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INTRODUCTION

A substantial need has been demonstrated within the Armament Research,
Development and Engineering Center (ARDEC) for a convenient-to-use and
computationally efficient flight simulation for smart munitions. To meet this
need, ARDEC is formulating methods and writing modular software for
rapidly developing autopilot simulations for guided projectiles and other
munitions.

Time constants associated with autopilot components are often small
compared with their driving terms. The integration time step is consequently
driven to very small values to achieve stable numerical integration, which
results in increased computer run time. An innovative technique was
developed in which exact analytic solutions to differential equations and
transfer functions are applied in a piecewise manner within a larger but lower
frequency problem that is solved numerically. 1

Closed form analytical solutions were previously obtained for the
following: the first-order lag, the first-order lag with differentiation, the
first-order lead/lag, the first-order lag with integrator, the second-order
lag/oscillator,' a two-axis gimbaled gyro, 2 and an impulse thruster. 3 The
typical autopilot can be described as a concatenation of these functions and
rate sensors, switches, limiters, and dead zones. When small integration time
steps are used, as in the numerical integration of transfer functions, it is
straightforward to concatenate solutions in serial order since the sampling rate
of the signal is high because of the small integration time step. However, if
analytical solutions to transfer functions are to be used to make possible the
use of relatively large time steps, the sampling rate may no longer be
adequate to sample the frequency content of the signal as it moves from one
transfer function to another.

This report discusses the replacement of serial configurations of transfer
functions by equivalent parallel configurations. This approach avoids
difficulties arising from propagation of the signal through a sequential
network of widely varying natural frequencies when using a relatively large
piecewise integration time step, and produces a decomposition that always
leads to terms that can be readily integrated analytically.

I Eugene M. Friedman and Michael J. Amoruso, "An Analytical Modularized Treatment of Autopilots for Guided

Projectile Simulations," US Army Armament Research and Development Center, Technical Report ARLCD-TR-

85025, Picatinny, NJ, August 1985.

2 M. J. Amoruso, "An Analytical Technique for Modeling Gyroscopes in Guided Projectile Simulations," US Army

Armament Research and Development Center, Technical Report ARAED-TR-86010, Picatinny, NJ, June 1986.

3 Eugene M. Friedman, Michael J. Amoruso, and Rome] Campbell, "An Analytical Model of an Impulsive

Thruster," Technical Report ARAED-TR-86034, Picatinny Arsenal, NJ, November 1986.



DISCUSSION

When modeling guided projectiles in 6 DOF (six degree of freedom)
simulations, differential equations are obtained that describe the various
component subsystems. These are then typically integrated numerically
within the framework of the 6 DOF simulation. The largest allowable time
step to perform the integration is bounded by two constraints. The driving
term or input must not vary appreciably during a time step and the time step
must be sufficiently small to insure a stable integration.

Since the driving term rates are commensurate with the airframe motion
rates, inherently slower processes than those associated with the autopilot,
stable integration is a lower bound to integration step size than the
requirement for driving terms that remain essentially constant during the
integration time step. By using analytic closed-form solutions for the
differential equations for the autopilot, the second constraint appears to be
eliminated. An innovative technique was developed1 ,4,5 by which exact
analytical solutions to the required transfer functions are applied in a
piecewise manner within a larger but lower frequency problem which must be
solved numerically. The use of these piecewise analytical solutions to the
transfer functions guarantees valid integration of the autopilot transfer
functions regardless of the integration time step (app A).

The overall system is usually analyzed into simpler terms i sequential
order that are separately solved by numerical integration techniques,
assuming that the input or driving term is essentially constant during the
integration time step. These factors are concatenated with the output of one
factor or block becoming the input to the next block. Since the integration
time step is generally quite small to achieve stable numerical integration,
negligible errors are introduced as the signal propagates through the usually
modest number of transfer function blocks down to the output.

This approach was modified by introducing analytical closed-form
solutions for the transfer function factors that were previously treated
numerically. This approach permitted large time steps across the individual
transfer functions and yet guaranteed stable intergration contingent only upon
the input remaining essentially constant during the integration time step.

4 M. J. Ajnoruso, T. F. DeYoung, D. F. Ladd, and R. D. Schulz, "A Comprehensive Digital Flight Simulation of

the Cannon-Launched Guided Projectile," R.TR-77-007, U.S. Army Armament Command, Rock Island, January

1977.

5 M. J. Amoruso and D. D. Ladd, "TELUM, A Comprehensive Digital Flight Simulation of the COPPERHEAD

Projectile," ARLCD-SP-82003, Picatinny Arsenal, NJ, June 1982.

2



However, if several factors are concatenated to represent a more complex
transfer function, the final output can be found to depend on the order of the
transfer function factors. This difficulty arises because, although the input of
a block might be essentially constant during an integration time step, the
output might not be if the frequency response of the block is relatively high.
This output becomes the input to the next transfer function block. The
requirement that the input to this next block be essentially constant can break
down unless the sampling rate is high. This requires a smaller integration
time step and longer computer execution time. This dilemma does not arise
in the former numerical integration approach because the very fine time step
required avoided difficulties associated with incompatibilities of bandwidth
and frequency content as the signal propagated from block to block.

The approach finally used was the conversion of a complex transfer
function to a parallel representation instead of a serial representation. This
technique not only saves computer run time but can make the task of
programming simpler and nearly automatic.

The obvious advantage to an equivalent parallel representation is that each
block receives the same input at the same time and each block produces its
output at the end of the same single time step. These outputs do not become
inputs to other autopilot transfer function blocks, but are instead summed to
produce the overall output for the overall transfer function. Generally, this
technique not only avoids simulation errors arising from time step size
incompatibilities with bandwidth, internal lag, and frequency content of the
signai 7ropagating through the sequence of transfer function blocks but also
has additional benefits. Noise should be treated in a manner that is consistent
with the analytical treatment of the signals. The treatment of noise can be
considerably simplified by using a parallel representation of the transfer
function, for reasons analogous to those adduced above. In addition to
producing an algorithm that is easy to apply and considerably faster than
previous numerical integration approaches, parallel decomposition generally
leads to a combination of elementary expressions, whose Laplace inverse and
analytical integration are well known.

A specific example of this approach is given below to clarify this
approach. A general treatment is developed in the next section and computer
software to implement this technique is to be found in the appendixes.

This approach consists of the following steps:

(1) Writing down the Laplace operator expression including
non-zero initial conditions from the differential equation
description or from the block diagram (which usually will not
show the initial conditions)

(2) Factoring

(3) Making a formal partial fraction expansion

3



(4) Finding the expansion coefficients

(5) Writing down the expanded Laplace transform.

The latter can then be inverted from standard tables of inverse Laplace
transforms to obtain the analytic solutions in parallel decomposition or
calculated using the residue theorem of complex variables.

It is worthwhile to emphasize the first of the steps enumerated above.
Autopilots, seekers, control actuators, and other components of guided
projectiles are conventionally described in block diagrams in terms of the
Laplace operator s. Typically, these block diagrams represent the underlying
differential equations only if the initial conditions vanish. This is a
convenient shorthand notation but can also be a ource of confusion. Recall

that for initial conditions y = v(t= 0), .o = -(t 0), etc., the Laplace
dt

transform of the derivative of a time domain function is given by 6.7

L['(t]= sL[y(t)] - yo()

L[ =(t)] s L[y(t)] - sY -V (2)

(n) ' I
or, in general, where y represents the n derivative of y(t) with respect
to t,

L () snL[y(t)] sn Y n-2 • (n-) (3)L = ~~) - s 0- s Y- "'" -Y(3

This will be illustrated in the example givcn below. There are two methods
for implementing this procedure. The first involves the taking of limits and
derivatives and requires the factoring of the transfer functions into first-order
systems. The second requires the solution of sets of simultaneous equations
and does not involve limits or derivatives. Factoring the transfer function
into first-order terms is optional in the second method. These two
approaches are illustrated below by a concrete example.

6 Erwin Kreysig, Advanced Engineering Mathematics , Fourth Edition, John Wiley and Sons, New York, NY,

1979.

Equation (1) can be derived as follows. xt y = y - Thus (t= 0) M = 0 and = y. Then

L(y) L() - SL(t) = SL(y) - sL(y 0) = SL(y )-y0. Recall L(A) = A/s if A is a constant.
A similar derivation holds for higher orders.

4



First Method: Limit Approach

Step 1 - Obtain Laplace Transform: Consider an autopilot component
represented by the following block diagram in figure 1. The differential
equation corresponding to this block diagram is

() + y(t) - 2 v(t) = Driving term (4)

= K(t-t )+K 0 = Kt+L

1-> -

2

S + s - 2

Figure 1. Example of block diagram

The driving term will be taken to be K(t-t 0) + = Kt + L in this example,
where K and L are constants and t is time. This has the Laplace transform
K/s + Lis. Let L{y(t)} = Y(s). The Laplace transform of the differential
equation is not

2 K L
s Y(s) + sY(s) - 2Y(s) = - + - (5)

2 S

but is rather

2 K L
S }'(s) - sY0 - Y'0 + sY(s) - v0- 2Y(s) = - + - (6)

S

or

2 K + sL
(s + s - 2)Y(s) - y0( I +s ) - + = (7)

2

S

where the additional (erms are due to the initial conditions defined by

Yo = .= t,, and Yo = - This may be written

dt it = to

5



2 3
K + sL + s (y0+ v0) + s0 0 Y0

Y(s) = (8)
2 2

s (s +s-2)

Step 2 - Factor: This may be factored

2 3
K + sL + s (y 0 +Y0 ) + s Y 0

Y (s ) = (9)
2

s (. + 2 )(s - I)

Step 3 - Expansion: This may be formally expanded as follows:

A B C D
Y (s) = --- + - + + (10)

2s s s + 2 s - I

Step 4 - Find Expansion Coefficients: The partial fraction expansion
coefficients A through D are now evaluated.

Find A:

2 3
[K +sL + s (yo+ yo) + s Yo 1 K

lim s Y(s) = lim I ] - --

.0 -0 (s + 2) (s - 1) 2

IB C D]
= A+lim I-+ +---I

0 Is s+2 s-I

K
= A = -- (11)

2

Find B:

2 3
d 2 1 [dK+sL + s (Yo+) + sYo

lir I Y(s)J = lim (12)

.0 ds S0 ds (s + 2) (s - I)

6



2 2 3[3yoS +2s (Y+)o)+L [K +sL +s (y 0 +y 0 )+s y0 (2s + 1) 

lr II1 2 2
0 (s + 2)(s - 1) (s+2) (s-I)

(K + 2L)

=B

4

Find C:
2 3K + sL + s (yo+o) + s N.

lir a (s + 2 ) Y ( s ) = n li ra

s--2 s-- 2 S2 (S - 1)

4yv - 4N0 -K + 2L
- C (13)

12

Find D:
2 3

K + sL + s (yo+Yo) + s Yo

lim (s- 1)Y(s) = lrm

s 1 s--1 s 2v(s+2)

K + L + 23, + N 0

D (14)

3

Thus

K (K+2L) (4Yo - 4Yo- K + 2L) (K+L+2Yo +No)

Y(s) - - + + (15)
2

2s 4s 12(s + 2) 3(s - 1)

7



This transition from parallel decomposition or expansion is shown in figure 2
for this simple case. It is a simple matter to invert this expression into the
time domain. Tables of inverse Laplace transforms can be found in standard
math tables. 8 Here, the inversion of (15) is given by

Kt (K--2L) 4yo-4Y-K+2L e K+L+2yo+yoI- - e
y(t) = --- - + +16)

2 4 12 3

8 Charles D. Hodgman, ed., C.R.C. Standard Mathematical Tables, Chemical Rubber Publishing Co., Cleveland,

OH, 1952.



(a) Step I

_ K + sL + s ,(y0 +50 ) + s3 Yo

2 2
s (s + s -2)

(b) Step 2

_ _ _ _> K s L + s ( y O + Y) o + s 3 y 0

2
s ( s + 2 )(s - 1)

(c) Steps 3 - 4

4y 0- 4 o- K + 2L

12(s + 2)

K + L+2Yo +. ;oI> ___ _ __

3(s - 1)

-K
32

2 s

-(K +2L)

4s

Figure 2. Example of transition to parallel representation

9



Second Method: Algebraic Approach

The first step in the algebraic approach is always the same as above. The
second and third steps may be done as before, i.e., factoring the denominator
of the transfer function into monomials and expanding in terms of these
monomials. Later higher order terms will be retained.

Step 4 - Find Expansion Coefficients: Write the right side of (10) with a
least common denominator and equate to (9).

2 3
K + sL + s (y 0 +N0) + s v0

Y(s)
2 2

s (s +s-2)

A B C D

-s- s (s + 2) s- I
2 2 2 2

A(s +s-2) + Bs(s +s-2) + Cs (s-1) + Ds (s+2)
(17)

2 2
s (s +s-2)

The denominators are equal. Therefore the numerators are also equal.
Collecting powers of s yields

- 3 +K-sL+s (yo+.<;)+s Yo = s[B+C-D]+s [A+B-C+2D]+s[A-2B]-2A (18)

Since the powers of s are linearly independent, this is equivalent to the
following set of equations which must be solved simultaneously.

0= B + C + D (19)

YO + Yo A + B - C + 2D (20)

L = A - 2B (21)

K = - 2A (22)

The solution of these equations for the coefficients A through D is
elementary. The values of the coefficients are identical to the previous result,
equati, ris (11) through (14).

Alternatively, the investigator may wish to retain some higher order terms
rather than reduce all the denominators to monomials, perhaps to retain a
physical interpretation of terms. Note that step I in figure 2 contains a

10



2

second order term, viz., (s +s-2). It is possible to make a partial fraction
expansion without going to a decomposition that only includes first order
terms. This can be illustrated by the following example. Replace (10) by a
more general expression, viz.

V(s)
Y(s) = (23)

G(s)
I C n P + sQ

- - + I
D. E.i 1 II j=l-1

where the D. are first ordfr terms of the form s-r. and the E. are second
order terms of the form (s +ots+P3). This may be expanded

V(s)
Y(s) - (24)

G(s)

1 , 2"'DE,.. "E. -C2 D "D,."E, -"[Pt .I"sQt.D, " t . ""E + .[ -"se,] .n t.t.E,_

D 1D 2D 3  DIE,., E^

The denominators are equal. Therefore this expression can be true if and
only if the numerators are equal. For the example given in this report

C1 C2 P 3 +sQ 3
Y(s) = - + - + (25)

2 2

s S s +s-2
2 2 2 3

CI(s +s-2) + C 2s(s +s-2) + P 3s + s Q3

2 2

s (s +s-2)

equating the numerator of (25) to the numerator of (9) and collecting similar
powers of s gives

2 3 3
K + sL + s (y 0 +Y 0 ) + s Y0= s (Q 3 +C 2 ) + s'(C2+C +P 3) + s(Cj-2C2 )- 2C 1 (26)

Equating similar powers of s gives the following simultaneous equations:

Y0 = Q 3 + C 2  (27)

11



Y+ YO C 1+ C 2 + P 3  (28)

L = C 1 -2CI 2  (29)

K = - 2C 1  (30)

When these are solved

K
C I - -(31)

2
(K + 2L)

C 2 = -(32)

4
(3K + 2L)

P = +Y + V(33)

4
(4y 0 + K +2L)

Q 3 = (34)
4

Thus

K (K +2L) 3K +2L +4(yo +9 0  (4y 0 + K +2L)s
Y(S) + - + (35)

22 2
2s 4s 4( S +S -2) 4( S +S -2)

When Laplace inverted, (35) becomes

Kt (K +2L) 3K +2L +4(y 0 + 0) (4y 0 + K +2L)
Y()=-- -+e- I+ [le'+2e" ](36)

2 4 12 12

This expression is equivalent to equation (16) even though equation (35) Is
not identical to equation (15). The decomposition characterized by (35) can
be found in figure 3.

12



13K + 2L + 4(Y + Y0 )
->l 42 I-

4(s +s-2)

(4y0+K + 2L)s

4(s +s-1)

-K 2
-> 2

2 s

-(K +2L)

4s

Figure 3. Alternate example of transition to parallel representation

The application of this result in a six degree of freedom simulation is
illustrated in figure 4. At any time step t, the above analytic result can
propagate the output of the transfer function to t . The initial conditions
come from the results of the previous time step, the criving terms come from
the aerodynamic motions of the projectile (inherently slower processes) which
are integrated numerically during the time step interval, and possibly other
transfer functions.

ti<-At -- >
I I

t t t tn-i n n-I- n+2

Figure 4. Iterative propagation of the solution

13



When a result is obtained for y at t t it is saved to become the new
initial condition to be used for once again propagating the piecewise analytic
solution for y to the next time step t 2. Note that not only must y(t n) be
saved to serve as an initial condition or the next time step, but higher order
derivatives as well. For the example used in this report, only

dy
y(t= t) = d t=t (37)

dtt

is required. This is easily obtained by differentiating equation (16) or (36).

For this example, equations (4), (5) and (16) are used iteratively as
follows:

Step A: L = K0 - Kt0  (38)
K is the slope of the driving term at t0 .
K is the value of the driving term at to.
Initially, take

Y0 0 (39)

3 0 (40)

n =0 (41)

Step B: Let
n n + 1 (42)

t = A t (43)

Find y and y' at the end of the time step, t = A t.

- Lit It

y(At) --- + e- 4yo-4o-K+2LI +- [K+L+2yo+yo] (44)
2 4 12 3

- 2&

K e e
Y -(t) --- [4yo-4Yo-K+2Lj + --- K+L +2yo+ yoj (45)

2 6 3

Step C: Let
Y0 = y(A t) (46)

Yo = Y(A t)

14



Evaluate K and L at t (these depend ultimately on air frame
motion which is integrated numerically elsewhere in the six
degree of freedom simulation.)

Step D: Repeat from step B to advance to the end of the next time step.

In summary, if the product of several sequential transfer functions can be
recast into an equivalent network of transfer functions in parallel, difficulties
arising from propagation of the signal through a sequential network can be
eliminated even when relatively large integration time steps are used. This
can be done by making a partial fraction decomposition of the Laplace
operator representation. This technique produces a decomposition that
always leads to terms that can be readily integrated. The use of a partial
fraction decomposition also facilitates the treatment of noise. The next
section contains a more general and formal treatment of some aspects of these
techniques.

15



GENERAL ANALYSIS

Partial Fraction Expansion

In this section, a formal treatment is given for carrying out the partial
fraction decomposition using the limit method. The function Y(s) for which
an inverse transform is desired typically appears as the ratio of two
po ly nomials.

j
a.s

V(s) j= 0
Y(s) =

G (s)
2 b ks

k =0

aIs + ai-1 s + .... + a s + a

(47)
n ni

s + b n1_S + + blS + b 0

with n > iand b = 1.
n

Note that Y(s) must be a proper fraction ( n > i ). If this is not the case, an
improper fraction can always be reduced to a proper fraction by long
division.

It is desired to decompose this single complex transfer function into a
group of simpler parallel transfer functions that may be more readily
handled, as explained in the previous section. The technique to be used to
achieve parallel decomposition is called partial fraction expansion. Suppose
that the denominator of equation (27) can be factored to yield the form

V(s) V(s)
Y(s) = = (48)

G(s) (s -r )(s -r 2)(s-r 3 ) .... (s -r)

where the r , j = I to n are distinct roots of G(s) = 0. (A discussion of
obtaining thd roots r will be treated subsequently.) Then the partial fraction
expansion for distinct roots is given by

16



C C C1 2 72

Y(s) + + .... + (49)
s - r s -r 2  s - r

1 2 n

The expansion coefficients C to C are to be determined. Equating the right
sides of equations (48) and (49) gives

C C C,

s-r 1  s-r 2 s-rn

V(s)

(s-r )(s -r 2 )(s-r 3) .... (s-r )

V(s)
(50)

G(s)

The ith constant C. can be determined by multiplying both sides of
equation (50) by the denominator of the ith fraction in equation (50), viz.
(s - r.). Therefore, the ith factor will be canceled on the left side of equation
(50). 'Finally, if r. is not a repeated root, take the limit as s goes to r. and
solve for C. . This process is expressed mathematically by the following
relation ship.

V(s) ( s - r. )
C. = lim (51)

-r, G (s)

for 1 = 1,2,3 ....... n.

Note that G(s) always contains a term of the form (s-r) which must be
removed by division before going to the limit. (For this reason, that root
cannot be a repeated root. See below if this is ppt the case.) Since the
inverse Laplace transform of A / (s - r.) is A e , it is always a trivial
matter to invert Y(s) in equation (27) to find y(t),

-1 [ 1
y(t) = L Y(S)
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-ir C I c 2  C 1
=L I + + . + I (52)

[ (s-r 1) (s-r2) (s-r ) 

n

= X v.(t)

i=1

where

-1 [ 1 ] r t

Yi(t) = C L j = C Ae (53)
L(s - r I)

If Y(s) contains repeated roots in the denominator, the procedure for
finding the C. for the partial fraction expansion must be modified. Consider,

V(s) V(s)
Y(s) = -- (54)

G(s) (s-r)m (s-rM- 1)(s-r 2 ) .... (s-rr n)

The root r 1 is repeated here m times, and there are n nonrepeated
(distinct) roots making a total of (m + n) factors of G(s). Expanding in
partial fraction form, equation (54) becomes

V(s) C1 C2
Y-s) + +

m mn-I
G(s) (s -rl) (s -rl)-

C1 C. C

(s m -2 (s m-j-l (s -r )

CM 1  Cm n

+ + (55)
(s- r M1) (s- r +n)

The constants C ... C for the repeated roots are determined from the
following relationships:
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[V(s) m ]
C 1 = lirn I- (s-r 1 ) I (56)

s., [ (.S) J

d rv(s) m]
(22= lim--l s-rl) (7j, (57)

= --r d., I (7(s) r J

1 d [V(s) "1
Ck =lim - [s-Ir-J (58)

s-r ,(k 1)! ds k -1 (S)

Expression (58) may be derived as follows: Consider equation (55),
which is rewritten here in more compact form for convenience.

I ( m - n-

Y(s) = C(s-r) + E C I(s-rt) (59)

/=1 = M-1

The terms in braces and in the second summation represent the distinct roots
of G(s). It is desired to obtain an expression for C.. To obtain this, multiplym j

both sides by (s - r) or

V(S) m 1-1 m -1
- (s-r) = P C(S-r) + (s-r 1) E C 1(s-r) (60)
(7(s)

G=1 
l=m-I

If this is differentiated, the leading term C vanishes. The C2 vanishes when
the second derivative is taken, a d so torth. It is clear that taking k-I
derivatives reduces the typical (j ) term to a constant (all prior terms
vanishing), with each differentiation bringing down an exponent of (s-r)
that leads to a factorial coefficient, viz.

k - i V k - i 1 + n k - I
dk~ GV(s (( -- r ij EC,-(v,_ -r.) + E C,--_(s-r) (s-r)

ds s) 1-1 s k I- ,m+1 ds

m+n
(k - 1)! C +I r7 C , n-(k-i)! ck + C c -(s,-ri)l + E c, (s-r1 ) +(s'-r)

I-k-1 (l-k)! i-m+1 (m -k +1)!
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similar terms in (s - r.) (61)

This is almost what is required, viz. an expression for C . If at this point the
limit is taken as s coes to r , all extra terms vanish leaving the expression in
equation (58).

Finding the roots

One major obstacle that may arise in applying this approach is the task
factoring the denominator G(s), i.e., finding the roots r 1, r), . r for the
n order polynomial G(s) in equation (27). In most practical cases, the
transfer function is already in the form of factors of no higher than second
order. These roots can be found by using well-known formulae such as the
quadratic formula, viz.

_/T__
b _- - 4ac

s = (62)

2 a

where

as + bs + c = 0 (63)

Solving low order polynomial for roots is not difficult. However, if higher
orders of n are encountered, techniques of higher sophistication plust be
used. There are many published techniques which solve n 9 order
polynomials. The "Laguerre's Method" for polynomial expansion9 was
adapted here.

The n roots r, I' r, of the polynomial G(s) are sought where

G(s =(s - r I)(s -r 2 ) ...... (s- r) (64)
n n 2

= C V .+ .+C 2 s + C S + C

C does not explicitly appear since all the coefficients of s in the factors
(.v-r are unity. Two expressions will be needed in the following
development. The first is obtained by differentiating G(s) with respect to s.

1

((s)' (s) 7 (65)
s - r.

j= 1 .
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rearranging gives

G(.)'
J(s) =-

G (s)

1 1 1

= + + ...... + (66)

s - r1  s - r,) s - r

I'
n-1

1

a S -ri=1 i

th

where a = s - r (the interval separating the variable s from the n root).
The second expression is obtained by differentiating G(s)' with respect to s
again. From (65),

n

1 1

G(s)" = G(s)' I - - G(s) (67)
s - r"2. j (s-r

j~l J j s-j]

dividing through by G(s) and rearranging gives

G (s)"
= J(s)J(s) - (68)

G(s)2
j= 1 (S - r 2

or

9 Forman S. Acton, Numerical Methods That Work, Harper and Row, New York, NY, 1970. Acton asserts that

Laguerre's method always converges to some root from any starting approximation, even to a complex root from a

real first approximation if the implementation of the algorithm permits complex arithmetic.
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2 G (s)' n I
H (s) Ji(s) - I

G (s) j=1I (s- r.2

+ + .+ (69)
2 2 2

n-

2 2

2 1]

While seeking the nt root r n consider the standard deviation an- of all the
other roots.

2
ni

1r 1 - 170)
n -

Using the definitions given in (66) and (69) to eliminate the summations in
(70) yields

2

(n -2)ur n IH(s) - IJ(s) -- I(71)
1a 2 n -I I a

Expressed as a quadratic equation in the reciprocal for a, this is

11 12 2

- + 2J1(s)- - .1(s) + (n - 1)H(s) - (n - 1)(n- -2) Un- 1 = 0 (72)
2 a

Using the quadratic formula to solve for 1/a and then inverting gives

n
a-1/ (73)

2 2
.1 (n n-1) (nH(s) -J) n (n -1) (n -2)cT n
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where the sign of the denominator of this expression for a is chosen to
minimize the absolute value of a. To use (73) to solve for the roots
iteratively, the standard deviation a is neglected. The justification for this
step is discussed at the end of this section. Dropping a n-I gives

n
(74)

1/2

(
.1 (n-1)(nH(s) - J )

where, from (66) and (69)

G(s)'
J(s) = (75)

G(s)

and
G (s)

H(s) = J(s) - (76)
G(s)

The iterative algorithm for applying Laguerre's method is as follows:

1. Select an initial trial root, s o , for equation (64).

2. Use the trial root to evaluate the expression for a, using (75) and
(76) in (74).

3. Generate an improved trial root by replacing s0 by so - a.

4. Repeat step 2 to obtain an improved value for a.

Continue the iteration of steps 2 and 3 until convergence of a has occurred
("a" sufficiently small.)

Laguerre's method can converge to a pair of complex conjugate roots,
since the radicand in equation (74) can be negative. Rapid convergence
depends on a good initial selection for a trial root. A rule of thumb is to
select a root that is much larger than the coefficients in the polynomial G(s).

At this point, note that neglecting a n in equation (73) canbe justified as
follows. If the roots are equal, then car is identically zero. This can be
seen from equation (70) if the roots become equal as a limiting process. In
the limit, all the expressions s - r tend toward the same small value, which
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will be denoted by b. Then equation (70) becomes

n2n-1 n-1 1 [ 1]

2
2 - (77)
n-I

n-2

or

2
1 1 [n-1

(n - 1) - - I I
b2 (n -1) [ b 1

2

r =-i - 0 (78)
n-2

On the other hand, if at least some of the roots are distinct, neglecting an
is intuitively equivalent to saying that the root r is far removed from the
other roots, which are bunched. Relatively speal~ing, this is always true as
the solution begins to converge.

A FORTRAN program implementing this technique is to be found in
appendix A.
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CONCLUSIONS

The use of piecewise closed integration techniques can result in
considerable relaxation in integration time step size and significant savings in
computer run time. However, the user must use an equivalent parallel rather
than a sequential representation to avoid unphysical propagation delay effects.
The se of an equivalent parallel network is also convenient when treating
autopilot noise sources. The partial fraction expansion techniques described
here are a convenient method for transforming a product of transfer functions
into an equivalent parallel network.
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SYMBOLS
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VARIABLE DESCRIPTION

C, Expansion Coefficients of Partial Fraction Decomposition

D Coefficient of the Laplace operator s in the second-order lag/
oscillator with differentiation

G(s) Denominator of transfer function Y(s)

G (s)
H(s) Transfer function J(s) -

G(s)

Coefficient of the square of the Laplace operator s in the second-
order lag/ oscillator with differentiation

G (s)"
J(s) Transfer function

G(s)

K Constant term in the transfer function for the second-order lag/
oscillator with differentiation

L Laplace transform

-1

L Laplace transform

rl Roots of G(s)

s Laplace transform operator

T Driving term in the transfer function for the second-order lag/
oscillator with differentiation

t Time

V(s) Numerator of transfer function Y(s)

V(s)
Y(s) Transfer function, written as -; Laplace transform of y(t)

G(s)

y(t) Inverse Laplace Transform of Y(s)
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APPENDIX A

FINDING ROOTS BY LAGUERRE'S METHOD
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PROGRAM ROOTS
IMPLICIT COMPLEX*16 (A-H,O-Z)

COMPLEX*8 J
REAL*8 ACC,RR,RI
DIMENSION C(21),ROOT(20),CD(21),CDD(21),D(21)

C
C THIS ROUTINE FINDS THE ROOTS OF A NTH ORDER POLYNOMIAL USING
C LAGUERRE'S METHOD. POINT OF CONTACT: MICHAEL J. AMORUSO OR
C ROMEL CAMPBELL, ARDEC,DOVER, NJ 201-724-4523.
C
C *** DATA MUST APPEAR IN A FILE CALLED RDATA IN FIELDS 20 COLUMNS
C WIDE. SEE EXAMPLE OF FORMAT BELOW.
C

OPEN (3,FILE= 'RDATA')
REWIND 3

C
C INITIALIZING VARIABLES AND CONSTANTS FOR POLYNOMIAL EQUATION.
C

ZERO = DCMPLX(0.,0.)
DO 5 I 1,21
C(I) = ZERO
CD(I) = ZERO
CDD(I) = ZERO

5 ROOT(I) = ZERO
C
C TRIAL ROOT
C

S = DCMPLX(100.ODO,0.DO)
C
C CONVERGENCE-TEST TOLLERANCE
C

ACC = 1.OD-12

C EVALUATING EQUATIONS FOR N'TH ORDER POLYNOMIAL
C AND ITS FIRST AND SECOND DERIVATIVES.
C
C *** THE ORDER OF THE POLYNOMIAL "N" AND ITS N+ 1 COEFFICIENTS ARE
C * ARE READ IN HERE. COFFICIENTS ARE READ FROM HIGHEST POWER OF
C *** VARIABLE TO CONSTANT TERM.
C
C EXAMPLE: FIND THE ROOTS OF 4TH ORDER POLYNOMIAL:
C
C 4 3

C S + S -2S = 0
C
C * THE INPUT DATA WOULD BE IN THE FOLLOWING FORM:
C
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C
C 4
C 1.0
C 1.0
C 0.0
C 1.0
C 0.0
C

READ(3,101) N
WRITE(6,103) N
DO 9 I= N+ 1,1,-i
READ(3,102) RR,RI
C(I) = DCMPLX(RR,RI)
IF (I.NE. 1) WRITE(6,104) C(I) ,I-1
IF (I.EQ.1) WRITE(6,107) C(I)

9 CONTINUE
WRIT E(6,105)

C
C NUMBER OF ROOTS TO BE FOUND
C

K =N
C
C COEFFICIENTS OF 1ST DERIVATIVE OF POLYNOMIAL
C

1 DO 61= 1,20
RR = DFLOAT(I)
BUF= DCMPLX(RR,ZERO)
CD(I) = C(I+ 1)*BUF

6 CONTINUE
C
C COEFFICIENTS OF 2ND DERIVATIVE OF POLYNOMIAL
C

DO 7I= 1,20
RR = DFLOAT(I)
BUF= DCMPLX(RR,ZERO)
CDD(I) = CD(I+1)*BUF

7 CONTINUE
C
C EVALUATING POLYNOMIAL AND ITS FIRST TWO DERIVATIVES
C

G = C(1)
GD = CD(l)
GDD =CDD(l)
DO 10 I = 1,K
G =(C(I+ 1)'(S"I)) + G
GD =(CD(I+1)'(S*I)) + GD

10 GDD = (CDD(I+ 1)'(S*I)) + GDD
C
C POLYNOMIAL ROOT SOLVING ROUTINE USING LAGUERRE'S METHOD
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C
CK = DCMPLX (DFLOAT(K) , 0.D0)
CK1 = CK - DCMPLX ( 1.ODO , 0.D0)
J = GD/G
H =J**2-(GDD/G)
DEN = CK1*(CK*H-J*J)
DEN = CDSQRT(DEN)
IF (CDABS(J + DEN).GE.CDABS(J-DEN)) THEN

A = CK / (J+ DEN)
ELSE
A = CK / (J-DEN)
END IF
S=S-A
IF (CDABS(A/S).LT.ACC) GOTO 20
GO TO 1

C
C REDUCTION OF POLYNOMIAL BY SYNTHETIC DIVISION
C
C THE FACTOR (X-S) WILL BE DIVIDED OUT OF THE POLYNOMIAL
C TO REMOVE THE ROOT JUST OBTAINED. THEN THE REDUCED POLY-
C NOMIAL CAN BE SOLVED FOR THE NEXT ROOT.
C SEE FORMAN S. ACTON, "NUMERICAL METHODS THAT WORK",
C HARPER AND ROW, NEW YORK, 1970, PP 181-183.
C

20 CONTINUE
C RR=DREAL(S)

RR=S
RI= DIMAG(S)
ROOT(K) = S
WRITE(6,100) ROOT(K)

C
C THE ORDER OF THE REDUCED POLYNOMIAL IS OBTAINED.
C

K = K-1
IF (K.GE.1) THEN
DO 30 I=K+ 1,1,-l
D(I) = (D(I+ 1)*S) + C(I+ 1)

30 CONTINUE
C
C THE D(I) ARE NOW THE COEFFICIENTS OF THE OLD POLYNOMIAL
C DIVIDED BY THE FACTOR (X-S), WHERE S IS THE ROOT JUST FOUND.
C THE C(I) WILL BE SET TO THESE D(I), WHICH WILL BE NORMALIZED
C SO THAT THE HIGHEST ORDER TERM HAS A COEFFICIENT OF UNITY.
C
C SET NORMALIZATION FACTOR.
C

o = D(K+1)

DO 401 =1,K+1
C(I) = D(I)/Q
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40 D(I) =0.
C

GO TO 1
END IF

C
WRITE(6,106)
STOP

100 FORMAT(' (',G20.8,',',G20.8,')')
101 FORMAT(10X,I10)
102 FORMAT(2D20.0)
103 FORMAT(//,' LAUGERRE METHOD FOR SOLVING FOR POLYNOMIAL ROOTS.',

* //,' THE ORDER OF THE POLYNOMIAL IS ',13,II,' THE TERMS ARE:')
104 FORMAT(' (',G20.9,',',G20.9,') * X ,12)
105 FORMAT(/,'- THE ROOTS ARE:')
106 FORMAT(//III/)
107 FORMAT(' (',G20.9,',',G20.9,')')

END
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APPENDIX B

SECOND ORDER LAG/OSCILLATOR WITH DIFFERENTIATOR
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In a previous report,' transfer functions were treated using this analytic
approach. Solutions were provided for lead/lag, lag, lag with differentiator,
and second order lag/oscillator. Sometimes these are sufficient and there is
no need for parallel decomposition. For completeness, the second order
lag/oscillator with differentiator is developed here. Consider the differential
equation

2

d v dv dT
I + D - Ky = (B-1)

dt dt dt

where both I and K are nonzero. The derivative of the driving term appears
on the right side as an input, which is undesirable. A sta'dard technique
introduces an auxiliary variable, say Z, and substitutes a pair of coupled
differential equations in the variables Z and ' that do not contain any
derivatives of the driving term T. These equivalent differential equations are

dZ
= Kv (B -2)

dt

and

dy
I - + Dy = T - Z (B -3)

dt

The equivalence of (B -2) and (B -3) to (B -1) can be readily verified by
differentiating (B -3) with respect to t and substituting (B -2) into the result.

To implement the solution of the coupled equations (B -2) and (B -3), an
equation for Z in which y has been eliminated is sought. This is done by
using (B -3) to eliminate y in the equation (B -2). This yields

dZ
- = Ky (B -4)

dt

[Kl K dyl
= I-I IT - Z - I -- I

[DI I dt]

1 Eugene M. Friedman and Michael J. Amoruso, "An Analytical Modularized Treatment of Autopilots for Guided

Projectile Simulations," US Army Armament Research and Development Center, Technical Report ARLCD-TR-
85025, Picatinny Arsenal, NJ, August 1985.
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2

[K][ d Zl
I-- I IT-Z- I
[DJ ID K dtj

or

2
d Z dZ

I + D + KZ = KT (B -5)

dt dt

I dZ
Once Z(t) is found, y(t) is obtained from (B -2), i.e. y(t) =

K dt

This is the equation of a forced harmonic oscillator, with driving term KT.
The general solution to (B -5) is obtained from the sum of a particular
integral of (B -5) and the general solution to the inhomogeneous form of (B
-5). Since (B -5) is second order, the general solution to (B -5) must contain
two linearly independent particular solutions to (B -5). It is natural to try

Lt
Z(t) = e (B -6)

Substituting into the homogeneous form (right side of equality sign set to
zero) of equation (B -5) obtains the characteristic equation

2
IL + DL + K = 0 (B -7)

which has the following roots

-D + V D - 41K
M X + i (B-8a)

21

-D - V DI- 4IK
N =i (B-8b)

21

2
The radicand D - 41K in (B -8) divides the solution into classes. If the
radicand is nonzero, the homogeneous solution may be written

Mt Nt

ZH(t) = A e + B e (B -9a)

When the radicand doesn't vanish, M and N are distinct and the two
exponentials are linearly independent and (B -9a) is a complete general
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solution to the homogeneous form of (B -5). When the radicand is positive,
(B -9a) represents a pure damped solution. If the radicand is negative, then
M and N are complex conjugates of one another. In this case, the solution is
a damped oscillation. It may be desirable to show this behavior explicitly.
The solution (B -9a) may be rewritten

Z H(t) = A e sin [wt+] (B -9b)

where X and w are the real and imaginary parts of the complex conjugate pair
M and N, and C and k are the constants of integration instead of A and B.

If the radicand vanishes, (B -9a) is not general since it does not contain two
distinct, linearly-independent solutions. Subsitution verifies that the second
independent solution can be obtained from te where M = -D/21. In this
case,

Mt Mt
Z H(t) = A e + B t e (B -9c)

The next step is finding a particular integral of (B -5). The damped positive-
radicand solution will be treated first. The method of variation of parameters
is applicable. 2 Assume the following form for the solution to the
inhomogeneous equation, viz. (B -5).

Mt Nt
Z (t) = Ul(t) e + u 2 (t) e (B -10)p

where ul and u 2 are to be determined. It can be shown that the ut and u 2 of
(B -10) satisfy

- Mt K T(t)
U '(t) -e (B -11)

I (N - M)

- Nt K T(t)
u 2 '(t) + e (B -12)

1 (N - M)
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where the prime denotes the derivative with respect to t. 2 Integrating it and
u,' yields the particular solution required in order to generate the complete
general solution to (B -5). However, this can not be done in closed form in
the general case since the form of T(t) is not known analytically a priori. In
order to carry out these integrations explicitly, some generality can be given
up that is in the spirit of this approach. The simplest nontrivial assumption is
that the time step is small enough to approximate T(t) linearly, viz.

T (t) = At + b = T '(t-to) + T (B -13)
0

where A, b, T , and T ' are constants.3 Integrating u1 and i2' with this
assumption yieids

- Mt
Ke [ A]

U 1(t) At + b + -1

MI (N-M) [ Mi
- Mt

Ke [ T'1

I T(t) + 1 (B-14)

MI (N-M) M

and

e- Nt
-KeN I A]

u 2(t) I At + b + -
NI (N-M) [ NJ

Nt
-K e [ T '1

I T + - (B -15)
NI (N-M) I N ]

Putting (B -14) and (B -15) into (B -10) yields

2 C. R. Wylie, Jr., Advanced Engineering Mathematics, McGraw Hill, New York, NY, 1960.

3 With this assumption, (B-1) can be solved directly without (B-2) or (B-3) since the right hand side of (B-i) is
replaced by the constant A = T' (i.e., I 5 + D)' + Ky = A).
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K (1 1 (1 1 J
Z (t) IT _ - +T ' -

P2 2

P I (N -M)i IM N . M2 N 2

K [ (N- M) (N 2 - M 2)]

I T - T- '
I (N-M)[ MN M2N 2

K (N+M) 1
S T + T' (B -16)

INM [ MN

From (B -8), MN = K/I and M +N -DII.

D
Z p(t) = T - - T ' (B -17)

K

This solution can be verified by substituting (B -17) into (B -5), keeping in
mind that T' is constant during the time step. Since this constancy is the only
assumption used in verifying (B -17) by substitution into (B -5), this
particular solution Z holds for all three cases even though it was formally
derived for only one case. This result can be combined with the results for
the three homogeneous solutions [viz., (B -9a) through (B -9c)] and the
boundary conditions applied to determine the constants of integration.

POSITIVE RADICAND

Combining (B -9a) and (B -17) gives the complete solution for the purely
damped case

Mt Nt
Z(t) = Ae + Be + T - DT' (B -18)

K
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dZ (t) Mt Nt
Z' = AMe + BNe + T (B -19)

dt

The initial conditions

Zo Z att (B -20)

dZ
Z - at to o

dt
T =T att

O 0

dT
T' T ' or att

3 0

dt

determine the constants of integration A and B. Substituting into (B -18) and
(B -19) yields

Mt o  Nt. D
Z = A e + B e + T - T ' (B -21)

K

Mt Nt
Z' = AMe + B N e + T ' (B -22)0 0

solving simultaneously yields

Z (1 D e
A =Z -- T 0+ T '- + -

[ o N o N K J M
1 -

N
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- Nt[ Z' (1 D I1
B = Z - - - + T' t + - (B -23)

0 M 0 °[M K)] N
1-

M

Finally, y(t) can be obtained by substituting (B -19) into (B -2), viz.,

1 [ M, Nt 1
y(t) = - [AMe + BNe + T 'J (B -24)

K

NEGATIVE RADICAND

Combining (B -9b) and (B -17) give the complete solution for the damped
oscillatory case

Xt D
Z(t) = Ce sin[t + + T - -T' (B -25)

K

dZ(t) xt (  (
= Z' = C e sin[wt + ± ] + w cos[ot + + T ' (B-26)

dt

D V41K - D
where k = -- and w) = [See (B -8)]. See (B -20) for the

2! 21
initial conditions . The constants of integration C and 4) can be determined
now from

xto D
Z = Ce sin[wt + 4 ] + T - -T ' (B -27)

K
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xto (
Z' = Ce Xsin[ot + do] + W cos[Wt + 4)] + T ' (B-28)

From (B -28),

- Xt°
[Z' -T' ]e

0 0

C = - (B -29)
X sin[wt + ] w w cos(wt + 4)]

Substituting (B -29) in (B -27) gives

D
[ w(Z o - T -T ')o o

_ 1 K I
4) = tan t - (B-30)

I D I 0

1Z' - T ' - x(Z - T + -T '0) 1
0 0 0 0

K

Finally, y(t) can be obtained by substituting (B -26) into (B -2), viz.,

1 r ( I
"(') = Ce X sin[t + ]+ o cos[wt + P+ T' (B-31)

K 1

ZERO RADICAND

Here M = -D/21 [see equation (B -8a)]. Combining (B -9c) with (B -17)
gives the complete solution for this case.

Mt Mt

Z(t) = Ae + Bte + T - DT' (B -32)
K
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dZ (t) Mt Mt Mt
= (t) AMe + BMte + Be + T ' (B-33)

dt

The constants of integration can be determined now from the initial
conditions.

Mt Mt °  D
Z = Ae + Bt e + T - -T ' (B -34)

K

Mt Mt Mto
Z' = AMe + BMt e + Be + T ' (B-35)o 0 0

Solving (B -34) and (B -35) simultaneously yields

-Mt D MD 1
A = e Z -T +-T ' + t [MZ -Z' -MT +- T ' +T ' ]I(B-36)

K K

and

-Mt[ MD 1
B = -e o I MZ - Z' - MT + -T ' + T ' 1 (B-37)[0 K 0

Finally, y(t) can be obtained by substituting (B -33) into (B -2), viz.,

I [ Mt Mt Mt 1
y(t)= [ AMe + BMte + Be + T'] (B-38)

K

Initially, Z can be taken to be zero on the very first integration time step and
Z' can be derived from the initial condition yo = Y at t o by means of
equation (B -2).
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