero constant value is slowly-

varying.
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If the siope on a log-log graph of a differentiable function,
f(t), approaches a constant, p, for t — oo,

d(n f(B)d(in 1) = tFE)/Et) — p, t o oo (A.4)

then f is regularly-varying with P(f) = p. Additionally, ' is also
regularly-varying (uniess f is merely slowly-varying), with
P(f') = p-1:

f )~ pftit , pz0, t—o oo (A.5a)

f () =o(ftyt), p=0, t— oo (A.5b)
The exception for p = 0 occurs because when f is approaching a
constant, f may be approaching zero much faster than 1/t.

On the contrary, when f is regularly-varying, its indefinite

integral F is always regularly-varying (10). When F diverges as

t > oo |

t
F(t)=j fr) dt~ LY 2 P> 4, tooo
0 p+1 (A.6)

just as if f were actually a power. When p<-1 , the integral in
Eq (A.8) approaches a constant and the tail of the integral is

regularly-varying:

f fr)dr~ L0 5 Pl <1, to o0
1 lp+1] (A.7)

The result analogous to Eq (A5.b) is
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t{ =o(F) ,p=PH<-1,to00 (A.8)
A useful result is added here for the convolution of two
regularly-varying functions of a certain class. If f(t) and g(t) vanish

for t <0, and are regularly-varying at infinity with powers

P(f) =p >-1 and P(g) = g > -1, then

t
f f(t'T)Q(T)dT”—M— tf{tg(t), p,g >-1,t-o 00
: (p+q+1)! o)
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Appendix B: 4BEAMEVS EXC Listing

This is a listing of the MATRIXx command file (14:7-3 - 7-6)
called 4BEAMEVS.EXC. This file determines the open loop
eigenvalues and eigenvectors for the first mode of a fourth-order
beam equation of motion which incorporates a fractional calculus
model of viscoelasticity of order 1/2, i.e. the fractional derivatives
are of order 1/2.

The file is interactive. The user must supply the assembled
mass, elastic stiffness (Kg), and viscoelastic stiffness (Kj)
matrices, as defined in Chapter IV. The user must also supply an
initial guess of the eigenvalue and eigenvector. The iteration
process is not automated, so the file will asr which of four possible
roots should it follow. Choose one set of signs to follow at a time
until the root converges within an acceptable error. Complete this
four times to get all four eigenvalues and eigenvectors. Answer the
query on which root to follow by RT(element number of proper root).
The vector of roots is called RT, so RT(#) specifies a specific
element.

The eigenvalues and eigenvectors are written to file EV.DAT as
vector EVAL and matrix EVEC. Each column of EVEC is an

eigenvector.

DISPLAY(EIGENVALUE/VECTOR SOLN FOR 4TH ORDER BEAM THEORY")
INQUIRE N 'ENTER NUMBER OF DOF

INQUIRE M 'ENTER ASSEMBLED CONSISTENT MASS MATRIX'

INQUIRE KO 'ENTFR ASSEMBLED K0 MATRIX'

INQUIRE K1 'ENTER ASSEMBLED K1 MATRIX'
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EOK=KO;

E1K=K1;

INQUIRE L1'ENTER INITIAL LAMBDA1 GUESS'
INQUIRE EV1 'ENTER INITIAL EIGENVECTOR1 GUESS'
K2=L1*E1K+EOK;

K2INV=INV(K2);

EV1ERR=1;

WHILE EViERR>5D-8....

LHS=K2INV*M*EV1;...

LHSMAX=LHS(1);...

FOR 1=2:N, IF ABS(LHS(1))>ABS(LHSMAX), LHSMAX=LHS(I);END,END,...

EVT=LHS/LHSMAX,...

EV1ERR=ABS(EVT(1)-EV1(1));...

FOR I=2:N,...

IF EVT()<>EV1(l),...
ERR=ABS(EVT()-EV1(])),...
IF ERR>EV1ERR,EV1ERR=ERR;END....
END....

END,...

IF EVIERR>5D-6, EV1=EVT;END,...
B\D
LHSMAX=LHSMAX
H=1/LHSMAX;
P=[1,0,0,0,H];
RTBASE=ROOTS(P)
FOR J=14,...

L1=RTBASE(J);...

CHOICE=0:...

OLDRLERR=1;...

OLDIMERR=1;...

ITER=1,...

WHILE CHOICE«1,...
K2=L1*E1K+EOK;...
K2INV=INV(K2);...

EV1ERR=1;...
WHILE EV1ERR>5D-6,...
LHS=K2INV*M*EV1;...
LHSMAX=LHS(1);...
FOR I=2:N, IF ABS(LHS(l))>ABS(LHSMAX),
LHSMAX=LHS(l);END,END,...
EVT=LHS/LHSMAX;...
EV1ERR=ABS(EVT(1)-EV1(1));...
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FOR I=2:N,...
IF EVT()<>EV1(l),...
ERR=ABS(EVT()-EV1(I));...
IF ERR>EV1ERR,EV1ERR=ERR;END,...
END,...
END,...
IF EV1IERR>5D-6, EV1=EVT;END,...
END....
LHSMAX=LHSMAX,...
H=1/LHSMAX;...
P=[1,0,0,0,H];...
RT=ROQOTS(P),...
INQUIRE L1TEMP 'WHICH ROOT TO CONTINUE ON BRANCH?',...
ERRTEST=L1TEMP-L1,...
NEWRLERR=REAL(ERRTEST)....
NEWIMERR=IMAG(ERRTEST);...
DRLERR=NEWRLERR-OLDRLERR,...
DIMERR=NEWIMERR-OLDIMERR, ...
INQUIRE CHOICE 'CONTINUE=0 STOP=1",...
OLDRLERR=NEWRLERR;...
OLDIMERR=NEWIMERR:...
L1=L1TEMP,...
ITER=ITER+1,...
END,...
EVAL(J)=L1TEMP,...
FOR I=1:N, EVEC(I,J)=EV1(l),END,...
B\D
PRINT('EV.DAT',EVAL)
PRINT(EV.DAT,EVEC)
RETURN
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Block 18 Abstract

The objective of this thesis is to develop a control law for structures incorporating
both passive damping via viscoelastic matcrials modelled by a fractional calculus
stress—strain law and active damping by applied forces and torques. To achieve this,
quadratic optimal control theory is modified to accomodate systems with fractional h
derivatives in the state vector. Specifically, linear regulator theory is modified,.

The approach requires expanding the structure’s equation of motion into a fractional
state-space system of order 1/n, where n is an integer based on the viscoelastic
damping material constitutive law. This approach restricts the theory to materials
which have rational, fractional derivatives in their constitutive laws. An
equivalent first-order system is then formed and used to derive the optimal control
theory in linear regulator problems. The quadratic performance index used in linear
regulator theory is used, and equations similar to those derived for linear regulator
problems using firsi~order systems are developed. The optimal control law is asymp-
totically linear feedback of the state vector for time large. An equation which
defines the optimal gain matrix for the feedback is derived and is asymptotically
an algebraic Riccati equation for long time and for gain matrices which are
asymptotically constant for large time. Since an algebraic Riccati equation can be
defined, current solving routines can determine the asymptotically constant optimal
gain matrix for large time for the fractional state-space system.

In the general time case, no Riccati equation can be derived because of coupling
between the optimal gain matrix and the state vector due to fractional derivatives
of the control vector. Only when gain matrices are asymptotically constant for
time large and time is large, do they uncouple.

The theory is illustrated by two examples. A simply-supported viscoelastic beam
with controllers illustrates the solution process in Example 1. The beam example
incorporates the fractional calculus viscoelastic behavior in a structure element,
while an axially deforming rod in Example 2 incorporates the behavior through
a viscoelastic shear force applied at a node by a damping pad. The example
equations of motion are numerically solved using the commercially-available
control analysis software package called MATRIXX.




