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AFIT/GE/ENG/89M-7

Abstract

This thesis is an extension of the work performed over the past ten ycars at the

Air Force Institute of Technology (AFIT) towards tracking of airborne targets using

forward looking infiarecd (FLIR) measurements. The research has aimed at replacing

a standard correlation tracker with a hybrid Kalman filter/enhanced correlation

tracker for implementation in a high energy laser weapon.

This research deviates somewhat from past research at AFIT in that the target

trajectory being tracked is modelled as a benign, non-maneuvering, thrusting bal-

listic missile trajectory at large sensor-to-target ranges. In addition, to capture the

characteristic shape of the exhaust plume, the plume is modelled as the difference

between two bivariate Gaussian functions with elliptical equal intensity contours.

As the missile ascends on its thrusting trajectory, the exhaust plume tends to oscil-

late (pogo) along the direction of the velocity vector. In this thesis, a second-order

Gauss-Markov process is used to model the plume's "pogo" oscillation properties.

The ultimate goal of this research effort is to design a multiple model adaptive

filter (MMAF) algorithm composed of elemental filters tuned for varying plume

pogo parameters (frequency and amplitude characteristics). This MMAF accounts

for atmospheric disturbance effects of the propagating infrared wave fronts, as well as

bending/vibrational effects of the optical hardware associated witil the FLIR sensor.

The bank of filters provide the accurate estimation capability to guide the pointing

mechanism of a shared aperture laser/FLIR sensor.

An 8 x 8-pixel tracking field of view (FOV) of the FLIP, sensor provides the

infrared data to the enhanced correlation tracking algorithm. To enhance perfor-

mance of the tracking algorithm, a FOV .-otation scheme is analyzed in ali effort to

maintain accurate tracking of a plume undergoing the pogo phenomenon. A FLIR

xvii



rotation scheme which aligns the diagonal dimension of the 8 x 8-pixel tracking win-

dow with the missile velocity vector demonstrates a 50% performance improvement

over a non-rotating FOV FLIR.

A benchmark of performance involving an eight-state Kalman filter is estab-

lished in order to compare results from various tracking enhancement techniques.

The eight-state filter excludes explicit modelling of the pogo phenomenon, but the

pogo effect is compensated by the addition of pseudo-noise in the filter model. To

implement the MMAF, a. ten-state filter which models the additional two pogo states

is analyzed, and results are compared to the eight-state filter benchmark for perfor-

mance enhancement. The ten-state filter consistently showed an unexpected per-

formance degradation compared to the eight tate filter. Various trouble-shooting

techniques are employed to uncover the so, _e(s) of this degradation. Possible prob-

lems include: (1) a pogo-atmospheric jitter interaction, (2) poor estimation by the

Kalman filter atmospheric jitter model and (3) observability issues of the target dy-

namics model. Recommendations to overcome these shortcomings are proposed in

order to enhance performance of the ten-state filter and eventually implement the

MMAF algorithm.

xviii



ENHANCED TRACKING OF BALLISTIC TARGETS USING

FORWARD LOOKING INFRARED MEASUREMENTS

I. Ltroduction

The laser beam has had an enormous impact on our present society. From

industrial, to medical, to military applications, the laser has received a tremendous

amount of attention and investigation. The laser's ability to transmit energy instan-

taneously onto a target makes it extremely attractive as a potential weapon. With

the recent United States' attention on the Strategic Defense Initiative (SDI), the

laser beam has become a prime candidate as a potential weapon system.

Critical to the deposition of laser energy is the ability to track a potential target

accurately. Precise tracking and laser pointing would enable the beam to concentrate

its energy on a small area of the target. This is essential since the amount of energy

in a laser beam is limited; and without the accurate tracking system, the laser's

destructive effect would be rendered useless. This requirement for accurate tracking

is the motivation for this and previous research efforts.

1.1 Background

The Air Force Weapons Laboratory at Kirtland AFB, New Mexico, is presently

researching high energy laser weapons to be used against airborne vehicles. The

targets are passively tracked by means of a forward looking infrared (FLIR) sensor.

This tracker uses a 300 x 500 array of picture elements (pixels) to sense the target's

radiated infrared (IR ) energy. Each pixel in the array can effectively "see" or

detect the target's radiated IR energy through an angle of 20 micro-radians in two

orthogonal directions. In actual implementation of the tracking algorithm, an 8 x 8
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subset of pixels (a "tracking window") processes the radiated energy. This window

defines the tracker's current field-of-view (FOV ).

The tracking algorithm will process the FLIR data and detect any angular

offset between the target's actual position and the center of the current FOV. The

measured offsets are regulated to zero by a pointing controller, thereby causing the

target's image to be centered in the FLIR FOV. As the image is centered in the

FOV, the laser is automatically pointed at the target, since the inbound IR energy

shares the same aperture as the outbound laser energy.

Presently, a correlation algorithm [20] is being used to accomplish the tracking

functions. This algorithm compares the current FLIR measurement data to the

corresponding data. from the previous sample time. By cross-correlating this data,

the algorithm generates relative position offsets, since a detected translation in the

image is assumed to be a translation of the actual target in the spatial domain.

Because the correlation tracker assumes no prior information concerning the type of

target to be tracked, it performs reasonably well against a variety of targets, but it

does have some inherent weaknesses.

First, in many tracking scenarios, the size, shape, and motion characteristics

of the target may be known or can be estimated adaptively on-line. This available

information, although not required by the correlation tracker, can be used to enhance

the performance of the tracker. Secondly, a time lag is inherent to the correlation

tracker. This lag is a combination of the time required to cross-correlate the present

image with the previous image, and the finite time necessary to point the tracker at

the target. The correlation algorithm provides no means of estirfiating future *arget

positions. Lastly, the traditional correlation algorithm cannot distinguish between

actual target motion and "apparent" target motion caused by identifiable physical

phenomena. These phenomena can include atmospheric "jitter" [12, 16], caused

by distorted wavefronts of the inbound IR energy; bending/vibration of the optical
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hardware or platform [5]; and missile exhaust plume "pogo" effects [10), caused

by pressure variations over the time of flight and over the length of the missile's

hardbody. These weaknesses in the correlation algorithm motivate the incorporation

of Kalman filtering techniques [7) into the tracking system [16).

The target dynamics, atmospheric jitter, optical bending/vibration, and plume

pogo effects can be modeled and included in the Kalman filter dynamics model. By

assuming that the measurements from the FLIR image plane are a, composite sum

of these effects and additional noise disturbances, an estimate of the target's actual

position can be obtained. By developing an appropriate target dynamics model,

this estimate can be propagated forward in time to establish an estimate of target

position in the future. The Kalman filter used in this research will model target

dynamics, atmospheric jitter, and plume pogo effects (see Section 1.3.4) by explicit

states. The'filter will not model the bending/vibration phenomenon via explicit

filter states, but this effect will be included in the real-world truth model. Tuning

of the filter to this truth model will compensate for the reduced-order structure of

the filter model.

1.2 Summary of Previous AFIT Research

Over the past nine years, the stafr and students at the Air Force Institute of

Technology (AFIT) have produced numerous theses and research papers investigat-

ing the potential use of Kalman filtering techniques with the Air Force Weapons

Laboratory's high energy laser pointing and tracking system. An overview of this

work has been presented in previous AFIT thesis research [2, 3, 4, 5, 6, 16, 17, 18,

19, 21, 22, 23, 24], as well as publications [11, 12, 13, 14, 25]. That overview will be

reproduced in this section with some modification.

In 1978, Mercier [16] began the study by demonstrating that the Extended

Kalman filter (EKF ) algorithm could significantly outperform the traditional cor-

relation tracker at design conditions. The target models used in this study were
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long-range targets represented as infrared point sources of radiated energy. The tar-

get's FLIR plane image was assumed to have a bivariate Gaussian distribution with

circular, equal-intensity contours. The filter model consisted of four states - two

states representing position of benign target dynamics in each of two FLIR plane

coordinate directions and two states representing atmospheric jitter in the same

two directions. The position and jitter states were each modelled via a first-order,

zero-mean, Gauss-Markov (GM ) process. FUR measurement noise, corresponding

to both background clutter effects and internal FLIR noises such as thermal noise

and dark current, was considered to be both temporally and spatially uncorrelated.

This enhanced correlation algorithm provided an order of magnitude performance

improvement over the traditional correlation algorithm when the filter was correctly

informed about the tracking environment characteristics. These desirable results led

to further research in the area of enhancing the original tracking algorithm.

To accommodate tracking of more maneuverable targets, Harnly and Jensen [3]

incorporated velocity and acceleration estimates into the filter structure. They also

modelled the FLIR, plane image with elliptical equal- intensity contours versus circu-

lar contours to account for target shape effects, as well as adaptively estimating the

target's shape function. Additionally, a spatially correlated Gaussian measurement

noise model was incorporated to represent the correlation distance characteristics of

typical background clutter. Finally, they implemented an algorithm to estimate the

strength of the Kalman filter's driving noise adaptively as the target performed a.

maneuver.

The research thus far assumed that the shape of the FLIR plane image was

known a priori and could be modelled via a bivariate Gaussian distribution. Re-

search by Singletery [22] and Rogers [21] implemented algorithms which made no

such target shape assumptions, but instead produced an estimate of the target's

shape via a finite-memory averaging technique which avoids the problem of large

memory requirements by using exponential smoothing as an approximation to true
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finite-memory averaging. Tracking scenarios which modelled the targets as having

multiple hot-spots and several dynamic angular orientations were used in evaluating

the algorithms.

Rogers additionally developed an enhanced correlation tracker algorithm which

generated "pseudo-measurements" as its output. This algorithm was "enhanced"

over the traditional correlator because it compared the current FLIR image with a

template instead of the previous image. The template was actually the target shape

function estimate described in the preceding paragraph. The pseudo-measurements

were position offsets between the target image and the center of the FOV in two

orthogonal directions on the FLIR plane. The offsets were then fed into a linear

Kalman filter for processing. Since the filter's dynamics model and measurement

model were now linear, an extended Kalman filter was no longer required. This

model was extremely attractive from a computational loading standpoint, since a

linear Kalman filter requires much less computer resource allocation than the EKF.

The enhanced correlation tracker was additionally attractive since the performance

was comparable to the previously used EKF tracking algorithm in many applications.

Kozemchak [4] and Millner [17] continued the research by testing the EKF

algorithm and the linear Kalman filter/enhanced correlation algorithm developed

by Rogers with close range, highly maneuverable targets. This research modelled

the target dynamics using a first-order Gauss-Markov acceleration process, as well

as a constant turn-rate dynamics model. In an effort to maintain lock on harshly

maneuvering targets, adaptive estimation of the filter's driving noise strength was

again implemented. Performance was good for targets with limited maneuvering ca-

pabilities; but when the maneuver exceeded five g's, the filter performance degraded

considerably. Ad hoc adaptive compensation techniques were considered, but not

thoroughly evaluated.

To overcome this high maneuverability limitation, Flynn [2] investigated mul-

tiple model adaptive filtering (MMAF) techniques in the algorithm. See Figure 2.1
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in Chapter 2 where the theory of multiple model adaptive filtering is discussed.

Suizu [23] followed up the research by Flynn and successfully implemented the

MMAF into the algorithm. Th. sIMAF contained a bank of two elemental filters,

each tuned for different target maneuvers. One filter was tuned for benign target

dynamics and processed measurements from an 8 x 8 pixel FOV. The second filter

was tuned for a highly maneuverable target and processed measurements based on

a 24 x 24 pixel FOV. The field of view was expanded in the second filter as added

insurance in maintaining lock on the harshly maneuvering target. Based upon prob-

abilistic weightings of Bayesian MMAF theory [8:129-136], the tracker performed

extremely well, tracking targets whose dynamics ranged from benign maneuvers to

20-g pull-up maneuvers at 20 kilometers. The elemental filters used in the bank were

implemented using both the EKF and linear Kalman filter/enhanced correlator with

similar results.

Loving [6] continued the MMAF research, adding a third elemental filter to

the bank. This additional filter processed measurements from an 8 x 8 FOV array

and was tuned for intermediate levels of target maneuverability. The three-bank

MMAF showed significant performance over the previously used filters. Additionally,

she developed a Maximum a posteriori (MAP) MMAF algorithm for comparison

to the Bayesian MMAF. The MAP algorithm uses the same elemental filters as

the Bayesian approach; but the MAP filter outputs the estimates of the individual

elemental filter with the highest probability weighting, as opposed to the sum of

probabilistic weighted estimates which are output by the Bayesian MMAF. Both

MMAF techniques performed favorably against a variety of target maneuvers, while

no significant performance differences were noted between the Bayesian and MAP

comparisons.

Follow-on research by Netzer [18] expanded Loving's analysis with the three-

elemental-filter Bayesian MMAF. The existence of steady state bias errors when

tracking a target that executed a 20-g turn led to the investigation of multiple m, del
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adaptive filtering based on some elemental filters being tuned for dynamics predom-

inantly in the azimuth or the elevation directions. Using this technique, maneuvers

in the x-direction can be distinguished from maneuvers in the y-direction, there-

fore permitting the tracker to expand its FOV in the critical direction and maintain

lock on a maneuvering target while maintaining accurate tracking estimates in the

non-critical direction. In addition, since the zero-mean, Gauss-Markov acceleration

process might not adequately describe target dynamics for all situations, Netzer sug-

gested using a constant turn rate (CTR) model [15] at close ranges. Although this

model was investigated previously by Kozemchak [4], it was never implemented with

the enhanced correlation algorithm developed by Rogers [21].

Tobin [24] continued with the recommendations by Netzer, specifically imple-

menting the constant turn rate dynamics model into the elemental filters of the

MMAF bank. His results showed that the CTR model exhibited smaller steady

state standard deviation errors, while the GM MMAF showed smaller bias errors,

but that they both possessed very comparable rms errors. Tobin also investigated the

inclusion of two rectangular FOV elemental filters in the MMAF bank, tuned specif-

ically for maneuvers in the x- and y-directions. Results indicated that the tracker

maintained lock on the target during a "jink" in the y-direction while maintaining

substantially better tracking performance in the x-direction than attainable with an

MMAF without any elemental filters tuned for specific directionality of maneuvers.

Leeney [5] continued with the research effort by applying the MMAF algo-

rithm based on Gauss-Markov acceleration models to a truth model where the bend-

ing/vibrational effects of a large space structure were modelled. Even though the

filter was not provided with the bending/vibrational information, nor were any states

augmented to compensate for this effect, the MMAF tracker was able to track a tar-

get exhibiting a 10-g maneuver, provided that the level of bending/vibration is on

the order of that expected. Leeney also investigated performance enhancement by

implementing a 50 Hertz (Hz) sampling rate versus the previously used 30 Hz sample
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rate. A slight increase in performance was achieved (average 6% decrease in mean

error and variance in both FLIR directions), but a large computer loading penalty

was incurred. Additionally, Leeney did a preliminary investigation on a rotating rect-

angular field-of-view (RRFOV ) filter so as to align the "elongated" side with the

estimate of the accelei ation vector. The intent was to replace the five-elemental-filter

MMAF with a four-elemental-filter MMAF. Preliminary results warranted further

investigation of the RRFOV filter.

Most recently, Norton [191 continued the investigation of the RRFOV. The

choice of a larger filter dynamics driving noise strength ("Q") in the direction of a

maneuver proved more important for improved filter performance than field-of-view

size. Thus, by maintaining an o x 8 pixel rotating FOV (versus a rectangular rotat-

ing FOV) and employing a large filter "Q" value in the direction of the maneuver,

he was able to improve the filter performance. He investigated a scheme to trans-

form the "Q" matrix mathematically so that the larger entry stays aligned with the

acceleration vector, as well as a scheme to simulate a physical rotation of the FLIR

plane to keep one axis coincident with the acceleration vector. Separate elemental

filters were tuned for varying target dynamics and eventually incorporated into a

MMAF bank. Performance characteristics were encouraging enough to adapt this

methodology to the current research area.

1.3 Objectives

Previous AFIT research has concentrated on the tracking of airborne targets

using FLIR measurements and Kalman filtering techniques. The purpose of this

thesis is to continue with this philosophy, but to apply the previous knowledge to

the tracking of a ballistic missile target during its boost phase through the atmo-

sphere. Since the linear Kalman filter/enhanced correlator algorithm has proven

computationally more beneficial (with comparable performance results) than the

EKF operating directly on raw FLIR data, it will be the algorithm of choice for this
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thesis effort. Specific objectives and solution methods are outlined below.

1.3.1 Exhaust Plume Pogo Effects. During the thrusting phase of a ballistic

missile trajectory, the exhaust plume that is generated inherently "pogos" or oscil-

lates along the longitudinal axis of the missile hardbody. This pogoing will sometimes

occlude the missile hardbody, causing a traditional correlation tracker operating on

FLIR sensor input (that tracks the plume versus the missile) to provide poor esti-

mates of hardbody location. The FLIR-based tracker will always track the highest

intensity of the plume if a simple correlation tracker with no filter is used. The inter-

nal filter dynamics model is the means by which separation of hardbody dynamics

from plume oscillations can be accomplished. A key element of this thesis will be to

model the dynamics of the plume, via a second order Gauss-Markov process [7], in

the truth model and eventually in the filter model as well.

1.3.2 Implementation of a Rotating Field-of-View. Based upon the investi-

gations by Norton [19], the concept of the mathematical transformation (rotation)

of the "Q" matrix will be applied to the ballistic missile target. The states repre-

senting the plume pogo will be aligned along the estimated velocity vector of the

hardbody; thus the previously mentioned transformation will be used to determine

the components of pogo in the azimuth and elevation directions on the FLIR sensor

plane. Also, since the missile's hardbody will be modelled as having identical dy-

namic characteristics in each of the two directions on the FLIR plane, the direct pre-

and post-multiplication of the "Q" matrix by the appropriate transformation matrix

need not be employed as was done by Norton [19]. Three "physical" rotation schemes

involving the FLIR image plane will be considered. The first scheme involves using

an 8 x 8 FOV filter and aligning a single axis of the FLIR plane with the estimated

velocity vector of the missile. By aligning one of the FLIR axes with the velocity

vector, the FOV will stay oriented with the oscillation of the plume. This scheme will

be referred to as the rotating field-of-view (RFOV) filter. The next rotation scheme
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will be referred to as the diagonal field-of-view (DFOV ) filter, where the diagonal

of the 8 x 8 tracking window will be aligned with the estimate of the velocity vector.

The motivation behind this scheme is that the "tracking window" oriented in such a

fashion will be able to "see" more of the target's intensity image, thus enabling the

sensor to obtain more measurement data. The final tracking scheme to be analyzed

will be the rectangular rotating field-of-view (RRFOV) filter as initially addressed

by Tobin [24] and Leeney [5]. This will be studied to confirm that pixel size is not

as important as tuning considerations in filter performance.

1.3.3 Single Filter Benchmarks. To establish single filter benchmarks of per-

formance, the truth model will include the modelling of the pogo effect while the

pogo effect will be absent from the filters. A nominal damping ratio representing an

underdamped response will be used in the truth model representation of the plume

pogo. Since the amplitude and the undamped natural frequency of the pogo oscil-

lation will most likely be the dominant parameters in filter performance [101, nine

single filters will be analyzed for a range of predetermined values for the pogo pa-

rameters. Each of the different rotation schemes mentioned in Section 1.3.2 will be

addressed.

1.3.4j Single Filter Performance. The purpose of this section is to improve

the performance of the single filter benchmarks by adding the pogo models to the

filter structure. This will increase the dimension of the filter but will give insights

into anticipated performance improvements by informing the filter of the pogo phe-

nomenon.

1.3.5 Single Filter Robustness Analysis. The purpose of this objective is to

determine the robustness of the best performing rotating filters from the previous

section. The tuned rotating filters from Section 1.3.4 will be tested against a truth

model where the values of pogo parameters are mismatched with corresponding
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pogo parameters in each filter. This study will provide insight into which of tile

pogo parameters affects filter performance sufficiently to warrant on-line adaptive

estimation, as well as explore the possible applicability of MMAF techniques for

accomplishing the adaptation.

1.3.6 Multiple Model Adaptive Filtering Benchmarks. Similar to the single

filter benchmarks performed in Section 1.3.3, an MMAF benchmark will be estab-

lished in which the pogo effects are modelled only in the truth model and not the

elemental filters of the MIMAF bank. The MMAF will be tested against seven dif-

ferent scenarios (involving pogo paraineter variations), and the performance results

compared to tbe results of the single filter performance.

1.3.7 Multiple Model Adaptive Filtering Performance. The pogo effect is

modelled in both the truth model scenarios and the individual elemental filters of

the MMAP. The elemental filters used in the bank will be from Section 1.3.4, and

the seven scenarios run in Section 1.3.6 will be repeated. Since each of the elemental

filters in the bank is made aware of the pogo phenomenon (with the exception of

one elemental filter, to be discussed in Chapter V), this MMAF should outperform

all preceding filters.

1.4 Overview of the Thesis.

This chapter has presented a review of the research efforts performed to date

in developing an implementable tracking algorithm, and it has also defined the areas

to be pursued in this thesis effort. Chapter II introduces the concept of multiple

model adaptive filtering which is required for a better understanding of the tracking

algorithm. Chapter III develops the dynamics and measurement models used to sim-

ulate the real-world environment to evaluate the tracking algorithm's performance.

The dynamics and measurement models embedded into the Kalman filter structure

are developed in Chapter IV. Chapter V discusses the tracking algorithms used to

1-11



incorporate the concepts of Chapters II and IV. Methods for evaluating the tracker's

performance are also presented in Chapter V. The results of the Monte Carlo simu-

lations are analyzed in Chapter VI, while Chapter VII presents the final conclusions

of this research effort and provides recommendations for further study.
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II. Filter Theory

The basic purpose of this chapter is to present the mathematical forms and al-

gorithmic structure of the multiple model adaptive filter (MMAF) and the extended

Kalman filter (EKF). This review is necessary for understanding the development

and analysis of the tracking algorithm presented in this thesis. Rigorous mathemat-

ical developments for the MMAF technique and the EKF can be found in references

(8:129-136] and [8:39-59, respectively. It is assumed that the reader already has a

basic understanding of linear Kalman filtering techniques [7].

2.1 Bayesian Multiple Model Adaptive Filtering

When dealing with Kalman filter tracking applications, maximum performance

is achieved when the parameters of the filter dynamics model match the parameters

of the actual target being tracked. In many real world applications, the parameters

of interest may be time-varying, and the designer may not have a priori knowledge

of the optimal parameter values for a given scenario. Thus, to achieve good filter

performance, on-line adaptability is essential. One means of providing this on-line

adaptability is by multiple model adaptive filtering as presented in references [5, 6,

8, 18, 19, 23, 24]. For physical problems in which parameters can assume values in

a continuous range, it becomes necessary to discretize the parameter space to keep

the algorithm computationally tractable. Consider a target which can display E

different discrete sets of target dynamics. No one single vector value of parameters,

a, is adequate to describe all of the different dynamic scenarios. To achieve maximum

performance, it is desired to match the kth possible parameter vector, ak, where k =

1,2,3,..., E, to the kth target dynamics characteristic. Multiple model adaptive

filtering is one way to accomplish this objective.

2-1



As developed in [8], consider a system model represented by the following

first-order, linear, stochastic differential equation:

5c(t) = F(a)x(t) + B(a)u(t) + G(a)w(t) (2.1)

with noise corrupted, discrete-time measurements given by:

z(ti) = H(a)x(tL) + v(ij) (2.2)

where:
x(t) = n-dimensional system state vector

u(t) = r-dimensional deterministic control vector

w(t) = s-dimensional white Gaussian, zero-mean

noise vector process of strength Q(a)

z(ti) = m-dimensional measurement vector

v(ti) = rn-dimensional discrete-time white Gaussian,

noise vector process of covariance R(a)

F(a) = n x n system plant matrix

B(a) = n x r input distribution matrix

G(a) = n x s noise distribution matrix

H(a) = m x n matrix relating measurements to states.

As mentioned previously, it is necessary to discretize a into a set of K finite vector

values, a,, a2 , ... , a,. As depicted in Figure 2.1 [8], the MMAF consists of a bank

of elemental Kalman filters, each of which is tuned for a specific dynamic scenario

represented by the appropriate vector, ak, where k = 1, 2, 3, ... , K. Each of the K

elemental Kalman filters produces a state estimate which is weighted appropriately

using the hypothesis conditional probability pk(t,) to produce the state estimate

Rnmaf(ti) as a probabilistically weighted sum, where:

fz(t,)Ia,Z(ti,1)(z;Iak, Zi- 1 )Pk(t- 1)

fZ(t,)l,Z(,_,)(z-2 aj, Zj-i)pj(t;-1)
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Figure 2.1. Multiple Model Filtering Algorithm
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.f7(t,)I,z(i,_1)(Ziak, Zi..1) =xp .1XP{}(.4

(27r)m/ 21Ak(ti)l/(

{*}r ={.r(ti)A 1 (tj)rj(ti)} (2.5)225

Ak(ti) = kth filter's computed residual covariance

= Hk(ti)Pk(ti'-)H T(t,) + Rk(ti) (2.6)

rk(ti) = kth filter's residual

= [z(ti) - Hk(t)4(tT)] (2.7)

and

ak = parameter value assumed in the kth filter

Pk(t') = kth filter's computed state error covariance

before incorporating the measurement at time ti

Z(ti_1) = measurement history up to time ti-1.

This hypothesis conditional probability identifies which of the elemental filters

has the greatest probability of providing the best performance at a given time. As

can be seen from Equation (2.3), pk(ti) is the ratio of a numerator product and a

denominator of a sum of such products. The numerator is the kth filter's product

of its previous hypothesis probability and the conditional probability density of the

current measurement given the kth filter's assumed parameter value and the previous

measurement history. The denominator is the sum of the same products for all K

elemental filters in the MMAF bank. When the kth filter is the best match for

the current target dynamics, that filter will produce the smallest squared residual

elative to the filter-computed residual covariance of the K filters. This will cause

Equation (2.5) to become a smaller magnitude negative quantity and Equation (2.4)

to be larger for the kth filter than for the other K - 1 filters. The ratio in Equation

(2.3) will now be the largest value for the kth filter, i.e., the filter that best matches

the current target dynamics. It is essential that the residuals of the "best-matched"

filter be distinguishable from those of the mismatched filters. If this distinction is not

2-4



obtainable, large probabilities can be assigned to incorrect models, resulting in poor

performance in the MMAF algorithm. To overcome the possibility of such degraded

performance, each of the elemental filters should be tuned for best performance

against a specific target scenario to match its own internal dynamics model [5, 18].

Additionally, to prevent masking the distinction between good and bad models, the

common practice of adding excessive amou,.ts of pseudonoise to compensate for

model inadequacies should be minimized. This is an important point, since if the

residuals are constantly of the same magnitude, then Equations (2.3) and (2.5) will

result in large pk values associated with the filter with the smallest lAkI. Because

IAkJ is independent of the residuals and the "correctness" of the K models, such a

result would be totally in error [8].

As can be seen in Figure 2.1, each of the K filters processes its own estimates

and residuals in parallel. Each filter can also generate its own numerator term out of

Equation (2.3). The recursion is then run at each sample time and a. Pk(ti) assigned

for each filter. The output of the recursion is the estimate, xmna(tt), which is the

probabilistically weighted average of the elemental filters' estimates [5:19]:

*rnraf(tI)= Z Pk(t (2.8)
k=i

The conditional covariance matrix for the MMAF is computed as follows [5]:

K

Pmma(tt) = p(t4)[Pk(t + ) + Sk (tt)SkT (t+)] (2.9)
k=1

where:

k(t = R(t) - -ma(tt)

Pk = kth filter's conditional hypothesis probability

Pk(t+) = kth filter's state error covariance matrix after

incorporating the measurement at time ti.

Since the values of pk(t,) and kmmaj(t+) depend upon the discrete measurements

taken through time t,, Pmma(t + ) cannot be computed a priori as is the case for
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each of the elemental linear Kalman filters. Note that Equation (2.9) need not be

calculated for an on-line implementation of the MMAF.

Finally, the calculated probabilities of Equation (2.3) should involve an arti-

ficial lower bound [5, 8, 18]. This lower bound will prevent a mismatched filter's

hypothesis conditional probability from converging to zero. If a filter's Pk should

reach zero, it will remain zero for all time since it is a function of the previous con-

ditional probability, as depicted in Equation (2.3). This "zeroing" of the hypothesis

conditional probability effectively removes that filter from the bank, and can degrade

the MMAF', ability to respond to future changes in the true future parameter values.

If some future target dynamic scenario matched the model for which the probabil-

ity was permitted to reach zero, that elemental filter would not be appropria~tely

weighted, and the MMAF estimate would be in error. In previous work, Loving [6]

established a lower bound of .001 for pk(ti). The use of this lower bound value will

be continued in this study.

2.2 The Extended Kalman Filter

An extended Kalman filter (EKF) provides the means by which the states

of a nonlinear stochastic system can be estimated. Paralleling the linear Kalman

filter, the EKF is composed of a sequence of propagation and update cycles. The

extended Kalman filter is a first-order nonlinear filter. The nonlinear dynamics and

measurement equations are expanded in a Taylor series about the most recent value

of the state estimate [8]. The series is then truncated at first order terms, resulting

in the EKF formulation. Since the Taylor series expansion is truncated to first-order

terms, the EKF does not produce an optimal state estimate as is the case with the

linear Kalman filter [7:231-236]. A complete development of the EKF algorithm can

be found in reference [8]. The results of that development are now presented.
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Consider a system described by the following nonlinear stochastic differential

equation:

k(t) = f[x(t), u(t), t] + G(t)w(t) (2.10)

where:
x(/) = n-dimcnsional state vector

u(t) = r-dimensional vector of known control inputs

t = time

w(t) = zero-mean, white Gaussian s-vector process of

strength Q(t); independent of x(to)

G(t) = n x s noise distribution matLix.

Furthermore, assume that sampled-data measurements are available at discrete time

increments and are modeled by the following nonlinear vector function:

z(ti) = h[x(ti),tj] + v(ti) (2.11)

%%,here:
z(ti) = ni-dimensional measurement vector

v(ti) = zero-mean, white Gaussian m-vector process with

covariance R(ti); independent of both x(to)

and w(t) for all time.

The extended Kalman filter update cycle incorporates the measurement z(ti) by:

K(ti) = P(t7 )HT{HP(tT)HT + R(ti)) -1  (2.12)

-(t
+ ) = Sc(tF') + K(ti){zl - h[k(ti-), i]} (2.13)

P(tt) = P(t-) - K(ti)HP(t-) (2.14)
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where:
P(ti) = 77 x n filter covariance matrix

(t7) = instant immediately before measurements are

incorporated at time t;

(it) = instant immediately after measurements are

incorporated at time tj

H = H[Sc(17)I t] Oh[x, tI (2.15)
HX IX=*(t)

The extended Kalman filter propagation cycle propagates the state estimate

and state error covariance matrix forward to time ti+j by integrating the following

equations from t, to t,+,, using the results of the update cycle as the initial conditions:

:(t/tj) = fr[R(t/ti), u(t), ti] (2.16)

P(t/tj) = FP(t/t) + P(t/ti)FT + G(t)Q(t)GT(t) (2.17)

where:
(t/li) = estimate at Lime I given measurements through

time ti

F = fk(t/tj),~ t 'Of[xut] (2.18)
Ox x=k(,/t,)

Note that, for the case of linear vector functions f[x(t), u(t),t] and h[x(t), ti],

the above propagation/update cycles reduce to the standard linear Kalman filter

propagation/update cycles. Since the linear system model is totally representative

of the first-order terms of a Taylor series expansion, the EKF propagation/update

equations reduce to the linear Kalman filter algorithm [7].

2.3 Summary

This chapter has introduced the concepts of multiple model adaptive filtering

and the extended Kalman filter. The intent was to provide some basic insight into
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the formulation and applicability of both techiniques. A more detailed dlevelopment

can be found in reference [8]. This chapter provides a. basic understanding of thle

theory to b~e ap~plied to the ensuing tracking algorithim and filter imflllcerntztion.
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III. Truth Model

3.1 Introduction

A "truth model" is an accurate simulation of "real world" effects. The truth

model depicts, as best as possible, the dynamic activity of interest of a specified sys-

tem. It is the standard used to determine the filter's errors and overall performance.

More states are generally required to describe the truth model than the model upon

which the Kalman filter is based. The less dominant states are normally omitted

from the filter structure to accommodate on-line implementation on an operational

computer system. One accounts for the decreased filter order by injecting white,

Gaussian noise into the model upon which the Kalman filter is based.

For this thesis, the dynamics of the target's image on the FLIR detector plane

are a result of true target motion, atmospheric jitter due to distorted infrared wave-

fronts, bending/vibration of the optical hardware, and pogo effects of the exhaust

plume's oscillatory nature. If x, and yc represent the distances, measured in pixels,

of the apparent image intensity centroid from the center of the FOV in the x and y

FLIR plane directions, respectively, then

Xc = Xt +Xa +Xb + XpcOSOT (3.1)

Yc = Yt + Y + Yb - Xp sinOT (3.2)

where:
Xi = component of xc due to actual target dynamics in the

XFLIR direction, measured in pixels

x, = component of xc due to atmospheric jitter in the

XFLIR direction, measured in pixels
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Xb = component of x, due to bending/vibration in the

XFLIJ direction, measured in pixels

xp = component of x, due to plume pogo along the

missile velocity direction, measured in pixels

OT = True target orientation angle (see Section 3.3)

Yt = component of yc due to actual target dynamics in the

YFLIR direction, measured in pixels

ya = component of yc due to atmospheric jitter in the

YFLIR direction, measured in pixels

Yb = component of y, due to bending/vibration in the

YFLIR direction, measured in pixels

Note that Equation (3.2) has a minus sign before the resolved pogo component. This

is because of the defined orientations of the Target and FLIR coordinate frames (see

Section 3.4.1). It will be shown that, in order to model XjXa,)Xb, Xp, Yt,Ya, and Yb

adequately, fourteen stochastic Jifferential equations are necessary. Of the seven

output states, xt and y, each require first-order differential equations; x, and y, each

require third-order; and xb, Yb and xp each require second-order. These differential

equations, when arrayed in state-space format, comprise the dynamics portion of

the FLIR tracker truth model used in this study. Section 3.2 presents this dynamics

model as the augmentation of the deterministic target trajectory component (Sec-

tion 3.2.1), the atmospheric jitter component (Section 3.2.2), the bending/vibration

component (Section 3.2.3), and the plume pogo component (Section 3.2.4).

Following the presentation of the dynamics model, the measurement portion

of the FLIR tracker truth model is presented in Section 3.3. Then, to implement

the simulation on a digital computer, a "simulation space" model is presented in

Section 3.4.
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3.2 Dynamics Model

The overall fourteen-state dynamics model is the augmentation of a two-state,

deterministic target dynamics model, a six-state, stochastic atmospheric jitter model,

a four-state stochastic bending/vibration model, and a two-state, stochastic plhnnC

pogo model. This augmented system is described by the following lincar, stochastic

differential equation:

XT(t) - FTXT(t) + BTUT(L) + W7 () (3.3)

where:
FT = 14X14 time-invariant truth model plant matrix

XT(I) = 14-dimensional truth model state vector

BT = 14x2 time-invariant truth model distribution matrix

UT() = 2-dimensional deterministic input vector

WT(t) = 14-dimensional, zero-mean, white, Gaussian noise vector

process with autocorrelation function:

E[WT(t)WT(t ± r)] = QTS(T). (3.4)

The equivalent discrete-time solution [7] to Equation (3.3) is given by:

XT(ti+l) = -- T(4+1, ti)XT(t,) + BTdUTd(ti) + W7'd(ti) (3.5)

where the state transition matrix PT(t,+ ,ti) is given from solving the differential

equation [7:40-41]:
d iT(t,ti) = FT4T(t, ti) (3.6)dt

with the initial condition: 4IT (ti, ti) =I .

and
XT(ti) = 12-dimensional discrete-time truth model state vector

UTd(ti) = 2-dimensional discrete-time input vector

WTd(ti) = 12-dimensional discrete-time, zero-mean, white Gaussian noise

with covariance:

QTd - j ' T(ti+,r)QT T(t +I, r)dT. (3.7)
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where QT is defined in Equation (3.4). The discretc-time input distribution is defined

as:

BTd = 4T(4+l, r)BTdT (3.8)

The internal structure of the discrete-time truth model consists of two target

dynamic states (one for each FLIR plane direction), six atmospheric jitter states

(three for each direction), four mechanical bending states (two for each direction),

and two plume pogo states (oriented along the target's velocity vector). In aug-

mented form, the truth model state vector is given by:

xt

XT = (3.9)

Xb

Xp

The discrete-time truth model state transition matrix is given as:

t(2 X I 0 (2x2) O(2x4) 0(2x2)

0(6x2) 4 )"(6X6) I 0(6x4) O(2X2)

I-T =. .. . . . .. ... . ( 3 .1 0 )

0(4 X2 ) I o(4 x6 ) 'b(4 x I O(2X2)

0(2x2) I 0(2x6) I O(2x4) I 4P(2X2)
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and the discrete-time truth model distribution matrix is given by:

Bdt(,x 2)

0(6x2)

B1d (3.11)

0(4x2)

0(2x2)

and the discrete-time truth model white Gaussian noise process is given by:

0(2xI)

Wda( 6 x,)

WTd - (3.12)

Wdb( 4 x1)

Wdp( 2x])

where:
xt = 2-dimensional target dynamics state vector

xa = 6-dimensional atmospheric jitter state vector

Xb = 4-dimensional bending/vibration state vector

xp = 2-dimensional plume pogo state vector

Wda(t,) = 6-dimensional discrete-time, white Gaussian noise related to

atmospheric states

Wdb(ti) = 4-dimensional discrete-time, white Gaussian noise related to

bending states

Wd,(ti) = 2-dimensional discrete-time, white Gaussian noise related to

pogo states.
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From Equations (3.5) and (3.9) to (3.12), it can be seen that the truth model is

in a block diagonal form, permitting the models for target dynamics, atmospheric

jitter, bending/vibration, and plume pogo to be evaluated separately. The following

subsections provide the details of those individual evaluations.

3.2.1 Thc Taiyct States. The deterministic target dynamics of the ballistic

missile are modelled as they occur on the FLIR image plane. In order to understand

how the target states are propagated forward in time, the a - /3 plane must bC

introduced.

The a - /# (FLIR image plane) coincides with the array of infrared sensing

l)ixels. The FLIR plane is perpendicular to the sensor-to-target line-of-sight (LOS

vector, and bounded by a finite field-of-view (FOV). If the sensor-to-targct range is

large, then the FLIR "pseudo" azimuth (a') and the FLIR "pseudo" elevation (/3')

angles are directly proportional to the linear translational coordinates xt and Yt on

the FUR plane. Note that the "pseudo" angles are referenced from the current LOS

vector, while the true azimuth (a) and elevation (/3) angles are referenced from true

north and the horizon, respectively [24]. Figure 3.1 illustrates the relevant geometry.

Therefore, if o' and 03' are measured in micro-radians, and x, and yg are measured

in pixels, then the pixel proportionality constant (lip), used in Equations (3.13) and

(3.14), is the angular FOV of a single pixel.

The pixel proportionality constant used in this research is on the order of

15 micro-radians/pixel versus the 20 micro-radian/pixel kP used in previous stud-

ies. The reason for the reduction is that, in considering the bending/vibration of a

spaceborne optical platform, the sensor-to-target range used in this study is approx-

imately two orders of magnitude greater (see Figure 3.2) than previous work. This

increase in range requires a finer resolution FLIR so that the 8 x 8 tracking window

is able to "see" the plume's IR image.

Assuming that &' and/3' remain constant over the At second sample period,
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then:

= XI(ti) + (&')(At) (3.13)

yt(ti+I) = yt(ti) + kA (3.14)

Arranging the above equations in state space form yields:

r ,(t 1+) -+ 0 r t)
yt(ti+i) 0 1 y (ti) 0I [ I [ X(ti) [ + ktAIm (.

where:

6(t,) = "af, measured in micro-radians/second and constant over the

time interval [t;, tj+j]

= !--, measured in micro-radians/second and constant over the

time interval [ti, ti+1]

At = sample time interval, ti+l - tj

kp = pixel proportionality constant, 15 micro-radians/pixel.

Using these relationships in the block form of the overall truth model, by inspection

of Equation (3.10), the upper left hand block is:

t2,2 = [ ](3.16)
0 1

and the upper block of Equation (3.11) is:

Bdt2X2 -- kp 3.7
[ -A

and the input vector in Equation (3.5) is given by:

UTd(ti) = (3.18)
3- (t
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The minus sign in Equation (3.17) is due to the difference in the y axis orientations

between the FLIR plane coordinate frame and the inertial coordinate frame (Fig-

ure 3.1). This is inherent to the simulation and provides the correct directions for

the truth model and filter model position states.

The truth model missile trajectory used in the simulation is a point mass

influenced by a thrust force and a gravitational force, described by the followill-g

inverse square-law force field equation in Reference [1]:

FG= GM ?2  (3.19)

where:
FG = force of attraction between the missile and the Earth

G = universal gravitational constant

7nI, M2 = mass of the Earth and missile, respectively

r = distance between the Earth's center and the missile centcr

of gravity

For the purposes of this study, all other external forces acting on the missile (atmo-

spheric drag, deterministic solar effects, etc.) are assumed negligible; and the missile

is assumed to have constant mass over the simulation interval of ten seconds. To

obtain an expression for the missile acceleration, Newton's second law is used:

F = ma (3.20)

where:

F = external force(s) acting on a body (missile)

n = constant mass of the missile

a = inertial acceleration of the missile.

From the derived inertial acceleration, the components of the missile's inertial ve-

locity and position are obtained via integration. The deterministic inertial position
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and velocity components are used to project the velocity onto the FLIR image plane

(see Section 3.4.4), and the resulting FLIR plane position coordinates from the truth

model propagation cycle represent the first two states in the truth model state vector

of Equation (3.9). Note that the thrust and mass parameters used to describe the

simulated ballistic missile are based upon Atlas missile specifications as given by

reference [1].

This truth model deterministic trajectory could have been contained in "look-

up" tables, where the exact coordinates of the missile's position are stored for ever3

time increment of the simulation. There are two advantages to representing the

deterministic truth model in the form of Equation (3.15). First, Equation (3.15) can

be substituted back into Equation (3.5) to form a single augmented vector differential

equation that defines the truth model. Second, since Equation (3.15) is in state space

form, white noise could be added, if desired, to account for non-deterministic type

terms such as wind-buffeting or solar effects acting on the missile's hard-body.

3.2.2 The Atmospheric States. Based upon power spectral density character-

istics, the atmospheric jitter phenomena can be modelled as the output of a. third-

order shaping filter driven by white Gaussian noise '24, 25]. With this model, one

can identify the effects of the k'mospheric disturbance on the FLIR plane image.

The Laplace domain representation of this shaping filter is given by [16]:

xa(s) KaWIW(

Wa(S) (s +w)(s +w 2)2  (3.21)

where:

x, = output of shaping filter, defined in Equation (3.1)

w, = zero-mean, scalar, unit-strength white Gaussian noise

Ka = gain, adjusted for desired atmospheric jitter RMS value

Wl = break frequency, 14.14 rad/sec

W = break frequency, 659.5 rad/sec.
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The inverse Laplace transform of Equation (3.21) is a third-order, linear differential

equation which can be expressed as three, coupled, first-order, linear differential

equations in state space format. The atmospheric jitter model in the YFLIR direction

can be identically modelled as in the XFLIR direction; therefore the truth model for

atmospheric jitter can be expressed in Jordan canonical form as [16]

X0 (t) = F,xa(t) + Gaw,(t) (3.22)

where:
Xa(1) = 6-dimensional atmospheric state vector

F0  = 6 x 6 time-invariant atmospheric plant matrix

w0 (t) = 2-dimensional, independent, zero-mean, w'hite Gaussian noise

process vector with unit strength components and statistics:

E[w(t)I] = 0

E[w0 (t)wTj(t + )] = Qa6() = 1 0 b(T)
0 1

E[.] = expected value

where the atmospheric plant matrix is defined as:

-WI 0 0 0 0 0

0 -w 2  1 0 0 0

0 0 -w 2  0 0 0
Fa (3.23)

0 0 0 -WI 0 0

0 0 0 0 -w 2  I

0 0 0 0 0 -W 2
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and the noise distribution matrix is:

(2wi W2 0

('-w) 0(3.24)

0

0 K2w1 W2

(WI -W2)

The discrete-time equivalent to Equation (3.22) is the atmospheric jitter par-

tition of the augmented truth model in Equation (3.5) and is given by:

Xa(ti+,) = 'a(ti+l, ti)x.(ti) + Wda(ti) (3.25)

Ilarnley and Jensen [3] showed that the state transition matrix in Jordan canonical

form for the time-invariant plant matrix Fa of Equation (3.22) is given by:

4)all 0 0 0 0 0

0 "D.22 4)a23 0 0 0

0 0 1a3W 0 0 0

0 0 0 4)a44 0 0

0 0 0 0 a55 4)a56

0 0 0 0 0 4 a66

where:

'(all = 4)a44 = exp(-wAt)

-a22 = 4a55 = exp(-w 2At)

(%23 = I)a56 = Atexp(-w 2At)

4a33 = a6 = exp(-w 2At)

Furthermore, the six-dimensional, zero-mean, discrete-time, white, Gaussian noise

Wda(ti) has characteristics defined by:
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E[Wd.(i)] = 0 (3.27)
ft,+l

E[Wda (t,)Wd'(ti)] =Qd = 4 a(tj+i, T)GQG (t+,T)d. (3.28)

3.2.3 The Bending/Vibration States. Mechanical bending states were recently

added to the truth model in a study conducted by Leeney [5]. The bending model

is included to represent vibrational phenomena that exist in the FLIR data when a

non-rigid optical platform is involved in collecting the IR image data of the plume

(see Figure 3.2). Based on tests conducted for the Air Force Weapons Laboratory,

Leeney concluded that the bending phenomenon in both the x and y FLIR directions

can be represented by a second-order shaping filter driven by white, Gaussian noise.

The Laplace domain transfer function is described as [5]:

Xb(s) _ Ibwb

wb(s) -S
2 + 2 (bWnbS + CAnb(

where:

Xb = mechanical bending disturbance state shaping filter output for the

x direction, similar for the y direction

wb = zero-mean, unit strength, white Gaussian noise with an

autocorrelation of:

E[wb(t)wb(t +,r)] = Qb t - r) Qb = 1

Kb = gain adjustment to obtain desired root mean squared (RMS)

bending output; K2 = 5 x 10- 13

(b = damping coefficient equal to 0.15

wnb = undamped natural frequency for bending; Wnb = 7r rad/sec.

Leeney [5] represented the bending states by a second-order shaping filter,

rather than a higher order model. Since this model captures the fundamental fre-
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ciuency of this effect, a second-order model represented a good initial study of filter

performance for the bending phenomenon. The linear stochastic differential equation

that describes the bendi ng/ vi bration is:

Xkb(t) = FbXb(t) + GbWb(t) (3.30)

wxhere:

Xb = 4-dimensional mechanical bending state vector

Fb = 4 x 4 time invariant bending plant matrix

Wb() = 2-dimensional, zero-rp-an, white Gaussian noise proccss with

independent comp)onents of strength Qb = I

Gb = 4 x 2 noise distribution matrix.

The eqiuivalent discrete-time model for Equation (3.30) is of the form:

Xb(ti+i) = 4(ti+l, ti)Xb(ti) + Wdb(ti) (3.31)

wvhere:

4 )bl 442 0 0

44 4)6 ' 0 (3.32)
0 0 4(bb 4)b2

L o 0 43 "bb4

and

41= eXP(-UbA0t[COS(WbAt) + Ssin(wbAt)]

4)b2 = exp(-O'bAt)[-sin(Wb/.&)]

4)63 = exp(-ubL~t)[-1 - Ek 2~ i~ 6 #

~144 = exp(-bA)ECOS(wbLt) - ELsin(wb~t)I
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At = sample time interval (ti, t+1]

ab = real part of the root of the characteristic equation in Equation

(3.29): Ub = -. 47124 rad/sec

Wb = imaginary part of the root of the characteristic equation in

Equation (3.29): Wb = 3.10605 rad/sec.

The 4-dimensional, zero-mean, discrete-time, white Gaussian noise process of Equa-

tion (3.31) has a 4 x 4 equivalent, discrete-time covariance matrix defined by:

Qdb= j b(ti+lT)GbQbGb b (ti+l,T)dT. (3.33)

3.2.4 Phune Pogo States. One of the main objectives of this thesis effort is

to model the plume pogo phenomenon in the truth model. To avoid possible classifi-

cation of this study, the assumed model used for plume pogo is a basic second-order

Gauss-Markov process [10]. This model was chosen to study the amplitude and fre-

quency characteristics of the oscillatory nature of the plume. It should be noted

that unclassified experimental data was unavailable to characterize the pogo phe-

nomenon, i.e. power spectral density plots. However, based upon physical insight

and visual observation of the pogo effect, a second-order shaping filter driven by

white Gaussian noise was designed as follows [10]:

y(s) -= (3.34)
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wlhcre:

xp = plume pogo state shaping filter output along the direction of the

velocity vector

wI. = zero-mean, unit strength, white Gaussian noise with an

autocorrelation of:

E[wp()I)wp(t + T)] = QpS(t - 7); Q,, = 1

lP = gain adjustment to obtain desired root mean squared (R.MS) pogo

amplitude (see Appendix A)

= assumed damping coefficient chosen as 0.05

onp = nominal undamped natural frequency for pogo; assumed range is

0.1-10 Hertz, with a nominal value of 1.0 Hertz.

Oscillations due to this effect are modelled along the direction of the ballistic

missile velocity vector. The mathematical expression used to describe the pogo effect

takes the form of a two-state linear stochastic differential equation described by:

0 1i 0
ki( j) 2 xP(t) + wp(t) (3.35)

-- O.np -2gpwp IKpWnp

where:

xp(t) = 2-dimensional pogo state vector derived from Equation (3.34)

wp(t) = 1-dimensional zero-mean, white Gaussian noise of unity strength

from Equation (3.34).

To simulate the pogo model on a digital computer, the following equivalent

discrete-time model for Equation (3.35) is used:

X =(ti+i) = [pi1 (At) 4DP 12(At) xp(ti) + Wdp(ti) (3.36)
4)p21 (At) 'p223(At)
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where:

4I, I At) = y-c_ exp(-,wnpAt)sin(w,, l- Q2At + arctan[2" l])

p1(At) = I Cxp(-( pnpAt) sin(wn 1 f -

= jn exp(-(pwpAt)sin(wnp (I - -(At)

p22(At)=pWnp/t) Sin(WnV 1 - QAt + arctan(- I +

Al = sampling interval [tj+j - ti]

wdp(t,) = 2;dimensional, zero-mean, discrete-time, white Gaussian noise

with independent components and 2 x 2 covariance matrix:

t,= ) Pp ( )dT. (3.37)

As stated above, xP is a 2-dimensional pogo state vector that represents: (1)

the position of the plume image intensity centroid along the longitudinal axis of

the missile and (2) the plume's velocity along the same axis. The plume "pogos""

or oscillates about an equilibrium point also located on the longitudinal axis. The

location of this equilibrium point is defined by the initial positions of the two intensity

functions in the target coordinate frame (see Section 3.4.1), and remains equidistant

from the hardbody's center of mass throughout the simulation.

Figure 3.3 shows the location of the equilibrium point relative to the plume's

centroid for a positive and negative pogo. It should be noted that, for this simulation,

the velocity vector is assumed to lie coincident with the longitudinal axis of the

missile: the angle of attack and side-slip angle are also assumed to be zero throughout

the entire simulation.

3.3 The Measurement Model

Target information is obtained by measuring the intensity and location of the

target's infrared image on the pixel array of infrared sensitive detectors. This image

or "intensity function" is the collective sum of target plume IR radiation, background

noise, and sensor noise.
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Figure 3.3. Plume Pogo Relative to the Equilibrium Point (Note that the crescent-
shaped plume is just one of many equal-intensity contour lines of the
actual plume
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Consider the radiated energy from a single intensity function target. The

infrared intensity function can be modelled as a bivariate Gaussian distribution with

elliptical constant intensity contours. This bivariate Gaussian intensity function is

given by the following equation [9, 24]:

I[x, y, Xpeak(t), Ypeak(t)] = I,'X cxp {-O.5[AAy]P-l [AxAyT} (3.38)

where:

Ax = (X - Xpcak) COS OT + (y - Ypeak) sin OT

Ay = (Y - Ypcak) cos OT - (x - Xpeak) sin OT

OT = target orientation angle between the projection of the

velocity vector perpendicular to the LOS vector and the x

axis in the FLIR image plane

x, y = reference coordinate axes on the a - P3 plane

Xp.ak, Yp ak = coordinates of the peak intensity of the single Gaussian

intensity function

Ima, = maximum intensity of the function

P = 2 x 2 target dispersion matrix whose eigenvalucs

(o and 4p, ) define the dispersion of the elliptical constant

intensity contours (along the velocity vector and perpendicular

to that velocity vector, respectively) in the a - P3 plane

(see Sections 3.4.1 and 3.4.5).

The composite FLIR plane image intensity function, for the difference of two indi-

vidual intensity functions representing a ballistic missile target plume, is shown in

Figure (3.4). To form the characteristic shape of a missile plume, the rear individ-

ual Gaussian intensity function is subtracted from the forward Gaussian intensity

function, and the resulting intensity function is obviously not Gaussian. Since the in-

tensity value on a pixel sensor can not be negative, the simulation software hardcodes

any calculated negative intensity values to zero.
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Gaussian Intensity Functions (Note the sign convention on the peaks
which corresponds appropriately to Figure 3.1)
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The intensity measurement produced by each pixel is the average intensity

on that pixel that results from the sum of the target's intensity function, spatially

correlated background noise, and FLIR sensor noise. The output of the pixel in the
jth row and kIh columnm at sample time ti, is given by:

Zjk(ti) A + JP," k {I[X, Y, Xpeak, (4i), Yjcaks (4i)]

12 [XY,peak2(ti),Ypak2(ti)]dx dy} + fnlk(ti) + bik(ti) (3.39)

where:
zjk(tIj) = output of pixel jk

A = area of one pixel

1, 12 = intensity function of first and second Gaussian intensity

function, respectively

x,y = coordinates of any point within pixel jk

Xpcakl, Ypeakl = coordinates of maximum intensity of the first Gaussian

intensity function
Xpcak2 , Ypek2 = coordinates of maximum intensity of the second Gaussian

intensity function

n7k(ti) = effect of internal FLIR sensor noise on pixel jk

bjk(ti) = effect of spatially correlated background noise on pixel jk.

The sensor error, njk(ti), is the result of thermal noise and dark current in the

infrared sensitive detectors. This sensor error is assumed to be a corruptive noise

which is both temporally and spatially uncorrelated [9].

The background noise, bjk(ti), is represented as a spatially correlated noise

with a radially symmetric, exponentially decaying correlation pattern characterized

by a correlation distance of approximately two pixels in the FLIR image plane [3,

241. Harnly and Jensen [3] simulated this effect by maintaining non-zero correlation

coefficients between each pixel and its two nearest neighbors in all directions.
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By concatenating all 64 values of bjk (corresponding to an 8 x 8-matrix of

pixels) into a 64-dimensional vector b(t,), the spatially correlated background noise

is modelled as:

b(t) = /-Rb'(ti) (3.40)

where:
R = 64 x 64 correlation matrix of the discrete, zero-mean, white

Gaussian vector noise process b(ti)

b'(t,) = 64-dimensional, discrete, zero-mean, white Gaussian vector

noise process with the correlation matrix: I(&1x6,)

= Cholesky square root.

A detailed development of this spatially correlated noise process and the FLIR sensor

noise process can be found in the work of Maybeck, Harnly and Jensen [3, I1]. It is

only mentioned briefly in this section for completeness in describing the truth model.

3.4 Simulation Space

To simulate the FLIR tracker's operation on a digital computer, a "simulation

space" model is required. As presented by Tobin [24], this simulation space was

designed to perform two tasks. First, it generates the propagation of a realistic

target trajectory in three dimensional space. Second, the simulation space provides

a mathematical means of projecting the target's infrared image and velocity vector

onto the FUR image plane. Each of these tasks is discussed in detail in this section;

but first, the pertinent coordinate frames will be presented.

3.4.1 Coordinate Frames. The following coordinate frames are used during

the simulation of the FLIR tracker on a digital computer:
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Target Frame:

Origin center of mass of the target

Axes: e, - along the velocity vector

ePV - out right side of the target, perpendicular to e,

ePPV - vector completing right-hand coordinate set

Note: 'v' - along the velocity vector

'Pu' - perpendicular to the velocity vector

'ppv' - perpendicular to both of the above.

Inertial Frame:
Origin: location of the FLIR sensor

Axes: e,, - due north, tangent to earth's surface, defines zero azimuth

ey - inertial "up" with respect to a flat earth approximation

e. - vector completing right-hand coordinate set, defines 90'

azimuth

Note: The azimuth angle (a) is measured eastward from ex.

The elevation angle (9l) is measured "up" from the horizontal

plane defined by ex and e..

a - - r Frame:

Origin: center of mass of the target

Axes: er - coincident with the true sensor-to-target LOS vector.

e,, e6 - define a plane perpendicular to er, rotated from the

inertial ex and ey by the azimuth angle (a) and

the elevation angle (fp), respectively.

a - fl (FLIR Image) Plane:

This is the FLIR image plane defined by the ea and the ep unit
vectors above. The "pseudo" azimuth and elevation angles, a' and 0' ,
measured with respect to the FLIR LOS vector, are linearly proportional
to the cartesian coordinates x and y on the FLIR plane. The coordinates
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x and y are distances from the center of the FLIR FOV, measured in
pixels on the a - 0 plane. Observing the FLIR plane along the LOS
vector from the origin of the inertial axis, x is positive to the right and
y is positive down This choice is made to maintain a right-handed
coordinate system, with the target's range measured positive away from
the sensor. It should be noted that this is also the perspective of the
greyscale plots to be discussed in Section 5.8.

The inertial frame and the a - P plane are illustrated in Figure 3.1. The target

frame is shown in Figure 3.5.

3.4.2 Taret l Model. The basic target used for this thesis is a planform with

two intensity functions. Note the displacement of the two Gaussian intensity function

centroids along the e, direction. These values were chosen based upon the assump-

tion that, in the target frame, the dispersion of the plume in the ew direction is

approximately 20 times the radius of the missile. The centroid of the first intensity

function is placed at -65 meters from the center of mass of the missile in order to

simulate the composite centroid of the plume being close to the exhaust nozzle of the

missile. This is based on an assumption that the distance from the missile's center of

mass to the end of the hardbody is on the order of 20 meters. The second intensity

function is arbitrarily set at -110 meters to simulate one of many different character-

istic plume crescent shapes. By varying the location of the second intensity function

centroid, the shape of the plume can be varied, as well as the relative distance of the

composite image centroid to the end of the missile hardbody. The centroids of these

intensity functions remain fixed in the target frame (if pogo oscillations did not exist;

see Section 3.4.5) and are shown in Figure 3.5. As mentioned earlier, the target's

angle of attack and sideslip angle are assumed to be zero. These assumptions imply

that the semi-major axes of the infrared intensity function ellipses are aligned with

the target's velocity vector (see Figure 3.6). As noted by Netzer [18], this simplifies

the simulation space geometry without degrading the performance analysis of the

tracker.
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Gaussian Displacement Displacement Displacement
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Function along e, along ev along epu

1 -65 meters 0 meters 0 meters

2 -110 meters 0 meters 0 meters

Figure 3.5. Distribution of Gaussian Intensity Functions
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Figure 3.6. Hotspot Ellipsoid of Dispersion on the FLIR Image Plane
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3.4.3 Target Scenarios for MAMAF Analysis. As mentioned in Section 3.2.1,

the trajectory used in this study was a typical thrusting trajectory of an Atlas

missile. The initial conditions of the missile in inertial space defin'c tile missile

orientation in inertial space, as well as on the FUR image plane. This thesis deals

with only one such trajectory, where OT, the target orientation angle, is initialized

at approximately 600, and is permitted to decrease due to gravitational effects over

the ten second simulation. The reason for working with only one target orientation

is that the focus of this research is to characterize the plume pogo effect; therefore

various target scenarios are generated to study the varying effects of plume poo

dynanics, particularly in a MMAF application.

It should be noted that, although the pogo scenarios are defined in this section,

they were never implemented for reasons to be described in Chapter VI. The scenarios

are presented here for completeness, so that a continuing, follow-on study can be

performed to research the applicability and adaptability of multiple model adaptive

filtering to missile plume pogo effects (see Chapter VII).

Seven truth model scenarios are defined to study the MMAF application to

the plume phenomenon. The scenarios involve varying the amplitude and frequency

characteristics of the pogo effect in the truth model in an effort to study the tracking

ability of the MMAF. As mentioned in Section 3.2.4, much of the information on

plume pogo is classified; therefore, nominal ranges of pogo amplitude and pogo

frequency where chosen using physical insights and sound engineering judgment. The

maximum value (upper bound) for the amplitude characteristic of the pogo effect

is chosen at 1.12 pixels and represents the maximum desired RMS pogo value used

to adjust the gain in Equation (3.34). This value was chosen because it represents

a pogo effect of approximately 20 meters in the target frame, which corresponds

to approximately 60% occlusion of an Atlas missile's hardbody by the plume [1].

Based upon this upper bound, the range for pogo amplitude is chosen as 1.12 to

0.0112 pixels on the FLIR image plane, where 0.112 pixels is assumed to be the
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Scenario [ Amplitude(pixels) I Frequency(Hz)

#1 0.0112 0.1
#2 1.12 10
#3 0.0112 10
#4 1.12 0.1

#5 0.0 -- 0.0112 0.0 - 0.1

#6 0.0112 - 1.12 0.1 -- 10
#7 0.0112 - 1.12 10 - 0.1

Table 3.1. Truth Model Scenarios

nominal value. The nominal undamped natural frequency for the pogo oscillation

is assumed to be about one Hertz; therefore, a range of ten Hertz to 0.1 Hertz was

chosen to analyze the MMAF performance. Table 3.1 provides the details of the

seven scenarios.

Scenarios #1 through #4 provide MMAF performance statistics for a truth

model pogo phenomenon that is fixed at a specific amplitude and frequency through-

out the entire simulation. The MMAF results are then directly comparable to a

10-state, single benchmark filter's (to be discussed in Chapter IV) performance for

the same scenario. Scenarios #5 through #7 provide MMAF performance statistics

for a pogo phenomenon that will vary in amplitude and frequency over the ten sec-

ond simulation. These scenarios test the adaptability of the MMAF by identifying

which of the single filters in the bank has the highest probability weighting at var-

ious times during the scenario (see Equation (2.3)). As mentioned above, although

these scenarios were not performed in this research effort, they are mentioned here

for completeness for possible follow-on work. Also, a suggested five-bank MMAF

structure is provided in Chapter V.

3.4.4 Velocity Projection onto the FLIR Plane. The deterministic input vec-

tor, UTd(ti) = [&'(t,) p/(tf)]T in Equation (3.5), is the projection of the target's

inertial velocity vector onto the FUR image plane. Loving [6] demonstrated that

this projection is based on the geometry shown in Figure 3.7.
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Figure 3.7. Geometry Required to Project the Target's Inertial Velocity onto the
FLIR Plane
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From Figure 3.7(b), it can be seen that:

a(t) = arctan L )(3.41)

Taking the time derivative of this equation and realizing that &(t) = &'(1) yields [171:

x(t)v.(t) - z(t)v.(t) (3.42)
X 2(t) + z 2(t)

where:
vX, vz - components of the target's inertial velocity in the ex and ez

directions, respectively.

In a similar development from Figure 3.7(c):

r y(t) ] 3.3
0(t) = arctan [-t)43

3'(t) = /(t) = rh(t)v(t) - y(t)h(t) (3.44)

r2 (t)

where:
h(l) = x(t)tiu()+z(t)v 2 (t)

rh,(t)

V, = component of the target's inertial velocity in the ey direction.

Equations (3.42) and (3.44) define the deterministic input vector UTd(t,) in the truth

model dynamics difference equation, Equation (3.5).

3.4.5 Target Image Projection onto the FLIR Plane. During the simulation,

the target propagates through three-dimensional space; and the output of the in-

frared sensitive pixels is simulated by projecting the target's two individual intensity

functions onto the FLIR image plane. In previous research, the individual intensity

lunctions (hotspots) remained fixed with respect to the target frame, while the orien-

tation and location of the intensity functions on the FUR plane change as the target

translates and changes angular orientation relative to the sensor. In this research,
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Figure 3.8. Infrared Image Projection Geometry

since the pogo phenomenon is causing the composite image centroid to oscillate

along the velocity vector, the individual intensity functions do not remained fixed

in the target frame; and correspondingly, this pogo phenomenon produces an addi-

tional perturbation to the intensity function projections onto the FLIR plane. For

simplicity, the location of each of the individual intensity functions is initialized in

the target frame as displacements from the missile's center of mass. To orient them

properly in the FLIR coordinate frame, they are rotated by the target orientation

angle, 0T (see Figure 3.6).

Similar to the development in [6, 24], consider the geometry presented in Fig-

ure 3.8. This geometry relates the current target image to an initial "reference

target" image on the FLIR plane, as seen in Figure 3.5. The reference image is

oriented to correspond to the largest apparent planform at a specified range. The

current image is defined by [24]:

oUlf, U=- (3.45)
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-= (L) ( + (0',, - Upvo) Cos

=- rP o{1± + EL (A R -i)} (3.46)

where:
avo, oPo0 = the initial dispersions of the target intensity functions

along ev and ep, in the target frame of the reference image

or, oPV = the current dispersions of the target's image

ro = initial sensor-to-target range of the reference image

r = current sensor-to-target range

v = inertial velocity vector of the target

v = magnitude of v

VILOS = projection of v on the (a - P3) plane; i.e., the component

of v perpendicular to the LOS vector

V.ILOS = magnitude of V.LLOS: VILOS = 2 12

b = angle between v and the (a - P3) plane

AR = ,,-: aspect ratio of the reference image

Together, Equations (3.45) and (3.46) define the dispersion along the principle axes

of the intensity functions' images as seen by the sensor (Figure 3.6).

3.5 Summary

This chapter shows the truth model dynamic system to be the augmentation of

a deterministic target trajectory component, a stochastic atmospheric component, a

stochastic bending/vibration component, and a stochastic plume pogo component.

In the measurement model, the two individual intensity profiles that are differenced

are assumed to be described by bivariate Gaussian distributions. To simulate the

tracker operation on a digital computer, a "simulation space" has been defined to

propagate the target trajectory and to make the required transformations between

coordinate frames.
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IV. Filter Models

4.1 InIoduction

This chapter presents the filter model structure used in this thesis research.

The models presented here are also used to define the elemental Kalman filters

on which the MMAF is based (see Chapter II). Section 4.2 defines the ten-state

filter dynamics model which consists of the target dynamics, atmospheric jitter,

and plume pogo stochastic processes. The filter measurement model presented in

Section 4.3 describes the enhanced correlator/linear measurement model proposed

by Rogers [21].

4.2 Dynamics Models

Previous AFIT research has considered two different methods for representing

target dynamics in the Kalman filter update equations. The first method describes

the target's acceleration as a zero-mean, first-order Gauss-Markov process; while the

second method models the acceleration as a series of constant turn-rate trajecto-

ries [15]. The ten-state Kalman filter vector used in this research is defined below

as:
X 1  Xj

x 2  Yt

X3 Vx

X4  Vy

= a(4.1)

X6  ay

X7 Xa

X8 Ya

X9  Xp

X1O VP
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where the target dynamics, jitter, and pogo states used in this research are modelled

as Gauss-Markov processes with:

xi = x component of target position

yt = y component of target position

v. = x component of target velocity

vY = y component of target velocity

ax = x component of target acceleration

ay = y component of target acceleration

x, = x component of atmospheric jitter

Ya = y component of atmospheric jitter

Xp = pogo position along the target velocity vector

vp = pogo velocity along the target velocity vector

Each element in Equation (4.1) is coordinatized in FLIR (a - P6) plane. Note that

Xt. Yt,XY',! and xP were previously defined in Equations (3.1) and (3.2). Also note

that the atmospheric jitter model is reduced from six states as defined in the truth

model to two states described here in the filter. The filter jitter model disregards

the high-frequency effect of the double pole in Equation (3.21). This reduces the

order of the filter model, while still capturing the dominant characteristic of atmo-

spheric jitter. The pogo effect is modelled in the filter identically to the way it is

modelled in the truth model. This was done to enhance the performance of the filter

as well as making the model more applicable for MMAF implementation by allow-

ing more accurate filter tuning for varying pogo characteristics. Eventually, a lower

order model will be implemented in the filter, but for the purpose of characterizing

the pogo effect and its applicability for MMAF implementation, the two models will

be identical. The filter model is described by the following time-invariant, linear

stochastic differential equation:
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ks(t) = Fjxf(t) + Gjw1 (t) (4.2)

where:
xs(t) = ten-state filter state vector

F S  = time-invariant system matrix

G S  = time-invariant noise distribution matrix

wj(t) = zero-mean, white Gaussian noise vector of strength Qf.

Based upon work clone by Millner [171 and Kozemchak [4], the elements of Equation

(4.2) are:

0010 0 0 0 0 0 0

0001 0 0 0 0 0 0

0000 1 0 0 0 0 0

0 0 00 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0
Fs =(4.3)

0 0 00 0 0 0 0 0Ty

0 0 0 0 0 0 0 0TO

0 0 00 0 0 0 0 0Tra

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 -wn 1  -2(pjwnpf
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 000000 0

Gf 1 0000(4.4)
01000 0

00100 0

00010 0

00000 0

0 0 0 0 0 GP

where Gp = lpfW.,

2,2 0 0 0 0 0
TZ

0 2o' 0 0 0

0 0 0 0 0 0

Qf Ta

0 0 0 0 0 1

where:

Kpf = gain adjustment to obtain desired RMS pogo amplitude

(see Appendix A)

Wnpf = undamped natural frequency for filter pogo

(pf = filter damping coefficient for pogo chosen to be 0.05

r,, ry = correlation times for the target azimuth and elevation

accelerations
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7a = correlation time for the atmospheric jitter position process

a',a 02 = variance and mean-squared value for the target azinuth

and elevation accelerations

a02 = variance and mean-squared value for the atmospheric jitter
position process.

The filter state estimate and error covariance matrix are propagated forward

over a sample period as shown by the following equations [7:171-172]:

(ti-,) = ',If(At)R, (t,.h (4.6)

Pf(t+) = 4f(At)P(t+)'(At) + QdJ (4.7)

where:
Rf (ti) = filter's estimate of the 10- dimensional state vector

Pj(ti) = filter's covariance matrix (10 x 10)

(t7) = time instant before FLIR measurement is incorporated into

the estimate at time ti

(t+) = time instant after FLIR measurement is incorporated into

the estimate at time ti

4If (At) = time-invariant state transition matrix associated with

propagation over the sample period: At = ti+l - ti

and the Qdf matrix is the obtained by the following:

Qdf J,,"+ "kf (4+1, 7)Gf Qf GT4,(4 +1 ,)d-r (4.8)

Based upon the presentation by Netzer [18:47-48], and including the additional

pogo state model, 41f(At) and Qdf are found to be:
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1 0 At 0 4)15 0 0 0 0 0

0 1 0 At 0 '26 0 0 0 0

0 0 1 0 4 a5 0 0 0 0 0

0 0 0 1 0 446 0 0 0 0

0 0 0 0 s5 0 0 0 0 0
00f(00) - (4.9)
0 0 0 0 0 66 0 0 0 0

0 00 0 0 0 4 7 0 0 0

0 0 0 0 0 0 0 488 0 0

0 0 0 0 0 0 0 0 4D99 4 9,10

0 0 0 0 0 0 0 0 41o,9 41o,1o

where:

ID 15 = 7 [A - 7 , xp At

4)26 = 7y~ [At - 7y (1 - exp -Ay

' 35 = T x Ax= r (1-oxP{- L})

' 6= 7yexp - -
5 = exp

1 T

66O = 1 At4-1

WnTf
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-lp0,9f
1li -

)1,Io= ( (pWnp At) sin 1 - .t + arcan + )
and

Qll 0 Q13 0 Q1s 0 0 0 0 0

0 Q22 0 Q24  0 Q26 0 0 0 0

Q13 0 Q33 0 Q0 5 0 0 0 0 0

0 Q24 0 Q44 0 Q46 0 0 0 0

Qdf Q 15 0 ('35 0 Q55 0 0 0 0 0 (4110)

0 Q26 0 Q46 0 Q66 0 0 0 0

0 0 0 0 0 0 Q77 0 0 0

0 0 0 0 0 0 0 Q8s 0 0

0 0 0 0 0 0 0 0 Q9 99,10

0 0 0 0 0 0 0 0 Qlo,9 Q10,1o

where:

2 2 AtI ,x{ 2A t }  I
7- A t3 t -. 2rex -- 'Q11 = -:X - 2(r7Atx -474-exp Tx + 2T-jAt - 7- T{x- +

Q13 = 7x [ +2TxA+2 texp - A +-r--'+3r - 2,rexp A t - 2Tr/ At

+7 xexp{ zTx

Q 15 = ,"2 7-rxAt exp {At- + rx2 rx rexp {. !}] .11

922 = U 2 [ r -A t 3 - 2(7-zAt) 2 - 4rYexp{.-_4 + 2r-y3At - 7y exp{2At) +7r]
y 3Ty TY

Q24 = "A + 22Atexp{ -- } + 73 - 27Texp {--} - 2r7At

+raexp 
A rat

2_27ryAtex p  -- 2- + r,2 ex 2 J

Q26 = Ory T}

4-7



Q33 - or-xAt - 3-r,,2 + 47,exp At -r2exp { A}

Q35 = U2 7 -2exp t I + rTexp 2At

= '[r&-3~+4~~ {.. } - CI)
2 ~[Y 2 2 {At { } 2 2At

QI = O'Y [y - 37 +}]

2 At 2 2A t
Q46 = a [y- 2[ y exp t}]

Q55 = OX  -exp TX

Q66 = 0' 2 exp 2

Q77 = aa - -- a

Q88 = Oa i Ta  ]
and Q99, Qo,lo. QIo,9, Qio,io are determined identically as the discrete-time, white,

Gaussian noise covariance matrix pogo components of the truth model by solving

Equation (3.37). The equations for these four components are not presented in the

text because of their length, but the pogo components of the Qdf matrix are imple-

mented in the software and have been validated based upon the following first-order

approximation [7:170-174]:

Qdfp(ti) " Gfp(tj)Qfp(ti)G' (ti)[ti+1 - ti] (4.11)

where the subscript "fp" refers to the partition of the filter model representing

the pogo phenomenon. The filters are "tuned" by choosing appropriate values for

the correlation times (r_, ,ry, r) and the variances (o,, OY ) corresponding to the

ballistic trajectory and various pogo scenarios.

Note that the pointing controller used in this study is considered to be ideal.

The dynamics of the pointing mechanism (servo lag, inertia, etc.) are neglected.

Netzer [18] demonstrated that the errors resulting from any non-ideal controller

dynamics are small and are interpreted by the Kalman filter as atmospheric Jitter.
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Following each filter propagation cycle, the estimates 1(ts+) and ."'2(1,+,) are used

to generate control signals to point the FLIR optical centerline at the target. It

should be noted that these control signals are applicable for a non-rotating field-

of-view (NRFOV ) FLIR. The filter's estimates of the velocity states are used to

rotate the field-of-view for the rotating field-of-view (RFOV) FLIR and the diagonal

rotating field-of-view (DRFOV) FJIR. Chapters V and VI discuss in more detail the

two rotation schemes.

4.3 The Measurement Model

Recall the measurement model of Equation (3.39) for the 14-state truth model.

An alternative to this 64-dimensional, non-linear measurement model was developed

by Rogers [211 during his AFIT research. Rogers suggested an enhanced correlatioi

algorithm which is implemented to provide measurements to a linear Kalman filter

measurement model. This correlation algorithm is "enhanced" over the standard

correlation algorithm in the following ways [24]:

1. The current FLIR data frame is correlated with a template (an estimate of the

target's intensity function), as opposed to correlation with the previous FLIR

data frame.

2. Instead of outputting the peak of the correlation function, the enhanced cor-

relator outputs the center of mass of that potion of the correlation function

which is greater than some predetermined lower bound, a technique known as

"thresholding". The enhanced correlator does not suffer the problem of distin-

guishing global peaks from local peaks, as do many conventional "peak-finding"

correlation algorithms.

3. Using the enhanced correlation algorithm, the FLIR/laser pointing commands

are determined via the Kalman filter propagation cycle as opposed to the out-

put of a standard correlation algorithm.



4. The Kalman filter state estimate :(t + ) is used to center the template, so the

offsets seen in the enhanced correlation algorithm should be smaller than in

the conventional correlator. This increases the amount of "overlap" between

the actual FLIR data and the stored template, thus improving performance.

The output of the enhanced correlation algorithm are the two linear offsets x, and Yc

of Equations (3.1) and (3.2). These "pseudo-measurements" are then fed into a linear

Kalman filter update cycle. The following two sections present an overview of the

enhanced correlation algorithm. A more detailed analysis can be found in [13, 21].

4.3.1 Template Generation. As stated earlier, the template is an estimate of

the target's intensity profile. This template is generated by averaging over the N

most recent centered intensity functions. The intensity functions are centered on the

FLIR plane by the "shifting property" of the Fourier transform, which is the domain

in which the correlation is taking place. The memory size N is chosen according to

how rapidly the shape functions change. Highly dynamic intensity functions require

small values of N, while slowly varying functions can take advantage of large N

values.

The premise behind this proposed finite memory filter can involve large memory

requirements cn a digital computer. To avoid this potential problem, the averag-

ing is approximated by the use of "exponential smoothing". Exponential smoothing

has properties very similar to those of finite memory filtering [8], but requires the

storage of only one FLIR data frame instead of N frames, thus reducing computer

storage requirements significantly. The template is maintained by the exponential

smoothing algorithm given by the following equation:

i(ti) = -YI(t;) + (1 - -Y)I(ti- 1) (4.12)
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where:
I(t;) = "smoothed estimate" of the target's intensity function; i.e.,

the template

I(ti) = "raw" intensity function from the current FLIR data frame

-y = smoothing constant; 0 < -y < 1.

The smoothing constant -y is comparable to the N value of the true finite memory

averager. From Equation (4.12), it can be seen that large values of -1 tend to em-

phasize the current data frame and thus correspond to small N values in the finite

"iiemory filter. Based on studies by Suizu [23] and Loving [6], a smoothing constant

0, = 0.1 will be used throughout this thesis effort.

Figure 4.1 on the next page shows the structure of the enhanced correla-

tor/linear measurement model data processing algorithm. This algorithm is strictly

for a NRFOV FLIR sensor. Chapter V presents a modification to this algorithm

in order to simulate the RFOV and DRFOV sensors. Note that the portion of the

algorithm enclosed in dotted lines is the template generation scheme. After the raw

FLIR data is transformed into the Fourier domain by a fast Fourier transform (FFT),

it is centered on the FLIR plane by shifting it an amount equal to:

Xshif = - +(t ) + 57(tt) + - 9(tt)cos O (4.13)

Yshift = 2(tt) + 14(i ' ) - 9(t+)sin j (4.14)

where:

x3 (it)
COS Of = 2 (tt +2 (4.15)

sin Of = (4.16)
V(tt + 5 tt 4.6

It should be noted that the reason the minus signs are in Equations (4.14) and

(4.16) is because of the diffeience in the defined orientations of the Target and FLIR
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coordinate frame axes (see Figure 3.1). This is compatible with the structure of

Equation (3.2) of the truth model. It should also be noted that, since the value of

the plume pogo is referenced from the pogo "equilibrium point" (see Figure 3.3), the

true centroid locations on the FLIR plane as determined by Equations (3.1) and (3.2)

actually should include a constant "offset" in both FLIR directions. These offsets

are constant and are equal to the distance between the hard-body's center of mass

and the pogo "equilibrium point." Similarly, to be absolutely correct, the above

shift equations should also consider the effect of these offsets. Since the present filter

structure has no way of estimating these offsets based on FLIR data alone, and the

major challenge of this thesis is to characterize the pogo phenomenon relative to the

pogo "equilibrium point," the offsets were purposely left out of both the truth and

filter measurement models.

The above shifts are performed using the shifting property of Fourier trans-

forms, which states that a translational shift in the spatial domain is equivalent to

a linear phase shift in the frequency domain [24]. The phase shift is computed as

follows:

F{g(x - Xshiff, y - Yshift)} = G(f., fy) exp{-j27r(f. " Xshift + f" Ysh,ft)} (4.17)

where:

g(x, y) = 2-dimensional spatial data array

F{.} = Fourier transform operator

G(f,fy) = F{g(x,y)}

After the data is centered by the above phase shift, it is incorporated into

the template according to the exponential smoothing algorithm of Equation (4.12).

The template is then stored and correlated with the subsequent FUR data frame to

produce the "pseudo-measurement."
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4.3.2 "Pseudo-A'easurements" by Enhanced Correlation. The enhanced cor-

relator algorithm provides "pseudo-measurements" in the form of position offsets

from the centroid of the target intensity image to the center of the FOV. The cur-

rent FUR data frame and the stored template are correlated in the Fourier domain

space. This cross-correlation is computed by taking the inverse fast Fourier trans-

form (IFFT) of the following equation [21]:

F{g(x,y) * l(x,y)} = G(f.,fy)L(f ,fy) (4.18)

where:
F{.) = Fourier transform operator

g(x,y) * l(x,y) = cross correlaiiop of g(x,y) and l(x,y)

g(x, y) = measured targ8 itensity function; the current FLIR

data frame

l(x, y) = expected target intensity function; the template

G(f,,f,) = F{g(x,y)}

L'(fx,fy) = complex conjugate of F{I(x,y)}

The Fourier transform, F{.}, is implemented in the software via the Cooley-Tukey

Fast Fourier Transform (FFT) algorithm [24].

Once the IFFT is performed, the correlation function, g(x, y) * l(x, y), is

"thresholded" so that any value in the correlation function less than 30% of the

function's maximum value is set to zero [6, 18]. The location of the center-of-mass of

the "thresholded" function represents the relative displacement between the current

FLIR data frame and the template.

As shown in Figure 4.1, the displacements or "offsets" are outputs of the IFFT

block and are assumed to be the result of hardbody dynamic activity, atmospheric

jitter, plume pogo effect, and measurement noise. Therefore:
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xoffset = Xt + Xa + xPcosOf + Vfp (4.19)

Yo fset = Yt + Ya - xp sin Of + V 2  (4.20)

where:

cos Of = V+ (4.21)

sin Of = - vY (4.22)

Using the state space representation in Equation (4.1), Equations (4.19) and (4.20)

can be written in state space form as [8]:

z(ti) f h[xf (i), tj] + vf (ti) (4.23)

where:

Z(t4) = [Xofflet, Yofsei]T; measured in pixels

x1 (ti) = 10-dimensional filter state vector of Equation (4.1)

l. = 2-dimensional, nonlinear, measurement vector function

v1 (ti) = 2-dimensional, discrete-time, zero-mean, white Gaussian

measurement corruption noise of covariance Rf

measured in pixels

Note that because of the pogo states being defined along the velocity vector and

being included in the output equations, this measurement model is nonlinear in the

filter states and; the extended Kalman filter update cycle described in Chapter II

(Equations (2.12)-(2.14)) must be applied. The measurement noise v1 (ti) reflects

the spatially correlated background noise (Section 3.3), the FLIR sensor noise, and

errors due to the FFT/IFFT processes. The covariance matrix associated with this

4-15



cumulative error has been found to be [13, 17, 21]:

0.00436 0
Rf = (4.24)

0 0.00598

The lincarized H1 matrix based upon Equation (2.15) is:

H 10 H, 2 0 0 1 0 H3 0 (4.25)
0 1 H4 H5 0 0 0 1 116 0

where:

X9 X4  (4.26)

2+ X2

H2  -XX4X3 (4.27)S2 +X2

VX3 X 4 x=kf (t7)

3 X (4.28)
32 2

H~t = -x 9 x4x 3  (,91,= 3 + X x=kQ(t')

11' = 9X43 (4.30)

S3 + X=:j (f-)

XV3 + 4 IX==4  )

This completes the structure of the Kalman filter models used in this study.

It should be noted that, although the MMAF was not implemented in this thesis

effort, the concepts discussed in this chapter are directly applicable to the MMAF.

That also includes the data processing of Figure 4.1. See references [19] and [24] for

additional details.
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4.4 Sum,,,ay

This chapter has presented the models upon which the Kalman filter is based.

The ten-state filter vector includes models to estimate trajectory dynamics, atmo-

spheric jitter, and plume pogo. All of these models are based upon Gauss-Markov

stochastic processes. "Pseudo-measurement:," are created by correlating the current

FUR data frame with an adaptively constructed template representing the target's

infrared intensity profile. Figure 4.1 shows the overall filter processing algorithm for

a non-rotating field-of-view (NRFOV) sensor. When pogo states are introduced into

the filter state vector, the output model becomes nonlinear in the filter states and

requires the use of the extended Kalman filter update cycle when incorporating the

"pseudo-measurements" from the data processing algorithm.
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V. Tracking Algorithm

5.1 Introduction

This chapter presents the overall tracking algorithm used in this research by

combining the principles presented in the preceding chapters. First, an overall view

of the algorithm is presented, along with a proposed structure for a MMAF algo-

rithm. Second, the method for field-of-view (FOV) processing is discussed, followed

by the different FOV rotation schemes analyzed in this research and the relationship

of' the rotating FOV to the overall tracking algorithm that was presented in Chap-

ter IV (Figure 4.1). The filter and truth model parameters are then presented before

concluding with the tools used to evaluate the performance of the tracking algorithm

(i.e., statistical calculations, performance plot formats, and greyscale diagrams).

5.2 Overview of the Tracking Algorithm.

The main objective of this research effort is to design an algorithm to track a

ballistic missile accurately when its plume is undergoing , -ogo (oscillation) along

the longitudinal axis. A Bayesian Multiple Model Adaptive Filter (MMAF) track-

ing algorithm was originally proposed to increase performance over a single filter

algorithm, but for the reasons described in Section 6.8, this MMAF was never im-

plemented. This section presents the proposed structure of the MMAF which, once

implemented, should demonstrate increased tracking performance over the single

filter models which were implemented in this research. As mentioned earlier, the

reason for presenting the proposed MMAF structure is for completeness of the ob-

jectives described in Chapter I, and for the benefit of suggested continuations of t'his

research effort (see Chapter VII).

The proposed MMAF is composed of five elemental filters based upon a nom-

inal ballistic missile trajectory and varying scenarios for the plume's pogo effect.
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Filter Filter Dimension Tuning Characteristics

1 8 Tuned for a truth model exhibiting no plume pogo

2 10 Tuned for a truth model exhibiting high, frequency
and large magnitude pogo

3 10 Tuned for a truth model exhibiting low frequency
and large amplitude pogo

4 10 Tuned for a truth model exhibiting high frequency
and small amplitude pogo

5 10 Tuned for a truth model exhibiting low frequency
and small amplitude

Table 5.1. Elemental Filters of Proposed MMAF

The actual structure of the MMAF can not be determined until the results of a

robustness study are performed (Section 1.3.5). Again, for reasons discussed in Sec-

tion 6.8, a, robustness study was inappropriate based upon the results of this thesis

research; but a suggested MMAF structure is still presented in this chapter as ali

expected baseline for future research. The actual research performed in this thesis

implemented a tracking algorithm based upon each of the single elemeiital filters

in the proposed MMAF. Each of the elemental filters is based upon an 8 x 8 pixel

FOV and is "tuned" based'upon specific dynamics of the plume pogo effect in the

truth model. More concerning the FOV data processing is presented in Section 5.3.

Table 5.1 presents the proposed structure of the MMAF.

Note that the first filter is an eight-dimensional filter, while the other four are
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ten-dimensional filters. The ten-dimensional filters are of the structure defined in

Chapter IV, while the eight-dimensional filter is of the same structure without the

two additional pogo states. The pogo states are omitted because of the desire to have

an elemental filter in the MMAF structure specifically tuned to a scenario where the

plume is not "pogoing". This desire is based upon the observed condition that a

plume will not pogo until the missile reaches a specific altitude where the pressure

gradients along the hardbody are favorable for the pogo phenomenon [10]. The

eight-state and ten-state filters will be discussed more fully in Chapter VI, where

the specific choice of tuning parameters for each of the filter structures, and the

results of their performance analyses are presented.

5.3 Field-of- View Data Processing

In order to process the current data frame to produce the required "pseudo-

measurements" for the Kalman filter upd-te cycle, the field-of-view used in this

research is represented as an 8 x 8 data array of pixels. The 8 x 8 FOV structure was

chosen, rather than some larger FOV's that have been investigated in the past [5, 25],

based upon the benign missile trajectory used in the simulation. Since the ballistic

missile is assumed not to perform maneuvers or "jinks" during its ascent trajectory,

the 8 x 8 FOV tracker, with pixels of length 15 micro-radians on a side, does not

lose track on the target and provides accurate tracking estimates in both directions

on the FLIR plane. "Staging" events during the ballistic missile ascent can cause

large differences in the missile's acceleration characteristics for which an 8 x 8 FOV

tracker might lose lock; but for the purposes of this initial research, such staging was

not considered (see Chapter VII).

In addition to staging, the maximum amplitude of the plume's pogo along the

longitudinal axis could possibly cause the 8 x 8 FOV tracker to lose lock on the tar-

get. However, based upon the maximum amplitude assumption of 60% occlusion of

the missile hardbody (which corresponds to approximately three pixels on the FUR
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Figure 5.1. 8 x 8 Field-of-View Filter

plane. Section 3.4.3), the 8 x 8 FOV tracker was able to maintain lock on the target.

As mentioned in Chapter I, previous research [5, 241 considered a MMAF tracker

that included 24 x 24, 8 x 24, and 24 x 8 FOV elemental filters for the purposes of

tracking highly maneuverable targets. For the benign dynam-ic characteristics of tile

ballistic missile hardbody and considering the maxini,.n pogo amplitude (approxi-

mately three pixels) of the plume, an 8 x 8 FOV was found to be appropriate for

this research. Figure 5.1 gives a perspective of the 8 x 8 tracking window against a

24 x 24 array of pixels. The reason for comparing the relative sizes of the 8 x 8 FOV

to a 24 x 24 array is that the correlation algorithms of Figures 4.1 and 5.3 process

(data from a 24 x 24 array of pixel sensors, where the infrared intensity values of the

plume are localized to an 8 x 8 tracking window.
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5.4 Field-of-View Rotation

As mentioned in Chapter 1, in addition to characterizing the ballistic missile

exhaust plume dynamics, rotating the FOV of the FLIR sensor to enhance tracking

performance was an additional objective of this research. Three different analyses

are conducted to compare performance of a FOV that does not rotate, i.e., the

non-rotating field-of-view (NRFOV), a rotating field-of-view (RFOV) implemented

l)y Norton (19], and a diagonal rotating field-of-view (DRFOV). The NRFOV is

the standard tracker used in previous studies conducted at AFIT [5, 18, 24) which

maintains the x-axis of the FLIR. parallel to the local horizon. Norton implemented a

RFOV which aligns the x-axis of the 8 x 8 FOV FLIR parallel to the filter estimated

velocity vector. The DRFOV is a rotation scheme which aligns the diagonal of the

8 x 8 FOV with the filter's estimate of the velocity vector. Each of these rotation

schemes is presented in Figure 5.2.

The concept of a RFOV was originally conceived to maintain lock on a highly

maneuvering target that could "jink" in either of the two FLIR directions. The idea

of a rectangular rotating field-of-view (RRFOV) was first suggested by Leeney [5]

using a rectangular 8 x 24 FOV which was originally implemented by Tobin [24] in a

non-rotating scheme. Norton demonstrated that a MMAF algorithm composed of 8 x

8 FOV filters rotated so that the x-axis is aligned with the velocity vector [19:64-67],

as well as adaptively transforming the filter's dynamic driving noise matrix Qfd so

that the target's acceleration distribution corresponds to the direction of the target's

"jink" maneuver [19:72-76], would improve tracking performance over algorithms

implemented by Leeney [5] and Tobin [24]. Although the adaptive rotation of the Qfd

matrix does not apply to a benign ballistic missile target, because the acceleration

is modelled identically in each of the FLIR channels, the rotation of the 8 x 8 FOV

filter is applied in this research effort. Due to time constraints, the implementation

of the RRFOV as discussed in Section 1.3.2 was not accomplished. However, it is a

suggested topic for future research particularly in the study of a simulated "staging"
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Figure 5.2. Field-of-View Rotation Schemes
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event since the sudden change in acceleration may cause an 8 x 8 filter to lose lock

on the target (see Chapter VII).

To implement a rotation scheme in the existing data processing algorithm,

whether it be the RFOV, DRFOV or the RRFOV, some modifications are made

to the algorithm depicted in Figure 4.1. These modifications are depicted by tile

"Rotate" blocks in Figure 5.3. The basis of the rotating FOV is the estimate of the

target's positive velocity orientation angle (see Figure 5.2: Of is the filter's estimate

of OT):

O= arctan [4z] (5.1)

Note that the terms in this equation are state estimates of the third and fourth

elements of the filter's state vector. Therefore, the filter is capable of estimating

the velocity orientation angle in addition to the translational position states. This

permits the filter to provide control inputs to the FLIR sensor to perform both a.

translation and a rotation of the FOV for on-line application of the tracking algo-

rithm. Also note the negative sign on the Oy term of Equation (5.1). This notation

is consistent with the previously defined coordinate frame of the FLIR (Figure 3.1)

used in past research [24:37-38]. Inserting the negative sign in the numerator of

Equation (5.1) keeps the filter velocity orientation angle defined as positive in the

counter-clockwise direction from the positive x-axis on the FLIR plane (looking at

the target along the LOS vector from the origin of the inertial frame); and it produces

a direct correlation with the truth model velocity orientation angle OT of Figure 5.2,

where:

0 T = arctan L-j (5.2)
- t)

5-7



F X-Y Form

• F Ph~se -n "oothed

TShift Template

Image Image ~Complex Sml

Correlation ConjugateSae
IFFT Storage

IFFT

Rotate Update state vector Rotate

offsets I :R(tt )

Adaptive translation FLIR

Tracking -M(i+1) Yt+0 Laser

Algorithm rotation Controller
__(t741) OY(ti+4)

Figure 5.3. Data Processing Algorithm for a Rotating Field-of-View
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and the directions of the inertial azimuth (a) and elevation () angles are defined in

Section 3.4.1.

To simulate the physical rotation of the FLIR sensor, the incoming FLIR data

is fed into the data processing algorithm in a rotated coordinate system based on

the orientation angle of Equation (5.1). This is simulated by performing a nega-

tive rotation, based on a positive velocity orientation angle from the horizontal, on

the location and orientation of the individual Gaussian intensity functions. This

directly corresponds to a positive rotation of the FOV, which when applied to the

FLIR sensor, aligns the FOV with the positive velocity orientation angle. Based

upon a development by Millner [17:157-163], the intensity function peaks are trans-

formed from the target frame, where they are positioned with respect to the center

of mass of the missile (see Figure 3.6), to the FLIR image plane. Millner first trans-

forms the intensity functions to a plane perpendicular to the LOS vector. The final

transformation about the LOS vector, implemented by the following relationships:

cos OT = &(t) (5.3)
V±LOS

sinl0O = (t) (5.4)
VILOS

where all of the terms are previously defined in Chapter 4, moves the intensity

function peaks into the proper orientation on the FLIR plane for a non-rotating

FOV sensor. The intensity distribution about these peaks was previously defined by

Equation (3.38). In simulating the rotating field-of-view, rather than perform the

last transformation by OT, the velocity orientation angle given in Equation (5.1) is

used to rotate the intensity function peaks as if the FOV had been rotated positively

in a counter.clockwise direction from a perspective looking out of the sensor along

the LOS vector.

Mathematically, the simulation of rotating the input FLIR data is done by

first rotating the intensity function peaks defined in Equation (3.38) by the rotation
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algorithm produced by Norton [19]:

Ypeak sin t ! cos f Ypeak

where the primed variables correspond to the rotated coordinate system. The in-

tensity distribution kEquation 3.38) is then oriented about the rotated peaks by

negating Millner's final transformation (by OT) with the filter's estimate of the ve-

locity orientation angle of Equation (5.1) via the following calculation:

I[x', y', X',k(t), Y,'Ck(t)] = Ia.exp[-O.5[Ax'Ay']P-1 [Ax'AyI]T] (5.6)

where:
AX' = (' - XP,ak) cos A0 + (y' - YPak) sin AO

AY' = - Y'cak) cos A0- (x' - XPk) sin AO

AO = the difference between the truth model velocity orientation angle

and the filter computed velocity orientation angle, i.e.

AO = OT - 6

x', y' = rotated coordinates from the original FLIR coordinate frame via

the same transformation used in Equation (5.5).

Once the incoming FLIR data is rotated by the above transformations, the data

processing algorithm in Figure 5.3 generates the templates in the same -manner as

was done in Figure 4.1, except that now the measurement data entering the data.
processing algorithm is in a rotated coordinate system.

Recall the shifts of Equations (4.13) and (4.14). The incoming data is centered

via these translational shifts in both azimuth and elevation directions on the FLIR

plane. Recall that these shifts are used to center the incoming data on the FLIR

FOV so that the offset can be regulated to zero over the ensuing sample period. Note,

however, that these shifts are computed in the filter coordinate system, while the
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current image data is represented in a rotated coordinate system simulating a RFOV.

To implement the RFOV data processing algorithm properly, the translational shifts

are transformed into the rotated coordinate frame by the same transformation that

was used oil the hotspot peaks:

yI t  sin 6f$ cos O Yshift(57

where Xshiff and Yshift are given by Equations (4.12) and (4.13).

This transformation is represented by the "Rotate" block directly following

the "Adaptive Tracking Algorithm" block of Figure 5.3. The current image data

and the filter's estimate of the target centroid (the shifts) are now represented in

correspondling coordinate frames, i.e., the rotated coordinate frame, and the template

generation proceeds as presented in Section 4.3.1.

The only other modification to the data processing algorithm of Figure 5.3

is the "Rotate block" following the "IFFT" block. Recall that the outputs of the

"IFFT" block are the linear offsets between the current data image and the centered

template. These offsets are depicted in Equations (4.19) and (4.20) and represent the

linear measurements from the enhanced correlator which are fed into the Kalman

filter update cycle. Recall, however, that the current states used in the Kalman

filter equations are represented in the original unrotated FLIR coordinate frame,

while the linear measurement offsets from the enhanced correlator are coordinatized

in the rotated frame. Thus, to ensure compatibility of coordinate frames once again,

the measurement offsets are transformed by the opposite transformation that was

performed on the shifts and the intensity function peaks:

co = o sin 6jL z] (5.8)Z2 -sin COS cOf 0. z2

where z, and z2 are the components of the two-dimensional measurement vector
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in Equation (4.22) in the original coordinate frame, and z' and z' are the linear

outputs in the rotated coordinate frame of the data processing algorithm for the

rotating FOV.

The above simulation of the rotating field-of-view was originally developed by

Norton [19] to align the estimated velocity vector with one axis of the FLIR FOV

(the x-axis in this description). It should be noted that the same concepts applied

for the RFOV are also applicable to the DFOV and RRFOV. As mentioned earlier,

this research implements a DRFOV, as well as the RFOV; and the performance of

each is discussed in Section 6.4, along with performance results of a NRFOV filter

analysis.

5.5 Truth Model Parameters

The initial conditions of the target's inertial position and velocity vectors (see

Figures 3.7 and 5.4 for coordinate system axis definitions) for the nominal ballistic

missile trajectory are:

e_ = 20,000 meters

ey = 100, 000 meters

e. = 2, 000, 000 meters

vX = -2500 meters
second 2

= 433 meters

Vv  = " oo ec'n d

and the components of the acceleration vector are calculated based upon the discus-

sion in Section 3.2.1.

Note the large initial condition in the e, direction. This initial condition was

intentionally made large to simulate the large effective range when considering an

orbiting optical platform that is undergoing bending/vibrational effects (see Fig-

ure 3.2). Using these initial conditions on the position parameters produces an

effective range on the order of 2 x 106 meters. The reason that the e, direction was
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Figure 5.4. Ballistic Missile Trajectory in Inertial Space

chosen to generate a large effective range is because it is a "benign" axis when im-

plementing the ballistic missile trajectory for this particular simulation. Figure 5.4

shows the missile trajectory used in the simulation. All of the missile dynamics are

simulated to occur in a. plane parallel to the inertial e, - e. plane. Therefore, the

ez axis is basically used to scale the desired range when considering al orbiting op-

tical platform in the simulation. The effective range is also used in determining the

required pixel proportionality constant discussed in Chapter 3, as well as being in-

volved in the various coordinate frame transformations that have been implemented

in the simulation software over the past ten years. The large initial component

in e, does not affect the true missile trajectory as generated by the development

in Section 3.2.1, since the only forces acting on the missile are assumed to be the

thrust force and the force due to the Earth's gravitational attraction, where both

are simulated to occur in a plane parallel to the e. - ey plane.

Also note the relative magnitudes of the two initial velocity components. The
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ratio of these two components form the velocity vector orientation angle of the target

in an inertial coordinate frame. As mentioned earlier, this orientation angle was

chosen to be approximately 600, as is evidenced by the choice of the initial velocity

components in the inertial coordinate frame.

The maximum intensity value of each of the intensity functions in Equa-

tion (3.38) is 20 intensity units. The RMS value of Vik, which is the sum total

of the spatially correlated background noise (bk) and the FLIR sensor noise (n,L) in

Equation (3.39), is one. This produces a signal-to-noise ratio (SNR) of 20, which, as

stated by Tobin [24], is typical of many tracking scenarios of current interest.

One of the assumptions used to generate the size of the plume relative to the

diameter of the ballistic missile in the target coordinate frame is that the plume

width is on the order of 30 times the diameter of the missile for certain altitudes

of interest [10]. To implement an 8 x 8 FOV tracker for the ballistic missile plume

which undergoes the pogo effect, it was desired to "fit" the plume in a 5 x 5 FOV

window under the condition of a non-pogoing plume. A 5 x 5 window was chosen

to permit the 8 x 8 FOV tracker to maintain lock on the target even when the

maximum plume amplitude (approximately three pixels) is reached [10]. Based upon

these assumptions and the effective range discussed earlier, the reference hotspot

dispersion in the ep, direction of the target frame (Equation 3.46) is chosen to be I

pixel when projected onto the FLIR image plane; and with an aspect ratio of 1.5, the

hotspot dispersion along the e, direction in the target frame becomes 1.5 pixels when

projected onto the FLIR plane. The pixel proportionality constant (kp) required to

meet all of the above criteria is on the order of 15 micro-radians/pixel, as presented

in Section 3.2.1.

The variance and mean squared value for the of the atmospheric jitter process

in the truth model, given by xa and y, in Equations (3.1) and (3.2), is 0.2 pixels2 [24].

The truth model parameters used to describe the bending/vibration phenomenon of

the optical platform are presented in Section 3.2.3, and the range of parameters used
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to study the pogo phenomenon are presented in Section 3.2.4 and Appendix A.

5.6 Filler Parameters

In the tracking simulation, the filter is initialized to zero errors in the position

and velocity states at t = 0. This is an artificial initial condition intended to allow

a first analysis of tracking, devoid of recovery problems associated with poor initial

conditions. Non-zero initial errors are introduced in subsequent analyses to investi-

gate the acquisition routine developed by Tobin [24], but for this study the tracker

is assumed initially to have perfect knowledge of the target location. The position

states x, and x2 are initialized so that the target's center of mass is centered in the

FLIR FOV (see Figure 3.1). The velocity states x3 and x4 are initialized in accor-

(lance with the target's actual inertial position and velocity vectors of Section 5.5,

and the transformations of Equations (3.42) and (3.44). The acceleration states x5

and x6 are initialized by subtracting the velocity states at t = 0 from the velocity

states at t = - and then dividing by -. The atmospheric jitter states X7 and x8, as

well as the pogo states x9 and x1 o are initialized to zero. The initial state covariance

matrix, P(/o), is given by [24]:

10 0 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0 0

0 0 2000 0 0 0 0 0 0 0

0 0 0 2000 0 0 0 0 0 0

0 0 0 0 100 0 0 0 0 0
P(t0) = (5.9)

0 0 0 0 0 100 0 0 0 0

0 0 0 0 0 0 0.2 0 0 0

0 0 0 0 0 0 0 0.2 0 0

0 0 0 0 0 0 0 0 0.2 0
0 0 0 0 0 0 0 0 0 0.2
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Since the MMAF was not implemented during this research, see reference [191

for initial conditions on the hypothesis conditional probabilities for the elemental

filters in the MMAF structure, as well as other details of the reacquisition routine

to be used should any of the elemental filters diverge during the simulation.

5.7 Tracking Algorithm Statistics

The tracking algorithm performance is evaluated by Monte Carlo simulation

techniques [7]. Previous research has demonstrated that ten Monte Carlo runs ex-

hibit sufficient convergence to the actual statistics resulting from an infinite number

of runs [2, 3, 16]. Based upon this previous research, ten Monte Carlo runs are used

to analyze the tracker's performance in this research effort.

The sample mean errors of the tracking algorithm's estimates are calculated

as [24]:

1 N
E=d(ti) N e

n=1
N 1

N Z[Xd.(4) -Xdnf (ti)] (5.10)IV n=1

where:

E Xd(t,) = sample mean error of the x target position estimate at time ti,

averaged over N runs

exdn(ti) = error in the x position estimate at ti during simulation n

xdnf(ti)] = estimate of target's x position at ti during simulation n

Xdn(ti) = truth model value of the target's x position at time tj during

simulation n

N = number of Monte Carlo runs.

The sample variance of the error is given by:
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2 1 N 1)
dn {e22 (t) - (t i)xd= N- 1 xd' N- (511

where all the quantities are defined above.

The error committed in estimating the target's position is the most important.

parameter when evaluating the tracker's performance. The error committed in esti-

mating the location of the centroid of the target's image on the FLIR plane is also of

importance, since it provides an indication of how well the algorithm is adaptively

identifying the target's shape function and centroid location. The location of the

centroid is necessary to center the data accurately on the FLIR plane for use in the

template generation scheme discussed in Section 4.3.1.

The above statistics are calculated in both the x and y FLIR plane directions.

Both error parameters are calculated before (t-) and after (t) the Kalman filter

update cycle. All of the errors are measured in units of pixels, where each pixel is

15 micro-radians on a side.

The above statistics are reduced even further for easily tabulated scalars ver-

sus entire time functions as indicators of performance, by temporally averaging the

i.iean error and standard deviation time histories over the ten second simulation. In

actual implementation, the statistics are averaged over the final five seconds of each

simulation to ensure steady state performance is reached. These temporal averages

provide a measure of comparability between various tracking scenarios studied in

Chapter VI, but should be used in conjunction with the actual plots when assessing

tracker performance, since -ome trends in the plotted time histories are not distin-

guishable from the time-averaged scalars. The data is presented in tabular form in

Chapter VI for ease of comparison of each the tracking scenarios.

5.8 Performance Plots

Ten plots are used to assess the filter's performance in this study. They are:
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1. True x position rms error vs. filter-computed x position rms error

2. True y position rms error vs. filter-computed y position rms error

3. Mean x target position error, ± one a, plotted at all time t"

4. Mean y target position error, ± one a, plotted at all time t"

5. Mean x target position error, ± one a, plotted at all time t+

6. Mean y target, position error, ± one a, plotted at all time t+

7. Mean x centroid position error, ± one a, plotted at all time t"

8. Mean y centroid position error, ± one a, plotted at all time t:

9. Mean x centroid position error, ± one a, plotted at all time t'

10. Mean y centroid position error, ± one a, plotted at all time ti

Performance plots 1 and 2 indicate the adequacy of the tuning process of the fil-

ters by directly comparing the actual true rms error of the filter vs. what the filter

"thinks" its error is, i.e., the filter computed rms error. Plots 3 through 6 provide

primary tracking performance evaluation, because the state estimates at t- are used

to generate control signals to point the FLIR/laser, and the state estimates at t+

provide the best possible filter estimation accuracy. As mentioned earlier, plots 7

through 10 provide information regarding the adequacy of the image centering al-

gorithm to aid in the construction of the template. The "± one a" characteristics

of the plots 3 through 10 are equally as important as the mean error characteris-

tics. A tracker with large error b,,L dard deviations is ineffective in pointing a laser,

since the laser energ, will tend to "paint" the target, thus rendering it useless as a

weapon. Examples of ptuts 2, 4, 6 and 10 are shown in Figure3 5.5, 5.6, 5.7, and 5.8,

respectively.

Toward the end of tbiz research, it was concluded that the ten plots discussed

above were not totally adequate to establish firm conclusions in regards to some of the
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Field Notation Description
field 1 BENCHMARK 8-state filter analysis

POGO PERFORMANCE 10-state filter analysis
field 2 SINGLE single filter analysis

_ MMAF multiple model adaptive filter
field 3 NRFOV non-rotating field-of-view

RFOV rotating field-of-view
DRFOV diagonal rotating field-of-view

field 4 GAIN-HI high amplitude pogo in truth model
GAIN-LO low amplitude pogo in truth model

field 5 FREQ-HIII high frequency pogo in truth model
FREQ-LO low frequency pogo in truth model

field 6 POGO OFF pogo turned off in truth model
BEND OFF bending turned off in truth model

Table 5.2. Greyscale Field Descriptions

perforlnance results during this study. Chapter VII discusses these shortcomings and

provides some recommendations to overcome some of the evaluation tool limitations.

5.8.1 Plot Designation Codes. Each of performance plots is labelled with a

plot designation code formatted as follows:

/field 1/field 2/field 3/field 4/field 5/field 6

where field 6 is optional and each field is explained in Table 5.2. As an example,

consider the following designation code:

/BENCHMARK/SINGLE/DRFOV/GAIN-HI/FREQ-HI/BEND OFF

This signifies the case of an analysis of an 8-state, single, diagonal rotating field-of-

view filter where the pogo effect is a high amplitude, high frequency oscillation in

the truth model, and where bending is turned off in the truth model.

5.9 Greyscales

The greyscales used in this research are representations of FLIR plane images

and filter templates. In the greyscale diagram, each numerical symbol characterizes
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SYMBOL INTENSITY UNITS
0 0<1I<10
1 1 0<I<20
2 20 < I < 30
3 30 < 1 <-40
4 40 < I < 50
5 50 < I < 60
6 60 < 1 < 70
7 70 < I < 80
8 80<I

Table 5.3. Greyscale Symbol Key

a specific intensity range. The higher the number in a pixel location, the higher

the intensity representation is on that pixel. Table 5.3 is the key to the numbers

used in the greyscales. Since the maximum intensity of each of the hotspots is 20,

intensity values greater than 20 would seem never to appear. However, the intensity

units shown in Table 5.3 have been rescaled to inaximize the greyscale's pictorial

effect [241, and thus do not have the same meaning as the units originally used to

define the 20:1 SNR.

The purpose of the greyscale diagrams is to demonstrate the adaptive iden-

tification of the ta:'get's intensity shape function in tile form of a template. The

greyscales are used in Section 6.4 to demonstrate the rotation schemes studied in

this thesis. An example of a greyscale diagram is presented in Figure 5.9.

5.10 Summary

This chapter has presented the overall tracking algorithm used in this research

by combining the. principles presented Chapters II, III, and IV. An overall view of

the algorithm was presented, along with a proposed structure for a MMAF algo-

rithm. The method for field-of-view (FOV) processing was discussed, followed by

the different FOV rotation schemes analyzed in this research and the relationship

of the rotating FOV to the overall tracking algorithm that was presented in Chap-
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ter IV (Figure 4.1). The filter and truth model parameters were then presented,

before concluding with the tools used to evaluate the performance of the tracking

algorithm (i.e., statistical calculations, performance plot formats, and greyscale dia-

grams) accompanied by examples of each.
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VI. Performance Analysis

6.1 Introduction

This chapter presents and analyzes the performance characteristics of the track-

ing algorithms discussed in Chapter V. Section 6.2 presents a tuning analysis for an

8-state filter before inserting the pogo states into the truth model. Section 6.3 then

presents the performance results for four single 8-state filters, each tuned for varying

pogo characteristics in the truth model. Once the performance analysis of the tuned

8-state filters is presented, the results of the FOV rotation schemes are given in Sec-

tion 6.4 and are followed by the 10-state filter performance analyses in Section 65...

Sections 6.6 and 6.7 present a rework of the 8-state and 10-state filter performance

analyses, respectively, for a truth model where the bending phenomenon is removed.

The reason for this rework is due to the absence of an expected performance en-

hancement of the 10-state filter over the 8-state filter in the preceeding sections. As

mentioned previously, the robustness analysis and the MMAF performance analy-

sis were not implemented as part of this thesis research, and Section 6.8 clescrib(s

why these analyses were inappropriate. The performance analysis section concludc.

with some trouble-shooting procedures and results in an attempt to understand the

performance inconsistencies.

6.2 8-State Filter Tuning Via Dynamic Trajectory Parameters

As described in Chapter IV, the acceleration models used in the 8-state lil-

ter structure are first-order Gauss-Markov processes: the outputs of first-order lags

driven by zero-mean, white Gaussian noise. The truth model target trajectory (Fig-

ure 5.4) is assumed to be a benign trajectory where no maneuvers or "jinks" are

being simulated. The purpose of this section is to describe the tuning procedure

and results used to tune the 8-state filter for this benign trajectory, before a plume

pogo is implemented into the truth model. The tuning parameters used to tune the
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FILTER a2 o (.'2( Pti8) r.,ry (seconds) o2(-2'E"d" (seconds)

1 250 4 0.2 0.0707
2 2000 8.5 0.2 0.0707
3 530 8.5 0.2 0.0707
4 5 8.5 0.2 0.0707

j 5 5 8.5 2.15 0.0707

Table 6.1. Individual Filter Tuning Parameters

8-state filter are the variances (of, a2) and correlation times (r., r) of the first-order

Gauss-Markov acceleration processes in each FLIR direction; and the variance (c2)

and correlation time (,) for the atmospheric jitter position process. By selecting

various values for the variance and correlation time for the first-order acceleration

process, the amplitude and rate-of-change characteristics of a variety of targets call

be modelled [8:53-56]. Five separate tuning runs are described in this section. and

the parameters for each of the 8-state filters are listed in Table 6.1.

Note that the tuning parameters are identical in both the x and y channels,

which is characteristic of the target dynamics being modelled equally in both FLIR

directions. It should also be noted that the first four filters in Table 6.1 have identical

jitter characteristics. These values are based upon previous tuning results for the

reduced order jitter model in the filter [18]. The reason for the change in the jitter

variance for filter #5 will be explained as the analysis in this section proceeds. The

performance plots for each of the five filters in Table 6.1 are found in Appendix 13.

To begin the tuning of the 8-state filter for the benign ballistic trajectory, the

parameters for filter #1 are chosen based upon the benign trajectory (trajectory #1)

used by Leeney [5:66-67] for a small 8 x 8 FOV filter. Figures B.1-B.10 of Appendix

B show the results of this first tuning run. Note that the filter's computed error

is underestimating the actual error in both FLIR channels for the benign ballistic

trajectory.

To simulate a more benign target, the correlation time of the acceleration
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process was increased to 8.5 seconds [5, 10]. Also, in an attempt to tune the filter

from the underestimation result shown in Figures B.1 and B.2, the acceleration

variance was increased to 2000. The results of this performance run are shown in

Figures B.11-B.20. The filter is still underestimating in both FLIR channels, and

the actual error is larger than the corresponding plots for filter #1.

The next step in the tuning process assumed that the ballistic missile rate-of-

change characteristics (7-., 7- = 8.5) remain identical to the values used in filter #2.

The variance was calculated to be 530 5""j 4 based upon Equation (6.1) [7] and the

tuning characteristics used by Leeney for filter #1:

Q 2 2 (6.1)

T

Q is the strength of the white, Gaussian noise driving the first-order lag to produce

the acceleration process. Leeney's research showed that filter #1 demonstrated good

tuning characteristics for a benign aircraft trajectory. In order to maintain the same

value of Q that Leeney used in filter #1 (which is tuned for benign dynamics), the

variances (o,, !-) of filter #3 are scaled for a benign ballistic trajectory where r, r, =

8.5. This scaling resulted in a value of 530 £ for the variance in each directionseconds

on the FLIR plane for filter #3. The performance plots of filter #3 are presented ii)

Figures B.21-B.30. The tuning plots still demonstrate filter underestimation similar

to the plots for filters #1 and #2.

To observe the tuning characteristics at a lower strength of pseudonoise, 02 and

0 ev" and the correlation times in each directioi

remain unchanged at 8.5 seconds (filter #4). This model for the trajectory dynamics

represents a target that shows very benign maneuverability characteristics. The am-

plitude parameter of the acceleration is assumed small, and the rate-of-change of the

acceleration process remains slow. These target parameters produce a very small 9
value, which also implies that the model is assumed to be a very accurate represen-

tation of the true target trajectory. Figures B.31-B.40 show the performance plots
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for filter #4. This filter continues to show the underestimation qualities of the first

three filters studied in this tuning analysis. It should be noted that the actual errors

in Figures B.31 and B.32 are lower than the three preceding filters; but likewise,

the filter-computed errors are also lower due to the low value of Q used. Lower-

ing the value of Q any further could be damaging to the Kalman filter's estimation

properties. By reducing Q, the filter places more emphasis on its internal model

than it does the incoming measurements from the enhanced correlator. Because of

this consideration, Oa and a are maintained at 5 and tuning via the jitter

variance ua is conducted since filter tuning via the target acceleration parameters

was unsuccessful. The value for the acceleration process variance was maintained at

5, because this value, along with the correlation time of 8.5 seconds, provided the

best performance of all the underestimating filters studied thus far.

Table 6.1 provides the tuning parameters used in Filter #5. The performance

plots are represented in Figures B.41-B.50 and demonstrate that the 8-state filter is

tuned for the parameters listed in Table 6.1. Tuning via the jitter variance proved

successful in tuning the 8-state filter, but the error performance plots for the dynamic

states and the centroid states show a degradation compared to the performance

plots for the untuned filters. This is because the value of the jitter variance (2.15)

used to tune the filter is an order of magnitude greater than the jitter variance

representation in the truth model (0.18). This increase in pseudonoise strength is

somewhat surprising considering that previous research implemented a jitter variance

of 0.2 in the filter to obtain good tuning characteristics. Section 6.9 further discusses

this discrepancy between the filter and truth model representations for atmospheric

jitter.

6.3 8-State Filter Benchmarks

Based upon the results in Section 6.2, the two state pogo model is added

to the truth model structure, and four single filters are tuned for varying pogo
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FILTER #1 o, , (seconds) [ , (seconds)

1 5 8.5 2.20 0.0707
2 5 8.5 2.15 0.0707
3 5 8.5 2.10 0.0707
4 1) 8.5 2.15 0.0707

Table 6.2. 8-State Benchmark Filter Tuning Parameters

SCENARIO POGO AMPLITUDE POGO FREQUENCY
(pixels) (Hertz)

I 1.12 10
2 0.012 10
3 1.12 0.1
4 0.012 0.1

Table 6.3. Truth Model Pogo Scenarios for the Four Benchmark Filters

characteristics. The parameter used in tuning the four single filters is the atmospheric

jitter variance. By adjusting the jitter variance, the filters are able to capture the

pogo effect as atmospheric jitter without corrupting the estimates of the dynamic

states. Table 6.2 illustrates the filter parameters used to tune each of the filters for

the corresponding truth model pogo scenarios in Table 6.3. Note that the tuning

parameters in each of the filters in Table 6.2 are nearly identical. These results

indicate that an 8-state filter is fairly robust to the varying levels of pogo amplitude

and frequency (at least when the jitter variance has been increased an order of

magnitude above the true jitter value), and that an MMAF structure composed

of 8-state filters would not be applicable since there are no strong distinguishing

characteristics for the four cases. On the other hand, an MMAF composed of 10-

state elemental filters (two additional pogo states in the filter structure), which are

"tightly" tuned for the varying pogo scenarios in Table 6.3, would be expected to

enhance performance over both the single 8-state and single 10-state filters.

The four tuned filters in Table 6.2 establish a benchmark of performance to

which other filters will be compared. Specifically, performance statistics of the 1 0-

state filters of Section 6.5 will be compared to the following performance tatistics of'
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Temporally Averaged
Error Statistic Mean 1 Sigma

(t-) -.0070759 .86775
9)(t7-) -.070112 .74936
g(tt) -.0040636 .83851
g(t') -.071775 .72038
'(tT) .013944 1.2062

_____-) -.0032691 1.6308

c(t+) .030104 .24844
9c(t+) -.012197 .17827

Table 6.4. /BENCHMARK/SINGLE/DRFOV/GAIN-HI/FREQ-HI/
Performance Statistics

the benchmarks. It should be noted that all filters are analyzed using the DRFOV

rotation scheme. This decision is based on the results -resented in Section 6.4 that

indicate it to be the best of the thrce FOV r on strategies considered. The

performance statistics of all filters are tempora, raged over the last five seconds

of the ten second simulation. Mean and lo error statistics are measured in units of

pixels on the FLIR plane, and the performance statistics for filters #1, #2, #3, and

#4 are given in Tables 6.4., 6.5, 6.6, and 6.7, respectively. The performance plots

for each of the filters are included in Appendix C. Figures C.1-C.10 correspond to

filter #1. Figures C.11-C.20 correspond to filter #2. Filters #3 and #4 relate to

the plots in Figures C.21-C.30 and C.31-C.40, respectively.

Note the relative performance improvements in the statistics after the Kalman

filter update cycle. In almost all cases, the mean errors after an update show some

degradation in performance, but the 1or parameters show improvement in all chan-

nels. The cause of the degradation in the mean statistics after measuement updating

is not clear. The improvement in standard deviations after updates indicates a nar-

rowing of the error envelope and is essential for accurate and effective pointing of a

laser weapon at the target. The four tuned filters discussed in this section demon-

strate fairly equivalent performance, with the exception of the y position of filter #3.

Based upon the temporally averaged statistics, this filter has a degraded tracking
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Temporally Averaged
Error Statistic Mean 1 Sigma

,;(t-) .0015083 .88223
(t7) -.079612 .73758

i(t + ) .0044635 .85175
(t+) -.081503 .70990

___ t_)  .025630 .89075

___ t_) -.020411 .81683

¢(t+) .041439 .29739
j(tt) -.030525 .17981

Table 6.5. /BENCHMARK/SINGLE/DRFOV/GAIN-LO/FREQ-HI/

Performance Statistics

Temporally Averaged
Error Statistic Mean 1 Sigma

i(t') .072219 .89999

__ (t) _-.22353 .93390

&(t+ ) .074845 .87133

9(t_ ) -.22487 .90969
.x,(t7) .012314 .88652
A(t7) -.022698 .81777
xc(tt) .026308 .28814

A(t) -.029826 .18076

Table 6.6. /BENCHIMARK/SINGLE/DRFOV/GAIN-H Q-LO/
Performance Statistics

Temporally Averaged

Error Statistic Mean 1 Sigma

i(t-) -.010234 .86902
9(t7) -.075643 .73763

}(t+ ) _-.0072553 .83859
9(t+ )  -.077485 .70995

:jt) .013227 .87923
gc(t7) -.014780 .81560
i,(t + ) .029164 .26840
9_(t_ _) -.024641 .17300

Table 6.7. /BENCHMARK/SINGLE/DRFOV/GAIN-LO/FREQ-LO/
Performance Statistics
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ROTATION] ao(C r,,ry (seconds) I a'(- (seconds)

NRFOV 5 8.5 1.95 0.0707
RFOV 5 8.5 2.45 0.0707

DRFOV 5 8.5 2.20 0.0707

Table 6.8. Individual Filter Tuning Parameters

capability of approximately 60% when compared to the other filters. Filter #3 is

having some difficulty in separating the hardbody y dynamics from the other states

for a large amplitude, low frequency pogo even though it is estimating the centroid

states as accurately as the other three filters. Figures C.34 and C.36 demonstrate

that filter #3 is showing larger mean errors at approximately eight seconds into the

simulation as compared to the y channel plots of the other three filters. The reason

for this discrepency remains unknown at this time.

6.4 Rotating Field-of- View Analysis

This section compares the two FOV rotation schemes (RFOV, DRFOV) pre-

sented in Section 5.4 along with the nominal non-rotating FOV filter. Each of the

rotation schemes is tested against an identical truth model scenario so that a valid

comparison can be made. The nominal ballistic trajectory is simulated with truth

model pogo characteristics representing a large amplitude, high frequency pogo ef-

fect. This pogo scenario is considered because it should stress each of the FOV

schemes to the limit; i.e., if a filter can show accurate tracking against the pogo

parameters at the upper limit of their respective ranges, then it is assumed that

the other three pogo scenarios could be tracked equally as well since they are less

dynamic. Table 6.8 represents the tuning parameters used in the FOV rotation

schemes. Each filter is tuned for the same truth model scenario before the perfor-

mance analyses are compared.

Appendix D provides the performance plots for each of the rotation schemes

tested. Figures D.1-D.10 are the plots for the NRFOV analysis, Figures D.11-D.20

6-8



Temporally Averaged
Error Statistic Mean 1 Sigma

g(t-) -.050960 .88013
(t7) -.076976 .85183

_(t__ 
)  -.047905 .75585

Y(tt) -.078825 .72863
:i(tT) -.029302 1.2136
yc(t' ) -.011870 1.6430
xc(t +) -.012656 .26714

1(t7) -.021950 .28773

Table 6.9. /BENCHMARK/SINGLE/NRFOV/GAIN-HI/FREQ-HI/
Performance Statistics

Temporally Averaged
Error Statistic Mean 11 Sigma

_ (q) .12915 .85499

y(t}-) -.13041 .77807
_(_

+ )  .13198 .82450
9(t+) -.13205 .74899
c(t7') .14943 1.2134

t7 -.062422 1.6376
,c(tt) .16435 .29877

(tt) -.07106 .24470

Table 6.10. /BENCHMARK/SINGLE/RFOV/GAIN-HI/FREQ-ILI/ Performance
Statistics

represent the RFOV analysis, and Figures D.21-D.30 represent the analysis of the

DRFOV. The main performance indicators are the temporally averaged statistics

over the final five seconds of the ten second simulation. These statistics are tabulated

similarly to the performance statistics in Section 6.3 and provide a tool for a direct

comparison of the three rotation scenarios. Tables 6.9, 6.10, and 6.11 provide the

temporally averaged statistics for the NRFOV, RFOV, and DRFOV, respectively.

Comparing the results of these three tables, it is obvious that the DRFOV docs

outperform the other two rotation schemes, as was initially expected. The DRFOV

outperforms the other two in both the mean errors and the lu statistics, which indi-
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Temporally Averaged
Error Statistic Mean 1 Sigma

(t7) -.0070759 .86775

(t) -.070112 .74936
g(tt) -.0040636 .83851
)(tt') -.0071775 .72038
c(t") .013944 1.2062
¢(t7) -.0032691 1.6308
(t+ ) .030104 .24844

Ydtt) -.012197 .17827

Table 6.11. /BENCHMARK/SINGLE/DRFOV/GAIN-HI/FREQ-HI/
Performance Statistics

cates better identification of the missile hardbody location, as well as more accurate

pointing of the laser weapon. As an example, the DRFOV outperforms the NRFOV

by approximately 85% in the :(t7) mean estimate and approximately 2% in the

standard deviation of the same estimate. By the DRFOV aligning the diagonal cli-

mension of the 8 x 8 FOV with the filter estimate of the velocity vector, more FLIR

intensity data is available to the enhanced correlation algorithm to generate a bctter

estimate of the template; thus creating more accurate linear offset measurements to

the Kalman filter update algorithm. This results in the better performance charac-

teristics over the other two schemes. The RFOV tends to show the least performance

benefit of the three schemes. Based upon Figure 5.2, this makes sense intuitively. As

the pogo effect causes the plume to oscillate about the x axis on the FLIR plane, the

plume actually "pogos" out of the FOV of the FLIR. Less intensity data is available

to the enhanced correlation algorithm; thus the degraded performance statistics for

the RFOV. The NRFOV does demonstrate good performance, which is based upon

the 600 velocity orientation angle of the chosen missile trajectory (at 00, 900, etc., it

would show the same poorer performance of the RFOV).

As mentioned in Chapter V, the greyscale diagram is a plot which demonstrates

the size and shape characteristics of an image on the FLIR plane. Figures 6.1, 6.2,

and 6.3 are greyscale diagrams of the ballistic missile plume and represent a NRFOV,
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RFOV, and DRFOV, respectively. Note that the difference in the plume orientation

is difficult to distinguish between the NRFOV and DRFOV, although Figure 6.3

does demonstrate a more "diagonal-like" orientation. A change of the greyscale's

rectangular representation to a "true" square-shaped grid would demonstrate that

the DRFOV shows a more prominent alignment of the image semi-major axis with

the FOV diagonal. The RFOV of Figure 6.2 does demonstrate that the semimajor

axis is aligned with the positive FLIR x, axis as was described in Figure 5.2.

6.5 10-State Filter Performance Analysis

The objective of this section is to demonstrate the performance of four 10-state

Kalman filters paralleling the truth model scenarios in Table 6.3. The performance

results of each of the four Kalman filters are tabulated, and the results are compared.

to the four 8-state filters of Section 6.3. Again, as in the previous sections, the filters

use the DRFOV rotation scheme as described in Section 6.4. The 10-state Kalman

filters used in this study are of the structure presented in Chapter IV, where the

pogo model is represented by two additional filter states and corresponds directly

to the model used in the truth model. The reason for the identical pogo structures

in the filter and truth models is to provide the filter with the actual effects of pogo

being simulated (robustness to mismodelling of the pogo phenomenon would be a

natural follow-on investigation). It was decided to handle any mistuning via the filter

jitter state, as was done in Section 6.3. By using an identical pogo representation

in the filter model and truth model, an increase in performance is expected over

the 8-state filter where the pogo states were not modelled. Although this tends to

make the 10-state filters less robust to varying pogo scenarios (see Table 3.1), it

leads perfectly into an MMAF structure that will additionally provide performance

enhancement over both a single 10-state and 8-state filter. The tuning parameters

for each of the 10-state filters are presented in Table 6.12; and the performance

plots for filters #1, #2, #3, and #4 are included in Figures E.1-E.10, E.11-E.20,
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Figure 6.1. Greyscale Diagram of a NRFOV
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Figure 6.2. Greyscale Diagram of a RFOV
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Figure 6.3. Greyscale Diagram of a DRFOV
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FILTER # [7,T,r (seconds) 7-, (seconds)

1 5 8.5 2.20 0.0707
2 5 8.5 2.15 0.0707

3 5 8.5 1.70  0.0707

4 5 8.5 2.05 0.0707
Table 6.12. 10-State Pogo Performance Filter Tuning Parameters

Temporally Averaged
Error Statistic Mean 1 Sigma

(ti-) -.011699 .86265
X(t7-) -.068184 .74331

g(tt) -.0086868 .83259
(tlt) -.0069922 .71512

c(t7) .0073344 1.0123

.(t') .0034861 1.1889
ic(tt+ ) .026560 .21228
r (tt) .0098915 .15534

Table 6.13. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-HI/FREQ-HI/
Performance Statistics

E.21-E.30, and E.31-E.40 of Appendix E, respectively.

Note that, when comparing the tuning parameters of Table 6.12 and Table 6.2.

filters #1 and #2 do not change tuning characteristics when going from an 8-state to

a 10-state model. Filters #3 and #4 do show a difference in the tuning characteristics

for the 8-state to 10-state models. Filters #3 and #4 are tuned for a low pogo

frequency while filters #1 and #2 are tuned for a high pogo frequency. This suggests

that the 10-state filters are sensitive to a variation in the pogo frequency, which

should be noticeable in a robustness study with the 10-state filters. This sensitivity

to frequency changes provides insights into possible elemental filters necessary in the

MMAF algorithm, but no firm conclusions can be made until a complete robustness

study is performed (see Section 6.8). Tables 6.13, 6.14, 6.15, and 6.16 present the

temporally averaged performance results for filters #1, #2, #3, and #4, respectively.
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Temporally Averaged
Error Statistic Mean 1 Sigma

(t') .00099137 .87757

D(tT') -.084805 .73927
(tt') .0029912 .84687
(tk) -.086673 .71175
,(t") .024272 .88594
c(tT ) -.025499 .81603

c~+) .040221 .28125

Yc(tt) -.035495 .17773

Table 6.14. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-LO/FREQ-HI/
Performance Statistics

Temporally Averaged
Error Statistic Mean 1 Sigma

(t7) .089741 .94506
(t7) -.28040 .99732
(t+) .092084 .91402
(tt) -.28132 .97042

.x,(t') .015006 .88221
#J_(t7) -.055326 .81552

xc(tt) .026931 .27572
C((t 1) -.059738 .16126

Table 6.15. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-III/FREQ-LO/
Performance Statistics

Temporally Averaged
Error Statistic Mean 1 Sigma

&(t,-) -.0037107 .89255
,)(t') -. 10924 .76.164
(") -.00083007 .86142

Xtl+)  -. 11088 .73316
C(t7) .0096192 .88558

#C(t7') -.031412 .81304
:c(t+) .0249,48 .28201
,¢(tt) -.040174 .16130

Table 6.16. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-LO/FREQ-LO/
Performance Statistics
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In comparing Tables 6.13-6.16 to the corresponding tables in Section 6.3, the

filters of this section show a mixture of performance improvement and degradation,

with no real pattern. There is also a mixed performance comparison between the

x and y channels of the same filter. The performance improvements cannot be tied

to a particular channel or a particular pogo parameter. For example, in comparing

the statistics of tile 10-state filter #1 to the 8-state filter #1, the y position channel

means demonstrate a performance enhancement for the 10-state filter of about 3%

with a la" improvement of approximately 1%, while the x position channel means

demonstrate a performance degradation of 65 to 100% and a la" enhancement of

about 1%. Likewise, in comparing the 10-state filter #4 to the 8-state filter #21,

the x channel position means demonstrate an enhanced performance of 60 to 90%,

while the y channel position means show a degraded performance on the order of'

45%. These mixed performance characteristics are consistent when comparing each

of the filter statistics in this section to those of Section 6.3. Thus, due to the lack

of consistent performance enhancement of the 10-state filter, a robustness analysis

for possible MMAF implementation of the 10-state elemental filters was not feasible

at this time. At this point, the research therefore altered direction in an attempt to

understand the lack of consistent 10-state filter performance enhancement.

After ensuring that the pogo phenomenon was correctly derived (Section 3.2.4)

and implemented in the Fortran code, a possible problem for the lack of consistent

performance enhancement was attributed to a possible observability problem caused

by interaction between the pogo effect and the bending/vibration phenomena mod-

elled in the truth model [10] if the bandwidths of the two processes were too close

to one another. The undamped natural frequency of the bending phenomenon is

set at one Hertz throughout the simulation, and a possible resonance effect with

the pogo phenomenon's frequencies (0.1 and 10 Hertz) may cause the filter difficulty

in distinguishing between an optical bending phenomenon and the plume's pogo

phenomenon. The next two sections are an attempt to substantiate this claim.
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Section 6.6 tunes an 8-state filter for a large amplitude, high frequency truth

model pogo phenomenon where all bending effects are removed from the truth model.

Section 6.7 tunes the corresponding 10-state filter for the same truth model scenario,

and the performance statistics of the 8-state and 10-state filters are once again

compared. This process parallels the performance comparisons between the filters in

Sections 6.3 and 6.5; but as a start, only one truth model scenario (large amplitude,

high frequency pogo) is being implemented. By removing the bending effects, the

intent is to isolate the ability to estimate pogo effects (adaptively) in the current filter

structure, separating it from a physical phenomenon that might cause observability

or distinguishability difficulties. It should be noted that the Fortran code used in

this analysis has been modified to include two "flags" that can automatically turn

the pogo effect and/or the bending phenomenon on or off in the truth model. This

capability was extremely helpful in the trouble-shooting scheme presented in this

section, in addition to the trouble-shooting discussed in Section 6.9.

6.6 8-State Filter Benchmark with Bending Removed from the Truth Model

As mentioned in the previous section, the performance analysis of ai 8-state

filter for a large amplitude, high frequency truth model pogo effect with the bending

states removed is presented in this section. The tuning parameters used are identical

to the parameters of filter #1 in Table 6.2, with one exception. The atmospheric

jitter variance necessary to tune the 8-state filter of this section is lowered to 0.8.5

£E 2 as compared to the 2.20 value in Table 6.2. This lowering of the jitter variance

makes sense intuitively, since the bending effect was removed from the truth model;

thus the filter does not have to use the additional pseudonoise to represent this

unmodelled effect. This result was encouraging in the sense that it demonstrates

that the bending/vibration phenomenon has a large impact on the tuning of the

filter and could possibly be interfering with the pogo phenomenon.

Figures F.1-F.10 of Appendix F show the performance plots for the single 8-
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Temporally Averaged
Error Statistic Mean 1 Sigma

__ (t_ ) -.0013045 .52118

-.067579 .63134
&(t") .00028606 .50176

_( __) -.067861 .60457

(t .015861 1.1899
_,,_t_') -.052311 1.6195

.0083355 .27029
U(ti ) 53648 .17155

Table 6.17. /BENCHMARK/SINGLE/DRFOV/GAIN-HI/FREQ-HI/BEND
OFF/ Performance Statistics

state filter used in this section. The temporally averaged performance statistics are

provided in Table 6.17.

Comparing the performance results of the 8-state filter of this section with the

statistics of Table 6.4, shows a dramatic increase in x and y position performance for

the filter where the bending is removed from the truth model. This is expected since

the filter of this section does not have to concern itself with separating the bending

effects from the position btates in the truth model. The next section provides the

performance results of the 10-state filter, in addition to a comparison of the 8-state

-filter statistics of this section.

6.7 10-State Filter Performance with Bending Removed from the Truth Model

As previously mentioned, an identical analysis of a 10-state filter is conducted

to parallel the analysis in the previous section for an 8-state filter. The 10-state

filter of this section shows the same tuning characteristics as filter #1 of Section 6.5,

with the exception of the atmospheric jitter variance. The jitter variance required

to tune this 10-state filter is 0.7 L as compared to the jitter variance of 2.20

for filter #1 of Section 6.5. This lowering of the jitter variance is consistent with the

corresponding decrease for the 8-state filter of the pievious section. The performance
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Temporally Averaged
Error Statistic Mean 1 Sigma

(t" -.018256 .52291
y(t7") -.095694 .61774

(tt) -.016663 .50233
9(t+ -.095728 .59076
C(t') -.033336 .98328
._(t7') -.076664 1.1528
,(t +) -.024408 .25916

__ (___) -.078125 .15941

Table 6.18. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-HI/FREQ-HI/
BEND OFF/ Performance Statistics

plots for the 10-state filter of this section are presented in Figures F.11-F.20 of

Appendix F. The corresponding performance statistics temporally averaged over the

last five seconds of the ten second simulation are presented in Table 6.18.

In comparing the results of Table 6.18 to those of Table 6.17, the mean position

errors of all the variables of interest are showing a degradation in performance by

the 10-state filter. The lo, statistics show a mix in performance enhancement and

degradation; although overall, the 10-state filter performance consistently shows a

performance degradation when considering the worst case tracking scenario, i.e.,

mean error +1o or mean error -Ia. For example, consider the mean errors of &c(tt)

for the 10-state filter of this section to the 8-state filter of the previous section. The

8-state filter demonstrates an enhanced estimation ability over the 10-state filter.

But, upon inspection of the respective 1o statistics, the 10-state filter demonstrates

better estimation accuracy over the 8-state filter other than the larger bias just

noted. When comparing the worst case scenario as described above, the 8-state

filter maintains a performance increase of approximately 5% over the 10-state filter's

estimation ability.

The results of the degraded 10-state filter performance are similar to the results

presented in Section 6.5; therefore it was deemed unnecessary to compare the 10-
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state and 8-state filter performance for the remaining truth model scenarios listed in

Table 6.3. From the results of the analysis in this section, it can be concluded that,

although the bending phenomenon does have an impact on the tuning characteristics

of the 8-state and 10-state filters, it is not the reason for the degraded performance of

the 10-state filter. Bending may have some effect on the degraded performance, but

something else involving the filter structure seems to be more dominant in degrading

the 10-state filter performance from that of the 8-state filter. Based on the results of

this analysis, the 10-state filter is showing a decrease in overall performance for every

statistic. Since it is expected that the 10-state filter should show a corresponding

increase in performance rather than the observed decrease, a possible sign error in

the Fortran code was suspected [10]. Section 6.9 discusses the analysis and results

of additional trouble-shooting techniques (including possible sign errors in the code)

in attempt to explain the degraded 10-state filter performance. Before getting into

the trouble-shooting techniques of Section 6.9, Section 6.8 summarizes the "obvious"

reasons why the MMAF and robustness analyses were not performed as part of this

research.

6.8 Robustness and MMAF Discussions

As stated throughout this thesis, the robustness and MMAF analyses were not

implemented as part of this research. Based upon the results of Chapter VI thus far,

the overriding reason that the robustness study is not performed is due to the lack

of performance enhancement of the 10-state Kalman filters over the corresponding

8-state filters. Without an increase in performance of the 10-state filter, a robustness

analysis on a poorer quality filter does not make sense. In addition, the implementa-

tion of the MMAF algorithm is directly tied to the results of the robustness analysis.

and since the robustness analysis is inappropriate at this time, the MMAF analysis

suffers correspondingly. At this point in the research, a single robust 8-state filter

outperforms the 10-state filters, and one would likewise expect it to outperform an
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MMAF structure composed of inferior quality 10-state elemental filters.

Once the problem of the 10-state filter performance degradation is corrected, a

robustness study can determine what elemental filters are appropriate in the MMAF

structure. A proposed MMAF structure is provided in Chapter IV. Therefore, for

completeness of the objectives described in Chapter I, and for the benefit of follow-

on research to implement an MMAF structure, a proposed robustness study for

each of the tuned single 10-state Kalman filters presented in Section 6.5 is provided

in Table 6.19. Note that each of the four tuned filters of Section 6.5 are tested

against four truth model pogo robustness scenarios that vary in combinations of pogo

parameters for which they are not tuned. The results of this analysis will determine

the sensitivity of each of the tuned filters to a mismatch in what tlie filter "thinks"

the pogo parameters are, to what the truth model is actually simulating. This

would indicate relative merits of including either pogo amplitude, or pogo frequency.

or both, in the adaptation of the MMAF algorithm. Also note that a robustness

scenario involving pogo amplitude and frequency values corresponding to the median

value of the assumed range of pogo parameter values has been added to the analysis.

The intent is to determine whether an additional 10-state filter, tuned for these

median pogo parameters, 's required in the MMAF structure.

6.9 Trouble-Shooting

The objective of this section is to determine the possible reasons why the 10-

state filters developed in this research do not outperform the corresponding 8-state

filters. This section is divided into four subsections which address the analysis and

results of (1) possible sign errors in the pogo model, (2) jitter model sign errors, (3)

observability issues of the 8-state and 10-state filters, and (4) possible pogo-jitter

interactions.
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FILTER # TRUTH MODEL POGO TRUTH MODEL POGO

I AMPLITUDE (pixels) FREQUENCY (Hertz)

1 0.112 1
0.0112 10

1.12 0.1
0.0112 0.1

2 1.12 10
0.112 1
1.12 0.1

0.0112 0.1
3 1.12 10

0.112 1
0.0112 10
0.0112 0.1

4 1.12 10
0.112 1
1.12 0.1

0.0112 10

Table 6.19. Proposed 10-State Filter Robustness Scenarios

6.9.1 Analysis of Possible Pogo Sign Errors in the Fortran Code. Based upon

the discussion in Section 6.7, the results indicate that a sign error may exist in the

Fortran code. This section describes the trouble-shooting performed in determining

a possible sign error in the pogo implementation. Two separate checks were im-

plemented to detect such a pogo sign error. The first check involved an individual

frame analysis of three separate simulations. All three simulations involved the at-

mospheric jitter states being removed from the filter and truth models, along with

removing the bending states in the truth model. The only states remaining in the

filter and truth models were the target dynamic states and the pogo states. The

differences in the three simulations are described as follows:

1. In the first simulation, the pogo output of the Kalman filter propagation cycle

and the pogo output of the truth model propagation cycle are hard-coded to

equal the value 2. The error analysis in this simulation should demonstrate the

best performance if the truth model simulation, tracker algorithm, and errors
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SIMULATION # J (t7) 1 N(t) J (t) &()
1 -.000572681 .000602245 -1.33138 -.642759
2 -.000572681 .000602245 -3.3341 2.8192
3 -.000572681 .000602245 -1.58063 -.211713

SIMULATION #[ (t + )  ( ' (tt') ,ct
1 1.25099 .808904 .0734272 .264287

2 3.28608 -2.34386 .0848646 .267146

3 1.59888 .395761 .0713057 .190000

Table 6.20. Frame Analysis of Mean Errors for Pogo Sign Test

are being calculated correctly.

2. In the second simulation, the pogo output of the filter propagation was hard-

coded to -2, while the truth model remained hardcoded at 2. The error analysis

in this simulation should show the worst performance if the truth model sim-

ulation, tracker algorithm, and errors are being calculated correctly.

3. The third simulation involved no hardcoding of the filter or truth states. This

simulation is added as a control to ensure that nothing completely unexpected

happens in simulations #1 and #2.

The intent is to compare the mean errors after the first propagation and update

cycles to determine if the variables and errors are being calculated correctly. Ta-

ble 6.20 presents the mean errors in the filter estimates after the first Kalman filter

propagation and update cycle.

Note the error magnitudes in the ,(t-) and ,(t7) centroid estimate channels

for simulations #1 and #2. The relative magnitudes of these errors indicate that the

pogo signs are implemented correctly in the error calculations of the simulation soft-

ware. Simulation #2 hard-coded the value of the pogo filter state after a propagation

cycle at -2, whereas the corresponding truth model value of the state was hard-coded

at 2. Likewise, the pogo filter output of simulation #1 was hard-coded at 2 after

a propagation cycle and 2 for the output of the truth model pogo. Since the error

calculations coded in the software take the difference between the filter state minu.s
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the truth state, one might expect an error difference of -4 for the centroid errors be-

tween simulations #1 and #2. But recalling that the pogo phenomenon is simulated

to occur about the estimated velocity vector, the differences between the centroid

errors in simulations #1 and #2 are on the order of -4 cos 0 T for the x channel cen-

troid errors and -4 sin OT for the y channel centroid errors, where OT = 600 for the

chosen missile trajectory. These results signify that the pogo model is implemented

properly and that the errors are being calculated correctly.

In addition, the errors for simulation #2 show the worst performance of the

three simulations tested. This is additional evidence that the errors are being cal-

culated correctly and the pogo models are implemented as expected. The errors

for simulation #1 closely resemble those of the control simulation #3. This also

indicates that the nominal pogo model of simulation #3 is estimating as designed.

Evidence that the errors after a Kalman filter update cycle are being calculated cor-

rectly is also contained in Table 6.20. Simulations #1 and #3 demonstrate small

errors after the Kalman filter update cycle for this particular data frame analyzed.

As the simulations continued, the Kalman filter attempted to regulate all of the

errors to zero, as would be expected.

The second check to test for pogo sign errors involves two simulations based

upon the same concept presented above. The first simulation involves hardcoding

the output pogo state from the Kalman filter propagation cycle to equal the output

of the truth model's pogo state. The second simulation involves hardcoding the

output pogo state from the Kalman filter propagation cycle to equal the negative of

the output of the truth model's pogo state. The only difference between the set-lp

for this check and the previous check is that the pogo representation in the truth

model is permitted to propagate as designed, instead of hardcoding it to a value of

2 as was previously (lone. By allowing the pogo representation in the truth model

to propagate naturally, the Kalnan filter update cycle is also permitted to react

more naturally, since the estimate of the pogo state after the propagation cycle is
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Temporally Averaged

Error Statistic Mean 1 Sigma

g(t7) -.024647 .12071
(t7) .13471 .21716
}(t+) -.022972 .11548

(tt) .13203 .21102
5c(t7) -.025102 .58298
Mc(tT) .11998 .99070
c(t+) -.018504 .22206
(t+) .10575 .38650

Table 6.21. Performance Statistics for Simulation #1 of Pogo Sign Test

Temporally Averaged
Error Statistic Mean 1i Sigma

x(t ) -.11219 .14661
9(ti") -14732 .22869
:(tt ) -.10969 .14364
X(t+) -.14934 .22409
'(t7) -.10350 .95367
(t7) -.14650 1.6198

&;i(tt) -.094226 .36817
Mlttt) -.15686 .61230

Table 6.22. Performance Statistics for Simulation #2 of Pogo Sign Test

not continuously being hardcoded to the same value. The bending states arc once

again removed from the truth model, and the atmospheric jitter states are removed

from both the filter and truth models. The temporally averaged results of ten Monte

Carlo runs are collected for each of these simulations and are presented in Tables 6.21

and 6.22.

Based upon a comparison of Tables 6.21 and 6.22, it is obvious that the rc-

sults from simulation #1 show definite performance improvement over the results

of simulation #2 for all statistics collected. This is further evidence that the pogo

model is acting correctly in both the truth and filter models. It can be surmised

that from the results of this section, the degraded performance of the 10-state filtcrs

presented in Section 6.5 is not due to a problem with pogo effect implementation in
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the simulation software. The next section performs the same analysis to check for

possible sign errors in the atmospheric jitter implementation.

6.9.2 Analysis of Possible Atmospheric Jitter Sign Errors in the Fortran

Code. A similar sign analysis to the one from the previous section is conducted

for the atmospheric jitter states. The first check involves three simulations in which

the pogo states are removed from the filter and truth models. In addition, the

bending effects are also removed from the truth model. This first check is similar

to the one in the preceding section, in that the mean error statistics are observed

over a data frame that includes one filter propagation and update cycle. The three

simulations are described as follows:

1. In the first simulation, the jitter output of the Kalman filter propagation cycle

and the jitter outputs of the truth model propagation cycle are hard-coded to

equal the value 4 and 2, respectively. Recall that, when the 6-state atmospheric

jitter truth model is transformed to Jordan canonical form, two states per

channel become direct contributions to the outputs, which are used as the jitter

contributions to the centroid location on the FLIR plane. Thus, the value of 2

is chosen for the hardcoded value of each of these outputs, to correspond to the

one-state contribution from the filter's model of the jitter. The error analysis

in this simulation should demonstrate the best performance if the errors are

being calculated correctly.

2. In the second simulation, the jitter output of the filter propagation was hard-

coded to -4, while the truth model values remained hardcoded at 2. The error

analysis in this simulation should show the worst performance if the errors are

being calculated correctly.

3. The third simulation involved no hardcoding of the filter or truth states. This

simulation is added as a control to ensure that nothing completely unexpected

happens in simulations #1 and #2.
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SIMULATION # (i ,t(tT) ,_____)
1 -.000572681 .000602245 -.000573158 .000602245
2 -.000572681 .000602245 -8.00057 -7.99940

3 -.000572681 .000602245 -1.33132 -.642725

SIMULATION # ('),(tt) I (t+ )  ,dtt)

1 .0198026 .0466537 .0206451 .0485578

2 7.69954 7.72541 .0179048 .0448005

3 1.31882 .696278 .0426211 .0817142

Table 6.23. Frame Analysis of Mean Errors for Atmospheric Jitter Sign Test

The intent is to compare the mean errors after the first propagation and update

cycles to determine if the errors are being calculated correctly. Table 6.23 presents

the mean errors in the filter estimates after the first Kalman filter propagation and

update cycle.

Analyzing the results of the of Fable 6.23 in an identical manner to that used

for the pogo sign test, it can bc concluded that the jitter error calculations are being

done correctly. Refer to Section 6.9.1 for the pogo sign test analysis of Table 6.20.

The second sign check for the atmospheric jitter is again done identically to

the pogo sign check in Section 6.9.1. Two 'simulations are again performed. The

first simulation involves hardcoding the output jitter state from the Kalman filter

propagation cycle to equal the output of the truth model's jitter output. The sec-

ond simulation involves hardcoding the output jitter state from the Kalman filter,

propagation cycle to equal the negative of the output of the truth model's jitter

outputs. The temporally averaged performance statistics for simulations #1 and #2

are presented in Tables 6.24 and 6.25, respectively.

Again, as in the test for sign errors in the pogo implementation, the direct

comparison of Tables 6.24 and 6.25 demonstrate that the filter represented in sim"-

lation #1 outperforms the filter represented in simulation #2. On the basis of these

results, it can be concluded that the atmospheric jitter error calculations in the code

are being performed correctly, and this suspected problem is not the cause of the
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Temporally Averaged
Error Statistic Mean 1 Sigma

(t7) -.063826 .29375
X(t) -.035509 .23917
g(t + )  -.062046 .28502

9(t+) -.037160 .23073

c(tTi) -.062593 .98040
Mc(t7) -.035654 .90888

-.054385 .25669
y(t) -.043256 .17049

Table 6.24. Performance Statistics for Simulation #1 of Jitter Sign Test

Temporally Averaged
Error Statistic Mean I Sigma

i(t") .10434 1.2789
N(t -)1 -030109 1.4876
(t+-)  .10431 1.2218
(t+ ) -.026815 1.4172
jt'') .063816 1.6163

y(t") -.0055187 1.6140
ic(t + )  .063691 .26885

F (t+t) .0096029 .18104

Table 6.25. Performance Statistics for Simulation #2 of Jitter Sign Test
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10-state filter performance degradation observed in the preceding analyses.

During the course of the jitter sign testing, an interesting result was uncovered.

The two tuning plots for simulation #1 of Table 6.24 are included in Appendix G as

Figures GA and G.2. Notice the overestimation that the filter-computed errors are

exhibiting. The tuning parameters for this particular simulation are identical to the

tuning parameters of the 10-state filter from Section 6.7. Specifically, the variance

of the atmospheric jitter process in the Kalman filter is set at a value of 0.7s

Note that the actual errors are on the order of 0.3 pixels, which is expected, since the

filter's estimate of the jitter was hardcoded to match the truth models values of the

jitter. With this in mind, another simulation was run identically to the simulation

represented in Figures G.1 and G.2, except that the jitter variance was set to its

nominal value used in previous research, i.e., 0.2. Recall that, in Section 6.2. it

was stated that the truth model jitter variance is approximately 0.18 and the value

used for the filter jitter variance from past research is 0.2. The tuning plots for this

simulation are represented in Figures G.3 and G.4, and as expected, the filter shows

tuning characteristics similar to previous research [5, 19, 24].

Based upon these results, it was suspected that the jitter model in the Kalman

filter may not be estimating the jitter states as well as originally anticipated, and

this might be one of the causes for the degraded performance of the 10-state filter.

In addition, the tuning problems of Section 6.2 might be related to the same poor

estimation problem of the jitter states. Two final simulations were run to gain more

insight into this new occurrence. The two simulations are described as follows:

1. The pogo states are removed from the filter and truth model, al- , "vith the

bending from the truth model. The jitter variance in the filter is scL equal to

0.7 and the truth model jitter variance is kept at 0.18. The jitter states in both

the filter and the truth models are not hardcoded, permitting them to react ais

designed.
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2. The above simulation as just described is duplicated except the jitter variance

is set to the value used in previous research, i.e., 0.2.

The tuning plots for each of these simulations are located in Appendix G. Recall

that the tuning plots used in this research are for actual and filter-computed rms

errors of the dynamic position states only, and that additional tuning plots for the

jitter position errors would be very desirable and should be investigated in follow-on

research. Figures G.5 and G.6 correspond to simulation #1, while Figures G.7 and

G.8 correspond to simulation #2. The tuning plots for simulation #1 show good

tuning results for a jitter variance of 0.7, while the tuning plots for simulation #2

show the typical underestimation qualities as the plots of Section 6.2 consistently

demonstrated. The interesting point is that the actual rms errors in each of these

four figures is larger than the actual errors of in Figures G.1-G.4. This seems obvious

since the Figures G.1-G.4 are the result of hardcoding the filter jitter equal the truth

model's representation of the jitter. Based upon this analysis, the possibility exists

that, for the ballistic missile trajectory described in this thesis research, the jitter

model in the filter is not estimating the jitter states in the truth model as well as

initially anticipated. Due to limiting time constraints, this anomaly was not pursued

further, but recommendations to understand the jitter estimation properties and how

they relate to this thesis research are described in Chapter VII.

6.9.3 Observabilily Issues. In an attempt to understand as much as possible

about the lack of performance enhancement of the 10-state filter before this thesis

effort has to be concluded, a stochastic observability test was performed on both

the 8-state and 10-state filter structures discussed in Sections 6.6 and 6.7. By in-

vestigating whether any of the states in either of the filter models is unobservable

in the output, a better decision on where to focus future trouble-shooting can be

determined. The fact that some of the states may be unobservable could be one of

the causes of the degraded performance. The stochastic observability condition is
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given by the following relationship [7]:

i
aI < E IT(tj, ti)HrT(tj )R-l(tj)H(tj) P(tj, ti) 01fl (6.2)

j=i-N+l

If there exist positive numbers a and 13, and 0 < a < # < oo, and a positive integer

N such that, for all i > N, the above relationship holds, then the system is said

to be stochastically observable. It should be noted that the observability analyses

performed in this section are based upon simulations that were done with single pre-

cision numerics. This is important when analyzing the eigenvalues of the respective

observability matrices. As will be demonstrated shortly, some of the eigenvalues of

the observability matrices are negative quantities, which is theoretically impossible.

The source of these negative values is contributed to the single precision calculations

used throughout the simulations.

The observability matrix (diagonal terms) for the 8-state filter described in

Section 6.6 is given as follows:

68578 - . . .. .

- 50000 - . .. .

- - 76.198 - .. .

- - - 55.556 -. .

. . . .- - .021664 - - -

..... .015,131 - -

. . . . .- 26710 -

. . . . .- 19474

The observability matrix (diagonal terms) for the 10-state filter described in

Section 6.7 is given as follows:
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68 578 .........

- 50000 ........

- - 77.455 .......

- - - 55.98 ... ...

....- - .022535 .....

..... - - .015895 ....

. . . ...- - - 26710 - - -

. .. .... -- 19474 - -

.......- - 9156.7 -

.......- 8.4749

Note that the observability matrices are in no way diagonal matrices; but for

the purposes of emphasis and clarity, only their diagonal terms are depicted By

looking at the diagonal terms of the two observability matrices, the specific states

that could cause possible observability problems can be distinguished by small mag-

nitudes relative to the other diagonal entries. To determine if the two system models

are, in fact observable, the eigenvalues of each matrix must be positive. The eigen-

values of the 8-state filter model are, in descending order:

95364

60529

.060781

.00050024

.00034823

.00018957

.0000000026546

L .068208
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and the eigenvalues for the 10-state filter are:

99049

75006

3.8473

1.6355

.10869

.00054219

.000000068269

-.00000049120

-.000037323

-.023223

Note that three of the eigenvalues of the 10-state observability matrix are

negative and two of them, namely the sixth and seventh eigenvalues, are very small

when compared to the remaining five eigenvalues. For a system to be stochastically

observable, none of the eigenvalues can be negative or zero; therefore, the 10-state

filter is considered unobservable in at most five of its states. As mentioned earlier, tile

negative eigenvalues must be due to numerics problems for a given application, since

negative eigenvalues are theoretically impossible. To determine possible problem

states, the diagonal terms of the 10-state observability matrix are investigated. The

five smallest diagonal terms in this matrix correspond to the acceleration and velocity

states in both the x and y FLIR directions and the pogo velocity state which is

oriented along the missile velocity vector.

For the 8-state filter observability matrix, one of the eigenvalues is negative

and four (namely, the fourth, fifth, sixth, and seventh) of them are small relative

to the others. This indicates that the 8-state filter is also subject to observablility

problems and that five states are causing the difficulty. Investigating the diagonal
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terms of the 8-state observability matrix, the two acceleration states and the two

velocity states in each direction on the FLIR plane seem to be the cause, as well as

possibly the y channel jitter state. This is physically reasonable, since acceleration is

least observable of position, velocity, and acceleration, from position measurements.

Moreover, this effect is most pronounced for benign trajectories, as used in this

research. An important aspect is that the observability matrix diagonal terms corre-

sponding to the two pogo states are of sufficient magnitude to indicate no heightened

observability problems from their addition to the original 8-state model.

Based on the observability results for both filters, there seems to be a possible

problem with the acceleration models in each filter. Additionally, the observability

problems with the first-order lag acceleration models could also be affecting the

unobservability condition of the pogo velocity. At this point, a recommendation is

made possibly to model the filter's position as a second-order Gauss-Markov proces

versus third-order. Possible models for velocity are = 0 + w (essentially constant

velocity paths, plus pscudonoise), or = -L+w (first-order Gauss-Markov velocity).

The reason is that the ballistic trajectory used in this simulation is a very benign

trajectory, and the first-order acceleration process may not be modelling this benign

trajectory very well since the target's acceleration is not changing during the course

of the simulation [10]. The additional acceleration state is anticipated to be difficult

to estimate well under these conditions. One benefit to modelling the acceleration

as a first-order process is that highly dynamic targets can be tracked accurately.

The ballistic missile simulated in this research is benign and experiences no harsh

dynamics. Chapter VI re-emphasizes this point for the benefit of future research

possibilities.

One last note on the observability of the 8-state filter is that the observabil-

ity matrix is independent of the truth model trajectory selected in thc simulation.

Each of the terms in Equation (6.1) are constant matrices, and the only difference

between the observability matrix for this 8-state filter and the 8-state filters used in
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past AFIT research is the value of the correlation time chosen for the acceleration

process. Thus, the possibility exists that the 8-state filters used in past research have

had similar observability problems that went unnoticed. Chapter VII also discusses

recommended actions to be taken concerning this issue, before continuing study is

performed on this research.

6.9.4 Possible Pogo-Jitter Interactions. One final study is performed to as-

sess the possibility of pogo-jitter interactions existing in the filter model and/or the

truth model. In addition, this analysis also investigates the proposed feasibility of

adding pogo states to the filter for enhanced performance, which is the basis of the

10-state filter. To accomplish these objectives, two simulations are performed that

remove jitter states, thereby removing any possible interaction of pogo and jitter

phenomena from affecting the results. In the first simulation, the only states includ-

eded in the filter and the truth model are the pogo states and the dynamic target

states. The second simulation removes the pogo states from the filter model, but

keeps them in the truth model. Each simulation is performed using ten Monte Carlo

runs and a simulation time of ten seconds. Performance statistics are gathered over

the last five seconds of the simulation, and the results are presented in Tables 6.26

and 6.27. The same tuning parameters used in Sections 6.6 and 6.7 are duplicated

for the two simulations of this section, with the exception of the jitter parameters,

which are irrelevant for this analysis.

Comparing the results in Tables 6.26 and 6.27, the filter from simulation #1

that models the pogo in the filter structure shows an average performance enhance-

ment on the order of 50%. Particularly note the improved performance in the track-

ing accuracies signified by the la statistics. This is a welcomed enhancement, since

the applicability for pointing a laser weapon accurately depends on a small tracking

"envelope" in order to avoid painting the target.

The results of this analysis demonstrate that a possible pogo-jitter interaction
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Temporally Averaged
Error Statistic Mean 1 Sigma

:(tT -.16696 .36679
(ti) .16254 .32098

:(tt )  -.16351 .35699
9(t+) .15990 .30789
xc(tT) -.14366 1.3816
M__t) .16443 .22974
x:(tt) -.095352 .27453
i)c(t +) .11109 .220111

Table 6.26. Performance Statistics for Simulation #1 with Pogo in the Filter

Temporally Averaged

Error Statistic Mean 1 Sigma

(t-) -.20393 .81056
j(t7) .07813 .97758
(tt) -.20213 .77871

(t +) .075085 .92391
,c(t ) -.18583 3.3051
A(t') .041323 5.6122
:C(t+ )  -. 17849 .55789

M,(t) .02898 .42620

Table 6.27. Performance Statistics for Simulation #2 with Pogo Removed from the
Filter
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does exist in the 10-state filter structure, and that an expected performance en-

hancement should result when modelling the pogo phenomenon in the Kalman filter

model. Further investigation of the pogo-jitter interaction is strongly motivated.

6.10 Summary

This chapter has analyzed several different issues regarding the tracking algo-

rithm of Chapter V. First, the tuning issues with regard to the filter model dynamics

state parameters were presented, followed by the 8-state filter benchmark analysis,

FOV rotation schemes, and the 10-state filter performance analysis. After the per-

formance degradation results of the 10-state filter were discovered, an analysis of two

single filters (8-state and 10-state) was performed with the bending phenomenon re-

moved from the truth model. This modification resulted in continued performance

degradation by the 10-state filter, so a comprehensive trouble-shooting plan was im-

plemented to gain insights into the possible reasons for the degraded performance. A

pogo-jitter interaction appears to be a substantial cause of this degradation, and it

warrants further investigation. Before implementing the trouble-shooting schemes,

a discussion regarding the MMAF analysis and robustness studies was provided,

although neither was implemented in this thesis research effort.
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VII. Conclusions and Recommendations

7.1 Introduction

This chapter summarizes the final conclusions of this thesis and suggests topics

for further study. Section 7.2 draws conclusions based upon the results obtained

in Chapter VI. Suggestions for continued research on applying the FLIR tracking

system to the ballistic missile tracking problem are enumerated in Section 7.3.

7.2 Conclusions

Numerous conclusions have been made throughout the performance analysis

of Chapter VI. These conclusions will be reassembled and presented in the following

subsections.

7.2.1 Filter Tuning Based upon Dynamics Parameters. As demonstrated in

Section 6.2, the tuning of the 8-state Kalman filter was not possible strictly us-

ing the tuning parameters of the target dynamics model. Se.eral variations of the

parameters were examined with little success. Eventually, to obtain good tuning

characteristics on the FLIR position states, the atmospheric jitter variance was used

as the dominant tuning parameter. This makes sense, since the unmodelled effects

are better "captured" by the filter jitter states then the filter target states, so that

the filter target estimates are not severely distorted. Using this parameter, an 8-state

Kalman filter model was tuned for truth model scenarios that rangcd from a large

amplitude, high frequency pogo phenomenon to a simulation with no )Lime pogo

present.

Based upon the observability testing performed in Section 6.9.3, the first-order

Gauss-Markov acceleration model may be inappropriate for modelling the benignh

behavior of a ballistic missile that is not undergoing a "staging" event. The ac-

celeration states of the filter seem to cause an observability problem which may
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be overcome by using a second-order Gauss-Markov target position process model

versus a third-order model.

7.2.2 Rotating Field-of- View Results. The analysis comparing the various ro-

tating FOV schemes in Section 6.4 proved that the diagonal rotating field-of-view can

provide enhanced performance over the non-rotating field-of-view and the rotating

field-of-view implemented by Norton [19]. This conclusion is based upon a velocity

orientation angle of approximately 600, which was the chosen trajectory for this re-

search; but it could be easily extended to other target orientations. The conclusion

that the DRFOV, properly aligned, can provide enhanced tracking performance of a

missile hardbody whose plume is undergoing a pogo phenomenon, makes sense intu-

itively based strictly on geometry. It is recommended that future research involving

plume pogo use the DRFOV tracking scheme.

7.2.3 10-State Filter Tracking Performance. As demonstrated by the results

of Chapter VI, the 10-state filters analyzed showed degraded or mixed performance

results when compared to corresponding 8-state filters. These poor performance

results were the driver for the trouble-shooting analyses conducted in Chapter VI.

Initially, the problem was thought to be a truth model pogo-bending interaction

based upon each phenomenon's frequency characteristics. The analyses conducted

in Sections 6.6 and 6.7 basically concluded that the proposed pogo-bending inter-

action, if one exists, is not the cause of the degraded performance of the 10-state

filter. When the bending phenomenon was removed from the truth model, the 8-

state filter continued to outperform the corresponding 10-state filter. The results of

these analyses implied that a possible sign error existed in the Fortran code when

calculating the error statistics. This conclusion was inferred because the 8-state filter

outperformed the 10-state filter in every performance statistic, when the converse

was actually expected to occur.
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To investigate the possibility of a sign error, the pogo and jitter models were

evaluated independently. As concluded in Chapter VI, the individual frame checks,

as well as the overall temporally average statistics, proved that both the pogo and

jitter models are implemented correctly in the code.

During the sign analysis of the jitter phenomenon, it was discovered that the

jitter model imbedded in the Kalman filter may not be estimating as well as an-

ticipated. This result was uncovered when the jitter estimate in the Kalman filter

was hardcoded to equal the true jitter output of the truth model. The possible poor

estimation properties of the jitter model may have an impact on the inability of the

10-state filter to show improved performance over the 8-state filter.

Additionally, the results of Section 6.9.4 demonstrate that an interaction be-

tween the pogo and the atmospheric jitter may also exist. The performance of two

filters were compared against a truth model that contained only the two pogo states

and the two dynamic states. One filter included the pogo phenomenon in its model

while the other filter had no pogo modelling. The jitter model in both filters was

removed, and the temporally averaged statistics compared. The filter that modelled

the pogo phenomenon showed a performance enhancement of approximately 50%

over the filter with no pogo modelling. These results tend to imply that a possi-

ble interaction is occurring between the pogo and jitter states in the filter, possibly

causing the observed performance degradation of the 10-state filter from that of the

8-state filter. Additionally, the improved performance obtained by modelling the

pogo effect in the filter demonstrates the applicability of an eventual MMAF im-

plementation in the tracking algorithm, were it not for the pogo-jitter interaction

problem.

Another possible explanation for the decreased performance of the 10-state

filter was seen by the observability results of Section 6.9.3. The 10-state filter proved

to contain a maximum of five states that are unobservable in the output of the 10-

state filter structure. Those states included the two acceleration and velocity states
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characterizing the hardbody dynamics and the state representing the pogo velocity.

This is physcially reasonable, since acceleration and velocity are least observable

from position measurements. The fact that the 10-state filter is unobservable in

these states can possibly explain the decrease in performance.

In conducting the observability analysis on the 10-state filter, it was discovered

that the 8-state filter also demonstrated an observability problem. Based upon the

eigenvalue analysis, five states seem to be unobservable in the output of the 8-state

filter. These states are, again, the two acceleration and velocity states, as well as

possibly the y channel jitter state. Going from the 8-state to the 10-state filter did not

increase the number of small (essentially zero) eigenvalues, thus these results tend to

imply that the addition of the pogo states to the 10-state filter does not seem to cause

a problem in itself, but the first-order Gauss-Markov model for acceleration may not

be the best choice to model the benign dynamic characteristics of the ballistic missile.

Additionally, the 8-state filters used in previous AFIT research involving the FLIR

tracking algorithm may have also suffered from the same observability problems.

Based upon the numerous trouble-shooting results obtained in Section 6.9,

various recommendations for future study of the pogo phenomenon are provided in

the next section.

7.3 Recommendations

The following recommendations are suggested for further study in applying

the FUR tracking algorithm to the ballistic missile plume problem. Many of the

recommendations are based upon the trouble-shooting performed in Chapter VI,

with the overall intent of improving the performance of the 10-state filter o,'er the

8-state filter and eventually implementing an MMAF algorithm.

7.3.1 Observability of Previously Used 8-State Filters. Before continuing the

study of the ballistic missile undergoing a plume pogo phenomenon, the observabil-
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ity of previously used 8-state filters should be investigated. Doing an observability

analysis on the filters used in previous work can possibly shed some light on the

observability issues of the 8-state filter used in this research. The Fortran code is

presently implemented for single precision numerical calculations. For more pre-

cise calculations, particularly when studying filter observability, a double precision

implementation of the code should eventually be adopted.

7.3.2 Remodelling of the Filter Dynamics. Based upon the observability prob-

lems associated with the acceleration states in the 8-state filter for the benign dy-

namics of this research, the velocity states of the filter should be modelled as the

output of a first-order Gauss-Markov process. This may prove to be a more appro-

priate model for the benign dynamics of the simulated ballistic missile trajectory.

The filter dimension will be reduced to six states, for which an observability check

can be performed.

In addition to the remodelling of the dynamic states, the output plotting rou-

tine should be modified to add tuning and performance plots to analyze the filter

jitter estimates, as well as pogo estimates for eventual inclusion of the pogo effect

in the Kalman filter model. This modification was not included at the start of the

present research effort because the filter jitter was assumed to be adequately tuned

and characterized. The results of Section 6.9.2 suggest otherwise, while the analysis

performed in Section 6.9.4 suggest that the pogo and jitter phenomena are possi-

bly interacting to cause the performance degradation of the 10-state filter. Having

the additional tuning and performance plots will provide a necessary capability to

characterize the jitter and pogo estimates in the filter.

Based upon the above suggested modifications, performance of single filters

containing the pogo phenomenon can be compared to performance of single filters

without the pogo modelling. With the aid of the additional analysis plots, the

interactions of all of the filter states can be properly understood and characterized,
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and the filters containing the pogo phenomenon should outperform the benchmark

filters ;hat do not model that phenomenon. The proposed robustness analyses of

Section 6.8 and the MMAF scenarios described in Chapter IV can be implemented

to enhance the tracking algorithm further.

7.3.3 Continued Characterization of the Plume Pogo. Once the MMAF is

implemented in the tracking algorithm, other performance enhancements and char-

acterizations can be pursued. Testing the performance of the MMAF tracker against

differing ballistic missile trajectories, i.e different velocity orientation angles, can

provide insights into the robustness of the MMAF for differing ballistic missile ac-

quisition scenarios.

The tracking algorithm should also be analyzed for simulated staging events.

This could entail adding an elemental filter to the MMAF structure to model the

changing acceleration characteristics experienced by the missile during the firing of

a staging motor. Implementation of a rectangular rotating field-of-view (RRFOV)

to perform the tracking during the simulated staging event may prove beneficial.

Additional performance enhancements for accurately estimating the location

of tile missile hardbody can be achieved through illumination of the hardbody with

a low energy laser and observing the speckle of the return. Simulating this effcct

can provide additional measurement information to help separate the plume centroid

location from the missile hardbody to improve the tracking performance of the algo-

rithm still further. Also, the additional infor'mation on the location of the hardbody

center of mass may provide the filter with the capability of modelling the "offsets"

(see Section 4.3.1) between the pogo equilibrium point and the hardbody center of

mass.

Recall the R1 matrix of the filter measurement model of Equation (4.23) which

represents second-order statistics of errors due to the background noise, FLIR noise,

and errors in the correlation algorithm. To derive this result, Rogers [21] devei-
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oped software which tested the correlator/centroid algorithm's position estimates in

order to characterize the mean and variance of the algorithm's errors. The values

needed to describe the error's mean and variance are a function of the template-

target separation, the thresholding level used by the correlator, and the variance

of the background noise. The model in Equation (4.23) was developed based upon

a non-rotating field-of-view FLIR with a 20 micro-radian/pixel proportionality con-

stant and a three hotspot dynar -ic target simulation. The research work done in this

thesis deals with a rotating field-of-view FLIR, a 15 micro-radian/pixel proportion-

ality constant, and a target image simulated by differencing two Gaussian intensity

functions, at a range two orders of magnitude greater than previous simulations.

Based upon these changes to track a ballistic target relative to the targets simulated

by Rogers, it is recommended that a re-evaluation of Equation (4.23) be performed

to determine if the existing model remains valid. Specifically, a new Rf should be

computed empirically and compared to Rogers' result. Another reason for redoing

the Rogers analysis, other than just the changes to the simulation, is to understand

why the diagonal terms of the matrix are not equal. Intuitively, if the correlator

algorithm performs its template-image correlations identically in both directions of

the FLIR plane, then the covariance of the noise associated with the error in each

direction should be equal; but as evidenced by Equation (4.23), this is not the case.
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Appendix A. Gain Calculation for Pogo Effect

As presented in Section 3.2.4, the Laplace domain transfer function for the

ballistic missile plume pogo phenomenon is given by Equation (3.29), and the con-

tinuous time state space representation is:

=p(t) [ 2 ] xP(t) + wt) (A.1)
_Wnp -2pn Pn

where:

xp(t) = 2-dimensional pogo state vector

wp(t) = 1-dimensional zero-mean, white Gaussian noise of unity strength

w,p = undamped natural frequency for pogo effect

(p = pogo damping coefficient

Kp = gain adjustment to obtain desired rms pogo amplitude

The output relationship for the pogo phenomenon along the missile velocity vector

is:

y = [1 0 ]X() (A.2)

The gain KP is adjusted to obtain the desired rms pogo amplitude (Table 3.1), which

is expressed mathematically as:

2 = E[y2(t)]

= E[x2(t)] (A.3)

where o'p is the desired rms pogo along the velocity vector of the missile. The

continuous time model for the covariance matrix for the state of this system can be

written as [7]:

P(t) = FP(t) + P(t)FT + GQGT  (A.4)
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where:
P(t) = the continuous time state covariance matrix

F = the pogo system plant matrix of Equation (A.1)

G = the noise distribution matrix of Equation (A.1)

Q = unity variance of iP

When the system reaches steady state, P(t) will equal zero. For the steady state

solution, substituting the appropriate values of F, G, and Q into Equation (A.4)

yields the following:

0 = [ P12 + P21  P22 - Pl -2(pwj12
P 2 2 2-2.
-P22  L,,PP- 2¢pwP 21 -WnP12 - W,,L, P21 - 4L,,.P22 + p np

where:

P 12(A .6)

P21 P22

Solving each entry of Equation (A.5) and realizing that the covariance matrix is a

symmetric matrix yields:

P12 = -P 2 1 = 0 (A.7)
2

P22 = wP 1 I (A.8)

K 2  _ 4 CP 22  (A.9)P W 3

np

Substituting Equation (A.8) into Equation (A.9) and recognizing that

P,, - = ,o 2) gives:

KP = 2 o- F- (A.10)

Using the development in this appendix, the value of the pogo gain can now bc

determined based on a desired rms pogo amplitude.
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Appendix B. Plots for Filter Tuning via Dynamic Trajectory

P 2Parameters (OIX02y) o, r, :, Discussion in Section 6.2

B. I Figures B. I-B. 10: u2, a2 250, r, ry = 4, o, =.2

B.2 Figures B.11-B.20: U., OY2 = 2000, - , r = 8.5,oa= 0.2

B.3 Figures B.21-B.30: a2 U2 = 530,-rx, Ty = 8.5, Cr2=0.2

B.4 Figures B.31-B.40: 4 ry = 5,,r ,Ty=8.5, a= 0.2

B.5 Figures B.41-B.50:, 1 = 5, ',, Ty = 8.5, a, = -2.I
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Appendix C. 8-State Filter Benchmark Plots: Discussion in

Section 6.3

C.I Figures C.1-C.1O: a2 = 5;r.,ry = 8.5;a =2.2
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Appendix D. Plots for FOV Rotation Analyses: Discussion in

Section 6.4

D.1 Figures D.I-D.1O: rlFOV 172,a2 =5; r.,,,r = 8.5;,=2.,45

D.2 Figures D.11-D.20: RFOI 2 a 2 -5;TTY =8.5;7o 2= 1.95

D.3 Figures D.21-D.30: DRFOV, ,r2 5;rr = 8.5; o
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Appendix E. 10-State Filter Pogo Performance Plots: Discussion

in Section 6.5

2 2
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Appendix F. 8-State/l 0-State Filter Performance Plots: Bending

Removed fro-ra Truth, Model (Discussions in Sections 6.6 and 6. 7)

P.1 Figures .I-F.I0: (Txa,(7 = 5; r, 7y = 8.5;a =.85
2 2 -2

F.2 Figurcs F.11-F.20: a, = 5;r,ry =8.5; a = .70
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Appendix G. Tuni'ng Plots Used in Jitter Sign Test: Discussion in

Section Section 6.9.2

C.1I Figures G.1I-G.2: Filter Jitter Hardcoded to Equal Truth Mlodel .Jitter; a'o .

G.2, Figures G.3-G.4: F illcr Jitter li-ardeoded to Equal Truth M1odel Jitter; a 2 = .

G.3 Figures G.7-GAS N~ominal Filter and Truth Mlodel Jitter; a 2 .7
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This thesis is an extension ofit-heork performedbi the past ten years at the*
Air Force Institute of Technology (AFIT)"towards tracking of'airborne targets using -i
forward looking infrared (-'Lfl)jneasurements. The research has aimed at replacing
a standard correlation tracker with a hybrid Kalman filter/enhanced correlation
tracker for implementation in a high energy laser weapon. ., i -,

This research deviates somewhat from past research at AFIT in tha -the target
trajectory being tracked is modelled as a benign, non-maneuvering, thrusting bal-
listic missile trajectory at large sensor-to-target ranges. Cln- addition /to capture the
characteristic shape of the exhaust plume, the plume is modelled as the difference
between two bivariate Gaussian functions with elliptical equal intensity contours.
As the missile ascends on its thrusting trajectory, the exhaust plume tends to oscil-
late (pogo) along the direction of the velocity vector. In this thesis, a second-order
Gauss-Markov process is used to model the plume's q5ogd" 'oscillation properties.

The ultimate goal oft-his research effo~ft is to design a multiple model adaptive
filter (MMAF) algorithm composed of elemental filterfs tuned for varying plume
pogo parameters (frequency and amplitude characteristics). This MMAF accounts
for atmospheric disturbance effects of the propagating infrared wave fronts. as well a,,
bending/vibrational effects of the optical hardware associated with the FLIP. sensor.
The bank of filters provide the accurate estimation capability to guide the pointing
mechanism of a shared aperture laser/FLIR sensor. ,.. 2 ,i ., -

,,; . - fr ,Q h r .I- k I , I I.,

An 8 x 8-pixel tracking field of vie (FOV) of the FLIR ehsor provides the ,

infrared data to the enhanced correlation tracking algorithm. To enhance perfor-
mance of the tracking algorithm, a FOV rotation scheme is analyzed in an effort to
maintain accurate tracking of a plume undergoing the pogo phenomenon. A FUR
rotation scheme which aligns the diagonal dimension of the 8 x 8-pixel tracking win-
dow with the missile velocity vector demonstrates a 50% performance improvement
over a non-rotating FOV FLIR.

A benchmark of performance involving an eight-state Kalman filter is estab-

lished in order to compare results from various tracking enhancement techniques.

The eight-state filter excludes explicit modelling of the pogo phenomenon, but the
pogo effect is compensated by the addition of pseudo-noise in the filter model. To

implement the MMAF, a ten-state filter which models the additional two pogo states
is analyzed, and results are compared to the eight-state filter benchmark for perfor-

mance enhancement. The ten-state filter consistently showed an unexpected per-

formance degradation compared to the eight-state filter. Various trouble-shooting
techniques are employed to uncover the source(s) of this degradation. Possible prob-
lems include: (1) a pogo-atmospheric jitter interaction, (2) poor estimation by the
Kalman filter atmospheric jitter model and (3) observability issues of the target dy-

namics model. Recommendations to overcome these shortcomings are proposed in

order to enhance performance of the ten-state filter and eventually implement the

MMAF algorithm.


