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Abstract

This research develops an integrated software design package useful in the
synthesis of CGT/PI/KF control systems, and uses this software package to de-
sign and evaluate a longitudinal flight control system for the Control Rcconfig-
urable C'ombat Aircraft (CRCA). The software package, called CGTPIKF and
built with MATRIXx commands. allows for the synthesis and evaluation of a C'om-
mand Generator Tracker (CGT) which provides inputs to the system and acts as
a precompensator, and a regulator with proportional plus integral (PI) feedback
which forces the system outputs to mimic the model output. The software also
allows the incorporation of a Kalman filter for estimation of the system states.
(ertainty equivalence can be invcked by adopting the LQG assumptions, thereby
allowing the Kalman filter to be designed independently of the CGT/PI controller.
The total CGT/PI/KF controller can then be evaluated and the design refined.
CGTPIKF is an interactive, menu-driven CAD package which can be used in the

development of any CGT/PI/KF control system, regardless of application.

A flight control system was designed for the CRCA air combat mode (ACM)
entry using CGTPIKF. This control system was designed to force the aircraft to
emulate a first order responce in pitch rate. The command model of the command
generator tracker represented a first order pi\tch rate response with a rise time of
.6 sec. Various weighting matrices were evaluated and refined in the development
of the PI controller; the different controller designs were tested against the sim-
ulation containing various modelling errors, particularly failure conditions. The
Kalman filter was later added, and the controller was again tested against the fail-
ure conditions. Loop Transmission Recovery (LTR) was successfully implemented
to enhance robustness. The results confirm that a robust control system can be

designed using the software package developed in this research.

xi
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FLIGHT CONTROL SYSTEM FOR THE CRCA
USING A COMMAND GENERATOR TRACKER
WITH PI FEEDBACK AND KALMAN FILTER

1. Introduction

1.1 Background

The primary concern in the formulation of control systems is that the system
perform with certain desired performance characteristics at nominal conditions,
and that the controlled system be stable at off-nominal conditions. (This stability
at off-nominal conditions is called robustness.) The introduction of unknown or
unmodeled variations between the “real world” system and that which is mathe-
matically modeled can greatly complicate the design of an effective control system.
These variations can include disturbances which affect the system or the sensors
which measure system response, variations of the actual system due to either opera-
tion at off-nominal conditions or failures of the system or sensors, and simplification
of the mathematical model to reduce the complexity of the design problem [14].
Therefore, the design of a control system must in some way account for variations of
the actual system from the design model used to represent it, while simultaneously

forcing the system to respond in a desired manner.

In the development of control systems, two primary methods exist, frequency
domain techniques and time domain approaches. Frequency domain techniques
are well established and are the basis of classical control theory (3,4]. However,
these techniques were developed for use with single-input, single-output (SISO)

control problems, and when applied to multiple-input, multiple-output (MIMO)
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systems, such as a flight control system for a modern aircraft, they can become
tedious. On the other hand, a time domain technique which is inherently suited to
MIMO control system design is LQG, which assumes a Linear system model, that a
Quadratic cost is to be optimized, and that the system is driven by Gaussian noises.
LQG design '5.11,13] takes ir o account the stochastic nature of a problem; that is,
that random occurrences can affect the system dynamics, and that the actual state

of the system is never known perfectly, due to incomplete and noisy measurements.

One appr.oach to designing an LQG controller is to separate the perfor-
mance requirements of the closed-loop system from its desired stability charac-
teristics. By implementing a command generator tracker (CGT) as a precompen-
sator, which incorporates the performance characteristics desired of the system.
with a proportional-plus-integral (PI) feedback loop, which handles stability of
the system, an effective controller can be designed {11]. The CGT portion of the
controller processes commanded inputs into system inputs by means of feedfor-
ward gains. The standard PI controller forces the system to be stable by imposing
quadratic penalties on state or output perturbation deviations from zero. These
quadratic penalties are implemented via feedforward and feedback gains. This
is known as explicit model-following. An alternative approach to designing a PI
controller is to impose a quadratic penalty on dynamics deviations from a model
which has desired stability characteristics, thereby enhancing the robustness of the

closed-loop system. This approach is called implicit model-following [14].

When the unrealistic assumption of full state feedback is removed (on which
the CGT/PT controller is based), a Kalman filter is employed. The Kalman filter
estimates the system states, taking into account the uncertainties of the system and
the precision of the measurements available. Because the addition of the Kalman
filter can degrade the robustness of the closed-loop system, Loop Transmission
Recovery (LTR) is employed as a means of asymptotically recovering the robustness

obtained by the deterministic CGT/PI controller [9].
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1.2  Problem

The use of a computer aided design (CAD) package which allows the ready
formulation of CGT/PI/KF control systems is critical. Floyd [5] designed a CAD
package which allowed for the design and evaluation of a deterministic full-state
feedback C'GT/PI controller, and also the separate design and evaluation of a
Kalman filter. Miller [14] subsequently built another CAD package which allowed
for incarporation of the Kalman filter with the CGT/PI controller; however, the use
of both ("AD packages in concert with one another proved unwieldy and cumber-
some. Those who used these software packages {7,9,16,17] found that an integrated

('AD package would significantly streamline the design process.

The primary focus of this thesis effort was the integration of the functions
performed by the two previous ('AD packages. The new software is implemented
on MATRIXx [10]. MATRIX is a powerful CAD package which allows for matrix
manipulation as well as classical and modern controller design. Hosting a program
on MATRIXx which allows for the design and evaluation of CGT/PI/KF control
systems would permit the use of all of MATRIXx's capabilities to the control
system designer, not just those found in the specific CAD package itself. The
resulting integrated software package, CGTPIKF, incorporates those key features
of MATRIXx necessary for the design and evaluation of either the deterministic
CGT/PI controller, the Kalman filter, or the composite CGT/PI/KF controller.
This software, a user-oriented and interactive design tool, is highly modularized
and thoroughly documented, thereby allowing the user to make problem-specific
changes to the code which may increase the flexibility of the program and further

enhance the ease of designing control systems.

Lo validate the above software package, a flight control system for the Con-
trol Reconfigurable Combat Aircraft (CRCA) [18] was designed. While this air-
craft does not actually exist in a physical sense, detailed models of the aircraft at

various points in the flight envelope and under several failure conditions do ex-
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ist. The ability of both a CGT/PI and a CGT/PI/KF controller to enhance the
handling qualities and stability robustness of the CRC'A will be investigated. The
applicability of implicit model-following compared to the standard (explicit model-
following) PI controller, as a means of improving robustness in the face of failure
conditions and unmeodeled actuator dynamics, is addressed. The effect of actuator
saturation nonlinearities, and the applicability of antiwindup compensation [11] to
alleviate problems caused by these nonlinearities, will be evaluated. LTR’s ability

to improve system stability robustness in the face of failures will also be explored.

In addition to the flight control system designed in this thesis, concurrent
thesis efforts [8,15] have also addressed flight controller designs using alternate

design methods, for purposes of comparison and evaluation.

1.3 Sequence of Presentation

While LQG theory is powerful and versatile, reader knowledge of the design
techniques will not be assumed. Therefore, Chapter 2 presents the theoretical
background required to understand how a CGT/PI/KF controller is designed. The
use of implicit model-following and Loop Transmission Recovery are specifically
addressed as two means of enhancing the robustness of the controller. Antiwindup
compensation, which helps alleviate problems which may arise when PI controllers
are used in conjunction with systems which have actuators that can saturate, is

also discussed.

Chapter 3 provides background material on the CRCA, including the model
which defines its nominal flight condition. Other physical characteristics of the
aircraft are also presented. Specific failure conditions which will be evaluated

against controllers are described.

Chapter 4 describes in detail the controller was development, including choices
of design and command models. Several CGT/PI controllers are designed with vari-

ous quadratic weights, and their performance is evaluated against the nominal flight
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condition and various failure conditions. The controller is first evaluated against
flight condition models which do not possess actuator dynamics, to aid in the later
identification of design deficiencies which may be revealed by including those dy-
namics, which is investigated next. Actuator nonlinearities are introduced, and the
effect of antiwindup compensation is presented. The Kalman filter is designed, and
the C'GT PI, KF controller is evaluated against all of the flight conditions which

possess actuator dynamics.

Chapter 5 presents conclusions from the research performed, as well as rec-
ommendations for future research. Appendix A is a user’s manual for CGTPIKF.
a general purpose ('AD package for use in the design of CGT/PI/KF control sys-
tems. This appendix includes a detailed description of how to design a control
system using the software. An outline of the program is presented, along with
an explanation of the many options available to the user. A list of the files re-
quired to run CGTPIKF is also presented. It should be noted that familiarity with

MATRIX is a prerequisite to using the software.

Appendix B (in Volume II) includes a program listing of CGTPIKF. The
code is thoroughly documented, thereby allowing the interested user to delve into
the software implementation of LQG theory. However, knowledge of algorithm
coding is not required for use of the program. Rather, the source code is pro-
vided primarily to further user understanding of the specific implementation, and
to facilitate software modifications, if desired. The high degree of modularity of

CGTPIKF allows such modifications to be implemented easily and quickly.
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II. Theoretical Development of LQG Controllers

2.1 Introduction

This chapter presents the theoretical developinent of LQG controllers. The
basic assumptions behind an LQGC control system are that there is a Linear system
model, that a Quadratic cost is to be optimized, and that the system is driven
by Gaussian noises. Inherent to the concept of an LQG controller is certainty
equivalence. Certainty equivalence states that the design of an optimal stochastic
controller can be divided into twn parts, that of the deterministic full-state feed-
back controller and the design of an appropriate Kalman filter. The deterministic
controller is independent of the uncertainty of the system; that is, the state x(t,)
of the system is known perfectly for all times ¢, and there is assumed to be no noise
driving state dynamics between taese sample times [11]. The Kalman filter incor-
porates all of the uncertainty of the system, and is designed independent of the
deterministic controller. From the Kalman filter’s point of view, a control problem
does not exist (although the filter is informed of the deterministic control to be
applied to the system over each sample period). These two parts of the controller
are designed separately, greatly reducing the complexity of the design problem,

and are then cascaded together to form the optimal stochastic controller.

The deterministic part of the controller in this research consists of the Com-
mand Generator Tracker (CGT) cascaded with a proportional plus integral (PI)
controller. The command generator incorporates all of the system performance
requirements, such as desired handling qualities of an aircraft, by generating an
optimal trajectory that the plan‘ (the system being controlled) should emulate.
This is discussed in Section 2.2. The PI controller provides guaranteed system
stability at design conditions (uncler nonrestrictive stabilizability and detectability
conditions on the system model), and also provides type-1 feedback characteristics.

In addition, the PI controller can be designed using implicit model-following, which
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forces the plant to emulate the transient characteristics of a system model with de-
sired stability and robustness cha-acteristics. Robustness refers to system stability
in the face of unmodeled system characteristics, failures, and other deviations from
assumed design conditions. Implicit model-following can greatly enhance robust-
ness. Sections 2.3 and 2.4 presen- the standard, or explicit model-following, form
of the PI controller to be used in conjunction with a command generator tracker,
while Section 2.6 addresses implicit model-following as a means of establishing the

gains in this Pl controller.

The Kalman filter is both well established and thoroughly documented, so
only a cursory development is presented in Section 2.5. Interested readers are

referred to [12] for more details.

When the unrealistic assumption of full-state feedback is removed by in-
troducing the Kalman filter in cescade with the deterministic full-state feedback
controller, all stability robustness guarantees are lost. Loop Transfer (or Transmis-
sion) Recovery (LTR) is a method which allows the designer to recover the stability
robustness characteristics of the full-state feedback controller asymptotically. This

is presented in Section 2.7.

The structure of the closed-loop CGT/PI/KF controller is given in Figure
2.1. The command inputs are fed through the command model to generate model
states corresponding to the reference trajectory. These model states, along with
disturbance states or state estimates, are then multiplied by the gains generated in
the CGT control law formulation. The PI controller incorporates the system inputs
and states (or state estimates) as well as the command inputs and command model
states, and its purpose is to force the plant to track the desired trajectory closely.
The Kalman filter uses system measurements and inputs to estimate system and

disturbance states, and these best estimates are used in place of the (inaccessible)

real world states.
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Figure 2.1. The CGT/PI/KF Controller

2.2 (Command Generafor Trackers

Assume that a systein is required to follow a certain trajectory despite dis-
turbances which may be present. For example, this trajectory could exhibit desired
handling qualities that an aircraft should track. The desired trajectory could be
modeled as the output of a shaping filter driven by a commanded input. This
shaping filter can be considered to be a command generator, represented by a
command model. The overall control law that tries to force the actual plant to
track the command model is the C'ommand Generator Tracker (CGT). Command
generator tracking allows a system to track commanded inputs with desired re-

sponse characteristics while simultaneously rejecting disturbances.

Assume that a system is modeled by the discrete-time equations

x(tis1) = @®x{{;)+ Bu(t,) + Exng(t;) + wql(t,) (2.1)
y(t,) = Cx(t;) + Du(t,) + Eyng(t,) (2.2)
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where wy(t,) is a zero-mean white Gaussian noise sequence of covariance Qg, and

ng is a time correlated noise sequence (a disturbance) modeled by
ng(fis1) = Enng(t;) + Gawanlti) (2.3)
with wq,(7,) a zero-mean white Gaussian noise sequence of covariance Qgq,, usually

assumed independent of wq(t;).

The goal of the CGT controller is to force the actual plant outputs y(t,) to

follow the output of a command generator model

Xm(tiv1) = P Xm(ti) + Bmum (2.4)

Ym(ti) = CmXm(ti) + Dmum (2.5)

where ym, and y must be of the same dimension p. For the purposes of this
thesis. the model input upy, is considered to be time invariant. This is a valid
approximation based on flight control sampling rates, where the pilot’s commanded

input is slowly varying compared to a 40 Hz or higher sampling rate.

As previously stated, the objective of the CGT controller is to track the

output of the command model perfectly, that is, to zero out the error

e(t,)) = y(ti) = ym(t)

t
| Xm(1,)
= [c D B ||ut) |-[Cn Dm] . (2.6)
nq(t;) "

When this error is zero, the states and controls are said to be tracking the ideal
plant trajectory ([11], p153), which is defined for convenience in constructing the
CGT law but will not be used in the actual implementation. The ideal trajectory

must satisfy the system dynamics

xp{tis1) = ®x1(t;) + Buy(t;) + Exnq(t;) (2.7)
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Where the &, B and Ex matrices are the same as in Equation(2.1). Also, the ideal

plant trajectory must cause the command error to be zero, so

xy(t;)
xm“i)
C Dy E, || wt) :[cm Dm} (2.8)
ng(t,) e

In addition to the above requirements. the ideal plant response must be a

linear combination of model states and inputs, and of the disturbance state. This

produces
(1) An A;; A *mits)
Xy, 11 12 13
= Um (2.9)
uy(t;) A21 Az Ajz
ng(t;)

The solution to the equations that the constant matrices Ajr through Aaj
must satisfy provides the feedforward gains which are the solution to the open-
loop CGT problem. Setting up the problem, we first examine the ideal plant state

equation

x1(fieq) — xg(1,) (#-1I) B xi(t;) . Ex
}’I(f,) C D U](t,) Ey

i

ng(t;) (2.10)

Substituting Equation {2.9) into (2.10) yields

Xm(t)
xp{ticy) — xa(t;) (®-1) B Ain Az Ags
= Um
yi(t,) C D Az Az Az
ng(t;)
Ex
+ ng(t;) (2.11)
Ey

Now we seek a second expression for the left hand side of the above equation, which

will allow us to solve for Aj; through A3 by equating the two expressions. From




Equation(2.9),
Xm(ti+1) = Xm(t)
[xl(ti-H) - xl“x ” = A” A12 A13 Um — Um (212)
ng(f.s1) — ng(?,)

and then (2.3) and (2.4) can be used to write

(Pm - I) Bm 0 Xm(?,)
[XI“H»]) - X](f,)} =1 A1y A2 Agg ] 0 0 0 Um
0 0 (®n-1) || nalt)
(2.13)
Also, since yp(t,) = yml(1,).
r Xm(t)
L Um

Combining the above results yields

Xm(1:)
xi(tisr) = x1(t,) | | Aii(Pm - I) A1nBm A13(®a - 1)
yilt:)

u
Cm D 0 "
nd“v)
(2.15)
Equating (2.11) and (2.15) yields
xm(fi)
(#-1) B Al Az A Ex
Um + ng(t;)
C D Az Az Ay Ey
ng(t;)
Xmiti)
Au(q’m - I) Alle A13(‘I’n - I) .
= U, (2.16)
Cm Dm 0
nd(’!)
Letting
-1 -
(-1 B I1 II
) | T e (2.17)
C D I3 2z |
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we get the solution to the constant AU matrices as

A A2 A
A1 Azx Axs

IT, I A (Pm -I) A11Bm A13(®n - I) - E

(2.18)
Iz, I3 Cm Dn ~-Ey
The partitioned equations t- solve are now

Ay = nAn(®m - 1) + I12Cy, (2.19)
A2 = II1AuBm + H12Dpy (2.20)
Az = My A(®, -I) -1 Ex - T112E, (2.21)
A2y = H21A11(Pm - I) + IT122Cyy (2.22)
Az = A1 Bm + 22Dy (2.23)
Azz = Il21A13(®y, - I) - II21Ex - II2E, (2.24)

A, and A3 are the nontrivial equations, while the other A;; matrix solutions are
straightforward. A;; and A;3 are of the form X = AXB + C. A solution for X
exists {2], provided the eigenvalues (A) of A and B satisfv As,Ap; # 1, for all i and

). The resulting open-loop command generator control law is

up(t,) = A21Xm(t;) + A2zum + A23ng(?;) (2.25)

The structure of the open-loop CGT control law is given in Figure 2.2. This
figure graphically illustrates how the command generator tracker works, and that

it is indeed an open-loop controller.

An open-loop C'GT control law is limited in application to stable systems.
If the plant to be controlled is unstable or marginally stable, or if uncertainties
or unmodeled disturbances exist. a closed-loop CGT controller is required. The
synthesis of the feedback path, in the form of a PI controller, is desired. Such a

controller can be synthesized by linear/quadratic (LQ) regulator methods applied
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Figure 2.2. Open-loop command generator tracker

to an augmented plant model. Therefore, LQ regulator synthesis will be discussed

in general, followed by explicit synthesis of PI controllers.

2.3 Synthesis of LQ Regulators
Given a linear deterministic discrete-time state equation,
x(tiv1) = €x(8) + Bu(t) (2.26)
y(t;) = Cx(t;) + Du(¢) (2.27)
where ® is the time invariant state transition matrix, B is the discrete-time, time
invariant control input matrix, C is the time invariant output matrix, and y is
the vector of controlled outputs, we desire a feedback control law that will make

the system behave in a desired way. One way of generating this control law is to

determine the optimal control function u* which minimizes a scalar quadratic cost

function

N
3 = T 1/2[y7(t) Yy (k) + uT(t)Unmu(ts)] (2:28)

i+1

2-8




with Y and Up the constant weighting matrices for deviations in magnitude of
y and u, respectively. A weighting term Yy associated with the terminal output
deviations from zero {(y(tx.1)) should generally be included if N is finite. that is,
if terminal transients in controller gains must be considered. This thesis, however,
will assume that V — ~. Note that. when considering the stochastic nature of
a probleni. the expected value E {-} of Equation (2.28) is the appropriate cost

function for an optimal stochastic controller designed via LQG synthesis.

The above cost function allows a quadratic penalty to be assigned to the
magnitude of output {y) deviaticns from zero and to the controls (u) expended.
Y is a p-by-p symmetric positive definite matrix, and U is an r-by-r symmetric
positive definite matrix. where p is the number of controlled outputs. and r is the
number of control inputs. The cost function can be changed to a form that weights

state deviations

N
3 =3 172 [xT(4)Xx(1,) + ul (1) Uu(t,) + 2x7(1,)Su(t;)] (2.29)
1+1
where
X = CTyc (2.30)
S = CTYD (2.31)
U = Uy +DTYD (2.32)

X is thus an n-bv-n (number of states), positive semidefinite weighting matrix.
The S matrix allows quadratic penalties to be placed on rates of change of outputs
and or states, or on any variables which are expressed as linear combinations of x
and u [13]. S also appears when continuous cost weighting matrices are discretized
for the design of digital control systems {11}, thus necessitating the objective of
exerting desirable control influence on the states across sample periods. The cost

minimizing controller is then

u'(t,) = —Gx(t;) (2.33)




where G_ is the constant controller gain, found from the equations

G;=|U+B'KB|  [BTK.& + 5] (2.34)
c=X+ ®TK® - [BTK® + sT]T G. (2.35)

K. is the algebraic Riccati equation solution.

Recall that, by certainty equivalence, the same G will be used as a multi-
plier of X(#]) (the estimated state value found in the Kalman filter), instead of a

multiplier of the real-world plant state, x(¢,).

2.4 Synthesis of PI Controllers Via LQ Methods

The LQ regulator presented in the previous section is somewhat limited in
application. If the desired output of the system is to maintain a constant value yp,
with zero steady state error, an LQ regulator for perturbations from yn,, will drive
the perturbation to zero only if there are no modelling errors in the actual physical
system. Additionally, if there are any constant disturbances affecting the system,
or if there is an apparent constan: disturbance caused by omission of higher order
terms in the formation of linear perturbation system models (to be discussed later
in this section), then the LQ regulator will again be insufficient for our needs,
because of the type-0 control system properties [4]. From classical control theory,
however, it is expected that by adding integral control to the proportional control
derived in the previous section, we can overcome these difficulties and obtain the

desired type-1 system response.

Augmenting the original system states with a specific additional set of dy-
namic variables attains the desired integral control. These additional variables are

the control differences (or pseudorates) Au(t,) such that

Au(f;) = u(t1) — u(t;) (2.36)
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The dynaniic variables can also be the pseudointegral (or summation) of the regu-
lation error, q{(f,) = q(t,_1) + (y(‘i=1) — ¥ym) {11], but that will not be pursued in

this thesis.

There are two possible implementation forms that can be used for discrete-
time control laws: position and incremental. In the position form, the control
law is specified in terms of the -urrent system state, as in Equation (2.33) for
the regulator. This form is very useful for gaining insight into the PI controller
function, but will not be used for the actual implementation of the control law in
this thesis. Rather, the incremental form will be used. The incremental form uses
changes in states and control inputs to determine incremental command values to

be added to the previous commands. An incremental type regulator is of the form
u'(t) =u(ti_y) - G [x(t;) — x(ti-1)] (2.37)

Both the position and incremental forms have the same basic input/output char-
acteristics. The incremental form controller, however, is preferable because initial
conditions are not needed for the controller states, as in the position form. Also,
for applications involving nonlinear systems (i.e., real world systems), the incre-
mental form makes relinearization about nominal values, as well as anti-windup

compensation (to be discussed later), easier to implement [11:p. 149] [17:p. 27].

C'onsider a nominal control u, needed to maintain the system described by
Equation (2.1) in a non-zero equilibrium condition, such that y = ym. (Note that
¥m is not necessarily the command model’s output vector from Equation (2.5)).
It follows that, since the defining matrices remain constant, the nominal control is

found as the solution to [11:p122,

Xo = $xo + Buo (2.38)
¥Ym = Cxo + Du, (2.39)
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In matrix form this becomes

-1 B Xo 0
= (2.40)
C D U, ¥Ym
The solution for x, and ue 1s thus
-1
= (2.41)
Uo C D Ym
The augmented matrix inverse can be partitioned as before
-1
$-1 B I,
_ 1 12 (2.42)
C D II;, Il

For this development, it is assumed that the number of controls equals the number
of controlled outputs. If this is not the case, pseudoinverse techniques may be used

to invert the above matrix ([11],p123).

We can now define perturbation variables, which we will eventually try to

regulate to zero. The perturbation variables are

6x(t;) = x(t;) — Xo (2.43)
du(t;) = u(t;) — ug (2.44)
fy(t;) =y(ti)) = ¥m (2.45)

To attain the desired integral feedback, we augment the state equations with

the control differences. The difference in éu from one sample time to the next is
du(ti ) — éult;) = (uftivy) — uo) — (ult,) — uo)) (2.46)
which can be expressed as

du(tizy) = édu(ti) + (u(tizg) — u(ty)) (2.47)
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Recalling Equation (2.36), éu(?¢;,-) becomes
du(t,,,) = éu(t;) + Au(t;) (2.48)

We can then write the augmented perturbation state space equation as

Sx(tiv1) P B &x(t;) 0

du(ti ) 0 I du(t;) 1

The optimal control law for the system of the above equation is found from

the discrete quadratic cost

T
ox(t,) X1 X2 S éx(t;)
J=1/23" | éu(ty) X127 Xaz S, su(t,) (2.50)
1=0
Au(t;) S:T 8,7 Ug Au(ty)

where N — oc. The values of the weighting matrices are found by

X;; = CTyc (2.51)
X22 = Uy +DTYD (2.52)
X2, = CTYD (2.53)

where Y and Uy are as defined in Equation (2.28). The X;; term therefore
weights state trajectory deviations from the nominal and X322 weights control mag-
nitudes. The Ugr term weights control pseudorates, which we were not able to do

in the LQ regulator problem of the previous section.

The upper partition of the weighting matrix in Equation (2.50) comprised of
the discrete-time weighting matrices Xj; must be positive semidefinite, while Ugr
1s positive definite. Furthermore. the entire augmented matrix in Equation (2.50)

must be positive semidefinite.

Solving for the optimal control law that minimizes the above quadratic cost
yields
Au(t;) = =G 8x(t,) — Gegbu(ti) (2.54)
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where the gains G can be solved in the same manner as in Section 2.3.

Although Equation (2.54) represents an optimal perturbation regulator capa-
ble of regulating state and contro! magnitudes in addition to control rates, it does
not yet possess the integral action we have been seeking. To attain the type-1 prop-
erty, we will incorporate a signal proportional to the regulation error, ym — y(,).
which is —éy(¢;). The optimal control signal constructed in terms of perturbation

variables becomes

fu(tiy) = du(t,) — Kxl[éx(tivy) — éx(t:)] + Kz [-8y(¢,)]
= 5ll(f,‘) — Kx[((X(f,'.H) — 6)(“,)} — Kz[06X(f.) + Déu(f,)] (25"))

The upper partition of the augmented perturbation state equation (2.49) can be
written as

[x(tir1) — 6x(¢;)] = [® — 1] éx(¢;) + Béu(t;) (2.56)
Combining the previous two equations and writing in matrix form yields

-1 B §x(t;)
du(t,yy) — du(ty) = - [ Ky K, ] (2.57)
C D 6U(f,)

Observing that the left hand side of the above equation is Au, Equations (2.42)

and (2.54) cau be used to show that K, and K, are evaluated as
Ky = G II11 + G112 (2.58)

K, = G112 + G, ;1132 (2.59)

Thus, once G is established via solution to the Riccati equation for the augmented

system, Ky and K, can be computed.

The final form of the PI control law is

“-(ti) = u-(ti-l) - Kx[x(fx) - x(ti_y )] + Kz[}'m(fi—l) - y(t,_] )} (2.60)
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When combined into a closed-loon CGT/PI controller, the final incremental form

C'GT/PI control law becomes

u(ty) = u(tioy) — Ky [x(4;) — x(ti_y))]

m tz— t,‘_
L K, [Cm Dm] Xm(tio1) _[CD] x(ti-1)
1 um(t;) u(t;_q)
+ [KxAqr + A21] {xm(1;) — xm(ti-1)]
+ [KxAiz + Azs](ng(t;) — ng(t;i-1)] (2.61)

The time argument on up, is not t;,_; because, whenever u;, changes, we return
to time f,_; and all variables which can be controlled are restarted, assuming
that up(f,_;) actually equals u,, [11]. This “restart” mechanism also reduces
the dynamic lag caused by the command generator model, since it speeds up its

response by a full sample period.

When using a PI controller, a phenomenon known as windup can occur {11} in
systems with actuators which can saturate, that is, actuators with hard limits. If
a large change in desired system setpoint is commanded, the proportional channel
of the controller may cause the actuators to reach their limits. The integration
characteristic of the controller will integrate large errors, eventually reaching a
commanded control level which by itself would also cause saturation. When the
tracking error signal begins to decrease, the proportional signal also decreases, but
the output of the integrator will remain at a saturation level until after the error
signal has changed sign. This is known as windup, and can result in large system

overshoots and unsatisfactory performance.

One antiwindup compensation scheme which is easily implemented with an
incremental control law consists of passing the optimal control through a limiter
which would preclude the actuators from being commanded to attain values outside
their saturation limits (Figure 2.3). This limited command input replaces u(¢;_;)

of the incremental control law.
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Figure 2.3. Antiwindup Compensation

2.5 Kalman Filter

The assumption of full-state feedback used in the previous development is
unrealistic. Complete knowledge of all the states is rarely available, and the mea-
surements that are available are usually corrupted by noise (uncertainty). To
account for this uncertainty, a Kalman filter is employed to provide estimates of
the states based on measurements and what is known about the system model, and
the approximations used in deriving the model. Because of certainty equivalence,
the design of the Kalman filter can be performed independently of the design of
the full-state feedback CGT/PI controller. After both designs are complete they
are combined and, if necessary, retuned for performance, possibly by use of LTR

tuning (Section 2.7). This section discusses the design of the Kalman filter.

When used in conjunction with a CGT/PI controller, the Kalman filter must
provide estimates of both the design model] states and disturbance states (if they

are modeled) of Equations (2.1) and (2.3). The appropriate system model [5] upon
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which to base the Kalman filter design is therefore generally an augmented system

model
Xalfivr) = 'I’axn(ti)+Bau({i)+wda(t1) (2'62)
(2.63)
wlere
x(;)
xa(fl) = (264)
ng(t;)
t;
waalty) = | et (2.65)

& E
&, = * (2.66)
[ B
B, = (2.67)
0
[ Q
d 0
Qda = T (2.68)
0 GnQdnGn

The measurement equation is assumed to provide discrete time measurements given
by

z(t;) = Hx(t;) + Hang(t:) + v(t) (2.69)
where v is a zero-mean white Gaussian noise of covariance R, usually assumed

independent of wy and wq,,. In the augmented notation used above, this becomes
z(t;) = Haxa(t;) + v(t;) (2.70)

where

Fo=|H H, | (2.71)




The Kalman filter uses the augmented model to propagate the augmented
state X, and covariance P, estimates forward in time from (¢t}_,) to (¢ ) by the

propagation equations

Xa(t7) = Qan)“(a(f,‘+_1)'+' Bau (2.72)
Pa(t7) = ®aPal(t!)®a" + Qua (2.73)
At time {,, the measurement z becomes available. The estimate is updated by

incorporating the measurement into the filter gain K, which is used to update the

state and covariance estimates through the relations

K = Pu¢)HY [HiPa(t))HT + R (2.74)
Ra(t?) = %alt7)+ K [2(t;) = HoXa(#] )] (2.75)
Pa(t’) = Palt7) - KHaPa(t) (2.76)

In the above development, constant gain K 1s assumed (the Kalman filter
is in steady state), and Pa(t;) has the same value for all time, as does Pa(t}).
The initial condition for the above recursion is Xa(fo), where these values are the

augmented state initial conditions.

When the Kalman filter is cascaded with the CGT/PI controller, the resulting
CGT/PI/KF control law is

u(t) = u(t_y) - Ky [&(1F) - R(47,)]
[ m(ti- X f,'+_
+Kz[cm Dm] Xm{ti) —[c D] *tm)
| um(t:) u(ti-y)
+ [KxA1 + Az1] [Xm(t:) — Xm(ti-1)]
+ [KxAus + Agg) [g(t}) - a(ty,)] (2.77)

The state estimates are incorporated into the control law after measurement up-
date, rather than using the suboptimal estimates at time {;. The suboptimal

estimates may be preferred in some applications, since Equation (2.77) cannot be
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totally precomputed before time ¢,, thus it imposes a computational delay at time
t,; if Xa(t]) estimates replaced X,(t7) estimates in Equation (2.77) this computa-

tional delay would be eliminated.

2.6 DLuplicit Model-Following

In the development of Sections 2.2 and 2.3, explicit weights were placed on
perturbation deviations from zero. This is known as explicit model-following. If
instead a cost were to be placed on deviations from the dynamic response of a
model which possessed desired stability and robustness characteristics, the system
would be forced to emulate those characteristics. This is known as implicit model-
following. With regard to choosing an implicit model, Gilbert [6] has shown that
the sensitivity of the system’s poles to variations in the system’s state transition
matrix ® is minimized when the nominal eigenvectors of the plant are orthogonal.
These variations could be caused by either modeling errors or system failures.
Thus orthogonal system eigenvectors increase the closed loop system robustness,
and so it is appropriate to seek an implicit model with dynamics characterized by

orthogonal eigenvectors.

The use of an LQ weighting matrix (developed in Sections 2.3 and 2.4) based
on an implicit model has a direct effect on the plant’s closed-loop poles. This
is because the feedback control causes the eigenvalues and eigenvectors to ap-
proach those of the implicit model [14]. The amount of control energy which can
he expended affects how close the plant’s closed-loop poles come to matching the
implicit model’s poles, with convergence occurring when controls have zero weight-
ing (and deviations in outputs from the implicit model are weighted in a positive
definite manner). While the command model of Section 2.2 can be used as an
implicit model, this command model typically contains performance characteris-
tics such as handling qualities, rather than stability robustness characteristics, and

hence will not enhance the system’s robustness in the face of varying plant parain-
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eters. Rather, an implicit model which posscsses desired eigenvalues and nearly
orthogonal eigenvectors will force the nominal closed-loop system to approach these

eigenvalues and eigenvectors, enhancing the overall robustness of the system.

Previously, the objective of the PI controller was to regulate perturbation
outputs to zero. This was presented in Equation (2.45) and is rewritten here for

conventence,
Sy(t)) = y(t) — ¥m (2.78)

With implicit model-following. the objective instead is to force the design model

dynamics to mimic the model system, such that

where @y, is the implicit model state transition matrix. Again, note that the plant
1s not necessarily mimicking the command model, but rather an implicit model
that contains the desired eigenvalues and eigenvectors that the designer wishes the

closed-loop system to possess.

Using Equation (2.79), the resulting optimal contro! law ic frund from the

quadratic cost

N
J = 1/23 [6y(tis1) — Bmby(t)]T Quly(tis1) — Bmby(t,)]
1=0
+éu(t;) T Ribult,) + Au(t;)TUgAu(t,) (2.80)
where again N — oc. The Qi term in this equation weights output deviations

from the nmphicit model dynamics and Ry weights control magnitudes. The Uy

term weights control pseudorates. as before.

The above equation can be rewritten as

T
N | Xt Q S1 O éx(t;)
J=1/23" | su(t) ST Ri © u(t,) (2.81)
=90
Aul(t,) 0 0 Ug Au(t;)
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where

Q1 = [C®-%,C]"QI[C® -~ &,C) (2.82)
S = [C® - &,C)"QCB (2.83)
R; = R;+B7CTQCB (2.84)

where D = 0 is assumed. The above equation is of the same form as Equation
(2.50). However, the desired stability characteristics are directly embedded in the
cost function definition. The desired state model does not explicitly appear in the
final controller structure, but is rather implicit to the structure. Hence the name

implicit model-following.

2.7 Loop Transfer Recovery

As previously stated, when the Kalman filter and the deterministic CGT/PI
controller are combined to form the optimal stochastic controller, all stability ro-
bustness guarantees are lost. The good robustness characteristics of the full-state

controller can be recovered asymptotically by tuning the filter using Loop Transfer

Recovery (LTR) techniques [14].

The LTR technique introduces pseudonoise into the design model upon which
the Kalman filter is based. Using the continuous-time noise covariance kernel
matrix of Equation (A.1) in Appendix A, and assuming G is the identity maurix,

we use LTR to replace the Q with
Q =Q+¢*BVBT (2.85)

where B is the continuous-time control matrix and V is a positive definite ma-
trix which the designer chooses to affect the relative rates of recovery in various
loops. (Q' is a continuous-time noise covariance matrix which is discretized to
Qj for use in our Kalman filter implementation, Equations (2.1) and (2.68). This

discretization is performed via [ QGQ’GT{)TdT.) As q increases, the system will
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asymptotically approach the robustness characteristics exhibited by the full-state
controller. It should be noted. iowever. that as pseudonoise increases. perfor-
mance at the nominal condition will degrade. Therefore, the designer must trade

off robustness for performance at the nominal condition.
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III. Aircrafi Description and Models

4.1 Introduction

This chapter provides a description of the Control Reconfigurable Combat
Aircraft (CRCA). the state space matrices which describe the aircraft and its
failure conditions, and how these matrices were simplified in the development of a
pitch rate controller. All of the matrices in this chapter represent continuous time
aircraft behavior, and were provided by the Air Force Flight Dynamics Laboratory,

Wright-Patterson AFB. Ohio [18, .

3.2 Aircraft Description

The CRCA is a modified version of the NASA/Grumman Advanced Tactical
Fighter (ATF) class aircraft. This aircraft is a “paper airplane”; that is, it is a
mathematical model simulating an aircraft. It does not physically exist, but it
does represent a potential design of a mid-1990’s fighter type aircraft. A sketch of
the CRCA is given in Figure 3.1. There are nine control surfaces: two canards,
four flaps, two elevators, and one rudder. The canards provide the main pitching
monient, as well as some roll and yaw moments when used diferentially. The flaps
on each wing provide rolling, pitching, and yawing moments, while the elevators

provide pitching and rolling moments. The rudder is used to supply yaw moment.

. .. +
The control surfaces have a maximum deflection rate limit of — 100 deg/sec.
+
The flaps. elevators and rudder have maximum position limits of — 30 deg, while

the canards have deflection limits of —~30deg to +60 deg.

The flight condition chosen i1n this thesis for controller design and evaluation
was Air Combat Mode (ACM) Entry. This flight condition represents the CRCA
at 30,000 feet, a forward velocity of .9 Mach, and the aircraft initially trimmed with

wings level. In this flight condition the aircraft is expected to encounter hostile
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Figure 3.1. Control Reconfigurable Combat Aircraft

aircraft, and the CRCA must respond with Level 1 handling qualities, as defined

in Mil-F-8785C [1].

The CRCA can be represented via the continuous time state space equation

where:

Ax + Bu
Cx + Du (3.1)

3-2




u forward velocity

w vertical velocity
4 pitch angle
- 9| _ pitch rate (3.2)
3 sideslip angle
P roll rate
T yaw rate
o) ] bank angle
and
[ le ft canard deflection angle .‘
right canard de flection angle
left inner flap de flection angle
le ft outer flap de flection angle
u = right inner flap deflection angle (3.3)

right outer flap deflection angle
left elevator de flection angle

righ? elevator de flection angle

| rudder de flection angle

The A matrix is 8x8 and the B matrix is 8x9. The C matrix must have 8 columns,
but the number of rows (system outputs) is determined by the designer. The D

matrix is assumed to be 0.




3.3  Aircraft Truth Models

For the case of ACM Entry. the nominal (no failures) A and B matrices of

Equation (3.1) are

.

-0.0119
—0.0324
0.0000
—0.0002
0.0000
0.0000
0.0000
0.0000

.0411
-.3163
.0000
1014
.0003
0762
.0486
.0000

-0.0186 -32.1804
-1.0634 -1.1238
0.0000 0.0000
0.0069 0.0000
0.0000 0.00C0
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

0411 1322 .0866
—.3163 —.9597 -.6194
.0000 .0000 .0000
.1014 —.0284 -.0215
—.0003 -.0002 —.0001
~.0762 2219 2011
—.0486 .0029 .0021
.0000 .0000 .0000

—31.2350
894.4548
1.0000
—0.6015
0.0000
0.0000
0.0000
0.0000

1322
—-.9597
.0000
—.0284
.0002
—.2219
—.0029
.0000

0.0000
0.0000
0.0000
0.0000
—0.0929
—27.8066
2.4582
0.0000

.0866
—.6194
.0000
—.0215
.0001
-.2011
—.0021
.0000

0.0000
0.0000
0.0000
0.0000
0.0349
—2.0376
—0.0241
1.0000

.1018
-1.0183
.0000
—.0200
-.0001
.1109
.0021
.0000

0.0000
0.0000
0.0000
0.0000
~0.9994
0.4913
0.4377

|

0.0349

.1018
-1.0183
.0000
—.0200
.0001
-.1109
—.0021
.0000

0.0000
0.0000
0.0000
0.0000
0.0360
0.0000
0.0000
0.0000

(3.4)

.0000
.0000
.0000
.0000
.0000
1144

~.0544
.0000

(3.5)

From the above equations it can be seen that, while all control surfaces affect all

states, the effects of the control surfaces can be separated into longitudinal and

lateral responses. For example, excitation of one channel does not crossfeed into

the other channel. Also, the A matrix is block diagonal, indicating that there is

no cross-coupling between the first four and last four states. Thus, a flight control

system can initially be divided into a longitudinal controller and a lateral controller.

This greatly reduces the complexity of the design task. After both controllers are

designed, they can be combined and evaluated against the complete aircraft model.

While this was the original intent of this endeavor, the effort required to design

the CGTPIKF CAD package required the majority of the time allocated for this
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thesis. Hence, the design presented in this thesis only covers the longitudinal flight

control system.

Examining the B matrix, 1t can be seen that, when considering only the
longitudinal states of the system, each control surface’s left and right matrix entries
are identical. This is as expected for such symmetric surfaces being used together
(rather than differentially, as for affecting the lateral mode). For purposes of
comparison with other thesis efforts to design a controller for the CRCA [8,15],
the B matrix left and right components of each surface were combined. Also, due
to the CCGTPIKF software constraint that the number of inputs must equal the
number of outputs, it was decided to combine the inner and outer trailing edge
flaps and elevators into one pseudosurface, called the flaperon. The outputs to be
controlled were then 8 (pitch angle) and q (pitch rate). Greater (equal) number
of inputs and outputs could be accomodated by the LQG methodology (and the
CGTPIKF software), but two inputs and outputs were considered as a reasonable
starting point for a design. Additional rationale for these choices is provided in

Chapter 4.

The A and B matrices resulting from the above simplifications are

[ _0.0119 —0.0186 —32.1804 —31.2350 |
A _ | 00324 10634 -11238 s94.4548
0.0000  0.0000  0.0000  1.0000
| —0.0002 0.0069  0.0000 -0.6015 |
[ 0s22 6412 |
o | 6326 —5.1048 36)
0000 .0000
2028 —.1398

The first column of the B matrix represents the effect of the canards on the states,

while the second column represents the effects of the flaperons. Because of the
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Figure 3.2. Design Model Response To A Canard Step Input

desire to control § and q, the C matrix becomes

C = 0010 (3.7)
0 001

It should be noted that there is a unit discrepancy in the above equations with

the numerical values as given. The control inputs to the B matrix are deflection
of control surfaces measured in degrees. The resulting behavior of the states is in
radians. Also, positive canard deflection results in a pitch up manuever; positive
flaperon deflection results in a pitch down manuever. The response of the aircraft
model of Equations (3.7) and (3.8) (without actuator dynamics) to a step input is
given in Figures 3.2 and 3.3. These figures represent a fundamental characteristic
of the uncontrolled aircraft, which does not appreciably change when actuator

dynamics are included in the model.

The effect of actuator dynamics on system response is considered in this

thesis. The dynamics associated with the canards and flaperons can be modeled
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Figure 3.3. Design Model Response To A Flaperon Step Input

via a fourth order transfer function, but based on Neumann’s work with the CRCA
(15], it was decided to limit modeling of the actuators to a first order approximation.

Both the canards and flaperons were modeled by

écurface = —206ourface + 206cmd (38)

Various failure conditions were considered in the evaluation of the pitch rate
controller. These failure conditions and their respective names (which will be
referred to in the next chapter) are listed in Table 3.1. The specific A and B
matrices are not presented explicitly (to allow for wider distribution of this thesis),
but they are available from AFWAL/FIGL, the organization which sponsored this
research. Because the controller was based on a design model which did not include
actuator dynamics, it was first evaluated against the truth models without actuator
dynamics, then against the same truth models with actuator dynamics added. The

results of the controller design are presented in the next chapter.
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Failure Description Truth Model Designation
w/o actuators | with actuators
unimpaired aircraft TMO1 TM101
25 percent canard loss TMO03 TM103
25 percent outer flap loss TMO06 TM106
25 percent outer flap and elevator loss | TM16 TM116
canard fail to trail TM19 TM119
outer flap and elevator fail to trail TM23 TM123

Table 3.1. Failure Conditions
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IV. CGT/PI/KF Controller Design and Fvaluation

4.1 Introduction

This chapter presents the design methodology of the CGT/PI/KF flight con-
trol system for the CRCA. First. the choice of design and command models for
the deterministic full-state feedback CGT/PI controller, as well as initial weighting
matrices and selection of an implicit model, are presented. This section includes
evaluation of the controller against the nominal truth model of Equation (3.6).
Section 4.3 presents the evaluation results of the controller against truth models
representing various failure conditions. These truth models do not include actuator
dynamics. Section 4.4 includes the evaluation of the controller against the same
failure conditions, but with the actuator dynamics of Equation (3.8) included in
the truth models. This section also includes a revised controller which was designed

to improve performance.

4.2 Initial Deterministic Controller Design and Evaluation Against Nominal Truth

Model

The first step in designing a CGT/PI controller using the CGTPIKF com-
puter aided design package is to pick a design model. Because the control system
was to be a pitch rate controller, q (pitch rate) became the primary variable of in-
terest. Asstated in Chapter 3, the control surfaces were combined into two pseudo-
surfaces, those being the canard and the flaperon. This was done for purposes of
simplifying the design task. Because of the software limitation of the number of
inputs and outputs being equal, one more controlled variable was required. This
was selected as 8 (pitch angle), as the control of 8 is a natural result of controlling
q, and would simplify the design process. These selections were also the basis of
the formulation of the nominal truth model (TM1) B and C matrices, because the

initial design model was to be identical to the nominal truth model. Although the
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actual truth model consisted of an 8 by 9 B matrix, this was considered to be a

valid manipulation which simplified the de<ig:y task.
The model consists of the four longitudinal states,

u

w
X = (4.1)
8

L 9

The continuous ttme A, B and C matrices are

-

_0.0119 -0.0186 —32.1804 —31.2350 |
—0.0324 —1.0634 —1.1238 594.4548
A = (4.2)
0.0000  0.0000  0.0000  1.0000

| —0.0002 0.0069 0.0000 —-0.6015 |

0822 6412 |
_ 6326 —5.1948
B — (4.3)
0000 .0000
2028 —.1398 |
(0001 0
Cc = (4.4)
000 1

As already stated. the D matrix is equal to 0. The use of noise shaping filter
models was not investigated in this thesis, so the Ex, Ey, ®y,, and Gp matrices
were all set to 0. For the remainder of this development, unless otherwise stated,

all matrices are in the continuous time domain.

With the design model and controlled outputs selected, the next step was
to choose a command model. The input to the command model drives the entire
CGT/PI/KF controller, so it was decided to make the input to the command
model the desired values of the controlled output q. The output of the command

model would then be the desired state trajectory that 6 and q of the actual system
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would try to emulate. Because of the requirement of Level I handling qualities [1],
a rise time of .6 sec for q was chosen as a criterion to define a suitable reference
trajectory. While this is somewhat faster than actually required, it is a good idea
to have the reference trajectory slightly faster than what is desired for the plant,
to offset possible performance constraints later in the design process. With this
in mind. and basing the design on Floyd’s work [5:158)] tempered by the physical

relationship of 8 and q. the command model became

0 1

Am = (4.5)
0 -5
0 0

Bm = (4-6)
0 5J
1 0]

Cnm = (4.7)
01

Dnl = 0 (4.8)

The rationale behind setting the top row of the By, matrix to 0 is that q values
are commanded. not # values. The time response of the command model for a .035

rad/sec pitch rate command is given in Figure 4.1.

Because the design model is unstable, an open-loop CGT controller cannot
be pursued. Therefore, the next step is to generate PI controller gains. Based on
previous work [5,7,14,17], it was recognized that the PI controller would probably
have to be both an explicit and an implicit model-follower. Explicit model-following
is the standard form of a PI controller, while implicit model-following is an alternate
approach of choosing the cost for LQG synthesis of the PI controller, aimed at
enhancing the closed-loop stabilitv robustness characteristics. An explicit-implicit

controller combines the weighting matrices of Equations (2.50) and (2.81) into a
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TIME

Figure 4.1. Command Model Response To .035 rad/sec Pitch Rate Command

cost weighting matrix

X +Q Xi2+S:

Xig = r e .
X.2° + S{ X22 + R

(4.9)

Both explicit and implicit weights (Equations (2.28) and (2.80)) were therefore
generated from the beginning. The CGTPIKF software allows the user to pur-
sue either an explicit or an implicit model-follower, or a combination of the two,
so establishing implicit weighting matrices did not prohibit the generation and

evaluation of a pure explicit model-following PI controller.

Initial quadratic cost weights were chosen to penalize perturbation deviations
of the output from zero (for the explicit case) or perturbation dynamics deviations
from those of the implicit model (for the implicit model-follower). Control magni-

tudes and rates were not considered to be the primary concern at this stage of the
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design, so they received relatively light weighting. The initial costs were chosen as

[ 100 0
Y - (4.10)
0 100
10
UM = (4.11)
01
100 0
Q = (4.12)
0 100
1 0]
R, - (4.13)
(01
(1 0]
Up = (4.14)
0 1

The implicit model was arbitrarily chosen with orthogonal eigenvectors, and eigen-

values which would result in a fast time response. The initial implicit model was

-5 0
Aim = (4.15)
0 -5

The eigenvalues of the above matrix correspond to the q entry of the command
model, which had a .6 second rise time. With these cost weighting matrices and

the implicit model in place, several initial controllers could be evaluated.

The CGT gains which result from the command model given in Equations
(4.5) through (4.8) are

r

~23.4527 —14.8251 |
212.2382 —118.2140
Ay = (4.16)
1.0000  0.0000

0.0000 1.0000 |

34.2261 59.0917
Al = (4.17)
i 39.2082 109.6057
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A3 and Az3 are O because disturbances are not peing considered. A;2 and Az;

are not part of the closed-loop C'GT/PI control law.

These CGT gains remain constant regardless of the weighting matrices or
implicit model used in the PI controller. These are the CGT gains used throughout

the rest of this chapter.

The pure explicit model-following CGT/PI controller with the above cost

weighting matrices results in the PI gains

[ 99.4065 -0.2430 2.5580 138.8589
Kx = (4.18)
33.2051 _0.2918 0.5398 —8.4911

[ 22,8702 33.9185
K, = (4.19)
23.5549 25.8476

Plots of the output (q) and actuator response are given in Figures 4.2 and 4.3,
and will be discussed shortly. In some of the figures of this chapter, the actuator
response is titled ‘UOPTIMAL’, because with zero order actuators the actuator
response is the optimal control u. The ‘c’ designation on the plot represents the
canard. while ‘f" represents the flaperon. Remember that actuator response is in
degrees, while q is measured in rad/sec. Unless otherwise stated, the response is
to a commanded q value of .035 rad/sec (2 deg/sec). Also, at this stage of the

design, actuator limits were not included in the model.

The implicit model-following controller resulted in an Xjg matrix ( Equation
(4.9)) which was, to the numerical precision of MATRIXx , not positive semidefi-
nite. Due to the structure of the implicit model (i.e., two rows less than the design
model). this was a common problem of trying to use solely an implicit model-
following PI controller. Therefore implicit model-following was no longer pursued.

although unplicit with explicit model-following was pursued.

The explicit-implicit model-following C'GT/PI controller with the above cost
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weighting matrices results in the PI gains

26.9681 —0.2471 3.4545 187.2642
Ky = (4.20)
| 39.2530 -0.3737 0.3794 -25.3616

34.3830 44.3127
K, - (4.21)
23.0372 27.8876

The response of the explicit-implicit controller is given in Figures 4.4 and 4.5. The
response of this controller matches the command model quite well. The explicit-
only controller has a small overshoot, but its rise time is slightly faster than that of
the explicit-implicit controller, while its settling time is approximately .5 seconds
slower. Both of these responses are considered quite satisfactory, although the

explicit-implicit controller is better.

Looking at the actuator responses, the performance is questionable. The con-
trollers exhibit nearly identical canard and flaperon response. Both aerodynamic
surfaces have a positive ramp, which is undesirable. Also, referring to Figures 3.2
and 3.3 (which showed the aircraft response to canard and flaperon inputs), the two
surfaces appear to be fighting each other, since positive canard results in positive
pitch while positive flaperon results in negative pitch. While the magnitude of the
surfaces’ deflection is adequate, and the aircraft response is satisfactory, contain-

ment of the surfaces’ deflection became a focus of the next few design iterations.

The next eight figures show the effect of changing the weighting matrices
on actuator response. The q response is not presented because all of these figures
closely matched Figures 4.3 (for the variations in explicit model-following controller
weighting matrices) or 4.5 (for the variations in explicit-implicit model-following
controller weighting matrices). All of these plots demonstrate the inability to
control actuator ramping. Repeated iterations of decreasing Y and Qj, increasing
the control magnitude and rate weights (sometimes by as much as three orders
of magnitude), and altering the elements of the Ay, matrix, reflected negligible

or adverse affects. However, increasing Ugr alone, to a value of 100 on each of
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the diagonal elements while maintaining the original weights of the other matrices,

resulted in the initial negative response of both actuators to be contained, as shown
in Figure 4.10. The ramp, however, remained for both surfaces, and the q response
obtained a slight overshoot. As this controller will be evaluated against other truth

models later. the q response is shown in Figure 4.11.

At this point it was obvious that the actuator ramping could not be con-
trolled. The flaperon is responding in a manner opposite to what it should. The
use of a transformation matrix [15] which would directly alter the sign of the com-
manded flaperon deflection might alleviate this problem, but that was not within
the scope of this thesis. Attempts to lock either the canard or flaperon by impos-
ing progressively larger weights proved futile. Therefore it was decided to continue
with the design and evaluate the controller against failure cases and truth models

incorporating first order actuator dynamics. The original controller with

10
Ug = (4.22)
0 1

was selected to be evaluated against failure cases without actuator dynamics in-
cluded in the truth models. The results of this evaluation are presented in the next

section.
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{.3 Controller Evaluation Against Failure Cases; No Actuator Dynamics

Failure cases which did not incorporate actuator dynamics were considered
first to determine if the controller as designed was adequate. and to help identify
potential problems which might occur when actuator dynamics were incorporated.
The first failure case which was considered was TMO03 (25 percent canard failure).
As Figures 4.12 through 4.14 demonstrate, the controller is not robust to canard
failures. (Figure 4.14 is included to show more detail of the actuator response.)
The aircraft begins to diverge at 3.5 seconds, with excessive actuator displace-
ments. Both actuators have negative deflections, as the canard tries to prevent the
violent pitch up and the flaperon continues to exhibit contrary performance. The
effect of adding actuator limits (Figure 4.15) is to decrease the divergence time
to 2.5 seconds, as this is when position limits are exceeded. Adding antiwindup
compensation (Figures 4.16 and 4.17) moderately improves performance (note the

y axis scale change on Figure 4.16), but the aircraft is still divergent.

Evaluations of the controller against TM06, TM16, and TM19 (25 percent
outer flap loss, 25 percent outer flap and elevator loss, and canard fail-to-trail,
respectively) were much more satisfactory (Figures 4.18 through 4.23). Pitch rate
response follows the command model perfectly. Actuator response continues to
ramp, with some increase in flaperon deflection, but limits were not approached so

these responses were considered satisfactory.

Evaluating the controller against TM23, outer flap and elevator fail-to-trail,
is not satisfactory (Figures 4.24 and 4.25). With actuator limits and antiwindup
compensation imposed, the aircraft diverges immediately after flaperon saturation
at 3.3 seconds. This appears to be caused by the the canard, which is trying to
counteract the flaperon’s adverse affect, continuing its ramp. At 3.7 seconds the
canard begins to respond favorably, but by this time the aircraft has diverged. It
should be noted that all cases would result in actuator saturation and aircraft di-

vergence if the simulation were performed for an appropriately long time duration,
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Figure 4.14. TM03 Actuator Response - 2 Seconds
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Figure 4.15. TM03 With Actuator Limits, Pitch Rate Response
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Figure 4.17. TMO03 With Actuator Limits, Antiwindup Compensation On, Actua-
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but it was judged that such prolonged step inputs would not be sustained while

the aircraft was in air combat maede.
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Figure 4.21. TM16 Actuator Response
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Figure 4.24. TM23 Pitch Rate Response
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Figure 4.25. TM23 Actuator Response
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{.4 Determunistic Controller Evaluation Against Higher Order Truth Models

The next step of the design process was to evaluate the controller against
the truth models which incorporated first order actuator dynamics. The controller
evaluated in the last section. with the diagonal elements of Up set to 1, proved to
have poor performance when compared to the nominal truth model with actuator
dynamics (TM101). As Figures 4.26 and 4.27 show, the ¢, canard, and flaperon
responses exhibit higher order dvnamics, which is deemed unsatisfactory. Adding
actuator limits and antiwindup compensation did not affect the performance. The
oscillations of the actuators leads one to suspect that increasing the control rate
weighting matrix might provide improved performance. This turned out to be
ithe case. When the controller with Ur = 100I was evaluated against TM101,
the performance approached that of the command model (Figures 4.28 and 4.29).
Changing the other weighting matrices had negligible effect on performance, as
noted in the lower order case. Adjusting the implicit model, however, did result
in improved performance. As Figures 4.30 and 4.31 reveal, decreasing the implicit
model matrix entries from -5 to -.5 (thereby slowing the implicit response char-
acteristics) results in a smoother g response. The rise time is approximately .1
seconds longer. but this is deemed acceptable. This performance was consistent
with that found when both controllers were evaluated against TM106, TM116, and
TM119 (25 percent outerflap loss with first order actuators, 25 percent outerflap
and elevator loss with first order actuators, canard fail-to-trail with first order ac-
tuators, respectively). These plots are not presented here due to their similarity

with the response evaluated against TM101.

When the C'GT/PI controller was evaluated against TM103 (25 percent ca-
nard loss with first order actuators), the response was once again unsatisfactory
(Figures 4.32 and 4.33). Strangelv enough. with actuator dynamics added to this
failure case, the aircraft exhibited a negative pitch rate divergence, as opposed to

the positive divergence without actuator dynamics (TM03). The actuator response
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was also opposite of that exhibited in the TMO03 case. Repeated attempts to con-
trol the divergence, by adjusting Ur and A, had an adverse effect. This was
expected, as the incoporation of actuator dynamics in the truth model increased

the severity of the control problem.

The final case to be considered, that of outer flap and elevator fail-to-trail
(TM123), was also divergent, as in TM23. Again, this was expected. As shown
m Figures 4.34 and 4.35, the aircraft exhibits a severe oscillation between 4 and
5 seconds, caused in part by the flaperon saturation. As with the previous case
of canard failure, this failure condition proved to be uncontrollable. Varying the
weighting matrices and the implicit model had negligible effect on the aircraft

performance.

At this point it was decided to continue with the design, and evaluate the
CGT/PI/KF controller against the failure conditions with actuator dynamics added.
The flight conditions with lower order actuators were not to be evaluated further.
The purpose of evaluating these conditions initially was to help identify the effect
of adding actuator dynamics to the truth models. It has been demonstrated that
the initial controller was not suitable for the higher order truth models, but that in-
creasing Ugr from I to 100I improved the performance of the controller evaluated
against the truth models which were previously controllable. The truth models

which were divergent (TM03 and TM123), however, remained divergent.
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Figure 4.26. TM101 Pitch Rate Response, Ug =1
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Figure 4.27. TM101 Actuator Response, Ugr =1
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Figure 4.28. TM101 Pitch Rate Response, Ur = 100I, A1y = —51
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Figure 4.29. TM101 Pitch Rate Response, Ug = 1001, Ay, = 51
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Figure 4.30. TM101 Pitch Rate Response, Ug = 1001, Ajpy, = ~.51
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Figure 4.31. TM101 Pitch Rate Response, Ug = 1001, Aj,, = -.51
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Figure 4.32. TM103 Pitch Rate Response, Ur = 1001, Afp, = —.51
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Figure 4.33. TM103 Actuator Response, Ur = 1001, Ay, = -.51
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Figure 4.34. TM123 Pitch Rate Response, Ug = 1001, Ay, = —.51
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Figure 4.35. TM123 Actuator Response, Ug = 1001, Ajjn = —.51
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4.5 CGT/PI/KF (Controller Evaluation

The final step in the flight controller design process was to design a Kalman
filter and combine it with the previously designed CGT/PI deterministic controller.
(ertainty equivalence states that this is a valid design approach, due to the separa-
tion of the deterministic control problem from the stochastic nature of the problem.
However. while the design evaluated at nominal conditions should perform in an
acceptable manner, stability robustness of the system may be degraded due to the
incorporation of the Kalman filter. It is therefore critical to evaluate the closed
loop control system against the failure conditions as well as the nominal design

conditions.

In designing the Kalman filter. the design model A and B matrices are the
same as in Section 4.2. The measurenient matrix H is identical to the C matrix,
that is, measurements are taken cf the controlled outputs, # and q. The G matrix
is a 4 by 4 identity matrix (to allow for the possibility of LTR tuning later). and

the noise covariance matrices were initially chosen as

(4.23)

[ 476 E -5 0
R - (4.24)
0 322F 4

The initial Q value was chosen based on work performed on the STOL F-15.
operating in a similar flight environment [9]. Reasonable R vilues for the C'RCA

were unavailable, so a value identical to that used for the AFTI F-16 [5] and the
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STOL F-15 was used. The resulting Kalman filter gain matrix is

-

[ _3.1561 —0.5074

43.4047 14.529T
K, = (4.25)
0.0672  0.0164

0.1106  0.5679 |

Since the truth models used in this thesis are deterministic, a covariance
analysis was meaningless. An attempt to incorporate the Dryden wind model
into the nominal truth model, via Pogoda’s methodology [16], proved fruitless.
Various parameters of the CRCA, particularly the body axis derivatives, were
unavailable, which precluded modeling wind gusts and turbulence effects on the
aircraft. Also, the use of parameters {rom other fighter aircraft operating in similar
flight conditions was judged to be unrealistic. Therefore, evaluation of the filter
independent of the CGT/PI controller was not pursued. Because the CGT/PI/KF
controller will be evaluated against deterministic truth models, and the ability to
change Q is available via LTR tuning, the lack of a covariance analysis will not be

severely detrimental to the overall controller evaluation.

Incorporating the Kalman filter with the deterministic CGT/PI controller
(where Ug = 100I and Ajpy, = —.5I), and evaluating the resultant controller
against the nominal truth model. TM101, shows the closed-loop system to have
desirable performance characteristics (Figures 4.36 and 4.37). The rise time and
settling time are somewhat longer than the deterministic controller’s (as expected
due to the additional dynamic lag of the filter), and there is a slight overshoot, but
the response is still acceptable [1]. The actuator deflections remained essentially

the same.

The first failure cases considered were the ones that were stable when evalu-
ated against the CCGT/PI controller. As shown in Figures 4.38 through 4.43, the
responses approximate that of th. command model. TM106 and TM116 (25 per-

cent outer flap failure and 25 percent outer flap and elevator failure, respectively)
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have a ( response which exhibits a 17 percent overshoot, and a steady-state error
of approximately .004 radians, but for a battle damaged aircraft this is considered
acceptable. Also. the actuator deflections are still well within bounds, although
the ramping effect has continued. TM119, canard fail-to-trail, has maintained rea-
sonable performance (Figures 4.42 and 4.43), with a moderate overshoot and an

increase in settling time of approximately .5 seconds.

Although the aircraft response for the previous cases was considered accept-
able, Loop Transmission Recovery was pursued to try to decrease the overshoot of
TM116. Referring to Equation (2.85), the V matrix was set to identity and the
scalar  value (not to be confused with pitch rate) was set to .1, which 1s two orders
of magnitude greater than the nominal Kalman filter’s @ value. As Figure 4.44
shows, the pitch rate overshoot is moderately improved. The actuator response is
nearly identical to that of Figure 4.41. and is not presented here. The effect of

LTR tuning on the nominal plant will be shown later.

The effect of adding the Kalman filter to the controller, and evaluating it
against TM103 and TM123. was quite surprising. In both cases the system response
improved. as shown in Figures 4.45 through 4.48. This response was not expected.
as the Kalman filter typically reduces the robustness of the system. However, in this
case. both of the previously unstable flight conditions have become stable, albeit
with severely degraded performance from that of the nominal flight condition.
TM103, the 25 percent canard failure case, has a peak q of .022 rad/sec, with a
final value of .019 rad/sec. TM123, outer flap and elevator fail-to-trail, is somewhat
better, with a peak of .03 rad/sec and a steady-state value of .026. This unexpected

response is discussed in the next section.

To try to improve the performance of these two failure conditions, LTR tuning
was performed. Figure 4.49 shows that a scalar q factor of .1 results in a much
smoother response for TM103. but the system still has a significant steady-state

error. Increasing q another order of magnitude to 1.0 (Figure 4.50) results in the
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system ramping up towards the desired value of pitch rate, but the plot does not
show whether this value is obtained. or if the ramp continues. Applying q=1.0 to
TM123 (Figure 4.51) results in a relatively small steady-state error and acceptable
rise time. Applying this same q value to TM101 (to determine any adverse affects
of LTR tuning on the nominal flight condition) shows an almost imperceptible
Increase in rise time, as shown in Figure 4.52. Therefore, in this case LTR tuning

1s an appropriate robustness enhancement technique.
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Figure 4.36. CGT/PI/KF Pitch Rate Response, TM101
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Figure 4.37. CGT/PI/KF Actuator Response, TM101
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Figure 4.37. CGT/PI/KF Actuator Response, TM101
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Figure 4.38. CGT/PI/KF Pitch Rate Response, TM106
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Figure 4.39. CGT/PI/KF Actuator Response, TM106
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Figure 4.41. CGT/PI/KF Actuator Response, TM116
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Figure 4.42. CGT/PI/KF Pitch Rate Response, TM119
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Figure 4.43. CGT/PI/KF Actustor Response, TM119
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Figure 4.46. CGT/PI/KF Actuator Response, TM103
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Figure 4.47. CGT/PI/KF Pitch Rate Response, TM123
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Figure 4.51. Effect of LTR Tuning, q=1.0, Pitch Rate Response, TM123
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{.6 Summary

The CGT/PI deterministic controller was satisfactory for the nominal design
condition, both with and without actuator dynamics included in the truth model.
This controller proved to be robust to most failures, but canard failures and outer
flap and elevator fail-to-trail were the most severe and led to instabilities. Varying
UR resulted in improved performance when actuator dynamics were incorporated
into the truth models, successfully eliminating the oscillatory response of the actu-
ators and of pitch rate. Decreasing the diagonal elements of the implicit model A
matrix from -5 to -.5 resulted in further smoothing of the pitch rate response. The
only problem with the controllers was the inability to contain the actuator ramping
phenomenon. Increasing weights on control magnitudes and rates had negligible
effect. and decreasing the weights on output deviations resulted in a degradation
of performance. However, as the ramping did not cause actuator saturation for the
time interval investigated (and by extrapolation not until at least 20 seconds), the

controller was deemed acceptable for air combat mode applications.

Incorporation of the Kalman filter to form the CGT/PI/KF controller re-
sulted in a slight degradation of performance for the nominal case, and a some-
what greater degradation for the three failure cases (with first order actuators
simulated) which were stable when evaluated against the deterministic CGT/PI
controller. The two failure conditions which were previously unstable, however.
became stable with the incorporation of the Kalman filter. This was not expected.
The improved performance is conjectured to be the result of the Kalman filter’s
band-limiting characteristic. It is possible that what was causing the instabilities
in the system previously was a high frequency mismodelling characteristic which
the filter fortunately cut off; i.e.. the filter's effect on the controller loop shape
was helpful rather than harmful for this particular phenomenon. This, however. is
only a hypothesis, and further analysis would have to be performed to determine

the actual cause of the improvement. Loop Transmission Recovery was shown to
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improve performance significantly. without having to pay any significant penalty

on performance at nominal conditions.
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V. Conclusicns And Recommendations

5.1 Conclustons

The CGTPIKF computer aided design package generated during this thesis
effort is an effective and versatile tool when used in the design of CGT/PI/KF
control systems. Because it is hosted on MATRIXx [10]. a wide gamut of control
design tools are available to the user. These tools, coupled with the time response
plots generated by CGTPIKF itself, provide a thorough controller design and per-
formance evaluation for MIMO systems. Also, the high degree of modularity and
thorough documentation of the software allows a user the flexibility of modifying

elements of the program, should the need arise.

The actual design of a control system for the CRCA attained both excel-
lent performance at design conditions while remaining robust to many failures
and to the effects of incorporating actuator dynamics into the truth model, which
were not included in the design model. The full-state feedback CG'l'/PI[ con-
troller performed adequately, with the nominal aircraft almost perfectly tracking
the command model. Three of the failure conditions also exhibited this kind of
performance, although two failure conditions did result in aircraft divergence. An
anomaly was observed in that the control surfaces had a ramp, and they appeared
to be fighting one another. This ramping of the control surfaces was both puzzling

and unalterable by the design stategies pursued.

With the Kalman filter in the loop, performance at nominal flight conditions
degraded slightly, but still conformed to the specification [1]. The three failure con-
ditions that were previously stable also showed some degradation of performance,
but the use of Loop Transmission Recovery (LTR) improved this performance. Sur-
prisingly, the two failure cases which were unstable became stable when the Kalman

filter was included in the loop. This was not expected, and it is hypothesized that
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the band limiting characteristic of the kalman filter may have affected the system
loop shape so as to attenuate high frequency components which were the cause of
the instability, but this was not verified. LTR tuning improved the performance at

these failure conditions. with negligible loss of performance at nominal conditions.

In the course of designing the flight control system, several insights were
gained as to how to adjust the controller to improve performance. Implicit model-
following proved to be superior to the explicit, or standard, quadratic cost definition
for synthesizing the PI controller, particularly with regard to the transient response
of the closed-loop system in the face of failure conditions. Increasing the weight Ug
on control rates proved to be the most effective way to enhance stability robustness.
The effect of both Up and Ry (the standard and implicit weighting matrices for
control magnitudes) proved to be negligible. The validity of adding the implicit

and standard weighting matrices together was demonstrated.

5.2 Recommendations For Future Research

The possibility of incorporating a transformation matrix, which could either
directly alter control input magnitudes or their signs, into a controller designed via
LQG theory, should be investigated. Presently, no work has been done to prove
the applicability of this type of weighting matrix to LQG, but work has been done
in other fields [15], and the possibility exists that this could be extended to LQG

to enhance performance of controllers.

The CGTPIKF software is, at the present time, totally user interactive. It
would be beneficial if this software were able to be submitted as a batch job.
with a range of weighting matrix values or LTR q factors being evaluated with
the user off-line. This would save a great deal of time, as the present software is
rather slow, requiring the user to wait while the program computes gains or builds
the simulations. One approach to accomplishing this task would be to alter the

appropriate CGTPIKF command files to remove all of the prompts and optional

5-2




design paths. This modified software could then be executed via another command

file in which the specific variables of interest are varied.

The incorporation of time correlated noises into the softwarc would also be
beneficial. This could be readily accomplished by altering the C'GT user-defined
function. Also. an alternative apvroach of solving for the CGT gains which does
not require the use of the HESSENBERG function would be beneficial, as this
MATRIXx function does not always provide the correct result, depending on the

version of MATRIXx used.




Appendix A. CGTPIKF User’s Guide

A.1 Introduction

This Appendix is a user’s guide to the CGTPIKF software. Experience us-
ing MATRIXx [10] is a prerequisite for using this software. Not only will the
user know fundamentals such as how to enter matrices, but the whole gamut of
MATRIXx tools will be available for the design process, including those aspects
of the system which the author has not included in the program. The primary
benefit of implementing a computer aided design (CAD) package which assists in
the design and evaluation of CGT/PI/KF control systems on MATRIXx is that
many different analysis tools exist, such as singular values, eigenvector evalua-
tion, frequency analysis, etc. This software is intentionally designed to allow the
user to apply such tools at various points throughout the iterative design process.
Despite the limitations of the program, when considered in concert with the to-
tal MATRIXx CAD package, the program capabilities are enormous. Therefore.
some knowledge of the capabilities of MATRIX is essential to the control system

designer.

This software has been qualified against results obtained from a previous
C'AD package which was written in FORTRAN IV [5]. The specific test case
presented here is a duplication of Captain Gross’s results (his Figure 5-1 and 5-
2){7]. Figure A.1 and A.2 were generated by the CGTPIKF software after inputting
Gross's models and weighting matrices. These figures are extremely close to his

results, and served as a verificaticn of software functionality.

The files required to run CGTPIKF (or a subset of the program) are listed
in Section A.5. Section A.6 provides a brief description of how the simulation is
implemented. Actual use of the program is documented in Section A.2. Variable

definitions are given in Section A.3, while some nuances of the software are listed
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Figure A.2. Duplication of Gross’s Actuator Response
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in Section A.4. A sample design run is not provided, as it is of far too great a

length to be included in a user’s manual.

It should be noted that CGTPIKF was written on a VAX 11/780 using
MATRIXx Version 6.0. Errors may occur when using other MATRIXx versions,
as the format of commands is not always the same. The author encountered two
errors while trying to implement this software on a Micro Vax 3 (VAX 3500)
using MATRIXx VMS Version 1.2. The first error involved the format of the
MATRIXx command DREGULATOR. In the present version of CCGTPIKF, the
argument SXU has to be transposed to be of the correct dimensions for this com-
mand. but on the VMS version it did not require transposition. Secondly, on the
VMS version. the HESSENBERG function. used in the generation of CGT gains.
does not produce the correct results. If this occurs, the user will see an error
message generated by CGTPIKF which states THE BARRAUD FUNCTION DID
NOT WORK CORRECTLY.

A.2 Using CGTPIKF

A.2.1 Overview CGTPIKF is a user friendly CAD package which aids in
the design of command generator trackers, proportional plus integral controllers.
and Kalman filters. The program is based on the LQG assumptions, that is, that
there is a Linear system model, that a Quadratic cost is to be optimized, and
that the system is driven by Gaussian noises. Certainty equivalence states that
the design of an optimal stochastic controller can be divided into the design of the
deterministic full-state feedback control system and that of the Kalman filter. In
(C'GTPIKF, the designer can pursue each of these designs separately, analyze each.
and then combine the deterministic CGT/PI controller in cascade with the Kaliman
filter to form and analyze the performance potential of the optimal stochastic

controller.

The primary analysis tool of CGTPIKF is time response plots. A common
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Figure A.3. CGTPIKF Top Level Program Flow

problem occurs while using modern control theory techniques in the design of
control systems, that being how to relate classical performance specifications to
the design. By using time response plots, the designer can evaluate the proposed
design against actual time domain specifications. Frequency response and singular
value analysis are not included in the program, but they are a part of MATRIX ,

so the user may exit CGTPIKF and use these tools if desired.

Limitations which apply to CGTPIKF are that the models must he linear
and time invariant. Also, the number of inputs and the number of outputs for the

design, command, and truth models must be the same.

A.2.2 Program QOverview  CGTPIKI is menu driven. As such, the de-
signer has the option of pursuing several design paths (Figure A.3). At the top
level, the user may irnut or change svstem models. pursne a deterministic CG'1/PI
controller, or pursue a Kalman filter. The models required to pursue either of these

last two options are listed in the appropriate section (A.2.5 or A.2.6). Finally. the
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Figure A.4. INPUT MODELS Program Flow

user may exit the program. Before exiting the program, the user will be prompted
for whether or not the variables on the stack (the variables presently defined in
MATRIXx ) are to be saved. For all menus except the Pl menu, the user has the
option of exiting that menu (and its set of options) and returning to the previous
menu. The limitation of not exiting from the PI menu is to ensure that new PI
gains are generated if the cost weighting matrices, implicit model, or choice of

explicit vs implicit model-following controller is changed.

When the designer selects INPUT MODELS, a menu appears allowing the
option of entering the design model (upon which both the deterministic CGT or
C'GT/PI controller and the Kalman filter are based), the command and noise
models (for CGT generation), the truth model to compare the controller or filter
against. the implicit model for PI implicit model following, and the sample time

(FigurP A.4).

When the designer decides to pursue the CGT/PI controller (Figure A.5).
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Figure A.5. Pursuing A CGT/PI Controller

he is given the option of pursuing an open-loop CGT (if the system is stable), a
closed-loop CGT/PI, or a PI controller. Also, the ANALYZE CGTPI option allows
the user to evaluate the controller design and get time response plots. When a PI
or C'GT/PI controller is being pursued, the user may enter cost weighting matrices
and pursue either explicit, implicit, or a combination of implicit and explicit model
following. Explicit model following is a standard PI controller which tries to min-
imize perturbation deviations from zero. A PI controller based on implicit model
following tries to make the closed loop system dynamics characteristics emulate an
implicit model, which is defined by the designer. Pursuing both simply adds the

weighting matrices of an explicit controller to those of an implicit controller.

If the user pursues the KALMAN FILTER option (Figure A.6), he is given
the opportunity of modifying the G matrix, which determines how noises are fed
into the system, or modifying the noise covariance matrices Q, R, or QR, which

is the cross correlation between the discrete wq(?,) and v(t,). He can also generate
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Figure A.6. Kalman Filter Program Flow

the Kalman filter gains and covariances. Finally, a covariance analysis of the filter
(alone) against the truth model can be performed to allow for proper filter design
and tuning. Note that when Loop Transmission Recovery (LTR) is being pursued,

G must be the identity matrix.

Finally, analyzing the closed-loop CGT/PI/KF controller (Figure A.7) pro-

vides the final verification of the design process. This option also allows LTR

tuning to be pursued.

A.2.7 Getting Started
must exist in the user’s directory. Once that is accomplished, enter MATRIXy .

At the prompt, (<>) type:

EXECUTE(’CGTPIKF.")

and hit return. MATRIXx will now execute the CGTPIKF command file. The

program will respond with

To run CGTPIKF, the files listed in Section A.5
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Figure A.7. Analysis Of Closed-Loop CGT/PI/KF Program Flow

CGTPIKF TOP MENU
1 INPUT MODELS
2 CGT/PI CONTROLLER
3 KALMAN FILTER
4 ANALYZE CGT/PI/KF
5 QUIT

These are the five options described in Section A.2.2. The next five sections will

deal with these options.

A.2.4 INPUT MODELS When INPUT MODELS is selected from the
main CGTPIKF menu, the user is presented with a banner telling him what to do.

This banner is
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THE DESIGN, COMMAND, AND NOISE MODELS, AND SAMPLE TIME DT,

MUST BE INPUT, OR THE PROGRAM WILL ABORT. THE DESIGN MODEL MUST BE

INPUT BEFORE THE COMMAND, NOISE, TRUTH, OR IMPLICIT MODELS.

THE TRUTH MODEL DOES NOT HAVE TO BE INPUT UNTIL YOU

EVALUATE YOUR CONTROLLER, AND THE IMPLICIT MODEL MAY BE INPUT

AT A LATER TIME. THIS PROGRAM DOES NOT PRESENTLY USE THE NOISE

MODEL, BUT IT STILL MUST BE INPUT.

PAUSE>

FOR ALL MODELS, IF A MATRIX ALREADY EXISTS AND YOU DO NOT WANT

TO CHANGE IT, JUST TYPE IN THE APPROPRIATE MATRIX NAME (EG, ADM).

PAUSE>

When a PAUSE > appears anywhere in this program. hitting the RETURN key
will allow the program to proceed. ADM refers to the design model's A matrix.

This notation will be explained later in this section. A complete list of variable
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names and their definitions is provided in Section A.3.

The program then displays the various options available to him.

MODEL MENU
1 LOAD FILE

[\

DESIGN MODEL
3 NOISE MODEL
4 COMMAND MODEL
5 TRUTH MODEL
6 IMPLICIT MODEL
7 SAMPLE TIME
8 SAVE MODELS

©

QUIT

Each of these options allows the user to input the desired model. Options 2 through
7 result in the program presenting a banner to the user which tells him what he
1s expected to do. For each of the models. the user will input the continuous-
time matrices which define the model. (Banners which are self explanatory will no
longer be presented.) An option to look at variable values, which is included in
other menus, is not included here because all of the matrices defining a model are

displayed to the user after the model has been entered.

If LOAD FILE or SAVE MODELS is chosen, the user will be prompted for
the file name. To load or save the stack to a file, simply tvpe the filename inside of
single quotation marks, that is, ‘filename.dat’. The dat extension is not required,
but if no extension is chosen, that is the default imposed by MATRIXx . Care

must be taken when loading a file, as inputting a filename which does not exist

will result in CGTPIKF aborting. (This is a MATRIXx limitation. not a limitation
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of the CGTPIKF software.) All of the variables which have been defined, however,

will remain on the stack.

When inputting matrices te define the models, the equations are of the gen-

eral form for states x. controlled »utputs y. and measurements z:

X = Ax + Bu+ Gw (A.1)
y = Cx+ Du (A.2)
z = Hx-v (A.3)

Not all of these matrices will be displa_ed for each model (e.g., the command model
only requires A. B. C and D). The program will display a banner at the beginning
of each model input cycle informing him of what the form of the model is. He will
then be prompted for each of the necessary matrices. THE DESIGN MODEIL
MUST BE INPUT (or exist on the stack) BEFORE ANY OTHER MODEL 1S
INPUT OR THE PROGRAM WILL ABORT! The truth model must exist before
any analysis is performed, as in analyzing the CGT/PI or CGT/PI/KF controllers.
or performing a Kalman filter covariance analysis. The G matrix of the design
model must be the identity matrix if LTR tuning will be performed. but this

limitation is not imposed when it is entered.

The A matrix dimensions for each model defines the number of states of
that model. Varjable names are a mnemonic consisting of the matiix name and
the model (DM = design model, NM = noise model, C'M = command model, TM =
truth model. or IM = implicit model) with which they are associated. For example,
the design model A matrix is ADM. Later, these matrices will be discretized. and
the resulting matrices will have a ‘D’ added at the end (e.g.. ADMD). A complete
list of variable names which exist on the stack after a typical run is given in Section

A3,

When including actuator dvnamics in the truth model. a specific format is

required. Suppose the designer wanted to add actuator dynamics states to a truth
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model described by

by
bs

by
b

61
&>

. a; Qi Ty
X = +
az Qg L2

(A.4)

and inputs & and &,. The truth model as entered by the user would have to be

ay qap bl b2 I1 ] [ 0 0 ]
az ay t'fs b4 T2 0 0 61-—command
X = + {A.5)
0 0 -20 0 51 20 0 62—-command
| 0 0 0 -20 ]l &y I 0 20

where the numbers entered are assumed to represent the desired actuator dynamics.
In general. the actuator states must be entered in order from lowest derivative to
highest derivative, alternating between the actuators of the system. For the ahove
example. if second order actuator dynamics were desired. the state vector would

be

T
T2
&
é2
61
&

The user will be prompted for the number of states of the actuator (NSACT), and
for the above example would enter 4. The order of each actuator model must be
the same for all actuators. If a greater order of actuator states is desired for one
actuator vs another, the actuator represented by the lower order of states must
be augmented by the appropriate number of “dummy” states which will yield an
augmented vector of dimension equal to the highest order term. These dummy
states will have a 0 entry in the A matrix and a 1 entry in the B matrix. NSACT

will therefore be a multiple of the number of inputs.




When the number of truth model states (NSTM) is greater than the number
of design model states (NSDM), the program will prompt the user for a transfor-
mation matrix (TTM) which transforms the truth model states into a matrix with
the same number of rows and celumns as the design model. This is required to

ensure dimensional compatibility during the simulation.

A4.2.5 CGT /Pl CONTROLLER  When CGT/PI CONTROLLER is se-
lected from the CGTPIKF TOP MENU, the following menu is displayed:

CGTPI MENU
1 OPEN LOOP CGT
2 PI REGULATOR
3 CLOSED LOOP CGT/PI
4 ANALYZE CGT/PI

5 SAVE VARIABLES
6 LOOK AT VARIABLES
7 QUIT

If a pseudoinverse is used to invert the IT matrix of Equation (2.17), the banner
A PSEUDOINVERSE WAS USED TO GENERATE THE PIMAT MATRIX

appears. to alert the user that the design will not be based on a ‘real’ inverse. Two
functions are defined at the beginning of this part of the program. and they will
scroll by on the screen. This occurs at other points in the program also. and is not

important to the user.

The design, noise, and command models must exist to generate C'GT gains.
If only a PI regulator is being pursued, only the design model is required. The

implicit model must exist whenever implicit model-following is being pursued.
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If Option 1 is selected. the program will pursue an open-loop CGT controller
if the design model A matrix has eigenvalues with strictly negative real parts.
Selecting this option generates in the gains A11, A21, A22, A13, and A23 of Equa-
tion (2.9). (A12 is not generated because it is not used in either the open-loop
CGT or closed-loop CGT controller.) If any of the eigenvalues are in the right half
s-plane, the user will be told that the system is unstable and to pursue a closed-
loop C'GT. If the error message “THE BARRAUD FUNCTION DID NOT WORK
CORRECTLY" appears. then the values of A11 through A23 are incorrect. This
may be caused by the MATRIXyx HESSENBERG function producing inaccurate
results. Refer to the MATRIXx User’s Manual [10] for details.

Option 2 allows the user to pursue a PI controller (regulator). The execution
of this option is the same as pursuing a closed loop ('GT/PI controller, because the
user inputs the same data and makes the same choices. The only difference is that
Option 3 calls the C'GT gain generation function, and forms the gain K XM =
KX = A11 + A21 as well as KX, KZ, and A1l through A23. Option 2 only forms
KX and KZ. The analysis tools of Option 4 have NOT been qualified against
designs pursued under Options 1 or 2. Option 4 has only been used in conjunction
with closed-loop CGT/PI control systems. as generated by Option 3. The gains
generated have been verified against other software packages [5], but the simulation
using SYSTEM BUILD commands has not been verified for the designs of Options
1 or 2.

Option 3 results in the menu

PI MENU
1 INPUT COST MATRICES
2 INPUT IMPLICIT MODEL
3 PURSUE EXPLICIT
4 PURSUE IMPLICIT




PURSUE BOTH
ALTER XIE ELEMENT
LOOK AT VARIABLES

o ~N o »

CONTINUE WITH DESIGN

Option 1 allows the user to input the continuous cost weighting miatrices corre-
sponding to Equations (2.28) and (2.80), that is, Y,Upm, Q1. Rj and Ug. Positive
definiteness and positive semidefiniteness are checked. Option 2 allows the user to
define (or redefine) an implicit model if implicit model following will be pursued.
Option 3. PURSUE EXPLICIT, allows the user to design a standard PI controller.
This option implements Equations (2.51)-(2.53) to generate the upper partition of
the cost weighting matrix of Equation (2.50). consisting of the Xj; terms. This
matrix is called XIE, which symholizes a weighting matrix for implicit or explicit
model following. If Option 4 is pursued, XIE becomes the upper left partition of
the weighting matrix of Equation (2.81), that is, implicit model following is pur-
sued. Option 5 results in XIE being the sum of the previous two results. Options
3 and 4 do not have to be pursued before selecting Option 5. After each of these

three options have been pursued, XIE is checked for positive semidefiniteness.

After the cost weighting matrix XIE has been formulated via Options 3, 4,
or 5, individual elements may be changed by the user in Option 6. This may be
necessary to ensure XIE is positive semidefinite (which is checked once again after
the elements have been changed). Option 7, LOOK AT VARIABLES, allows the
user to see the value of any variable on the stack. This option may also be used as

a scratch pad, as for determining the eigenvalues of a matrix (EIG(A)).

As previously mentioned, the PI MENU is the only menu from which the
user cannot exit. The only way the program allows the user to exit this part of the
program is to pursue Option 8, CONTINUE WITH DESIGN. After entering this

option, the XIE matrix will be displayed and the user will be prompted for any
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changes. Any changes will have to entail retyping the entire matrix at this point.
If no changes are desired, typing the matrix name XIE will allow the program to
proceed. If XIE is positive semidefinite, the user will then be prompted for off
diagonal terms, SXU, of Equation (2.50) or (2.81). The program then goes about
generating the gains KX and KZ of Equation (2.61). The weighting matrices XIE,
UR, and SXU are discretized (and remain on the stack as XIED. URD and SXUD)},
and the ('GT option is pursued internal to the program. The system eigenvalues
and the gains KX, KZ. and KXM (which equals KxA;; + Az;) are displayed to
the user. The program then returns to the CGTPI MENU.

If Option 4 of the CGTPI MENU is pursued, the user enters the portion of
the program which allows for the evaluation of the deterministic controller. The
truth model must exist before trving to generate any time response plots. As a
first iteration, it is useful to define the truth model to be the same as the design

model. This part of the program is broken up into two menus, the first being

CGTPI.ANALYZE MENU1

1 MODIFY THE GAINS
2 LOAD A FILE

3 BUILD THE SYSTEM
4 NEXT MENU

Option 1 allows the user to modify the gains KX and KZ directly, if that is desirable.
It is an optional step that need not be exercised. but may allow additional flexibility
in the design proce. . This menu also allows the user to load a file, which is useful
when comparing a controller against several truth models. The controller design is
not dependent on the truth model, so this option is a time saving tool. It is a good

idea, however, that the truth models have been run through the MODEL MENU
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option of inputting the truth model, to ensure all variables (such as NSACT)
have been generated. Note that. when using any of the SAVE FILE options in
CGTPIKF, ALL of the variables on the stack are saved, so be careful to ensure
that when saving truth models. only the truth model defining matrices are saved.
Loading what you think is just a truth model file, but is in reality a file containing
design model parameters which may be different from the ones you are presently

using. would result in erroneous results and a great deal of frustration.

Before generating time response plots. the system must be constructed for
simulation via Option 3 of CGTPLLANALYZE MENU1, BUILD THE SYSTEM.
This option prompts the user for initial values of the truth model and command
model states. It also inquires whether or not actuator limits are to be included,
and if so, what the lower and upper values are. If actuator limits are to be consid-
ered, the program then inquires whether antiwindup compensation is to be turned
on. The program then uses MATRIXx SYSTEM BUILD [10] commands to build
a simulation model. This process usually takes several minutes, so the user is

cautioned to be patient.

After the system has been built, time response plots may be generated. Se-
lecting Option 4 of MENU1 allows the user to proceed to CGTPIL.LANALYZE
MENU2. which is

CGTPI.ANALYZE MENU2

—

PLOT DES MOD OUTPUT
PLOT COM MOD OUTPUT
TRUTH MODEL OUTPUTS
TRUTH MODEL STATES
LOOK AT VARIABLES
ACTUATOR RESPONSE

~N O D W N

QUIT
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A banner is displayed prior to this menu which explains each option. It is

repeated here.

NOW YOU CAN GET TIME RESPONSE PLOTS. DES MOD IS THE UNCONTROLLED

DESIGN MODEL. COM MOD IS THE COMMAND MODEL. TRUTH MODEL OUTPUTS

ARE THE TRUTH MODELS OUTPUTS WITH THE CONTROLLER IN THE LOOP.

ACTUATOR RESPONSE IS THE RESPONSE OF THE ACTUATORS. IF NO ACTUATOR

DYNAMICS EXIST, THIS IS THE OPTIMAL CONTROL GENERATED BY THE

CONTROLLER. IT IS ALSO THE INPUT TO THE TRUTH MODEL BEING EVALUATED.

Option 7 in this menu, QUIT, results in returning to the CGTPI MENU. The
remaining two options in that menu, SAVE VARIABLES and LOOK AT VARI
ABLES, have already been defined. Option 7, QUIT, returns the user to the
CGTPIKF TOP MENU.

A.2.6 KALMAN FILTER Option 3 of the CGTPIKF TOP MENU allows
the user to build and evaluate the Kalman filter. Selecting this option results in

the menu

KALMAN FILTER MENU
1 MODIFY G,Q,R,O0R QR
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2 GENERATE GAINS,COV
3 COVARIANCE ANALYSIS
4 QUIT

to be displayed. The design model must exist to pursue Options 1 or 2, and both
the design model and truth model must exist to pursue Option 3. Option 1 allows
the design model’s continuous-time GDM matrix (Equation (A.1)) to be modified.
Also, the user may input the continuous-time noise strength matrix QDM and the
discrete-time noise covariance matrices RDM and QRDM, where (dropping the
DM notation)

Qé(r) = E{w(t)w' (1 + 1)} (A.7)

and R is the covariance of v. QRDM is the discrete correlation between wg and v.
When LTR tuning will be performed (to be discussed later), QDM must be square

with the dimensions of the design model, and GDM should be the identity matrix.

Option 2 generates the Kalman filter gain K of Equation (2.74), which is
called KFGAIN in this program, and the P(¢]) and P({]) matrices of Equations
(2.73) and (2.76), appropriately called PFMINUS and PFPLUS. Also, the resulting
eigenvalues, KFEVAL, are also displayed.

Option 3 performs a covariance analysis of the Kalman filter against the truth

models. Option 4 returns the user to the CGTPIKF TOP MENU.

A.2.7 Analyzing The Closed Loop CGT/PI/KF Controller  Option 4 of
the CGTPIKF TOP MENU, ANALYZE CGT/PI/KF, allows the user to evaluate
the performance of the closed loop system with the Kalman filter in the loop. This
part of the program has almost the identical structure of the ANALYZE CGT/PI
option of the ('GT/PI CONTROLLER part of the program. with the exception
that LTR tuning may be performed. As before, the truth model must exist before

pursuing this part of the program. The first of the two menus for this option is
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CGTPIKF.ANLYZ MENU1

-

PERFORM LTR TUNING
2 LOAD A FILE
3  BUILD THE SYSTEM
4 NEXT MENU

Option 1 allows LTR tuning to be performed. When this option is pursued, the
QDM matrix (the continuous-time dynamics driving noise strength matrix of the
design model) must be square with dimensions of the number of design model
states. The user will be prompted for a positive definite V matrix (an identity

matrix is a reasonable initial choice), and for the scalar quantity q of the equation
Q =Q+¢’BVBT (A.8)

The remaining options are identical to those defined previously, with the exception
that the user is also prompted for design model initial conditions when the system
is built for the simulation. It should be noted that the control law is based on the

Kalman filter estimates of %(¢}) and %(¢; ;).

The second menu of this option is

CGTPIKF.ANLYZ MENU2

1 PLOT DES MOD OUTPUT

PLOT COM MOD OUTPUT
TRUTH MODEL OUTPUTS
TRUTH MODEL STATES
LOOK AT VARIABLES
ACTUATOR RESPONSE

~N G o W N

QUIT

These options are also identical to those defined in Section A.2.5.
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A.2.8 FEriting CGTPIKF When Option 5 of the CGTPIKF TOP MENU

is selected, the following banner is displayed to the user:

IF YOU WISH TO SAVE THE CONTENTS OF THE STACK INTO A FILE, ENTER

A 0 <ZERD>. OTHERWISE, ENTER 1. REGARDLESS OF WHAT YOU ENTER, ALL

VARIABLES WILL REMAIN ON THE STACK FOR YOU TO DO WITH AS YOU

PLEASE IN THE MAIN MATRIXX PROGRAM ENVIRONMENT.

ENTER A O OR 1

Selecting '1’ exits the program, 0’ prompts the user for a filename, saves all vari-
ables on the stack to that file, and exits CGTPIKF. All variables listed in Section

A.3 remain on the stack. for the user to evaluate or change.

A.3 Variable Definitions

This section provides definitions for the variables that are typically on the
stack at the end of a CGTPIKF session. Due to a MATRIXx restriction of only 144
variables existing at any given time, care has been taken throughout this program
development to eliminate unnecessary variables while retaining those variables

which would be useful to the control designer when using other MATRIXx options.

The variables remaining on the stack at the end of a sample run are:
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User-defined variables

A1l A13 A21 A22 A23 ACM ACMD
ACTUATOR ADM ADMD AIM ANM ATM ATMD
BCM BCMD BDM BDMD BTM BTMD CCM

CDM CTM DCM DDM DT DTM EVAL

EX EY GDM GNM GTM HDM HTM
KFEVAL KFGAIN KX KXM KXN KZ NINPUTS
NMEAS NSACT NSCM NSDM NSNM NSTM PFMINUS
PFPLUS PIMAT PLOWLIM PTO PUPLIM QDM QDMD

QI QIHAT QLTR QPRIME QRDM QTM RDM

RI RIHAT RLOWLIM RTM RUPLIM SCM SCMD
SDM SDMD SIHAT STM STMD SXU SXUD
TIME TMNINPUTS TMNMEAS TMNQUPUTS TTM UCM M

UR URD \' XC11 XC12 XC22 XCMO
XDMO XIE XIED XT™ XTMO Y YCMD
YDMD YTM

Permanent variables...
EPS EYE FLOP FTOMT JAY LBTOKG PI
RAND

using 3248 out of 100000 elements.

The permanent variables are inherent to MATRIXx , and the number of elements
used depends on the size of the user-defined matrices. What follows is a definition
of all of the above user-defined variables. Many of these matrices are generated
internal to CGTPIKF. Those variables with a star (*) at the beginning of the

variable name are input by the user.
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Al1l: A CGT gain (Equation (2.18))
A13: A CGT gain (Equation (2.20))
A21: A CGT gain (Equation (2.21))
A22: A CGT gain (Equation (2.22))
A23: A CGT gam (Equation (2.23))

ACM*: The command model’s continuous time A matrix
ACMD: The command model's discrete A matrix (®,)
ACTUATOR: The matrix generated in the CGT/PI of CGT/PI/KF Analysis
routines, Option 6. This matrix contains the response of
the actuators. and can be plotted against the
TIME matrix, if they have the same number of rows.
ADM™*: The design model’s continuous time A matrix
ADMD: The design model’s discrete A matrix (®)
AIM*:  The implicit model’s continuous time A matrix
ANM™*: The noise model's A matrix. Not presently used, but must be input.
ATM*: The truth model’s continuous time A matrix

ATMD: The truth model’s discrete A matrix ($¢m)

BCM*: The command model’s continuous time B matrix
BCMD: The command model’s discrete time B matrix
BDM*: The design model’s continuous time B matrix
BDMD: The design model’'s discrete time B matrix
BTM*: The truth model’s continuous time B matrix

BTMD: The truth model’s discrete time B matrix

CCM*: The command model’'s C matrix

A-23




CDM*: The design model’'s C matrix
('TM*: The truth model’s C matrix
DCM*: The command model’s D matrix
DDM*: The design model’s D matrix
DT*:  The sampling time

DTM™: The truth model’s D matrix

EVAL: Discrete closed-loop eigenvalues with PI gains in the full state feedback loop.
EX™: The matrix describing how time-correlated noise affects the states
(Equation (2.1))
EY™: The matrix describing how time-correlated noise affects the system
outputs (Equation (2.2)»
GDM*: The design model's G matrix
GNM*: The noise model’'s G matrix
GTM*: The truth model's G matrix
HDM™*: The design model’s H matrix
HTM*: The truth model’'s H matrix

KFEVAL: Kalinan filter’s eigenvalues
KFGAIN: Kalman filter’s gain matrix

KX : PI gain (Equation (2.61))
KXM: PI gaiu (Equation (2.61))
KXN: PI gain (Equation (2.61)). Not presently used.
KZ: PI gain (Equation (2.61))

NINPUTS: Number of inputs
NMEAS: Number of measurements

NSACT: Number of states of the actuators
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NSCM: Number of states of the command model
NSDM: Number of states of the design model
NSNM: Number of states of the noise model

NSTNM: Nuniber of states of the truth model

PFMINTUS: State covariance marix prior to measurement update
PFPLUS:  State covariance ma‘rix after measurement update
PINAT: IT matrix (Equation (2.42))

PLOWLIM™Actuator position lower limits

PTO*: Truth model’s state ~ovariance matrix initial conditions

PUPLIM™:  Actuator position upper limits

QDM™: Design model’s continuous noise strength matrix
QDMD: Design model’s discrete noise covariance matrix
QI™: PI cost weighting matrix (Equation (2.80)).

QIHAT: PI cost weighting matrix (Equation (2.82))

QLTR™: Scalar value q used for LTR tuning (Equation (2.85))

QPRIME: Continuous noise strength as generated by LTR tuning
(Equation (2.85))

QRDAT*: ('ross correlation term between wg and v of design model

QTM*: Truth model’s continuous noise strength matrix

RDAMN™: Design model’s discrete-time measurement noise covariance matrix
RI™: PI cost weighting matrix (Equation (2.80)).

RIHAT: Pl cost weighting matrix (Equation (2.84))

RLOWLIM*Actuator rate lower limits

RTM*: Truth model measurement noise covariance matrix

RUPLIM*: Actuator rate upper limits
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SCM:

SCMD:

SDM:

SDMD:

SIHAT:
STNM:

STMD:

SXU™*:

SXUD:

TIME:

State space matrix consisting of command model A, B. C,
and D matrices

State space matrix consisting of discrete command model
A. B. C and D matrices

State space matrix consisting of design model A, B, C.
and D matrices

State space matrix consisting of discrete design model
A. B. C. and D matrices

Pl cost weighting matrix (Equation (2.83))

State space matrix consisting of truth model A. B, C.
and D matrices

State space matrix consisting of discrete truth model

A. B. C, and D matrices

PI cost weighting matrix (Equation {2.50) and (2.81))
off diagonal terms

Discrete version of SXU

A matrix generated in all the CGT/PI of CGT/PI/KF
Analysis routines. This matrix is the time vector, and

can be used to plot actuator and plant re ponses.

TMNINPUTS: Number of truth model inputs. Currently set to

TMNMEAS:

NINPUTS
Number of truth model measurements. C'urrently set to

NINPUTS

TMNOUTPUTS: Number of truth model outputs. Currently set to

TTM*:

NINPUTS

Matrix which transforms the truth model states to the
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design model states

UCM: A matrix generated in all the CGT/Pl of CGT/PI/KF
ANALYSIS routines. This matrix is the command input
to the command generator tracker. and hence the forcing

function for all simulations.

UM*: Pl cost weighting matrix (Equation (2.28)).
UR™: PI cost weighting matrix (Equation (2.50)).
U'RD: Discrete version of UR

AN Used in LTR tuning (Equation (2.85))

XC11: PI cost weighting matrix (Equation (2.50))

xXC12: PI cost weighting matrix { Equation (2.50))

X(22:  PI cost weighting matrix (Equation (2.50))

XCMO: Command model state initial conditions

XDMO: Design model state initial conditions

XIE: PI cost weighting matrix (Equation (2.50) or (2.81))

XIED:  Discrete version of XIE

XTM: The matrix generated in the CGT/PI of CGT/PI/KF Analysis
routines, Option 4. This matrix contains the response of the
truth model states, and can be plotted against the
TIME matrix, if they have the same number of rows.

XTMO: Truth model state initial conditions

Y™ PI cost weighting matrix (Equation (2.28)).

YCMD: The matrix generated in the CGT/PI of CGT/PI/KF Analysis
routines, Option 2. This matrix contains the response of the
command model outpu's, and can be plotted against the
TIME matrix, if they have the same number of rows.

YDMD: The matrix generated in the CGT/PI of CGT/PI/KF Analysis
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routines, Option 1. This matrix contains the response of the
design model outputs, and can be plotted against the
TIME matrix. if they have the same number of rows.

YTM:  The matrix generated in the CGT /Pl of CGT/PI/KF Analysis

routines, Option 3. This matrix contains the response of the

truth model outputs, and can be plotted against the

TIME matrix, if they have the same number of rows.

A.{ Nuances of CGTPIKF

1. When you see the PAUSE > prompt, the RETURN key will allow you

to continue with the program.

2. You can change a matrix used by the program while in the main MATRIXx environme
but should run through the part of the program that normally defines it anyhow,
to ensure that all necessary variables used later in the program have been defined.
For example, the truth model A matrix (ATM) can be entered or changed without
going through the INPUT MODELS part of the program, but the variables NSTM,
NSACT, and TTM will not be generaved unless you do go through the TRUTH
MODEL subroutine.

3. If a matrix already exists and you don’t want to retype the whole matrix,
simply type the matrix name. This is especially useful in conjunction with the

previous hint.

4. For instant exit from the program, ‘CONTROL (" has worked for the
author. All variables will remain on the stack provided this mode of exit is not

done in any of the following points in the program:

1. While pursuing an OPEN LOOP CGT
2. While pursuing a CLOSED LOOP CGT/PI, after the program has displayed
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the comment 'THIS WILL TAKE A WHILE. PLEASE BE PATIENT.
3. While pursuing the COVARIANCE ANALYSIS option.

If ‘CONTROL (" is used at any of these points, the stack will not contain any
user defined variables. All of the variables will. however. be in a file called

‘GARBAGE.DAT".

5. The MATRIXx error message “TOO MANY NAMES” means that too
many user-defined names are on the stack. This may occur if the user has defined a
large number (greater than ten) variables before running CGTPIKF. The solution
to this problem is to clear the variables which are not necessary for execution of

the program.

6. Every time a user is given a yes-or-no option to perform a task, he will
be prompted for either a 1 or a 0. Neither of these numbers consistently repre-
sents either the “yes”™ or the “no”. The author arbitrarily decided to make the 1
option result in what he considered to be the most likely design path, or the least

detrimental option (that is, the option that is easiest from which to recover).

A.5 Required Files For Running This Software

CGTPIKF is a highly modularized program. As a result, many files com-
prised of MATRIXx command files and functions are required to run it. The over-
all flow of the program was outlined in Section A.2, and this section tells which
files are necessary to perform each function. This is not meant as a programming
guide: rather, it is intended to allow the user to identify which files are required
for execution of CGTPIKF (or a subset of the program), and where to look in the
code if questions about the specific implementation of LQG theory arise. The file
names are presented in a hierarchical fashion. The name of the file which calls

subsequent files is listed, the file which calls it is identified in parenthesis, and the

files it calls are listed under it. How a sub-file is called is listed next to the file




name. Most of the files are AJAT RIXx command files, and are executed with the
MATRIX x command EXECUTE( filename’). Some files are AfATRI Xy user-
defined functions, rather than command files. and these are specifically identified
by (function) next to the file name. A/ATRIXy user-defined functions are im-
plemented in the following manner: first they are defined by DEFINE ‘filenamec’,
then executed by typing the output variables of the function in square brackets,
an = sign. followed by the function name with input variables in parenthesis (e.g..
[output variables|=FUNCTION(input variables)). Refer to the AlAT RI X'y refer-
ence manual {10]. Chapter 7, {or details on both command files and user-defined

functions.

CGTPIKF. (top level program)

MODELINPUTS. (INPUT MODELS menu option) Allows user to
input models.

CGTPL (CGTPI CONTROLLER menu option) Design
an< evaluation of open-loop C'GT and closed-loop
C'GT/PI deterministic controllers.
and PI regulators.

KF. (KALMAN FILTER menu option) Design

and evaluation of Kalman filters

MODEL INPUTS. (called by CGTPIKF)

INPUTFILE. (LOAD FILE menu option) Allows user to load a
file from memory.

DESMODEL. (DESIGN MODEL menu option) Handles input of
design model matrices.

NOISEMOD. (NOISE MODEL menu option) Handles input of
noise model matrices.

COMMODEL. (COMMAND MODEL menu option) Handles input
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of command model matrices.

TRUMODEL. (TRUTH MODEL menu optioi) Handles input of
truth model matrices.

IMPLICIT.MODEL (IMPLICIT MODEL menu option) Handles input
of implicit model matrix.

SAVEFILE. (SAVE FILE menu option) Allows user to save a

file to memory.

('GTPL. (called by CGTPIKF.)

CGT (Called by OPEN LOOP CGT menu option
and by the PI command file) Generates the
CGT gains Ay1,A21,A13,A22 and Agjz.

PL. (PI REGULATOR menu option) Generates the
PI gains Ky and K, and optionally Kym

CGTPLLANALYZE (ANALYZE CGT/PI menu option) Uses SYSTEM
BUILD commands to build the simulation, and
generates time response plots.

SAVEFILE. (SAVE FILE menu option) Allows user to save a

file to memory.

CGT (called by CGTPL. or PI.) (Function)
BARRAUD (Functicn) Generates the solution to X = AXB + C [2]

PI. (called by CGTPI. )
INPUTCOST. Allows user to input the cost weighting matrices
Y, UM. QI, RI, UM. Calls INPUTFILE.
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IMPLICIT.MODEL (IMPLICIT MODEL menu option) Handles input

of implicit model matrix.

EXPLICIT (Function) Generates explicit continuous time cost

weighting matrices.

INPLICIT (Function) Generates implicit continuous time cost

weighting matrices.

DISCOST (Function) Discretizes the augmented A and B matrices.

and the cost weighting matrices.

CGT (Called by OPEN LOOP C'GT menu option

and by the PI command file) Generates the

CGT gains A11,A21,A13,A22 and A23.

CGTPI. ANALYZE (called by CGTPIL.)

INPUTFILE.

CONTROL.

PLOTHELP

PLOTLOOP

ANALYZE.YCMD

ANALYZE.YTM

(LOAD A FILE menu option) Allows user to load
a file from memory.

(BUILD THE SYSTEM menu option) Builds the
simulation via SYSTEM BUILD commands
(Function) Used in the plotting options. Generates
the time and command matrices required to do
simulations using the SYSTEM BUILD SIM
command.

(Function) Used in the plotting options. Generates
plots and allows the user to reduce the number of
variables being plotted.

(PLOT COM MOD OUTPUT menu option)
SYSTEM BUILD commands which allow for later
command model simulation.

(TRUTH MODEL OUTPUTS menu option)
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SYSTEM BUILD commands which allow for later

truth model simulation.

ANALYZE.XTM (TRUTH MODEL STATES menu option)
SYSTEM BUILD commands which allow for later

truth model simulation.
ANALYZE.ACT (OPTIMAL CONTROL U menu option)
SYSTEM BUILD commands which allow for later

actuator simulation.

('ONTROL. (called by CGTPI.ANALYZE)

KZYCM.BLOCKS

KZYCM.CONNEC(CT?2
KZYCM.CONNE(CT1
KZYTM.BLOCKS

KZYTM.CONNECT?2
KZYTM.CONNECT!I
GAIN1.BLOCKS

GAIN1.SUM
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This command file, as well as the next
two, generate the SYSTEM BUILD
super-block which represents the term
K. ([Cmxm(ti-1)] + [Dmum(t;)]] of

Equation (2.61) for the simulation.

This command file, as well as the next
two, generate the super-block which
represents the term

K, [{[Cx(t;-1)] + [Du(t,)]] of

Equation (2.61) for the simulation.

This command file, as well as the next

five, generate the term Ky[x(t;) — x(t;_1)]

of Equation (2.61)




GAINLINTCON?2
GAINLINTCONI1
GAINLEXTCON2
GAINLEXTCONI1
GAIN3.BLOCKS

GAIN3.SUM
GAIN3.INTCON2
GAIN3.INTCONI1
GAIN3.EXTCON2
GAIN3.EXTCONI
BLOCK1.BLOCKS

BLOCKI.CONNECT2
BLOCK1.CONNECTI
BLOCK1.SUM
LAW.BLOCKSO

LAW.BLOCKS!1

LAW.SUM
LAW.CONNECT?2
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This command file, as well as the next
five, generate the term [KxA1; + A21]
[Xm(ti) — Xxm(t;_1)] of Equation (2.61)

This command file, as well as the next
three, generate the super-block BLOCKI,
which incorporates super-blocks KZYCM
and GAIN3.

This command file, as well as the next
four, put together all of the above super-
blocks into a super-block called LAW,
which represents the control law of
Equation (2.61)

Incorporates antiwindup compensation in

LAW




LAW.CONNECTI

ACT.BLOCKSO This command file, as well as the next
three, generate the super-block ACT,
which incorporates actuator dynamics
and limits.

ACT.BLOCKSI1

ACT.BLOCKS2

ACT.NOLIMITS

YTM.2 This command file, as well as the next
one, creates a super-block which gener-

ates the truth model output response

YTM.1

XTM.2 This command file, as well as the next
one, creates a super-block which gener-
ates the truth model state response

XTM.1

YCMD.2 This command file, as well as the next
one, creates a super-block which gener-
ates the command model output response

YCMD.1

KF. (called by CGTPIKF.)
INPUT.KF (MODIFY G,Q.R,OR QR menu option)
Allows user to input noise matrices.
COV.ANALYSIS (COVARIANCE ANALYSIS menu option)

Performs covariance analysis.
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CGTPIKF. ANALYZE (called by CGTPIKF.)

INPUTFILE.

LTR.

(LOAD A FILE menu option) Allows user to
load a file from memory.
(PERFORM LTR TUNING menu option)

Allows user to specify V and QLTR, and forms
QPRIME

CONTROL.WITHKF(BUILD THE SYSTEM menu option) Builds the

PLOTHELP

PLOTLOOP

ANALYZE.YCMD

ANALYZE.YTMF

ANALYZE.XTMF

ANALYZE.ACTF

simulation, with Kalman filter, via SYSTEM
BUILD commands

(Function) Used in the plotting options. Generates
the time and command matrices required to do
simulations using the SYSTEM BUILD SIM
command.

(Function) Used in the plotting options. Generates
plots and allows the user to reduce the number of
variables being plotted.

(PLOT COM MOD OUTPUT menu option)
SYSTEM BUILD commands which allow for later
command model simulation.

(TRUTH MODEL OUTPUTS menu option)
SYSTEM BUILD commands which allow for later
truth model simulation with the Kalman filter

in the loop.

(TRUTH MODEL STATES menu option)
SYSTEM BUILD commands which allow for later
truth model simulation with the Kalman filter

in the loop.

(OPTIMAL CONTROL U menu option)
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SYSTEM BUILD commands which allow for later
actuator simulation with the Kalman filter

in the loop.

('ONTROL. WITHKF (called by CGTPL.LANALYZE)

KF.BUILD This block generates the Kalman filter.

KZUDM.BLOCKS This command file, as well as the next
two, generate the SYSTEM BUILD
super-block which represents the term
K;(Dmum(t,)] of Equation (2.61)
for the simulation.

KZUDM.CONNECT2

KZUDM.CONNECT1

GAIN1F.BLOCKS This command file, as well as the next
five, generate the term K, [x(¢) — %(¢7,)]
of Equation (2.61)

GAINIF.SUM

GAINIF.CONNECT2

GAIN1F.CONNE(CT1

BLOCK5.BLOCKS This conumand file, as well as the next
three, generate the super-block BLOCKS5,
which incorporates GAIN1F and KZUDM,
and the term K,[Cx({} )]

BLOCK5.CONNECT?2

BLOCK5.CONNECTI

BLOCKS5.INTCON

BLOCK5.SUM

LAWF.BLOCKSO0 This command file, as well as the next
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five, put together all of the above super-

blocks into the control law of Equation

(2.61)

LAWF.BLOCKS1 Incorporates antiwindup compensation
in LAW

LAWF.SUM

LAWF.CONNECT2

LAWF.CONNECT1

LAWF.INTCON

ACTF.BLOCKSO This command file, as well as the next

three, generate the super-block ACT, which
incorporates actuator dynamics and limits.
ACTF.BLOCKSI1
ACTF.BLOCKS2
ACTF.NOLIMITS
YTMF.2 This command file, as well as the next
one, creates a super-block which generates

the truth model output response

YTMF.1

XTMF.2 This command file, as well as the next
one, creates a super-block which generates
the truth model state response

XTMF.1

KF.BUILD (Called by CGTPIKF.ANALYZE)
XHATMINUS.BLOCKS This command file, as well as the next
two, generate the super-block XHATMINUS
XHATMINUS.SUMI
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XHATMINUS.SUNMN?2

KF.BLOCKS This command file, as well as the next
five, generate the super block FILTER

KF.CONNECT?2

KF.CONNECT]I

KF.EXTCON

KF.SUMI

KF.SUM2

A.6 Simulation Description

What follows is an explanation of how the simulation is performed. Some
knowledge of MATRIXx SYSTEM BUILD ([10] will be useful, but not required.
The super-blocks which formulat= the simulation are nested, and this discussion
will work from the top-most level down. The deterministic CGT/PI control law
formulation and evaluation will he addressed first, followed by the CGT/PI/KF.
For all super-blocks. internal blocks are numbered clockwise from 1 in the upper

left hand corner to 6 in the lower left hand corner.

A.6.1 Full-State Feedback Simulation Figure A.8 shows the top level
super-block of the deterministic simulation. ACT is a super-block which gener-
ates the control law and actuator dynamics and nonlinearities. The input to ACT
is the command model input UC'M, uy, of Equation (2.4). The output drives
the truth model system matrix. STM. Note that this matrix only represents the
plant; actuator states are separately identified in the ACT block. The outputs of
super-block YTM are the truth model outputs. Figure A.9 is almost identical to
super-block YTM. except that the C matrix is the identity matrix, resulting in the

outputs being the truth model state response.
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ACT 2] STM 3
STATE
SUPER
SeLock 2 SPACE
NS 4
2 0:2 1.2 0:2
Editing YTM (Continuous)
Figure A.8. The YTM Super-Block
L- ACT ITMCONT |:5
STATE
SUPER
BLOCKP 2 SPaCE
NS4
112 0:2 ] -2 0:4 l
Editing XTM (Continuous)

Figure A.9. The XTM Super-Block
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Figure A.10 shows the super-block ACT. The input to the block is again
UCM, and this is fed into super-block LAW, which generates the closed-loop
CGT/PI control law. The output of LAW is the optimal control u(t,), as in
Equation (2.61). Block 2 represents actuator dynamics above first order. If these
dynamics do net exist. this block becomes the identity matrix. RLIMIT in the
Block 3 position imposes actuator rate limits. if theyv exist. ACTI1 represents
first order actuator dynamics. while PLIMIT imposes actuator position limits. For
hlocks 2 through 5. the identity matrix will be substituted if the respective dvnam-
ics or limits do not exist. The outputs of the ACT super-block are the actuator

responses.

The LAW block is the heart of the deterministic simulation, and is shown
in Figure A.11. As previously stated. the input is the command model input,
UCM. and the output is the optimal control u, which was given in Equation
(2.61). Super-block BLOCKI1 (Figure A.12) is actually two super-blocks, those be-
ing KZYCM (Figure A.13) and GAIN3 (Figure A.14). KZY('M generates the term
K; "Cmxml(f,.1)]+ Dmum(t,)]]. and GAIN3 generates the term [KxA; + Ay llxml(l))—

Xml(t, 1)

Returning to the LAW block, the optimal control law is the output of Block
3. the summing junction. This is then fed through Block 6. the antiwindup com-
pensation. if that option has been selected; otherwise Block 6 is the identity matrix.
The output of Block 6 is fed through a time delay to generate u(¢,_;), and it also
is fed to Blocks 4 and 5. At this point it is useful to note that, for this simulation.
the plant is simulated inside the LAW block. thereby eliminating the need of any
complicated feedback paths from super-block YTNM to represent full-state feedback.
KZYTM (Figure A.15) takes the optimal control law as its input. feeds this through
the truth model representation (the STMD matrix makes up Block 1). time delays

it, and multiplies the result by KZ. to get the term K,{{Cx(f,_y)] + [Du({,)]].

The GAINT super-block (Figure A.16) generates the term Kx[x(¢,) -~ x(f,_,)].
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Figure A.10 shows the super-block ACT. The input to the block is again
UCM, and this is fed into super-block LAW, which generates the closed-loop
CGT/PI control law. The output of LAW is the optimal control u. Block 2 repre-
sents actuator dynamics above first order. If these dynamics do not exist, this block
becomes the identity matrix. RLIMIT in the Block 3 position imposes actuator
limits, if they exist. ACT1 represents first order actuator dynamics, while PLIMIT
imposes actuator position limits. For blocks 2 through 5, the identity matrix will
be substituted if the respective dynamics or limits do not exist. The outputs of the
ACT super-block are the actuator responses. The LAW block is the heart of the
deterministic simulation, and is shown in Figure A.11. As previously stated, the
input is the command mode] input, UCM, and the output is the optimal control
u, which was given in Equation (2.61). Super-block BLOCK1 (Figure A.12) is
actually two super-blocks, those being KZYCM (Figure A.13) and GAIN3 (Fig-
ure A.14). KZYCM generates the term Ky[[CmXm(ti-1)] + [Dmum(t;)]] GAIN3
generates the term [KxAj; + Agi]{xm(t) — xm(ti-1)]-

Returning to the LAW block, the optimal control law is the output of Block
3, the summing junction. This is then fed through Block 6, the antiwindup com-
pensation, if that option has been selected; otherwise Block 6 is the identity matrix.
The output of Block 6 is fed through a time delay to generate u(?;_;), and it also
is fed to Blocks 4 and 5. At this point it is useful to note that for this simulation,
the plant is simulated inside the LAW block, thereby eliminating the need of any
complicated feedback paths from super-block YTM to represent full-state feedback.
KZYTM (Figure A.15) takes the optimal control law as its input, feeds this through
the truth model representation (the STMD matrix makes up Block 1), time delays
it, and multiplies the result by KZ, to get the term Ky[[Cx(ti_;)] + [Du(t,)]).

The GAIN1 super-block (Figure A.16) generates the term Ky (x(¢;)—x(¢;_1)].
The TTM matrix (Block 4) is used to transform the vector coming out of the

summing junction, which has NSTM states, into a vector with NSDM states, to be
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[Law 1] [LACTHOT |2] [ RLIMIT 3
SUPER 1 STATE STATE
=2 ockP SPACE 2 sPacE
2 0:2 12 0:2 2 02
I PLIMIT I5 ACT1 4
STATE STATE  ~
SPACE SPACE
0:2 112 0:2 12
Editing : ACT (Continuous)

Figure A.10. The ACT Super-Block

Sampling Interval: 0.0250 1st Sample: O.
[BLOCK1 [ DELAY 2 L“\\
-+

SUPER]L  |— -1
SBLock Z

-+
NS:2 =
2 02 12 0:2
IWlNDUP ]6‘ ]KZYTM [5 GAIN1 4

SUPER SUPER
7k— Serock[™ BLOCK |
Lirmiter < &
]O:Z I:2| 0:2 12 le 0:2 1.2
Editing : LAW (Discrete)

Figure A.11. The LAW Super-Block
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Sampling Interval: 0.0250 1st Sample: O.
GAIN3 |1 L‘ KZYCM |2 l:.1
SUPERL, — = SUPER —-——tozla———
BLOCK BLOCK
12 0:2 2 0:2
Editing BLOCK1 (Discrete)

Figure A.12. The BLOCK1 Super-Block

Sampling Intervai: 0.0250

Editing

ICOMMOD“

STATE

SPACE
NS:2
12 0:2

KZYCM

[OELAY |2

1st Sample: O.

-1
' Z
NS:2

[12- 02]

(Discrete)

2

KZ 3
STATE

SPACE

2 0:2

Figure A.13. The KZYCM Super-Block
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Sampling Interval: 0.0250 1st Sample:
XCMD 1] DELAY [2] L¥1
STATE : -1 — \\
SPACE Z GRS
NS:2 NS:2

| .2 0:2 I [ 12 0:2 I

KXM 4
STATE 7
SPACE
0:2 1.2
Editing GAIN3 (Discrete)
Figure A.14. The GAIN3 Super-Block
Sompling Interval: 0.0250 1st Sample: O.
]TRUMOD }1 | DELAY 12 KZ
STATE : -1 , STATE
SPACE Z SPACE
NS:4 NS:2
l 12 0:2 l [ 2 0:2 [ 12 0:2
Editing KZYTM (Discrete)

Figure A.15. The KZYTM Super-Block
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of the correct dimensions for multiplication by KX. This concludes the discussion

of the CGT/PI simulation.
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Sampling

Interval: 0.0250

1st Sample:

Editing

] 2 0:4 I

IXTMD |1

STATE

SPACE
NS:4

GAIN1

0.

DELAY |2 -—\

Z -'1 s 2

NS:4

4 04

KX S TT™M

STATE STATE

SPACE SPACE

0:2 14 0:4 |14
(Discrete)

Figure A.16. The GAIN1 Super-Block
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A.6.2 Filter-in-the-Loop Simulation Turning our attention to super-block
YTMF (Figure A.17), we see that the structure is identical to that of YTM. This
is also true of XTMF and ACTF (Figures A.18 and A.19). The ‘F’is added to the

designation to identify these blocks as being associated with the Kalman filter.

Figure A.20 shows the super-block LAWF. This super-block creates the
CGT/PI/KF control law. Its structure has been changed from that of the LAW
super-block to allow for the incorporation of the Kalman filter. Super-block BLOCK1
is identical to that used by LAW. The antiwindup compensation is in the Block
4 position, but functionally it has not changed. The FILTER super-block (Fig-
ure A.21) generates the system state estimates. The XHAT- (“XHAT minus”)
super-block generates the state estimate prior to measurement update. The op-
timal control comes into Block 1. which generates the measurement vector z(¢,).
Block 2 generates Hx(?, ), and the difference of these two vectors is multiplied by
the Kalman filter gain matrix. When this product is added to the state estimate
(prior to measurement update), the resulting vector is the state estimate %(t;), as

in Equation (2.75).

The x(f7) estimate of Equation (2.72) is generated in super-block XHAT-.
The input to the block consists of both the optimal control, which is fed into Block
1, and the %X(¢}) estimate, which is fed through the state transition matrix of Block
2. Note that Blocks 1 and 2 do not have states, but are rather algebraic loops.

Hence the requirement of adding the time delay.

Super-block BLOCKS5 of the LAWF super-block is shown in Figure A.23.
The inputs to this super-block are the optimal control u, which is fed into super-
block KZUDM, and the state estimates, which are input to super-block GAIN1F,
and to Block4. GAINIF (Figure A.24) performs the same function as GAIN1 did.
KZUDM generates the term K,[Dmum(t:)]]. as is shown in Figure A.25.
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L [(aCTF___[7) ST™ 3]
STATE
R ° sPace
NS 4
12 0:2 12 0:2
Editing : YTMF (Continuous)
Figure A.17. The YTMF Super-Block
[aCTF  I2 TMCONT [3]
SUPER | 2 STATE
= SUoEr SPACE
NS 4
112 02 [:2 04]
Editing : XTMF (Continuous)

Figure A.18. The XTMF Super-Block
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ACTHOT |2 CRoMT 3

CAWF |1
STATE
2
Lok ' sPacE iVl
Limiter
.2 0:2 :2 0:2 1.2 0:2
PLIMIT |5 [ACT1I__ &
STATE
3k:¥ 1 SPACE

Limiter

IO:Z |:2] 0:2

(Continuous)

Egiting : ACTF

Figure A.19. The ACTF Super-Block

Sampling Interval: 0.0250 1st Sample: O.

[BLOCK 1 [1 |LDELAY ]2 Lﬂ
‘ ‘ L——e6
SUPER]L. | Z—1 ___:.2%___.
BLOCK
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12 0:2 .12 0:2
[BLOCKS |6 [ FILTER |5 [WINDUP [&
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SUPER|_ 4 SUPER] _ 4
BLOCK[ 5 BLOCK SPACE
0.2 6 0:4 12 0:2 1.2
Editing : LAWF (Discrete)

Figure A.20. The LAWF Super-Block
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Sampling Interval: 0.0250 1st Sample: 0.
LTM.HTM [0 HDM 2] L-.1
STATE | | —° staTE YT
SPACE SPACE "2
NS:4
.2 02 4 0:2
[XHAT- lSJ KFGAIN (4
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Q4 |6 Set— 0:4 12
Editing FILTER (Discrete)
Figure A.21. The FILTER Super-Block
Sampling Interval: 0.0250 1st Sample: O.
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SPACE SPACE
.12 04 14 04
lDEl_AY |4
-1 ~
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04 14
Editing XHAT — (Discrete)

Figure A.22. The XHAT- Super-Block
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Sampling interval: 0.0250 1st Sample: O.

[ GAINTF [1 L [KZUDM ]2 ‘-*ﬂ
Lt
SUPER]. |} SUPER ,__:.2%_—_

BLOCK BLOCK
14 0:2 12 0:2
KZ 6 CDM S IDELAY |4]
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NS:4
0:2 12 0:2 14 || [0:4 14 ]

Editing @ BLOCKS (Discrete)

Figure A.23. The BLOCKS5 Super-Block

Sampling Interval: 0.0250 1st Sample: O.

]DELAY |1 KX 3
STATE
-1 =
Z — T space

NS: 4
4 04

4 0:2

Editing : GAIN1F (Discrete)

Figure A.24. The GAIN1F Super-Block
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Sampling Interval: 0.0250 18t Somple: O.
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STATE _ STATE
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Figure A.25. The KZUDM Super-Block
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This research develops an integrated software design package
useful in the synthesis of CCT/PI/KF control systems, and

uses this software package to design and evaluate a longitu-
dinal flight control system for the Control Reconfigurable
Combat Aircraft (CRCA). The software package, called CCTPIKF
and built with MATRIXX commands, allows for the synthesis and
evaluation of a Command Generator Tracker (CGT) which provides
inputs to the system and acts as a precompensator, and a
regulator with proportional plus integral (PI) feedback which
forces the system outputs to mimic the model output. The
software also allows the incorporation of a Kalman filter for
estimation of the system states. Certainty equivalence can

be invoked by adopting the LQC assumptions, thereby allowing
the Kalman filter to be designed independently of the CGT/PI
controller. The total CCT/PI/KF controller can then be eval-
ated and the design refined. CCTPIKF is an interactive, menu
driven CAD package which can be used in the development of any
CCT/PI/KF control system, regardless of application.

A flight control system was designed for the CRCA air combat

mode (ACM) entry using CCTPIKF. This control system was

designed to force the aircraft to emulate a first order response
in pitch rate. The command model of the command generator

tracker represented a first order pitch rate response with a

rise time of .6 sec. Various weighting matrices were evaluated
and refined in the development of the PI controller; the different
controller designs were tested against the simulation containing
various modelling errors, particularly failure conditions. The
Kalman filter was later added, and the controller was again

tested against the failure conditions. Loop Transmission Recovery
(LTR) was successfully implemented to enhance robustness. The
results confirm that a robust control system can be designed
using the software package developed in this research.




