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AFIT/GE/ENG/89M-T

Abstract

This thesis is an extension of the work performed over the past ten years at the
Air Force Institute of Technology (AFIT) towards tracking of airborne targets using
forward looking infrared (FLIR) measurements. The research has aimed at replacing
a standard correlation tracker with a hybrid Kalman filler/enhanced corrclation

tracker for implementation in a high energy laser weapon.

This research deviates somewhat from past research at AFIT in that the target
trajectory being tracked is modelled as a benign, non-maneuvering, thrusting bal-
listic missile trajectory at large sensor-to-target ranges. In addition, to capture the
characteristic shape of the exhaust plume, the plume is modelled as the difference
. between two bivariate Gaussian functions with elliptical equal intensity contours.
As the missile ascends on its thrusting trajectory, the exhaust plume tends to oscil-
late (pogo) along the direction of the velocity vector. In this thesis, a seccond-order

Gauss-Markov process is used to model the plume’s “pogo” oscillation propertics.

The ultimate goal of this research effort is to design a multiple model adaptive
filter (MMAF) algorithm composed of elemental filters tuned for varying plume
pogo parameters (frequency and amplitude characteristics). This MMAF accounts
for atmospheric disturbance effects of the propagating infrared wave fronts, as well as
bending/vibrational effects of the optical hardware associated with the FLIR sensor.
The bank of filters provide the accurate estimation capability to guide the pointing

mechanism of a shared aperture laser/FLIR sensor.

An 8 x 8-pixel tracking field of view (FOV) of the FLIR sensor provides the
infrared data to the enhanced correlation tracking algorithm. To enhance perfor-
mance of the tracking algorithm, a FOV .otation scheme is analyzed in an cffort to

maintain accurate tracking of a plume undergoing the pogo phenomenon. A FLIR

xvii




rotation scheme which aligns the diagonal dimension of the 8 x 8-pixel tracking win-
dow with the missile velocity vector demonstrates a 50% performance improvement

over a non-rotating 'OV FFLIR.

A benchmark of performance involving an eight-state Kalman filter is estab-
lished in order to compare results from various tracking enhancement techniques.
The cight-state filter excludes explicit modelling of the pogo phenomenon, but the
pogo cffect is compensated by the addition of pseudo-noise in the filter model. To
implement the MMAT, a ten-state filter which models the additional two pogo states
is analyzed, and results are compared to the eight-state filter benchmark for perfor-
mance enhancement. The ten-state filter consistently showed an unexpected per-
formance degradation compared to the eight tate filter. Various trouble-shooting
techniques are employed to uncover the sor .e(s) of this degradation. Possible prob-
lems include: '(1) a pogo-atmospheric jitter interaction, (2) poor estimation by the
Kalman filter atmospheric jitter model and (3) observability issues of the target dy-
namics model. Recommendations to overcome these shortcomings are proposed in
order to enhance performance of the ten-state filter and eventually implement the

MMAT algorithn.

Xviii




ENHANCED TRACKING OF BALLISTIC TARGETS USING
FORWARD LOOKING INFRARED MEASUREMENTS

1. Li.troduction

The laser beam has had an enormous impact on our present society. From
industrial, to medical, to military applications, the laser has reccived a tremendous
amount of attention and investigation. The laser’s ability to transmit energy instan-
taneously onto a target makes it extremely attractive as a potential weapon. With
the recent United States’ attention on the Strategic Defense Initiative (SDI), the

laser beam has become a prime candidate as a potential weapon system.

Critical to the deposition of laser energy is the ability to track a potential target
accurately. Precisc tracking and laser pointing would enable the beam to concentrate
its energy on a small area of the target. This is essential since the amount of energy
in a laser beam is limited; and without the accurate tracking system, the laser’s
destructive effect would be rendered useless. This requirement for accurate tracking

is the motivation for this and previous research efforts.
1.1 Beckground

The Air Force Weapons Laboratory at Kirtland AFB, New Mexico, is presently
researching high energy laser weapons to be used against airborne vehicles. The
targets are passively tracked by means of a forward looking infrared (FLIR ) sensor.
This tracker uses a 300 x 500 array of picture elements (pixels) to sense the target’s
radiated infrared (IR ) energy. Each pixel in the array can effectively “see” or
detect the target’s radiated IR energy through an angle of 20 micro-radians in two

orthogonal directions. In actual implementation of the tracking algorithm, an 8 x 8
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subset of pixels (a “tracking window™) processes the radiated energy. This window

defines the tracker’s current ficld-of-view (FOV ).

The tracking algorithm will process the FLIR data and detect any angular
offsct. between the target’s actual position and the center of the current FOV. The
measured offsets are regulated to zero by a pointing controller, thereby causing the
target’s image to be centered in the FLIR FOV. As the image is centered in the
FFOV, the lascr is automatically pointed at the target, since the inbound IR energy

shares the same aperture as the outbound laser energy.

Presently, a correlation algorithm [20] is being used to accomplish the tracking
functions. This algorithm compares the current FLIR measurement data to the
corresponding data from the previous sample time. By cross-correlating this data,
the algorithm generates relative position offsets, since a detected translation in the
image is assumed to be a translation of the actual target in the spatial domain.
Because the correlation tracker assumes no prior information concerning the type of
target to be tracked, it performs reasonably well against a variety of targets, but it

does have some inherent weaknesses.

First, in many tracking scenarios, the size, shape, and motion characteristics
of the target may be known or can be estimated adaptively on-line. This available
information, although not required by the correlation tracker, can be used to enhance
the performance of the tracker. Secondly, a time lag is inherent to the correlation
tracker. This lag is a combination of the time required to cross-correlate the present
image with the previous image, and the finite time necessary to point the tracker at
the target. The correlation algorithm provides no means of estimating future target
positions. Lastly, the traditional correlation algorithm cannot distinguish between
actual target motion and “apparent” target motion caused by identifiable physical
phenomena. These phenomena can include atmospheric “jitter” [12, 16], caused

by distorted wavefronts of the inbound IR energy; bending/vibration of the optical




hardware or platform [5]; and missile exhaust plume “pogo” eflects [10], caused
by pressure variations over the time of flight and over the length of the missile’s
hardbody. These weaknesses in the correlation algorithm motivate the incorporation

of Kalman filtering techniques [7} into the tracking system [16].

The target dynamics, atmospheric jitter, optical bending/vibration, and plume
pogo effects can be modeled and included in the Kalman filter dynamics model. By
assufning that the measurements from the FLIR image plane are a composite sum
of these effects and additional noise disturbances, an estimate of the target’s actual
position can be obtained. By developing an appropriate target dynamics model,
this estimate can be propagated forward in time to establish an estimate of target
position in the future. The Kalman filter used in this research will model target
dynamics, atmospheric jitter, and plume pogo effects (see Section 1.3.4) by explicit
states. The filter will not model the bending/vibration phenomenon via explicit
filter states, but this effect will be included in the real-world truth model. Tuning
of the filter to this truth model will compensate for the reduced-order structure of

the filter model.

1.2 Summary of Previous AFIT Rescarch

Over the past nine years, the staff and students at the Air Force Institute of
Technology (AFIT) have produced numerous theses and research papers investigat-
ing the potential use of Kalman filtering techniques with the Air Force Weapons
Laboratory’s high energy laser pointing and tracking system. An overview of this
work has been presented in previous AFIT thesis research (2, 3, 4, 5, 6, 16, 17, 18,
19, 21, 22, 23, 24}, as well as publications [11, 12, 13, 14, 25). That overview will be

reproduced in this section with some modification.

In 1978, Mercier {16] began the study by demonstrating that the Extended
Kalman filter (EKF ) algorithm could significantly outperform the traditional cor-

relation tracker at design conditions. The target models used in this study were
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long-range targets represented as infrared point sources of radiated encrgy. The tar-
get’s FLIR plane image was assumed to have a bivariate Gaussian distribution with
circular, equal-intensity contours. The filter model consisted of four states — two
states representing position of benign target dynamics in each of two FLIR planc
coordinate directions and two states representing atmospheric jitter in the same
two directions. The position and jitter states were cach modelled via a first-order,
zero-mean, Gauss-Markov (GM ) process. FLIR measurement noise, corresponding
to both background clutter effects and internal FLIR noises such as thermal noise
and dark current, was considered to be both temporally and spatially uncorrclated.
This enhanced correlation algorithm provided an order of magnitude performance
improvement over the traditional correlation algorithm when the filter was correctly
informed about the tracking environment characteristics. These desirable results led

to further research in the area of enhancing the original tracking algorithm.

To accommodate tracking of more maneuverable targets, Harnly and Jensen (3]
incorporated velocity and acceleration estimates into the filter structure. They also
modelled the FLIR plane image with elliptical equal- intensity contours versus circu-
lar contours to account for target shape effects, as well as adaptively estimating the
target's shape function. Additionally, a spatially correlated Gaussian measurement
noise model was incorporated to represent the correlation distance characteristics of
typical background clutter. Finally, they implemented an algorithm to estimate the
strength of the Kalman filter’s driving noise adaptively as the target performed a

maneuver.

The research thus far assumed that the shape of the FLIR plane image was
known a priori and could be modelled via a bivariate Gaussian distribution. Re-
search by Singletery [22] and Rogers [21] implemented algorithms which made no
such target shape assumptions, but instead produced an estimate of the target’s
shape via a finite-memory averaging technique which avoids the problem of large

memory requirements by using exponential smoothing as an approximation to true
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finite-memory averaging. Tracking scenarios which modelled the targets as having
multiple hot-spots and several dynamic angular orientations were used in evaluating

the algorithms.

Rogers additionally developed an enhanced correlation tracker algorithm which
generated “pscudo-measurements” as its output. This algorithm was “enhanced”
over the traditional correlator because it compared the current FLIR image with a
template instead of the previous image. The template was actually the target shape
{unction estimate described in the preceding paragraph. The pseudo-measurements
were position offsets between the target image and the center of the FOV in two
orthogonal directions on the FLIR plane. The offsets were then fed into a lincar
IKalman filter for processing. Since the filter’s dynamics model and measurement
model were now linear, an extended Kalman filter was no longer required. This
model was extremely attractive from a computational loading standpoint, since a
linear Kalman filter requires much less computer resource allocation than the EKT.
The enhanced correlation tracker was additionally attractive since the performance

was comparable to the previously used EKF tracking algorithm in many applications.

Kozemchak [4] and Millner [17] continued the research by testing the EKF
algorithm and the linear Kalman filter/enhanced correlation algorithm developed
by Rogers with close range, highly maneuverable targets. This research modelled
the target dynamics using a first-order Gauss-Markov acceleration process, as well
as a constant turn-rate dynamics model. In an effort to maintain lock on harshly
maneuvering targets, adaptive estimation of the filter’s driving noise strength was
again implemented. Performance was good for targets with limited maneuvering ca-
pabilities; but when the maneuver exceeded five g's, the filter performance degraded
considerably. Ad hoc adaptive compensation techniques were considered, but not

thoroughly evaluated.

To overcome this high maneuverability limitation, Flynn (2] investigated mul-

tiple model adaptive filtering (MMAF ) techniques in the algorithm. See Figure 2.1
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in Chapter 2 where the theory of multiple model adaptive filtering is discussed.
Suizu [23] followed up the research by Flynn and successfully implemented the
MMATF into the algorithm. The MIMAF contained a bank of two clemental filters,
cach tuned for different target maneuvers. One filter was tuned for benign target
dynamics and processed measurements from an 8 x 8 pixel FOV. The second filter
was tuned for a highly maneuverable target and processed measurements based on
a 24 x 24 pixel FOV. The field of view was expanded in the second filter as added
insurance in maintaining lock on the harshly maneuvering target. Based upon prob-
abilistic weightings of Bayesian MMAF theory [8:129-136], the tracker performed
extremely well, tracking targets whose dynamics ranged from benign maneuvers to
20-g pull-up maneuvers at 20 kilometers. The elemental filters used in the bank were
implemented using both the EKF and linear Kalman filter/enhanced correlator with

similar results.

Loving [6] continued the MMAF research, adding a third clemental filter to
the bank. This additional filter processed measurements from an 8 x 8 FOV array
and was tuned for intermediate levels of target maneuverability. The three-bank
MMAT showed significant performance over the previously used filters. Additionally,
she developed a Maximum a posteriori (MAP) MMAF algorithm for comparison
to the Bayesian MMAF. The MAP algorithm uses the same elemental filters as
the Bayesian approach; but the MAP filter outputs the estimates of the individual
elemental filter with the highest probability weighting, as opposed to the sum of
probabilistic weighted estimates which are output by the Bayesian MMAT'. Both
MMATF techniques performed favorably against a variety of target maneuvers, while
no significant performance differences were noted between the Bayesian and MAP

comparisons.

Follow-on research by Netzer [18] expanded Loving’s analysis with the three-
clemental-filler Bayesian MMAF. The existence of steady state bias errors when

tracking a target that executed a 20-g turn led to the investigation of multiple m: del
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adaptive filtering based on some elemental filters being tuned for dynamics predom-
inantly in the azimuth or the elevation directions. Using this technique, mancuvers
in the x-direction can be distinguished from maneuvers in the y-direction, there-
fore permitting the tracker to expand its FOV in the critical direction and maintain
lock on a mancuvering target while maintaining accurate tracking estimates in the
non-critical direction. In addition, since the zero-mean, Gauss-Markov acceleration
process might not adequately describe target dynamics for all situations, Netzer sug-
gested using a constant turn rate (CTR ) model [15] at closc ranges. Although this
model was investigated previously by Kozemchak [4], it was never implemented with

the enhanced correlation algorithm developed by Rogers [21].

Tobin [24] continued with the recommendations by Netzer, specifically imple-
meniing the constant turn rate dynamics model into the elemental filters of the
MMATF bank. His results showed that the CTR model exhibited smaller steady
state standard deviation errors, while the GM MMAF showed smaller bias errors,
but that they both possessed very comparable rms errors. Tobin also investigated the
inclusion of two rectangular FOV elemental filters in the MMAT bank, tuned specif-
ically for maneuvers in the x- and y-directions. Results indicated that the tracker
maintained lock on the target during a “jink” in the y-direction while maintaining
substantially better tracking performance in the x-direction than attainable with an

MMAT without any elemental filters tuned for specific directionality of maneuvers.

Leeney [5] continued with the research effort by applying the MMAF algo-
rithm based on Gauss-Markov acceleration models to a truth model where the bend-
ing/vibrational effects of a large space structure were modelled. Even though the
filter was not provided with the bending/vibrational information, nor were any states
augmented to compensate for this effect, the MMAF tracker was able to track a tar-
get exhibiting a 10-g maneuver, provided that the level of bending/vibration is on
the order of that expected. Leeney also investigated performance enhancement by

implementing a 50 Hertz (Hz ) sampling rate versus the previously used 30 Hz sample

1-7




rate. A slight increase in performance was achieved (average 6% decrease in mean
error and variance in both FLIR directions), but a large computer loading penalty
was incurred. Additionally, Leeney did a preliminary investigation on a rotating rect-
angular field-of-view (RRFOV ) filter so as to align the “elongated” side with the
estimate of the acceleiation vector. The intent was to replace the five-elemental-filter
MMAF with a four-elemental-filter MMAF. Preliminary results warranted further

investigation of the RRIFOV filter.

Most recently, Norton [19] continued the investigation of the RRIFOV. Ti]C
choice of a larger filter dynamics driving noise strength (“Q”) in the direction of a
maneuver proved more important for improved filter performance than field-of-view
size. Thus, by maintaining an 5 x 8 pixel rotating FOV (versus a rectangular rotat-
ing FOV) and employing a large filter “Q” value in the direction of the maneuver,
he was able to improve the filter performance. He investigated a scheme to trans-
form the “Q” matrix mathematically so that the larger entry stays aligned with the
acceleration vector, as well as a scheme to simulate a physical rotation of the I'LIR
plane to keep one axis coincident with the acceleration vector. Separate elemental
fillers were tuned for varying target dynamics and eventually incorporated into a
MMAF bank. Performance characteristics were encouraging enough to adapt this

methodology to the current research area.

1.3 Objectives

Previous AFIT research has concentrated on the tracking of airborne targets
using FLIR measurements and Kalman filtering techniques. The purpose of this
thesis is to continue with this philosophy, but to apply the previous knowledge to
the tracking of a ballistic missile target during its boost phase through the atmo-
sphere. Since the linear Kalman filter/enhanced correlator algorithm has proven
computationally more beneficial (with comparable performance results) than the

EKF operating directly on raw FLIR data, it will be the algorithm of choice for this




thesis effort. Snecific objectives and solution methods are outlined below.

1.3.1 Ezhaust Plume Pogo Effects. During the thrusting phase of a ballistic
missile trajectory, the exhaust plume that is generated inherently “pogos” or oscil-
lates along the longitudinal axis of the missile hardbody. This pogoing will sometimes
occlude the missile hardbody, causing a traditional correlation tracker operating on
FLIR sensor input (that tracks the plume versus the missile) to provide poor esti-
mates of hardbody location. The FLIR-based tracker will always track the highest
intensity of the plume if a simple correlation tracker with no filter is used. The inter-
nal filter dynamics model is the means by which separation of hardbody dynamics
from plume oscillations can be accomplished. A key element of this thesis will be to
model the dynamics of the plume, via a second order Gauss-Markov process [7], in

the truth model and eveniually in the filter model as well.

1.3.2  Implementation of a Rotating Field-of-View. Based upon the investi-
gations by Norton [19], the concept of the mathematical transformation (rotation)
of the “Q” matrix will be applied to the ballistic missile tar'get. The states repre-
senting the plume pogo will be aligned along the estimated velocity vector of the
hardbody; thus the previously mentioned transformation will be used to determine
the components of pogo in the azimuth and elevation directions on the FLIR sensor
plane. Also, since the missile’s hardbody will be modelled as having identical dy-
namic characteristics in each of the two directions on the FLIR plane, the direct pre-
and post-multiplication of the “Q” matrix by the appropriate transformation matrix
need not be employed as was done by Norton [19]. Three “physical” rotation schemes
involving the FLIR image plane will be considered. The first scheme involves using
an 8 x 8 FOV filter and aligning a single axis of the FLIR plane with the estimated
velocity vector of the missile. By aligning one of the FLIR axes with the velocity

vector, the FOV will stay oriented with the oscillation of the plume. This scheme will

be referred to as the rotating field-of-view (RFOV ) filter. The next rotation scheme
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will be referred to as the diagonal field-of-view (DFOV ) filter, where the diagonal
of the 8 x 8 tracking window will be aligned with the estimate of the velocity vector.
The motivation behind this scheme is that the “tracking window” oriented in such a
fashion will be able to “see” more of the target’s intensity image, thus enabling the
sensor to obtain more measurement data. The final tracking scheme to be analyzed
will be the rectangular rotating field-of-view (RRFOV) filter as initially addressed
by Tobin [24] and Leeney [5]. This will be studied to confirm that pixel size is not

as important as tuning considerations in filter performance.

1.3.3 Single Filter Benchmarks. To establish single filter benchmarks of per-
formance, the truth model will include the modelling of the pogo effect while the
pogo eflect will be absent from the filters. A nominal damping ratio representing an
underdamped response will be used in the truth model representation of the plume
pogo. Since the amplitude and the undamped natural frequency of the pogo oscil-
lation will most likely be the dominant parameters in filler performance [10], nine
single filters will be analyzed for a range of predetermined values for the pogo pa-
rameters. Each of the different rotation schemes mentioned in Section 1.3.2 will be

addressed.

1.3.4 Single Filter Performance. The purpose of this section is to improve
the performance of the single filter benchmarks by adding the pogo models to the
filter structure. This will increase the dimension of the filter but will give insights
into anticipated performance improvements by informing the filter of the pogo phe-

nomenon.

1.8.5 Single Filter Robustness Analysis. The purpose of this objective is to
determine the robustness of the best performing rotating filters from the previous
section. The tuned rotating filters from Section 1.3.4 will be tested against a truth

model where the values of pogo parameters are mismatched with corresponding
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pogo parameters in each filter. This study will provide insight into which of the
pogo parameters affects filter performance sufficiently to warrant on-line adaptive
estimation, as well as explore the possible applicability of MMAF techniques for

accomplishing the adaptation.
p g

1.3.6 Multiple Model Adaplive Filtering Benchmarks. Similar to the single
filter benchmarks performed in Section 1.3.3, an MMAF benchmark will be estab-
lished in which the pogo effects are modelled only in the truth model and not the
elemental filters of the MMAF bank. The MMAF will be tested against seven dif-
ferent scenarios (involving pogo parameter variations), and the performance results

compared to the results of the single filter performance.

1.3.7 Multiple Model Adaptive Filtering Performance. The pogo effect is
modelled in both the truth model scenarios and the individual elemental filters of
the MMAF. The clemental filters used in the bank will be from Section 1.3.4, and
the seven scenarios run in Section 1.3.6 will be repeated. Since each of the elemental
filters in the bank is made aware of the pogo phenomenon (with the exception of
one elemental filter, to be discussed in Chapter V), this MMAF should outperform

all preceding filters.

1.4 Overview of the Thesis.

This chapter has presented a review of the research efforts performed to date
in developing an implementable tracking algorithm, and it has also defined the areas
to be pursued in this thesis effort. Chapter II introduces the concept of multiple
model adaptive filtering which is required for a better understanding of the tracking
algorithm. Chapter III develops the dynamics and measurement models used to sim-
ulate the real-world environment to evaluate the tracking algorithm’s performance.
The dynamics and measurement models embedded into the Kalman filter structure

are developed in Chapter IV. Chapter V discusses the tracking algorithms used to
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incorporate the concepts of Chapters II and IV. Methods for evaluating the tracker’s
performance are also presented in Chapter V. The results of the Monte Carlo simu-
lations are analyzed in Chapter VI, while Chapter VII presents the final conclusions

of this research effort and provides recommendations for further study.
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II. Filter Theory

The basic purpose of this chapter is to present the mathematical forms and al-
gorithmic structure of the multiple model adaptive filter (MMAF) and the extended
Kalman filter (EKT'). This review is necessary for understanding the development
and analysis of the tracking algorithm presented in this thesis. Rigorous mathemat-
ical developments for the MMAF technique and the EKF can be found in references
[8:129-136] and [8:39-59], respectively. It is assumed that the reader already has a

basic understanding of linear Kalman filtering techniques [7].

2.1 Bayesian Mulliple Model Adaptive Filtering

When dealing with Kalman fiiter tracking applications, maximum performance
is achieved when the parameters of the filter dynamics model match the paramcters
of the actual target being tracked. In many real world applications, the paramecters
of interest may be time-varying, and the designer may not have a priori knowledge
of the optimal parameter values for a given scenario. Thus, to achieve good filter
performance, on-line adaptability is essential. One means of providing this on-line
adaptability is by multiple model adaptive filtering as presented in references {5, 6,
8, 18, 19, 23, 24]. For physical problems in which parameters can assume values in
a continuous range, it becomes necessary to discretize the parameter space to keep
the algorithm computationally tractable. Consider a target which can display K
different discrete sets of target dynamics.. No one single vector value of parameters,
a, is adequate to describe all of the different dynamic scenarios. To achieve maximum
performance, it is desired to match the kth possible parameter vector, ay, where k =
1,2,3,..., K, to the kth target dynamics characteristic. Multiple model adaptive

filtering is one way to accomplish this objective.
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As developed in [8], consider a system model represented by the following

first-order, linear, stochastic differential equation:
x(t) = F(a)x(1) + B(a)u(t) + G(a)w(?) (2.1)

with noise corrupted, discrete-time measurements given by:

z(t;) = H(a)x(t;) + v(t:) (2.2)
where:

x(1) = n-dimensional system state vector

u(t) = r-dimensional deterministic control vector

w(f) = s-dimensional white Gaussian, zero-mean
noise vector process of strength Q(a)

z(t;) = m-dimensional measurement vector

v(t;) = m-dimensional discrete-time white Gaussian,
noise vector process of covariance R(a)

F(a) = n xn system plant matrix

B(a) = n x rinput distribution matrix

G(a) = n x s noise distribution matrix

H(a) = m X n matrix relating measurements to states.

As mentioned previously, it is necessary to discretize a into a set of K finite vector
values, aj,az,...,a;. As depicted in Figure 2.1 [8], the MMAF consists of a bank
of elemental Kalman filters, each of which is tuned for a specific dynamic scenario
represented by the appropriate vector, ar, where k =1, 2,3, ..., K. Each of the i
elemental Kalman filters produces a state estimate which is weighted ;Lppropriately
using the hypothesis conditional probability pi(f,) to produce the state estimate
Xmmag(t;) as a probabilistically weighted sum, where:

Sz(t)1a,Z(tioy) (Zil 3k Zizy)pr(ti-1)
ey faeazi—n)(Zilaz, Zio1 )pi(ticy)

p(ti) = (2.3)
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Figure 2.1. Multiple Model Filtering Algorithm
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Jaolaz(, 1) (Zilak, Zie1) = G AL (2.4) ’
g ) |
{} = {_gr{(ti)Akl(ti)ri(ti)} (2.5) »
Ai(t;) = kth filter’s computed residual covariance
= Hk(t,)Pk(t:)Hf(i,) 4+ Rk(ti) (26)

ri(t;) = kth filter’s residual

= [2(t) — Hi(t:)%(47)) (2.7)
and
a; = parameter value assumed in the kth filter
P.(t7) = kth filter’s computed state error covariance ;

before incorporating the measurement at time ¢;

Z(t;-1) = measurement history up to time ¢;_;.

This hypothesis conditional probability identifies which of the elemental filters
has the greatest probability of providing the best performance at a given time. As
can be seen from Equation (2.3), pi(1;) is the ratio of a numerator product and a
denominator of a sum of such products. The numerator is the kth filter’s product
of its previous hypothesis probability and the conditional probability density of the
current measurement given the Ltk filter’s assumed parameter value and the previous
measurement history. The denominator is the sum of the same products for all K
elemental filters in the MMAF bank. When the kth filter is the best match for
the current target dynamics, that filter will produce the smallest squared residual
relative to the filler-computed residual covariance of the K filters. This will cause
Equation (2.5) to become a smaller magnitude negative quantity and Equation (2.4)
to be larger for the kth filter than for the other K — 1 filters. The ratio in Equation
(2.3) will now be the largest value for the kth filter, i.e., the filter that best matches
the current target dynamics. It is essential that the residuals of the “best-matched”

filter be distinguishable from those of the mismatched filters. If this distinction is not
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obtainable, large probabilities can be assigned to incorrect models, resulting in poor
performance in the MMAF algorithm. To overcome the possibility of such degraded
performance, each of the eclemental filters should be tuned for best performance
against a specific target scenario to match its own internal dynamics model (5, 18].
Additionally, to prevent masking the distinction between good and bad models, the
common practice of adding excessive amou..is of pseudonoise to compensate for
model inadequacies should be minimized. This is an important point, since if the
residuals are constantly of the same magnitude, then Equations (2.3) and (2.5) will
result in large py values associated with the filter with the smallest |Ax]. Because
|Ax] is independent of the residuals and the “correctness” of the i models, such a

result would be totally in error {8].

As can be seen in Figure 2.1, each of the K filters processes its own estimates
and residuals in parallel. Each filter can also generate its own numerator term out of
Equation (2.3). The recursion is then run at each sample time and a pi(Z;) assigned
for cach filter. The output of the recursion is the estimate, im,na;(t?), which is the
probabilistically weighted average of the elemental filters’ estimates [5:19):

K .
i‘mma!(t?—) = kz—: pk(ti)i(t?) ( *

o
(0]
~—

The conditional covariance matrix for the MM AT is computed as follows [5]:

K
Prumas(tF) = 3. pa(t)[Pe(tF) + 91(85)37 (&) (2.9)
k=1
where:
e(tf) = () = Znmas(tF)
pr = kth filter’s conditional hypothesis probability
Pi(tf) = kth filter’s state error covariance matrix after

incorporating the measurement at time t;.

Since the values of pi(t,) and Xyumas(t7) depend upon the discrete measurements

taken through time t,, Pmes(¢f) cannot be computed a priori as is the case for

2-5




cach of the elemental linear Kalman filters. Note that Equation (2.9) need not be

calculated for an on-line implementation of the MMAF.

Finally, the calculated probabilities of Equation (2.3) should involve an arti-
ficial lower bound [5, 8, 18]. This lower bound will prevent a mismatched filter’s
hypothesis conditional probability from converging to zero. If a filter's pi should
reach zero, it will remain zero for all time since it is a function of the previous con-
ditional probability, as depicted in Equation (2.3). This “zeroing” of the hypothesis
conditional probability effectively removes that filter from the bank, and can degrade
the MMAI™s ability to respond to future changes in the true future parameter values.
If some future target dynamic scenario matched the model for which the probabil-
ity was permitted to reach zero, that elemental filter would not be ~appropria‘tcly
weighted, and the MMATF estimate would be in error. In previous work, Loving [6]
established a lower bound of .001 for px(¢;). The use of this lower bound value will

be continued in this study.

2.2 The Extended Nalman Filter

An extended Kalman filter (EKF) provides the means by which the states
of a nonlinear stochastic system can be estimated. Paralleling the linear Kalman
filter, the EKF is composed of a sequence of propagation and update cycles. The
extended Kalman filter is a first-order nonlinear filter. The nonlinear dynamics and
measurement equations are expanded in a Taylor series about the most recent value
of the state estimate [8]. The series is then truncated at first order terms, resulting
in the EKF formulation. Since the Taylor series expansion is truncated to first-order
terms, the EKF does not produce an optimal state estimate as is the case with the
linear Kalman filter [7:231-236). A complete development of the EKF algorithm can

be found in reference [8]. The results of that development are now presented.
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Consider a system described by the following nonlinear stochastic differential

cquation:
x(1) = f[x(t),u(t),t] + G(t)w(t) (2.10)
where:
x(l) = n-dimensional state vector
u(/) = r-dimensional vector of known control inputs
t = time
w(t)' = zero-mean, white Gaussian s-vector process of
strength Q(?); independent of x(%,)
G(t) = n X s noise distribution mat.ix.

Furthermore, assume that sampled-data measurements are available at discrete time

increments and are modeled by the following nonlinear vector function:

z(t;) = hix(t;), 4] + v(t:) (2.11)
where:
z(t;) = m-dimensional measurement vector
v(t;) = zero-mean, white Gaussian m-vector process with

covariance R(;); independent of both x(2,)

and w(t) for all time.

The extended Kalman filter update cycle incorporates the measurement z(i;) by:

K(t) = P(7)HT{HP({))HT + R(t;)}™ (212) ;
K(1F) = %(7) + K {z - h(x(7), 1)) (2.13)
P(tf) = P({7) - K(&:)HP({) (2.14)
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where:
P(t;) = n x n filter covariance matrix

(¢(7) = instant immediately before measurements are
incorporated at time ¢;

(t}) = instant immediately after measurements are
incorporated at time {;

oh(x, ;]

H = H[x(), 4] = =

(2.15)
X=%(t")
The extended Kalman filter propagation cycle propagates the state estimate

and state error covariance matrix forward to time ¢;;, by integrating the following

equations from {, to {,4;, using the results of the update cycle as the initial conditions:

k(t/t:) = £l%(/4), u(t), 4 (2.16)
P(t/t;) = FP(t/t;) + P(t/t)FT + G(1)Q(1)GT (1) (2.17)
where:
(t/t;) = estimate at time ¢ given measurements through
time {;
_ Ofx, u,1]

F=Fx(t/t:),t) = (2.18)

Ix

x=%(t/t,)

Note that, for the case of linear vector functions f[x(t), u(t),?] and h{x(t), ],
the above propagation/update cycles reduce to the standard linear Kalman filter
propagation/update cycles. Since the linear system model is totally representative
of the first-order terms of a Taylor series expansion, the EKF propagation/update

equaiions reduce to the linear Kalman filter algorithm (7).

2.3 Summary

This chapter has introduced the concepts of multiple model adaptive filtering

and the extended Kalman filter. The intent was to provide some basic insight into
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the formulation and applicability of both techniques. A more detailed development
can be found in reference [8]. This chapter provides a basic understanding of the

theory to be applied to the cnsuing tracking algorithm and filter implementation.
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IIT. Truth Model

3.1 Introduction

A “truth model” is an accurate simulation of “real world” effects. The truth
model depicts, as best as possible, the dynamic activity of interest of a specified sys-
tem. It is the standard used to determine the filter’s errors and overall performance.
More states are generally required to describe the truth model than the model upon
which the Kalman filter is based. The less dominant states are normally omitted
from the filter structure to accommodate on-line implementation on an opcrational
computer system. One accounts for the decreased filter order by injecting white,

Gaussian noise into the model upon which the Kalman filter is based.

For this thesis, the dynamics of the target’s image on the FLIR detector planc
are a result of true target motion, atmospheric jitter due to distorted infrared wave-
fronts, bending/vibration of the optical hardware, and pogo effects of the exhaust
plume’s oscillatory nature. If 2, and y. represent the distances, measured in pixels,
of the apparent image intensity centroid from the center of the FOV in the 2 and »

FLIR plane directions, respectively, then

To = Ty + T + 2y + T, cOs O (3.1)
Ye =Yt + Yo + Y — z,sin 07 (3.2)
where:
z; = component of z, due to actual target dynamics in the

zprip direction, measured in pixels
z, = component of z, due to atmospheric jitter in the

zrrir direction, measured in pixels
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x, = component of . due to bending/vibration in the
z i direction, measured in pixels

x, = component of z, due to plume pogo along the
missile velocity direction, measured in pixels

0r = True target orientation angle (see Section 3.3)

y. = component of y, due to actual target dynamics in the
yrLir direction, measured in pixels

Yo = component of y. due to atmospheric jitter in the
yrLir direction, measured in pixels

y, = component of y. due to bending/vibration in the

yrLir direction, measured in pixels

Note that Equation (3.2) has a minus sign before the resolved pogo component. This
is because of the defined orientations of the Target and FLIR coordinate frames (sce
Section 3.4.1). It will be shown that, in order to model z;, 24, Ty, Tp, Y1, Ya, and ¥y
adequately, fourteen stochastic Jifferential equations are necessary. Of the scven
output states, &, and y, each require first-order differential equations; , and y, cach
require third-order; and 3,y and z, each require second-order. These differential
equations, when arrayed in state-space format, comprise the dynamics portion of
the FLIR tracker truth model used in this study. Section 3.2 presents this dynamics
model as the augmentation of the deterministic target trajectory component (Sec-
tion 3.2.1), the atmospheric jitter component (Section 3.2.2), the bending/vibration

component (Section 3.2.3), and the plume pogo component (Section 3.2.4).

Following the presentation of the dynamics model, the measurement portion
of the FLIR tracker truth model is presented in Section 3.3. Then, to implement
the simulation on a digital computer, a “simulation space” model is presented in

Section 3.4.
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3.2 Dynamics Model

The overall fourteen-state dynamics model is the augmentation of a two-state,
deterministic target dynamics model, a six-state, stochastic atmospheric jitter model,
a four-state stochastic bending/vibration model, and a two-state, stochastic plume
pogo model. This augmented system is described by the following lincar, stochastic

differential equation:

xr(t) = Frxr(t) + Bruz() + wr(t) (33)
where:
Fr = 14x14 time-invariant truth model plant matrix
xr(l1) = 1l4-dimensional truth model state vector
Br = 14x2 time-invariant truth model distribution matrix
ur({) = 2-dimensional deterministic input vector
wr(t) = 14-dimensional, zero-mean, white, Gaussian noise vector

process with autocorrelation function:
Elwr(t)wi(t + 1)) = Qré(r). (3.4)
The equivalent discrete-time solution [7] to Equation (3.3) is given by:
Xr(tis1) = Br(lisr, ti)xr (L) + Braura(t:) + wre(ts) (3.5)

where the state transition matrix ®1({,41,%;) is given from solving the differential

equation [7:40-41):

-@7% =Fr®7(t,t) (3.6)
with the initial condition:  ®7 (¢;,1;) =I .
and
xr(t;) = 12-dimensional discrete-time truth model state vector
urg(t;) = 2-dimensional discrete-time input vector
wra(l;) = 12-dimensional discrete-time, zero-mean, white Gaussian noise

with covariance:

tl-H -
QTd = \ QT(ti-!n-l 3 T)QTQg(tf-H s T)dT' (3 I)
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where Q7 is defined in Equation (3.4). The discrete-time input distribution is dcfined
as:
tigr

Bry = &7 (L1, 7)Brdr (3.8)

t
The internal structure of the discrete-time truth model consists of two target
dynamic states (one for each FLIR plane direction), six atmospheric jitter states
(three for each direction), four mechanical bending states (two for cach direction),
and two plume pogo stales (oriented along the target’s velocity vector). In aug-

mented form, the truth model state vector is given by:

X = (39)

Doy | Oixz) | Opwyy | Opxy
Opx2) | Pogysy | Owxsy | Opxz
$r=| = —— e ol ol o (3.10)
Oux2) | Ouxe) | " Poyey | Oixz
| Oex2) | Oexey | Oaxey | Ppuyyy |
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and the discrete-time truth model distribution matrix is given by:

Bdl(zxz)

O(6x2)
Brg=| - —_ (3.11)

O(4x2)

L 0(2x2)

and the discrete-time truth model white Gaussian noise process is given by:

O(2x1)
Weagex1)
Wrg=| — —— (3.12)
Wby 1)
| Wdpax) |
where:
Xx; = 2-dimensional target dynamics state vector
X, = 6-dimensional atmospheric jitter state vector
X, = 4-dimensional bending/vibration state vector
X, = 2-dimensional plume pogo state vector
Wd.(l,) = 6-dimensional discrete-time, white Gaussian noise related to
atmospheric states
wa(t;) = 4-dimensional discrete-time, white Gaussian noise related to
bending states
Wap(t;) = 2-dimensional discrete-time, white Gaussian noise related to

pogo states.




Irom Equations (3.5) and (3.9) to (3.12), it can be seen that the truth model is
in a block diagonal form, permitting the models for target dynamics, atmospheric
jitter, bending/vibration, and plume pogo to be evaluated separately. The following

subsections provide the details of those individual evaluations.

3.2.1 The Target States. The deterministic target dynamics of the ballistic
missile are modelled as they occur on the FLIR image plane. In order to understand
how the target states are propagated forward in time, the o — 8 plane must be

introduced.

The a — B (FLIR image plane) coincides with the array of infrared sensing
pixels. The FLIR plane is perpendicular to the sensor-to-target line-of-sight (LOS )
vector, and bounded by a finite field-of-view (FOV). If the sensor-to-target range is
large, then the FLIR “pseudo” azimuth (/) and the FLIR “pseudo” clevation (f')
angles are directly proportional to the linear translational coordinates x, and y; on
the FLIR plane. Note that the “pseudo™ angles are referenced from the current LOS
vector, while the true azimuth (a) and elevation (8) angles are referenced from true
north and the horizon, respectively [24]. Figure 3.1 illustrates the relevant gcometry.
Therefore, if o' and ' are measured in micro-radians, and z; and y, arc mecasured
in pixels, then the pixel proportionality constant (k,), used in Equations (3.13) and

(3.14), is the angular FOV of a single pixel.

The pixel proportionality constant used in this research is on the order of
15 micro-radians/pixel versus the 20 micro-radian/pixel k, used in previous stud-
ies. The reason for the reduction is that, in considering the bending/vibration of a
spaceborne optical platform, the sensor-to-target range used in this study is approx-
imately two orders of magnitude greater (see Figure 3.2) than previous work. This
increase in range requires a finer resolution FLIR so that the 8 x 8 tracking window

is able to “see” the plume’s IR image.

Assuming that & and #’ remain constant over the At second sample period,

3-6

-




(NORTH)

€z

+YrLIR

a — 3 plane

/

LOS

vector

-~

S
+TrLiR

Figure 3.1. The o — 3 Plane

3-7




ORBITING OPTICS

R,
ATMOSPHERIC
LINE
Ry
BALLISTIC
MISSILE
FLIR SENSOR —
R = Rl + Rz

Figure 3.2. Sensor-to-Target Range

3-8




then:
o) (At
w(tier) = (1) + LEHEY (3.13)
p
B (At
Ye(lir) = we(t:) + CAICD) )k( ) (3.14)
P
Arranging the above equations in state space form yields:
, , At !
) | 10 pmt) ] g f ) (3.15)
Ye(tis1) 0 1 ye(t:) 0 L—: B'(t:)
where:
a'(t) = id‘l;i measured in micro-radians/second and constant over the
time interval [t;, t;41)
B(t) = %, measured in micro-radians/second and constant over the
time interval [t;, £i41]
At = sample time interval, ¢;4; — ¢;
k, = pixel proportionality constant, 15 micro-radians/pixel. ;

Using these relationships in the block form of the overall truth model, by inspection

of Equation (3.10), the upper left hand block is:

10
Pl = (3.16)
01
and the upper block of Equation (3.11) is: '
a0
Buy,, = | (3.17)
0 -4t
kp

and the input vector in Equation (3.5) is given by:

urg(t;) = ) (3.18)

B'(t:)




The minus sign in Equation (3.17) is due to the difference in the y axis orientations
between the FLIR plane coordinate frame and the inertial coordinate frame (Fig-
ure 3.1). This is inherent to the simulation and provides the correct directions for

the truth model and filter model position states.

The truth model missile trajectory used in the simulation is a point mass

influenced by a thrust force and a gravitational force, described by the following

inverse square-law force field equation in Reference [1]: :
Fg = ____G";;W (3.19)
where:
Fe = force of attraction between the missile and the Earth
G = universal gravitational constant
my,my; = mass of the Earth and missile, respectively
r = distance between the Earth’s center and the missile center
of gravity

For the purposes of this study, all other external forces acting on the missile (atmo-
spheric drag, deterministic solar effects, etc.) are assumed negligible; and the missile J
is assumed to have constant mass over the simulation interval of ten scconds. To

obtain an expression for the missile acceleration, Newton’s second law is used:

F =ma (3.20)
where:
F = external force(s) acting on a body (missile)
m = constant mass of the missile
a = inertial acceleration of the missile.

From the derived inertial acceleration, the components of the missile’s inertial ve-

locity and position are obtained via integration. The deterministic inertial position
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and vclocity components are used to project the velocity onto the FLIR image pl‘emc
(sce Section 3.4.4), and the resulting FLIR plane position coordinates from the truth
model propagation cycle represent the first two states in the truth model state vector
of Equation (3.9). Note that the thrust and mass parameters used to describe the
simulated ballistic missile arc based upon Atlas missile specifications as given by

reference [1].

This truth model deterministic trajectory could have been contained in “look-
up” tables, where the exact coordinates of the missile’s position are stored for cvery
time increment of the simulation. There are two advantages to representing the
deterministic truth model in the form of Equation (3.15). First, Equation (3.15) can
be substituted back into Equation (3.5) to form a single augmented vector differential
equation that defines the truth model. Second, since Equation (3.15) is in state space
form, white noise could be added, if desired, to account for non-deterministic type

terms such as wind-buffeting or solar effects acting on the missile’s hard-body.

3.2.2 The Atmospheric States. Based upon power spectral density character-
istics, the atmospheric jitter phenomena can be modelled as the output of a third-
order shaping filter driven by white Gaussian noise {24, 25). With this model, one
can identify the effects of the ¢ ‘mospheric disturbance on the FLIR plane image.

The Laplace domain representation of this shaping filter is given by [16]:

xa(s) = I(Gwlwg (3.21)
we(s) (s +wr)(s+ ws)?
where:
z, = output of shaping filter, defined in Equation (3.1)
w, = zero-mean, scalar, unit-strength white Gaussian noise
K, = gain, adjusted for desired atmospheric jitter RMS value
wy = break frequency, 14.14 rad/sec
wy, = break frequency, 659.5 rad/sec.
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The inverse Laplace transform of Equation (3.21) is a third-order, linear differential
equation which can be expressed as three, coupled, first-order, linear differential
equations in stalc space format. The atmospheric jitter model in the yrprn direction
can be identically modelled as in the zpp;r direction; therefore the truth model for

atmospheric jitter can be expressed in Jordan canonical form as [16] :

fa(t) = Faxa(t) + Gawa(1) (3.22)
where:
x.({) = 6-dimensional atmospheric state vector
F, = 6 X6 time-invariant atmospheric plant matrix
w.(t) = 2-dimensional, independent, zero-mean, white Gaussian noisce

process vector with unit strength components and statistics:

Elw,(1)] =0
10
Elw,(t)wI(t + 7)) = Q.8(7) = 1 6(7)

E[)

I

expected value

where the atmospheric plant matrix is defined as:

o o O o ©




and the noise distribution matrix is:

[ K20y w?
(Wi ~w2)? 0
R2wywi?
(W1-uw2)? 0
szlwg 0
G = | w-w)
@ 0 R2wjw2
(wi—wz)?
K§w|w2
0 (w1=w2)?
0 h'gwlwg
. (wy—ws) J

The discrete-time equivalent to Equation (3.22) is the atmospheric jitter par-

tition of the augmented truth model in Equation (3.5) and is given by:

xa(ti+l) = Qa(ti+h ti)xa(ti) + wda(tt')

(3.25)

Harnley and Jensen (3] showed that the state transition matrix in Jordan canonical

form for the time-invariant plant matrix F, of Equation (3.22) is given by:

where:
q)all

q>a22
(I)a23
(I)033

®.(A1)

Daaa
q)a55
Dase
Dacs

[ O 0 0
0 Doz Pons
0 0 Du33
0 0 0
0 0 0
0 0 0
exp(—w; At)
exp(—wqAl)
Atexp(—wyAt)
exp(—w,At)

0
0
0
0
(I)a55
0

o o o o

®a56

q)a66 J

Furthermore, the six-dimensional, zero-mean, discrete-time, white, Gaussian noise

Wya (i) has characteristics defined by:
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E[Wda('[,;)] =0 (3.

E[wda wda )] - Qda —/ ¢ ( i+1, T )G QaG Q ( :+1’T)d7' ( .

w
[0
-~
p

w
|
[oe]
p

3.2.3 The Bending/Vibralion States. Mechanical bending states were recently
added to the truth model in a study conducted by Leeney [5]. The bending model
is included to represent vibrational phenomena th‘at exist in the FLIR data when a
non-rigid optical platform is involved in collecting the IR image data of the plume
(see Figure 3.2). Based on tests conducted for the Air Force Weapons Laboratory,
Leeney concluded that the bending phenomenon in both the z and y FLIR directions
can be represented by a second-order shaping filter driven by white, Gaussian noisc.

The Laplace domain transfer function is described as [5):

a(s) _ Kyw?, (3.29)
wy(s) 8% + 20wnmss + w3,
where:
x#, = mechanical bending disturbance state shaping filter output for the
& direction, similar for the y direction
wy = zero-mean, unit strength, white Gaussian noise with an
autocorrelation of:
Elw(tws(t+7)] = Qub(t =) Qy=1
Ky = gain adjustment to obtain desired root mean squared (RMS)
bending output; K2 =5x 10713
(¢ = damping coeflicient equal to 0.15
wpy = undamped natural frequency for bending; wy, = 7 rad/sec.

Leeney [5] represented the bending states by a second-order shaping filter,

rather than a higher order model. Since this model captures the fundamental fre-
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quency of this effect, a second-order model represented a good initial study of filter
performance for the bending phenomenon. The linear stochastic differential equation

that describes the bending/vibration is:

Xs(t) = Fuxy(t) + Gews(t) (3.30)
where:
x;, = 4-dimensional mechanical bending state vector
F, = 4 x4 time invariant bending plant matrix
wi(l) = 2-dimensional, zero-mean, white Gaussian noise process with

independent components of strength Qp =1
G, = 4 x 2 noise distribution matrix.

The equivalent discrete-time model for Equation (3.30) is of the form:

Xp(Liv1) = Pp(tigr, L)X (L) + Wan(2s) (3.31)
where:
[ Sy P 0 O -
Dps Dy 0 0
e =| > (3.32)
0 0 @ &
| 0 0 By Dy |
and

Oy = exp(—opAt)[cos(wpAt) + 2 sin(wpAt)]
)7; sin(wsAt)]

O3 = exp(—opAl)[—1 - ( )]sin(wat)
By = exp(—0opAt)[cos(wpAt) — b sin(wpAt)]

Oy, = exp(—opAt
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At = sample time interval [t;,i4]

o, = real part of the root of the characteristic equation in Equation
(3.29): o, = —.47124 rad/sec

wy = Imaginary part of the root of the characteristic equation in

Equation (3.29): wy = 3.10605 rad/sec.

The 4-dimensional, zero-mean, discrete-time, white Gaussian noise process of Equa-

tion (3.31) has a 4 x 4 equivalent, discrete-time covariance matrix defined by:
b TET
Qu= [ By(ti1, )G QGT B (1141, 7). (3.33)

3.2.4 Plume Pogo States. One of the main objectives of this thesis cffort is
to model the plume pogo phenomenon in the truth model. To avoid possible classifi-
cation of this study, the assumed model used for plume pogo is a basic second-order
Gauss-Markov process [10). This model was chosen to study the amplitude and fre-
quency characteristics of the oscillatory nature of the plume. It should be noted
that unclassified experimental data was unavailable to characterize the pogo phe-
nomenon, i.e. power spectral density plots. However, based upon physical insight
and visual observation of the pogo effect, a second-order shaping filter driven by

white Gaussian noise was designed as follows [10]:

zp($) - Kp“’?zp

wy(s) TS24 2Cpwnps + wrzzp

(3.34)
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where:
z, = plume pogo state shaping filter output along the direction of the

velocity vector
w, = zero-mean, unit strength, white Gaussian noise with an
autocorrelation of:
Elwp(t)wp(t + 7)) = Qp6(t —7); @y =1
K, = gain adjustment to obtain desired root mean squared (RMS) pogo
amplitude (see Appendix A)
¢, = assumed damping coefficient chosen as 0.05
wnp = nominal undamped natural frequency for pogo; assumed range is

0.1-10 Hertz, with a nominal value of 1.0 Hertz.

Oscillations due to this effect are modelled along the direction of the ballistic
missile velocity vector. The mathematical expression used to describe the pogo effect

takes the form of a two-state linear stochastic differential equation described by:

, 0 1 0 )
X,(1) = \ Xp(t) + L, wy(t) (3.35)
~why, —20pWap Kywy,,
where:
x,(t) = 2-dimensional pogo state vector derived from Equation (3.34)
wy(t) = 1-dimensional zero-mean, white Gaussian noise of unity strength

from Equation (3.34).

To simulate the pogo model on a digital computer, the following equivalent

discrete-time model for Bquation (3.35) is used:

oty = | A0 BB ) (3.36)
(I)pgl(At) ngg(At)
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where:

PpulAl) = ﬁCXP(—C;)wnpAt)sin(wnp 1 — (2A1 + arctan(¥ 1(;(,2])
p

1

b12(AL) = —" eXp(=(pwrpAt) sin(wnyy /1 — (2AL)

D (AL) = jl-“’:‘-(L2 exp(—(pwnpAt) sin(wnpy /1 — (2AL)
P

—_(2

b0 (Al) = ﬁcxp(—prnPAt) sin(wnpy/1 — CZAL + arctan[@] + %)

P
At = sampling interval {t;4; — t;]
Woo(l,) = 2-dimensional, zero-mean, discrete-time, white Gaussian noisc

with independent components and 2 x 2 covariance matrix:
bt THT -
Qup = /t ®,(Li41,7)GpQyGT 87 (ti41, 7)dr. (3.37)

As stated above, x, is a 2-dimensional pogo state vector that represents: (1)
the position of the plume image intensity centroid along the longitudinal axis of
the missile and (2) the plume’s velocity along the same axis. The plume “pogos”™
or oscillates about an equilibrium point also located on the longitudinal axis. The
location of this equilibrium point is defined by the initial positions of the two intensity
functions in the target coordinate frame (see Section 3.4.1), and remains equidistant

from the hardbody’s center of mass throughout the simulation.

Figure 3.3 shows the location of the equilibrium point relative to the plume’s
centroid for a positive and negative pogo. It should be noted tha.‘t, for this simulation,
the velocity vector is assumed to lie coincident with the longitudinal axis of the
missile: the angle of attack and side-slip angle are also assumed to be zero throughout

the entire simulation.

3.3 The Measurement Model

Target information is obtained by measuring the intensity and location of the
target’s infrared image on the pixel array of infrared sensitive detectors. This image
or “intensity function” is the collective sum of target plume IR radiation, background

noise, and sensor noise.
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Consider the radiated energy from a single intensity function target. The
infrared intensity function can be modelled as a bivariate Gaussian distribution with
elliptical constant intensity contours. This bivariate Gaussian intensity function is

given by the following equation [9, 24]:

I[2, 9, Zpeak(1): Ypeak (1)) = Iz exp{—0.5[AzAy)P~ [AzAy|T) (3.38)
where:
Ar = (T — Tpear) €08 07 + (Y — Ypear) sin Op
Ay = (¥ = Ypear) 0S8 01 — (& — Tpeqr) sin Op
0y = target orientation angle between the projection of the

velocity vector perpendicular to the LOS vector and the
axis in the FLIR image plane

T,y = rcference coordinate axes on the o — f plane

TpeaksYpeak = coordinates of the peak intensity of the single Gaussian

intensity function
Inez = maximum intensity of the function
P = 2x2 target dispersion matrix whose eigenvalues

(03 and o2, ) define the dispersion of the elliptical constant

intensity contours (along the velocity vector and perpendicular

to that velocity vector, respectively) in the o — § plane

(see Sections 3.4.1 and 3.4.5).

The composite FLIR plane image intensity function, for the difference of two indi-
vidual intensity functions representing a ballistic missile target plume, is shown in
Figure (3.4). To form the characteristic shape of a missile plume, the rear individ-
ual Gaussian intensity function is subtracted from the forward Gaussian intensity
function, and the resulting intensity function is obviously not Gaussian. Since the in-
tensity value on a pixel sensor can not be negative, the simulation software hardcodes

any calculated negative intensity values to zero.
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Figure 3.4. FLIR Image Plane Intensity Function for the Difference Between Two
Gaussian Intensity Functions (Note the sign convention on the peaks
which corresponds appropriately to Figure 3.1)
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The intensity measurement produced by each pixel is the average intensity
on that pixel that results from the sum of the target’s intensity function, spatially
correlated background noise, and FLIR sensor noise. The output of the pixel in the

7 row and k** column at sample time ¢;, is given by:

1
:jk(ti) = 'X'/;” ol k{ll[my Y, mpeakl(ti))ypeak:(ti)]
p vpized,

— L[z, ¥, Tpeaky (L), Ypeak, (L)) d dy} 4 nji(ts) + bin(t:) (3.39)

where:
zi(ti) = output of pixel jk
Ap, = area of one pixel
I, I, = intensity function of first and second Gaussian intensity
function, respectively
z,y = coordinates of any point within pixel jk
Tpeakys Ypeaky, = coordinates of maximum intensity of the first Gaussian
intensity function
Tpeakss Ypeak;, = coordinates of maximum intensity of the second Gaussian

intensity function
n,k(ti) = ecffect of internal FLIR sensor noise on pixel jk

br(t;) = effect of spatially correlated background noise on pixel jk.

The sensor error, n;(t;), is the result of thermal noise and dark current in the
infrared sensitive detectors. This sensor error is assumed to be a corruptive noise

which is both temporally and spatially uncorrelated [9].

The background noise, b;(%;), is represented as a spatially correlated noise
with a radially symmetric, exponentially decaying correlation pattern characterized
by a correlation distance of approximately two pixels in the FLIR image plane 3,
24). Harnly and Jensen [3] simulated this effect by maintaining non-zero correlation

coefficients between each pixel and its two nearest neighbors in all directions.
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By concatenating all 64 values of b, (corresponding to an 8 x 8-matrix of
pixels) into a 64-dimensional vector b(¢,), the spatially correlated background noisc

is modeclled as:

b(t;) = VR b/(t;) (3.40)
where:
R = 64 x 64 correlation matrix of the discrete, zero-mean, white
Gaussian vector noise process b(i;)
b’(¢,) = 64-dimensional, discrete, zero-mean, white Gaussian vector

noise process with the correlation matrix: Icixeq)

o~ = Cholesky square root.

A detailed development of this spatially correlated noise process and the FLIR scnsor
noise process can be found in the work of Maybeck, Harnly and Jensen 3, 11]. It is

only mentioned briefly in this section for completeness in describing the truth model.

3.4 Simulation Space

To simulate the FLIR tracker’s operation on a digital computer, a “simulation
space” model is required. As presented by Tobin [24], this simulation space was
designed to perform two tasks. First, it generates the propagation of a realistic
target trajectory in three dimensional space. Second, the simulation space provides
a mathematical means of projecting the target's infrared image and velocity vector
onto the FLIR image plane. Each of these tasks is discussed in detail in this section;

but first, the pertinent coordinate frames will be presented.

3.4/.1 Coordinate Frames. The following coordinate frames are used during

the simulation of the FLIR tracker on a digital computer:
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Target Frame:

Origin  center of mass of the target

Axes: e, - along the velocity vector
€py - out right side of the target, perpendicular to e,
e,y - vector completing right-hand coordinate set
Note: ‘v’ - along the velocity vector
‘pv’ - perpendicular to the velocity vector
‘ppv’ - perpendicular to both of the above.

Inertial Frame:
Origin: location of the FLIR sensor

Axes: e, - due north, tangent to earth’s surface, defines zero azimnuth
e, - inertial “up” with respect to a flat earth approximation
e, - vector completing right-hand coordinate set, defines 90°
azimuth
Note: The azimuth angle (o ) is measured eastward from e;.
The clevation angle (8 ) is measured “up” from the horizontal

plane defined by e, and e,.

a — f —r Frame:

Origin: center of mass of the target
Axes: e, - coincident with the true sensor-to-target LOS vector.
ey, es - define a plane perpendicular. to e,, rotated from the
inertial e; and e, by the azimuth angle («) and

the elevation angle (), respectively.
a — f (FLIR Image) Plane:
This is the FLIR image plane defined by the e, and the ez unit
vectors above. The “pseudo” azimuth and elevation angles, o/ and f#',

measured with respect to the FLIR LOS vector, are linearly proportional
to the cartesian coordinates z and y on the FLIR plane. The coordinates
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z and y are distances from the center of the FLIR FOV, measured in
pixels on the o — B plane. Observing the FLIR plane along the LOS
vector from the origin of the inertial axis,  is positive to the right and
y is positive down This choice is made to maintain a right-handed
coordinate system, with the target’s range mecasured positive away from
the sensor. It should be noted that this is also the perspective of the
greyscale plots to be discussed in Section 5.8.

The inertial frame and the a — f plane are illustrated in Figure 3.1. The target

frame is shown in Figure 3.5.

3.4.2 Target Model. The basic target used for this thesis is a planform with
two intensity functions. Note the displacement of the two Gaussian intensity function
centroids along the e, direction. These values were chosen based upon the assump-
tion that, in the target frame, the dispersion of the plume in the e,, direction is
approximately 20 t¢mes the radius of the missile. The centroid of the first intensity
function is placed at -65 meters from the center of mass of the missile in order to
simulate the composite centroid of the plume being close to the exhaust nozzle of the
missile. This is based on an assumption that the distance from the missile’s center of
mass to the end of the hardbody is on the order of 20 meters. The second intensity
function is arbitrarily set at -110 meters to simulate one of many different character-
istic plume crescent shapes. By varying the location of the second intensity function
centroid, the shape of the plume can be varied, as well as the relative distance of the

composite image centroid to the end of the missile hardbody. The centroids of these

intensity functions remain fixed in the target frame (if pogo oscillations did not exist;

see Section 3.4.5) and are shown in Figure 3.5. As mentioned earlier, the targetl’s
angle of attack and sideslip angle are assumed to be zero. These assumptions imply
that the semi-major axes of the infrared intensity function ellipses are aligned with
the target’s velocity vector (see Figure 3.6). As noted by Netzer [18], this simplifies
the simulation space geometry without degrading the performance analysis of the

tracker.
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3.4.3 Target Scenarios for MMAF Analysis. As mentioned in Section 3.2.1,
the trajectory used in this study was a typical thrusting trajectory of an Atlas
missile. The initial conditions of the missile in inecrtial space define the missile
orientation in inertial space, as well as on the FLIR image plane. This thesis dcals
with only one such trajectory, where 07, the target orientation angle, is initialized
at approximalely 60°, and is permitted to decrease due to gravitational effects over
the ten second simulation. The reason for working with only one target orientation
is that the focus of this research is to characterize the plume pogo ;cﬂ'cct; thercfore
various target scenarios are generated to study the varying effects of plume pogo

dynamics, particularly in a MMAF application.

It should be noted that, although the pogo scenarios are defined in this section,
they were never implemented for reasons to be described in Chapter VI. The scenarios
are presented here for completeness, so that a continuing, follow-on study can be
performed to research the applicability and adaptability of multiple model adaptive

filtering to missile plume pogo effects (sce Chapter VII).

Seven truth model scenarios are defined to study the MMATL application to
the plume phenomenon. The scenarios involve varying the amplitude and frequency
characteristics of the pogo effect in the truth model in an effort to study the tracking
ability of the MMAF. As mentioned in Section 3.2.4, much of the information on
plume pogo is classified; therefore, nominal ranges of pogo amplitude and pogo
frequency where chosen using physical insights and sound engineering judgment. The
maximum value (upper bound) for the amplitude characteristic of the pogo effect
is chosen at 1.12 pixels and represents the maximum desired RMS pogo value used
to adjust the gain in Equation (3.34). This value was chosen because it represents
a pogo effect of approximately 20 meters in the target frame, which corresponds
to approximately 60% occlusion of an Atlas missile’s hardbody by the plume [1].
Based upon this upper bound, the range for pogo amplitude is chosen as 1.12 to

0.0112 pixels on the FLIR image plane, where 0.112 pixels is assumed to be the
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Scenario | Amplitude(pixels) | Frequency(Hz) |
#1 0.0112 0.1
#2 1.12 10
#3 0.0112 10
) 112 0.1
#5 0.0 — 0.0112 0.0 — 0.1
46 0.0112 = 1.12 01 = 10
7 0.0112 = 1.12 10 > 0.1

Table 3.1. Truth Model Scenarios

nominal value. The nominal undamped natural frequency for the pogo oscillation
is assumed to be about one Hertz; therefore, a range of ten Hertz to 0.1 Hertz was
chosen to analyze the MMAF performance. Table 3.1 provides the details of the

seven scenarios.

Scenarios #1 through #4 providle MMAF performance statistics for a truth
model pogo phénomenon that is fixed at a specific amplitude and frequency through-
out the entire simulation. The MMAT results are then directly comparable to a
10-state, single benchmark filter’s (to be discussed in Chapter IV) performance for
the same scenario. Scenarios #5 through #7 provide MMAF performance statistics
for a pogo phenomenon that will vary in amplitude and frequency over the ten sec-
ond simulation. These scenarios test the adaptability of the MMAF by identifying
which of the single filters in the bank has the highest probability weighting at var-
ious times during the scenario (see Equation (2.3)). As mentioned above, although
these scenarios were not performed in this rescarch effort, they are mentioned here
for completeness for possible follow-on work. Also, a suggested five-bank MMAF

structure is provided in Chapter V.

3.4.4 Velocity Projection onto the FLIR Plane. The deterministic input vec-
tor, urq(t;) = [&(t:) B'(t:))7 in Equation (3.5), is the projection of the target’s
inertial velocity vector onto the FLIR image plane. Loving [6] demonstrated that

this projection is based on the geometry shown in Figure 3.7.

3-29



€r

™

er €y
J
N @ N E— _
. 7h : /
: e/e
e, B plang
z rh
(b) AZIMUTH GEOMETRY (c) ELEVATION GEOMETRY
KEY

: SENSOR

@ : TARGET Center of Mass

r=\/rc7+y7+z7
rh = VT F 2

Figure 3.7. Geometry Required
FLIR Plane

to Project the Target’s Inertial Velocity onto the

3-30




From Figure 3.7(b), it can be seen that:

a(t) = arctan E%%] (3.41)

Taking the time derivative of this equation and realizing that &(f) = &'(¢) yields [17):

d/(t) _ a(t) — :z:(t)vz(t) - Z(t)'l)x(t)

= 3.42
=)+ () (42
where:
vz, ¥, = components of the target’s inertial velocity in the e, and e,
directions, respectively.
In a similar development from Figure 3.7(c):
y(t) ] /
t) = arctan 3.43
. . (v, (1) — y()7r st :
6’(t)=ﬁ(t)= h() y( )2 J() () (3.44) :
r2(t) ]
where: ;
3 — (v ()+z(t)v: (1)
7h(t) - (0 |
v, = component of the target’s inertial velocity in the e, direction.

Equations (3.42) and (3.44) define the deterministic input vector ury(?,) in the truth

model dynamics difference equation, Equation (3.5).

3.4.5 Target Image Projection onto the FLIR Plane. During the simulation,
the target propagates through three-dimensional space; and the output of the in-
frared sensitive pixels is simulated by projecting the target’s two individual intensity

functions onto the FLIR image plane. In previous research, the individual intensity

tunctions (hotspots) remained fixed with respect to the target frame, while the orien- ;
tation and location of the intensity functions on the FLIR plane change as the target

translates and changes angular orientation relative to the sensor. In this research,

3-31



TARGET

SENSOR

Figure 3.8. Infrared Image Projection Geometry

since the pogo phenomenon is causing the composite image centroid to oscillate
along the velocity vector, the individual intensity functions do not remained fixed
in the target frame; and correspondingly, this pogo phenomenon produces an addi-
tional perturbation to the intensity function projections onto the FLIR planc. For
simplicity, the location of each of the individual intensity functions is initialized in
the target frame as displacements from the missile’s center of mass. To orient them
properly in the FLIR coordinate frame, they are rotated by the target orientation
angle, 0r (see Figure 3.6).

Similar to the development in [6, 24], consider the geometry presented in Fig-
ure 3.8. This geometry relates the current target image to an initial “reference
target” image on the FLIR plane, as seen in Figure 3.5. The reference image is
oriented to correspond to the largest apparent planform at a specified r'ange. The

current image is defined by (24):
Opy = Opuwo (%) (345)
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ro
o, = (7) (Tpvo + (Tyo — Tpuo) cOs 6)
= o, {1 + "*i"s(AR- 1)} (3.46)
where:
Oy, Opwo = the initial dispersions of the target intensity functions

along e, and e,, in the target frame of the reference image

Ou,0py = the current dispersions of the target’s image
7, = initial sensor-to-target range of the reference image
r = current sensor-to-target range
v = inertial velocity vector of the target
v = magnitude of v
ViLos = projection of v on the (o — ) plane; i.e., the component

of v perpendicular to the LOS vector

viros = magnitude of viros: vipos = V&2 + B2

§ = angle between v and the (o — B) plane
AR

Zr2.; aspect ratio of the reference image
pvo

Together, Equations (3.45) and (3.46) define the dispersion along the principle axes

of the intensity functions’ images as seen by the sensor (Figure 3.6).

3.5 Summary

This chapter shows the truth model dynamic system to be the augmentation of
a deterministic target trajectory component, a stochastic atmospheric component, a
stochastic bending/vibration component, and a stochastic plume pogo component.
In the measurement model, the two individual intensity profiles that are differenced
are assumed to be described by bivariate Gaussian distributions. To simulate the
tracker operation on a digital computer, a “simulation space” has been defined to
propagate the target trajectory and to make the required transformations between

coordinate frames.
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IV. Filter Models

4.1 Inlroduction

This chapter presents the filter model structure used in this thesis research.
The models presented here are also used to define the elemental Kalman filters
on which the MMAF is based (see Chapter II). Section 4.2 defines the ten-state
filter dynamics model which consists of the target dynamics, atmospheric jitter,
and plume pogo stochastic processes. The filter measurement model presented in
Section 4.3 describes the enhanced correlator/linear measurement model proposed

by Rogers [21].

4.2 Dynamics Models

Previous AFIT research has considered two different methods for representing
target dynamics in the Kalman filter update equations. The first method describes
the target’s acceleration as a zero-mean, first-order Gauss-Markov process; while the
second method models the acceleration as a series of constant turn-rate trajecto-

ries [13]. The ten-state Kalman filter vector used in this research is defined below

as: . . _ .
Ty Ty
Z2 Yt
T3 Ve
T4 Uy
Ty (2
= 4.1
N N (4.1)
Ty Tq
Tg Ya
Tg .’Bp
| Z10 | | U |
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where the target dynamics, jitter, and pogo states used in this research are modelled

as Gauss-Markov processes with:

&y = a component of target position

¥y = 1y component of target position
v, = & component of target velocity
vy, = y component of target velocity
a; =  component of target acceleration
a, = y component of target acceleration

z, = « component of atmospheric jitter

Ye = ¥y component of atmospheric jitter

T, = pogo position along the target velocity vector
v, = pogo velocity along the target velocity vector

Each element in Equation (4.1) is coordinatized in FLIR (a — 8) plane. Note that
T(. Y, Ta, Yo, and z, were previously defined in Equations (3.1) and (3.2). Also note
that the atmospheric jitter model is reduced from six states as defined in the truth
model to two states described here in the filter. The filter jitter model disregards
the high-frequency effect of the double pole in Equation (3.21). This reduces the
order of the filter model, while still capturing the dominant characteristic of atmo-
spheric jitter. The pogo effect is modelled in the filter identically to the way it is
modelled in the truth model. This was done to enhance the performance of the filter
as well as making the model more applicable for MMAF implementation by allow-
ing more accurate filter tuning for varying pogo characteristics. Eventually, a lower
order model will be implemented in the filter, but for the purpose of characterizing
the pogo effect and its applicability for MMAF implementation, the two models will

be identical. The filter model is described by the following time-invariant, lincar

stochastic differential equation:




Xs(1) = Fyxs(t) + Gpwy(t) (4.2)

where:
xs(1) = ten-state filter state vector
F; = time-invariant system matrix
G; = time-invariant noise distribution matrix
wy(t) = zcro-mean, white Gaussian noise vector of strength Qjy.

Based upon work done by Millner [17] and Kozemchak [4], the elements of Equation

(4.2) are:

0010 0 0 0 0 0 o .
0001 0 0 0 0 0 0
0000 1 0 0 0 0 0
0000 O 1 0 0 0 0
0000 —L 0 0 0 0
F, = Tz (4.3)
0000 0 -+ 0 0 0 0
y
0000 O o—j—ao 0 0
0000 O 0 o—j—ao 0
0000 O O 0 0 0 1
0000 0 0 0 0 —wl; —2(pWnpy
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where G, = Kpywi

where:

g

Iﬁpf

Wnp f

Cps

Tzy Ty

(00000 0]
00000 0
00000 0
00000 0
G, - 10000 0 (4.4)
01000 0
00100 0
00010 0
00000 0
(00000 G, |
2.0 0 0 00]
0o % 0 0 00
0 0 2 o 00
Q= I (4.5)
0 0 0 2o
0 0 0 0 00
0 0 0 0 01

gain adjustment to obtain desired RMS pogo amplitude
(see Appendix A)

undamped natural frequency for filter pogo

filter damping coeflicient for pogo chosen to be 0.05
correlation times for the target azimuth and elevation

accelerations
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To = correlation time for the atmospheric jitter position process

0,62 = variance and mean-squared value for the target azimuth

Ty
and clevation accelerations
o? = variance and mean-squared value for the atmospheric jitter

position process.

The filter state estimate and error covariance matrix are propagated forward

over a sample period as shown by the following equations [7:171-172]:

%1(t5a) = @5(A0% (1) - (4.6)
Py(t.) = B1(AYP(tF)B] (AL) + Qu (4.7)
where:
Xs(t;) = filter’s estimate of the 10- dimensional state vector
P,(t;) = filter’s covariance matrix (10 x 10)
(t7) = time instant before FLIR measurement is incorporated into
the estimate at time ¢;
(tf) = time instant after FLIR measurement is incorporated into
the estimate at time ¢;
$;(At) = time-invariant state transition matrix associated with

propagation over the sample period: At = t;4; —{;

.and the Qg4 matrix is the obtained by the following:

tiga
Qy = /t & (tig1, 7) Gy QGT Y (1142, 7)dr (4.8)

Based upon the presentation by Netzer [18:47-48], and including the additional
pogo state model, ®;(At) and Qg are found to be:
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10 At 0 &5 0 0 O 0 0
01 0 At 0 ® 0 O 0 0 4-
00 1 0 95 0 0 O 0 0 .
00 0 1 0 & 0 O 0 0
00 0 0 ¢ 0 0 0 0 0
(A1) = ” (4.9)
00 0 0 0 ®s 0 O 0 0
00 0 0 0 O &, O 0 0
00 0 O 0 0 0 g O 0
00 0 0 0 0 0 0 g Pg10
(00 0 0 0 0 0 0 P9 @10,10_ :
where:
; ]
$y5 Tz [At - Tz (l —exp {—f—})]
o6 Ty [At ~ Ty (1 — exp {—ét-})]
Ty
t
&5 Tz (1 — exp {——-—}
TI
t
LI Ty (1 — exp {-——})
Ty
At
Qs exp{——}
Tz
Al
Pes exp{——-}
Ty
At
b7 ekp{—',:}
At
Ogg exp{-—} : ,
Ta
1 Vi=¢ :
g9 — = exXp(—(pyWrps At) sin | wrpsy/1 — (2 At + arctan v-_ o ;
1 .
®9.10 /1 = G2 exp(—Cpywnps At) sin(wnpypy/1 = (2 A)

Wnp
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Pro9 = :1_52‘ exp(=pswnps At) sin(wnps /1 = G AL)

= Spf
1 , J1-¢2
P00 = "I—CTCXP(—CpfwanAt) sin (wnpn/l - C;,At <4 arctan [———Z——”—} + 7.-)
— Spy =Lps
and
Gu 0 Qi3 0 @s 0 0 0 0 0
0 Q2 0 Q4 0 Q@ 0 0 0 0
Qiz 0 Qs 0 Qs O 0 O 0 0
0 Qau 0 Qu 0 Q4 0 0 0 0
Qis 0 (s 0 Q@ss 0 0 0O 0 0
Qu = (4.10)
0 Qx 0 Qi 0 Qs 0 0 0 0
0 0 0 0 0 0 Qn O 0 0
0 0 0 0 0 0 0 Qss 0 0
0 0 0 0 0 0 0 0 Qo Qo0
[0 0 0 0 0 0 0 0 Qo Qo
where:
2 Al 2AL
Qn = o’ [-3—7}Ai3 — 2(1,At)* — 472 exp {—T—} + 273AL — Tl exp{——]} + TT']
x x

At At
Qiz = o [T,,.At2 + 272 Atexp {——} + 72— 273 exp {——} —212A8

Tz T
s xp {21 }]
+Tr expy—

Tr

[ 1
Qs = o —?.TxAtexp{—ﬂ}+r§—7§exp{—2At}J

Tz Tz

2 At , 288, |,
Q = o -gTyAta — 2(1,At)? — 473 exp {——T—} +213AL — 1) exp{—-;_—-—-} + T,,'}

y y

[ At At
_ 2 2 2 3 3 2
Qu = o, -TyAt +2‘ryAtexp{——;;—} + 7, — 27, exp {—-;_y—} - 27,Al
o ( 2At}]
T, exp { ——
! 1 Ty

2A
Q2 = a; [—..TyAtexp {—%—t-} + 7'3 - 7‘; exp {——E}]

v Ty
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[ t At
Qazs = 02|27,At =372 +4r2exp {——?—} — 72exp {—2 }]

Tz

[ Al
Qs = o T,—‘erexp{——-}+rzek

=) e
[ At 241
Qu = o, -QTyAt — 372 +47]exp {—;y—} — T2 exp {—T—y}]
[ At 2AL
0 - afomen| 22
[ 2At
Qss = ag {l - exp{— }]
Tz
2A1
Qes = 0. l—exp{—T—}}
y
At
Qm = 0: 1—-cxp{-—2 }]
U T,

, o
Qs = o l—cxp{—“At}]

a

and Qgo, Qo,10- Q10,9, Q10,10 are determined identically as the discrete-time, white,
Gaussian noise covari.ance matrix pogo components of the truth model by solving
Equation (3.37). The equations for these four components are not presented in the
text because of their length, but the pogo components of the Qg matrix are imple-
mented in the software and have been validated based upon the following first-order

approximation [7:170-174]:

Qusp(ti) = Gp(L) Qp(ti) G, (L) [tigr — ] (4.11)

where the subscript “fp” refers to the partition of the filter model representing
the pogo phenomenon. The filters are “tuned” by choosing appropriate values for

2 .2

the correlation times (7, 7,,7,) and the variances (aﬁ,ay,oa) corresponding to the

ballistic trajectory and various pogo scenarios.

Note that the pointing controller used in this study is considered to be ideal.
The dynamics of the pointing mechanism (servo lag, inertia, etc.) are neglected.
Netzer [18] demonstrated that the errors resulting from any non-ideal controller

dynamics are small and are interpreted by the Kalman filter as atmospheric jitter.
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Following cach filter propagation cycle, the estimates &;(1;,,) and #,(1;;) are uscd
to generale control signals to point the FLIR optical centerline at the target. It
should be noted that these control signals are applicable for a non-rotating field-
of-view (NRFOV ) FLIR. The filter’s estimates of the velocity states are used to
rotate the field-of-view for the rotating field-of-view (RFOV) FLIR and the diagonal
rotating field-of-view (DRFOV) FLIR. Chapters V and VI discuss in more detail the

two rotation schemes.

4.3 The Measurement Model

Recall the measurement model of Equation (3.39) for the 14-state truth model.
Au alternative to this 64-dimensional, non-linear measurement model was developed
by Rogers [21] during his AFIT rescarch. Rogers suggested an enhanced corrclation
algorithm which is implemented to provide measurements to a lincar Kalman filter
measurement model. This correlation algorithm is “enhanced” over the standard

correlation algorithm in the following ways [24):

1. The current FLIR data frame is correlated with a template (an estimate of the
target’s intensity function), as opposed to correlation with the previous FLIR

data frame.

o

Instead of outputting the peak of the correlation function, the enhanced cor-
relator outputs the center of mass of that potion of the correlation function
which is greater than some predetermined lower bound, a technique known as
“thresholding”. The enhanced correlator does not suffer the problem of distin-
guishing global peaks from local peaks, as do many conventional “peak-finding”

correlation algorithms.

3. Using the enhanced correlation algorithm, the FLIR/laser pointing commands
are determined via the Kalman filter propagation cycle as opposed to the out-

put of a standard correlation algorithm.

1)




4. The Kalman filter statc estimate %(¢}) is used to center the template, so the
offsets seen in the enhanced correlation algorithm should be smaller than in
the conventional correlator. This increascs the amount of “overlap” between

the actual FLIR data and the stored template, thus improving performance.

The output of the enhanced correlation algorithm are the two linear offsets z, and ¥,
of Equations (3.1) and (3.2). These “pseudo-measurements” are then fed into a lincar
Kalman filter update cycle. The following two sections present an overview of the

enhanced correlation algorithm. A more detailed analysis can be found in 13, 21].

4.3.1 Template Generalion. As stated earlier, the template is an estimate of
the target’s intensity profile. This template is generated by averaging over the N
most recent centered intensity functions. The intensity functions are centered on the
FLIR plane by the “shifting property” of the Fourier transform, which is the domain
in which the correlation is taking place. The memory size NN is chosen according to
how rapidly the shape functions change. Highly dynamic intensity functions require
small values of N, while slowly varying functions can take advantage of large N

values.

The premisc behind this proposed finite memory filter can involve large memory
requirements cn a digital computer. To avoid this potential problem, the averag-
ing is approxifnated by the use of “exponential smoothing”. Exponential smoothing
has properties very similar to those of finite memory filtering [8], but requires the
storage of only one FLIR data frame instead of N frames, thus reducing computer
storage requirements significantly. The template is maintained by the exponential

smoothing algorithm given by the following equation:

1(ts) = 71(t:) + (1 = 7)i(tica) (4.12)
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where:

I(t;) = “smoothed cstimate” of the target’s intensity function; i.e.,
the template
I(¢;) = “raw” intensity function from the current FLIR data frame

v = smoothing constant; 0 <y < 1.

The smoothing constant 5 is comparable to the N value of the true finite memory
averager. From Equation (4.12), it can be seen that large values of v tend to em-
phasize the current data frame and thus correspond to small N values in the finite
memory filter. Based on studies by Suizu [23] and Loving [6], a smoothing constant

o~ = 0.1 will be used throughout this thesis effort.

Figure 4.1 on the next page shows the structure of the enhanced correla-
tor/linear measurement model data processing algorithm. This algorithm is strictly
for a NRFOV FLIR sensor. Chapter V presents a modification to this algorithm
in order to simulate the RFOV and DRFOV sensors. Note that the portion of the
algorithm enclosed in dotted lines is the template generation scheme. After the raw
FLIR data is transformed into the Fourier domain by a fast Fourier transform (FI'T),

it is centered on the FLIR plane by shifting it an amount equal to:

Tohise = E(tF) + E(8F) + do(t}) cos by (4.13)
Yenise = Ep(tF) + &s(1F) — Fo(tF) sin by (4.14)
where:
coséf = Za(t) (4.15)
V(L) + &)
sindy = ) (4.16)

VEREF) + #3(4F)

It should be noted that the reason the minus signs are in Equations (4.14) and

(4.16) is because of the difference in the defined orientations of the Target and FLIR
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Figure 4.1. Enhanced Correlator/Linear Measurement Model Data Processing Al-
gorithm




coordinate frame axes (see Figure 3.1). This is compatible with the structure of
Equation (3.2) of the truth model. It should also be noted that, since the value of
the plume pogo is referenced from the pogo “equilibrium point” (see Figure 3.3), the
true centroid locations on the FLIR plane as determined by Equations (3.1) and (3.2)
actually should include a constant “offset” in both FLIR directions. These offscts
arce constant and are equal to the distance between the hard-body’s center of mass
and the pogo “equilibrium point.” Similarly, to be absolutely correct, the above
shift equations should also consider the effect of these offsets. Since the present filter
structure has no way of estimating these offsets based on FLIR data alone, and the
major challenge of this thesis is to characterize the pogo phenomenon relative to the
pogo “equilibrium point,” the offsets were purposely left out of both the truth and

filter measurement models.

The above shifts are performed using the shifting property of Fourier trans-
forms, which states that a translational shift in the spatial domain is equivalent to
a linear phase shift in the frequency domain [24]. The phase shift is computed as

follows:

F{g(x — shisty ¥ = Yshis)} = G([fzs fy) exp{=327(fz * Tshige + fy - Yshage)}  (4.17)
where:
g(z,y) = 2-dimensional spatial data array

F{-} = Fourier transform operator

G(fe fy) = F{glz,y)}

After the data is centered by the above phase shift, it is incorporated into
the template according to the exponential smoothing algorithm of Equation (4.12).
The template is then stored and correiated with the subsequent FLIR data frame to

produce the “pseudo-measurement.”




4.3.2  “Pscudo-Measurements” by Enhanced Correlation. The enhanced cor-
relator algorithm provides “pseudo-measurements” in the form of position offsets
from the centroid of the target intensity image to the center of the FOV. The cur-
rent FLIR data frame and the stored template are correlated in the Fourier domain
space. This cross-correlation is computed by taking the inverse fast Fourier trans-

form (IFFT) of the following equation [21):

Fg(z,y) *U(z,y)} = G(fz, fY)L"(fz, fy) (4.18)
where:
F{} = TFourier transform operator
g(z,y) *l(z,y) = cross correlaiior of g(z,y) and I(z,y)
g(z,y) = measured targe atensity function; the current FLIR

data frame

l(z,y) = -expected target intensity function; the template
G(fr,fy) = TF{yg(z,y)}
L*(fz, fy) = complex conjugate of F{l(z,y)}

The Fourier transform, F{-}, is implemented in the software via the Cooley-Tukey

Fast Fourier Transform (FFT) algorithm [24].

Once the IFFT is performed, the correlation function, g(z,y) * 1(z,¥), is
“thresholded” so that any value in the correlation function less than 30% of the
function’s maximum value is set to zero [6, 18]. The location of the center-of-mass of
the “thresholded™ function represents the relative displacement between the current

FLIR data frame and the template.

As shown in Figure 4.1, the displacements or “offsets” are outputs of the IFT'T
block and are assumed to be the result of hardbody dynamic activity, atmospheric

jitter, plume pogo effect, and measurement noise. Therefore:
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Toffset = Tt+ Tq+ Tpcosly + vy (4.19)

Yoffset = Yt Ya— Tpsinly + vy, (4.20)
where:
Uz
cosly = ———= (4.21)
V2 + vl
sinf; = —— (4.22)

02 1 12
vz + vy

Using the state space representation in Equation (4.1), Equations (4.19) and (4.20)

can be written in state space form as (8]:

z(t:) = hy[x; (L), L) + vy (%) (4.23)
where:
z(t;)) = [Toffset, Yossset)® ; measured in pixels
xs(t;) = 10-dimensional filter state vector of Equation (4.1)
hy[] = 2-dimensional, nonlinear, measurement vector function
vs(t;) = 2-dimensional, discrete-time, zero-mean, white Gaussian

measuiement corruption noise of covariance Ry ;

measured in pixels

Note that because of the pogo states being defined along the velocity vector and
being included in the o.utput equations, this measurement model is nonlinear in the
filter states and; the extended Kalman filter update cycle described in Chapter II
(Equations (2.12)-(2.14)) must be applied. The measurement noise v;(t;) reflects
the spatially correlated background noise (Section 3.3), the FLIR sensor noise, and

errors due to the FFT/IFFT processes. The covariance matrix associated with this




cumulative error has been found to be [13, 17, 21}

0.00436 0
Rf = (4.24)
0 0.00598

The lincarized Hy matrix based upon Equation (2.15) is:

i 10 H H, 0010 Hy 0
j=
01 Hy Hy 000 1 Hg 0

where:

Tox3

H = —2% (4.26)

%/ 2 | 2
73+ o4 X=X ()

H2 — —T9gT4T3 (4‘27)

a
2 2
ﬁ/m T s =
3+ %4 x=%s(t7)
T3
Va3 + 2]
—T9T 4T3
a
%/ 2 2
T T o gy
3 + 4 x=x,(t. )
(L‘9$§

P e
3/ 2 2

i+ o o

8T Mlx=x,(17)

T4

x=>’c,(t' )

1‘15 = (4-30)

H(; = (4.31)

2 2
T Thleasy )

This completes the structure of the Kalman filter models used in this study.
It should be noted that, although the MMAF was not implemented in this thesis
effort, the concepts discussed in this chapter are directly applicable to the MMAF.

That also includes the data processing of Figure 4.1. See references [19] and [24] for

additional details.
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4.4 Summary

This chapter has presented the models upon which the Kalman filter is based.
The ten-state filter vector includes models to estimate trajectory dynamics, atmo-
spheric jitter, and plume pogo. All of these models are based upon Gauss-Markov
stochastic processes. “Pseudo-measurement:” are created by correlating the current
FLIR data frame with an adaptively constructed template representing the target’s
infrared intensity profile. Figure 4.1 shows the overall filter processing algorithm for
a non-rotating ficld-of-view (NRFOV) sensor. When pogo states are introduced into
the filter state vector, the output model becomes nonlinear in the filter states and
requires the use of the extended Kalman filter update cycle when incorporating the

“pseudo-measurements” from the data processing algorithm.
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V. Tracking Algorithm

5.1 Introduction

This chapter presents the overall tracking algorithm used in this research by
combining the principles presented in the preceding chapters. First, an overall view
of the algorithm is presented, along with a proposed structure for a MMAF algo-
rithm. Second, the method for field-of-view (FOV) processing is discussed, followed
by the different FOV rotation schemes analyzed in this research and the relationship
of the rotating FOV to the overall tracking algorithm that was presented in Chap-
ter IV (Figure 4.1). The filter and truth model parameters are then presented before
concluding with the tools used to evaluate the performance of the tracking algorithm

(i.e., statistical calculations, performance plot formats, and greyscale diagrams).

5.2 Ovcrview of the Tracking Algorithm.

The main objective of this research effort is to design an algorithm to track a
ballistic missile accurately when its plume is undergoing - ~ogo (oscillation) along
the longitudinal axis. A Bayesian Multiple Model Adaptive Filter (MMAF) track-
ing algorithm was originally proposed to increase performance over a single filter
algorithm, but for the reasons described in Section 6.8, this MMAF was never im-
plemented. This section presents the proposed structure of the MMAF which, once
implemented, should demonstrate increased tracking performance over the single
" filter models which were implemented in this research. As mentioned earlier, the
reason for presenting the proposed MMAF structure is for completeness of the ob-
jectives described in Chapter I, and for the benefit of suggested continuations of this

research effort (see Chapter VII).

The proposed MMAF is composed of five elemental filters based upon a nom-

inal ballistic missile trajectory and varying scenarios for the plume’s pogo effect.
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Filter | Filter Dimension Tuning Characteristics

1 8 Tuned for a truth model exhibiting no plume pogo

o

10 Tured for a truth model exhibiting high frequency
and large magnitude pogo

[o%

10 Tuned for a truth model exhibiting low frequency
and large amplitude pogo

4 10 Tuned for a truth model exhibiting high frequency
and small amplitude pogo

t

10 Tuned for a truth model exhibiting low frequency
and small amplitude

Table 5.1. Elemental Filters of Proposed MMAF

The actual structure of the MMAF can not be determined until the results of a
robustness study are performed (Section 1.3.5). Again, for reasons discussed in Sec-
tion 6.8, a robustness study was inappropriate based upon the results of this thesis
research; but a suggested MMAT structure is still presented in this chapter as an
expected baseline for future research. The actual research performed in this thesis
implemented a tracking algorithm based upon each of the single elemental filters
in the proposed MMAF. Each of the elemental filters is based upon an 8 x 8 pixel
FOV and is “tuned” based upon specific dynamics of the plume pogo effect in the
truth model. More concerning the FOV data processing is presented in Section 5.3.

Table 5.1 presents the proposed structure of the MMAF.

Note that the first filter is an eight-dimensional filter, while the other four are




ten-dimensional filters. The ten-dimensional filters are of the structure defined in
Chapter I\, while the cight-dimensional filter is of the same structure without the
two additional pogo states. The pogo states are omitted because of the desire to have
an clemental filter in the MMATF structure specifically tuned to a scenario where the
plume is not “pogoing”. This desire is based upon the observed condition that a
plume will not pogo until the missile reaches a specific altitude where the pressure
gradients along the hardbody are favorable for the pogo phenomenon [10]. The
eight-state and ten-state filters will be discussed more fully in Chapter VI, where
the specific choice of tuning parameters for each of the filter structures, and the

results of their performance analyses are presented.

5.3 [ield-of-View Data Processing

In order to process the current data frame to produce the required “pseudo-
measurements” for the Kalman filter upd-te cycle, the field-of-view used in this
research is represented as an 8 x 8 data array of pixels. The 8 x 8 FOV structure was
chosen, rather than some larger FOV’s that have been investigated in the past [5, 25],
based upon the benign missile trajectory used in the simulation. Since the baliistic
missile is assumed not to perform maneuvers or “jinks” during its ascent trajectory,
the 8 x 8 FOV tracker, with pixels of length 15 micro-radians on a side, does not
Jose track on the target and provides accurate tracking estimates in both directions
on the FLIR plane. “Staging” events during the ballistic missile ascent can cause
large differences in the missile’s acceleration characteristics for which an 8 x 8 FOV
tracker might lose lock; but for the purposes of this initial research, such staging was

not considered (see Chapter VII).

In addition to staging, the maximum amplitude of the plume’s pogo along the
longitudinal axis could possibly cause the 8 x 8 FOV tracker to lose lock on the tar-
get. However, based upon the maximum amplitude assumption of 60% occlusion of

the missile hardbody (which corresponds to approximately three pixels on the FLIR
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Figure 5.1. 8 x 8 Field-of-View Filter

plane. Section 3.4.3), the 8 x 8 FOV tracker was able to maintain lock on the target.
As mentioned in Chapter I, previous research [5, 24] considered a MMAF tracker
that included 24 x 24, 8 x 24, and 24 x 8 FOV elemental filters for the purposes 61"
tracking highly maneuverable targets. For the benign dynamic characteristics of the
ballistic missile hardbody and considering the maximi..n pogo amplitude (approxi-
mately three pixels) of the plume, an 8 x 8 FOV was found to be appropriate for
this research. Figure 5.1 gives a perspective of the 8 x 8 tracking window against a
24 x 24 array of pixels. The reason for comparing the relative sizes of the 8 x 8 FOV
to a 24 X 24 array is that the correlation algorithms of Figures 4.1 and 5.3 process
data from a 24 x 24 array of pixel sensors, where the infrared intensity values of the

plume are localized to an 8 x 8 tracking window.

A,



5.4 Field-of-View Rotalion

As mentioned in Chapter I, in addition to characterizing the ballistic missile
exhaust plume dynamics, rotating the FOV of the FLIR sensor to enhance tracking
performance was an additional objective of this research. Three different analyses
are conducted to compare performance of a FOV that does not rotate, i.e., the
non-rotating field-of-view (NRFOV), a rotating field-of-view (RFOV) implemented
by Norton {19], and a diagonal rotating field-of-view (DRFOV). The NRFOV is
the standard tracker used in previous studies conducted at AFIT [5, 18, 24] which
maintains the z-axis of the FLIR parallel to the local horizon. Norton implemented a
RFOV which aligns the z-axis of the 8 x 8 FOV FLIR parallel to the filter estimated
velocity vector. The DRFOV is a rotation scheme which aligns the diagonal of the
8 x 8 I'OV with the filter’s estimate of the velocity vector. Each of these rotation

schemes is presented in Figure 5.2.

The concept of a RFOV was originally conceived to maintain lock on a highly
maneuvering target that could “jink” in either of the two FLIR directions. The idea
of a rectangular rotating field-of-view (RRFOV) was first suggested by Leeney (5]
using a rectangular 8 x 24 FOV which was originally implemented by Tobin [24] in a
non-rotating scheme. Norton demonstrated that a MMATF algorithm composed of 8 x
8 FOV filters rotated so that the z-axis is aligned with the velocity vector [19:64-67],
as well as adaptively transforming the filter’s dynamic driving noise matrix Q4 so
that the target's acceleration distribution corresponds to the direction of the target’s
“jink™ maneuver [19:72-76], would improve tracking performance over algorithms
implemented by Leeney [5] and Tobin [24]. Although the adaptive rotation of the Q4
matrix does not apply to a benign ballistic missile target, because the acceleration
is modelled identically in each of the FLIR channels, the rotation of the 8 x 8 FOV
filter is applied in this research effort. Due to time constraints, the implementation
of the RRI'OV as discussed in Section 1.3.2 was not accomplished. However, it is a

suggested topic for future research particularly in the study of a simulated “staging”
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Figure 5.2. Field-of-View Rotation Schemes




event since the sudden change in acceleration may cause an 8 x 8 filter to lose lock

on the target (see Chapter VII).

To implement a rotation scheme in the existing data processing algorithm,
whether it be the RFOV, DRFOV or the RRFOV, some modifications are made
to the algorithm depicted in Figure 4.1. These modifications are depicted by the
“Rotate” blocks in Figure 5.3. The basis of the rotating FOV is the estimate of the

target’s positive velocity orientation angle (see Figure 5.2: é; is the filter’s estimate

of 0r):

é_f = arctan [;:y} (5.1)
Note that the terms in this equation are state estimates of the third and fourth
elements of the filter’s state vector. Therefore, the filter is capable of estimating
the velocity orientation angle in addition to the translational position states. This
permits the filter to provide control inputs to the FLIR sensor to perform both a
translation and a rotation of the FOV for on-line application of the tracking algo-
rithm. Also note the negative sign on the 9, term of Equation (5.1). This notation
is consistent with the previously defined coordinate frame of the FLIR (Figure 3.1)
used in past rescarch [24:37-38]. Inserting the negative sign in the numerator of
Equation (5.1) keeps the filter velocity orientation angle defined as positive in the
counter-clockwise direction from the positive z-axis on the FLIR plane (looking at
the target along the LOS vector from the origin of the inertial frame); and it produces
a direct correlation with the truth model velocity orientation angle 0 of Figure 5.2,

where:

0r = arctan [@] (5.2)

&(t)
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Figure 5.3. Data Processing Algorithm for a Rotating Field-of-View




and the directions of the inertial azimuth (a) and elevation () angles are defined in

Section 3.4.1.

To simulate the physical rotation of the FLIR sensor, the incoming FLIR data
is fed into the data processing algorithm in a rotated coordinate system based on
the orientation angle of Equation (5.1). This is simulated by performing a nega-
tive rotation, based on a positive velocity orientation angle from the horizontal, on
the location and orientation of the individual Gaussian intensity functions. This
directly corresponds to a positive rotation of the FOV, which when applied to the
FLIR sensor, aligns the FOV with the positive velocity orientation angle. Based
upon a development by Millner [17:157~163], the intensity function peaks are trans-
formed from the target frame, where they are positioned with respect to the center
of mass of the missile (sec Figure 3.6), to the FLIR image plane. Millner first trans-
forms the intensity functions to a plane perpendicular to the LOS vector. The final

transformation about the LOS vector, implemented by the following relationships:

&(t)

cos O = (5.3)
viLoS

sinfp = M. (5.4)
ViLOS

where all of the terms are previously defined in Chapter 4, moves the intensity
function peaks into the proper orientation on the FLIR plane for a non-rotating
'OV sensor. The intensity distribution about these peaks was previously defined by
Equation (3.38). In simulating the rotating field-of-view, rather than perform the
last transformation by 0r, the velocity orientation angle given in Equation (5.1) is
used to rotate the intensity function peaks as if the FOV had been rotated positively

in a counter-clockwise direction from a perspective looking out of the sensor along

the LOS vector.

Mathematically, the simulation of rotating the input FLIR data is done by
first rotating the intensity function peaks defined in Equation (3.38) by the rotation
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algorithm produced by Norton [19]:

, R L oa
Tk cosf; —sindy Tpeak: .
pea — f p (5_0)

y;;eak sin of cos of Ypeak

where the primed variables correspond to the rotated coordinate system. The in-
tensity distribution {Equation 3.38) is then oriented about the rotated pecaks by
ncgating Millner’s final transformation (by 0r) with the filter’s estimate of the ve-

locity orientation angle of Equation (5.1) via the following calculation:

118,/ Zyeat(D) Vyeak (1] = Imaz exp[~0.5[0a' A/ [P {ATAYT)  (5:6)

where:
Az = (&' = T 0) cOS A + (Y — Ypeqr) sin AF
Ayl = (yl - y;eak) cos Al — (xl - m;cak) sin A0
A0 = the difference between the truth model velocity orientation angle

and the filter computed velocity orientation angle, i.e.
A0 = 0p — 0
a',y' = rotated coordinates from the original FLIR coordinate frame via

the same transformation used in Equation (5.5).

Once the incoming FLIR data is rotated by the above transformations, the data
processing algorithm in Figure 5.3 generates the templates in the same manner as
was done in Figure 4.1, except that now the measurement data entering the data

processing algorithm is in a rotated coordinate system.

Recall the shifts of Equations (4.13) and (4.14). The incoming data is centered
via these translational shifts in both azimuth and elevation directions on the FLIR
plane. Recall that these shifts are used to center the incoming data on the FLIR
IFOV so that the offset can be regulated to zero over the ensuing sample period. Note,

however, that these shifts are computed in the filter coordinate system, while the
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current image data is represented in a rotated coordinate system simulating a RFOV.
To implement the RFOV data processing algorithm properly, the translational shifts
are transformed into the rotated coordinate frame by the same transformation that
was used on the hotspot peaks:

‘Tlshijt cos éf —sin éf Tshift

= ) R (5.7)
yéhm sinfy  cosd; Yshift

where 40 and ygpige are given by Equations (4.12) and (4.13).

’l"his transformation is represented by the “Rotate” block directly following
i:he “Adaptive Tracking Algorithm” block of Figure 5.3. The current image data
and the filter's estimate of the target centroid (the shifts) are now represented in
corresponding coordinate frames, i.e., the rotated coordinate frame, and the template

generation proceeds as presented in Section 4.3.1.

The only other modification to the data processing algorithm of Figure 5.3
is the “Rotate block™ following the “IFFT” block. Recall that the outputs of the
“IFFT" block are the linear offsets between the current data image and the centered
template. These offsets are depicted in Equations (4.19) and (4.20) and represent the
linear measurements from the enhanced correlator which are fed into the Kalman
filter update cycle. Recall, however, that the current states used in the Kalman
filter equations are represented in the original unrotated FLIR coordinate frame,
while the linear measurement offsets from the enhanced correlator are coordinatized
in the rotated frame. Thus, to ensure compatibility of coordinate frames once again,
the measurement offsets are transformed by the opposite transformation that was

performed on the shifts and the intensity function peaks:

z cosb; sinf 2
1 S f 1 (5-8)

22 —sinfd; cosdy 25

where z; and 2, are the components of the two-dimensional measurement vector
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in Equation (4.22) in the original coordinate frame, and z; and z} are the lincar

outputs in the rotated coordinate frame of the data processing algorithm for the
rotating FOV.

The above simulation of the rotating field-of-view was originally developed by
Norton [19] to align the estimated velocity vector with one axis of the FLIR FOV
(the z-axis in this description). It should be noted that the same concepts applied
for the RFOV are also applicable to the DFOV and RRFOV. As mentioned carlicr,
this research implements a DRFOV, as well as the RFOV; and the performance of
each is discussed in Section 6.4, along with performance results of a NRFOV filter

analysis.

5.5  Truth Model Parameters

The initial conditions of the target’s inertial position and velocity vectors (see
Figures 3.7 and 5.4 for coordinate system axis definitions) for the nominal ballistic

missile trajectory are:

e, = 20,000 meters

e, = 100,000 meters
e. = 2,000,000 meters
ve = -250025

vy = 43302y

v: = 0553

and the components of the acceleration vector are calculated based upon the discus-

sion in Section 3.2.1.

Note the large initial condition in the e, direction. This initial condition was
intentionally made large to simulate the large effective range when considering an
orbiting optical platform that is undergoing bending/vibrational effects (see Fig-
ure 3.2). Using these initial conditions on the position parameters produces an

effective range on the order of 2 x 10° meters. The reason that the e, direction was
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Figure 5.4. Ballistic Missile Trajectory in Inertial Space

chosen to generate a large effective range is because it is a “benign” axis when im-
plementing the ballistic missile trajectory for this particular simulation. Figure 5.4
shows the missile trajectory used in the simulation. All of the missile dynamics are
simulated to occur in a plane parallel to the inertial e, — e, plane. Thercfore, the
e axis is basically used to scale the desired range when considering an orbiting op-
tical platform in the simulation. The effective range is also used in determining the
required pixel proportionality constant discussed in Chapter 3, as well as being in-
volved in the various coordinate frame transformations that have been implemented
in the simulation software over the past ten years. The large initial component
in e, does not affect the true missile trajectory as generated by the development
in Section 3.2.1, since the only forces acting on the missile are assumed to be the
thrust force and the force due to the Earth’s gravitational attraction, where both

are simulated to occur in a plane parallel to the e, — e, plane.

Also note the relative magnitudes of the two initial velocity components. The
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ratio of these two components form the velocity vector orientation angle of the target
in an inertial coordinate frame. As mentioned carlier, this orientation angle was
chosen to be approximately 60°, as is evidenced by the choice of the initial velocity

components in the inertial coordinate frame.

The maximum intensity value of each of the intensity functions in Equa-
tion (3.38) is 20 intensity units. The RMS value of v;, which is the sum total
of the spatially correlated background noise (b,,) and the FLIR sensor noise (n,;) in
Equation (3.39), is one. This produces a signal-to-noise ratio (SNR) of 20, which, as

stated by Tobin [24], is typical of many tracking scenarios of current interest.

One of the assumptions used to generate the size of the plume relative to the
diameter of the ballistic missile in the target coordinate frame is that the plume
width is on the order of 30 times the diameter of the missile for certain altitudes
of interest [10]. To implement an 8 x 8 FOV tracker for the ballistic missile plume
which undergoes the pogo effect, it was desired to “fit” the plume in a 5 x 5 FOV
window under the condition of a non-pogoing plume. A 5 x 5 window was chosen
to permit the 8 x 8 FOV tracker to maintain lock on the target even when the
maximum plume amplitude (approximately threc pixels) is reached [10]. Based upon
these assumptions and the effective range discussed earlier, the reference hotspot
dispersion in the e, direction of the target frame (Equation 3.46) is chosen to be 1
pixel when projected onto the FLIR image plane; and with an aspect ratio of 1.5, the
hotspot dispersion along the e, direction in the target frame becomes 1.5 pixels when
projected onto the FLIR plane. The pixel proportionality constant (k,) required to
meet all of the above criteria is on the order of 15 micro-radians/pixel, as preserited

in Section 3.2.1.

The variance and mean squared value for the of the atmospheric jitter process
in the truth model, given by z, and y, in Equations (3.1) and (3.2), is 0.2 pixels? [24].
The truth model parameters used to describe the bending/vibration phenomenon of

the optical platform are presenied in Section 3.2.3, and the range of parameters used
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to study the pogo phenomenon are presented in Section 3.2.4 and Appendix A.

5.6  Filter Parameters

In the tracking simulation, the filter is initialized to zero errors in the position
and velocity states at t = 0. This is an artificial initial condition intended to allow
a first analysis of tracking, devoid of recovery problems associated with poor initial
conditions. Non-zero initial errors are introduced in subsequent analyses to investi-
gate the acquisition routine developed by Tobin [24], but for this study the tracker
is assumed initially to have perfect knowledge of the target location. The position
states r; and x, are initialized so that the target’s center of mass is centered in the
FLIR FOV (sce Figure 3.1). The velocity states z3 and z4 are initialized in accor-
dance with the target’s actual inertial position and velocity vectors of Section 5.5,
and the transformations of Equations (3.42) and (3.44). The acceleration states x;
and zg are initialized by subtractihg the velocity states at { = 0 from the velocity
states at ¢ = 31—0 and then dividing by '3.1—0’ The atmospheric jitter states z7; and a3, as

well as the pogo states zg and 0 arc initialized to zero. The initial state covariance

matrix, P({,), is given by [24]:

(100 0 0o 0 0 0 0 0 0]
010 0 0 0 0 0 0 0 0
0 0 200 0 0 0 0 0 0 0
0 0 0 200 0 0 0 0 0 0
Py |0 0 0 0 10 0 0 0 0 o 69
00 0 0 0 10 0 0 0 0
00 0 0 0 0 020 0 0
60 0 0 0 0 0 02 0 0
00 0 0 0 0 0 0 02 0
(00 0 0 0 0 0 0 0 02]
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Since the MMAT was not implemented during this research, see reference [19]
for initial conditions on the hypothesis conditional probabilities for the elemental
filters in the MMAT structure, as well as other details of the reacquisition routine

to be used should any of the elemental filters diverge during the simulation.

5.7 Tracking Algorithm Statistics

The tracking algorithm performance is evaluated by Monte Carlo simulation
techniques (7). Previous research has demonstrated that ten Monte Carlo runs ex-
hibit sufficient convergence to the actual statistics resulting from an infinite number
of runs {2, 3, 16]. Based upon this previous research, ten Monte Carlo runs arc used

to analyze the tracker’s performance in this research effort.

The sample mecan errors of the tracking algorithm’s estimates are calculated

as [24]):

. 1 Y
En(t) = N Z ezdn(it)
n=1
1 N
= N Z[.’L‘dn(t,’) - .’Ildnf(t,')] (510)
n=1
where:
Exd(t,) = sample mean error of the z target position estimate at time {;,
averaged over N runs
ezdn(l;) = error in the z position estimate at ¢; during simulation n
Tans(t;)) = estimate of target’s z position at t; during simulation n
Tan(t;) = truth model value of the target’s z position at time #; during

simulation n

N = number of Monte Carlo runs.

The sample variance of the error is given by:
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N
z:d -[\" -1 Z {eidn 3

=1

2 (t;) (5.11)

where all the quantities are defined above.

The error committed in estimating the target’s position is the most important
parameter when evaluating the tracker’s performance. The error committed in esti-
mating the location of the centroid of the target’s image on the FLIR plane is also of
importance, since it provides an indication of how well the algorithm is adaptively
identifying the target’s shape function and centroid location. The location of the
centroid is necessary to center the data accurately on the FLIR plane for use in the

template generation scheme discussed in Section 4.3.1.

The above statistics are calculated in both the z and y FLIR plane directions.
Both error parameters are calculated before (¢7) and after (¢f) the Kalman filter
update cycle. All of the errors are measured in units of pixels, where each pixel is

15 micro-radians on a side.

The above statistics are reduced even further for easily tabulated scalars ver-
sus entire time functions as indicators of performance, by temporally averaging the
niean error and standard deviation time histories over the ten second simulation. In
actual implementation, the statistics are averaged over the final five seconds of each
simulation to ensure steady; state performance is reached. These temporal averages
provide a measure of comparability between various tracking scenarios studied in
Chapter VI, but should be used in conjunction with the actual plots when assessing
tracker performance, since ~ome trends in the plotted time histories are not distin-
guishable from the time-averaged scalars. The data is presented in tabular form in

Chapter VI for ease of comparison of each the tracking scenarios.

5.8 Performance Plots

Ten plots are used to assess the filter’s performance in this study. They are:
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1. True z position rms error vs. filter-computed z position rms error

o

. True y position rms error vs. filter-computed y position rms error
3. Mecan x target position crror, £ one o, plotted at all time &7
4. Mean y target position crror, & one o, plotted at all time ¢;
5. Mean z target position error, & one o, plotted at all time ¢F

6. Mean y target position error, & one o, plotted at all time ¢}

-1

. Mean z centroid position error, & one o, plotted at all time ¢;

oG

. Mean y centroid position error, & one o, plotted at all time {7
9. Mean z centroid position error, & one o, plotted at all time ¢}

10. Mean y centroid position error, & one o, plotted at all time ¢}

Performance plots 1 and 2 indicate the adequacy of the tuning process of the fil-
ters by directly comparing the actual true rms error of the filter vs. what the filter
“thinks” its ecrror is, i.c., the filter computed rms error. Plots 3 through 6 provide
primary tracking performance evaluation, because the state estimates at 17 are used
to generate control signals to point the FLIR/laser, and the state estimates at ¢f
provide the best possible filter estimation accuracy. As mentioned earlier, plots 7
through 10 provide information regarding the adequacy of the image centering al-
gorithm to aid in the construction of the template. The “* one ¢” characteristics
of the plots 3 through 10 are equally as important as the mean error characteris-
tics. A tracker with large error sw.ndard deviations is ineffective in pointing a laser,
since the laser energv will tend to “paint” the target, thus rendering it useless as a
weapon. Examples of piots 2, 4, 6 and 10 are shown in Figures 5.5, 5.6, 5.7, and 5.8,

respectively.

Toward the end of thic research, it was concluded that the ten plots discussed

above were not totally adequate to establish firm conclusions in regards to some of the
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Field | Notation | Description
field 1 | BENCHMARK 8-state filter analysis
POGO PERFORMANCE | 10-state filter analysis
field 2 | SINGLE single filter analysis
MMAF multiple model adaptive filter
field 3 | NRFOV non-rotating field-of-view
RFOV rotating field-of-view
DRFOV diagonal rotating field-of-view
field 4 | GAIN-HI high amplitude pogo in truth model
GAIN-LO low amplitude pogo in truth model
ficld 5 | FREQ-HI high frequency pogo in truth model
FREQ-LO low frequency pogo in truth model
field 6 | POGO OFF pogo turned off in truth model
BEND OFF bending turned off in truth model

Table 5.2. Greyscale Field Descriptions
performance results during this study. Chapter VII discusses these shortcomings and

provides some recommendations to overcome some of the evaluation tool limitations.

5.8.1 Plot Designation Codes. Each of performance plots is iabelled with a

plot designation code formatted as follows:
/ficld 1/field 2/field 3/field 4/field 5/field 6

where field 6 is optional and cach field is explained in Table 5.2. As an example,

consider the following designation code:
/BENCHMARK/SINGLE/DRFOV/GAIN-HI/FREQ-HI/BEND OFF

This signifies the case of an analysis of an 8-state, single, diagonal rotating field-of-
view filter where the pogo effect is a high amplitude, high frequency oscillation in

the truth model, and where bending is turned off in the truth model.

5.9 Greyscales

The greyscales used in this research are representations of FLIR plane images

and filter templates. In the greyscale diagram, each numerical symbol characterizes
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| SYMBOL | INTENSITY UNITSJ
0<1<10
10<1<20
20<1<30
30 <1 <40
40 <1 <50
50 <1 <60
60 <1< 70
0 <I1<80
80 <1

=l O] O] v W W] =) O©

oG

Table 5.3. Greyscale Symbol Key

a specific intensity range. The higher the number in a pixel location, the higher
the intensity representation is on that pixel. Table 5.3 is the key to the numbers
used In the greyscales. Since the maximum intensity of each of the hotspots is 20,
intensity values greater than 20 would seem never to appear. However, the intensity
units shown in Table 5.3 have been lrescaled to maximize the greyscale’s pictorial
effect [24]. and thus do not have the same meaning as the units originally used to

define the 20:1 SNR.

The purpose of the greyscale diagrams is to demonstrate the adaptive iden-
tification of the target's intensity shape function in tie form of a template. The
greyscales are used in Section 6.4 to demonstrate the rotation schemes studied in

this thesis. An example of a greyscale diagram is presented in Figure 5.9.

5.10 Summary

This chapter has presented the overall tracking algorithm used in this research
by combining the: principles presented Chapters II, IIi, and IV. An overall view of
the algorithm was presented, along with a proposed structure for a MMAF algo-
rithm. The method for field-of-view (FOV) processing was discussed, followed by
the different FOV rotation schemes analyzed in this research and the relationship

of the rotating FOV to the overall tracking algorithm that was presented in Chap-
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Figure 5.9. Example of a Greyscale Diagram
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ter IV (Figure 4.1). The filter and truth model parameters were then presented,
before concluding with the tools used to evaluate the performance of the tracking
algorithm (i.e., statistical calculations, performance plot formats, and greyscale dia-

grams) accompanied by examples of each.
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VI. Performance Analysis

6.1 Introduction

This chapter presents and analyzes the performance characteristics of the track-
ing algorithms discussed in Chapter V. Section 6.2 presents a tuning analysis for an
8-state filter before inserting the pogo states into the truth model. Section 6.3 then
presents the performance results for four single 8-state filters, each tuned for varying
pogo characteristics in the truth model. Once the performance analysis of the tuncd
8-state filters is presented, the results of the FOV rotation schemes are given in Sec-
tion 6.4 and are followed by the 10-state filter performance analyses in Section 6.5.
Sections 6.6 and 6.7 present a rework of the 8-state and 10-state filter performance
analyses, respectively, for a truth model where the bending phenomenon is removed.
The reason for this rework is due to the absence of an expected performance en-
hancement of the 10-state filter over the 8-state filter in the preceeding sections. As
mentioned previously, the robustness analysis and the MMAF performance analy-
sis were not implemented as part of this thesis research, and Section 6.8 describes
why these analyses were inappropriate. The performance analysis section concludes
with some trouble-shooting procedures and results in an attempt to understand the

performance inconsistencies.

6.2 8-State Filler Tuning Via Dynamic Trajectory Parameters

As described in Chapter IV, the acceleration models used in the 8-state fil-
ter structure are first-order Gauss-Markov processes: the outputs of first-order lags
driven by zero-mean, white Gaussian noise. The truth model target trajectory (Fig-
ure 5.4) is assumed to be a benign trajectory where no maneuvers or “jinks” are
being simulated. The purpose of this section is to describe the tuning procedure
and results used to tune the 8-state filter for this benign trajectory, before a plume

pogo is implemented into the truth model. The tuning parameters used to tune the
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FILTER # | 02, o2(22¢) | 7, 7, (seconds) | a&(%) | 7. (seconds) |
1 250 4 0.2 0.0707
2 2000 8.5 0.2 0.0707
3 530 8.5 0.2 0.0707
4 5 8.5 0.2 0.0707
) 5 8.5 2.15 0.0707

Table 6.1. Individual Filter Tuning Parameters

8-state fiiter are the variances (02, 02) and correlation times (7z, 1) of the first-order

Gauss-Markov acceleration processes in each FLIR direction; and the variance (o2)
and correlation time (7,) for the atmospheric jitter position process. By selecting
various values for the variance and correlation time for the first-order acceleration
process, the amplitude and rate-of-change characteristics of a variety of targets can
be modelled [8:53-56). Five scparate tuning runs are described in this section. and

the parameters for each of the 8-state filters are listed in Table 6.1.

Note that the tuning parameters are identical in both the x and y channcls,
which is characteristic of the target dynamics being modelled equally in both FLIR
directions. It should also be noted that the first four filters in Table 6.1 have identical
jitter characteristics. These values are based upon previous tuning results for the
reduced order jitter model in the filter [18). The reason for the change in the jitter
variance for filter #5 will be explained as the analysis in this section proceeds. The

performance plots for each of the five filters in Table 6.1 are found in Appendix B.

To begin the tuning of the 8-state filter for the benign ballistic trajectory, the
parameters for filter #1 are chosen based upon the benign trajectory (trajectory #1)
used by Leeney [5:66-67] for a small 8 x 8 FOV filter. Figures B.1-B.10 of Appendix
B show the results of this first tuning run. Note that the filter's computed error
is underestimating the actual error in both FLIR channels for the benign ballistic

trajectory.

To simulate a more benign target, the correlation time of the acceleration
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process was increased to 8.5 seconds [5, 10]. Also, in an attempt to tune the filter
from the underestimation result shown in Figures B.1 and B.2, the acceleration
variance was increased to 2000. The results of this performance run are shown in
Figures B.11-B.20. The filter is still underestimating in both FLIR channels, and

the actual error is larger than the corresponding plots for filter #1.

The next step in the tuning process assumed that the ballistic missile rate-of-
change characteristics (7, 7, = 8.5) remain identical to the values used in filter #2.
The variance was calculated to be 530 2225 hased upon Equation (6.1) [7] and the

seconds?

tuning characteristics used by Leeney for filter #1:

[

20

Q=" (6.1)

T

Q is the strength of the white, Gaussian noise driving the first-order lag to produce
the acceleration process. Leeney’s research showed that filter #1 demonstrated good
tuning characteristics for a benign aircraft trajectory. In order to maintain the same
value of @ that Leeney used in filter #1 (which is tuned for benign dynamics), the
variances (o2, 0.3) of filter #3 are scaled for a benign ballistic trajectory where 7, 7, =
8.5. This scaling resulted in a value of 530 ;%ff;:; for the variance in each direction
on the FLIR plane for filter #3. The performance plots of filter #3 are presented in
Figures B.21-B.30. The tuning plots still demonstrate filter underestimation sirilar

to the plots for filters #1 and #2.

To observe the tuning characteristics at a lower strength of pseudonoise, o2 and
o2 are reduced to a value of 5 ;%i—f,ﬁ%; and the correlation times in each direction
remain unchanged at 8.5 seconds (filter #4). This model for the trajectory dynamics
represents a target that shows very benign maneuverability characteristics. The am-
plitude parameter of the acceleration is assumed small, and the rate-of-change of the
acceleration process remains slow. These target parameters produce a very small

value, which also implies that the model is assumed to be a very accurate represen-

tation of the true target trajectory. Figures B.31-B.40 show the performance plots

6-3




for filter #4. This filter continues to show the underestimation qualities of the first
three filters studied in this tuning analysis. It should be noted that the actual errors
in Figures B.31 and B.32 are lower than the three preceding filters; but likewise,
the filter-computed errors are also lower due to the low value of Q used. Lower-
ing the value of @ any further could be damaging to the Kalman filter’s estimation
properties. By reducing @, the filter places more emphasis on its internal model
than it does the incoming measurements from the enhanced correlator. Because of
this consideration, o2 and o2 are maintained at 5 % and tuning via the jitter
variance o2 is conducted since filter tuning via the target acceleration parameters
was unsuccessful. The value for the acceleration process variance was maintained at

5, because this value, along with the correlation time of 8.5 seconds, provided the

best performance of all the underestimating filters studied thus far.

Table 6.1 provides the tuning parameters used in Filter #5. The performance
plots are represented in Figures B.41-B.50 and demonstrate that the 8-state filter is
tuned for t'he parameters listed in Table 6.1. Tuning via the jitter variance proved
successful in tuning the 8-state filter, but the error performance plots for the dynamic
states and the centroid states show a degradation compared to the performance
plots for the untuned filters. This is because the value of the jitter variance (2.15)
used to tune the filter is an order of magnitude greater than the jitter variance
representation in the truth model (0.18). This increase in pseudonoise strength is
somewhat surprising considering that previous research implemented a jitter variance
of 0.2 in the filter to obtain good tuning characteristics. Section 6.9 further discusscs
this discrepancy between the filter and truth model representations for atmospheric

jitter.

6.3 8-State Filter Benchmarks

Based upon the results in Section 6.2, the two state pogo model is added

to the truth model structure, and four single filters are tuned for varying pogo
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| FILTER # | 02,0

z)

2
¥

(-L;ﬂif’;’;: ) [ Tzy Ty (seconds) l az(;%ﬁff—;‘:;) I 7. (seconds) I

1 5 8.5 2.20 0.0707
2 5 8.5 2.15 0.0707
3 ) 8.5 2.10 0.0707
4 5) 8.5 2.15 0.0707
Table 6.2. 8-State Benchmark Filter Tuning Parameters
SCENARIO | POGO AMPLITUDE | POGO FREQUENCY
(pixels) (Hertz)

1 1.12 10

2 0.012 10

3 1.12 0.1

4 0.012 0.1

Table 6.3. Truth Model Pogo Scenarios for the Four Benchmark Filters

characteristics. The parameter used in tuning the four single filters is the atmospheric
jitter variance. By adjusting the jitter variance, the filters are able to capturc the
pogo effect as atmospheric jitter without corrupting the estimates of the dynamic
states. Table 6.2 illustrates the filter parameters used to tune each of the filters for
the corresponding truth model pogo scenarios in Table 6.3. Note that the tuning
parameters in each of the filters in Table 6.2 are nearly identical. These results
indicate that an 8-state filter is fairly robust to the varying levels of pogo amplitude
and frequency (at least when the jitter variance has been increased an order of
magnitude above the true jitter value), and that an MMAF structure composed
of 8-state filters would not be applicable since there are no strong distinguishing
characteristics for the four cases. On the other hand, an MMAF composed of 10-
state elemental filters (two additional pogo states in the filter structure), which are
“tightly” tuned for the varying pogo scenarios in Table 6.3, would be expected to

enhance performance over both the single 8-state and single 10-state filters.

The four tuned filters in Table 6.2 establish a benchmark of performance to
which other filters will be compared. Specifically, performance statistics of the 10-

state filters of Section 6.5 will be compared to the following performance « tatistics of

6-5

S et




Temporally Averaged

Error Statistic Mean |1 Sigma
(6) -.0070759 | .86775
1) -.070112 | .74936
#(tF) ~.0040636 | .83851
Gl ~071775 | 72038
X)) 013944 | 1.2062
Teltr) -.0032691 | 1.6308
z(t7) 030104 | .24844
77) ~012197 | .17827

Table 6.4. /BENCHMARK/SINGLE/DRFOV/GAIN-HI/FREQ-HI/

Performance Statistics

the benchmarks. It should be noted that all filters are analyzed using the DRFOV
rotation scheme. This decision is based on the results ~resented in Section 6.4 that
indicate it to be the best of the three FOV r on strategies considered. The
performance statistics of all filters are tempora. rraged over the last five seconds
of the ten second simulation. Mean and 1o error statistics are measured in units of
pixels on the FLIR plane, and the performance statistics for filters #1, #2, #3, and
#4 are given in Tables 6.4., 6.5, 6.6, and 6.7, respectively. The performance plots
for each of the filters are included in Appendix C. Figures C.1-C.10 correspond to
filter #1. Figures C.11-C.20 correspond to filter #2. Filters #3 and #4 relate to
the plots in Figures C.21-C.30 and C.31-C.40, respectively.

Note the relative performance improvements in the statistics after the Kalman
filter update cycle. In almost all cases, the mean errors after an update show some
degradation in performance, but the 1o parameters show improvement in all chan-
nels. The cause of the degradation in the mean statistics after measuement updating
is not clear. The improvement in standard deviations after updates indicates a nat-
rowing of the error envelope and is essential for accurate and effective pointing of a
laser weapon at the target. The four tuned filters discussed in this section demon-
strate fairly equivalent performance, with the exception of the y position of filter #3.

Based upon the temporally averaged statistics, this filter has a degraded tracking
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Temporally Averaged
Error Statistic Mean |1 Sigma
Z(t7) .0015083 | .88223
y(t7) -.079612 | .73758
z(tF) .0044635 | .85175
§(t7) -.081503 | .70990
Z.(t7) .025630 | .89075
Je(£7) -.020411 | .81683
EXG 041439 | .29739
AGd) ~.030525 | .17981

Table 6.5. /BENCHMARK/SINGLE/DRFOV/GAIN-LO/FREQ-HI/

Performance Statistics

Temporally Averaged
Error Statistic Mean |1 Sigma
Z(t7) 1072219 | .89999
(L) -.22353 | .93390
#(tF) .074845 | .87133
§(¢F) -.22487 | .90969
&c(t7) .012314 | .88652
Ye(ti) -.022698 | .81777
&o(t7) 026308 | .28814
Je(ti) -.029826 | .18076

Table 6.6.
Performance Statistics

/BENCHMARK /SINGLE/DRFOV/GAIN-H

Temporally Averaged

Error Statistic Mean 1 Sigma
5(6) Z.010234 | 86902
) ~.075643 | .73763
(tF) -.0072553 | 83859
() ~.077485 | .70995
EXGR) 013227 | .87923
7e(l;) ~014780 | .81560
Z:(t7) 029164 | .26840
7 (F) ~.024641 | .17300

Table 6.7.
Performance Statistics
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ROTATION aﬁ,aj(ﬁ—g%}’-:w) Tz, Ty (seconds) aZ(-iif,—ﬁT) 7o (seconds)
NRFOV ) 8.5 1.95 0.0707
RFOV ) 8.5 2.45 0.0707
DRFOV 5 8.5 2.20 0.0707

Table 6.8. Individual Filter Tuning Parameters

capability of approximately 60% when compared to the other filters. Filter #3 is
having some difficulty in separating the hardbody y dynamics from the other states
for a large amplitude, low frequency pogo even though it is estimating the centroid
states as accurately as the other three filters. Figures C.34 and C.36 demonstrate
that filter #3 is showing larger mean errors at approximately eight seconds into the
simulation as compared to the y channel plots of the other three filters. The reason

for this discrepency remains unknown at this time.

6.4 Rotating Field-of-View Analysis

This section compares the two FOV rotation schemes (RFOV, DRFOV) pre-
sented in Section 5.4 along with the nominal non-rotating FOV filter. Each of the
rotation schemes is tested against an identical truth model scenario so that a valid
comparison can be made. The nominal ballistic trajectory is simulated with truth
model pogo characteristics representing a large amplitude, high frequency pogo el-
fect. This pogo scenario is considered because it should stress each of the FOV
schemes to the limit; i.e., if a filter can show accurate tracking against the pogo
parameters at the upper limit of their respective ranges, then it is assumed that
the other three pogo scenarios could be tracked equally as well since they are less
dynamic. Table 6.8 represents the tuning parameters used in the IFOV rotation
schemes. Each filter is tuned for the same truth model scenario before the perfor-

mance analyses are compared.

Appendix D provides the performance plots for each of the rotation schemes

tested. Figures D.1-D.10 are the plots for the NRFOV analysis, Figures D.11-D.20




Temporally Averaged
Error Statistic Mean |1 Sigma
Xt) ~.050960 | .88013
) ~.076976 | 85183
#(tF) -.047905 | .75585
1G) ~.078825 | 72863
EX () ~.029302 | 1.2136
) 011870 | 1.6430
z(th) -.012656 | .26714
AGa) ~021950 | .28773

Table 6.9. /BENCHMARK/SINGLE/NRFOV/GAIN-HI/FREQ-HI/

Performance Statistics

Temporally Averaged
Error Statistic Mean |1 Sigma
z(t7) 12915 | .85499
7(t7) -.13041 | .77807
z(tF) 13198 | .82450
() -.13205 | .74899
Tc(t7) 14943 | 1.2134
7(t7) -.062422 | 1.6376
E.(t7) 16435 | .29877
Je(tT) 07106 | .24470

Table 6.10. /BENCHMARK/SINGLE/RFOV/GAIN-HI/FREQ-HI/ Performance

Statistics

represent the RFOV analysis, and Figures D.21-D.30 represent the analysis of the
DRFOV. The main performance indicators are the temporally averaged statistics
over the final five seconds of the ten second simulation. These statistics are tabulated
similarly to the performance statistics in Section 6.3 and provide a tool for a direct
comparison of the three rotation scenarios. Tables 6.9, 6.10, and 6.11 provide the

temporally averaged statistics for the NRFOV, RFOV, and DRFOV, respectively.

Comparing the results of these three tables, it is obvious that the DRFOV does
outperform the other two rotation schemes, as was initially expected. The DRFOV

outperforms the other two in both the mean errors and the 1o statistics, which indi-
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Temporally Averaged

Error Statistic Mean 1 Sigma
(t7) -.0070759 | .86775
3(6) ~070112 | .74936
ﬁ:(t;*' -.0040636 | .83851
Gl ~0071775 | .72038
z(87) .013944 1.2062
TelE) ~0032691 | 1.6308
:f:c(t}F) .030104 .24844
G ~012197 | .17827

Table 6.11. /BENCHMARK/SINGLE/DRFOV/GAIN-HI/FREQ-HI/

Performance Statistics

cates better identification of the missile hardbody location, as well as more accurate
pointing of the laser weapon. As an example, the DRFOV outperforms the NRFOV
by approximately 85% in the #(¢;) mean estimate and approximately 2% in the
standard deviation of the same estimate. By the DRFOV aligning the diagonal di-
mension of the 8 x 8 FOV with the filter estimate of the velocity vector, more FLIR
intensity data is available to the enhanced correlation algorithm to generate a better
estimate of the template; thus creating more accurate linear offset measurements to
the Kalman filter update algorithm. This results in the better performance charac-
teristics over the other two schemes. The RFOV tends to show the least performance
benefit of the three schemes. Based upon Figure 5.2, this makes sense intuitively. As
the pogo effect causes the plume to oscillate about the x axis on the FLIR plane, the
plume actually “pogos” out of the FOV of the FLIR. Less intensity data is available
to the enhanced correlation algorithm; thus the degraded performance statistics for
the RIFOV. The NRFOV does demonstrate good performance, which is based upon
the 60° velocity orientation angle of the chosen missile trajectory (at 0°,90°, etc., it

would show the same poorer performance of the RFOV).

As mentioned in Chapter V, the greyscale diagram is a plot which demonstrates
the size and shape characteristics of an image on the FLIR plane. Figures 6.1, 6.2,

and 6.3 are greyscale diagrams of the ballistic missile plume and represent a NRI'OV,
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RFOV, and DRFOV, respectively. Note that the difference in the plume orientation
is difficult to distinguish between the NRFOV and DRFOV, although Figure 6.3
does demonstrate a more “diagonal-like” orientation. A change of the greyscale’s
rectangular representation to a “true” square-shaped grid would demonstrate that
the DRFOV shows a more prominent alignment of the image semi-major axis with
the FOV diagonal. The RFOV of Figure 6.2 does demonstrate that the semimajor

axis is aligned with the positive FLIR z, axis as was described in Figure 5.2.

6.5 10-State Filter Performance Analysis

The objective of this section is to demonstrate the performance of four 10-state
Kalman filters paralleling the truth model scenarios in Table 6.3. The performance
results of each of the four Kalman filters are tabulated, and the results are compared-
to the four 8-state filters of Section 6.3. Again, as in the previous sections, the filters
use the DRFOV rotation scheme as described in Section 6.4. The 10-state Kalman
filters used in this study are of the structure presented in Chapter IV, where the
pogo model is L:epresented by two additional filter states and corresponds directly
to the model used in the truth model. The reason for the identical pogo structures
in the filter and truth models is to provide the filter with the actual effects of pogo
being simulated (robustness to mismodelling of the pogo phenomenon would be a
natural follow-on investigation). It was decided to handle any mistuning via the filter
jitter state, as was done in Section 6.3. By using an identical pogo representation
in the filter model and truth model, an increase in performance is expected over
the 8-state filter where the pogo states were not modelled. Although this tends to
make the 10-state filters less robust to varying pogo scenarios (see Table 3.1), it
leads perfectly into an MMAT structure that will additionally provide performance
enhancement over both a single 10-state and 8-state filter. The tuning paramecters
for each of the 10-state filters are presented in Table 6.12; and the performance

plots for filters #1, #2, #3, and #4 are included in Figures E.1-E.10, E.11-15.20,
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FILTER # | o2, 03(-5;—"7:{5) Tz, Ty (seconds) ag(ea;'%‘%) | 7. (seconds)
1 5 8.5 2.20 0.0707
2 5 8.5 2.15 0.0707
3 5 8.5 1.70 0.0707
4 5 8.5 2.05 0.0707

Table 6.12. 10-State Pogo Performance Filter Tuning Parameters

Temporally Averaged

Error Statistic Mean 1 Sigma
(t7) -.011699 | .86265
9(t7) -.068184 | .74331
z(¢F) -.0086868 | .83259
g(¢F -.0069922 | .71512
Ze(tr) 0073344 | 1.0123
7. (t7) .0034861 | 1.1889
Ze(i7) 1026560 | .21228
7.(tF) .0098915 15534

Table 6.13. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-HI/FREQ-HI/
Performance Statistics

E.21-E.30, and E.31-E.40 of Appendix E, respectively.

Note that, when comparing the tuning parameters of Table 6.12 and Table 6.2.
filters #1 and #2 do not change tuning characteristics when going from an 8-state to
a 10-state model. Filters #3 and #4 do show a difference in the tuning characteristics
for the 8-state to 10-state models. Filters #3 and #4 are tuned for a low pogo
frequency waile filters #1 and #2 are tuned for a high pogo frequency. This suggests
that the 10-state filters are sensitive to a variation in the pogo frequency, which
should be noticeable in a robustness study with the 10-state filters. This sensitivity
to frequency changes provides insights into possible elemental filters necessary in the
MMATF algorithm, but no firm conclusions can be made until a complete robustness
study is performed (see Section 6.8). Tables 6.13, 6.14, 6.15, and 6.16 present the

temporally averaged performance results for filters #1, #2, #3, and #4, respectively.
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Temporally Averaged
Error Statistic Mean 1 Sigma
Z(t7) .00099137 | .87757
g(¢7) -.084805 | .73927
Z(t7) 0029912 | .84687
§(th) -.086673 | .71175
z(t7) .024272 | .88594
Te(tr) -.025499 | .81603
z(t) .040221 28125
ge(tF) -.035495 | .17773
Table 6.14. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-LO/FREQ-HI/
Performance Statistics
Temporally Averaged
Error Statistic Mean |1 Sigma
Z(t7) .089741 | .94506
g(t7) -.28040 | .99732
&(tF .092084 | .91402
gt -.28132 | .97042
z.(t7) .015006 | .88221
ge(t7) -.055326 | .81552
Z.(t7) 026931 | .27572
7c(tT) -.059738 | .16126
Table 6.15. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-HI/FREQ-LO/
Performance Statistics
Temporally Averaged
Error Statistic Mean 1 Sigma
z(t7) -.0037107 | .89255
y(t7) -.10924 76164
#(tF) -.00083007 | .86142
g(¢F) -.11088 73316
z.(t7) .0096192 | .88558
Je(t7) -.031412 | .81304
z(t7) .024948 .28201
() -.040174 | .16130
Table 6.16. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-LO/FREQ-LO/

Performance Statistics
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In comparing Tables 6.13-6.16 to the corresponding tables in Section 6.3, the
filters of this section show a mixture of performance improvement and degradation,
with no real pattern. There is also a mixed performance comparison between the
x and y channels of the same filter. The performance improvements cannot be tied
to a particular channel or a particular pogo parameter. For example, in comparing
the statistics of the 10-state filter #1 to the 8-state filter #1, the y position channel
means demonstrate a performance enhancement for the 10-state filter of about 3%
with a 1o improvement of approximately 1%, while the z position channel means
demonstrate a performance degradation of 65 to 100% and a 1o enhancement of
about 1%. Likewise, in comparing the 10-state filter #4 to the 8-state filter #4,
the = channel position means demonstrate an enhanced performance of 60 to 90%,
while the y channel position means show a degraded performance on the order of
45%. These mixed performance characteristics are consistent when comparing each
of the filter statistics in this section to those of Section 6.3. Thus, due to the lack
of consistent performance enhancement of the 10-state filter, a robustness analysis
for possible MMAF implementation of the 10-state elemental filters was not feasible
at this time. At this point, the research therefore altered direction in an attempt to

understand the lack of consistent 10-state filter performance enhancement.

After ensuring that the pogo phenomenon was correctly derived (Section 3.2.4)
and implemented in the Fortran code, a possible problem for the lack of consistent
performance enhancement was attributed to a possible observability problem causcd
by interaction between the pogo effect and the bending/vibration phenomena mod-
elled in the truth model [10] if the bandwidths of the two processes were too close
to one another. The undamped natural frequency of the bending phenomenon is
set at one [lertz throughout the simulation, and a possible resonance effect with
the pogo phenomenon’s frequencies (0.1 and 10 Hertz) may cause the filter difficulty
in distinguishing between an optical bending phenomenon and the plume’s pogo

phenomenon. The next two sections are an attempt to substantiate this claim.
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Section 6.6 tunes an 8-state filter for a large amplitude, high frequency truth
model pogo phenomenon where all bending effects are removed from the truth model.
Section 6.7 tunes the corresponding 10-state filter for the same truth model scenario,
and the performance statistics of the 8-state and 10-state filters are once again
compared. This process parallels the performance comparisons between the filters in
Sections 6.3 and 6.5; but as a start, only one truth nodel scenario (large amplitude,
high frequency pogo) is being implemented. By removing the bending effects, the
intent is to isolate the ability to estimate pogo effects (adaptively) in the current filter
structure, separating it from a physical phenomenon that might cause observability
or distinguishability difficulties. It should be noted that the Fortran code used in
this analysis has been modified to include two “flags” that can automatically turn
the pogo effect and/or the bending phenomenon on or off in the truth model. This
capability was extremely helpful in the trouble-shooting scheme presented in this

section, in addition to the trouble-shooting discussed in Section 6.9.

6.6 8-State Filter Benchmark with Bending Removed from the Truth Model

As mentioned in the previous section, the performance analysis of an 8-state
filter for a large amplitude, high frequency truth model pogo effect with the bending
states removed is presented in this section. The tuning parameters used are identical
to the parameters of filter #1 in Table 6.2, with one exception. The atmospheric
jitter variance necessary to tune the 8-state filter of this section is lowered to 0.85
ﬁ%ﬁ:—; as compared to the 2.20 value in Table 6.2. This lowering of the jitter variance
makes sense intuitively, since the bending effect was removed from the truth model;
thus the filter does not have to use the additional pseudonoise to represent this
unmodelled effect. This result was encouraging in the sense that it demonstrates
that the bending/vibration phenomenon has a large impact on the tuning of the

filter and could possibly be interfering with the pogo phenomenon.

Figures F.1-I".10 of Appendix I show the performance plots for the single 8-
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Temporally Averaged
Error Statistic Mean 1 Sigma
3(t7) -.0013045 | .52118
1) -.067579 | 63134
() 100028606 | 50176
7(7) ~.067861 | .60457
EX ) 015861 | 1.1899
It -.052311 | 1.6195
) .0083355 | .27029
"yt 53648 | .17155

Table 6.17. /BENCHMARK/SINGLE/DRFOV/GAIN-HI/FREQ-HI/BEND
OFF/ Performance Statistics

state filter used in this section. The temporally averaged performance statistics are

provided in Table 6.17.

Comparing the performance results of the 8-state filter of this section with the
statistics of Table 6.4, shows a dramatic increase in # and y position performance for
the filter where the bending is removed from the truth model. This is expected since
the filter of this section does not have to concern itself with separating the bending
effects from the position states in the truth model. The next section provides the
performance results of the 10-state filter, in addition to a comparison of the 8-statc

filter statistics of this section.

6.7 10-State Filter Performance with Bending Removed from the Truth Model

As previously mentioned, an identical analysis of a 10-state filter is conducted
to parallel the analysis in the previous section for an 8-state filter. The 10-state
filter of this section shows the same tuning characteristics as filter #1 of Section 6.5,
with the exception of the atmospheric jitter variance. The jitter variance required
to tune this 10-state filter is 0.7 e:’;f:;s as compared to the jitter variance of 2.20

for filter #1 of Section 6.5. This lowering of the jitter variance is consistent with the

corresponding decrease for the 8-state filter of the pievious section. The performance




Temporally Averaged

Error Statistic Mean |1 Sigma
z(t7) -.018256 | .52291
§(t7) -.005694 | .61774
z(tF) -.016663 | .50233
9(t7) -.005728 | .59076
Tc(t7) -.033336 | .98328
gelti) -.076664 | 1.1528
Z(t7) -.024408 | .25916
G

-.078125 | .15941

Table 6.18. /POGO PERFORMANCE/SINGLE/DRFOV/GAIN-HI/FREQ-HI/
BEND OFF/ Performance Statistics

plots for the 10-state filter of this section are presented in Figures F.11-F.20 of
Appendix F. The corresponding performance statistics temporally averaged over the

last five seconds of the ten second simulation are presented in Table 6.18.

In comparing the results of Table 6.18 to those of Table 6.17, the mean position
errors of all the variables of intcrest are showing a degradation in performance by
the 10-state filter. The 1o statistics show a mix in performance enhancement and
degradation; although overall, the 10-state filter performance consistently shows a
performance degradation when considering the worst case tracking scenario, i.e.,
mean error +10 or mean error —1o. For example, consider the mean errors of §(¢})
for the 10-state filter of this section to the 8-state filter of the previous section. The
8-state filter demonstrates an enhanced estimation ability over the 10-state filter.
But, upon inspection of the respective 1o statistics, the 10-state filter demonstrates
better estimation accuracy over the 8-state filter other than the larger bias just
noted. When comparing the worst case scenario as described above, the 8-state
filter maintains a performance increase of approximately 5% over the 10-state filter's

estimation ability.

The results of the degraded 10-state filter performance are similar to the results

presented in Section 6.5; therefore it was deemed unnecessary to compare the 10-
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state and 8-state filter performance for the remaining truth model scenarios listed in
Table 6.3. From the results of the analysis in this section, it can be concluded that,
although the bending phenomenon does have an impact on the tuning characteristics
of the 8-state and 10-state filters, it is not the reason for the degraded performance of
the 10-state filter. Bending may have some effect on the degraded performance, but
something else involving the filter structure seems to be more dominant in degrading
the 10-state filter performance from that of the 8-state filter. Based on the results of
this analysis, the 10-state filter is showing a decrease in overall performance for every
statistic. Since it is expected that the 10-state filter should show a corresponding
increase in performance rather than the observed decrease, a possible sign error in
the Fortran code was suspected [10]. Section 6.9 discusses the analysis and results
of additional trouble-shooting techniques (including possible sign errors in the code)
in attempt to explain the degraded 10-state filter performance. Before getting into
the trouble-shooting techniques of Section 6.9, Section 6.8 summarizes the “obvious”
reasons why the MMATF and robustness analyses were not performed as part of this

research.

6.8 Robustness and MMAF Discussions

As stated throughout this thesis, the robustness and MMAT analyses were not
implemented as part of this research. Based upon the results of Chapter VI thus far,
the overriding rcason that the robustness study is not performed is due to the lack
of performance enhancement of the 10-state Kalman filters over the corresponding
8-state filters. Without an increase in performance of the 10-state filter, a robustness
analysis on a poorer quality filter does not make sense. In addition, the implementa-
tion of the MMAT algorithm is directly tied to the results of the robustness analysis.
and since the robustness analysis is inappropriate at this time, the MMAF analysis
suffers correspondingly. At this point in the research, a single robust 8-state filter

outperforms the 10-state filters, and one would likewise expect it to outperform an




MMATF structure composed of inferior quality 10-state elemental filters.

Once the problem of the 10-state filter performance degradation is corrected, a
robustness study can determine what elemental filters are appropriate in the MMAF
structure. A proposed MMAF structure is provided in Chapter IV. Therefore, for
completeness of the objectives described in Chapter I, and for the benefit of follow-
on research to implement an MMAF structure, a proposed robustness study for
each of the tuned single 10-state Kalman filters presented in Section 6.5 is provided
in Table 6.19. Note that each of the four tuned filters of Section 6.5 are tested
against four truth model pogo robustness scenarios that vary in combinations of pogo
parameters for which they are not tuned. The results of this analysis will determine
the sensitivity of each of the tuned filters to a mismatch in what the filter “thinks”
the pogo parameters are, to what the truth model is actually simulating. This
would indicate relative merits of including either pogo amplitude, or pogo frequency.
or both, in the adaptation of the MMAF algorithm. Also note that a robustness
scenario involving pogo amplitude and frequency values corresponding to the median
value of the assumed range of pogo parameter values has been added to the analysis.
The intent is to determine whether an additional 10-state filter, tuned for these

median pogo parameters. *s required in the MMAF structure.

6.9 Trouble-Shooting

The objective of this section is to determine the possible reasons why the 10-
state filters developed in this research do not outperform the corresponding 8-state
filters. This section is divided into four subsections which address the analysis and
results of (1) possible sign errors in the pogo model, (2) jitter model sign errors, (3)
observability issues of the 8-state and 10-state filters, and (4) possible pogo-jitter

interactions.




FILTER # | TRUTH MODEL POGO | TRUTH MODEL POGO
AMPLITUDE (pixels) FREQUENCY (Hertz)
1 0.112 1
0.0112 10
1.12 0.1
0.0112 0.1
2 1.12 10
0.112 1
1.12 0.1
0.0112 0.1
3 1.12 10
' 0.112 1
0.0112 10
0.0112 0.1
4 1.12 10
0.112 1
1.12 0.1
0.0112 10

Table 6.19. Proposed 10-State Filter Robustness Scenarios

6.9.1 Analysis of Possible Pogo Sign Errors in the Fortran Code. Based upon
the discussion in Section 6.7, the results indicate that a sign error may exist in the
Fortran code. This section describes the trouble-shooting performed in determining
a possible sign error in the pogo implementation. Two separate checks were im-
plemented to detect such a pogo sign error. The first check involved an individual
frame analysis of three separate simulations. All three simulations involved the at-
mospheric jitter states being removed from the filter and truth models, along with
removing the bending states in the truth model. The only states remaining in the
filter and truth models were the target dynamic states and the pogo states. The

differences in the three simulations are described as follows:

1. In the first simulation, the pogo output of the Kalman filter propagation cycle
and the pogo output of the truth model propagation cycle are hard-coded to

equal the value 2. The error analysis in this simulation should demonstrate the

best performance if the truth model simulation, tracker algorithm, and errors



SIMULATION # |__3(%) I GEEAG)
I -000572681 | .000602245 | -1.33138 | -.642759
2 ~.000572681 | .000602245 | -3.3341 | 2.8192
3 ~000572681 | .000602245 | -1.58063 | -.211713
SIMULATION # | () 1G) 5(F) | 5e0tF)
I 1.25099 | .808904 | .0734272 | .264287
2 3.08608 | -2.34386 | .0348646 | .267146
3 1.59888 | .395761 |.0713057 | .190000

Table 6.20. Frame Analysis of Mean Errors for Pogo Sign Test

are being calculated correctly.

2. In the second simulation, the pogo output of the filter propagation was hard-
coded to -2, while the truth model remained hardcoded at 2. ‘I'he error analysis
in this simulation should show the worst performance if the truth model sim-

ulation, tracker algorithm, and errors are being calculated correctly.

3. The third simulation involved no hardcoding of the filter or truth states. This
simulation is added as a control to ensure that nothing completely unexpected

happens in simulations #1 and #2.

The intent is to compare the mean errors after the first propagation and update
cycles to determine if the variables and errors are being calculated correctly. Ta-
ble 6.20 presents the mean errors in the filter estimates after the first Kalman filter
propagation and upc.late cycle.

Note the error magnitudes in the Z.(¢;) and §:(¢;) centroid estimate channcls
for simulations #1 and #2. The relative magnitudes of these errors indicate that the
pogo signs are implemented correctly in the error calculations of the simulation soft-
ware. Simulation #2 hard-coded the value of the pogo filter state after a propagation
cycle at -2, whereas the corresponding truth model value of the state was hard-coded
at 2. Likewise, the pogo filter output of simulation #1 was hard-coded at 2 after

a propagation cycle and 2 for the output of the truth model pogo. Since the error

calculations coded in the software take the difference between the filter state minus
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the truth state, one might expect an error difference of -4 for the centroid errors be-
tween simulations #1 and #2. But recalling that the pogo phenomenon is simulated
to occur about the estimated velocity vector, the differences between the centroid
errors in simulations #1 and #2 are on the order of —4 cos fr for the z channel cen-
troid errors and —4 sin @ for the y channel centroid errors, where 0r = 60° for the
chosen missile érajectory. These results signify that the pogo model is implemented

properly and that the errors are being calculated correctly.

In addition, the errors for simulation #2 show the worst performance of the
three simulations tested. This is additional evidence that the errors are being cal-
culated correctly and the pogo models are implemented as expected. The errors
for simulation #1 closely resemble those of the control simulation #3. This also
indicates that the nominal pogo model of simulation #3 is estimating as designed.
Evidence that the errors after a Kalman filter update cycle are being calculated cor-
rectly is also contained in Table 6.20. Simulations #1 and #3 demonstrate small
errors after the Kalman filter update cycle for this particular data frame analyzed.
As the simulations continued, the Kalman filter attempted to regulate all of the

errors to zero, as would be expected.

The second check to test for pogo sign errors involves two simulations based
upon the same concept presented above. The first simulation involves hardcoding
the output pogo state from the Kalman filter propagation cycle to equal the output
of the truth model’s pogo state. The second simulation involves hardcoding the
output pogo state from the Kalman filter propagation cycle to equal the negative of
the output of the truth model’s pogo state. The only difference between the set-up
for this check and the previous check is that the pogo representation in the truth
model is permitted to propagate as designed, instead of hardcoding it to a value of
2 as was previously done. By allowing the pogo representation in the truth model
to propagate naturally, the Kalman filter update cycle is also permitied to react

more naturally, since the estimate of the pogo state after the propagation cycle is




Temporally Averaged

Error Statistic Mean | 1 Sigma
&(t7) -.024647 | .12071

9(¢7) 13471 21716

Z(¢¥) -.022972 | .11548

y(t ,*) 13203 | 21102

T(7) -.025102 | .58298

Je{ti) 11998 | .99070

Z:(t7) -.018504 | .22206

Be(tF) 10575 | .38650

Table 6.21. Performance Statistics for Simulation #1 of Pogo Sign Test

Temporally Averaged

Error Statistic Mean |1 Sigma
() 11219 | .14661
) -14732 | .22869
:i(t:*') -.10969 14364
§(tF) -.14934 | .22409
EXCh) ~10350 | .95367
Tetr ) T14650 | 1.6198
EXGa) -094226 | .36817
7t ~15686 | .61230

Table 6.22. Performance Statistics for Simulation #2 of Pogo Sign Test

not continuously being hardcoded to the same value. The bending states arc once
again removed from the truth model, and the atmospheric jitter states are removed
from both the filter and truth models. The temporally averaged results of ten Monte
Carlo runs are collected for each of these simulations and are presented in Tables 6.21

and 6.22.

Based upon a comparison of Tables 6.21 and 6.22, it is obvious that the re-
sults from simulation #1 show definite performance improvement over the results
of simulation #2 for all statistics collected. This is further evidence that the pogo
model is acting correctly in both the truth and filter models. It can be surmised
that from the results of this section, the degraded performance of the 10-state filters

presented in Section 6.5 is not due to a problem with pogo effect implementation in




the simulation software. The next section performs the same analysis to check for

possible sign errors in the atmospheric jitter implementation.

6.9.2 Analysis of Possible Atmospheric Jitter Sign Errors in the Fortran

Code. A similar sign analysis to the one from the previous section is conducted

for the atmospheric jitter states. The first check involves three simulations in which

the pogo states are removed from the filter and truth models. In addition, the

bending effects are also removed from the truth model. This first check is similar

to the one in the preceding section, in that the mean error statistics are observed

over a data frame that includes one filter propagation and update cycle. The three

simulations are described as follows:

1.

o

In the first simulation, the jitter output of the Kalman filter propagation cycle
and the jitter outputs of the truth model propagation cycle are hard-coded to
equal the value 4 and 2, respectively. Recall that, when the 6-state atmospheric
jitter truth model is transformed to Jordan canonical form, two states per
channel become direct contributions to the outputs, which are used as the jitter
contributions to the centroid location on the FLIR plane. Thus, the value of 2
is chosen for the hardcoded value of each of these outputs, to correspond to the
one-state contribution from the filter’s model of the jitter. The error analysis
in this simulation should demonstrate the best performance if the errors arc

being calculated correctly.

In the second simulation, the jitter output of the filter propagation was hard-
coded to -4, while the truth model values remained hardcoded at 2. The error
analysis in this simulation should show the worst performance if the errors arc

being calculated correctly.

. The third simulation involved no hardcoding of the filter or truth states. This

simulation is added as a control to ensure that nothing completely unexpected

happens in simulations #1 and #2.
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SIMULATION # [_(5) 0 2(67) 5elt7)
1 -.000572681 | .000602245 | -.000573158 | .000602245
2 -.000572681 | .000602245 -8.00057 -7.99940
3 -.000572681 | .000602245 -1.33132 -.642725
SIMULATION # | _5(&7) @) 2(07) G
1 .0198026 0466537 .0206451 .0485578
2 7.69954 7.72541 .0179048 .0448005
3 1.31882 .696278 .0426211 0817142

Table 6.23. Frame Analysis of Mean Errors for Atmospheric Jitter Sign Test

The intent is to compare the mean errors after the first propagation and update
cycles to determine if the errors are being calculated correctly. Table 6.23 presents
the mean errors in the filter estimates after the first Kalman filter propagation and

update cycle.

Analyzing the results of the of Table 6.23 in an identical manner to that used
for the pogo sign test, it can be concluded that the jitter error calculations are being

done correctly. Refer to Scction 6.9.1 for the pogo sign test analysis of Table 6.20.

The second sign check for the atmospheric jitter is again done identically to
the pogo sign check in Section 6.9.1. Two simulations are again performed. The
first simulation involves hardcoding the output jitter state from the Kalman filter
propagation cycle to equal the output of the truth model’s jitter output. The sec-
ond simulation involves hardcoding the output jitter state from the Kalman filter
propagation cycle to equal the negative of the output of the truth model’s jitter
outputs. The temporally averaged performance statistics for simulations #1 and #2

are presented in Tables 6.24 and 6.25, respectively.

Again, as in the test for sign errors in the pogo implementation, the direct
comparison of Tables 6.24 and 6.25 demonstrate that the filter represented in simu-
lation #1 outperforms the filter represented in simulation #2. On the basis of these
results, it can be concluded that the atmospheric jitter error calculations in the code

are being performed correctly, and this suspected problem is not the cause of the
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Temporally Averaged

Error Statistic Mean |1 Sigma
() -.063826 | .29375
7) -.035509 | .23917
Z(F) -.062046 | .28502
Gl -.037160 | .23073
e(t) ~.062593 | .98040
AC) ~.035654 | 908883
XD -.054385 | .25669
5ot ~.043256 | .17049

Table 6.24. Performance Statistics for Simulation #1 of Jitter Sign Test

Temporally Averaged

Error Statistic Mean 1 Sigma
%(t') 10434 | 1.2789

i) -030109 | 1.4876

a:(t+) .10431 1.2218
3(tF) -.026815 | 1.4172
z:(8)) .063816 | 1.6163
7e(t7) -.0055187 | 1.6140
zo(¢F) 063691 | .26885
(7)) 0096029 | .18104

Table 6.25. Performance Statistics for Simulation #2 of Jitter Sign Test




10-state filter performance degradation observed in the preceding analyses.

During the course of the jitter sign testing, an interesting result was uncovered.
The two tuning plots for simulation #1 of Table 6.24 are included in Appendix G as
Figures G.1 and G.2. Notice the overestimation that the filter-computed errors are
exhibiting. The tuning parameters for this particular simulation are identical to the
tuning parameters of the 10-state filter from Section 6.7. Specifically, the variance
of the atmospheric jitter process in the Kalman filter is set at a value of 0.7;%%’;%’;—:1.
Note that the actual errors are on the order of 0.3 pixels, which is expected, since the
filter’s estimate of the jitter was hardcoded to match the truth models values of the
jitter. With this in mind, another simulation was run identically to the simulation
represented in Figures G.1 and G.2, except that the jitter variance was set to its
nominal value used in previous research, i.e., 0.2. Recall that, in Section 6.2. it
was stated that the truth model jitter variance is approximately 0.18 and the value
used for the filter jitter variance from past research is 0.2. The tuning plots for this

simulation are represented in Figures G.3 and G.4, and as expected, the filter shows

tuning characteristics similar to previous research [5, 19, 24].

Based upon these results, it was suspected that the jitter model in the Kalman
filter may not be estimating the jitter states as well as originally anticipated, and
this might be one of the causes for the degraded performance of the 10-state filter.
In addition, the tuning problems of Section 6.2 might be related to the same poor
estimation problem of the jitter states. Two final simulations were run to gain more

insight into this new occurrence. The two simulations are described as follows:

1. The pogo states arc removed from the filter and truth model, al~» -vith the
bending from the truth model. The jitter variance in the filter is set equal to
0.7 and the truth model jitter variance is kept at 0.18. The jitter states in both
the filter and the truth models are not hardcoded, permitting them to react as

designed.
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2. The above simulation as just described is duplicated except the jitter variance

is set to the value used in previous research, i.e., 0.2.

The tuning plots for each of these simulations are located in Appendix G. Recall
that the tuning plots used in this research are for actual and filter-computed rms
errors of the dynamic position states only, and that additional tuning plots for the
jitter position errors would be very desirable and should be investigated in follow-on
research. Figures G.5 and G.6 correspond to simulation #1, while Figures G.7 and
G.8 correspond to simulation #2. The tuning plots for simulation #1 show good
tuning results for a jitter variance of 0.7, while the tuning plots for simulation #2
show the typical underestimation qualities as the plots of Section 6.2 consistently
demonstrated. The interesting point is that the actual rms errors in each of these
four figures is larger than the actual errors of in Figures G.1-G.4. This seems obvious
since the Figures G.1-G.4 are the result of hardcoding the filter jitter equal the truth
model’s representation of the jitter. Based upon this analysis, the possibility exists
that, for the ballistic missile trajectory described in this thesis research, the jitter
model in the filter is not estimating the jitter states in the truth model as well as
initially anticipated. Due to limiting time constraints, this anomaly was not pursued
further, but recommendations to understand the jitter estimation properties and how

they relate to this thesis research are described in Chapter VIIL

6.9.3 Observability Issues. In an attempt to understand as much as possible
about the lack of performance enhancement of the 10-state filter before this thesis
effort has to be concluded, a stochastic observability test was performed on both
the 8-state and 10-state filter structures discussed in Sections 6.6 and 6.7. By in-
vestigating whether any of the states in either of the filter models is unobservable
in the output, a better decision on where to focus future trouble-shooting can be
determined. The fact that some of the states may be unobservable could be one of

the causes of the degraded performance. The stochastic observability condition is
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given by the following relationship [7}:

ol < Z ST (t;, ) HT (£;) R (¢;) H(t;)®(t5, ) < BI (6.2)

j=i-N+41

If there exist positive numbers « and 8, and 0 < a < B < 00, and a positive integer
N such that, for all ¢ > N, the above relationship holds, then the system is said
to be stochastically observable. It should be noted that the observability analyses
performed in this section are based upon simulations that were done with single pre-
cision numerics. This is important when analyzing the eigenvalues of the respective
observability matrices. As will be demonstrated shortly, some of the eigenvalues of
the observability matrices are negative quantities, which is theoretically impossible.
The source of these negative values is contributed to the single precision calculations

used throughout the simulations.

The observability matrix (diagonal terms) for the 8-state filter described in

Section 6.6 is given as follows:

[ 68578 - - - - - - -
— 50000 - - - . -
- - 76108 - - - - -
- - — 55556 - ~ - -
- - - ~ 021664 — - -
- - - - - 015431 - -
- - - - - - 2710 -
- - - - - - ~ 19474

The observability matrix (diagonal terms) for the 10-state filter described in

Section 6.7 is given as follows:

it




~ 50000 - - - - - - - -
- - 17455 - -~ - - - - -
- - — 5598 - - - - ~ -
- - - — 022535 - - - - -
- - - ~ — 015895 -  — - —
—~ - - - - - 26710 - - -
~ - - - - - - 19474 - -

Note that the observability matrices are in no way diagonal matrices; but for
the purposes of emphasis and clarity, only their diagonal terms are depicted By
looking at the diagonal terms of the two observability matrices, the specific states
that could cause possible observability problems can be distinguished by small mag-
nitudes relative to the other diagonal entries. To determine if the two system models
are, in fact observable, the eigenvalues of each matrix must be positive. The eigen-

values of the 8-state filter model are, in descending order:

95364
60529
.060781
.00050024
.00034823
.00018957
.0000000026546
—.068208
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and the eigenvalues for the 10-state filter are:

99049
75006
3.8473
1.6355
.10869
00054219
.000000068269
—.00000049120
—.000037323
—.023223

Note that three of the cigenvalues of the 10-state observability matrix are
negative and two of them, namely the sixth and seventh eigenvalues, are very small
when compared to the remaining five eigenvalues. For a system to be stochastically
observable, none of the eigenvalues can be negative or zero; therefore, the 10-state
filter is considered unobservable in at most five of its states. As mentioned earlier, the
negative eigenvalues must be due to numerics problems for a given application, since
negative eigenvalues are theoretically impossible. To determine possible problem
states, the diagonal terms of the 10-state observability matrix are investigated. The
five smallest diagonal terms in this matrix correspond to the acceleration and velocity
states in both the z and y FLIR directions and the pogo velocity state which is

oriented along the missile velocity vector.

For the 8-state filter observability matrix, one of the eigenvalues is negative
and four (namely, the fourth, fifth, sixth, and seventh) of them are small relative
to the others. This indicates that the 8-state filter is also subject to obscrvablility

problems and that five states are causing the difficulty. Investigating the diagonal
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terms of the 8-state observability matrix, the two acceleration states and the two
velocity states in each direction on the FLIR plane seem to be the cause, as well as
possibly the y channel jitter state. This is physically reasonable, since acceleration is
least observable of position, velocity, and acceleration, from position measurements.
Moreover, this effect is most pronounced for benign trajectories, as used in this
research. An important aspect is that the observability matrix diagonal terms corre-
sponding to the two pogo states are of sufficient magnitude to indicate no heightened

observability problems from their addition to the original 8-state model.

Based on the observability results for both filters, there seems to be a possible
problem with the acceleration models in each filter. Additionally, the observability
problems with the first-order lag acceleration models could also be affecting the
unobservability condition of the pogo velocity. At this point, a recommendation is
made possibly to model the filter's position as a second-order Gauss-Markov process
versus third-order. Possible models for velocity are © = 0 + w (essentially constant
velocity paths, plus pseudonoisc), or v = —}+w (first-order Gauss-Markov velocity).
The reason is that the ballistic trajectory used in this simulation is a very benign
trajectory, and the first-order acceleration process may not be modelling this benign
trajectory very well since the target’s acceleration is not changing during the course
of the simulation [10]). The additional acceleration state is anticipated to be difficult
to estimate well under these conditions. One benefit to modelling the acceleration
as a first-order process is that highly dynamic targets can be tracked accurately.
The ballistic missile simulated in this research is benign and experiences no harsh
dynamics. Chapter VI re-emphasizes this point for the benefit of future research

possibilities.

One last note on the observability of the 8-state filter is that the obscrvabil-
ity matrix is independent of the truth model trajectory selected in the simulation.
Each of the terms in Equation (6.1) are constant matrices, and the only difference

between the observability matrix for this 8-state filter and the 8-state filters used in
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past AFIT research is the value of the correlation time chosen for the acceleration
process. Thus, the possibility exists that the 8-state filters used in past research have
had similar observability problems that went unnoticed. Chapter VII also discusses
recommended actions to be taken concerning this issue, before continuing study is

performed on this research.

6.9.4 Possible Pogo-Jitter Interactions. One final study is performed to as-
sess the possibility of pogo-jitter interactions existing in the filter model and/or the
truth model. In addition, this analysis also investigates the proposed feasibility of
adding pogo states to the filter for enhanced performance, which is the basis of the
10-state filter. To accomplish these objectives, two simulations are performed that
remove jitter states, thereby removing any possible interaction of pogo and jitter
phenomena from affecting the results. In the first simulation, the only states includ-
eded in the filter and the truth model are the pogo states and the dynamic target
states. The second simulation removes the pogo states from the filter model, but
keeps them in the truth model. Each simulation is performed using ten Monte Carlo
runs and a simulation time of ten seconds. Performance statistics are gathered over
the last five seconds of the simulation, and the results are presented in Tables 6.26
and 6.27. The same tuning parameters used in Sections 6.6 and 6.7 are duplicated
for the two simulations of this section, with the exception of the jitter parameters,

which are irrelevant for this analysis.

Comparing the results in Tables 6.26 and 6.27, the filter from simulation #1
that models the pogo in the filter structure shows an average performance enhance-
ment on the order of 50%. Particularly note the improved performance in the track-
ing accuracies signified by the 1o statistics. This is a welcomed enhancement, since
the applicability for pointing a laser weapon accurately depends on a small tracking

“envelope” in order to avoid painting the target.

The results of this analysis demonstrate that a possible pogo-jitter interaction




Table 6.26. Performance Statistics for Simulation #1 with Pogo in the Filter

Table 6.27.

Temporally Averaged
Error Statistic Mean |1 Sigma
Z(t7) -.16696 | .36679
7(t7) .16254 .32098
z(tF) -.16351 | .35699
§(¢F) .15990 .30789
Z(t7) -.14366 | 1.3816
Pe(t7) .16443 22974
z(t7) -.095352 | .27453
9.(tF) 11109 | 220111

Temporally Averaged
Error Statistic Mean |1 Sigma
z(t7) -.20393 | .81056
7(t7) .07813 | .97758
z(tF) -.20213 | .77871
gt 075085 | .92391
E.(¢7) -.18583 | 3.3051
Pe(t7) 041323 | 5.6122
z:(¢7) -.17849 | .55789
7.(tF) 02898 | .42620

Performance Statistics for Simulation #2 with Pogo Removed from the
Filter
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does exist in the 10-state filter structure, and that an expected performance en-
hancement should result when modelling the pogo phenomenon in the Kalman filter

model. Further investigation of the pogo-jitter interaction is strongly motivated.

6.10 Summary

This chapter has analyzed several different issues regarding the tracking algo-
rithm of Chapter V. First, the tuning issues with regard to the filter model dynamics
state parameters were presented, followed by the 8-state filter benchmark analysis,
FOV rotation schemes, and the 10-state filter performance analysis. After the per-
formance degradation results of the 10-state filter were discovered, an analysis of two
single filters (8-state and 10-state) was performed with the bending phenomenon re-
moved from the truth model. This modification resulted in continued performance
degradation by the 10-state filter, so a comprehensive trouble-shooting plan was im-
plemented to gain insights into the possible reasons for the degraded performance. A
pogo-jitter interaction appears to be a substantial cause of this degradation, and it
warrants further investigation. Before implementing the trouble-shooting schemes,
a discussion regarding the MMATF analysis and robustness studies was provided,

although neither was implemented in this thesis research effort.
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VII. Conclusions and Recommendations

7.1 Introduction

This chapter summarizes the final conclusions of this thesis and suggests topics
for further study. Section 7.2 draws conclusions based upon the results obtained
in Chapter VI. Suggestions for continued research on applying the FLIR tracking

system to the ballistic missile tracking problem are enumerated in Section 7.3.

7.2 Conclusions

Numerous conclusions have been made throughout the performance analysis
of Chapter VI. These conclusions will be reassembled and presented in the following

subsections.

7.2.1 Filter Tuning Based upon Dynamics Paremeters. As demonstrated in
Section 6.2, the tuning of the 8-state Kalman filter was not possible strictly us-
ing the tuning parameters of the target dynamics model. Several variations of the
parameters were examined with little success. Eventually, to obtain good tuning
characteristics on the FLIR position states, the atmospheric jitter variance was used
as the dominant tuning parameter. This makes sense, since the unmodelled effects
are better “captured” by the filter jitter states then the filter target states, so that
the filter target estimates are not severely distorted. Using this parameter, an 8-state
Kalman filter model was tuned for truth model scenarios that ranged from a large
amplitude, high frequency pogo phenomenon to a simulation with no plume pogo

present.

Based upon the observability testing performed in Section 6.9.3, the first-order
Gauss-Markov acceleration model may be inappropriate for modelling the benign
behavior of a ballistic missile that is not undergoing a “staging” event. The ac-

celeration states of the filter scem to cause an observability problem which may
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be overcome by using a second-order Gauss-Markov target position process model

versus a third-order model.

7.2.2 Rotating Field-of-View Results. The analysis comparing the various ro-
tating FOV schemes in Section 6.4 proved that the diagonal rotating field-of-view can
provide enhanced performance over the non-rotating field-of-view and the rotating
field-of-view implemented by Nerton [19]. This conclusion is based upon a velocity
orientation angle of approximately 60°, which was the chosen trajectory for this re-
search; but it could be easily extended to other target orientations. The conclusion
that the DRFOV, properly aligned, can provide enhanced tracking performance of a
missile hardbody whose plume is undergoing a pogo phenomenon, makes sense intu-
itively based strictly on geometry. It is recommended that future research involving

plume pogo use the DRFOV tracking scheme.

7.2.3 10-State Filter Tracking Performance. As demonstrated by the results
of Chapter VI, the 10-state filters anz}lyzed showed degraded or mixed performance
results when compared to corresponding 8-state filters. These poor performance
results were the driver for the trouble-shooting analyses conducted in Chapter VI.
Initially, the problem was thought to be a truth model pogo-bending interaction
based upon each phenomenon's frequency characteristics. The analyses conducted
in Sections 6.6 and 6.7 basically concluded that the proposed pogo-bending intet-
action, if one exists, is not the cause of the degraded performance of the 10-staie
filter. When the bending phenomenon was r;amoved from the truth model, the 8-
state filter continued to outperform the corresponding 10-state filter. The results of
these analyses implied that a possible sign error existed in the Fortran code when
calculating the error statistics. This conclusion was inferred because the 8-state filter
outperformed the 10-state filter in every performance statistic, when the converse

was actually expected to occur.




To investigate the possibility of a sign error, the pogo and jitter models were
evaluated independently. As concluded in Chapter VI, the individual frame checks,
as well as the overall temporally average statistics, proved that both the pogo and

jitter models are implemented correctly in the code.

During the sign analysis of the jitter phenomenon, it was discovered that the
jitter model imbedded in the Kalman filter may not be estimating as well as an-
ticipated. This result was uncovered when the jitter estimate in the Kalman filter
was hardcoded to equal the true jitter output of the truth model. The possible poor
estimation properties of the jitter model may have an impact on the inability of the

10-state filter to show improved performance over the 8-state filter.

Additionally, the results of Section 6.9.4 demonstrate that an interaction be-
tween the pogo and the atmospheric jitter may also exist. The performance of two
filters were compared against a truth model that contained only the two pogo states
and the two dynamic states. One filter included the pogo phenomenon in its model
while the other filter had no pogo modelling. The jitter model in both filters was
removed, and the temporally averaged statistics compared. The filter that modelled
the pogo phenomenon showed a performance enhancement of approximately 50%
over the filter with no pogo modelling. These results tend to imply that a possi-
ble interaction is occurring between the pogo and jitter states in the filter, possibly
causing the observed performance degradation of the 10-state filter from that of the
8-state filter. Additionally, the improved performance obtained by modelling the
pogo effect in the filter demonstrates the applicability of an eventual MMAF im-
plementation in the tracking algorithm, were it not for the pogo-jitter interaction

problem.

Another possible explanation for the decreased performance of the 10-state
filter was seen by the observability results of Section 6.9.3. The 10-state filter proved
to contain a maximum of five states that are unobservable in the output of the 10-

state filter structure. Those states included the two acceleration and velocity states
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characterizing the hardbody dynamics and the state representing the pogo velocity.
This is physcially reasonable, since acceleration and velocity are least observable
from position measurements. The fact that the 10-state filter is unobservable in

these states can possibly explain the decrease in performance.

In conducting the observability analysis on the 10-state filter, it was discovered
that the 8-state filter also demonstrated an observability problem. Based upon the
eigenvalue analysis, five states seem to be unobservable in the output of the 8-state
filter. These states are, again, the two acceleration and velocity states, as well as
possibly the y channel jitter state. Going from the 8-state to the 10-state filter did not
increase the number of small (essentially zero) eigenvalues, thus these results tend to
imply that the addition of the pogo states to the 10-state filter does not seem to cause
a problem in itself, but the first-order Gauss-Markov model for acceleration may not
be the best choice to model the benign dynamic characteristics of the ballistic missile.
Additionally, the 8-state filters used in previous AFIT research involving the FLIR

tracking algorithm may have also suffered from the same observability problems.

Based upon the numerous trouble-shooting results obtained in Section 6.9,
various recommendations for future study of the pogo phenomenon are provided in

the next section.

7.3 Recommendations

The following recommendations are suggested for further study in applying
the FLIR tracking algorithm to the ballistic missile plume problem. Many of the
recommendations are based upon the trouble-shooting performed in Chapter VI,
with the overall intent of improving the performance of the 10-state filter over the

8-state filter and eventually implementing an MMAF algorithm.

7.3.1 Observability of Previously Used 8-State Fillers. Before continuing the

study of the ballistic missile undergoing a plume pogo phenomenon, the observabil-
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ity of previously used 8-state filters should be investigated. Doing an observability
analysis on the filters used in previous work can possibly shed some light on the
observability issues of the 8-state filter used in this research. The Fortran code is
presently implemented for single precision numerical calculations. For more pre-
cise calculations, particularly when studying filter observability, a double precision

implementation of the code should eventually be adopted.

7.3.2 Remodelling of the Filter Dynamics. Based upon the observability prob-
lems associated with the acceleration states in the 8-state filter for the benign dy-
namics of this research, the velocity states of the filter should be modelled as the
output of a first-order Gauss-Markov process. This may prove to be a more appro-
priate model for the benign dynamics of the simulated ballistic missile trajectory.
The filter dimension will be reduced to six states, for which an observability check

can be performed.

In addition to the remodelling of the dynamic states, the output plotting rou-
tine should be modified to add tuning and performance plots to analyze the filter
jitter estimates, as well as pogo estimates for eventual inclusion of the pogo effect
in the Kalman filter model. This modification was not included at the start of the
present research effort because the filter jitter was assumed to be adequately tuned
and characterized. The results of Section 6.9.2 suggest otherwise, while the analysis
performed in Section 6.9.4 suggest that the pogo and jitter phenomena are possi-
bly interacting to cause the performance degradation of the 10-state filter. Having
the additional tuning and performance plots will provide a necessary capability to

characterize the jitter and pogo estimates in the filter.

Based upon the above suggested modifications, performance of single filters
containing the pogo phenomenon can be compared to performance of single filters
without the pogo modelling. With the aid of the additional analysis plots, the

interactions of all of the filter states can be properly understood and characterized,




and tne filters containing the pogo phenomenon should outperform the benchmark
filters :hat do not model that phenomenon. The proposed robustness analyses of
Section 6.8 and the MMAF scenarios described in Chapter IV can be implemented

to enhance the tracking algorithm further.

7.3.3 Continued Characterization of the Plume Pogo. Once the MMATF is
implemented in the tracking algorithm, other performance enhancements and char-
acterizations can be pursued. Testing the performance of the MMAF tracker against
differing ballistic missile trajectories, i.e different velocity orientation angles, can
provide insights into the robustness of the MMATF for differing ballistic missile ac-

quisition scenarios.

The tracking algorithm should also be analyzed for simulated staging events.
This could entail adding an elemental filter to the MMAF structure to model the
changing acceleration characteristics experienced by the missile during the firing of
a staging motor. Implementation of a rectangular rotating field-of-view (RRIFOV)

to perform the tracking during the simulated staging event may prove beneficial.

Additional performance enhancements for accurately estimating the location
of the missile hardbody can be achieved through illumination of the hardbody with
a low energy laser and observing the speckle of the return. Simulating this effect
can provide additional measurement information to help separate the plume centroid
location from the missile hardbody to improve the tracking performance of the algo-
rithm still further. Also, the additional information on the location of the hardbody
center of mass may provide the filter with the capability of modelling the “offsets”
(see Section 4.3.1) between the pogo equilibrium point and the hardbody center of

mass.

Recall the Ry matrix of the filter mcasurement model of Equation (4.23) which
represents second-order statistics of errors due to the background noise, FLIR noise,

and errors in the correlation algorithm. To derive this result, Rogers [21] devei-
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oped software which tested the correlator/centroid algorithm’s position estimates in
order to characterize the mean and variance of the algorithm’s errors. The values
needed to describe the error’s mean and variance are a function of the template-
target separation, the thresholding level used by the correlator, and the variance
of the background noise. The model in Equation (4.23) was developed based upon
a non-rotating field-of-view FLIR with a 20 micro-radian/pixel proportionality con-
stant and a three hotspot dynar.ic target simulation. The research work done in this
thesis deals with a rotating field-of-view FLIR, a 15 micro-radian/pixel proportion-
ality constant, and a target image simulated by differencing two Gaussian intensity
functions, at a range two orders of magnitude greater than previous simulations.
Based upon these changes to track a ballistic target relative to the targets simulated
by Rogers, it is recommended that a re-evaluation of Equation (4.23) be performed
to determine if the existing model remains valid. Specifically, a new Ry should be
computed empirically and compared to Rogers’ result. Another reason for redoing
the Rogers analysis, other than just the changes to the simulation, is to understand
why the diagonal terms of the matrix are not equal. Intuitively, if the correlator
algorithm performs its template-image correlations identically in both directions of
the FLIR plane, then the covariance of the noise associated with the error in each

direction should be equal; but as evidenced by Equation (4.23), this is not the case.




Appendix A. Gain Calculation for Pogo Effect

As presented in Section 3.2.4, the Laplace domain transfer function for the
ballistic missile plurne pogo phenomenon is given by Equation (3.29), and the con-

tinuous time stale space representation is:

. 0 1 0
X,(t) = \ Xp(8) + | \ wy(t) (A.1)
—wy,  —2(Wnp Kywy,
where:
Xp(t) = 2-dimensional pogo state vector
wp(t) = 1-dimensional zero-mean, white Gaussian noise of unity strength
wpp = undamped natural frequency for pogo effect
¢, = pogo damping coefficient
K, = gain adjustment to obtain desired rms pogo amplitude

The output relationship for the pogo phenomenon along the missile velocity vector

is:

yp(t) = [ 10 ]xp(t) (A.2)

The gain I, is adjusted to obtain the desired rms pogo amplitude (Table 3.1), which

is expressed mathematically as:

gy = Elyi(t)]

= E[z(t)] (A.3)

where o, is the desired rms pogo along the velocity vector of the missile. The
continuous time model for the covariance matrix for the state of this system can be
written as [7):

P(t) = FP(t) + P(t)FT + GQG” (Ad)




where:
P(t) = the continuous time state covariance matrix
F = the pogo system plant matrix of Equation (A.1)
G = the noise distribution matrix of Equation (A.1)
@ = unity variance of w,

When the system reaches steady state, P(t) will equal zero. For the steady state
solution, substituting the appropriate values of F,G, and @ into Equation (A.4)
yields the following:

0= Py + Py Py — w?,pPu = 2Cpwnp P12 (A5)
Py, — wgpP“ ~ 2(pwnp P21 —wgme - wﬁpPgl — 4Cpwny Poa + f\’gw:p
where:
P = Py Py (A6)
Py Pp

Solving each entry of Equation (A.5) and realizing that the covariance matrix is a

symmetric matrix yields:

P12 = —P21 =90 (.\7)
P22 = wsz“ (.‘\S)
4C P22
2 _ /
Ky = —Z2 (A.9)

np .
Substituting Equation (A.8) into Equation (A.9) and recognizing that

Py = E[2%] = o2, gives:

(A.10)

Using the development in this appendix, the value of the pogo gain can now be

determined based on a desired rms pogo amplitude.




Appendix B. Plots for Filter Tuning via Dynamic Trajectory

Parameters (0%, 0%, 7,,7,) : Discussion in Section 6.2

B.1 Figures B.1-B.10: 02,0} =250, 7;,7, = 4,02 = 0.2
B.2 Figures B.11-B.20: 2,02 = 2000, 7z, 7, = 8.5, 57 = 0.2
B.3 Figures B.21-B.80: 02,02 = 530, 7,, 7, = 8.5,07 = 0.2
B.j Figures B.31-B.40: 0%,02 = 5,7;,7, = 8.5,02 = 0.2

zy Yy

B.5 Figures B.41-B.50: 2,02 = 5,7,,7, = 8.5,0% = 2.15
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Appendix C. 8-State Filter Benchmark Plots: Discussion in
Section 6.3

Figures C.1-C.10: 62,02 = 5; 75,7, = 8.5; 0% = 2.20
Figures C.11-C.20: 02,07 = 5; 75,7, = 8.5;07 = 2.15
Figures C.21-C.30: ¢2,0° = 5; 7,7, = 8.5; 0% = 2.10

Yy

Figures C.31-C.40: 0%,02 = 5;7;, 7, = 8.5;0; = 2.1
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Appendix D. Plots for FOV Rotation Analyses: Discussion in
Section 6.4

D.t  Figures D.1-D.10: NRFOV, 02,02 = 5,7, 7, = 8.5;0% = 2.45

D.2 Figures D.11-D.20: RFOV, 02,02 = 5;7;,7, = 8.5;0% = 1.95

D.3  Figures D.21-D.30: DRFOV, 0,02 = 5; 75,7, = 8.5;0% = 2.10
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Appendix E. 10-State Filter Pogo Performance Plots: Discussion

m Section 6.5

E.1 Figures E.1-E.10: 02,02 = 5;7;, 7y = 8.5; 0% = 2.20

<

E.2 Figures E.11-E.20: 02,0 = 5;7;,7, = 8.5;0% = 2.15

L£.3 Figurcs £.21-12.30: aﬁ,ag = 5; 7z, Ty = 8.5; 0% = 1.70

E.4 Figures E.31-E.40: 62,02 = 5;7;,7, = 3.5; 0"
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Appendix F. 8-State/10-State Filter Performance Plots: Bending
Removed from Truth Model (Discussions in Sections 6.6 and 6.7)

F.1 Figures F.I-F.10: 62,02 = 5;7,, 7, = 8.5;07 = .85

F.2  Figures F.11-F.20: 03,03 = 53;7p, Ty = 8.5;0% = .70
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Appendix G. Tuning Plots Used in Jitter Sign Test: Discussion in
Section Section 6.9.2

-~1

G.1 Figures G.1-G.2: Filter Jitter Hardcoded to Equal Truth Model Jitter; 0% = .

G.2 Figures G.3-G.4: Filter Jitter Hardcoded to Equal Truth Model Jitter; o2 = .:

o

G.3 Figures G.5-G.6: Nominal Filter and Truth Modecl Jitter; o2 = .7

G.4 Figures G.7-G.8: Nominal Filter and Truth Model Jitter; o2 = .2
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This thesis is an extension ofjthe: “work performed,over t}xe past ten years at the™
Air Force Institute of Technology (XF ITY towards tracking of airborne targets using
forward looking infrared (FLIRUnea.surements. The research has aimed at replacing
a standard correlation tracker with a hybrid Kalman filter/enhanced correlation
tracker for implementation in a high energy laser weapon. . . . i -

This research deviates somewhat from past research at AFIT in that the targe:
trajectory being tracked is modelled as a benign, non-maneuvering, thrusting bal-
listic missile trajectory at large sensor-to-target ranges. dn addition;to capture the
characteristic shape of the exhaust plume, the plume is modelled as the difference
between two bivariate Gaussian functions with elliptical equal intensity contours.
As the missile ascends on its thrusting trajectory, the exhaust plume tends to oscil-
late (pogo) along the direction of the velocity vector. In this thesis, a second-order
Gauss-Markov process is used to model the plume’s' “pogo” oscillation properties.

The ultimate goal of this research effort is to design a multiple model adaptive
filter (MMAF) algorithm composed of elemental filters tuned for varying plume
pogo parameters (frequency and amplitude characteristics). This MMAI accounts
for atmospheric disturbance effects of the propagating infrared wave fronts. as well as
bending/vibrational effects of the optical hardware associated with the FLIR sensor.
The bank of filters provide the accurate estimation capability to guide the pointing

mechamsm of a shared aperture laser/FLIR sensor " I J e, T
At //:‘!”)ll - "f'l’"f "'r ('(7‘

infrared data to the enhanced correlation trackmg algorithm. To enhance perfor-
mance of the tracking algorithm, a FOV rotation scheme is analyzed in an effort to
maintain accurate tracking of a plume undergoing the pogo phenomenon. A FLIR
rotation scheme which aligns the diagonal dimension of the 8 x 8-pixel tracking win-
dow with the missile velocity vector demonstrates a 30% performance improvement
over a non-rotating FOV FLIR.

A benchmark of performance involving an eight-state Kalman filter is estab-
lished in order to compare results from various tracking enhancement techniques.
The eight-state filter excludes explicit modelling of the pogo phenomenon, but the
pogo effect is compensated by the addition of pseudo-noise in the filter model. To
implement the MMAF, a ten-state filter which models the additional two pogo states
is analyzed, and results are compared to the eight-state filter benchmark for perfor-
mance enhancement. The ten-state filter consistently showed an unexpected per-
formance degradation compared to the eight-state filter. Various trouble-shooting
techniques are employed to uncover the source(s) of this degradation. Possible prob-
lems include: (1) a pogo-atmospheric jitter interaction, (2) poor estimation by the
Kalman filter atmospheric jitter model and (3) observability issues of the target dy-
namics model. Recommendations to overcome these shortcomings are proposed in
order to enhance performance of the ten-state filter and eventually implement the
MMATF algorithm.

An 8 x 8-pixel tracking ﬁeld of v1e‘7 FOV of the FLIR $ehsor '['>rowdelb the ~

forE




