
Tcchnical Report I045

-Three -Dimensional
URecognition of

Solid Objects from a
Two-Dimensional

Image

Daniel P. Huttenloche

MIT Artificial Intelligence Laboratory

DTIC
MAR 2 7419 3

H

A ,-- - - - --- . .. ,; .- ,

UNCLASS I FI ED
SE UaTrT CLAS$,rCArON or TwIS 0 GE '),., Date Itered)

DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT DBEFORE COMPLETING FORM

l TRErN GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4 TIT L E (anid Subiife) S. TYPE OF REPORT A PERIOD COVERED

Three-Dimensional Recognition of Solid Objects technical report
from a Two-Dimensional Image "

. PERFORMING ORG. REPORT NUMBER

7. AUTmOR(e) 8. CONTRACT OR GRANT NUMBER(#)

N00014-86-K-0685
Daniel Huttenlocher N00014-85-K-0124

DACA76-85-C-0010
9. PERrORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ,LEMENT.PnOJrCT. TASK

AREA A WORK UNIT NUMBERS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research rrojects Agency October 1988
1400 Wilson Blvd. Is. NUMBER OF PAGES

Arlington, VA 22209 161
14. MONITORING AGENCY NAME & ADORESS(II diffetent from Controlling Ollico) IS. SECURITY CLASS. for this report)

Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 ISO. DECLASSIFICATION/DOWNGRADING

SCHEDULE

I6. DISTRIBUTION STATEMENT (of tls Report)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (01 fie abetrat omelSd In Block 20, it dlfferme rem Repert)

It. SUPPLEMENTARY NOTES

None

IS. KEY WoRDS (Coninue on reverse aide It n.ec.e. ,id IdentiIy by black numb.r)

computer vision
model-based recognition
alignment
affine transform

20. ABSTRACT (Conlinue on reverse side 1f neoee y and Idenllf by block nmiber)

Abstract. This thesis addresses the problem of recognizing solid objects in

the three-dimensional world, using two-dimensional shape information extracted

from a single image. Objects can be partly occluded and can occur in cluttered

scenes. A model based approach is taken, where stored models are matched to

an image. The matching problem is separated into two stages, which employ

,,,et*r,.representations u" objects. The first stage uses the smallest possible

DD I]J AN 1473 EDITONOF NOVSSISOL ET UNCLASSIFIED
DD , ON THIS I

SECURITY CLASSIFICATION OF THISI PAGE (Wheel Dolie IrsiOror

. ... - ... -- m m mmm mmn mm n nmmm iniml

:,,..;er of local features to find trarisforinations from a model to an image. This

mir.inmies the amount uf search required in recognition. The second stage uses
,he entire edge contour of an object to verify each transformation. This reduces
the chance of finding false matches.

A new method is developed for computing transformations from a model
to an image. It is shown chat when perspective viewing is approximated by
orthographic projection plus scale, three corresponding model and image points

define a unique transformation, up to a reflection. The solution method based
on this result only involves second order equations, and thus is fast and robust.

Recognizing objects under projection requires features that are relatively
stabe over changes in viewpoint. Stable features are obtained by segmenting

edge contours at zeroes of curvature, because these points are preserved under

projection. Each feature defines either a point and an orientation or three points.
so onlv one or two features are needed to compute a transformation. Thus the

number of transformations considered in recognition is only quadratic in the
number of corresponding model and image features.

AN

A- .-<-

0

7.

KO

Three-Dimensional Recognition of

Solid Objects from a Two-Dimensional Image

Daniel Peter Huttenlocher

Submitted to the Department of Electrical Engineering and Computer Science
on April 29, 1988 in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Abstract. This thesis addresses the problem of recognizing solid objects in
the three-dimensional world, using two-dimensional shape information extracted
from a single image. Objects can be partly occluded and can occur in cluttered
scenes. A model based approach is taken, where stored models are matched to
an image. The matching problem is separated into two stages, which employ
different representations of objects. The first stage uses the smallest possible
number of local features to find transformations from a model to an image. This
minimizes the amount of search required in recognition. The second stage uses
the entire edge contour of an object to verify each transformation. This reduces
the chance of finding false matches.

A new method is developed for computing transformations from a model
to an image. It is shown that when perspective viewing is approximated by
orthographic projection plus scale, three corresponding model and image points
define a unique transformation, up to a reflection. The solution method based
on this result only involves second order equations, and thus is fast and robust.

Recognizing objects under projection requires features that are relatively
stable over changes in viewpoint. Stable features are obtained by segmenting
edge contours at zeroes of curvature, because these points are preserved under
projection. Each feature defines either a point and an orientation or three points.
so only one or two features are needed to compute a transformation. Thus the
number of transformations considered in recognition is only quadratic in the
number of corresponding model and image features.

Thesis Co-Supervisor: W. Eric L. Grimson
Title: Matsushita Associate Professor of Computer Science and Engineering

Thesis Co-Supervisor: Shimon Ullman

Title: Professor of Psych'ology

Q Daniel P. Huttenlocher 1988

Acknowledgments
I would like to thank my advisors Shinion ITllhian and Eric (Grinusoll for

their gui(lance over the last three years. They have becoine good friends

and valued colleagues. My third committee riember, ToinAs Loza~io-Perez,

repeatedly challenged my thinking, and always led ine to a clearer under-
standing of the problems I was working on.

'[lie MIT Artificial Intelligence Laboratory is a unique research elnvi-

ronment. I wish to thank Marvin Minsky and Patrick Winston for build-
iig ai d mi aintaining such anl excellent laboratory. 'he uliany, sol ietilies

heat(d(l discussions with other members of the laboratory have helped me

see how we might one (lay put all of this together.

Part of this research was (lone at Schlumoberger in Palo Alto, and I

would like especially to thank Marty Tenenbaunri anid Richard Lyon for
their support. l)iscussionis with people at SPAR provided me with niew

insights, and gave this work a broader perspective.
Without th e eunicou)rageeunt of imy friends and fanily, who were always

there when I Teede(l tiherI, I (oubt that this thesis could have been (()In-

pleted.

This report describes research done at the Artificial Intelligence Labo-
ratory of the .Massachusetts Institute of Technology. Support for the !abo-

ratory's artificial intelligence research is provided in part by the Advanced

lesearch Projects Agency of the Department (of Defense under Army coil-

tract 1)A('A76-85-C-0010, in part by the Office of Naval Research Uliver-

sity Research Initiative Program under Office of Naval Research contract
N0001,-86-K-0685, and in part by the Advanced Research Projects Agency

of the)epartmlent of)efense under Office of Naval Research Contract

NO001,1-85-K-012.1.

Table of Contents

1 Introduction 9
1.1 The Model Based Recognition Paradigm 11
1.2 Key Issues in Model Based Recognition 12
1.3 The Recognition Task 14
1.4 The Imaging Model 16
1.5 The Alignment Approach 18
1.6 Other Approaches 20
1.7 Roadmap 21
1.8 Major Contributions 22

2 Review Of Existing Work 24
2.1 Object Recognition Systems 24

2.1.1 N on-Correspondence Matching 25
2.1.2 Pruned Search 26
2.1.3 Parallel Relaxation 35
2.1.4 Searching Transformation Space 36
2.1.5 Selecting Possible Models 42
2.1.6 Summary of Recognition Work 44

2.2 Shape Representation 45
2.2.1 Volumetric Representations 46
2.2.2 Edge-Based Representations 48
2.2.3 Summary of Shape Representation Work 51

3 Recognition as Search 52
3.1 Problem Formulation 52
3.2 Selecting Models 53
3.3 The Space of Possible Corresponding Features 54
3.4 Searching for Corresponding Features 56
3.5 The Space of Possible Transformations 57
3.6 Searching for Transformations 60

3.6.1 Quantization, Bucketing and Transformations 61
3.6.2 An Occupancy Model of the Hough Transform 63
3.6.3 Evaluating the Generalized Hough Transform 63

3.7 Verification 67
3.8 Chapter Summary 70

4 The Alignment Method 72
4.1 The 2D Affine Transform 72
4.2 The Alignment Transformation Exists and is Unique 73
4.3 Computing the Transformation 78
4.4 Sensitivity to Sensor Noise 79
4.5 Alignment Using Oriented Points and Edges 81
4.6 Chapter Summary 83

5 Representing and Extracting Shape 84
5.1 Edge-Based Shape 85
5.2 Computing Orientation and Curvature 86

5.3 Smoothing 90
5.4 Curvature-Based Segmentation 91

5.4.1 Finding Significant Zero Crossings 93
5.4.2 Segments of a Curve 94

5.5 Hierarchical Edge Description 95
5.6 Features for Alignment 97

5.7 Region-based Shape 98
5.8 Intensity Based Grouping 102
5.9 Models 103
5.10 Chapter Summary 105

6 The ORA System 107
6.1 System Overview 107
6.2 Finding Edge Contours 108
6.3 Segmenting a Curve 110
6.4 Features for Alignment 111

6.4.1 Labeling Segments 113
6.5 Trying Possible Alignments 114
6.6 Verification 116
6.7 Parallel Algorithms 120
6.8 System Summary 122
6.9 Some Results 122

7 Aligning Non-Rigid Objects 131
7.1 Tessellating the Image 132
7.2 Combining Local Matches 137
7.3 Chapter Summary 140

8 Human and Machine Recognition 141
8.1 Alignment in Human Recognition 142
8.2 3D from 2D Alignment 144
8.3 Chapter Summary 146

9 Summary and Conclusions 147
9.1 Future Directions 150

Appendix A 152

References 154

List of Figures

9 Figure 1. The type of scene of interest in this thesis.

13 Figure 2. A set of image features that are consistent with a model, but
where the edge contours reveal that the match is not correct.

15 Figure 3. An object that is not well described by the shape of its occlud-

ing contours.

16 Figure 4. Perspective projection.

17 Figure 5. Orthographic projection.

47 Figure 6. An "animal" composed of cylinders.

47 Figure 7. A relatively simple contour that cannot be well represented by

a generalized cylinder representation.

59 Figure 8. Two intersecting edge fragments define a point and orientation
that can be used to solve for a two-dimensional transformation from a

model to an ima ge.

75 Figure 9. The geometrical interpretation of U.

79 Figure 10. The circle of uncertainty of radius E about the two points bi
and ci, and its approximation by ±e in x and y.

80 Figure 11. Representing the model points bm and cm in terms of polar

coordinates.

81 Figure 12. Defining a third point from two oriented points.

82 Figure 13. Intersecting segments: i) defining three points from three seg-
ments, ii) the segments need not match.

87 Figure 14. An inappropriate best fitting line using standard least-squares.

88 Figure 15. Approximating the normal distance to a line depending on the
slope, a) y = x, b) using x component, c) using y component.

92 Figure 16. Attneave's cat, which is intended to demonstrate the impor-
tance of maximal curvature points for representing shape, and Lowe's cat

which shows that other points work as well.

92 Figure 17. Maximal curvature points are not preserved under projection,
both disappearing and appearing with rotation out of the image plane.

93 Figure 18. Three methods of filtering zero crossings, a) peak height, b)

slope, c) area.

94 Figure 19. Segmenting a contour, a) at inflections only, b) at ends of

straight segments and inflections.

9.5 Fiure 20. Smoothing the curvature renove. smiall zero crossings. and

peerve('s only the larger scale inflection points.

oc Figure 21. A scale-space segmentation of a widget, where the contours
are segmented at inflections in the smoothed curvature. The coarsest
scale is at the top.

9G Figure 22. The tree corresponding to the curvature scale-space segmenta-
tion in the previous figure.

97 Figure 23. Three points with one distinguished point defines two possible
alignments.

99 Figure 24. A set of edge fragments not generally recognizable as an ob-
jec t.

100 Figure 25. Adding a single edge fragment to the image in the previous
figure.

101 Figure 206. Groups of edge triples can define potential convex regions of
an object, a) an edge triple, b) a group.

102 Figire 27. Spatial configurations of edge segments with similar intensities
on one side, a) likely to be part of the same object, b) unlikely to be part
of the same object.

103 Figure 28. The facing sides of two segments are found, a) using the edge
connecting the center points., and b) also requiring the edges connecting
the endpoints not to intersect.

105 Figure 29. A model of a wedge from a given viewpoint, and an illegal po-
sition of that model.

109 Figure 30. The measure of how well two chains merge takes into account
both distance and orientation difference.

111 Figure 31. Zero crossings of curvature and the corresponding positive,
negative and zero curvature segments of a contour.

111 Figure 32. Local peaks of curvature and corresponding points on the edge
contour.

112 Figure 33. Class I features define three points. A single matching feature
is sufficient for alignment.

112 Figure 34. Class II features define a point and an orientation. A pair of
matching features is sufficient for alignment.

113 Figiur 35. Deriving a three corner Class I feature from successive edge
co PIlnIlt S.

117 Figure 36. The initial verification of a match compares model segment
endpoints to image segment endpoints, requiring both the location and

orientation difference to be small.

118 Figure 37. Matching model segments to image segments, a) positive evi-
dence, b) neutral evidence, similar to no matching edge, c) negative evi-

dence.

123 Figure 44. The three solid object models that were matched to the im-
ages.

124 Figure 45. The model of the laminar widget.

124 Figure 38. Recognizing solid objects, see the text for an explanation.

124 Figure 39. Recognizing solid objects, see the text for an explanation.

124 Figure 40. Recognizing solid, bjects, see the text for an explanation.

124 Figure 41. Recognizing solid objects, see the text for an explanation.

124 Figure 42. Recognizing solid objects, see the text for an explanation.

124 Figure 43. Recognizing a laminar object, see the text for an explanation.

131 Figure 46. A transformation that is non-rigid but preserves shape infor-
mation can be viewed as locally rigid. For example, a bent object consists

of rigid subparts.

132 Figure 47. Tessellating an image by triangulating the set of feature points.

133 Figure 48. Two cartoons of a bunny rabbit to be nonrigidly aligned.

134 Figure 49. Initial rigid alignment of two images, see the text for an expla-
nation.

134 Figure 50. Locally rigid alignment of two images, see the text for an ex-

planation.

137 Figure 51. Partial match of a model to an image: a) the partial image
match, b) the parts of the model accounted for.

13S Figure 52. Finding adjacent model and image parts: a) adjacent pairs of
model parts, b) only one of which is adjacent in the image.

138 Figure 53. Match of a model to a bent instance using the adjacent parts
method.

139 Figure 54. The partial matches that comprise the non-rigid match in the

previous figure.

141 Figure 55. While appearing to be a partial pyramid, this cannot corre-
spond to an actual solid object.

143 Figure 56. Stimuli used in recognition experiments of [Tarr88].

12 i.- ire .57. People scem to perforin t hree-dininesional interpretation of lh
'dge's in an imagoe.

14, Figure 58. A surface with a right angles must be rotated out of the plane

to %:-l,! a -i,,n image angle. The block on the left is rotated substan-
tiallv more, than the one on the right.

Introduction 9

Chapter 1

Introduction

Visual recognition is the process of finding a correspondence between parts of the
sensory input and stored representations of objects in the world. Many sources 3f
information are potentially important for recognition, including shape, motion,
color, texture, and shading. This thesis is primarily concerned with using two-

dimensional shape information, extracted from a single black and white image,
to recognize solid objects in the three-dimensional world. The objects can be
partly occluded and can occur in cluttered scenes, such as the polyhedron near

the center of Figure 1.

Figure 1. The type of scene of interest in this thesis.

Machine recognition systems are generally model based, matching geometrically
accurate models of objects against an unknown image (for recent reviews see

[Bes185] [Chin86]). A model specifies a set of features, or attributes of an ob-
ject. Recognizing an instance of an object involves finding a consistent set of

corresponding model and image features, such that some transformation maps
each model feature onto its corresponding image feature. This transformation

generally consists of a translation, rotation and scaling of a rigid object, and

thus specifies the position and orientation (or pose) of an object with respect to

A consistent set of corresponding model and image features may not ac-
tiallv specify a correct match of a model to an image. Particularly if a set of
'Orresi)onding features is small, it may be that the image features are acciden-
tally positioned such that they are consistent with a valid transformation of a
model. In order to reduce the likelihood of such an event, most model based
recoingit lon systems search for large sets of model and image features that are
consistent with a single transformation.

The ORA (Object Recognition by Alignment, pronounced "aura") system
developed in this thesis does not search for large sets of corresponding model
and image feitures. Instead, the smallest possible sets of features are used to
hypothesize potential transformations from a model to an image. Each tras-
formation is then verified by aligning the model with the image, and comparing
the aligned model edge contours with nearby image edge contours.

The central idea behind the alignment approach is to separate the matching
,roblemn into the two stages of i) finding possible transformations from a model

to an linage, and ii) checking those transformations by aligning the model with
thle imge. Much of the power of the approach is derived from the fact that
thes- two operations require relatively different representations of an object.
The best representations for computing a transformation are coarse, local, and
relatively sparse features. In contrast, for verification the best representations
are more complete but less abstract, such as the edge contours of an object.
The approach also minimizes the amount of search in recognition by using the
4nmllest possible number of features to compute a transformation.

The alignment approach extends directly to the problem of recognizing
iion-riirid deformations of objects. A non-rigid transformation is approximated
hy a set of rigid partial matches. These rigid subparts of an object can be
r,,covered at recognition time. In contrast, existing systems that allow for non-
rigid deformations require the rigid subparts to be specified by the object models.

Sonie recent psychophysical data provide confirming evidence of the impor-
tami(n of alignment in recognition. These studies suggest that human recognition

iivolv(-' explcitly rotating a stored representation of an object in order to align it
,itl ;in irmage [TarrSS . One of the strengths of machine vision research has been

tle ;,1ili tv to coniie ilditpendenit computational and biological evidence for a

,Ivoli theorv NIarrS2J. For instance, the development of edge detection opera-
.- - I , tl n othI c llii t iat ional tractability and physiological plailsibility

" ;,irir W. At lidi ,r l ,vels of processing, such as recognition. there has been less
:,',;, .- t rel;i' , 1 iologi,'al systems to coliputational theories. Tierefore it

Introduction 11

is particularly encouraging to find independent support for the importance of

alignment in recognition.

1.1 The Model Based Recognition Paradigm

The model based recognition problem is to find transformations that map stored
models onto their instances in an image. Each transformation specifies a cor-
respondence between a set of model features and a set of image features. The
larger this set of corresponding features, the more likely it is that the trans-
formation correctly matches a model to an instance in an image. Therefore
recognition is generally cast as a search for transformations that match a large
number of model features to image features.

The tasks addressed by most model based vision systems fall into one of
four basic categories. It is generally assumed that objects are rigid, or composed

of rigid subparts. The major differences between tasks are the dimensionality of
the sensor data, of the world, and of the models. Combinations of these three

parameters specify a particular rigid-body transformation from a model to an
image. The four basic tasks and their transformations are given in Table 1.

Data World Model Transformation

2D 2D 2D 2D similarity

3D 3D 3D 3D similarity

2D 3D 2D approx. 2D affine

2D 3D 3D 3D-2D projection

Table 1. The four basic recognition tasks and the corresponding transforma-
tion from a model to an image.

The task in the first row of the table is two-dimensional recognition, where the

mapping from a model to an image is a 2D similarity transform (a translation,
rotation and scale factor). The second task is three-dimensional recognition,
where the data is obtained from a 3D sensor such as a laser range finder or

stereo matcher. In this case the transformation is again a similarity transform,
but in three dimensions. The third task is recognition of a planar object po-
sitioned in three-space from a single two-dimensional view. Here a model and

its image are in approximate 2D affine correspondence (a linear transformation
pls translation).

The final task is recognizing solid objects in three-space from a single two-

(lilensional view (3D from 2D recognition). In this case the mapping from a

Introduction 12

model to an image is the 2D projection of a 3D similarity transform. While 3D
from 2D recognition was one of the first tasks addressed in the machine vision

literature [Roberts65], only a few systems have considered the general problem
[LoweS7] [Thompson871. In addressing each of the three questions posed at the
beginning of next section, it will be seen that 3D from 2D recognition is the

most difficult recognition task.

1.2 Key Issues in Model Based Recognition

Within the model based recognition framework, there are three central questions:

1. What are good features for computing transformations?

2. What is the least amount of search needed to find transformations from a

model to its instances an image?

3. How can it be verified that a hypothesized transformation specifies a correct
match of a model to an instance?

Question one, about good features for computing a transformation, is partially

answered by considering the reliability with which features can be detected. A
feature should be detectable in the presence of sensor noise and partial occlusion
of objects. This eliminates features that encode detailed shape information, be-

cause they are sensitive to noise, and features that depend on global properties
of an object, because they are sensitive to partial occlusion. Many shape rep-

resentations do not meet these criteria [Blum78] [Brady84] [Lowe85] [Bolles82].

Some representations, such as the curvature primal sketch [Asada86], address
these issues for the case of two-dimensional recognition.

To complicate matters, in 3D from 2D recognition the shape of a feature in
an image may be very different from the actual model shape, due to projective

distortion. Thus in 3D from 2D tasks, it is important that the features used to
compute a transformation be relatively stable over changes in the viewpoint of

an object. Most existing shape representations are quite sensitive to changes in
three-dimensional viewpoint. Chapter 5 develops a shape representation where

edge contours are seg -ented at zeroes of curvature. These segmentation points
are preserved under projection, and thus the representation is relatively stable
over changes in viewpoint.

Question two, about how much search is needed to find possible transforma-

tions, depends on the number of features required to compute a transformation
and on the search method. If n features are required to compute a transfor-

mation, then each n-tuple of matching model and image features may specify
a different transformation. Any transformation could correspond to a correct

,m~m mmm~l I I I II| | || I

Introduction 13

match, so the size of the search space is bounded below by the number of distinct
transformations.

Two methods are commonly used to find transformations. The first method
searches for large sets of corresponding features that are consistent with a single

transformation [Bolles82] [Grimson84]. This method generally considers a given
transformation more than once, and thus performs more search than may be nec-
essary. The second method searches for large clusters of similar transformations

rThompson87] [Lamdan87]. This requires searching a large multi-dimensional
c'lustering table. Chapter 3 formalizes the recognition problem, and analyzes

the major search techniques.

The search for possible transformations is further complicated in 3D from
2D recognition tasks. First, certain search techniques [Bolles82] [Grimson84] use
pruning methods that directly compare model measures with image measures.
This requires the dimensionality of the sensor data and the world to be the same,
which is not the case in 3D from 2D recognition. Second, it is more difficult to
solve for a three-dimensional transformation from two-dimensional sensory data
than from three-dimensional data. Chapter 4 presents a new method for com-
puting a three-dimensional transformation from two-dimensional sensory data.
The method requires only three corresponding model and image points, is fast

to compute, and is robust with respect to noise.

Question three, on verifying a possible match, has generally been addressed
by requiring that a transformation match some minimum number of model fea-
tures to image features [Bolles82] [Grimson84] [Thompson87] [Lamdan87]. This

is not always adequate, however, because a number of image features may be
accidentally positioned such that they are consistent with a valid transformation

of a model. For example, the image features on the right side of Figure 2a are
a possible projection of the model features shown on the left. In Figure 2b,
however, the edge contours of the model and the image show that this corre-
spondence does not specify a correct match.

Several factors affect the likelihood of such a false match. If the individual
features are highly distinctive, then an accidental match becomes unlikely. With
the exception of [Bolles82], however, most recognition systems use only a few
different types of features. Features that capture the entire shape of an object
also make a false match unlikely, but most systems use sparse features, such as
coners. 3D from 2D recognition tasks increase the likelihood of a false match,

,,cause a given set of model features can correspond to many different spatial
,rrangements of image features. Finally, cluttered images increase the chance

o)f false matches. Many recognition systems have not been tested on cluttered
imia(ges. and are likely to find false matches in such images. Chapter 2 reviews

Introduction 14

A
* B A

0

C B
a) C

Es D
D

A

b) C B

E ?D

D

Figure 2. A set of image features that are consistent with a model, but where
the edge contours reveal that the match is not correct.

several existing recognition systems in detail.

In contrast with existing model based recognition systems, the method de-
veloped in this thesis verifies a transformation by aligning a model with a hy-
pothesized instance, and comparing the model edge contours to the image. Thus
while transformations are hypothesized using sparse, simple features, verifica-
tion is done by comparing an entire model with an image. Chapter 6 discusses

the implementation of the verification procedure.

The three questions at the beginning of this section form the center of the
investigations reported in this thesis. The remainder of this chapter presents the
specific recognition task addressed in this thesis, outlines how the ORA system
solves that task, and briefly summarizes the other major approaches to model
based recognition.

1.3 The Recognition Task

This thesis addresses the problem of how to recognize objects that are arbitrar-
ily positioned in three-space, from a single two-dimensional view (3D from 2D
recognition). Thus an object has three translational and three rotational de-
grees of freedom, which must be recovered from two-dimensional sensory data.
The input to the recognizer is a grey-level image and a set of three-dimensional
models. The output is all of the transformations that map a model onto an

Introduction 15

instance in the image.

The imaging process is assumed to be well approximated by the "weak

perspective" model presented in the next section. This imaging model approxi-

mates perspective projection by orthographic projection plus a scale factor. It is

further assumed that the transformation from an object to an image is rigid, or

is composed cf a set of locally rigid parts. Unlike existing recognition systems.

however, the rigid parts of an object need not be specified by an object model.

In Chapter 7 two methods are presented for recovering the rigid subparts of a

transformation at recognition time. This allows recognition of objects that have

been bent or stretched in some unexpected manner, as well as objects that can

articulate at certain predefined points.

111W
Figure 3. An object that is not well described by the shape of its occluding

contours.

Recognition is restricted to objects that can be identified by the shape of their
edge contours. Thus an object must have a canonical shape, and must have oc-

cluding contours that are relatively stable over small changes in viewpoint. This

is true of most objects that do not have smoothly changing surfaces. Objects

such as the sculpture in Figure 3 do not meet these criteria, however, because

the shape of the occluding contours changes substantially for slight differences in

viewpoint. Some current work addresses the problem of how to apply the align-

merit method of recognition to objects that have smoothly changing surfaces

[Basri88].

There are relatively few constraints on the kinds of scenes in which objects
('an be recognized. An object can be partly occluded and highly foreshortened,

and the scene can be cluttered. The major limitation on clutter is the perfor-

Mance of the edge detector on images that have many intensity edges in close
proximty. The level of image complexity of interest is illustrated in Figure 1.
wIwro the object to be recognized is the polyhedron near the center of the scone.

I[ut rod II ction 16

1.4 The Imaging Model

In order to recover three-dimensional infoimation from a two-dimensional image.
-i recognition system must model the projection that occurs in the imaging
process. The type of imaging model influences the computational complexity of
the matching algorithm, because it determines how much information is needed
to solve for a transformation from a model to an image. The most accurate
iiodel of the imaging process is perspective projection. As illustrated in Figure 4.
under this model the viewing axis, v is perpendicular to the image plane, I, and
intersects that plane at a point, o. The center of projection, f, is a point along
v such that each point in the world, p, is connected to its image, p', in I, by a
rty passing through f. Two parameters of the perspective model are the focal
[lengthi, which is the distance If - o(, and the location of o in image coordinates.

I

Figure 4. Perspective projection.

Throughout this thesis a coordinate system with the origin in the image plane,
I, and the z-axis perpendicular to I is assumed. In the perspective model, the
origin is at o, and the z-axis is along v.

While perspective projection is an accurate model of imaging, it is relatively
difficult to recover the position and orientation of an object from its image
un1der perspective projection. In general, computing a transformation requires
-ix nlel points ard six corresponding image points [FischlerSl]. The equations
for solving this problem are relatively unstable, and the most successful methods
is,, inore than six points and an error minimization procedure such as least

res [Lo,eST.

If the cainera parameters (the focal length and the location of o in image
',,)r, Iint< ;,irv known. then three corresponding model and image poinits spc-
, ' i to foiur possible' traisforirations from a model plane to the image plane

i-,'tliS!. : '(lid , bject 11iay bw reflected about a model 1 laine. resulting il

*; , !, , ,h.it ibl, transformations. There ar two drawbacks to this

Introduction 17

method of computing transformations. First, a calibration operation is required

to determine the camera parameters. If the camera has a variable focal length

it is necessary to recalibrate whenever the focal length is changed. Second, the
solution method is complicated and involves solving a quartic equation, so it is

relatively sensitive to noise.

In contrast to perspective projection, under orthographic (or parallel) pro-

jection, each point, p, in the world is connected to its image, p', in the image
plane, I, by a ray, P, which is perpendicular to I, as shown in Figure 5. The
major difference between perspective and orthographic projection is that under
perspective projection objects appear smaller when they are farther away. Thus,

if a linear scale factor is added to orthographic projection, a relatively good ap-
proximation to perspective is obtained. The approximation becomes poor when
an object is deep with respect to the field of view, because a single scale fac-
tor cannot be used for the entire object [Horn86] [Thompson87]. For instance,

railroad tracks going off towards the horizon, or objects viewed from very close
up are not well approximated by this model. Orthographic projection plus scale
has been termed "weak perspective", because it approximates perspective well
under most viewing conditions.

p

I

Figure 5. Orthographic projection.

Under orthographic projection all z-positions are equivalent, so under the weak
perspective model there are only two translations, in x and y in the image plane.
Thus, the six degrees of freedom of an object are: a two-dimensional translation,
a three-dimensional rotation, and a scale factor that depends on the distance to
and size of the object. Such a transformation, which preserves relative lengths,

is called a similarity transform. In three dimensions, a similarity transform,
T can be represented as a 3 x 3 orthonormal (rotation) matrix, R, a three-
dimensional translation vector, t, and a scalar, s, such that T(x) = sRx + t, for

any three-dimensional vector, x.

The image coordinates of a model point x under weak perspective are (x, y),
where (x, y, z) = T(x), and the similarity transformation, T, has a translation

Introd uc t ion 18

vctor, t. that is zero in its z-coordinate. In Chapter 4 it is shown that this
transformation can be conrputed, up to a reflective ambiguity, from three corre-
tsonding model and image points. The method only involves solving a second

()r(ler system of two equations, and is relatively robust with respect to noise.
Duc to the computational simplicity of this transformation, the ORA system
u. 's the weak perspective imaging model.

A number of recognition systems [BrooksSla] [Cyganski85] [Lamdan87]

'TliompsonS7] have used the weak perspective imaging model. Unlike the cur-
rent work. however, these systems have not solved the problem of how to com-

pite a three-dimensional transformation directly from corresponding model and
inage points Instead, they either use a heuristic approach to finding a trans-
formation [Brooks8la], store views of an object from all possible angles in order
to approximate the transformation by table lookup [Thompson87], or restrict
reo:gnition to planar objects [Augusteijn86] [Cyganski85] [Lamdan87].

1.5 The Alignment Approach

In this thesis the recognition problem is decomposed into three stages: (i) feature
extraction and perceptual grouping, (ii) solving for transformations that align
mOdels with an image, and (iii) comparing aligned models with an image. This
suction briefly describes each of the three stages of processing in the ORA system.

Initially an image is processed to extract edges [Canny86], and the edge pix-
(Ls are chained into contours. The local curvature of the contours is computed,
anl zeroes of curvature are used as segmentation points. The resulting edge
segments are relatively stable over changes in position and orientation, because

zeroes of curvature are preserved under projection. Locally connected groups
of these edge segments are used to define features for alignment. Each feature
contains either a point and an orientation, two points and two orientations, or

three points.

Pairs or singletons of corresponding model and image points are used to
reoipute possible transformations from a model to an image, using the method

devloped in Chapter 4. Only one or two corresponding model and image fea-
tuires are needed to specify a transformation that is unique up to a reflection.

Each transformation is then used to align the model with the image, by trans-
forming the model into image coordinates.

A tr;risformation is verified by comparing the aligned model edges with im-
;,Jf'frig.. Positive "vidence. such as proximity and cotermination of model and
i:iia ,' ,, is ,1s(L to find edge contours that are accounted for bv a match.

!ci.-,.Sii li as crosiiig nio el and image ed(gs. is use(, to eliminate

Introduction 19

model edge contours that are not accounted for. If more than a certain percent-
age of a model's edge contours are matched, then a transformation is accepted
as specifying a correct match of the model to the image. The verification process
is hierarchical. First local model and image points are compared, and then the
entire edge contours are traced. This speeds up the verification process, because
many matches can be disqualified with a simple check.

The ORA system finds l transformations that map a substantial portion
of a model's edges onto part of an image. In contrast, many existing recognition
systems find only the best match, or the few best matches [Lamdan87] [Thomp-
son87] [Linainmaa85]. Finding the best matches implicitly assumes that there
are one or more instances of an object in the image. Such systems do not really
perform recognition, because it is never decided whether or not an instance is
present.

The central idea underlying the alignment approach is to separate the
matching problem into the two stages of i) finding possible transformations
from a model to an image, and ii) verifying those transformations by align-
ing the model with the image. The reason for having distinct stages is that
the two operations require relatively different representations of an object. The
best representations for computing a transformation are coarse, local, sparse
features. Features that are local and coarse are more reliably detectable than
are fine-scale or global features. Sparse features reduce the number of possible

matches between a model and an image. The best representations for verifica-
tion, on the other hand, are more complete but less abstract descriptions, such
as the edge contours of an object. A complete description of an object may be
needed in order to decide whether or not a transformation is correct.

The secondary ideas behind approach are to reduce the amount of search in
recognition, and to simplify the problem of representing objects. By identifying
the smallest sets of features that are needed to hypothesize a transformation,
the method minimizes the number of transformations that must be considered.
By representing objects as edge contours and features extracted from edges, the
models are very similar to the sensory data. This simplifies the problems of
forming models and matching models to images.

The basic alignment method described in this section has been extended
to the case of non-rigid deformations. A number of recognition systems allow
objects to be represented as a set of rigid parts [Grimson87b] [Brooks8la]. The
alignment method similarly approximates a non-rigid deformation by a set of
locally rigid transformations. The difference is that the rigid parts of an object
can be recovered at recognition time, rather than requiring them to be specified
by the model. In Chapter 7, two different methods are presented for recovering

Introduction 20

the rigid subparts during the matching process.

1.6 Other Approaches

Early recognition systems addressed the 3D from 2D recognition problem. The
pioneering work of Roberts [Roberts65] involved the development of a system
for recognizing polyhedral objects in a line drawing or photograph. The ma-

jor drawback of this system, and of the later ACRONYM recognition system
[Brooks8la], was that a lack of formal specification of the matching process

made it difficult to determine whether failures were due to the feature extrac-
tion or to the matching process. More recent work has formalized the recognition
problem as a search process [BollesS21 [Grimson84]. Within this search frame-
work relatively little work has addressed the 3D from 2D recognition problem
(e.g., [LoweS7] [Thompson87]), largely because many of the measures used to
compare models with images are not preserved under projection.

The recognition problem is generally broken down into three stages: (i)

extracting features fi. m an image, (ii) selecting possible models from an object
library, and (iii) matching the models to the image. The model selection problem

is generally not addressed., and only one model is matched to the image at a time
(some notable exceptions are [Kalvin86] [Ettinger88]). Most of the research
effort in machine recognition has focused on the matching problem, determining
potential transformations that map a model onto an instance in an image.

A number of methods have been proposed for finding possible transfor-
mations. The approaches can be divided into four major categories: (i) non-
correspondence matching, (ii) pruned search of the exponential space of cor-
responding model and image features, (iii) parallel relaxation matching, and
(iv) searching the space of possible transformations, either by clustering or by

explicitly considering the transformations. Non-correspondence matching com-
pares global model and image descriptors, such ac moments of inertia [Teague80].
Pruned search uses relations between pairs of local model and image features to

limit the exponential space of possible corresponding features [Bolles82] [Grim-
son84] [Lowe85I. Parallel relaxation matching is an approximation to the pruned
search for corresponding sets of features [Rosenfeld76] [Davis79]. The space of
transformations is either searched using the generalized Hough transform to find
clsters of similar transformations [Silberberg86] [Thompson87], or by explicitly
checking transformations [Augustcijn86] [Fischler8l]. Chapter 2 reviews certain

key recOgnition systems in each these classes.

The. method developed in this thesis uses small sets of corresponding fea-
t1i!.res to hypothesize possible transformations, and then verifies each transfor-

Int rod uc t ion 21

mation. Thus like method (iv) the search is over the set of possible transforma-

tions. Unlike existing recognition methods, however, the verification procedure
compares an entire object with an image rather than requiring large groups of
matching model and image features. The current approach also identifies the
smallest possible number of features needed to compute each transformation.

1.7 Roadmap

The next chapter discusses some of the research that is relevant to the problems

addressed in this thesis. Several recognition systems are considered, divided
according to the four major methods used to match a model to an image: non-
,orreSpondence matching, pruned exponential search, parallel relaxation, and
.,arch of the transformation space. In addition to discussing recognition sys-

teis, some shape representations are considered. Most of these representations

are concerned with describing objects, rather than recognizing them, and thus

have somewhat different goals than the representation developed here.

Chapter 3 formalizes recognition as a search process, and compares the
comininatorics of the two major methods used to structure the search. The
first method considers the exponential space of corresponding model and im-
age features, and uses pairwise relations between features to prune the search.
The second method considers the possible transformations from a model to an

image. This search space is polynomial, where the degree of the polynomial

depends on the method used to compute a transformation. Clusters of similar
transformations are found using the generalized Hough transform. By modeling
this clustering technique as an occupancy problem, its limitations for 3D from

2D recognition tasks and cluttered images are shown.

Chapter 4 shows that under the weak perspective imaging model, three
corresponding model and image points uniquely define a transformation (up
to, a reflection) that maps a solid object in three-space onto an image. This

result is established in two steps. It is relatively well known that three points
uniquely define a two-dimensional affine transform. It is shown here that a

two-dimensional affine transform uniquely defines a three-dimensional sinilaritv
transform, up to a reflective ambiguity. A partial version of this result has also

been shown in the shape from texture literature [Kanade83]. Based on the result.
a liethod is developed to compute a transformation using three corresponding

imdel and image points, or two corresponding points and orientations. The

I1ethiod involves only second order equations, and is thus fast and robust. Sonic

st irIjat's of the transformation error are also derived.

C(hapt'r 5 discusses the plroblems of feature extraction and(grouping for

lil t r tic ti Ijon 22

r I e"' !lit iol uI alignielrit. A .diajp rejn esenta tiori that is st able over view 1)oliltS
an ~e1 ivsegnliit ilig edge conitoursa inlflect nl point sadathens

'Si4i at -t I aloatth eld
A4 >4'1101 1'""0 l1('"t 1,0ints are zeroes of curvaiture. wh~lich are p~reservedl
idei-r project io n. The edge seginelirs are then used to form p~rimnitive feat ures

-' "Cli as -l i'lht e(lges. ar-cs and corners. Methods are presented for robustly

Cn)I'toitilig local orientatilonl. local curvature and zero crossings from noisy data.

Chiapter 0 describes the ORA (Object Recognition by Alignment) system.

Fo We C'ut ours are segmented at zeroes of curvature in order to yield a repre-

ait muol that is stable over changes in viewpoint. Groups of connected local

1 ~e~ei~ia' (](,lfilli, featuores for alignment. Singletons or pairs of corresponding

110d I t 1(1 imiage featuores an, used to hy pothesize transformnations from a moUel
a(ii1 lii iage. These llvpothleses are thlen verified by comparing thle transformed

1)1 Ic edgoes wvith Ii iage edges. The verific:,t ion p)rocedulre is hierarchical. andl

r' q' mires a good corr-espondence between miodel an~d image edge contours. Each

i iiA'laligumiienit of a mIodel wvithI aimiml call be Compu~lte~ldendtl

if t other, and(thus the technique is well suitedl for implementation on a

ir iv rallel computer such as the conniect*Io mcine.

C(iaiptti: extends thm basic alignment met hod to the recognition of non
ri (Idi: ~formledI objects. A non-rigid deformation is approximated by a set of

h ,rallv rigild alignients. The rigid p~arts of an object can either be specified

k l,(A)Ject mlodel, or can be recovered at recognition time. Two m-lethods
4 , r)ii, the rigid parts of an object are prcsented. The first methodI

lit n(-ittve. starting wvith a coarse mnatch and refining it. The second method
('I)Jlrljne partial matches that are consistent with a single instance of an object.

Chapter 8 discusses some psychophysical results indicating that human
r(U(,1ilitiomi Involves alignment of a stored representation of an object with an

illiaLfe. This dlata supports the separation of matching into distinct stages of
ailignmiieiit and comparison. The results also suggest that people form multiple

represen'1tations of an object, and align an unknown instance with the stored
relpresenta tion that Is at the most similar orientation.

1.8 Major Contributions

This section briefly suiirarizes the main dlifferences between the method (level-
oI -,I here and other rercgnition methods, andl lists the most important results

report ed in thle t hesis.

* T1i, t(ccogii ifl)i mectlhod (leveI(lpd in this t hesis separates matc hing into the

aw(-t(,es- 4: 1 sov for ain alignmient t ra nsfornmat ion, and 1i) coimparinig
1;ill 1iiw(I 'uIlt(1(wit Ii all imlage.

Iit rod uctioti 23

4 Separating matching into alignment and verification stages allows different
info'niation to be used for each stage. Coarse-scale, local, sparse features
are the best representation for hypothesizing a transformation. In contrast,
the best representation for verification is a more complete but less abstract
description, such as the edge contours.

0 Rather than searching for large sets of corresponding model and image fea-
tures, the method developed here uses the smallest possible sets of features
to solve for possible transformations, thus minimizing the size of the search

space.

It is shown that three corresponding model and image points determine a
unique (up to a reflection) transformation mapping a solid model in three-
space onto a two-dimensional image, assuming the weak perspective imaging

model.

* A simple, fast, robust method is developed for computing a transforma-
tion using three matching model and image points, or two points and two

orientations.

0 A shape representation is developed that is relatively insensitive to partial
occlusion and stable over different viewpoints. Sensitivity to occlusion is

minimized by using local features. Stability over viewpoints is obtained by
segmenting edge contours at zeroes of curvature, which are preserved under

projection.

0 The process of verifying whether or not a transformation is correct compares
aligned model edges with image edges, and uses both positive and negative

evidence of a match.

* Non-rigid deformations of an object are approximated by a set of local rigid
alignments. The rigid subparts can either be specified as part of the model,
or can be recovered dynamically at recognition time.

* Modeling the generalized Hough transform as an occupancy problem shows
the limitations of this clustering technique for complex recognition tasks.

* Recent psychophysical studies provide independent confirmation of the im-
portance of alignment in recognitiorn.

Review 24

Chapter 2

Review Of Existing Work

Computational vision is generally divided into low-level, middle-level and high-

level tasks. Low-level vision is concerned with extracting primitive events,

such as image discontinuities, from the sensory data, usually a grey-level im-

age. Middle-level vision involves forming a representation of a scene, usually in

terms of shape or texture primitives. High-level vision interprets a description

of a scene for tasks such as recognition and obstacle detection.

This chapter discusses existing work on middle- and high-level vision that

i-, relevant to the 3D from 2D recogi 7tion task addressed in this thesis. Certain

key recognition systems and shape representations are considered. A brief de-

scription of each method or system is presented, together with an analysis of the

extent to which the results are useful for 3D from 2D recognition. For a more

general review of recognition work see [Bes185] [Chin86].

2.1 Object Recognition Systems

Machine recognition systems structure the recognition problem as one of match-

ing models to an image. The matching process involves determining how models

should be transformed in order to bring them into correspondence with an image.

Recognition systems can be divided into two classes according to how possible
transformations are determined. Systems in the first class compute global prop-

erties of an image (such as moments of inertia) and use matching model and

image properties to solve for possible transformations. These systems gener-
ally cannot recognize scenes with multiple objects or partially occluded objects,

because of the dependence on global image properties.

Recognition systems in the second class use corresponding model and image
features to recover possible transformations from a model to an image. These

systems can generally handle multiple objects in an image, as well as partially
visible objects, because the features are local. A single feature generally does not

contain enough information to solve for a transformation, however, so groups

of features must be used. Thus systems in this class may need to perform a

substantial amount of search in order to recover a transformation.

Three major methods have been developed for using corresponding model

atil iriige features to find transformations from a model to an image. These

lilI ~ i i I Il i a II I • I I II I

Re' iew 25

methods are: (i) pruned search, where the exponential set of possible correspond-

ing model and image features are considered, but pairwise constraints are used
to limit the search, (ii) parallel relaxation, where a suboptimal local procedure
is used to find possible corresponding sets of features in polynomial time, and
(iii) searching the polynomial space of possible transformations from a model to
an image.

Many recognition systems address tasks where the dimensionality of the
sensory data and the world are the same. These systems generally rely on the
ability to directly compare model and sensor quantities such as distances and
angles, that are not preserved under projection. Thus such systems cannot be
applied to 3D from 2D tasks in any straightforward manner. The discussion of
each system points out any such limitations for 3D from 2D tasks.

The remainder of this section is divided according to the four major classes
of systems just identified: non-correspondence matching, pruned exponential

search, parallel relaxation, and search over transformations. The problem of
selecting models from a large object library is also briefly considered.

2.1.1 Non-Correspondence Matching

Non-correspondence matching involves finding a transformation from a model to
an image without first determining the correspondence between individual parts
or features of the model and the image. Instead, global features of a model
and an image are used to compute a transformation. The major limitation of
the approach is that an object must be completely visible in an image, and the
object must be isolated from other objects. That is, either there may only be
one object in the image, or the image must be segmented into "subimages" of
isolated objects. Thus non-correspondence methods are not well suited to the
recognition of complex scenes with multiple overlapping objects.

Most non-correspondence approaches to recognition involve computing a
parameter vector from an image, and then comparing the image vector to model
vectors in order to find the best matching model. The parameters are generally

functions such as Fourier transforms or moments of inertia computed from the
entire image. Objects must generally lie in a known plane, so that the recognition
task is two-dimensional. Much of the work on non-correspondence methods has
focused on the problem of identifying parameters that are invariant to planar

translation, rotation, and scale of an object [Teague80]. Non-correspondence
matching using parameter vectors has also been applied to recognizing ob-

jcts with three-dimensional positional freedom using three-dimensional data

[SadajiS0].

|Heview 26

A different approach to non-correspondence matching has been investigated
b% Cyganski and Orr [CyganskiS5]. They consider the task of recognizing planar
bjects with arbitrary three-dimensional position and orientation from a two-

dimensional view. A two-dimensional affine transformation mapping a model

plane, to an image plane is solved for using tensors computed from the image.
An affine transform T : x - x' can be represented by a nonsingular n x n matrix

L and a vector b such that x' = Lx + b for any n-dimensional vector x. The
transformat ion can represent translation, rotation, scaling and shearing from one
plane to another. The tensors used for computing the transforniation are based
oiln moments of inertia, which are global measures of the image. Thus, like other
non-correspondence approaches, the method . only applicable to recognizing
totally visible objects, in images containing an isolated object.

Cyganski and Orr also prsent a method for recovering the three-dimensional
position and orienttion of a model plane with respect to an image, given the
;iAfine transform mapping the model to the image. First the model is translated
in x ,)a y according to the translational component, b, of the affine transform.
. scale factor is used to model the z translation, assuming that the absolute size
of the, ob)ject is known. The scale factor, K, and the rotations a, /3, and - about
rhie J'. y. and z axes, respectively, are computed from the linear transformation

nlatrix. L. The derivation is not presented, and no argument or proof is given
that a s(,lution necessarily exists, or is unique.

The method, however, does not yield the correct scale or orientation. For

example. with L equal to the 2 x 2 identity matrix, the three rotations a, 0,
and _, should all be 0, and the scale factor, K, should be 1. The equations
do give o = 0, but the scale factor K is also 0. The second two rotations
are then undefined, because of division by zero. Even in cases where K :# 0,
the comnputation of K is still incorrect, and hence the second two rotations

which depend on K are alz. , incorrect. The derivation of the equations is not
presented or explained, so it is difficult to determine where the problem lies.

The experimental results shown in the paper do not recover three-dimensional
position and orientation, so apparently the method was not implemented.

2.1.2 Pruned Search

A number of object recognition systems use pruned search to hypothesize poten-
!i,I trIansformations from a model to an image. These systems start by finding

p !ssile matching pairs of model and image features, and then search for sets of
tlies,, pair, that are consistent with a single position and orientation of a rigid
,ljct. In the last few years, there has been a imajor shift in how systems of

ti ,'l:.u st.;,rci for possible correspondences. Earlier systems used a set of rules

Review 27

or heuristics to try certain (generally local) combinations of features in order
to find correspondences. These search techniques were incomplete, in that only
certain correspondences were considered. More recent work has formalized the
search process, and has developed pruning techniques that can guarantee that a

correct solution will not e missed (within a specified error range). These meth-

ods (1o not search the ente space, which is exponential in the number of model

and image features, because they prune away locally impossible combinations of

features.

Heuristic Pruning

The pioneering work of Roberts [Roberts65] involved the development of a
system for recognizing polyhedral objects in a line drawing or photograph. The

major limitation of the system was its reliance on finding complete convex poly-
gons, which is unrealistic both in the face of noise and occlusion. The recognizer

recovered the three-dimensional position and orientation of a polyhedron using
quadruples of corresponding model and image features, under an imaging model
similar to weak perspective. The features were vertices, which were classified
according to the number of sides in the visible polygons to which the vertex
belonged. For instance, each vertex of a cube would be labeled (4,4, 4), because
it belongs to three faces of four edges each.

Roberts proposed a relatively complex imaging model, where an object

had 15 possible degrees of freedom: 3 translations, 3 rotations, 3 scale factors,
3 skew deformations and 3 perspective deformations. In actuality, he used a
simpler model where perspective deformation was not allowed. Furthermore,

skew deformations were found to be numerically unstable and were thus also
eliminated. This left 2 translations (because z position is undetectable under

orthographic projection), 3 rotations and 3 scale factors. Using an equation
counting argument, he argued that four or more point correspondences are suf-

ficient to solve for this because there are eight degrees of freedom. There are
cight nonlinear equations in eight unknowns, however, so a more sophisticated
argument is necessary to guarantee the existence and uniqueness of a solution.

The system searched for four pairs of corresponding model and image points
by starting with a given pair of model and image vertices, and then following
O.dges in the model and the image to form additional vertex pairs. In other

words, the heuristic for limiting the space of possible correspondences was to
c(onsider only those sets of vertices connected by edges. This is why the system

(lpo'nded critically on finding closed polygons in the image. Once a consistent

set of four points was found, the model was transformed and it was verified that
th, uiodel points all fell within the object's external boundary. If there were

rflrre" than four corresponding point pairs, a least squares method was used to

Heview 28

determine a more accurate estimate of position and orientation.

After Roberts, recognition work moved away from considering real images,

and instead focused on line labeling, abstract shape representations, and recog-

nizing hand segmented scenes [Marr78] [Barrow76]. Systems that worked with

real images tended to address lower level tasks such as edge detection (MarrSOl.

ACRONYM [Brooks8la] was the first recognition system that was designed

to operate on noisy and incomplete image representations. Previous systems had

assumled that a good line drawing or an accurate segmentation of an image could

be obtained by lower level processing. Repeated attempts to develop reliable

al-gorithms for these tasks led Brooks to conclude that dealing with noisy image

data was an inherent part of the recognition task.

ACRONYM used the weak perspective imaging model of orthographic pro-

jection plus a scale factor. The system had parameterized models that could

represent classrs of objects diffe-ring in the size, position, or orientation of sub-
parts. The mnodels were volumetric, being composed of generalized cylinders

[Nevatia77]. A generalized cylinder is a specification of volume given by a spine

function and a cross-sectional sweeping function. The underlying philosophy of

the system was to predict how a generalized cylinder model would appear in

all image given a partial restriction on position and orientation. The prediction

was then compared with the image and used to further constrain the position

and orientation estimate.

Like Roberts' system, ACRONYM performed an incomplete search, using

certain pairs of model and image features to predict the position and orientation

of other features in the image. If the predicted features were found, they were

used to refine the estimate of the position and orientation of the object. An

initial hypothesized match of a model feature with an image feature was used

to constrain parameters of the model, such as its position, orientation, size, etc.

Then additional features were used to tighten the constraints, or to discard the

hypothesis if the constraints were inconsistent.

The constraints used in ACRONYM were conjunctions of algebraic inequal-

ities. These sets of constraints were not solved, but rather were used to limit the

possible configurations of the model. Thus, the constraint manipulation com-

ponent was designed to decid- whether a set of constraints was satisfiable, and

to estimate bounds on the values of the expressions. The decision procedure

for determining the satisfiability of a set of constraints was only partial, and

it was not shown which classes of inconsistent constraints were undetectable.

The decision procedure was also exponential in the number of variables in the

constraint equations.

The procditire for estimating bounds on the values of expressions, such a,

tReview 29

position and orientation, often produced very loose estimates because of the diffi-
culty of solving certain equations. For instance, projection of objects rotated out
of the plane involves coupled sines and cosines that were treated independently

and thus gave very pessimistic bounds. Composition of unknown rotations could
not be estimated at all. Thus the system was limited in its ability to recognize
objects with a full six degrees of positional freedom. In fact, the system was
evaluated using aerial photographs, which are essentially two-dimensional in

nature.

Goad [Goad86] describes a recognition system similar to ACRONYM, in
that certain model features are matched to image features and used to constrain
the possible positions of other model features in the image. The system differs
from ACRONYM in two significant ways. First, quantitative limits on possible
positions and orientations were computed, as opposed to ACRONYM's symbolic

qualitative solution. Second, the possible positions and orientations of each
model feature were pre-computed for each range of positions and orientations
of every other model feature. These values were stored in a table, and used at
recognition time to quickly check if a given model and image feature pair was
consistent with other pairs.

In addition to using precomputed values, a set of search trees were pre-
compiled for recognizing an object given an initial matching pair of features.

These trees specified which model and image feature pairs to look for next, as
well as their possible positions and orientations. Thus substantial offline effort
was used to save time during recognition.

Goad made several simplifying assumptions about the recognition task. The
object to be recognized had to be totally visible, and there could be very little
foreshortening. The latter limitation was due to the assumption that lengths do
:ot -hange with rotation out of the image plane. Thus an object was limited to
undergo basically two-dimensional rotation and translation. This was necessary
in order to allow distances and angles measured in the 2D image to be compared

with distances and angles in the 3D model, before having recovered the three-
dimensional orientation of the object. Finally, the distance to the camera had
to be known, at least approximately (within a factor of 2).

Local Constraints

The Local Feature Focus (LFF) system [Bolles82] was the first recognizer
to express recognition as a complete search, with no heuristic rules for limiting
the space of possibilities. Given a set of pairs of model and image features,

.5 {(rn. i.)}, the task is to find the largest subset of S that is consistent with
i.icle position and orientation of the model. In other words, the largest set of

f5,ti-ir", C' C S, for which there is a single transformation, T, that maps each

Review- 30

ijodel feature onto its corresponding image feature, C = {(M j, Ik)IT(mj) = ik I.

Thus, unlike previous systems, LFF's search technique was guaranteed not

to miss a correct solution. LFF used a small number of distinctive features to
perform t wo-dimnensional recognfition of overlapping and partially visible objects.
A lat,,r system, 3DPO [BollesS6], used the same method and a larger feature set
t (1, 3D from 3D recognition. The two systems use basically the same method.
s() they will be considered as one.

LFF formed a graph with each pair of model and image features, (ni, .k).
corresponding to a iode in the graph. Two nodes in the graph were connected by
a;i arc if they specified feature pairs that were consisteiit with a single position
NIA (orientation of the model. Thus all ISI x ISI feature pairs were considered.
anI those pairs that were consistent formed arcs of the graph. The maxiiimim
clique of this graph was then computed to find the largest consistent set of model
and image features. This set of features was further checked to ensure that it
w;s glob),ally consistent with a single transformation, T, because the graph only
(encodes pairwise consistency among the nodes. If a sufficiently large feature set
was found to be globally consistent, then the model was successfully matched
to the image.

There are two major ideas underlying LFF: to use local features with rela-
tively distinctive labels, and to find the largest sets of model and image features
tlh at -re pairwise consistent with a single position and orientation of a rigid ob-

jct. Local features were used to minimize problems with occlusion and partial
visility. Each feature was labeled using a cluster of nearby features, in order
to linit the number of matching model and image features.

Certain distinguished features were chosen as focus features, and then clus-
t(.rs (of neighboring features were used to label these focus features. The labels
were of the form "a corner with a neighboring hole in direction v at distance d'.

In an image with nearby or occluding objects, however, this grouping technique
ran produce feature clusters that come from multiple objects. Such clusters will
riot. in general, correctly match model clusters. Thus the use of proximity for
grouping can cause a correct match to be missed.

After extracting image features, the set of matching features, S, was formed
by pairinig together model and image features having the same label. The graph
strucituire was then foirmed with one node for each pair in S, and with pairwise
consistent nodes connected by arcs.

The consistency of two nodes was checked by comparing the distance and
a iigle t,. w.en the two model features with the values for the two image features.

If th (liffer uceswe re within an allowable error range, then the two nodes might

., id to a, single position and orientation of an object. Consider two model

Review 31

features each defining a point, am and bin, and an orientation vector, am and bin,

respectively, and two corresponding image features defining the points ai and bi

with orientation vectors ai and bi. In order for the two pairs of corresponding

fcatures to be consistent, the distance ai - bil must be nearly equal to lam - bm I.
Similarly the angle between ai and bi must be nearly the same as the angle

between am and b,. The allowable distance and angle ranges between each

pair of model features were precomputed, so that consistency could be checked

by table lookup.

One limitation of the technique is that distances and angles measured in the

sensory data must be comparable with those in the model. Thus the measures

used are not applicable to 3D from 2D recognition, where there is projection

from the world into the image.

A maximum clique of the graph corresponds to the largest set of model and

image features that are pairwise consistent with a single position and orientation

of a rigid object. The maximum clique problem is NP-complete, so all known

solutions are exponential in the size of the graph. Experiments with LFF and

3DPO, however, demonstrate that the graphs are sparse enough that the search

time is not prohibitive for moderately complex images.

Grimson and Lozano-Prez [Grimson84] [Grimson87a] have developed a

recognition system called RAF (Recognition and Attitude Finder), that is simi-

lar to LFF, in that it searches for a maximally consistent set of model and image

feature pairs. Like LFF, the RAF system uses pairwise distance and angle re-

lations between features. The relations are the distance between features, the

angle between features, and the components of the distance in the directions of

orthonormal basis vectors. Grimson and Lozano-P~rez have shown that these

relations contain all the pairwise distance and angle information relating two

features. In other words, any other pairwise distance and angle relations can be

expressed in terms of this set.

Unlike LFF, the RAF system does not use information about the identity of
features to form pairs of model and image features. Instead, each model feature

is paired with each image feaure. The philosophy of the RAF system is that

rio reliable information about feature identity can be extracted from an image,

only information about the geometric relations between features is useful.

RAF structures the search for a maximally consistent set of model and im-
age features as an exponential tree search rather than as a gTaph search. A given

lovel of the tree pairs one of the image features with each model feature, plus a
special model feature called the null face. The null face branch indicates that

the image feature doesn't match any model feature. This allows the matching

p~roess to handle sensory data that is not due to the object.

I ' e,'w 32

The tire is searched depth first fol complete paths. A node may be added

to ap ith only if it is consistent with the other nodes on that Iath. In the case of

iU iil*0,sisttilt no(de, all paths below that in the tree are pruned away from the

SeatCoh space. In order for a no(de, Ilk+l, specifying the feature pair (mk+l, 'k+l),
to 1), consistent with the other nodes 71,, j = 1, . . . , k on a path, the distances

11(1 aIgles between Mi and Wk+l must be within the specified error bounds of
th, distance, and ang'les between i; and 1 k+l for each 1, . . . , k. The allowable

,l-taijce and angle ranges for each pair of model features are precomputed, so

the cinsistency check is simply a table lookup.

A , iilplete path, from the root to a leaf of the tree, constitutes a consistent
se.t of iodel aid image features. Such a path assigns each image feature to sonie
in,,del feature or to the null face. A path only ensures consistency among all
,,irs o)f niodes along the path. Thus the verification stage checks for global

,',Il1-t'lCV by solving for a rigid body transformation that maps the model

fi,;t ur,. of each n<i(le onto its corresponding image feature. The RAF system has

I,,,: denionstrated on a variety of recognition tasks, and performs well in the

"'Cse 'ce Of noise and occlusion. Like LFF, the distance and angle constraints
a r1ot applicable to 3D from 2D tasks.

The. HYPER system of Ayache and Faugeras [Ayache86] is a 2D recognition
svsteim that similarly structures recognition as a search for consistent sets of
lmodel aid image features. HYPER models objects as polygons, and forms a
liear aipproximiiation to the edges in an image. The matching process starts
hy inatching a "privileged" model segment against compatible image segments.

A privileged segment is one of the longer segments in a model. A model and
ili ge segmnent are compatible if the angle between the model segment and its

ieighboring segment along the contour is similar to the angle between the image
segment and its neighbor.

A single matching model and image segment contain enough information
to solve fir the transformation from a model to an image, since the task is two-

dinisional. This assumes, however that the model and image segment were
both accurately extracted from the image, with no occlusion or edge finding

error. An hypothesized transformation is then checked by transforming model

se,xncits, starting with those near the initial matching segment, and determining
if any model segments match image segments. When matches are found, the
estimate of the transformation is refined. Nearby features are used to extend
thei match because error in estimating the transformation is less of a problem

c ly l t han globally.

While it is possible to extend HYPER to 3D from 3D recognition, the ex-

t, ,lsiv,, us. ')f dli:stamce and angle relations would make it difficult to apply to 3D

Review 33

from 2D tasks. The major limitations of HYPER are the reliance on privileged
segments to start the matching process, and the use of a linear approximation
to edge contours. The recognizer depends on a given segment being at the cor-

rect position and orientation. For smooth contours, however, the positions and
orientations of the linear segments approximating a contour can vary substan-

tially, depending on where along the contour the segmentation starts, and on

the amount of sensing error.

3D from 2D

Recently, VanHove has extended the tree search method developed in RAF
to the problem of recognizing solid objects from their silhouettes [VanHove87],
which is a restricted 3D from 2D task. The idea is to take a three-dimensional

model and project it into the image at all possible positions and orientations,

and use then these projections to determine the allowable distances and angles
between features. Thus, rather than having a single range of allowable distances
and angles for each pair of model features, there are a set of allowable distance
and angle ranges, each of which has a corresponding set of viewpoints for which

it is valid.

The tree search proceeds in the same fashion as for RAF, except that the
process of checking whether a given node is pairwise consistent with the other
nodes on a path includes a check that the viewpoints are consistent. Experimen-

tally, these constraints appear to be powerful enough to substantially prune the

search space. Thus far, however, the system has only been tested on synthetic
images of isolated objects.

One of the drawbacks of the silhouette recognition method is that the model
formation process is complicated (although it is done offline) and the resulting

models may be quite large. Another limitation is that the imaged size of an

object must be known in order to compare model distances with image distances.
Thus an object must be of a known size and at a known distance in order to be

recognized.

The SCERPO system [Lowe87] uses the pruned search framework to address
the 3D from 2D recognition problem under perspective projection. Similarly to
the systems just discussed, SCERPO looks for a subset of the possible model and

image feature pairs that is consistent with a single position and orientation of a

rigid object. The major difference is that the viewing model includes perspective
projection, and thus the consistency check is a relation on the whole set of model
and image pairs, rather than a pairwise relation.

The imaging model includes projection, so it is not possible to simply com-

pare model distances and angles against image distances and angles in order to
determine consistency, because distances and angles are not preserved. Instead,

1 [", W, 34

i ,cesarv to check whether a set of model and image points specify a valid
)(-iti m)i and orientati(i of the object. Solving for position and orientation un-

dl Jerspective projection requires up to six pairs of model and image points

*Fichiler~1]. Thus in general imany more possibilities will be considered than in

tlit twex'i; .ystei us, because no pruning can be done until at least six point

pairs are obtained (or four in the case that they are coplanar).

lit SCERPO. objects are modeled as polyhedra, and the initial processing

()f an image forms linear approximations to the intensity edges. Primitive edge

s(giii uts are grouped together into features such as (nearly) parallel lines and

corners (proximate edges). Only model and image features of the same type are
tiaired by the matching algorithm. The use of proximity grouping makes the

y~teii sensitive to the presence of neighboring and occluding objects, because a

-I ,le image "feature" may be formed from parts of two different objects. Such

f;, ures will not correspond to a correct interpretation of the image.

The use of approximate parallelism for feature formation restricts SCERPO
to 'as where perspective distortion is not significant, because perspective pro-

J',io I()I (,,es not preserve parallelism. Thus it would be faster to solve for posi-
'1o)n and o(rientation under weak perspective rather than under full perspective.

1,)cc ie the grouping mechanism already restricts recognition to this case.

SC'ERPO's recognition algori thin starts with an initial guess of the position
auwl orientation of an object. Newton-Raphson iteration is used to solve for
po,,sition and orientation, so the initial guess must be relatively good for the
niethod to converge. In order to provide a reasonable initial guess, SCERPO
ulses o1ly those groups of image segments that are composed of at least three
line segments. This generally leaves only two degrees of freedom, making the
Illumber of alternative positions for each initial match tractable. Relying on
edge triples makes a strong assumption about the data, however, and leaves the
system quite sensitive to noise and occlusion, because local triples of edges may

not be found.

SCERPO's recognition algorithm proceeds by using the current estimate of
the transformation to find model features with a single possible corresponding

miage featutre. These features are then added to the set of correspondences, and
an impro)ved estimate of the transformation is computed using an iterative least
sqlares method (Newton-Raphson iteration). Six pairs of points are generally
nelded to solve for position and orientation, so to verify a match requires at
l.st :,even distinguishable points on the object to be visible in the image.

Ii this section we have seen several systems that search for the largest
,'vistedt sets of model and image features. While the size of this search space

f'xt,,,mi#,lIti;i in the iiliiiilwr of model and inage features, the space is pruned

Review 35

using relations such as the distance and angle between points. Bounds on the
amount of search required are considered in the discussion of recognition as
search, in Chapter 3.

2.1.3 Parallel Relaxation

Relaxation is an approximation technique that uses a local function to iteratively
approximate a global function. The computation is local, so all the work of one
iteration step can be performed in parallel. Relaxation methods have a large
number of applications, but in the case of recognition [Rosenfeld76] relaxation
is generally used as a suboptimal graph search algorithm.

A graph is constructed with nodes representing pairs of model and image
features, and with edges connecting pairs of nodes. The edges are weighted
according to the degree to which two nodes specify a consistent match of model
and image features. The graph is similar to the one used by LFF [Bolles82],
with the addition of weights on the edges. If the weights are all zeroes and ones,
with a zero indicating an inconsistent pair and a one indicating a consistent pair,
then the graph is equivalent to the one in LFF. Recall that in LFF a maximally
consistent set of model and image features corresponds to a maximal clique of
the graph. Similarly for relaxation graphs, a highly consistent set corresponds to
a subgraph with high weights connecting all the nodes in the subgraph together.

One means of determining weights for the edges in a graph is to use a
spring model [Davis79]. The weight corresponds to the inverse of the amount of
stretching necessary for the two image features to match the two model features.
If the stretching is too large, then no edge connects to two nodes.

The parallel relaxation algorithm works by removing those nodes (or alter-
natively those edges) for which some local evaluation function is below threshold,
and iterating until no node falls below the threbsold. The remaining connected
components of the graph are subgraphs with relatively high weights connect-
ing the nodes. These subgraphs correspond to highly consistent sets of model

and image feature pairs. Like the maximum clique algorithm, the method only
utilizes the pairwise consistency of the features. Unlike the maximum clique
method, however, the sets of features are not guaranteed to be maximally con-
sistent. Rather, they are locally good sets, with goodness determined by the
evaluation function.

Parallel relaxation can be viewed as an approximation technique to the
exponential problem of finding a maximally consistent subset. The question is
how well the particular local evaluation function works.

I iev Iw 36

The niaxinum number of iterations is one per node in the graph, because

thre is always at least one node removed at each iteration, or 0(712) for n model

and n image features. A given iteration considers each of the 0(n2) nodes, so

the overall runtine is 0(n 4). This is much better than the exponential time for

finding maximal cliques, but the technique is suboptimal.

2.1.4 Searching Transformation Space

Rather than searching for sets of model and image features that are consistent

wit!) a transformation, there are several recognition systems that search the

,,pacc of possible transformations. Any n-tuple of corresponding model and im-

ag, features can specify a transformation from a model to an image, where n

d(pen(ls on the recognition task. For instance in 2D recognition, two correspond-

ing Model and image points are sufficient to solve for position and orientation.

One point is used to translate a model, and the second point is used to rotate

and scale it.

Each n-tuple of features defines a possible transformation, so the search

space is polynomial, in contrast to the exponential space of corresponding fea-

tures considered above. The majority of recognition systems that search the

space of transformations compute all the possible transformations from a model

to an image, and use the generalized Hough transform to find clusters of simi-

lar transformations. A cluster of similar transformations is unlikely to arise at

random, so a large cluster is taken to correspond to an instance of the object

in the image. The limitations of this clustering technique for recognition are

considered in Chapter 3.

A few systems explicitly search the space of transformations, computing

a possible transformation and then verifying that the transformation is correct

[Fischler81] [Augusteijn86]. This is the same kind of control structure as used by

time ORA system developed in this thesis. Unlike ORA, however, these systems

look for large sets of corresponding model and image features, rather than taking

using different kinds of information for alignment and verification. In addition,

the systems use various heuristics to limit the search space.

Silberberg, Harwood, and Davis [Silberberg86] use the transformation clus-

tering approach in a restricted 3D from 2D recognition task. The camera model

is known. and the objects are polyhedra of a known size that are resting on a

slmport plane at a known distance and orientation (slant and tilt) with respect

to time camera. Thus there are only three degrees of freedom: two translations

and one rotation.

Ami nimage is processed bv a Sobel operator, and then linear edge segments

Review 37

are found. The recognizer pairs each comer in the model with each junction of
edges in the image. For each such pair, an estimate of the three free transfor-
ination parameters is computed. The method of solving for the transformation
may produce zero, one, two or an infinity of solutions. If one or two solutions
are obtained then they are used as estimates of the transformation, otherwise
the pair is discarded.

By using only corners, this recognition algorithm is restricted in its ability

to recognize objects in noisy images and with substantial occlusion. In addition,
edge detectors are least reliable at corners, because of the change in direction of
the gradient. The method does not extend easily to non-polyhedral objects, be-
cause in a linear approximation to a smooth curve the locations of the "comers"

are relatively unstable.

The estimated transformations are clustered using the generalized Hough
transform, where quantized values of the transformation parameters serve as in-
dices into a three-dimensional table. The table entries with the largest number
of elements are taken to be the best possible transformations from the model to
the image. For each table entry whose count is maximal, the averaged transfor-

mation in that cluster is used to project the model features into the image. Then
every projected model feature is paired with the best matching image feature,

and a revised estimate of the transformation is computed.

The limitations of this clustering technique are twofold. First. true peaks
in transformation space tend to be flattened out by the bucketing operation.
If there are only a small number of correctly located corners, the "peaks" will

not be distinguishable from the incorrect pairings. Second, the method extends
poorly to tasks with more degrees of freedom, because each transformation pa-

rameter is a dimension of the lookup table, and the size of the table rapidly
becomes unwieldy. In this task the number of buckets is about 10', but for a
six degree of freedom problem it is on the order of 10'. These problems are
considered in detail in Chapter 3, in the section on transformation clustering,
where the generalized Hough transform is modeled as an occupancy problem.

Six degree of freedom transformations

Several systems have applied the technique of transformation clustering to
the full six degree of freedom 3D from 2D recognition problem. One system

[Linainmaa85] uses three connected vertices to define triples of corresponding
model and image points. Similarly to the previous system, a vertex is defined to
be the intersection of two linear segments in the image. The need to find triples

of vertices connected by edges makes the system sensitive to noise and occlusion
in the image.

A triple of corresponding model and image points is used to solve for the

Rew 38

position and orientation of an object under perspective projection. There can be

11) to four distinct solutions to this problem [Fischler8l]. For a solid object there
is an additional reflective ambiguity about the plane defined by the three model

points, yielding a total of eight possible transformations. The method presented

for computing the transformations is complicated, and involves solving a quartic

equation.

The full six-dimensional transformation space is too large to search ;o only

the translation component of the transformation is used for clustering. This

greatly exacerbates problems with false peaks and missing true peaks in the
clusters. The method was only tested on relatively simple images with few

features, so limitations of the clustering method did not become apparent.

Another system that uses clustering for 3D from 2D recognition has been
developed by Thompson and Mundy [Thompson87]. This system uses the weak

perspective apintoxirnation to perspective projection. Thus the six parameters
of the transformation are 3 rotations, 2 translations anda scale factor.

The six-dimensional transformation space is too large to search for clusters,

so Thompson and Mundy collapse the space onto the two rotation parameters
about the x and y axes. That is, when searching for clusters they only consider
transformations corresponding to large clusters in this two-dimensional rotation

space. Then these transformations are filtered by clustering using the remaining
four parameters of the transform.

The system uses a feature called the vertex pair. A vertex pair is two
vertices where the base vertex specifies a position as well as the orientation of
the two edges leaving the vertex, and the second vertex specifies only position.

Vertices are defined at the intersection (or almost intersection) of two edges.

Edges are linear approximations to the intensity edges in an image. The two
vrtices of the vertex pair need not be (and generally are not) connected by an
edge. Thus the system uses a feature that is relatively robustly detectable in the

image. Furthermore, the two vertices can be far apart, providing a relatively

stable estimate of position and orientation.

Thompson and Mundy argue that the problem of solving for a transforma-

tion involves higher order equations, and would require iterative approximation

methods. Therefore, rather than solving for a transformation they use object

models that explicitly encode every possible orientation of an object. As will be

seen in Chapter 4, however, there is a simple closed form solution to the problem

as long as each feature defines three non-colinear points.

A model isJormAed by positioning an object at all possible orientations,

saipled cvery 5 degrees, and orthographically projecting each vertex pair into

th, .7- - y, J)l;,fl. Onl the two rotatioi.s out of the plane change distances and

Review 39

angles, so there are 72 x 72 = 5184 possible orientations to consider. A table
is formed that maps the (quantized) planar location and angle of each vertex

pair at each model orientation to the actual vertex pair and the 3-dimensional
poztioiL. Thcsc modc! tables are relatively large (about 21K words for each

vertex pair in the model), and the positional accuracy of recognition is limited

to at best 5 degrees.

At recognition time, each vertex pair in an image is used to index into the

model table, and the possible model orientations corresponding to that vertex
pair are recovered. The quantized values of the x and y rotation parameters

are used to cluster similar transformations. Those transformations that are in

large clusters are then further discriminated by clustering using z-rotation, and

finally are clustered again using translation and scale. Transformations that are
in large clusters in this final space are taken to correspond to instances of an
object in the image. The initial clustering based on two parameters is intended
to reduce the number of different clusters that must be considered. The analysis

in Chapter 3, however, indicates that very few possibilities are eliminated by
the initial clustering.

Lamdan, Schwartz and Wolfson [Lamdan87] recently developed a clustering
method for recognizing rigid planar objects with arbitrary three-dimensional
position and orientation. Their algorithm uses triples of points in a model and

an image to find an affine transform mapping the model plane to the image.
The computation is closely related to a precursor of the method developed in
this thesis, which was restricted to recognizing planar objects [Huttenlocher87].

The major difference is that Lamdan et. al. use a clever technique to perform
some of the work offline, so the worst case runtime of their algorithm is better
(other than for very complicated images).

Lamdan et. al. note that three non-colinear points define an origin, 0, and
two linearly independent vectors, el and e 2, in terms of which any (coplanar)
point, p, can be written as (xel, ye 2). By definition, a point p' = A(p), where

A is an affine transform, will have the same coordinates (x, y) in terms of the
new basis 0', e', e2, obtained by applying A to O, ei, and e2 . In other words
any three (ordered) non-colinear points in a set of coplanar points form an affine

basis, which can be used to express the set of points in a fashion that is invariant

under affine transformations.

In their system, a model is processed so that each ordered non-colinear

triple (affine basis) of the m model points is used to express the coordinates of
the other model points. Each transformed coordinate is quantized and used to

index into a hash table, where the basis triplet (and the model in the case of
Irililtipie models) is recorded. This preprocessing takes O(m 4) time, and is done

I% (' iw 40

offine.

Recognition consist- of taking an ordered non-colinear triple of the i image

points and using it as the affine b-,is for tlt otihr image points. Each image

point is expressed with respect to this basis and used to index into the hash
tabl, in order to retrieve the model affine bases that are stored in that table
entry. A tally is kept of how many times each model basis is retrieved from the
table. A basis that occurs many times is unlikely to occur at random, and is
hience taken to correspond to an instance of the model in the image. A threshold
is used to determine whether a given model basis was retrieved sufficiently many
times to correspond to an instance of the model. Every triple of image points

may nee(1 to be considered, so the algorithm ha., a worst case running time of
0i

4).

In contrast, the algorithm presented in [Huttenlocher87] for recognizing

lIanar objects has a worst case running timw of O(m 4 i3), because each triplet of
model and image points is used to compute the transformation from the model

to the- image, aad to verify a transformation each of the m model points is
tr;,nsformed. Thus. when m 4 > i (for all but very complicated images), the
preprocessing performed by Lamdan et. al. improves the worst case running
time over the one in [Huttenlocher87].

Lamdan et. al. argue that their algorithm has a probability of succeeding of
I - e in time 0(i). This argument, however, is based on there being a constant
ratio d where i is the number of points in the image, and k is the number
of points visible on the instance of the object in the image. In other words,
the object must take up a constant percentage of the image, regardless of the
complexity of the image, which is not a valid assumption in general.

It should be noted that the affine basis hashing technique is limited to planar
models, because a two-dimensional affine basis can only be used to transform
a coplanar set of points. Thus the preprocessing techni'que does not have a
straightforward extension to the recognition of solid objects.

Explicit Search

A few systems consider the space of possible transformations by explicitly
checking each transformation. An n-tuple of matching model and image features
is used to compute a transformation, that transformation is used to map each

model feature into image coordinates, and the number of model features that
match image features is determined. If more than a certain number of model
features are accounted for, the match is accepted. Systems in this class generally
,Carch for the first transformation that passes the threshold, and use various

heilristics to limit the search space.

The RANSAC system [Fischler8l] uses small sets of corresponding model

Review 41

and image points to solve for a transformation, and verifies each transforma-
tion by counting the number of transformed model points that lie near image
ioints. The perspective imaging model is used, and it assumed that the cam-
era parameters are known. Thus the system must be calibrated whenever the
camera parameters change. Three corresponding points are used to solve for the
four possible transformations mapping a planar model onto an image. A closed
form solution for the transformation is described, but the method is complex
and involves solving a quartic equation. Rather than using the closed form so-
Iiition, the implementation of RANSAC uses a heuristic method for computing
he transformation, suggesting that the closed form method is not robust.

RANSAC solves for the four possible transformations specified by three
corresponding model and image points, and then uses each transformation to
map the set of (coplanar) model points into image coordinates. If there is
7,n image point within an error ellipse about a transformed model point, then
that model point is accounted for by the transformation. When more than
some minimum number of model points are accounted for, a transformation is
accepted as a correct match. In Chapter 3 it will be seen that this verification
technique has an unacceptably high chance of falsely accepting a match, even for
ii()(erately complex images. The process terminates in success when a correct
match is found, or in failure after a number of iterations based on an estimate
of the prior probability of a correct match. The RANSAC technique is well
suited to "poisoned point" problems, where there is incorrect data, but where
the correct match still accounts for a large percentage of the data. In contrast,
for most recognition tasks the correct match is only a very small part of the
total number of transformations.

The alignment and comparison method developed in this thesis has the same
control structure as the RANSAC matching method. Both methods compute
possible transformations and explicitly verify those transformations. The two
inthods differ in several crucial respects, however. First, the alignment method
uses different kinds of information for the two matching stages. Simple features
are used for computing possible transformations, but a more complete descrip-

tion is used for verification. Second, the alignment method uses a simple, fast,
rob st method of computing a transformation from a triple of points. Third, the
;lignment method applies to complex images where each correct match accounts

for only a small amount of the data, because the verification procedure has a low
p)rol)ability of falsely accepting a match. Fourth, the alignment method finds all
rhe good matches of the models to the data.

A recent paper describes another matching method that recovers the three-
,(imneisional position of planar point patterns by considering possible transfor-
i,;iti()ns from a model to an image [Augusteijn86]. An orthographic model of

Review 42

projection is used, so for real imaging situations the distance from the camera
to the object must be known, because of the size change that happens with dis-
tanc,. The method matches four (coplanar) angles in a model to corresponding
angles in an image in order to recover the orientation of the model plane with
respect to the image. An iterative method is used to solve for the orientation.
The technique is not guaranteed to converge, however, and it may converge to
incorrect values.

Rather than finding corresponding model and image angles and solving for
position, the matcher uses a technique that requires less search but makes very
strong assumpticns about the data. Each model point is connected to the center
of gravity of tL model points, and the angles between these edges are computed.
Thus the method requires that the object be totally visible in the image, and
that it be segmented from any other objects. The angles so computed are sorted
based on subtended angle, and model and image angles are matched in order
of size. Thus any errors in finding edges or angles that changes the order will
cause the matcher to fail.

The system was tested on synthetic data, with random noise added to the
angle measurements. The largest perturbation, however, was 2.4 degrees of
angular error, which is very small compared to errors in edge localization and
finding vertices and angles in real images.

2.1.5 Selecting Possible Models

Most recognition systems are designed to match a single model to an image. If
there is more than one object of interest, then each model is matched to the
image separately. For small numbers of objects, this is tractable on a serial
machine. For large object libraries, however, the time required to successively
consider each object becomes prohibitive. Thus some researchers have proposed
an indexing stage, prior to matching models to the image [Kalvin86] [EttingerS7].
This indexing process selects a small number of object models to be matched
to an image, independent of the positions and orientations of the objects with
respect to the image.

The idea behind indexing is to use local, viewpoint invariant information
to limit the number of models that must be matched to an image. The informa-
tion must be local, because the combinatorics of forming sets of local features
becomes as complex as the recognition problem in general. The information also
ne'eds to be relatively viewpoint invariant because the position and orientation

of an obj,,ct are unknown. Thus the major question is whether local, viewpoint
im-criant ciis can be found that are sufficiently powerful to greatly limit the

Review 43

number of models that must be matched to a given part of an image.

Relatively little work has been done on the indexing problem. One notable

exception is the work of Kalvin, Schonberg, Schwartz and Sharir [Kalvin86] on

boundary matching. This system uses pieces of a two-dimensional curve to define

"footprints", which are a description that is invariant under planar translation

and rotation.

To recognize an image, the footprint method segments edges at sharp con-

cavities, and computes an invariant description of each segment. Sharp concav-

ities are used because they often correspond to points where objects overlap.

The footprints are used to index into a hash table, and each footprint proposes
the model(s) that correspond to a given curve segment. The method is quite

fast even with a library of 100 objects. The major restrictions of the method are

that the size of the object must be known, and the footprint computation only

applies to planar objects. It should be possible to extend the footprint matching

to 3D from 3D recognition. Extending the method to 3D from 2D tasks would

be difficult, however, because projection does not leave many attributes of a

curve invariant under change in orientation.

Biederman [Biederman85] has proposed a model of indexing in which ob-

jects are broken down into a library of primitive components. The primitive

components in an image are then used to select possible models, and their po-

sitions and orientations. The major problem with this proposal is that a small

set of parts cannot be used to accurately represent most shapes (see the discus-

sion in section 2.2). For example the wing of an airplane, which is a reasonable
"part" of the object, is not well approximated by any of Biederman's vocabulary

of parts. Such an approach requires the parts to be easily recognizable and to

come from a small set, otherwise recognizing the parts becomes as difficult as

the recognition problem in general.

Ettinger [Ettinger87] has recently implemented a recognition system that

decomposes objects into subparts for recognition. The problem domain is two-

dimensional forms such as traffic signs. Parts are formed using local features to

segment edge contours. The features are ends, cranks, and joins similar to those

developed in the curvature primal sketch [Asada86], described below. Parts

are found at a variety of scales. An initial object library was developed with 13

objects. that were decomposed into a total of 47 parts. The number of alternative

hypotheses explored in recognition increases approximately logarithmically with

;i increasing number of subparts, in the range of 5 to 50 parts.

Review 44

2.1.6 Summary of Recognition Work

A number of recognition systems have been briefly considered, and some of their
limitations have been identified with respect to the 3D from 2D recognition task
described in Chapter 1. In particular, the method of determining possible trans-
formations from an object to an image is central to the success of a recognizer.
A method that is of high computational complexity, or that may miss correct
solutions can greatly limit the performance of a recognizer.

Most recognition systems structure the matching process as a search for
transformations that bring a large number of model and image features into
correspondence. These transformations are either found by searching for large
s ets of corresponding model and image features, or by searching for clusters of
:irolar transformations. Systems that search for corresponding sets of model
:,41 image features- have an inherently exponential search space. Some systems

prime this search space using heuristic rules that may miss possible solutions
[1Roberts65] [Brooks8la]. Other systems use constraints to prune the search
sJpace [Bolles82] [Grinson84]. Systems that search for clusters of similar trans-
formations use the generalized Hough transform [SilberbergS6] [Thompson87],

which is likely to produce false clusters under many conditions.

Recognition systems often rely on having sensory data that is of the same
dimensionality as the recognition task, so that model and image quantities can
b)e compared [Bolles82] [Grimson84]. In systems that do allow for projection

from the world to the image, the model of projection affects the complexity
of the matching process. The use of perspective projection in [Lowe87] yields
a matching algorithm of time complexity at least 0(p6), for p pairs of model
and image points. In [Fischler8l] only three corresponding pairs of points are
required, however the solution method is complex and relatively unstable. A
number of systems use the simpler weak perspective imaging model. These sys-
teris have not, however, solved the problem of computing a three-dimensional
transformation directly from corresponding model and image points. Instead,
they either use a heuristic approach to recovering a transformation [Brooks8la],
store views of an object from all possible angles to approximate the transfor-
mation by table lookup [Thompson87], or restrict recognition to planar objects
[Augusteijn86] [Cyganski85] [Lamdan87].

Finally, existing recognition systems generally verify a transformation by
requiring a large number of model and image features to be brought into cor-
respondence. In complex recognition tasks such as 3D from 2D recognition, or
wtl cluttered scenes, this verification method is often inadequate. For such
t;r. ks. systems should use more complete descriptions for verification and look
f,r negative as well as positive evidence of a match.

Review 45

2.2 Shape Representation

This section considers some of the relevant research on representing shape, and
evaluates the extent to which various representations are applicable to the 3D
from 2D recognition task addressed in this thesis. A shape representation uses
the primitives extracted by low-level vision routines, such as intensity edges, in
order to describe an image in terms of shape properties. This description can
then be used for high-level visual functions such as recognition and obstacle de-

tection. With the exception of the LFF [Bolles82] and ACRONYM [Brooks8la]
systems, however, most object recognition systems use simple features, and do
little processing of an image in order to extract shape primitives. At the same
time, most shape representation has been aimed at describing objects rather
than forming good features for recognition. One of the few shape representa-
tions that has been used in recognition systems is the curvature primal sketch
IAsada86].

The shape of an object is defined by its surfaces, or alternatively by its
volume, which is the dual of the surfaces. A shape representation is a formal
way of describing the shape of an object, usually in terms of surface or volume

elements. Two important criteria can be identified for shape representations that
will be used to find objects at unknown positions and orientations in cluttered

natural scenes:

0 A shape representation should be stable over viewpoints, depending rela-
tively little on the position and orientation of an object.

* A shape representation should be reliably computable from an image, vary-
ing little with moderate sensor error and partial occlusion.

According to these criteria, the commonly used linear (planar) approximations
to smooth curves (surfaces) are not very good representations. For instance,
in a linear fit to a circle, the endpoints and orientations of the line segments

approximating the circle are not stable with respect to different starting points
along the curve. Furthermore, a small amount of sensor noise can cause the linear
segments to be lengthened, shortened, inserted, or deleted, thereby substantially
changing the description of an object.

The stability and reliability of a shape primitive depends on the amount

of information it contains, and on its spatial extent. A shape primitive that is
of small spatial extent but contains a lot of information must be based on fine
sCale shape properties, and thus will tend not to be reliably computable from
an image. A shape primitive that is of large spatial extent will not be reliably
r',niirittable because of sensitivity to partial occlusion. Thus the most reliable

Rev iew 46

primitives are those wlhich are relatively local, and contain a relatively small
amount of information.

Most existing shape representation schemes have the properties of concise-
ness and completeness. A shape representation can be concise both by having
relatively few different shape primitives, and by representing a given object in
terms of a small number of these primitives. A representation is complete if it
is possible to draw, or render, an object from its representation. For example,
generalized cylinders [Nevatia77] and other symmetry representations have these
properties.

The recognition method developed in this thesis requires neither concise
nor complete representations in order to find possible transformations from a
model to an image. Computing a transformation only requires features that
define three points, or two points and two orientations. Thus the features can
b. local and relatively simple. Once an alignment has been computed, a model
is transformed into image coordinates and compared with the image. While the
rv'presentation used for comparison does need to be relatively complete, it does
not need to be viewpoint invariant. Thus verification can use a very simple
representation such as the edge contours of an object.

Shape representations are traditionally broken down into two categories
based on whether the primitives are volumes or edges. Some examples of each
of these kinds of representations are considered below.

2.2.1 Volumetric Representations

Volumetric shape primitives have been used in a number of shape representa-
tions, both because they are viewpoint independent, and because of their relative
conciseness. The most common volumetric primitives are generalized cylinders
(or generalized cones) [Nevatia77] [Brooks8la] [Marr78]. A generalized cylinder
consists of an axis and a cross-sectional sweeping rule. In many cases the cross
section is restricted to be convex, and the sweeping rule may also be limited
to a constant or monotonically changing function. One of the major problems
with volumetric representations, however, is that they are difficult to extract
from images. For instance, the projected shape of a given generalized cylinder
can change substantially depending on the angle from which it is viewed. Thus
while volumetric primitives are viewpoint independent, their images generally
are not.

The ACRONYM system [Brooks8la] extracted two-dimensional ribbons
from images, and used a ribbon as evidence of a three-dimensional general-
izfld cylinder positioned and oriented such that it projected onto the ribbon.

Review 47

Ribbons were composed of a linear axis, and a monotonically changing cross
sectional width. Thus the axis and the widths at both ends completely define a
ribbon. From a ribbon, it is generally impossible to determine if the axis length
corresponds to the length of the generalized cylinder axis, or if there is foreshort-
ening. Thus even though generalized cylinders are relatively large features (and
thus potentially sensitive to occlusion and sensor noise), a single cylinder stil:
does not contain enough information to recover position and orientation {rom
an image.

Generalized cylinder representations commonly employ a small number of
primitive shapes such as blocks, wedges, cones and cylinders [Brooks8la]. Thus
the true shape of an object is crudely quantized by the representation. This
quantization often eliminates the important shape characteristics of an object.
For example, the object composed of cylinders shown in Figure 6 could be almost
any animal with four legs (except perhaps a giraffe).

Figure 6. An "animal" composed of cylinders.

One proposal for dealing with the quantization problem has been to use a hierar-
chy of generalized cylinder representations, with smaller and smaller primitives
at each level of the hierarchy [Marr821. Using finer scale primitives reduces the
quantization effect, but it still remains. Certain shapes are not well captured
by symmetric volumetric primitives, regardless of the size of the primitives. For
example, the contour in Figure 7 is difficult to represent using generalized cylin-
ders. On the other hand, the shape of this contour can be well captured by a
multi-scale edge representation such as the curvature primal sketch [Asada86],
as discussed in the next section.

There is an interesting historical context to the development of general-
ized cylinders as a representation. To some extent, generalized cylinders were
a reaction against recognition systems that used local viewpoint-dependent de-
scriptions derived from a two-dimensional image (such as the argument against
[Barrow76] in [Brooks8lb]). In order to use such viewpoint-dependent represen-
tations for 3D tasks, many different models of a single object would have been
required. Another possibility, however, is to develop edge-based descriptions

Review 48

Figure 7. A relatively simple contour that cannot be well represented by a
generalized cylinder representation.

that are relatively viewpoint independent. This alternative, which does not re-
quire extracting volumetric primitives from a tw,dimensional image, is pursued
in Chapter 5.

Polyhedra are another commonly used volumetric representation. A poly-
hedron can be specified by the three-dimensional positions of its vertices [Grim-
son84] [Bolles82]. Polyhedra are not well suited to recognizing objects with
curved surfaces, because for a curved surface the position of the edges and
vertices is generally arbitrary. For instance a sphere has many different repre-
sentations in terms of rectangular planar patches. Thus different instances of
the same object may be represented very differently.

Super-quadrics, which have been used for representing objects in computer
graphics [Barr8l], have also been pro-posed as a representation for vision systems
[Pentland85]. Super-quadrics are like generalized cylinders in that they are
analytic specifications of a volume, however they provide a more general set of
shapes, characterized by latitude, longitude, and two surface parameters. This
makes shape quantization less of a problem than with generalized cylinders, but
at the cost of turning the problem of matching two shapes into a search in a
large space of possible shapes.

2.2.2 Edge-Based Representations

Unlike volumetric representations, edge-based descriptions can generally be ex-
tracted reliably from images, since the primitives are two-dimensional in nature.
The utility of an edge-based representation for 3D from 2D recognition is lim-
ited, however, by the extent to which the representation is sensitive to changes
in viewpoint. For instance, a representation using distances or angles will be
very sensitive to slight changes in viewpoint, because these quantities are not
preserved under projection.

A number of edge-based representations have been developed, which can be
categorized according to whether the primitives are edge-contours [Asada86]

Review 49

[Hoffman86], or regions of the image (such as symmetry regions) [Brady84]
[Fleck85]. As with volumetric representations, these representations have gener-
ally been developed to produce concise and complete descriptions of an object.

The codon representation proposed by Hoffman and Richards [Hoffman86]

is based on segmenting an object at negative minima of the principal curvature of

a surface. The argument for using local negative minima of curvature is based
on the fact that these points correspond to concavities, where objects often
overlap, or where different parts of an object are connected. The representation
does not, however, address the issues of how reliably computable these quantities
are, to what extent an image should be smoothed, or how to form multi-scale

descriptions.

The curvature primal sketch [Asada86] is a multi-scale description of a pla-
nar curve based on "knot points" along the curve, where the knot points corre-
spond to curvature discontinuities. It is the knot points, rather than the shape
of the contour between the knot points that captures the shape of an object

(e.g., linear segments or circular arcs could be used between knot points).

It is not possible to detect curvature discontinuities in a digitized image

unless the digitization is extremely fine compared to the magnitude of changes in
the contour. Thus the curvature primal sketch actually identifies points of high
curvature and high change in curvature. Magnitude of curvature is not preserved
under projection, however, so these points are not necessarily invariant as an

object rotates in space, and thus the method does not extend well to 3D from
2D recognition.

In crder to locate knot points, a curve is first segmented by matching a

small numli!r of analytic functions to the curve. These functions represent

simple parts of a curve such as corners, ends, bumps, and cranks. The matching
is done based on the smoothed curvature and its derivative computed from the

edge contour, at multiple scales of smoothing. Once a curve has been segmented,
each segment defines a set of knot points. Segmenting the curve and finding the

knot points given the segments are both potential sources of error. Therefore,
it would seem better to just compute the knot points directly from the curve,
because they are the primary representation of an object. After extracting the
knot points, they could be classified according to the kind of curve segment

between two points.

The use of aralytic functions to represent shape in two-dimensions suffers
from the same problem as analytic volumes such as generalized cylinders; the
true shape of an object is quantized in terms of the primitive functions. If the

firctions are relatively simple, such as with constant curvature arcs or gener-
alizc(l cylinders, then this quantization can be quite large. On the other hand,

Review 50

if the functions are complex then there is a smaller quantization effect, but the
functions may be difficult to compute.

Symmetry-based shape descriptions [BradyS4] [Fleck85] [Blum78] suffer from
the problem that symmetry is a relatively global attribute of an object. There-
fore it is difficult to encode detailed shape information in terms of a symmetry

representation. Furthermore, the computation of symmetries is quite sensitive

to partial occlusion, and to noise in the edge detection process.

The symmetric axis transform (SAT) [Blum78] is a grassfire technique for
finding the axes of a region defined by a closed contour. This method suffers from
the additional problem that it is highly sensitive to noise in the edge contour.
A slight bump or dent in an edge can substantially change an axis. Therefore
the method cannot be used to reliably extract axes from real images.

While smooth local symmetries (SLS) [Brady84] are an improvement over
representations such as the symmetric axis transform (SAT) in terms of sensi-
tivity to noise, problems with partial occlusion are inherent to symmetry rep-
resentations, and thus still remain. In addition, the information preserved by

syin metry representations, such a- lengths and orientations of axes, is not in-
variant under projection. This makes the representation inappropriate for 3D

from 2D recognition tasks.

A recent system for matching planar curves uses a shape representation
based on inflection points (points where the curvature changes sign) [Mokhtar-
ian86]. The system forms a scale-space description of a curve in terms of the

locations of the zero crossings of curvature at multiple scales. Thus, rather than
segmenting a contour, the location of the inflections with respect to the arc
length parameter, s, is used as a representation. The major limitation of this
represcntation is that the locations of inflections alone do not capture certain
important information about an edge contour, such as straight versus curved.

Schwartz and Sharir [Schwartz87] recently proposed a method for deriving
"characteristic curves" from noisy data. Given an edge array, an epsilon neigh-

1orhood is defined around each edge pixel. The characteristic curve consists
of the shortest path through that epsilon neighborhood. A fast algorithm for

performing this restricted shortest path problem is presented. In addition to

speed. they argue that the characteristic curve approximation is better than

other smoothing techniques, such as convolution with a gaussian.

The characteristic curve method generates a straight line approximation to
a curve, because the shortest path between two points is a straight line. Thus

like ain- other linear approximation technique, the characteristic curve method

wil prodllce Inrelial)le descriptions of smooth curves, because the ends of the

liil(.ar segrnenlts will depend on noise in the contour and on where along an arc

Review 51

the segmentation process starts.

2.2.3 Summary of Shape Representation Work

Most existing shape representations have not been developed explicitly for use in
recognition. Even those representations that are intended for use in a recognition
system do not make a distinction between the information that is important for

computing a transformation, and the information that is important for verifying

a match.

Shape representations that are used to compute a transformation should be
sparse, relatively stable over changes in viewpoint, and reliable with respect to
sensor noise and partial occlusion. A sparse description will generally produce
fewer matches to an image, thus reducing the amount of search in recognition.

Stability and reliability are important for matching partially occluded objects

in natural scenes. Many shape representations are not sparse, stable or reliable.
For instance linear (or planar) approximations to curves (or curved surfaces)
are highly sensitive to noise and partial occlusion. Symmetry representations

are sensitive to partial occlusion and are also relatively variable over changes in
viewpoint. Volumetric primitives such as generalized cylinders are difficult to

extract from two-dimensional images, and are sensitive to partial occlusion.

In contrast, verifying a transformation requires a shape representation that
forms a more complete but less abstract description of an object. A complete

description is important because accepting a match may involve comparing an
entire model to an image. A concrete representation, such as the edge contours
of an object, is useful because it can be compared directly against the image

edges. This makes it unnecessary to perform a time consuming and potentially
error prone extraction of a more abstract description.

Search 52

Chapter 3

Recognition as Search

Model based recognition is the problem of finding transformations that map

models onto their instances in an image. Most recognition systems find potential
transformations either by searching for large sets of corresponding model and
image features, or by searching for clusters of similar transformations. The
correctness of a transformation is then verified by requiring it to map some

minimum number of model features onto corresponding image features. Some
recognition systems also posit an initial stage of processing to select possible

models [Kalvin86], rather than considering the possible transformations of each

model.

This chapter formalizes the recognition problem, and then considers each of

the three stages of processing: selecting models, hypothesizing transformations,
and verifying hypotheses. The next section presents a general formulation of
the model based recognition problem, followed by a section on selecting models.

Then the two major paradigms for hypothesizing transformations are considered:
search for large sets of corresponding model and image features, and search for
clusters of transformations. An evaluation of the generalized Hough transform
points out its limitations as a transformation clustering technique for recogni-

tion. Finally, the verification problem is addressed.

3.1 Problem Formulation

Recognition can be posed as the problem of finding those object models and
transformations such that the difference between the transformed model and
part of the image is sufficiently small. Given an image, I, a set of models, M,
an allowable class of transformations mapping a model to an image, T, and a
function d that measures the difference between a transformed model and an

image, we seek

{(T, M) IM E M, T E T, d(T(M),I1) < El.

The range of allowable models in M, and transformations in T are both lim-
ited by a given recognition system. The types of models are generally restricted
by the choice of shape representation. For instance, if objects are modeled as

Search 53

polyhedra then the allowable set of objects are nearly-polyhedral forms, because

objects with smooth surfaces are not well captured by such a representation.

The class of allowable transformations is affected both by the imaging pro-

cess and by the allowable deformations in the models themselves. In 3D from

2D recognition systems, the transformation from a model to an image includes
projection from the world into the image plane. Thus T encodes the imaging

model used to approximate the projection. If general nonrigid deformations of
objects are admitted, it is possible to transform very dissimilar shapes into one

another, so the degree of deformation in T must be included in the distance

measure, yielding,

{(T,M)IM E M,T E T,d(T(M),I,T) <E}.

Formulating recognition as a search across all models and transformations

does not specify how this search takes place. There are several issues involved

in searching the space of possible models and transformations: whether models

are selected before considering possible positions and orientations, how possi-
ble transformations are found, and how it is determined if a transformation is

correct. The remainder of this chapter considers these issues.

3.2 Selecting Models

In most recognition systems, each model, M, in the set of models, M, is matched

to an image separately. Since these matches are all independent, they could be

performed in parallel on a machine with sufficiently many processors. On a

serial machine, however, the comparisons are done one at a time. For a large
number of models, linear search of the set of models becomes prohibitively slow.

Thus some researchers (e.g., [Kalvin86]) have proposed an indexing stage that
selects a small number of candidate models without knowing the transformation

from each model to the image. This initial stage generally uses a table lookup
or other sublinear time access mechanism.

The initial model selection uses a set of keys, or signatures, k, that are

distinctive features of objects. Each model M E M has an associated set of

keys KM E . Any individual key k E KM, if found in an image, I, indicates

that an instance of the model M may be present in I. The set of models, M,

defines a function F that maps a kcy k onto those models having that key, F(k) =
{MIM M, k E KM}. Each key must be local so that it is insensitive to partial

occlusion. Furthermore, the keys must be relatively invariant with respect to

different viewpoints, because they are used before the transformation from a

model to an image is known. Moreover, in order for the indexing operation to

Search 54

propose only a small number of models, each key must correspond to only a few

different objects (i.e., the set F(k) must be small for each k).

An image is processed to extract the set of keys, KI, present in the image.
Then a set of candidate models, C C M. is formed by using each k E KI to
hypothesize the models it corresponds to, yielding

C= U F(k).
kEK 1

The function F can be implemented as a table lookup, so that the time to map
a given key to a set of models is relatively independent of the total number of
models.

The footprint matching method developed in [Kalvin86] is an instance of
such a model selection process, but is limited to 2D recognition. It is difficult

to develop keys that are invariant under projection and insensitive to partial
occlusion, yet are sufficiently distinctive to discriminate between different ob-
jects. Perhaps this is why effective 3D from 2D indexing methods have not been

developed.

3.3 The Space of Possible Corresponding Features

One method of finding possible transformations from a model to an image is
to search for those sets of corresponding model and image features where a
single transformation maps each model feature onto its image feature. Such a

set identifies a group of image features that are consistent with a given model
being positioned and oriented according to the transformation. Large sets of

consistent feature pairs are unlikely to occur at random, and thus are taken to
indicate instances of an object in an image.

A number of recognition systems (Roberts65 [Brooks8la] [Lowe87] [Bolles821

[Grimson84] perform such a search for large sets of corresponding model and im-
age feature pairs. Given a set of image features, I, and a set of model features,

Al, the idea is to find the sets,

PT = {(fm,fi)lfm E M, fi E I,d(T(fm),fi) < e},

that maximize IPTI. The function d measures the mismatch between a trans-
formed model feature and an image feature, e is the maximum allowable mis-

match, and T E T.

Let the size of I, II! = i, and IMI = m. If each model feature is allowed to
match only one image feature, and vice verse, then there are

s= () k!
k=1

Search 55

possible sets, P, of corresponding features to consider. Assuming that n = m =

i, a relatively tight lower bound on the size of this expression can be obtained
(due to A. Shamir),

The upper bound is similar, being
0(nn+ 1 "

o \ v.__ / .

To get a lower bound, note that S must be larger than si, the largest single
term of the summation. Similarly, an upper bound is given by the fact that S
is smaller than n • Si. If we denote S = -k Sk, where the sk are the individual
terms for each k, then st corresponds to the largest k for which Sk < Sk+l.

If Sk < Sk+l then,
n!2 n!'

k!(n - k)! 2 (k + 1)!(n - k - 1)!2

which simplifies to,

(k + 1) < (n - k) 2 .
These two expression are approximately equal when

We actually have to keep k an integer, so we can think of k as n - [v/SR], where
[x] is the integer part of x. From now on V/rP should be thought of as [V/n].

The largest term, sj, is obtained when Sk ; sk+l, which is when k = n-,
so

s () /n- 2 v.!(n - v/-)!"

We now use the fact that

(-V! n!~

The reason is that

because ~n! ;z (n - v'-)! n Vn

because

(n - vfn)! = 1 .2.3...(n -,/-)
and

nVn ;:z (n -v/'ff+ 1). (n - v/'ff+ 2)... n

(because, for large n, there are v/'ff terms each one approximately equal to n).

So
n!nV-sl= 2 --

Search 56

where ./'n- again means [V/nf]. Using Stirling's approximation for n!,

nn

which is a lower bound on S. Similarly, nsl is an upper bound, because there
are n terms, each smaller than st.

Thus there are an exponential number of possible sets of corresponding
model and image features for m model features and i image features. It is
clearly not feasible to search this entire space, even for moderate values of m
and i. In the next section, the major methods for pruning the search space are
briefly considered.

3.4 Searching for Corresponding Features

Two main methods have been used to prune the exponential space of possible
corresponding model and image features. The first method is to use heuristic
search rules, such as only considering certain distinguished pairs of model and
image features. Heuristic methods were employed by earlier recognition systems
such as Roberts' polyhedra recognizer [Roberts65] and ACRONYM [Brooks8la].
The major problem with these methods is that they may overlook a correct
match, in which case recognition will fail.

The second pruning method is to use local relations among features to limit
the space of possible corresponding model and image feature pairs. These local
relations have the property that they will not eliminate any correct interpreta-
tions (within certain error bounds). Therefore, unlike the heuristic rules, this
technique will not cause a correct solution to be missed.

In the pruned search framework, the space of all possible corresponding
model and image feature pairs is considered, subject to local constraints that
are used to prune away parts of the search space. This approach is exemplified
by the LFF [Bolles82] and RAF [Grimson84] systems. The constraints are n-ary
relations between model and image feature pairs. For instance, a pair of model
and image features (am,ai) is considered iff Ri(am) = Ri(ai) for some unary

relation R 1 . These unary relations are generally labels indicating the type of a
feature. Similarly binary relations such as distances and angles are used, such
that two pairs of features (am, ai) and (bn, bi) can only be part of the same
correspondence if R2(am, bin) = R 2(ai,bi) for some binary relation R 2. It must
be possible to compare model relations with image relations, which limits the
utility of pruned search methods for tasks where there is projection from the
model to the image.

Search 57

It is also possible to use n-ary relations for n > 2, however computing the
relation may be more work than the resultant pruning warrants. For instance,
if a ternary relation requires comparing all triples of model features against
all triples of image features then the amount of work necessary to compute
the relation may be more than the pruning effect. Certain n-ary relations are
easy to compute, however. For instance, a relation such as "triples of points
belonging to the same feature" can be computed locally for each feature, rather

than considering all possible triples in an image.

Relations between features have been used in two different formulations
of the matching problem. One method explicitly formulates recognition as a
search of an exponential tree of corresponding model and image features, and
use the n-ary relations to prune this tree, as in RAF [Grimson84]. The other
method forms a graph of consistent model and image feature pairs and then
find maximum cliques of the graph [Bolles82]. Both of these approaches were
considered in Chapter 2.

Bounds on the amount of search performed by the pruned tree search
method have recently been shown [Grimson88]. These bounds are for matched
dimensionality recognition problems (20 or 3D from 3D), where distance and
angle relations between pairs of features are used to prune the search tree. There
can be both extraneous sensory data, and missing data due to occlusion or other
causes. Objects are modeled as polyhedra, and the features are line segments.
For m model features, i image features, and a model where all the model edges
are the same length, the amount of search is bounded above by,

m(1 + K)' + m(i - co)2°0 + M(i 2 - C02)(1 + K2) co

where K is a constant that depends on the model and the amount of sensor noise,
and co is the number of image features that actually lie on the model. Thus the
amount of search is exponential, but is much smaller than the entire space of
corresponding features considered in the previous section.

The most powerful local relations for pruning the search for corresponding
features involve comparing distances and angles in the sensory data against
distances and angles in a model. These constraints do not apply to 3D from
2D recognition tasks, because distances and angles are not preserved under
projection.

3.5 The Space of Possible Transformations

A rigid transformation from a model to an image can be computed using a
fixed number, t, of corresponding model and image features. The number of

Search 58

features needed depends on the exact transformation, and on the amount of
information contained in each feature. For instance, if the transformation is a
two-dimensional translation and rotation, and the features are points, then two
corresponding features are needed (one to find the translation, and a second to
compute the rotation).

Those t-tuples of features that correspond to a correct match of a model to
an image will all specify similar transformations (in the absence of any error they

would specify the same transformation). A clusters of similar transformations
may thus indicate a correct match of a model to an image. Therefore, rather
than searching the exponential space of corresponding model and image features,

it is possible to search for clusters in the polynomial space of transformations.
A number of recognition systems use such a transformation clustering approach

[Silberberg86] [Thompson87] [Lamdan87].

Given that t corresponding model and image points determine a transfor-
ination, each t-tuple of model and image point pairs could potentially specify a
different position and orientation of an object. The number of correspondences

is the number of t-tuples of model points, times the number of t-tuples of image
points, times the number of correspondences between t model and image points.
So for m model features and i image features, the number of possible distinct
transformations is bounded by,

(;) (M
which is O(mt it) for some constant t. This is a loose upper bound on the number

of transformations, because in general different t-tuples will correspond to the

same solution.

IiI the next chapter, it is shown that t = 3 in the case of the weak perspective
inaging model, using features that consist of a single point. Thus the maximum

number of different positions and orientations is O(m 3 i3). Under perspective
viewing, on the other hand, six corresponding points are required to solve for a
unique transformation [Fischler8l], so there are O(m 6 i) possibilities. For five
corresponding points there are at most four possible solutions to the perspective

equations [Ganapathy85], yielding O(rni 5) possible transformations.

Even the set of O(m 3i3) possible transformations from a model to an image
is a relatively large space to search explicitly. This, however, is the number of
Combinations when each feature specifies only a single point. If the features con-

tain more information, then the number of possible transformations decreases.
For instance, if each feature specifies both a position and an orientation, like
the features used in LFF [Bolles82] and RAF [Grimson84], then only two cor-
responding model and image features are needed to determine a transformation

Search 59

under weak perspective (see Chapter 4). Thus for features consisting of a point
and an orientation there are only O(mn2i2) possible transformations. If a sin-
gle feature specifies three points (or two points and orientations) then only one
pair of model and image features is needed, so there are O(mi) possible distinct
transformations.

The space of possible transformations from a model to an image is smaller
than the pruned space of possible corresponding features. In the previous section
we saw that for features consisting of a point and an orientation, pruned search

using distance and angle constraints involves considering up to
/2

rn(1 + K)' + rn(i - co)2 0 + m 2 (i 2 - c02)(1 + K-

possibilities for m model features and i image features, where . is a constant

that depends on the model and the amount of sensor noise, and c0 is the number
of image features that actually lie on the model [Grimson88].

In contrast, the maximum possible number of distinct transformations for

this matched dimensionality recognition problem is only O(m 2 i2). Two corre-
sponding model and image edges define a transformation as long as the edges
are not parallel. The intersection point defines the translation, and the vector
in the direction of the edge bisecting the acute angle between the edges defines

the rotation, as illustrated in Figure 8.

Figure 8. Two intersecting edge fragments define a point and orientation
that can be used to solve for a two-dimensional transformation from a model
to an image.

The extra work required to search for corresponding features appears to be an
inherent property of the method, rather than a consequence of the particular

constraints used to prune the search. There are two factors that contribute to
extra work. First, searching for a set of corresponding features involves consid-
ering all subsets of that set, which accounts for the extra m(i - co)2c0 term.

Second, the pruning power of the local relations between features depends on
the size of the allowable error, so more correspondences are considered when the

error ranges are larger, accounting for the m(1 + K)' term.

In contrast, the number of possible transformations is based on the fixed
number features needed to compute a transformation, independent of allowable

Search 60

errors. Thus when searching the space of possible transformations, only the
verification of a transformation is affected by error ranges. Due to the fact

that the space of possible transformations is smaller than the pruned space of

possible correspondences, the ORA system searches transformation space rather

than the space of corresponding features.

Most systems that search the space of transformations use the generalized

Hough transform to find clusters of similar transformations. The next section

analyzes this clustering technique, by modeling it as an occupancy problem.
The analysis shows that the technique is of limited utility when there are a large
number of possible transformations, such as for 3D from 2D tasks, or when an
image is cluttered. Therefore, rather than clustering transformations, the ORA

system explicitly verifies a transformation by aligning a model with an image.

3.6 Searching for Transformations

A number of recognition systems solve for the possible transformations between
a model and an image, as described in the previous section, and then search

for large clusters of similar transformations (e.g., [Thompson87] [Silberberg86]).

Some systems use the largest cluster, or largest few clusters, and others look for
any clusters above some threshold size.

Clustering in an n-dimensional parameter space is a somewhat difficult
problem, however. The two most common techniques are k-means clustering

and the generalized Hough transform. These techniques both take as input a

set. V, of parameter vectors, or points in an n-dimensional parameter space, and
produce a set of subsets of V, where each subset is a cluster of similar parameter
vec tors.

The k-means method is an iterative technique that starts by dividing the
parameter vectors into k groups and computing a centroid, or prototypical value,

for each group. Each vector is then moved into the group whose centroid is
closest, using some distance metric. The centroids of these new groups are
computed, and the process repeats. The iteration terminates when the difference
between the centroid values on two successive iterations is below some threshold.

In order to use the k-means clustering algorithm, it must be possible to

(lefine a distance metric for comparing any two parameter vectors. In the case
of transformations from a model to an image it is difficult to define a distance

metric. because the parameter space consists of both translations and rotations,
which are not directly comparable. A further limitation of the approach is that
the ionh er of clusters, k, is pre-defined. Thus it must be possible to make a

Search 61

reasonable guess of how many meaningful clusters there are (in this case, how
many instances are in an image).

Object recognition systems tend to use the generalized Hough transform
for clustering transformations. This technique works by quantizing the param-
eter space into discrete n-dimensional buckets, yielding an n-dimensional table
of buckets. Each parameter vector is entered into a bucket by quantizing its n

parameter values and using them as the indices into the table. The quantization
tends to map similar parameter vectors into the same bucket, thus clustering
vectors together. There are two problems with this method as presented. First,
when the parameter space has a high number of dimensions the table may be-
come prohibitively large. Second, similar transformations may be mapped into
different buckets. This happens when a parameter value is near a quantization
boundary, and is exacerbated by the presence of noise in the parameter values.

In searching for clusters of similar transformations, it is assumed that groups
of similar transformations correspond to a correct match of a model to an image.
When clustering is implemented using the generalized Hough transform, how-
ever, groups of similar transformations may also be likely to occur at random.
The likelihood depends on the number of buckets (the coarseness of the quanti-
zation), and on the number of transformations entered into the table. Various
factors tend to limit the number of buckets, thereby increasing the likelihood of
random clusters. For instance, a high dimensional parameter space is too large
to search, so generally only a subset of the dimensions are used. Furthermore,
sensor error makes it unreasonable to have fine quantization. Thus the likelihood
of large peaks occurring at random may no longer be small.

The following subsections analyze the conditions under which the general-
ized Hough transform is a good transformation clustering technique. First rea-
sonable bounds are determined on the size and number of buckets in a Hough
table. Then the bucketing operation is modeled as a classical occupancy problem
of r balls (the transformations) in n boxes (the buckets).

3.6.1 Quantization, Bucketing and Transformations

Tue generalized Hough transform quantizes parameter values in order to assign
a paraineter vector to a bucket. This does not, however, always cause the
most similar vectors be grouped together. As an illustration of the problem,
consider a parameter that is quantized into buckets of size 10, and the three

parate , values 8. 11 and 16. Even though 11 is closer to 8 than it is to 16, the
quantization puts 11 and 8 in different buckets, and 11 and 16 in the same bucket.
This probloi is exacerbated by sensor noise, because a parameter value that, is

Search 62

near a quantization boundary can be moved into a different bucket by a small

amount of noise. Two methods have been used to account for these quantization

effects. The first method is to enter each transformation into more than one
bucket, based on an estimate of the error in computing the transformation. The

second method is to compute clusters of transformations over a set of neighboring

buckets, rather than a single bucket.

The first method of accounting for noise and quantization is to put each

transformation into more than one bucket. Each transformation is used to define
a volume of possible transformations, based on an estimate of the error. The

transformation is then entered into each bucket in the table that intersects this

volume. While the shape of the volume need not be spherical [Clemens86],
a spherical volume will be used here to approximate the actual volume. A

reasonable estimate of the number of buckets intersected by an n-dimensional

spheroid of radius s buckets, centered in the middle of a bucket, is (2s + 1)".
Thus. for example, with an error range of d = 1 bucket and a two-dimensional

table, each transformation will be put into about 9 buckets. With an error range

of (= 2 buckets and a three-dimensional table, each transformation will be put
in about 125 buckets.

In the second method, peaks are computed over a neighborhood of buckets
rather than a single bucket. The neighborhood is generally of size 3', where n

is the number of dimensions in the table. This guarantees that any two trans-

formations whose parameters are within one bucket width of one another will

be included in the same cluster. Thus it is similar to entering a transformation

into each of the 3' buckets surrounding it, and then just computing peaks over

a single bucket.

Existing recognition systems tend to use bucket sizes of about 5 pixels for

translation parameters, and 5' for rotation parameters [Thompson87] [Silber-

bergS6]. Thus there are approximately 100 buckets for each translation param-
et(r in a 512 pixel squared image, and 72 buckets for each rotation parameter.

With these size buckets, even for two-dimensional recognition, which has two
translations and one rotation, there are about 720,000 buckets if all three trans-

formation parameters are used for clustering. For three-dimensional recognition,
a full six dimensional parameter table would have about 101" buckets. Such a

table is not reasonable to search, for instance it is two orders of magnitude
larger than the number of transformations between 10 model features and 1000

iniage features, where each feature pair defines a transformation. Due to the

prohil)itive size of such a table, clustering is generally done in a two-dimensional
-111tspacc of the parameter space [Thompson87] [Silberberg86].

The next section presents a model of the generalized Hough transform as

Search 63

a classical occupancy problem. This provides a conservative estimate of the

number of peaks of a given size that will occur at random, given a particular

number of buckets, n, and transformations, r.

3.6.2 An Occupancy Model of the Hough Transform

Given a set of m model features and i image features, the possible transforma-

tions from the model to the image are computed. Each parameter of a given

transformation is quantized, and the transformation is entered into the appro-

priate buckets of an n-dimensional table. Buckets containing a large number of

transformations (a peak) are taken to correspond to an instance of the object in

the image. Large clusters are either identified by a threshold on the number of

transformations in a bucket, or by using the largest few buckets. In either case,

the peak size, 1, that corresponds to a correct match of a model to an image
should be large enough that it is not likely to occur at random. In general I
will be at most some fraction of the m model features, corresponding to those

features that are matched to image features.

This section models the generalized Hough transform as an occupancy prob-

lem, in order to obtain an estimate of the probability that a Hough bucket will

have peaks of size I or more at random. This probability should be very small

in order for the technique to identify mainly the true instances of an object in

an image, rather than random groupings of features.

If the transformations from a model to an image were independent and uni-

formly randomly distributed over the parameter space, then the probability that

a given transformation would fall into a particular bucket would be -L, where n

is the number of buckets. Thus the probability that r transformations would fall
into some particular set of buckets is n- '. To the extent that transformations

are not uniformly distributed they will tend to clump together more than indi-

cated by this model, creating larger peaks. Thu.z modeling the transformations

as uniformly randomly distributed yields a conservative model of the likelihood

of false peaks.

Given a distribution of r events into n boxes, one can speak of the occupancy

numbers, or the number of events in each cell, denoted by r,... , rn, where each

ri > 0 and E ri = r [Feller68]. If the events are randomly distributed such that

each of the nr placements have the equal probability, n-", then the probability

of a given arrangement with occupancy numbers rl,. .. , r, is

Prt, ... ,r _= rl!r2!- ' r

This distribution of events is often termed the classical occupancy problem, or

Maxwell-Boltzmann statistics.

Search 64

For the classical occupancy problem, the probability, Pk, that a given cell
contains exactly k events is given by the binomial distribution,

~k = (k)W(k j n

We are interested in the probability that a given cell will contain I or more events
at random, which is,

I-1

p>= 1- pk.
k=O

The expected number of cells in a Hough table that will contain peaks of size at
least I is thus given by

E>i = np>t,

where n is the number of cells in the table. Ideally, the peaks corresponding to
correct matches should be of a sufficient size, 1, that E>1 < 1. In other words,
ideally the expectation should be that there will be less than one false peak in
the table.

For even moderate values of n and r, the computation of pk becomes un-
wieldy. For sufficiently large values of n, however, the Poisson approximation

to the binomial can be used. The error of this approximation is proportional to
n - 1 so for tables of the size discussed in the previous subsection (10' or larger)
the error is relatively small. Using this approximation,

Ak

where A = -!, the ratio of the number of elements entered into the table to the

number of buckets.

In addition to the Maxwell-Boltzmann distribution, another common dis-
tribution used in occupancy problems is the Bose-Einstein statistic. This distri-
bution has an experimental basis in particle physics, and assigns an equal prob-
ability to each of the occupancy numbers, rl,. .. , rn. Under the Bose-Einstein

model, for large r and n, the limiting case is the so-called geometric distribution,
where

A kPk '
(1 + A)k+ l

This distribution has a long tail as k - oo, and thus large clusters have a higher
probability than under the Maxwell-Boltzmann distribution. Hence the Bose-
Einstein distribution would provide a less conservative model of the likelihood
of large peaks occurring at random, and the Maxwell-Boltzmann model is used
here.

3 .0 E~valuaitinig the (einaizA~ I ottigli UrniInshrII

To) J1411,1 i. . ll-1 Ii (ti ll yc~q4) ll i Cliijd tp SE.ig gllfIls t4k I ji~ w i chr14

Iu, li-ci i llo.k flitt d a,,c i id ill ugr- w~p ithc 1,)1. 25h t) ges. lf-l ii1 :

154f CH a : k (ll, tEX ill- may hav ll h livg ad (!)I l l llk lo Ir a ' ly Illc~

,d'1111>f I ;1 k1(1 llk11:-1kkdpc,l Id kli two)l p(ifsld 1 , ljll ilI ;iI: iitis cit iI5

41:.k 41Is t1414 1 ,1* fli ld),O II) lkhl lkk.-;. li off11 (iw A fL . ji::4

flit* IIIMC 1 144 IV 0l vdp'~ c44 l14 I ll 14 Co1114illci00) ii*g-s wtl 50, 0()1 500l4 I l(i(Jt

;I)44 4I 111 14) 14k ;ili (>JkI;It1 411 (if~ ;I> tli :;tI 111 f;lk J4;1 t ltl

A vl rit lg', 11(m4 l 4 klit ll I lilt 41tlavr~tE4 ith p la 4X[444, thll .5

11441 I''l III ;I4 4 1 t 11k l j ftl l X)4,li)41 ln~oo tllc. . n;,l) 4 11 f l) pikxkl1

/4 i ~;~ t,, ~, s;14111IJ(lE ut 4 111414 w)cil-illpr 9,0 ,r 1, 0m)k ;, 4)I f 1 (90 00

.'I I , ()I I 1Itil k ill t l t ilE will Mo., I . Till (-() , > 41 4414jk41 Ii1

Ill ;4 114t l t~ d Owlt (to1 1 w ;I, allm 10c 11l41414l 1)4l;ll illlk)

1; >41 - - IIli fW 1. 1 w 114E t Il)u ;iI, l 4Ila ll1;I 1cI ll tl14 it h v sIl pix'' I (;, I l l,41

?: tl .1IvS 1l;ltio j411 A 9~~i. , fk . tota ;:i f 9, Y4sp -4 ttfl il)l hIk t- il

111 14 1 l .O.it h 401 'A lldpli((l 2 1114 4kil fIlll he Wkili ;IllE .c 41144L l'l (I,

h~u' 14it I -hi)J f) ;ilit) (O lIJE. W llikV Humr:14414 14c)f., t , ;11:,. tltt)

i :i .1 F'1 Hc 4/4I t , W 4i Ili (, fur 11144 tE v41 s la d il \)-. , off1:

4."A lh l l i ll k4 ' i IliIt. w) :ill)'vc ; pil ;I,:; I 11141 k:1r i I 141 tllI't 1

wil tk11 j114O ?" ;4141 ,)()) J1;41 I 4PlW '11 VOIt o 1iip , 000sx', 1 13,4 000,

;I I I ' 1'0,1 000 tII)14I.t I I I; it :, il ti kik I d,4;l141 1 41 i vo. ll-c;4I-,1 "'l I4114 .4

Sear-h 66

niatioins letween the model and the image (even for 500 edges, there are only

10,0()0 possib)le transformations).

For three-dimensional transformations the size of the Hough table becomes
prohi)itive, so most recognition systems use only a subset of the transformation

l)irlnieters to forn the table [SilberbergS6] [Thompson87]. For example, one 3D
froim 2D recognition system [Thompson87] uses the two parameters of rotation
ou t of the vie'wing p'ane for an initial clustering. The Hough buckets are of size

20. yielding a total of n = 32, 400 buckets. An error range of 15' is allowed, so
each transformation is entered into an average of 82 = 64 buckets. A model has
about i = 5 features, and an image has about i = 3000 features, resulting in
about 20,000 transformations. Thus a total of about r = 1,280, 000 transfornia-
tions are entered into the table, for a A of about 40. In order for the expected
iui1ler of false peaks in the table, E>,, to be less than one, the peak size, 1,
must be 68. This is an order of magnitude larger than the number of model
feathires. m,. Peaks of size at least in, which is 5, will occur at random with a
pr,)balkility of 99%X . In other words, this initial clustering eliminates virtually
moIe (of the can(lidates.

Following the initial clustering, a secondary clustering is performed using
the third rotation paraxneter. This parameter is again quantized in 20 buckets, so
tle t;tble consisting of all three rotation parameters has a total of o = 5, 832, 000
bllckets. Each transformation is entered in S' = 512 buckets in order to allow
for 15' errors. Thus 20,000 transformations yields r = 10,240, 000 table entries,

alnd - 1.8. In order for E>1 < 1, the peak size, 1, must be at least 11,
which is a factor of two larger than the nunber of model features. Peaks of

S a, 5 occur with a probability of over 1%, yielding an expectation of about a
h mh mdre thousand false peaks in the table. Thus the remaining three translation

l~arainet.rs miust perform a good deal of work to eliminate the false matches.
Even with the full 6 paraineters, false matches may easily remain [ThompsonS7],
and further verification is required. Finally, the amount of search required is
very large, as several million buckets must be considered in order to find the
buckets with peaks.

To get a miore complete picture of the utility of the generalized Hough
transforni for transformation clustering, Table 2 shows how large the peak from

a Co'rr.ct iiatch iutst be for various problems. Each row of the table corresponds
to t pLrticular value of A =, the ratio of number of table entries to number of
hl,ckts. Each cohnim of the table corresponds to a particular probability of a

peak occurring at ramioil. To interpret the probabilities, recall that in order for

tIe c :.:tpec red n 1 uber of false m1atches to be less than 1, the proba)ility shoul

Iw 1 ."' t-an -. Fr example. for a ta)le with 100.000 entries anid a A of 2, the

e ,-kt fr,,r i i c rrect iitcli') inlist co nsist of at least 11 transforimati(ns l)ef(re

Search 67

there will be an average of less than 1 false peak per table. For peaks of size 6
and 7 there will be about 1200 and 300 false peaks, respectively.

p>_ 10-2 10-3 10-4 lO-5 10-6 10-7

A = .25 2 3 4 5 6 7

.5 3 4 5 6 7 8

1 4 5 6 8 9 10

2 6 8 9 10 12 13

4 9 11 13 15 17 18

8 15 18 20 23 25 27

16 26 30 33 36 38 41

32 46 51 55 59 62 65

Table 2. Peak size, 1, for different values of A = k, and different probabilities,
P>1, of peaks at least as large as 1 occurring at random.

It may seem somewhat surprising that the expected performance of the gener-
alized Hough transform is so poor for clustering problems similar to those in
several recognition systems [Thompson87] [Silberberg86] [Linainmaa85]. Recall,
however, that the operation was originally used to separate outliers from good
data. Its first ,.:6e in recognition was for relatively simple tasks, where the data
corresponding to the correct solution is a fairly large percentage of all the data.
In contrast, for recognition in complex scenes the good data is a small fraction
of the incorrect data, or "outliers". It just turns out that the method does not
scale very well to tasks where the amount of correct data is relatively small
compared to the amount of incorrect data.

3.7 Verification

Once a potential position and orientation of a model have been computed, it
must be determined whether or not there actually is an instance o' the object in
the image at the specified location. This verification process generally involves
determining how many of the transformed model features are mapped onto image
features, within some allowable error range. If more than a certain number of
the model features are matched, then an instance of the object is judged to be
in the image at the specified position and orientation.

The features used in matching are generally points or line segments, because
they can bo easily and reliably extracted from images. Extracted points usu-

Search 68

ally correspond to corners, vertices, or inflections in edge contours, whereas line

sCgiflents are linear approximations to edge contours. The features are some-

tilnes labeled using local grouping operations, or based on the shape of an edge

contour [iBollesS2] [LoweS7]. Many systems, however, do not label the features

because such classification can be highly prone to error given the levels of noise

aid(1 occlusion in -natural images [Thompson87] [Grimson84] [Lamdan87].

For a set of feature points with no labels, the verification procedure is to

take each model point, mk, in the set of model points, M, and transform it

according to an hypothesized transformation, T. Then for each such point,

T(rl k), it is determined whether there is an image point, ij, in the set of image

points, I. such that the distance IT(mk) - ijI < 6, where 5 is the amount of

error allowed. If the number of points in M satisfying this check is greater than

some threshold, then the match is accepted (e.g., tFischler81] [Lamdan87]).

While this procedure is adequate for certain tasks, it is not sufficient for

iniages that contain many features. In such tasks, a reasonable error bound, 6,

yields a relatively high chance of falsely accepting incorrect matches of a model

to an image.

With an error range of 6 pixels, a transformed model feature point, T(mk),

will match any image feature point, ij, that is within a circle of radius 6 around

T(,k). If the probability of there being an image feature point at any given

pixel is pf, then the probability of there being some feature point in the circle is
the probabil'ty of at least one success in n Bernoulli trials, which is 1-q", where

q 1 - p is the probability of a failure on a single trial. The number of trials,

n, is the number of pixels inside the circle of radius 6, which is approximately

[7, 21. where [x] is the integer part of x. Thus the probability that an arbitrary

T('nk) will match some ij is,

P 1 -(1 p)[7].

In order to obtain an estimate of pf, consider an image containing a few

Im'idred feattuae points, which is not uncommon in a 512 x 512 pixel image of a

Complex scene (for instance see the examples in Chapter 6). The feature points

tend to be bimodally distributed, with points more dense where there are objects

present, and(less dense in the background. It is the more dense number that is

rlevant here. because hypotheses to be verified will be in these regions, not in
the backgronid regions where there are no features to form hypotheses in the

first place.

If several hundred feature points were uniformly (listributed across an im-

the% the probability of a feature point at any given pixel would be about

0.002 (.)00 features m of 250,000 pixels). Therefore in the more dense regions.

,-1,!w' f}iat F) r,;rsonable)rolal)ility of a feature pjoiilt being at any given pixel

J

Sea, ch 69

is pf = 0.005. For this value of P1, and an allowable distance error of b = 5
pixels, the probability that a model feature taken at random will match the
image, as given above, is Pm = 0.325. Thus, for images that have moderately
dense image features, a point-based verifier with reasonable error bounds has a
substantial chance of matching a model point to an image at random.

A transformation will be accepted as a correct match if at least k of the m
model features are matched to image features. In the event that k or more fea-
tures are matched to an image at random, then a match will be falsely accepted.

Therefore, given a probability, p,m, of matching a model point to an image point
at random, we are interested in the probability that k or more of the m points
will be matched to an image at random. The probability that exactly j of the
points will be matched, where pm is the probability of a single match, is the

probability of j success in m Bernoulli trials,

Pj = (T)pmiqmm - ,

where qm = I - p,. Thus the probability that at least k of m points will match,

resulting in an error, is

Pe = Pi.
j-k

The probability of a false match should be very low, because there are
many thousands of potential matches between a model and a cluttered image.
A Pe < .0001 will yield an expectation of less than one false match for most
tasks. In the case of a cube, where the seven visible vertices are used as feature
points, when Pm = 0.325, the probability that all seven vertices will be matched
to image points at random is .0004, which is slightly above the acceptable level.
The probability that six of seven vertices will match is .006, for five of seven
it is .041, and for four of seven it is .161. To allow for partial occlusion and
sensor error, only 4 or 5 out the seven vertices can be expected to have been
matched. This results in much too high a chance of falsely accepting a match
of a model to a random collection of image features. Thus features consisting of
jyst a location are not sufficient to allow a reasonable determination of whether
Oriot a model of seven features is present in even a moderately cluttered image.

If an orientation measure is added to each point, so that verification consists
,f inatching oriented model points to oriented image points, then the probability
f a false match enters the acceptable range. This is the kind of verification

t-cinique used by the LFF [Bolles82] and RAF [Grimson84] systems when they

olAve for a globally consistent position and orientation.

Consider an allowable orientation error of --, so that the probability of a
ri %,,orientation is 0.1. If the probability of a point being at a given image pixel

Search 70

is 0.005, as before, then the chance of a point at a given orientation being present
is the joint probability of these events, so pf = 0.0005. The corresponding
piobal)ility of a mo(del feature matching an image feature at random is Pm. =
0.0385. For a model with seven features, as long as at least 4 of the seven
features are visible in a correct match, then the probability of a false match will
be less than one in ten thousand. If there are only 5 model features, however,
the probability that 3 of 5 features will match at random again becomes several
in ten thousand.

Thus we have seen that simple verification techniques are not adequate for
even moderately complex images. Simply requiring a number of transformed
model features to lie near some image feature can result in a relatively high
chance of a false match. As was true with the generalized Hough transform,
techniques that may be sufficient for simple recognition tasks do not necessarily
scale up well to more complex tasks, where most of the sensory data is not due
to the object being recognized.

3.8 Chapter Summary

This chapter has formalized the model based recognition task and analyzed cer-
tain approaches to the problem. The major issues in recognition are how to
select models that might match an image, how to determine possible transfor-
mnations mapping a model onto an image, and how to verify the correctness of
those transformations.

It is difficult to determine what models might match an image without also
solving for the transformations that map each model onto the image. Local "sig-
natures" of an object must be found that are both relatively stable across view-
points and fairly unique. For 2D recognition, some effective edge-based features
have been found (e.g., footprints [Kalvin86]), but for 3D from 2D recognition it
is an open problem.

Determining possible transformations from a model to an image is gener-
ally viewed as a search problem. The two common sarch techniques are pruned
search for large sets of corresponding model and image features, and search for
clusters of similar transformations. The pruned space of possible correspon-
(lences is larger than the space of possible transformations. This appears to
be due to inherent differences in the search methods, rather than to the par-
ticiilar set of relations used for pruning the search. First, finding a large set
of co resi)onding features involves considering subsets of that set. Second, the

priming power (,f the local relations depends on the expected amount of sensor
error. In cor trf. a possible transformuation is compitcd from a fixed number

Search 71

of features. A further limitation of the pruned search method is that the most
powerful constraints are not directly applicable to 3D from 2D tasks.

Systems that search for clusters of similar transformations usually use the
generalized Hough transform, where quantized values of the transformation pa-

rameters serve as indices into a multi-dimensional table. The major limitation
of this technique is that there is a substantial likelihood of false peaks for reason-

able table sizes and even moderately complex images. To make the probability
of a false peak low requires tables that are very large, which would result in a

large search space for finding clusters.

Most recognition systems verify a transformation by requiring a number
of model -eatures to be brought into correspondence with image features. If

each features specifies only a location, then for models with about half a dozen
features there is a substantial chance of finding a match at random. Therefore

more involved verification procedures are important.

The investigations in this chapter have motivated the particular matching
method employed by the ORA system. The space of possible trausformation, i
smaller than the space of corresponding features, so ORA searches the space of
transformations. Clustering is a difficult problem, and searching for clusters of
similar transformations can yield a number of false matches. Thus ORA verifies

each transformation rather than clustering transformations. In order to make
the probability of falsely matches low, ORA uses a verification procedure that

compares an entire aligned model contour with an image. In the interest of
efficiency, the verification procedure is hierarchical, first matching a few local
features and then comparing the entire contours if the initial check is passed.

Alignment 72

Chapter 4

The Alignment Method

We have seen that a central problem in recognition is the ability to accurately
and efficiently determine possible transformations from a model to an image.

In this chapter, it is shown that three pairs of corresponding model and image
points specify a unique (up to a reflection) position and orientation of a model
with respect to an image. In the case of a planar model, the alignment transform

is equivalent to an affine transform from the model plane to the image plane.
Unlike the two-dimensional affine transform, however, the alignment transform
applies to solid models.

A closed form solution for computing the alignment transform directly from

three pairs of corresponding model and image points is also presented. The
method only involves solving a second order system of two equations, and is

thus fast and relatively robust with respect to noise. The method can also be

applied to two pairs of oriented model and image points, or to three pairs of

model and image edge fragments (without knowing the endpoints of the edges).

4.1 The 2D Affine Transform

Some systems for 3D from 2D recognition of planar objects use a two-dimensional
affine transform to map the object plane to the image plane [Cyganski85] [Lam-
dan87]. A two-dimensional affine transform can be represented as a non-singular
2 x 2 matrix, L, and a two-dimensional vector, b, such that x' = Lx + b, for

any two-dimensional vector x. The affine transformation captures the scaling
and shearing of a plane under orthographic projection plus scale.

A two-dimensional affine transform can be used to map a plane in space
onto its image under orthographic projection plus scale [Lamdan87]. This fol-

lows straightforwardly from the definitions of affine and similarity transforms

[EfimovSO] [Yale68]. The relation between a plane in space and its image un-
der orthographic projection plus scale is the projection of a three-dimensional

similarity transform. A similarity transform is trivially affine, because it is a
restricted case of the affine transform. An m-dimensional subspace of an n-

dimensional affine space is itself afflmme in m-dimensions. Thus the orthographic
projection of a three-dimensional similarity transform is a two-dimensional affine
transform.

Alignment 73

The converse, that a two-dimensional afine transform corresponds to a
position, orientation and scale of a plane in space is not, however, an established

result. Therefore, approaches that solve for an affine transform from a planar
model to an image [Cyganski85] [Lamdan87] have not established that a solution
must correspond to a particular three-dimensional position and orientation of

the model plane.

In the next section it is shown that a two-dimensional affine transform
always defines a three-dimensional similarity transform that is unique up to
a reflection. For a planar model this reflection is not detectable, and thus an
affine transform from a model plane to the image plane always specifies a unique
three-dimensional position and orientation of the model plane with respect to

the image plane.

A restricted case of the two-dimensional affine transform has been used
to recover three-dimensional shape properties from skewed symmetries. Kanade
and Kender [Kanade83] use an afline transformation between two planar patches

to derive a constraint on the relative orientation of the patches. They assume
that if there is a two-dimensional affine transformation x, = Lx 2 + b, for x 2

on P2 and x, on P 1 , then P, and P2 are projections of planar patterns P1 and
P2 in three-dimensions, which are related by a similarity transformation (by a
three-dimensional rotation, translation and scale). They then proceed to show
that this assumption constrains the relative three-dimensional orientations of P[
and P2 to two possible configurations, which are reflections of one another. A

restricted form of this constraint is used for recovering three-dimensional shape
from skewed symmetries in a two-dimensional image.

Kanade and Kender express their assumption as

LT 2 = TlaR,

where Ti rotates P' about the x and y axes so that it is parallel to the z = 0
plane, R is rotation about the z-axis (the viewing axis), and a is a linear scale

factor. From this equation, they derive two equations relating the slant and
tilt of P' and P . These equations are claimed to always have two symmetric
solutions. The proof, however, relies on det(L) > 0, which is not the case when
there is a reflection involved in the transformation from P2 to P1. Furthermore,

the uniqueness of the rotation about the z-axis is not established. Thus they
do not show that in general a two-dimensional affine transform is always the
orthographic projection of a unique three-dimensional similarity transform.

4.2 The Alignment Transformation Exists and is Unique

The major result of this section is that the correspondence of three non-colinear

Alignment 74

points is sufficient to determine the position, three-dimensional orientation, and

scale of a rigid solid object with respect to a two-dimensional image. The result

is shown in several stages. First it is noted that an affine transformation of

the plane is uniquely defined by three pairs of non-colinear points. Then it is

shown that a linear transformation of the plane uniquely defines a similarity

transformation of space, specifying the orientation of one plane with respect to

another, up to a reflection.

These two results are combined to show that three pairs of non-colinear

points define the position and orientation of one plane with respect to another,

up to a reflection. For a planar model, the reflection is not detectable. For a

solid model, there are two possible transformations mapping the model to the

image. This ambiguity can be resolved using a point not coplanar with the three

alignment points. The methods reported in [Ullman87] and [Huttenlocher87] are

precursors to the result established here.

Lemma 1. Given three non-colinear points am, bin, and cm in the plane,

and three corresponding points ai, bi, and ci in the plane, there exists a unique

affine transformation, A(x) = Lx + b, for any two-dimensional vector x, where

L is a linear transformation and b is a translation, such that A(am) = aj,

A(bm) = bi, and A(cm) = ci.

This fact is well known in higher geometry [Efimov80] [Yale68], and it can

be established easily.

By definition, an afine transformation of the plane is given by

x alx + bly + cl

y =a 2 x + b2 y + c 2 ,

for any point (x, y). Denote am by (xa, Ya) and ai by (xx, y'), and similarly for

the other points. A transforms the three points am, bin, and c, into ai, bi, and

c,, respectively, so we obtain two sets of three equations in three unknowns,

xa = alxa + biya + Cl

Xb = alxb + blyb + C1

x = alxc + blyc + cl

and

ya = a2 xa + b2ya + C2

= a2X + b2yb + C2

1y = a2Xc + b2 yc + c2 .

Each of these sets of equations has a unique solution in the case that

xa Ya 1
Xb yb 1 # 0,
x Iy/ 1

Alignment 75

which by the definition of a line is when the points (xa, ye), (xb, Yb), and (x,, Yc)

are not colinear.

Definition 1. A transformation, T, is a similarity transform over a vector

space V when

IITvill = IITv21 = lV111 = Iv211

Tvl - Tv 2 = 0 '=> V1 "V2 = 0

for any vi, v 2 in V.

Theorem 1. Given a linear transformation of the plane, L, there exists a

unique (up to a reflection) similarity transform of space, U, such that Lv Uv*

for any two-dimensional vector v, where v* = (x, y, 0) for any v = (x, y), and
v _ w iffv = (x,y) and w = (x,y,z).

The structure of the equivalence between L and U stated in the theorem
is, L

V 2 - V 2

V 3 U V3

where V 2 and V 3 are two- and three-dimensional vector spaces, respectively.

The geometrical interpretation of U is as a rotation and scale of two basis

vectors (defining a plane) so that their image under orthographic projection is

the same as applying L to the basis vectors, as shown in Figure 9.

U

AL

Figure 9. The geometrical interpretation of U.

Proof Clearly some three-dimensional transformation must exist for any given

L. for instance just embed L in the upper-left part of a 3 x 3 matrix, with the

remaining entries all zero. What must be shown is that there is always a U that

ia i similarity transformation, and that this U is unique up to a reflection.

liri t'm r it 76

Iii onrler for U to l)e a similarity transform, it must satisfy the two properties

,,f Definition 1. We show that these properties are equivalent to two equations

in two unknowns, and that these equations always have exactly two solutions
!iffinng only in sign. Thus U always exists and is unique up to a reflection

('orr(sponding to the sign ambiguity.

Let el and e 2 be orthonormal vectors in the plane, with

e' Lei

e2 Le 2.

If v, = Ue* and v2 = Ue*, then by the definition of U we have,

v1 = e'l + clz,

V2 = e 2 + C2 Z,

where z = (0, 0, 1), and cl and c2 are constants.

U is a similarity transformation iff

Vi • V2 = 0

lI1 11 = I1r211,

because e* and e2 are orthogonal and of the same length.

From
V1 • V 2 = 0,

(e'1 + cIz). (e2 + c2 z) = 0,

el • e 2 + ClC 2 0,

and hence

ClC2 = -e, e2.

The right side of this equality is an observable quantity, because we know L and
can apply it to el and e 2 to obtain eI and e'. Call -e e' the constant ,-1.

In order for

1-V111 = Iv211,
it must also be that

11V, 112 = iiV2 112,

liea12 + C1
2 =ie' 112 + C2

2 ,
Cl 2 _ C2 = lie' 112 - Ile'll .

Again the right side of the equality is observable, call it k2 .

It remains to be shown that these two equations,

C1 C2 = k 1
Cl2 _ C2 2 = k2,

;tlwavs have a solution that is unique up to a sign ambiguity. Substituting
ki

C2 =-
C'

Alignment 77

into the latter equation and rearranging terms we obtain

Cl 4 - k2 C1
2 - k12 = 0,

a quadratic in cl 2 . Substituting x for c1
2 yields

- (k2 ± k2
2 + 4k1

2)

We are only interested in positive solutions for x, because cl = v. There
can only be one positive solution, as 4kl 2 > 0, and thus the quantity inside the
square root is > k2 . Hence there are exactly two real solutions for cl = -Vx.
For the positive and negative solutions to cl there are corresponding solutions
c f opposite sign to c2 , because ClC2 = ki.

The equation for x does not have a solution when cl = 0, because the
substitution for c2 is undefined. When cl = 0, however, c2 = ±v-- 2, which
always has two solutions because k2 < 0. Recall

lie 1 12 + C12 = Ile' 112 + C22 ,
21.. 2 2

therefore, because cl = 0, 11e I2 >_ Ile, 112,

and hence
2= Ie1 2 - Ile, 112 < 0.

Thus there are always exactly two solutions for cl and c 2 , differing in sign.
These equations have a solution if" the similarity transform, U, exists. So there
are always exactly two solutions for U which differ in the sign of the z component
of x', where x' = Ux, and hence the sign difference corresponds to a reflective
ambiguity in U. I

We can now Drove Theorem 2, the major result of this section.

Theorem 2. Given three non-colinear points am, bin, and cm. in the
plane, and three corresponding points ai, bi, and ci in the plane, there exists a
unique similarity transformation (up to a reflection), Q, such that Q(a*) 2- ai,
Q(b,) - bi, and Q(c*,) ci, where v* = (x,y,O) for any v = (x,y), and
v - w iff v = (x, y) and w = (x, y, z). The transformation Q is a three-
dimensional translation, rotation, and a scale factor.

Proof From Lemma 1 there is a unique affine transformation such that
A(am) = ai, A(bm) = bi, and A(cm) = ci. By the definition of an affine
transformation, A consists of two components, a translation vector b and a
linear transformation L. We can pick b = am - ai, and L to be the linear
transformation such that Lbm - b = bi and Lcm - b = ci, because using
b,- bi or c, - ci to define b would produce an equivalent transformation as
A is unique.

A.. I(,[(78

Givein L. by Theorein 1 there is a unique (up to a reflection) rotation and

sel,. U, such that Uv* - Lv for all two-dimensional vectors v. Combining b

and U s)ecifies a unique similarity transformation Q consisting of translation,

rotati(n, and scale such that Q(a..) - aj, Q(bm) b,, and Q(c,,L) c,. |

Note that it is not always necessary to compute the three-dimensional trans-
foination Q. In the event that the model is planar, the affine transformation A

is sufficient to map points from the model plane to the image plane.

4.3 Computing the Transformation

The previous section established the existence and uniqueness of the transfor-

iamti.n Q mapping model to image points (and the corresponding affine trans-
fornmation A). This section shows how to compute Q (and A) given three pairs

of points (am.ai), (binb,) and (cm,ci), where the image points are in two-

dtimensional sensor coordinates and the model points are in three-dimensional

object coordinates.

Step 0. Rotate and translate the model so that am is at the origin (0, 0,0), and
b,,r and c, are in the z = 0 plane. Note that this operation can be performed
offline for each triple of model points.

Step 1. Define the translation vector b = -ai, and translate the model points

so that ai is at the origin, bi is at bi - ai and ci is at ci - ai.

Step 2. Solve for the linear transformation

L Ill 112

L= i121 122

given by the two pairs of equations in two unknowns

lllXbm + 12Yb, = Xbj

lllXcm, + ll2YC- = XC,

and

12Xb, + 122Ybm, = Yb.

121Xc,, + 122YCm = Ye.,

where (Xb-,Ybm) = b,, (xcm,,yc,) = cm, (Xb,Yb,) = bi, and (xc ,yc,) Ci.

These first two steps yield the affine transformation, A, where b is the translation
vector, and L is the linear transformation.

Step 3. Solve for cl and c2 , using

c, ± -(w + 1 2 + 4q 2),

and 2
-q
C'

Alignment 79

where

W = 1122 + 1222 - (111 2 + 1212),

and

q = 111112 + 121122.

Step 4. The scaled rotation matrix is given by,

111 112 (c2121 - c1122)/ssR= 121 122 (C 112 - C2 111)/ IS

cl c2 (111122 - 12 1112)/s

where

s ll -121 + Cl 2 .

This yields the complete transformation, Q, with translation vector b and scale

and rotation sR. If an explicit representation of the rotation is required, then

R can be derived by dividing all the entries in sR by s, and then either Euler

angles or a unit quaternion can be computed from R.

This method of computing a transformation is relatively fast, because it
involves a small number of terms, none of which are more than quadratic. My
implementation on a Symbolics 3650 takes about 2.4 milliseconds. The code is

in Appendix A.

4.4 Sensitivity to Sensor Noise

This section contains a preliminary investigation into the sensitivity of the align-
inent transformation to errors in the locations of the image points. Bounds are

(erived for the error in the lij, which determines the error transforming those
model points that are coplanar with the alignment points. The general problem

of model points that are not coplanar is not considered here.

It is assumed that the three model points lie in the z = 0 plane, w:ith a, at

the origin, as specified in Step 0 of the previous section. The other two model

)oints are bm at cocrdinates (Xb,, Yb,,) and c,, at (xc, Yc,). The three image

points have similarly been translated such that ai is at the origin, as specified

in Step 1, with the other two bi at (xb,, Yb,) and ci at (x,, yc,).

The uncertainty about each image point, b, and ci, is a vector of length no
longer than F. as illustrated in Figure 10. This circle of uncertainty i, approxi-

iiatewl by a I)ssible error of ±e in the x an(? y components of b, and c,, as shown

Iv the boxes in the figure.

The accuracy with which a transformation can be computed depends oin

the (listaice between the origin and b,, and cm. as well as the angle lwtw(I, w ,l,

;1!1(1
'i,,. Lo lger distances and le s acute angles will puit the three model)oint.,

Alignment 80

C i

Figure 10. The circle of uncertainty of radius c about the two points bi and
ci, and its approximation by ±c in x and y.

further apart, and thus result in a more accurate computation. Call the angle

a Lbici, and to simplify the problem somewhat assume that both distances

are the same, so I biH' = IIci J = r.

The linear transformation matrix, L is computed using

l11 = (Xci b,. - XbYc.)/d

112 = -(Xc Xb, - Xbixc,)/d

121= (YcYbm - Yb,Ycm)/d

122 = -(YcXb, - Ybxcm)/d,

where
d = XcY6 - Z6, Ycm

Using polar coordinates to represent the model points, bm and cm yields
equations for the lij in terms of r and a, and a third parameter, 9, the orientation

of the vector from the oI'gin to bin, as illustrated in Figure 11. The parameter

0 just depends on the orientation of the model in its coordinate system, and

can be assigned an arbitrary value. For example, assume that 9 = 0, then the

model could be stored so that bm lies along the x-axis. If 0 = 0, then Xb. =r,

Ybm = 0, x,. = r cosa, Yci = rsina. Thus,
1 Xb,

r

112 = x c i -Xbcos
r sina

121 -= Yb,
r

/22 = Yci Ybi COS a
r sin a

Prtrbing each of xb,, yb-, xe,, I Yc by ±E yields an expression for the error

,,f the I, in terms of the parameters r and a. The error in 11, and 121 is at most

Alignment 81

Cm

r
b m

Figure 11. Representing the model points bm and cm in terms of polar
coordinates.

and the error in 112 and 12 2 is at most
f + ecosa

r sin a
Thus in order for the error in the lij to be at most e, it is required that

r >_ max + s a)
sin a)

This means that as long as r > 5 and a > or r >10 and a> -E-, the
error in the lij will be less than the amount of translational error in bi and
c,. Most model features will be substantially more than 5 pixels apart, and the
angle between the two model vectors will be at least E. As r increases the upper

bound on the amount of error in the lij decreases linearly. For example, if a = -
then for r = 10, 20 and 50 the error in 112 and 122 is at most .5e, .25c, and .1e,

respectively.

The transformed coordinates of a model point (x, y) that is coplanar with
am, bm and cm is given by x' = 111x + 112y, and y' = 12 1x + 122Y. Thus the
amount of error in a transformed model point increases linearly the further the

model point is from am, the origin. The amount of error is at most (,+Y)e, if
r

the error in the lij is bounded above by e.

4.5 Alignment Using Oriented Points and Edges

In addition to computing alignments from triples of points, it is possible to use
pairs of points and orientations, or triples of edges (with uncertain endpoints)
by finding three points defined by these measures.

Suppose we are given two model points am and bin, with three-dimensional
unit orientation vectors am, and bin, respectively. Let A. be the line through

a, in the direction am, and Bm be the line through bm in the direction bm.

If Am and B, intersect, then they define a third point for alignment, cm, as
illustrated in Figure 12. Given similar conditions on two oriented image points a,

and b,. a third image point, ci can be defined. Now the alignment computation

can be performre'd using three corresponding model and image points.

Alignment 82

\C/

/ \

A \ B
/\/\

a

Figure 12. Defining a third point from two oriented points.

The stability of this method depends critically on the distance from the two
given points, am and bin, to the intersection point, Cm. If this distance is large,
then a small amount of rotational error in either of the two orientation vectors
will cause a large positional error in the location of cm. In real images, the two
orientation vectors are generally edge fragments that have a distinguished point
at one end, but an uncertain endpoint at the other. A good rule of thumb is
to only use intersection points that are within some allowable distance of the
endpoints of the actual segments.

Given three model edges A, Bm and CmT, call the lines corresponding to
these edges Am, Bm and Cm, respectively. If Am, B,, and Cm intersect in three
distinct points, then we can define am as the intersection of Am and Bin, bm as
the intersection of B,, and C,,, and Cm as the intersection of Am and Cm, as
illustrated in the first part of Figure 13. Given three corresponding image edges
Ai, Bi and Ci, image points can be similarly defined, and the alignment can be
computed.

a a
\A A~/\

/
/

/\\

b/- - -c b z I-. .c
/ c C

Figure 13. Intersecting segments: i) defining three points from three seg-
ments, ii) the segments need not match.

Three segments contain more information than the three induced points used
for computing the alignment, so the alignment transformation may not bring

Alignment 83

the three model segments into correspondence with the image segments. For

instance, the second part of Figure 13, shows a case where the aligned model
segments do not correspond to the image segments. Thus it is possible to verify
the transformation, by checking that each transformed model edge subsumes

part of its corresponding image edge.

In addition to coplanar triples of segments, any pair of segments that define
intersecting lines can be used to induce a point at the intersection. A triple

of these intersection points will correspond to between three and six edge frag-
ments. Triples of model and image intersection points can be used to solve for

the alignment, and the result can then be verified by projecting the three, four,
five, or six model edges into the image.

4.6 Chapter Summary

A central problem in recognition is the need to compute possible transformations

from a model to an image accurately and efficiently. This chapter has presented
a simple, fast, robust method for computing the three-dimensional position and

orientation of a solid object with respect to an image. The method only involves
solving two sets of linear equations in two unknowns, and a second order system

in two unknowns.

In comparison with methods for recovering a transformation under perspec-

tive projection, such as those discussed in the first two chapters, the method de-
veloped here is fast and stable with respect to sensor noise. A number of other

methods have assumed the weak perspective viewing model used here, but they

do not solve directly for a three-dimensional transformation from corresponding

model and image points.

The method is based on the result that three corresponding model and
image points always define a three-dimensional transformation from a model to

;n image. The result was established by showing that a two-dimensional affine
transform defines a three-dimensional similarity transform that is unique up to

a reflection. It is well known that three corresponding points define a unique

two-dimensional affine transform.

Given the simplicity and stability of the method presented here, the ORA
system assumes the weak perspective viewing model, and uses this method for
computing possible transformations from a model to an image.

Shape Features 84

Chapter 5

Representing and Extracting Shape

A model based vision system matches features of stored models against features
in an image, in order to determine what objects are present in a scene. A number

of kinds of information are useful for defining these features, including shape,

texture, color, and motion. This thesis uses two-dimensional shape information

derived from edge contours, because edges can be extracted from an image

relatively easily.

For recognition tasks like the one addressed in this thesis, where objects are

at unknown positions and orientations, may be partially occluded, and can occur

in cluttered environments, two important attributes of a shape representation
can be identified:

" A shape representation should be reliably computable from an image, vary-

ing little with moderate sensor error and partial occlusion.

" A shape representation should be stable over viewpoints, depending rela-

tively little on the position and orientation of an object.

In order to be reliably computable, a shape feature should not encode detailed
shape information, because detailed shapes change under sensor noise. A feature

also should not depend on global properties of an object, because these properties

change with partial occlusion. In Chapter 2, we saw that most shape represen-

tations do :not meet these criteria [Blum78] [Brady84] [Lowe85] [Bolles82].

As long as the dimensionality of the sensor data is the same as the dimen-

sionality of the world, a number of shape properties are stable over changes in
viewpoint. Very little shape information is preserved under projection, however,

so in 3D from 2D tasks most shape features are not stable. For instance, the cur-

vature primal sketch [Asada86] segments edge contours at high curvature points,

which are not preserved under projection. Thus the resulting edge segments do

not make stable features for 3D from 2D recognition.

In addition to the above two criteria for a shape representation, there are

computational reasons to prefer a relatively sparse description of an object. The

fewer features a given object has, the fewer possible transformations there are

from that object to an image, reducing the amount of search. This requirement

trades off against recognizability, because if a representation is too spars, then

all the features of an object may be missing from an image. These two opposi:ng

Shape Features 85

factors suggest that a good representation will encode those parts of an object
that are stable across viewpoints and reliably extractable, but not other parts
of the object.

This chapter develops an edge-based shape representation that is relatively
insensitive to partial occlusion and stable over different viewpoints. Sensitivity
to occlusion is minimized by using local edge segments. Stability over viewpoints

is obtained by segmenting edge contours at zeroes of curvature, which are pre-
served under projection. The problem of computing this representation from
noisy data is also addressed. Methods are presented for computing orientation,
computing curvature, and finding zero crossings of noisy data.

The shape representation developed here addresses the problem of how to

find features that are useful for computing possible transformations from a model
to an image. As noted in earlier chapters, the best representation for verifying
a transformation is quite different. In particular, a representation for verifica-

tion does not need to be stable across viewpoints because the transformation is
known. Furthermore, the representation should be complete rather than sparse,
because to check a match may require comparing an entire model with an image.

5.1 Edge-Based Shape

The shape of most objects can be relatively well described using just their edge
contours. The major exception is objects that have smoothly changing surfaces.
Such objects are not considered in this thesis, but the problem of applying the
alignment method to objects with smooth surfaces has recently been addressed

in [Basri88]. The major reason for restricting the problem to objects that can be
recognized from their edge contours is that edges are relatively straightforward
to extract from an image in comparisoR with other properties of an object, such
as surface characteristics.

TL.e edges of an object are usually realized as intensity discontinuities in
an Iriage. In order to find discontinuities in a digitized image, however, the
digitization must be very fine. Many disc',,, tinuities are also accompanied by
changes of a relatively large magnitude. Thus edges are generally found by

looking for large magnitude changes rather than discontinuities. For example.
intensity edges are located at local maxima in the magnitude of the intensity

gradient [Marr80] [Canny86].

Many of the intensity edgt s in an image are not due to edges of objects, but
come from other sources such as shadows, texture, and reflections. In addition
to extraneous edges, some object edges may be lost because they do not produce

a large enough change in the image. The reliability of edges may be improved

Shape Features 86

Sinte ing intensity edges with other kinds of discontinuities such as texture
81(1 color boundaries [PoggioS8]. Even with such information, however, missing
and extra edges remain a problem. Given the nature of edge data in real images,
a shape representation must be relatively insensitive to spatial noise in the edges,
as well as to missing and extraneous data.

The stability of a shape representation across changes in viewpoint is also
critical to the success of a recognition system. The most stable properties across
vi+ewpoints, however, such as topological properties, (1o not encode much infor-

iilt ion about the shape of an object. For example, objects with two holes in
t'Lcii can be anything from a pair of scissors to eyeglasses. In addition, the
niumber of holes in an object is sensitive to partial occlusion, and apparent holes

c(ii b produced by accidental juxtaposition of objects.

One means of describing edge contours is by approximation with simple
analytic functions such as line segments, cubic splines, or circular arcs. As noted
ilu Chapter 2, however, important shape information may be lost by using these
appri()lmations. Therefore the remainder of the investigation in this chapter is
,0,ncerned with forming edge-based representations by smoothing edge contours
at multiple scales, segmenting the smoothed edge contours, and labeling and
grouping the segments.

The next section addresses the problem of reliably estimating the orienta-
tiop and curvature of an edge contour given sensor noise. The following sections
consider how to smooth edge contours, how to segment the smoothed contours

based on changes in curvature, how to label the resulting segments, and hew to
integrate multiple scales of segmentation into a hierarchical description.

5.2 Computing Orientation and Curvature

For a curve g., parameterized by its arclength s, the local orientation at a point
y(.,) along the curve is defined by the unit vector T,, that is tangent to the curve

;it that point. There are several ways of estimating the local orientation of a
,,rve. The simplest method is to define a local neighborhood d, and estimate the

oiritatio as T, = g(s - d) - g(.s + d). The major shortcoming of this method is
it- rathei high sensitivity to noise, because each tangent is estimated using only
tv. .) points. A method that is less selnsitive to noise is to estimate the orientation

at g(-,) h:y fitting a line to the points in the neighborhood, g(s - d),. g(s + (1).

A standard line fitting technique is the least squares method, that takes
,i ,,~',rlftermined system Ax = b and solves for the vector x that finiize's

theo error HJAx - bll 2. which is specified by ATAx = ATb. Given a set of

tiiilts (f .rl) (rn-.,Y,), the line y = C + Dr which minimizc; the error i-

Shape Features 87

determined by
n Exi[~~2:I [C] = [Z1:t]

The best line is y = "+ Dx, where
D = (i-TY

Z(X, -:2

Y= -LZxi, and V= -L yi

n_ n

This method of computing the best fitting line minimizes only the y com-
ponent of the squared distance between each point and the best fitting line.
Therefore, the method is not appropriate for sets of points where the best fit-
ting line is at an arbitrary orientation. In particular, the best fit to the set of
points in Figure 14 would not be useful for computing the tangent vector to a
curve.

0

Figure 14. An inappropriate best fitting line using standard least-squares.

This limitation of the standard least squares method has led to the proposal
that a linear fit be computed by minimizing the squared distance in the direction
normal to the best fitting line, rather than in the y direction [Duda73]. The best
fitting line for a set of points must go through the centroid of that point set.
Therefore, it is equivalent to translate the set of points to be centered at the
origin, and then solve for the best fitting line throi~gh the origin as characterized
by its unit normal vector, N. This unit vector can be shown to be the N that
minimizes

where

n

S = ViviT,

i=1

for the given points vl,..., v,. This form is minimized by taking N to be the
eigenvector of S that is associated with the smallest eigenvalue. Finding the
eigenvalues of S involves solving a quadratic because S is a 2 x 2 matrix. This
makes the method somewhat computationally intensive for finding local tangent

vec tors.

YI pt el it 88

Thus the standard least squares line fitting technique is not applicable to

tioennt es timnation problem because it only minimizes the y distance, and

.11(ilthU,(for minimizing the normal distance to the line is computatjonally

*xp,'I i\', to apply at every point along a curve. It is possible, however, to

1,;i, tably approximate the normal distance using either the x or y component

(,f Ile distance, depending on the slope of the best fitting line.

As illustrated in Figure 15a. the normal distance from a point to a line is

qpli.ily well approximated by either the x or the y component of the distance if
the- line is y = x. In cases where the slope is greater than 1, the x component

,of the (lstailce is a better approximation to the normal distance than is the

i'onkponeit. as shown in Figure 15b. When the slope is less than 1, the y

c(mponent is the better approximation, as shown in part c.

a) b) C)

Figure 15. Approximating the normal distance to a line depending on the

slope, a) y = x, b) using x component, c) using y componcnt.

A simple measure of whether the slope of the best fitting line is greater or less

thari I is the difference in the scatter, or variance, of the x versus y components

of the points,

= (Xi -)2

whcre Tr is the mean value of x, and similarly for sy. If s > sy then the slope

,,f the best fitting line will be less than one, and hence the y distances form

tlit(lo'ttei estimate of the norm,l distance to the best fitting line. Otherwise

the x distances should be used. The best fit can then be computed using the

st4nIdlar1 technique presented above to minimize the y distance, or its obvious

(h ml to minimize the x distance. The variances sx and sy are the denominator
in the computation of D in the least squares method, so determining whether

tI mi1imize x or y distance also solves part of the final least squares problem.

This sloj)te-based least squares line fitting method applies at all orientations,

;1t1(1 is r.asonably fast, because the computation is basically the same as for

,t;)t Ildardt least squares. The method is used to compute tangent orientations in

tt, ()RA systeim d(escribed in Chapter 6.

Curvature

Shape Features 89

The curvature, r., of a path in space x = g(s), parameterized by arc length,

s, is given by

dT

ds'

where T is the unit tangent vector and N is the unit normal vector in the

direction in which the path is turning. This formula has a special case for plane

curves,
do 1
ds p'

where 0 is the angle of the slope of the tangent line, and p is the radius of a

circle tangent to the curve, called the osculating circle.

Rather than computing curvature using the tangent vector, most compu-

tational vision algorithms for extracting curvature parameterize a plane curve,

g(s) in terms of separate functions of x and y, x(s) and y(s). Then the curvature

is given by

(j2 + 12)Y

using Newton's dot notation for the derivatives of x and y with respect to s. This

method of computing curvature is highly sensitive to noise, however, because of

the computation of second derivative quantities from local image measurements.

Another method that is used to compute curvature is to fit a circle to

a small local neighborhood of a curve in order to approximate the osculating

circle at that point. Then the radius of the circle, p, can be used to determine

the curvature. This method is relatively computationally intensive, because it

involves fitting a quadratic to a set of points. The method may also require

a moderate number of points to get a good estimate of the quadratic. It is

less sensitive to noise than the previous technique, however, because it does not

involve taking derivatives of noisy image measurements.

In this thesis, curvature is computed from the local tangent vectors to a

curve. The tangent vector at each point is computed using a least squares best

fit as described above. Angles between neighboring tangents are computed to

determine the change in orientation. The change in orientation is then divided

by the change in arclength. 1.4 for eight-way connected pixels and 1 for four-

way connected pixels. This method has the advantages that it uses a least

squares technique to smooth the data, does not compute derivatives of noisy

image measurements, and is relatively rapid to compute. In addition, the same

method applies to space curves as well as to plane curves.

Shape Features 90

5.3 Smoothing

One way of forming relatively rich descriptions of an image is to smooth the
iinaget at various scales, and then extract the events (such as intensity edges or
texture boundaries) that are apparent at each scale. There are several differ-
ent possible ways to smooth an image and in particular to smooth the edges
extracted from an image.

Perhaps the most common method of smoothing is to convolve an image
with a two-dimensional lowpass filter, such as a Gaussian, in order to blur out
canges in the image [MarrS0]. For coarse scales of smoothing, however, there
art' two problems with such methods. First, peaks in the smoothed image become
very broad, and hence localizing edges is somewhat difficult. Second, and more
importantly. in images with touching or occluding objects, different objects will
hw blurred together by the smoothing operation. This is not generally desirable
for recognition, where the goal is to separate objects from one another. One
Wx8% of reducing this problem is to do directional smoothing along the normal to
the direction of the gradient (steepest change). This computation is more time
consuming than uniform lowpass filtering, and it becomes difficult to perform
when the direction of the gradient is changing rapidly compared to the mask
size of the filter.

A s'..nd method of ,moothing is to represent the edge contours in an image
in tcrni,, f x and y as a function of the arc length, s, along an edge contour, and
then mooth the one-dimensional functions x(8) and y(s). If the edge contour is
closed, then filtering x(s) and y(s) by convolution also results in a closed curve
'NrokhtarianS6]. A smoothing filter attenuates the amplitude of the functions
X(s) and y(s). however, so the resulting smoothed curve will generally be smaller
than the original curve.

Depending on the task, this shrinking of a curve at coarser scales may
I) problematic. Therefore, other representations such as radius of curvature
versus tangent direction have been proposed, which have both the property of

pr,-erving closed curves and preserving the size of the smoothed curve [Horn83].
For t inultiscale description, however, it is not a problem if the size of a curve

,-,11iks at coarser scales of smoothing. A range of locations along the contour,
. .k , at one scale will correspond to a single location, s, along the contour at
the iiext coarser scale. This correspondence can be used when moving from one
>cale to another.

A c(urve can also be described in ternis of orientation versus arclength,
0 %. where orientation is comput -1 with respect to some reference orientation
-,li ;, tlie r :.-is [Tirnev85J [Perkins77]. The major problem with smoothing

Shape Features 91

orientation is that the smoothing must be done modulo the fact that the space of
orientations is circular (i.e., an orientation of 27r is the same as 0). Furthermore,
the smoothed curve need not be closed even if the original curve is, which may
be a problem depending on the task.

Finally, the curvature of a path parameterized by arclength, K(s), can be
smoothed. A curve reconstructed from the smoothed curvature need not, how-
ever, be closed if the original curve was closed. The smoothing operation at-
tenuates the curvature, so the sum of curvature along the path is reduced, and
closed curves can become open. This is only a problem if the curvature is used
to reconstruct a smoothed curve. The ORA system described in Chapter 6 uses
smoothed curvature to find reflections and peaks in curvature, and then seg-
ments t1e original contour at these distinguished points For example if there
is an inflection at a location s in the curvature smoothed at some scale, a, then
the point g(s) on the curve is marked as an inflection point at that scale of

smoothing.

Recently, 2aund has argued that any kind of uniform smoothing is inade-
quate, because different types of smoothing are needed for different parts of an
image [Saund88]. He calls for forming a symbolic representation of an image in
terms of low-level primitives such as orientation bars, and then smoothing in this
space of symbolic primitives. This is very much like Marr's idea of the full pri-
mal sketch [Marr82]. The most important issue for this type of smoothing is to
demonstrate that the early introduction of symbolic primitives produces a better
end representation, because the early categorization of local image information
can be quite sensitive to noise.

5.4 Curvature-Based Segmentation

Given a curve that has been smoothed appropriately, the next stage is to seg-
ment the curve into "natural" pieces, that are as invariant as possible under
changes in viewpoint. A number of shape representations segment curves at
high curvature points, because these points are supposedly important in human
perception. Studies examining the perceptual importance of maximal curvature

points [Attneave54] [Fischler86] do not, however, actually establish that high
curvature points are of particular importance in representing shape. Rather,
these studies demonstrate that high curvature points contain enough informa-
tion to capture the shape of a variety of planar contours.

For instance, Attneave's cat, shown in Figure 16a, is constructed by linearly
interpolating between the maximal curvature points in a line drawing of a cat.
The' fact that this linear approximation is still easily recognizable has been l.ied

Sh Ioe Features 92

IS tvience that maximal curvature points are f special importance in describ-
ing a contour. Lowe [Lowe8,5], however, points out that -he linear approximation

in Figlre 16b is also easily recognizable as a cat. This approximation is con-

'tructtd using the points midway between maximal curvature points. Thus a

varietv of -sparse descriptions seem to contain enough information that people

cail reconstruct a contour. Maximal curvature points, per se, are not necessarily

important for forming these descriptions.

Figure 16. Attneave's cat, which is intended to demonstrate the importance
of maximal curvature points for representing shape, and Lowe's cat vhich
shows that other points work as well.

7t has also been argued that because people choose maximal curvature points

.n ,rder to describe a contour, these points must be important for representing
shape. Studies on which these claims are based (such as [Fischlers6]), however.

nave asked people to segment a planar contour by marking just a few points
on the contour. Thus the task calls for a linear approximation, because when
connected by line segments the points must suggest the original contour. High

curvature points are where a linear approximation is worst, so they are the

natural break points for a linear segmentation.

It is possible to segment an edge contour at various points, so the choice of
segment boundaries should be motivated by the requirements of the recognition

,ask being addressed. Maximal curvature points are not preserved under three-
dimensional rotation and projection, both appearing and disappearing, making

theni inappropriate for 3D from 2D recognition. For example, iii Figure 17 an

,-ilipst- is rotated about its minor axis to obtain a circle; illustrating maxi -al

curvature points that disappear. The resulting circle is then rotated around

another axis to obtain a different ellipse; illustrating maximal curvature points
that appear.

In contrast to maximal curvature points, zeroes of curvature are preserved
,irider pr(ojction. A zero of curvature corresp(nds to a local section of a curve.

sr .). for q = f -h. t - 6], over which the directions of the tangent vectors T, are

! oal. which is by definution a portion of a traight line. Straight lines are
pre,,-r'. e, imd,r pr,jection, so the zero ciirvatlirc o)f these regions will r-maii

Shape Features 93

Figure 17. Maximal curvature points are not preserved under projection,
both disappearing and appearing with rotation out of the image plane.

zero under projection. A zero of curvature in an image thus corresponds to a
zero of curvature on an object, or to an occlusion boundary which can introduce
an apparent curvature zero in an image.

5.4.1 Finding Significant Zero Crossings

For an ideal curve, each zero crossing of the curvature will correspond to an

inflection point. In noisy data such as edge contours extracted from real images,
many zero crossings of curvature will not correspond to inflection points, but

rather to the errors in computing the curvature. As in all zero crossing detection
problems, some sort of threshold must be defined to separate significant zero

crossings from noise.

Several methods have been used to filter the zero crossings of noisy data.
One method, illustrated in Figure 18a, is simply to define a minimum height that
must be attained by the peak on either side of a zero crossing. Whenever a peak
is of sufficient height, the neighboring zero crossings are kept. This thresholding
method is very sensitive to noise, however, because it relies on a single point,
and that point may be relatively far from the zero crossing.

A second method of filtering zero crossings is to define a minimum slope at
the zero crossings, as illustrated in Figure 18b. The slope is computed at each

zero crossing, and must be greater than some minimum value for a zero crossing
to be kept. This method is less sensitive to noise than the peak method, par-

ticularly if the slope is computed using a least squares approximation, because

it is based on more data. Furthermore, the data used for thresholding are local
to the zero crossing. The major problem with the slope method, however, is
that relatively low slope zero crossings can still be significant. For example a

zero crossing between two very large but distant peaks may have a low slope.

This problem is especially true with curvature data, where a slow change from

positive to negative curvature is still important.

Shape Features 94

Figure 18. Three methods of filtering zero crossings, a) peak height, b) slope,

c) area.

In the ORA system, significant zero crossings are found by defining a miii-

inmur area under the curve between two successive zero crossings, as illustrated

in Figure 1Sc. Whenever the magnitude of the area is above a threshold, the

neighboring zero crossings are kept. This method does not have the problem of

relying on a single point, nor does it have the problem of excluding low slope

zero crossings. For curvature data, computing the area between two zero cross-

ings is trivial, because it is the total turning angle over the region, which is just
the angle between the tangent orientations to the original curve at those points.

Watt and Morgan [Watt88] have evaluated several different methods of
thresholding zero crossings in terms of how sensitive the threshold measures
arc to noise. They compared peak height, slope and other standard measures

against the centroid and mass of a peak, which are both properties based on
moments. The moment based properties are more stable under noise, and thus
were advocated for use in edge detection.

5.4.2 Segments of a Curve

The methods presented above can be used to find the inflection points of a noisy

curve, and these points can then serve as segment boundaries for the contour.
The major drawback of using inflection points as segment boundaries is that the
straigit parts of a contour are not delineated. A side effect of this problem is
that a boundary may be located somewhat arbitrarily in the middle of a straight
section, as illustrated in Figure 19a.

Figure 19. Segmenting a contour, a) at inflections only, b) at ends of straight
segments and inflections.

A simple solution to this problem is to define straight segments as regions of a
contour where the curvature is within F of zero for some minimum arclength.

Shape Features 95

The endpoints of these straight segments are marked as boundaries in addi-
tion to those inflections that are not within a straight segments. The resulting

segmentation of the same contour is shown in Figure 19b.

Segmenting a contour at inflections and the ends of straight regions thus
yields two types of segments: straight and arc. Each arc segment will have
either positive or negative curvature. If an arc has a sharp local maximum
of curvature, then there is probably a discontinuity in the arc. Thus it is fur-
ther possible to subdivide this class of segments into a corner and a true arc.

The distinction between these two classes is a matter of degree, because under
projection an arc may appear to be a corner and vice versa.

5.5 Hierarchical Edge Description

The previous section presented a method for segmenting an edge contour at
zeroes of curvature, yielding straight and curved segments of the contour. By

smoothing the curvature, small zero crossings can be removed, resulting in a
coarser scale segmentation of the edge contour. For example, the curve in Fig-
ure 20a has numerous inflections, corresponding to the zero crossings of K. Each
inflection is marked by a dot. In contrast, for a Gaussian of sufficiently large 0a

there are only two inflections in G, * K, the convolution of the curvature with

the mask, as illustrated in Figure 20b. The inflections are again marked by dots.

Figure 20. Smoothing the curvature removes small zero crossings, and pre-
serves only the larger scale inflection points.

The segmentation of an edge contour using different scales of smoothing of the
curvature forms a hierarchical description of the contour. This hierarchical de-
scription is a scalespace tree [Witkin85] because under appropriate conditions
using a Gaussian filter, coarser scales of smoothing do not introduce zero cross-

ings that were not present at finer scales [Yuille86] [Curtis85]. Thus each seg-
ment at a coarser scale ".vill correspond to one or more segments at a finer scale,

forming a tree of segments.

Each edge contour in an image will form a separate tree, with a root at the
scale at which there ale no remaining inflections in the contour. The scalespace

Shape Features 96

(description of a contour can be used to label the segments at a particular scale

using the local parent, child, and sibling relations in the tree. This method of

classifying segments is more robust than proximity based grouping (such as that

performed in [Bolles82] [Lowe87]), because a connected piece of contour is more

likely to belong to a single object than are nearby contours.

Figure 21 shows a three-level scale-space curvature segmentation of the edge

contours of a widget. Each part of the figure shows the same contour, segmented

according to the curvature smoothed at different scales (using Gaussian filters

of size a = 7, 20, and 40 pixeis, respectively). The coarsest scale is at the top of

the figure and the finest scale is at the bottom. The endpoints of each segment

are delimited by a lot, and straight segments (at that scale) are shown in bold.

Each segment is labeled with a letter denoting the level (A for coarsest and C

for finest), and a number.

4

2 6

6

19

4 3

3 12

Figure 21. A scale-space segmentation of a widget, where the contours are
segmented at inflections in the smoothed curvature. The coarsest scale is at
the top.

Recall that each segment of edge contour can be classified according to the three

labels corner, arc, and straight. The corner and arc segments are distin-

guished by whether or not they contain a high curvature point. The multi-scale

description procedure augments these three labels by combining the classifica-

tions at, multiple scales of smoothing using the segmentation tree.

The multi-scale segmentation in Figure 21 can be viewed as a tree of cor-

responding segments at neighboring scales of smoothing, as shown in Figure 22.

Each segment at a given scale corresponds to one or more segments at the next

finer scale. Each segment in the tree is indicated by its label from Figure 21 and

by the type of segment: corner, arc, or straight.

,, =n~n ,i m ra~memnm mnlnilnnllllllnlBIImime I
I

I

Shape Features 97

A2 A3 A4 A5 A6 A7 A8 A9o
arc arc arc arc str arcI~ I h\ I I I I
B2 B3 B4 BS B6 B7 18 B9 B10 Bl
arc arc arc cor arc cor arc str arc str

A IIHI II II
C15 C2 C3 C4 C5 CG C7 C8 C9 C10 C11 012 C13 C14
cor cor cor cor arc str cor cor arc cor arc str arc str

Figure 22. The tree corresponding to the curvature scale-space segmentation

in the previous figure.

Multi-scale descriptions of a segment are formed using its ancestors and
descendants in the scale-space tree. A segment is classified in terms of its ances-
tors according to whether it is (primarily) a single child, or one of multiple

siblings. A segment is classified in terms of its descendants according to whether
it has (primarily) a single child, or multiple children.

For example, using this multi-scale description, the arc segment A2 at the
coarsest level of the tree is differentiated from the other arc segments at the

same level, because A2 is the only segment that is composed of a single arc at

the next level, and multiple corner segments at the finest level.

5.6 Features for Alignment

In order to align an object with an image, three pairs of corresponding model and

image points are required. Therefore, features that define three distinguishable
points are ideal for determining possible alignments of models with images,

because a single feature specifies enough information. Recall from the previous
chapter, that two points and two orientation can be used to define a third
point, so features that define two distinguishable points and orientations are

also sufficient to compute an alignment.

If a feature contains three identifiable points, but the points are not each

labeled so that they can be distinguished from one another, then there are several
possible alignments. For example, if one point is distinguishable from the other

two, then there are two possible alignments, as illustrated in Figure 23. The
same is true for two points and two orientations, because the third point that

they define cannot be confused with the original two points. If a feature defines
three indistinguishable points, then there are six possibilities, corresponding to

the different arrangements of three points.

For features that define fewer than three points, more than one model and

Shape Features 98

a s a

Figure 23. Three points with one distinguished point defines two possible
alignments.

image feature are required to compute a possible alignment. If a feature defines
two points, or a point and an orientation, then two features are required. If a
feature only defines a single point, then three features are needed. The combi-
natorics of matching with features that define a single point is relatively high,
because any trip:e of model points and corresponding triple of image points
could specify a possible alignment. The difficulty of finding features that define
at least a point and an orientation is not much higher than the difficulty of find-
ing features that define only a point, so the ORA system described in Chapter

6 uses features that define at least a point and an orientation.

Features that define one point and one orientation are called Class II fea-
tures, because two features are required to solve for a possible alignment. Those
features that define three points, or two points and two orientation, are called
Class I features, because only one feature is needed for alignment. Several Class
I and Class II features can be defined in terms of a small number of connected
edge segments of the kind discussed in the previous section. For example the
inflection points at the ends of an arc segment each define a point and an ori-
entation, forming a Class I feature. A set of these features are presented in the
next chapter, which also discusses how the ORA system extracts features from
edge contours.

5.7 Region-based Shape

The spatial arrangement of edges and other primitive elements extracted from
an image appears to be very important in human recognition. Spatial grouping
of primitives into larger units reduces the number of different elements in an im-
age, and allows the elements to be labeled distinctively [Witkin83]. While it can
be argued that grouping is important in recognition, it has proven difficult to
implement useful grouping operations. Algorithms for performing grouping gen-
erally end up being computationally expensive, and prone to error. Recent work

by Mahoricy [Mahoney87], however, has developed a promising computational

Shape Features 99

Figure 24. A set of edge fragments not generally recognizable as an object.

framework in which to specify and implement spatial grouping algorithms.

Lowe [Lowe85] presents a nice example illustrating the importance of spatial

grouping operations in human visual recognition, and how grouping failure can

result in recognition failure. The line segments in Figure 24 do not suggest an
object to most people, even after several minutes. By the addition of a single

line segment however, as illustrated in Figure 25, the object becomes obvious to

most viewers almost immediately.

The addition of a single segment allows the edges at the lower right of the

image to be grouped into a circle, apparently causing a wheel to be identified,

and then the entire bicycle. By grouping edge fragments into larger units of

shape, it seems that humans are able to greatly limit the number of possible

interpretations of an image that must be considered in recognition.

As this example illustrates, dependency on grouping can make recognition

fail if the grouping operation fails. It is interesting to note that some people

are able to recognize the image in Figure 24 after several minutes, which is

presumably spent considering a large number of possibilities. Thus if grouping

fails it should be possible to spend more effort considering possible hypotheses

in order to eventually recognize the object.

A recognition system can make use of grouping operations in several dif-

ferent ways. It is possible to define features that are the result of grouping

operations. For example, LFF [Bolles82] and SCERPO [Lowe87] use groups of

primitives as features. The bicycle example also illustrates this case, because the

circle corresponding to the wheel is a group of primitive segments, and is also

Shape Features 100

a critical feature for recognizing the bicycle. This use of grouping operations

requires that the likelihood of failing to find a group, or of finding a false group,
must be relatively low. Otherwise the recognizer will not have reliable features

to use for matching.

For a recognition method like alignment, where small sets of local features

are used to compute possible matches, a grouping operation can be used to find
features that are likely to come from the same object. Sets of features can either
be chosen only from the same group, or the groups can be considered before

trying arbitrary sets of features. This use of grouping is relatively insensitive

to false positive groups, because a group is just a set of features that may
correspond to a single object. As long as the groups are smaller than the entire

set of image features, the grouping operation will save search in the matching

process. Thus it is possible to exploit much less accurate grouping operations

in this manner.

be

,/

_ I- '\ I

Figure 25. Adding a single edge fragment to the image in the previous figure.

A grouping process should be specifiable in terms of local operations because

the combinatorics of global operations, such as taking sets of features over ar-

bitrary regions, is as bad as recognition in general. In fact the combinatorics

of global operations may even be worse than for recognition, because in current

approaches to recognition specific models are used to constrain the search. For

instance, a grouping algorithm that considers all triples of features in an image

may do more work than an alignment-based recognizer.

Smooth local symmetries [Brady84] can be used to group edge contours
that define symmetric regions. The processing performed to find symmetries

Shape Features 101

is global, however, requiring all pairs of edge pixels to be considered, which is
0(n 2) operations for n edge pixels. In cluttered images, numerous "symmetries"
can be found that are only due to the juxtaposition of different objects. Thus
there will tend to be many false groups. Furthermore, symmetries are sensitive

to partial occlusion, and thus are not a very reliable grouping mechanism.

The LFF [Bolles82] and SCERPO [Lowe87] systems both use proximity
to group features together, which only involves local computation. In complex
images, however, the fact that two features are close together does not mean
that they are likely to be from the same object. It is at least as likely that
nearby features are just from nearby objects. For edge-based representations in
particular, most of the features of an object are relatively far from one another,
with the exception of the neighboring features along an edge contour.

Mahoney [Mahoney87] has recently developed a set of routines for perform-
ing what he calls visual chunking, which is the division of an image into sets
of edges or other primitives that form spatial groups. These groups have the
property that they are quite unlikely to occur at random. The processing is

done in parallel using simple locally connected processors, and an effort is made
to reduce the number of serial steps which must be performed for each grouping
operation. The parallel processing framework he develops looks very promising
fo)i specifying grouping operations that are useful for recognition.

The GROPER system [Jacobs88] for 2D recognition performs grouping
based on proximity, but uses more complex groups of edges that are less likely to
occur at random than are single nearby edges. GROPER uses polygonal object

models and linear approximations to edge fragments in an image. One of the
feature types is a triple of connected edge fragments that define a convex sec-
tion, as illustrated in Figurc 26a. The spatial orientation of these pairs shown
in the second part of the figure is relatively unlikely to occur at random, and is

indicative of a convex object in the image. Thus it is a good type of grouping

to perform on an unknown image.

a) b)

Iigujre 26. Groups of edge triples can define potential convex regions of an

object, a) an edge triple, b) a. gromn.

Shape Features 102

5.8 Intensity Based Grouping

Wt. have seen that simple, local, edge-based features can be used to compute
possible alignments from a model to an image. While edges alone are adequate
for performing alignment, to the extent that spatial groups can be extracted
from an image, they can also be useful. Spatial regions can be used to define
alignment features. For instance, the center of a circle is a spatial attribute that
defines a unique alignment point, whereas there is no such point on the contour
of a circle. Spatial regions can also be used to find sets of Class I alignment
features that are likely to be from the same object. Pairs of these Class II
features can then be used for finding possible alignments.

The intensity on each side of an edge segment can be used to form groups
of e'dge segments that are likely to be from the same object. In this section, two
different grouping methods are considered. The first method groups together
segments where the intensity values on one side of the edge contour are similar,
corresponding to the "inside" of a hypothetical object. This method is good for

situations where the background changes from one part of an object to another,
but the color, texture and illumination of the object are relatively uniform. The
second method groups segments where the ratio of the intensity values on both
sides of the edge contour are similar. This method is good for the situation
where the illumination changes from one part of an object to another, but the
color and texture of the object and the background are both relatively uniform.

Both methods average the intensity levels in a small band along either side
of an edge segment, in order to provide an estimate of the intensity levels on

each side. These values are then quantized and used to cluster segments that
have similar intensity levels together, by indexing into a tablc. To limit the
effects of quantization error, each segment is added to those table entries that
are within c of the measured intensity value.

In the first grouping method the clustering is performed using the intensity
values on each side of a contour. Not all spatial configurations of edges with
similar intensity values are equally likely to correspond to the same object. For
example, the two edge segments in Figure 27a are much more likely to be part
of the same object than are the segments in part b. The shaded side of each
segment indicates the side having similar intensity values.

The method checks the relative orientations of pairs of segments with similar
intensities. Those pairs where the similar intensities are on facing sides of the
segments. as in F;gure 27a, are kept. Remaining configurations, such as the one

in Figure, 27W, are discarded as accidental. Finding pairs of edge segments that
;r lik:ely to h)e from the same object is sufficient for the alignment algorithm,

Shape Features 103

II II l
Figure 27. Spatial configurations of edge segments with similar intensities
on one side, a) likely to be part of the same object, b) unlikely to be part of
the same object.

which only requires pairs of Class II features to solve for a transformation.

The facing sides of two segments are found by connecting the center points
of the two edge contours. The side of each segment facing in the direction of the
connecting edge is the facing side, as shown in Figure 28a. It is also required

that the edge connecting the closer two endpoints of a pair of segments does

not cross the edge that connects the farther two endpoints, as illustrated in
Figure 28b. If the edges between endpoints cross, as in part c of the figure, then
the two segments do not clearly define a region of space.

a) b)

Figure 28. The facing sides of two segments are found, a) using the edge
connecting the center points, and b) also requiring the edges connecting the

endpoints not to intersect.

The second grouping method uses the ratio of the larger to the smaller inten-
sitv value. In this case, two segments match if either the lighter sides of both

segments are facing one another, or the darker sides of both segments are fac-
ing one another. Otherwise, the two segments are not consistent with varying

illumination of a single object.

5.9 Models

For three dinensional recognition tasks, objects are generally represented in
t'rms of a single three-dimensional model [Besl85]. At the simplest end of the

1) I ipe a t I r es 104

.p,,ti'lumi are wire-fraine or surface models that)specify the positions of vert ices

I, e,1 4',. Nbre coiplex modeLs specify the positions of segments [BollesS86
r,, V,, ,lietric o0 oth,.r plimiti\ es such as generalized cylinders [Brooks8la] or

,tl:;tIric surfaces.

A iiig7- tirt.e-(imenisional model is not well suited to the problem of visual
rc 4)'o liti)l, however. because it does not explicitly represent information about
v ;vt)&)it. Only part of a threc-dimiensional object is visible from any given
V,., so an image must be consistent with an actual view of an object at a

i,(-ii position and orientation. Thus before a three-dimensional model can be
:.,;'ched to, an image. hidden line and surface elimination algorithms must be
2'441 to remove the portions of the object that are not visible from a given
vi,,wpoint.

It is also difficult to construct a single three-dimensional model from linage
.";1!;t. becaitiLe, multiple views must be integrated together. While there are svs-

for bu.iilding models from multiple views [Herman84j, the problem is quite
,1i!-i-Clt. airl often requires a large number of images. Therefore, most vision

-tc n> r1,<,Iire object models to be entered explicitly, rather than forming them
Voifat rom images. The very information about viewpoint that is im-

, .:rant in recognition is what is discarded in forming a single three-dimensional
:11,,<ii from a set of images.

One alternative to representing an object by a single three-dimensional
1:1,,,141 i - to use multiple views. The major issues with the use of multiple
Vit,- art, how imany views are nee(led to represent an object [Koenderink79l

-,, kiS7, and how to compute the views [GigasSS]. One natural way to choose
vi, ws for the alignment method is to have a separate view for each viewpoint

fr ,i which a different set of features are visible. The feature set constitutes the
,e.scription of an object used in matching, so every time the feature set changes
a n1ew view is needed.

Using a separate view every time the feature set changes obviates the need
for hidltei line and surface computation. The problem of forming models from
ilii;ges is also siibstantially simplified, because there is no need to integrate
multiple views to form a model.

A nuiltiple-view model of a cube, for example, would consist of just one
vi,,,, with three surfaces visible. Any other view, with just one or two surfaces

1,-. ,'a i derived from the three-surface view without having to determine
;1.,l r,iove hidden parts of the object. In order to modlel a cube on which each

r fae hi ;ts a dlistiigtiishiig mark, eight views are required, one for each three-
4, . ,iw fr,1ni each vertex). The ORA system uses this type of multiple view

, C'4. ,',1P,,',(,,f tim Three-dimniensiona locations of the edges and s,,rfaces

Shape Features 105

visible from a given viewpoint.

While hidden line elimination is not needed for such models, it must be
asured that a model is not oriented in an improper fashion, for example such

that the viewing direction is from behind the model. One way to check for
proper viewing orientation is to compare the convex hull of the model in its
canonical orientation with the convex hull of the positioned model. The convex
hull of a planar point set, S, is the smallest convex set of points containing S.
Intuitively, it is the shape that a rubber band would take if stretched around
the set of points and then released. The convex hull of a set of n points can be
computed in time O(n log n) [Preparata85].

No point on the convex hull of the canonical view should be inside the
('onvex hull in a transformed view, and conversely no point inside the hull in the
canonical view should be outside the hull in a transformed view. In other words,
points that are extrema of the object should not be moved inside the object by
changing viewpoint, and similarly points that are inside the object should not be
moved outside it. For example, Figure 29 shows a canonical view of a wedge, and
an illegal position where part of the convex hull of the canonical view is inside
the hull of the positioned view. The ORA system performs this consistency
check for each alignment, and discards matches that improperly orient a model.

Figure 29. A model of a wedge from a given viewpoint, and an illegal position
of that model.

5.10 Chapter Summary

We have seen that features for hypothesizing possible transformations from a
iriodel to an image should be

* reliably computable given sensor noise and partial occlusion,

* .9table over viewpoints,

* relatively sparse.

Shape Fe;', Ires 106

Tho shai, representation developed in this chapter is intended to meet each
these go,ls. The representation is based on edge contours, because tley are
relativeIl easy to extract from an image. The features are simple and local, in
or(ler to minimize sensitivity to sensor noise and occlusion. Inflection points
and straight portions of a contour are used to define edge segments, because
these points are preserved under projection. Locally connected sets of the edge
segments are then used to define points and orientations for alignment, yielding
a representation that is sparse.

Robust methods were developed for computing the curvature and inflections
of noi.-v edge contours. The slope-based least squares method is a fast way to
obtain a reliable local orientation estimate for a noisy edge contour. Either the
x or y component of the error is minimized as an approximation to the normal
error, depending on the slope of the best fitting line. The area zero crossing
method is a reliable way to find the zeroes of curvature that correspond to real
inflecti',l in noisy curvature data. The significance of a zero crossing is judged
based on the aiea of the curvature function on either side of the crossing.

T, the extent that features can be labeled, and groups of features can be
fniil, it may be possible to limit the amount of search required in recogni-
t:in. Two methods were presented for labeling and grouping features. The
fir-st method segments an edge contour at various scales of smoothing to pro-
duce a scale-space tree description of the contour. The structure of this tree
can then be used to label edge segments at a given scale. This produces more
reliable labels than proximity-based labeling schemes, because it only relies on
connected pieces of contour. The second method groups edge segments together
lsing intensity information on each side of the edge contour. This method can

b~e used to hypothesize sets of image features that are likely to come from the
same object.

The ORA recognition system, described in the next chapter, uses the repre-
sentation developed here to find features for computing possible transformations
from a model to an image. Each feature defines either a point and an orienta-
tion, or two points and two orientations. Thus only one or two corresponding
inodel and image features are needed to compute a transformation, using the
niethod presented in Chapter 4.

ORA System 107

Chapter 6

The ORA System

This Chapter describes the ORA (Object Recognition by Alignment, pronounced
"aura") recognition system. ORA uses singletons or pairs of corresponding

model and image features to find possible matches of solid objects to a two-
dimensional image. Each transformation from a model to an image is scored by
aligning the model with the image, and comparing the transformed model edge
contours against nearby image edges. In the worst case the matching process

considers O(m 2i2) transformations for m model features and i image features,
because each pair of corresponding features may define a distinct transformation.

The time to verify each transformation is approximately 0(m), if the length of

a model's edge contours is about proportional to the number of features that it
contains. Thus the overall worst case matching time is 0(m 3i 2).

6.1 System Overview

A grey-level image is first processed using a Canny operator [Canny86] to ex-

tract intensity edges. Edge pixels are chained into edge contours by following
unambiguous 8-way neighbors. Local neighboring chains are then merged to-
gether using a mutual-favorite pairing procedure, described below. Each chain

is segmented at inflection points and at the ends of low-curvature regions, as

discussed in the previous chapter. The curve segments are then categorized into
the classes: straight, corner, or arc. A zero curvature segment is classified

as straight. A curved segment that has a local high curvature portion, in-
dicative of an orientation discontinuity, is classified as a corner. The remaining

segments are classified as being an arc.

Groups of one or more connected edge segments are used to form alignment
features. Each alignment feature defines either a triple of points (a Class I
feature) or a point and an orientation (a Class II feature). A single Class I
feature in a model and a corresponding feature in an image are sufficient to

hypothesize a possible transformation mapping the model into the image. For

Class II features, two corresponding model and image features are required.

Each Class I feature in an image is paired with the matching Class I features
of a model. Every pair determines a small number of transformations from the

model to the image. If a transformation matches more than a certain percentage

O(RA Svsern 108

of a model's edge contours to image edges, then it is kept as a correct match.
Those image features that are accounted for by a correct match are marked so
that they need not be considered in subsequent matches. Once all the Class I

fca, ures have been tried, pairs of unaccounted for Class II image featuires are
matched against corresponding pairs of model features. Possible alignments are
computed, and these alignments are verified.

To the extent that any grouping or classification of features can be done,
the number of matches considered can be reduced by using only specific pairs

of features rather than taking all pairs. As noted in the previous chapter, the
"Trouping process does not need to be very sophisticated in order to be useful. It

is enough to find pairs of Class II image features that are likelI -o be from the
same object (although are not necessarily from the same object). These pairs
of Class II features can then be used to hypothesize possible alignments, before
having to try arbitrary pairs.

Each alignment computation is independent of all the others, so the align-
rnents can all be computed in parallel on a massively parallel machine such as
the connection machine [Hillis86]. This computation is constant time as long
as the number of alignments to be computed does not exceed the number of

processors. Algorithms for a parallel version of the ORA system are discussed
later in this chapter.

6.2 Finding Edge Contours

Intensity edges are found using Canny's edge detector [Canny86]. The output of
the edge detector is a binary array indicating the presence or absence of an edge
at each pixel. In order to be used for recognition, these individual edge pixels

must be grouped together into chains that form edge contours. When a given
pixel has only one or two neighbors, then the tracing process in unambiguous.
Otherwise, a decision must be made as to which pixels belong together as part
of an edge.

ORA first forms contours by chaining together pixels in the edge array
that have unambiguous 8-way neighbors. Whenever a pixel has more than two
neighbors, the current chain is finished, and a new chain is started for each
neighbor. The resulting set of chains is then used as the input to an iterative

merging procedure. Each step of the iteration finds chains that can be merged
together and merges them. When an iteration step performs no merges, the

process terminates.

The merging procedure uses what I call mutual favorite pairing. Given a
set of elements, X, each , E X has a list of potential matches, m(x,), ordered

ORA System 109

from best to worst. For each xi, call the first element in m(xi), mi. For a given
x,, if the first element of rn(m,) is xi, then xi and m, rank each other as the
best possible match, and they are paired together.

In the case of edge chains, a given chain, E, can potentially be merged
with other chains that have nearby endpoints. If b is one endpoint in an edge
chain, E, then any other chain with an endpoint that is within d pixels of
b is considered as a possible merge, and similarly for the other endpoint of
E. The magnitude of d depends on the length of the chain. In the current
implementation d = max(5, 1/10), where l is the length of E.

The candidates for merging with a given chain, E, are ordered based on how
well each candidate would merge with E. Consider two edge chains El and E2
with points el and e2 taken slightly back from their endpoints, and with the unit
tangent vectors to the chains at these two points being el and e2 , respectively,
where the tangent vectors point towards the end of the chain, as illustrated in
Figure 30. The two points are chosen back slightly from the ends of the chains
because the accuracy of edge detectors is generally not very good right at the
end of an edge.

Let v be the unit tangent vector in the direction of the edge el e2 connecting
the two endpoints. The merge difference is,

D = ei - e2 l(jgelvl + ILe2V)),

where V is the unit vector in the opposite direction of v. D accounts for the
distance between the endpoints, and the difference between the orientation of
the segment connecting the two endpoints and the local orientation of the two
chains. The more similar the orientation of the three tangents, and the closer
the two endpoints, the smaller D will be, and the better the merge is.

/N .v <_ f-
el e2

Figure 30. The measure of how well two chains merge takes into account
both distance and orientation difference.

Once the candidates for each chain are found and ranked, the iterative mutual
favorite pairing procedure starts. One iteration consists of considering both
endpoints of each chain. If two chains are paired by the matching procedure
then they are merged together, and the merged ends of the chains are removed
from consideration in future merges. The iteration terminates when no more
endpoints to be merged are found. Clearly the process ends, because there are
a finite number of chains, and at each step either two chains are merged into

ORA System 110

one, or there are no merges and the iteration stops. Each iteration takes 0(n)
time for it edges, and at least one chain is removed at each step, so the worst

case running time is 0(n 2). This worst case only occurs if all the chains have

an endpoint near the same place in the image. In general, there are a very small

number of chains with endpoints near any given point, so the expected running

time is linear in the number of chains rather than quadratic.

6.3 Segmenting a Curve

Edge chains are segmented by finding inflection points and the ends of zero

curvature regions, as discussed in Chapter 5. Curvature is computed from the

angle between successive tangent vectors to the edge contour. The angle between

tangents is corrected for arclength in the case of 8-way connected pixels, where

the distance is 1.4 rather than 1.0. The tangent vectors are computed using the

slope-based least squares method also described in the previous chapter.

ORA uses the area method, described in the last chapter, to find zeroes of

curvature. A zero crossing is kept if the area of the peak on either side of the zero

crossing is above some threshold value. Unlike other methods of filtering zero

crossings, such as peak height and slope, the area method is relatively insensitive
to noise and yet preserves slow zero crossings. This is particularly important for

curvature data, where significant slow zero crossings are relatively common.

Given a edge contour, g(s), parameterized in terms of arclength s, its tan-

gent vectors, T 5 , and curvature, ,K, are computed as described in the previous
chapter. The significant zero crossings of curvature are then found using the

area method. The area between two zero crossings of curvature located at s,

and s 2 is just the angle between T,, and T, 2 , the vectors tangent to the edge

contour at g(si) and g(s2). Any zero crossing where the magnitude of the area
on either side of the zero crossing is above a threshold value is retained, and the

others are discarded.

A curve is segmented into positive, negative and zero curvature portions by

identifying zero curvature segments, where the curvature is below e, as well as

computing inflection points, where the curvature crosses zero. The zero curva-
ture segments are those where the area of the curvature function is below E. The

curvature and resulting segmentation of a simple edge contour are illustrated in

Figure 31. The zero crossings of curvature and the corresponding points on

the contour are marked by dots. As discussed in Chapter 5, this segmentation

provides a description of a curve that is relatively invariant under projection, be-
cause straight lines always project to straight lines, and inflection points always

project to inflection points (or disappear in the case that the contour projects

ORA System 111

Figure 31. Zero crossings of curvature and the corresponding positive, neg-
ative and zero curvature segments of a contour.

to a straight line).

The locations of discontinuities in orientation are also useful for describing

a curve, because discontinuities are preserved under projection (except where

a curve with a discontinuity projects to a straight line). In a digitized image,

however, it is difficult to detect discontinuities. An orientation discontinuity

generally involves a large change in orientation, so local high curvature points

indicate possible locations of discontinuities. Thus, while high curvature points

are not invariant under projection, and thus are bad segmentation points, they

are still useful for describing edge segments.

Given a segmentation of a contour into positive, negative and zero curvature

segments, it is not sensible to look for high curvature points in zero curvature

segments. In the other segments, local high curvature points can be found by

looking for peaks in the smoothed curvature, where a peak is defined to be a

point s along an arc where the curvature is of greater magnitude than at s - 1

and s + 1. The problem with this definition is that a peak is only defined locally.

Therefore, a minimum peak height is generally used to remove insignificant

peaks. For a segmented contour, there is a natural threshold on the minimum

acceptable peak height, namely the average magnitude of the curvature in that

segment. The curvature peaks and corresponding edge points are shown for a

simple contour in Figure 32. The curvature peaks are marked by dots.

6.4 Features for Alignment

Once a contour has been segmented into positive, negative and zero curvature

portions, and the local high curvature points have been identified, the segments

are classified into the three types: straight, corner and arc. The zero curva-

ORA System 112

Figure 32. Local peaks of curvature and corresponding points on the edge
contour.

ture segments are straight, the segments with high curvature points are corners,
and the remaining segments are arcs.

The features used for alignment are sets of points extracted from one or
more connected edge segments. Each feature defines either three points (Class I
feature) or a point and an orientation (Class II feature). The Class I alignment
featur-,. those defining three points, are shown in Figure 33. The features are:
i) an edge with two partial edges, ii) a corner with two complete edges, and iii)
an arc with two partial arcs (or edges). For those Class I features that define two
points and two orientations, a third point is defined where the lines through the
points in the specified orientations intersect, as described in Chapter 5. These
induced points are indicated by dashed lines in Figure 33.

A

Figure 33. Class I features define three points. A single matching feature is
sufficient for alignment.

The Class II features, those defining a point and an orientation. Pre. shown in
Figure 34. The features are: i) a corner with two partial edges, and ii) an
inflection joining two arcs.

Alignment features are found by considering n-tuples of successive segments
along an edge contour as potential features. For example, a Class I feature

ORA System 113

L
Figure 34. Class II features define a point and an orientation. A pair of
matching features is sufficient for alignment.

based on three corners can be defined by the five successive segrmonts shown in
Figure 35. The end of each segment is marked by a dash, and the three points
for the alignment feature are marked with dots. The number of possible such

alignment features is linear in the number of edge segments.

Figure 35. Deriving a three corner Class I feature from successive edge
segments.

Image features are additionally assigned a salience measure which can be used
to order the features for matching on a serial machine. The salience of an image
feature increases with the arclength of the edge contour from which the feature
points were extracted, and the closeness to the center of the field of view.

Model features are computed separately for each view of an object. Rather
than segmenting the three-dimensional contours, a view is orthographically pro-

jected into the x - y plane (the viewing direction for models is the z-axis) and
the resulting contours are segmented. The correspondence of image contours

to model contours is retained, and the image segments are then used to specify
three-dimensional model segments.

6.4.1 Labeling Segments

As discussed in the previous chapter, a hierarchy of curve segmentations can be
obtained by smoothing the curvature at different scales, and using the smoothed
curvature to segment the edge contour. The segment boundaries are at zero

crossings, so each coarser scale segment corresponds to one or more neighboring
segments at the next finer scale, forming a scale-space tree [Witkin85].

O1R.\ Sy'tem 114

This scale-space edge contour description is used to label edge segments

acCOrding to their structure at coarser scales of smoothing. The purpose of

the' lal)eling is to allow the matching algorithm to order or prune the space of
possilhle corresponding model and image features. Any pruning on the basis of

featre la)els may result in missing a correct solution, because of errors in the

labe,ling process. Therefore the current implementation of ORA uses the labels

only to (lecide which pairs of model and image features to consider first.

Soine existing recognition systems form distinctive labels using neighboring

features to describe a given feature. The problem with this, however, is that an

image feature may be labeled using features that are not part of the object being

rPcognized (e.g., as in LFF [Bolles82] and SCERPO [Lowe87]). The scale-space

tree provides a more limited form of context, which is less sensitive to errors due

to juxtaposition of objects.

6.5 Trying Possible Alignments

Once the alignment features have been extracted from an image, all pairs of

Clas., I model and image features are used to solve for potential transformations.
Each transformation is verified by comparing the transformed edge contours of

the model with the image. If a transformation maps a sufficient percentage
of a inodel's edges onto image edges, then it is accepted as a correct match.

Each alignment feature in the image that is accounted for by a correct match is

removed from further consideration by the matcher.

The exact algorithm is given below, where the variable TRANSES is used to
aCcimnuilate the accepted transformations, IMAT is a boolean table indicating the

image features that have already been matched to some model feature, MCLASS1
returns the Class I features of a model, and ICLASSi returns Class I features in

an image. The procedure CONSISTENT checks that a model and image feature

have. consistent labels. ALIGN 1 computes the possible alignment transformations
from a pair of Class I model and image features, using the method developed

in C'hapter 4. VERIFY returns all the matching model and image edges given a
traisformat in, GOOD-ENOUGH checks that a match accounts for sufficiently many

imodl.l edges, and MATCHED-FEATURES returns the image fea.ures accounted for

by a match.

ORA System 115

for MFEAT in MCLASS1(MODEL)

do for IFEAT in ICLASSI(IMAGE)

do if CONSISTENT(MFEAT,IFEAT) and not IMAT(IFEAT)

then for TRANS in ALIGNI(MFEAT,IFEAT)

do MATCH +- VERIFY(TRANS,MODEL,IMAGE)

if GOOD-ENOUGH(MATCH)

then put TRANS on TRANSES

for IFEAT in MATCHED-FEATURES(MATCH)
do IMAT(IFEAT) - true
od

od
od

od

Once the Class I model and image features have been exhausted, all pairs

of Class II model and image features that have not already been accounted for
(are not marked in IMAT) are used to solve for potential transformations. The

procedure ALIGN2 takes two pairs of model and image features and solves for

the alignment transformations. The functions MCLASS2 and ICLASS2 return the

pairs of Class II model and image features, respectively.

for MFEAT1,MFEAT2 in MCLASS2(MODEL)
do for IFEAT1,IFEAT2 in ICLASS2(IMAGE)

do if CONSISTENT(MFEAT1,IFEAT1) and CONSISTENT(MFEAT2,IFEAT2)

and not IMAT(IFEAT1) and not IMAT(IFEAT2)

then for TRANS in ALIGN2(MFEAT1,MFEAT2,IFEAT1,IFEAT2)

do MATCH - VERIFY(TRANS,MODEL,IMAGE)

if GOOD-ENOUGH(MATCH)

then put TRANS on TRANSES

for IFEAT in MATCHED-FEATURES(MATCH)
do IMAT(IFEAT) 4- true

od
od

od
od

The alignment computation specifies two possible transformations that dif-

fer by a reflection of the model about the three model points. As noted in the

previous chapter, a further ambiguity may be introduced by not knowing the ex-

act correspondence between the points in the model feature and the points in the
image feature. For instance, a model feature consisting of an edge connected to

two partial edges can have two possible correspondences with an image feature.

ORA System 116

Soiuttinms it is possible to discard one of these two possible correspondences
based (oi the kind of partial edges (arc versus straight) at each end. Thus for
a pair of Class I model and image features (procedure ALIGN1) there are either
two or foiur possible transformations from the model to the image.

To verify an alignment (procedure VERIFY), each model edge segment is
transformed into image coordinates in order to determine if there are corre-
sponding image edges. The image edges are stored in a table according to
position andl orientation, so only a small number of image edges are considered
for each model edge. The details of the verification process are described in the

next section.

When an alignment matches a model to an image, each image feature that
is matched by a model feature is taken to be accounted for by that model, and
is remoVed from further consideration by the matcher (by marking it in, IMAT).
This can greatly reduce the set of matches considered, at th,' cost of uiissilur a
imatch if image features are incorrectly incorporated into verifie ,
,,ther objects. This is unlikely, however, because the verifier has
accepting false matches.

The worst case running time of the matching process is O(m3 f,
featnres and i image features. This is because all the features may i",
II. and it may be necessary to consider matching each pair of model fe-aires
against each pair of image features, which is r 2 i2 . Scoring each alignment then
involves transforming the model edges to image coordinates, which is .abt
O(m) operations. In practice, however, it is not necessary to cons.ider all pairs
of features, because each correct alignment will eliminate a number of image
features from consideration.

6.6 Verification

Once a potential alignment transformation has been computed, it must be 'e-
t(rmilLed whether or not the transformation actually brings the object model
into correspondence with an instance in the image. This is done by transforming
the model to image coordinates, and checking that the transformed model edges
c,,rre,.pond to edges in the image. The verification process is very important
becaulse it must filter out incorrect alignments without missing correct ones. In
Chapter 3 we saw that simple verification procedures, such as counting the num-
blr of transfornied model points that lie near some image point, are inadequate
for complex images.

Before verifying a transformation, the system checks that the transforma-
tion specifies a valid orientation of the model. As discussed in Chapter 5, this

ORA System 117

involves comparing the convex hull of the model in its canonical view with the

convex hull of the model in the transformed view. Points inside the convex hull

in one view must not be outside the convex hull in the other view.

The verification method is hierarchical, starting with a relatively simple

and rapid check to eliminate many false matches, and then continuing with a

more accurate and slower check. The initial verification procedure compares

the segment endpoints of the model with the segment endpoints of the image.

Recall that a segment endpoint is defined at inflections and the ends of straight

segments. Each point thus has an associated orientation, up to a reflective

ambiguity. defined by the orientation of the edge contour at that point. A model

point corrertly matches an image point if both the position and orientation of

the transformed model point are within allowable error ranges of a corresponding

image feature, as illustrated in Figure 36. Those alignments where a certain

percentage (currently half) of the model points are correctly matched are then

verified in more detail.

Figure 36. The initial verification of a match compares model segment end-
nponts to image segment endpoints, requiring both the l. tn and .renta-

tion difference to be small.

The detailed matching procedure compares the entire edge contours of a trans-
formed model with the image. Each segment of the transformed model contour

is matched against the image segments that are nearby. The comparison of

contours is relatively time consuming, but makes it very unlikely that an in-

correct match will accidentally be accepted. The initial verification generally
eliminates many hypotheses, however, so this more time consuming procedure

is only applied to a small number of hypotheses.

The comparison of a transformed model segment with an image is intended

to distinguish between an accidental and a non-accidental match. For instance,

an accidental match is very unlikely if a transformed model segment exactly

overlaps an image segment such that they coterminate. If the image segments
are nearby, or do not coterminate with the model segment, then there is a higher

likelihood that the match is accidental. There are three kinds of evidence for a

match: positive evidence, neutral evidence, and negative evidence, as illustrated

iii Figure 37. A model edge that lies near and coterminates with one or image
,dgcs is positive evidence of a match, as shown in the first part of the figure.

ORA SYstelm 118

A model edge that lies near a very long or very short image edge is neutral
evidence of a match, similar to there being no nearby edge. A model edge that

is crossed by one or more image edges that, at a sufficiently different orientation
than the model edge, is negative evidence of a match.

+ 0

a) b) C)

Figure 37. Matching model segments to image segments, a) positive evidence.
b) neutral evidence, similar to no matching edge, c) negative evidence.

The verification process uses a table of image edge segments stored according
to x position, y position, and orientation. A given image segment, i, is entered
into the table by taking each point, g(s), along its edge contour and the corre-
sponding tangent orientation, T., and storing the triple (i. g(s), T.) in the table
using quantized values of g(s) and T,. A positional error of 10 pixels and an
orientation error of -!- radians are allowed, so a given point and orientation will

10

generally specify a set of table entries in which to store a given triple.

Only those image segments of compatible types are considered as possi-
ble matches to a transformed model segment. A straight edge in the image is
compatible with all three types of model edge segments (straight edge, arc and
corner) because it can be the projection of any of these segments. A corner in
the iimage matches only against a corner in the model, and similarly for an arc
in the image.

In order to match a model segment to an image, each location and orienta-
tion along the transformed model contour is considered in turn. A given location
and orientation are quantized and used to retrieve possible matching image seg-

mnents from the table. These segments are then filtered to remove the ones with
incompatible types. Given a location, s, along a transformed model contour,
with the position, g(s), and the corresponding tangent orientation, T,, each
imiage triple retrieved from the tabl'?, (i, p,. T,), is ranked using the function,

d = 1p, - g(s) II-T,TI.

ORA Sytem 119

If the best matching image triple is at a distance of less than 10 pixels and has an
orientation difference of less than M radians, then the location s is accounted for
by that image triple. Rather than considering each location, s, along the model

contour, it is possible to consider every n-th location, reducing the accuracy but
speeding up the match.

The result of this processing is a list that associates each location, s, along
a transformed model segment with the best matching location along some im-
age segment (if any). The next step is to take each image segment in this list
and determine what percentage of that segment's contour is accounted for by
entries in the list. If a significant portion of an image contour is accounted for
(currently 50 percent) then the image contour matches the model segment, oth-
erwise the image contour is taken to have matched accidentally, and is removed
from the match. After removing the accidentally matching image segments, the
percentage of the model contour that is matched by the image is determined.
This percentage is the positive evidence that the model segment is actually in
the image.

This matching procedure requires a good correspondence between a trans-
formed model segment and one or more image segments, rather than just consid-
ering how much of a model contour lies near some image contour. The procedure
also allows multiple image segments to correspond to a given model segment,
which is important in real images where edges often become broken due to shad-

ows, sensor noise, or occlusion.

Negative evidence is used to further limit the chance of verifying incorrect
alignments. If a transformed model segment crosses some image segment then
it is unlikely that the hypothesized position of that model segment is correct.
Crossing segments are found similarly to potential matching segments, except
that the table for looking up crossing segments indexes only on position, not
orientation. If an image segment is found that crosses a model segment, other
than within e pixels of the ends of the contours, then the model segment is taken
not to match the image, regardless of the positive evidence for that segment.

In summary, the verification method uses local information (the locations
and orientations along an edge contour) in a transformed model segment to
look up potentially matching image segments. Those matching image segments
that are well accounted for by the model segment (match half their arclength
to the model segment) are retained, and the others are discarded as accidental
matches. The remaini.g matching image segments are then used to determine
the percentage of the model contour that is accounted for by the image.

The verification procedure is designed to be able to find any evidence in
11iipp)rt of a hypothesized alignment, without accepting alignments for which

0 {A System 120

there i- only poor supporting evidence. A single model segment can be accounted
for by several image segments, allowing for noise and occlusion that may cause a

given segment to be split into pieces. By requiring a substantial portion of each
image segment to overlap with a model segment, however, it is unlikely that an

acci(lental correspondence will cause an incorrect verification.

6.7 Parallel Algorithms

The alignment computation is performed using one or two pairs of corresponding
model and image features. Each of these computations is independent of the
others, so all the possible alignments of a model with an image can be computed

in parallel. This section outlines algorithms for performing the feature extraction

and alignment operations of the ORA system on the connection machine.

The connection machine [Hillis86] is a fine-grained parallel computer with
between 16K and 64K processors. The machine is a single instruction multiple
data (SPUD) architecture, because one instruction stream is broadcast to all the
processors. Each processor is a 1-bit serial ALU. There are two versions of the
machine, the CM-1 has 4K bits of memory per processor, and the CM-2 has
faster processors, 64K bits of memory per processor, and optional floating point

hardware.

The connection machine routing network allows each processor to send a
inessa ge to any other processor, using the processor's unique integer address.
The processors can be viewed as the vertices of a 16-dimensional hypercube, so
each processor can communicate directly with 16 other processors, and must
route messages to the remaining processors.

The hypercube connections are directly exploited by a set of primitive op-
erations called scan operations. These operations can distribute values among
proce ssors or aggregate values using associative operators in about the same
ainouiiit of time as a message routing cycle. For example, the enumerate oper-
ation can assign a unique number to each processor in a set of processors by
executing a plus-scan.

An important non-primitive operation is distance doubling, which can be
zsd to compute any binary associative operation on a set of processors linked in

a ring (r list. For example, doubling can be used to find the extremal value in a
11t of elinits that are stored one element per processor. This operation takes

O(lo ,,) steps for a list of length n. Initially each processor has the address
of It, niighbor in the list, and at each step, i, a processor gets the address of a

i .cr-sor 2' + I away, and the extremum of all the values within 2i- 1 processors.
This ,p,,ration can be used to assign a unique label to each linked list in the

ORA System 121

machine, by maximizing the processor address in each list. At the end each
processor will have the label of the list to which it belongs.

Vision algorithms on the connection machine make use of three classes of
operations: uniform spatial operations, non-uniform spatial operations, and op-
erations on features. Spatial operations view the processors in the machine as
forming a two-dimensional grid of pixels. Uniform operations such as smoothing
are applied to all groups of neighboring processors, and non-uniform operations
are applied only to certain processors. Feature-based operations, on the other
hand, assign one or more features to each processor, and perform operations on

sets of features.

The Canny edge detector [Canny86] has been implemented on the connec-
tion machine [Little87]. On a 16K processor machine, computing the intensity

edges for a 256 pixel squared image takes about 150 msec. The Gaussian smooth-
ing, directional derivative computation, and non-maximum suppression are all
uniform spatial operations, and are done in constant time. The thresholding
operation is a non-uniform spatial operation, and requires time O(log m) in the

longest edge chain, using the distance doubling operation to propagate values

along a chain.

Linking together neighboring pixels in the Canny output to form edge con-
tours is spatially uniform, only requiring communication among neighboring
processors. Chains of pixels are then formed using distance doubling to assign
a unique label to each linked list of neighboring pixels.

Computing orientation and curvature, and smoothing the curvature are
all local operations along the edge chains, and thus can be done in constant

time. The zero crossings of smoothed curvature can be locally detected by
comparing neighboring processors in the edge chains. In order to threshold
the zero crossings, the area of the curvature function between zero crossings

must be computed. This can be done by propagating the tangent orientation
to the contour at each zero crossing to the next zero crossing in the chain, and

then computing the angle between pairs of tangents. Using doubling this takes
time O(log m) in the longest distance between two zero crossings. Zero crossings
with low corresponding areas are removed locally. The zero crossings can then be

used to form segments by propagating the highest processor address in the chain
between two zero crossings as a unique label for that segment, using doubling.

Once the segments have been formed, the processing switches from spatial
to feature based operations, because the segments are the primitive features of

the matching process. To collect the points in each feature into a single processor

re(jliires time linear in the longest feature chain, because the edge contour points
of a given feature must be collected into an ordered lis. in a single processor.

ORA System 122

Given a set of image features, finding all the possible alignments of a model
reu(1 ires taking the product of the set of model features and the set of image
features. If each of the pairs is assigned a single processor, then all the alignments

can be computed in parallel. The product of two sets can be computed in
coi stant time [Blelloch88]. The alignment operation then involves mathematical

operations local to each processor, and thus can also be done in constant time.

Thus the extraction of alignment features and the computation of possible
alignment transformations are both well suited to implementation on a massively

parallel architecture such as the connection machine.

6.8 System Summary

Initially an image is processed to extract edges [Canny86], and the edge pixels
ar chained into contours. The local curvature of the contours is computed,

an(l zeroes of curvature are used as segmentation points. The resulting edge
segments are relatively stable over changes in position and orientation, because
zeroes of curvature are preserved under projection. Locally connected groups
of these edge segments are used as features for alignment. Each feature defines

either a point and an orientation, two points and two orientations, or three
points.

Pairs or singletons of corresponding model and image points are used to
compu.te possible transformations from a model to an image, using the method

developed in Chapter 4. Only one or two corresponding model and image fea-
tures are needed to specify a transformation that is unique up to a reflection.

Each transformation is then used to align the model with the image, by trans-
forming the model into image coordinates.

A transformation is verified by comparing the aligned model edges with
imaige edges. Positive evidence, such as proximity and cotermination of model
arid image edges. is used to find edge contours that are accounted for by a match.

N\.gative evidence, such as crossing model and image edges, is used to mark
model edge contours as not accounted for. If more than a certain percentage
of a model's edge contours are matched, then a transformation is accepted as
specifying a correct match of the model to the image. The verification process

is hierarchical. First local model and image points are compared, and then the
entire edge contours are traced.

6.9 Some Results

The rcognizer has been tested using images of both simple polyhedral objects

ORA System 123

and curved laminar objects in relatively complex scenes, taken under normal

lighting conditions in offices or laboratories. While the representation of solid

objects is not constrained to polyhedra, it is currently difficult to enter the three-

dimensional coordinates of non-polyhedral objects in order to form models.

Figures 38 - 42 show the performance of the recognizer on several images

of solid objects. Part a) of each figure shows the grey-level image, part b) shows

the Canny edges, part c) shows the edge segments (straight edges are in bold

and corners are marked by dots), and part d) shows all the verified instances
of the models in the image. Each model is projected into the image, and the

matched image edges are shown in bold.

Three different models, a cube, a wedge, and an object consisting of a

rectangular block and a wedge glued together, were matched to each of the

images in Figures 38 - 42. These models are shown in Figure 44, with the

straight segments in bold and the corners marked by dots. There are five to

ten alignment features for each model, and several hundred alignment features

in each images, so many thousands of possible transformation were considered

for each example. All the hypotheses that survived verification are shown in

part iv) of the examples. The matching time (after feature extraction) for these

images is between 2 and 5 minutes on a Symbolics 3650.

Figure 44. The three solid object models that were matched to the images.

In Figure 39 the wedge model is not very well aligned with the image. The

match is good enough to pass the verification stage, but the matching contours

are at the outer limit of the error tolerance. The ?,roblem can be traced to the

fact that the Class I feature used to compute the alignment transformation is the

O A S,<!trn 124

,twtown pjrt of the wedge, which is partly occluded by the block. The occluded
portiOnr Of the feature is small enough that the match is within tolerance. In
ordr to speed up recognition on a serial machine, the matched image edges
ar, inarked as accounted for and are not considered in subsequent matches. If
additional features from those image edges had been considered, then a pair of
Class II features (such as the two front corners) would have hypothesized a more
accurate match.

Because an alignment is computed from only three corresponding points,
sensor error in those points causes small errors in the match. Furthermore,
the transformation does not take into account perspective distortion. To get
a more accurate transformation from a model to an image, the features that

are b)ught into correspondence by the 3-point transformation can be used to
('0mntpute a least squares solution to the perspective viewing equation (e.g., as in
'LoweS]). Finding corresponding features using the 3-point method minimizes
the nmibter of transformations that must be considered, and simplifies the com-

itation of each transformation. Then solving for the least-squares perspective
transformation gives a very accurate match.

Figure 43 shows an example of recognizing a laminar object that has curved
contours. The model of this object was simply formed from the edge contours of
an isolated instance of the object on a high contrast background. This model is
shown in Figure 45, with the straight segments in bold, and the comers marked

by dots.

Figure 45. The model of the laminar widget.

ORA System 125

-- --- -

'~I '~ICt

00 ai 00a

/% \\-t

Fiur 38 eonzn4oi betsetetx o nepaain

OiPA Systemn 126

A

..;

Figure~ 39. Recognizing solid objects, see the text for an explanation.

ORA System
127

p......

K..

Figure 40. Recognizing solid objects, see the text for an explanation.

OR~A Systemn 128

...

/

s-fl 0

Figur 41 Reonzn oi bjcs e h et onepaain

ORA System 129

-~
..........

4

..

......

F:iure 42. RePcogizing solid objects, see the text for an explanation.

ORA Svstem 130

Flu- 13 voniigalannrojet e tetx fra xpaain

Non-Rigid Matching 131

Chapter 7

Aligning Non-Rigid Objects

The alignment method, as presented thus far, assumes that an object is rigid,
so that a single similarity transformation will map each model feature onto its

corresponding image feature. In the case of a non-rigid deformation, such as
an object with moving parts, or an object that has been stretched or bent,
the rigidity assumption will be violated. This chapter considers how to extend
the alignment method to the problem of recognizing non-rigid deformations of
objects, and shows some examples of a particular implementation of the non-

rigid alignment method.

In order for shape information to be useful in recognition, the transforma-
tion from a model to an image must preserve some attributes of an object's

shape. The idea underlying the non-rigid alignment method is that a deforma-
tion must be approximately rigid locally in order for it to preserve any shape
information. For example, Figure 46 shows an object and an instance of the
object that has been bent near the bottom. The parts of the object on either
side of the bend are each approximately rigid. As a more extreme example, a
nonuniformly stretched object such as a cartoon character on silly putty can
be viewed as consisting of local regions over which the model has been scaled.
If these regions become infinitesimal, then the deformation no longer preserves

shape information.

Figure 46. A transformation that is non-rigid but preserves shape informa-
tion can be viewed as locally rigid. For example, a bent object consists of
rigid subparts.

%Moqt recognition systems can only recognize rigid transformations of an object.
Those systems that allow for non-rigid transformations do so by parameterizing

Nm Rigid Matchling 132

•:, o j,',t li1, ltl so thbat it specifics a s ,t of rigid parts. aidl(tlt- alhowabth Ilit.

iti> of Ki,,-,'p arts [BrooksSla [Griiis,,oiS7b 1. Whil' s,,i1, ,)j,,'tc (t,1, dform
i .,,itali' ways., all uniexpccted iion-rigid l dcf(rinItitIi sl 11(lld()lt 1 r.ll it '.

7 ,,, : ati t;II ,ct. Thus the extftlsiuli of the" aligiin eim it iIitliod . iII
'- ah;, I itm-s for pa iaiieterizetd models. bit is 1 alio ,a pa if r,.cov.11110g

r , -,ig d h frIiIa ti(iIs at recognit ion time.

If a mildel sipocifies a set of rigid ,ubparts, the standardl aligiiiiient tclui1,'.

, 1)e applie(! to each subpart. It is then necessary to check that these sa r;itc'

;a!,lY, ,il t,t S art consistent with i a single instale (if the olht ct. bY i ' iisuring ti;t

a !ja,','1; t a rts of tl,(. model are also adjacent in the image. The (cItail, (,f tlit

n1t"tlt (1 a,0o disussel 1elbow, in the section ,m cobiniling local nutch ,s.

Pt covering a non-rigld deforination during the matchinig process re(tlpines-

Cr In nth ti't.'S (Cf a model that are being rigidly trai.rformtI. Each Caliv

I !,'c,' tan mi ,c lnatcle(using the standard alignmnt n,-th(I and (tt 'il ,
tl,' v,'', aapprt xite the mon-rigid transformation. Two itlitl, of fii, lii,,

liv riol pieces are considered here. The first ireth ,,1 works ess hIat

i : i;:iag' into triangles, performing a rigid alignment for each triangle, ald
tle e aligmnents to iteratively refine the tessellation. The secrohd ncth(d

.. by finding rigid partial matches between a model and an iniag- andti liein

ti'ii)g together the partial matches into a non-rigid match.

7.1 Tessellating the Image

Al inage can be tessellated into regions that correspond to locally rigid parts
of an otject. By computing a separate alignment for each region, rigidity is
prt's,-i vetl locally but not for the object as a whole. Triangulation is a good
tessellation pattern for the alignment method, because three points are use(1 to
C0o1iipte a transformation [Ullman87]. An image can be triangulated by using

tht' f('atures in the image to define a point-set, as illustrated in Figure 47. The

Dt-lau may triangulation (the dual of the Voronoi diagram) is a good triangulation

iitiho(because it maximizes the mininium angle of the triangles. This reluces
tie i uiiilcer of acute triangles, which are bad fir computing alignments because

thir vertices are nearly colinear. The Delaunay triangulation of a set of ii points
CaIll It coniputed in O(n log n) time [Preparata85].

(I iven a t ri.- uinulat ion of an image, and a potential correspondence bet wemi
ITit l an11d iiiagt' features. each model triangle can be aligned with its corre-

ICCJi .! Cg,, triazigle. If a triangle falls on a rigid part of the object, then tle
;lair:mi ,t of -111t'1 and image edge contours inside the triangle will be good.
1' 1, tat,'h ii de ; trianle is not good. then either the correspondeice of

Non-Rigid Matching 133

Figure 47. Tessellating an image by triangulating the set of feature points.

nodcl and image features is incorrect, or the deformation inside the triangle is
non-rigid. A finer tessellation can be performed to determine if there is a rigid
approximation to the transformation.

The size and location of the triangles required to approximate a given non-
rigid transformation depends on the particular transformation. A set of rigid
triangles can be recovered using an iterative algorithm that starts by computing
a standard rigid alignment of a model with an image. If this initial alignment
does not match any additional model features to the image, then no further
action can be taken. If additional features are brought into correspondence,
however, then these features are used to define additional model and image
points. The resulting point set is triangulated, and a rigid alignment is per-
formed for each triangle. This process is repeated until either a good match of
the model to the image is obtained, or the triangles become too small to reliably

estimate the transformation.

There are three measures of how well such a locally rigid alignment matches
a model to an image. The first measure is the degree of match between the trans-
formed model and the image. The second measure is the extei, to which the
model is tessellated. If the triangulation is very fine, then the overall trans-
formation is highly non-rigid, and the match is not as good as a more rigid
transformation. Finally, the transformations specified by neighboring triangles
should change relatively smoothly from one triangle to the next. If the pattern
of transformations is highly discontinuous, then the match is poor.

As an example of this iterative triangulation method for finding a locally
rigid alignment, consider matching the two drawings of a bunny rabbit shown
in Figure 48. The image on the left is a "model" that will be transformed to
match the image on the right.

Non-Rigid Matching 134

a) b)

Figure 48. Two cartoons of a bunny rabbit to be nonrigidly aligned.

Figure 49 shows a rigid alignment of the model with the image. The three
points, the tip of the hat and the two cheeks, were chosen by hand. Part a) of the
figure shows the triangulation of the model points, part b) shows the transformed
model, part c) shows the transformed model overlaid with the image, and part d)
shows the correlation of the transformed model with the image. The correlation
is computed by keeping only those pixels in the transformed model that are
within 4 pixels of an image pixel.

The match of the head and the hat is quite good, but the ears do not match
well because they are bent in the image and straight in the model. In fact, part
of the telephone is preserved in the correlation image because it overlaps with
the ear in the image. From the overlay there are several good points to use
for iterating the method in order to obtain a better alignment. For instance,
the places where the ears join the head are sharp concavities that are at similar
positions and orientations in both the image and the transformed model. While
in general it is not reasonable to use measures such as degree of curvature and
orientation for matching a model to an image, in this case the model and image
have already been partially aligned.

Figure 50 shows an alignment using some additional corresponding points
that are specified by the initial alignment (the points are again hand picked).
From the correlation image it can be seen that this alignment does quite a good
job of matching the model to the image. The only part of the rabbit that does
not match well is the right cheek, which is occluded by the phone in the "model"
image.

In summary, the triangulation method is a coarse-to-fine, iterative technique
for finding a set of locally rigid matches between a model and an image that
combine to form a non-rigid deformation of the model. The method starts with
a standard rigid alignment of the model with the image, and yields a set of local
alignments of regions of the model with regions of the image.

Non-Rigid Matching 135

• i f ."

-"J

?F

_ 0/

Figure 49. Initial rigid alignment of two images, see the text for an explana-
tion.

Non-Rigid Matching 136

Cr-

i1r

Figur 509oal ii -lgmeto w mgs e tetx o nepa
nation.

Non-Rigid Matching 137

7.2 Combining Local Matches

Another means of obtaining a locally rigid approximation to a non-rigid defor-
ination is to combine a set of partial rigid matches together. Thus whereas the
triangulation method is "top down", starting with a global rigid approximation
and refining it, this method is "bottom up", starting with a set of local rigid
approximations and merging them together.

The method starts by computing possible alignments between a model and
an imagi, as described in Chapter 6. The verification stage is modified, however,
to allw for partial matches. A partial match occurs if there is good agreement
between some part of the model contour and the image, rather than requiring
a large percentage of the model contour to be matched. The matched part of
the contour must include the feature(s) used to compute the transformation.

The rationale for this restriction is that the best part of the match should be
n'ar the features that were used to compute the transformation. If there is a
good partial imatch elsewhere on the object, or elsewhere in the image, then it
is prol)ably accidental.

A partial match of a model to an image consists of the portions of the
inodel edge contour that are matched, and the corresponding portions of the
image edges. Each matched portion of contour is encoded using the locations of
its endpoints. The endpoint locations are used to combine partial rigid matches

together. An example of a partial match is illustrated in Figure 51. The first part
of the figure shows the parts of the image that are matched, with the matching
contours shown in bold. The second part of the figure shows the model, with the
parts that are matched also displayed in bold. The endpoints of the matched
portions of the contour are marked by dots, and the labels A, B, C, D show the
correspondence between the image and the model.

DCD
C BU

a) A b)
7A AB

Figure 51. Partial match of a model to an image: a) the partial image match,
b) the parts of the model accounted for.

Each partial match defines a correspondence between a portion of a model and
an iia-,'. If two or more a(Ijacent model parts are also adjacent in the image,

)\ I -Rigid .\,ItchinIg 138

thn they form part of a more global, but non-rigid, match. Thus the non-rigid
imtching algorithm operates by finding sets of)artial matches where adjacent
I,1')f0l parts are also adjacent in the image. If these partial matches together
accoliit for enough of the inodel, then a non-rigid match is hypothesized.

Adjacency is determined using the endpoints of the matched contour seg-
ments. Two partial matches are adjacent if they have one or more segment
endpoints that are within some distance c of one another. In the current imple-
mentation this distance is a constant 5 pixels. It would probably be better to
have some sort of variable threshold.

Adjacent parts of a model are found by entering each partial match (for a
giv-n model) into a three-dimensional table indexed by the model coordinates of
the matched segments. Any two partial matches that have at least one endpoint
within c of one another are defined to be adjacent in the model. Figure 52a
illustrates three parts of a model, A, B, and C with two adjacent pairs of parts,
(A.B) and (B, C).

Every pair of adjacent model matches is checked for adjacency in the image,
using the correspondence between each partial match of the model with the
image. In order to be adjacent in the image, at least one of the nearby model
endpoints must also be nearby (within E) in the image. In Figure 52b the parts
.4 and B are adjacent in the image, because one endpoint of each part is nearby.
The pair (B., C), however, has no nearby endpoints and thus is not adjacent.

B BTSJ

A C A

a) b)

Figure 52. Finding adjacent model and image parts: a) adjacent pairs of
model parts, b) only one of which is adjacent in the image.

Once partial matches have been found that are adjacent in both the model
and the image, these are combined to determine the total amount of the model
accounted for. If it is above a certain percentage, then the match is accepted.
Figure 53 shows a match of the laminar object in Figure 46 to a bent instance of
the o)ject, with the matched portions of the image contour shown in bold. The
riatch was found using the OIA system, augmented with the partial matching
a rld adjacency computations described here.

Non-Rigid Matching 139

Figure 53. Match of a model to a bent instance using the adjacent parts
method.

a) b)

Figure 54. The partial matches that comprise the non-rigid match in the
previous figure.

The two partial matches that combined to form this match are shown in

Figure 54. Each partial match is shown overlaid on the image contours.

The adjacency matching method described in this section first finds all

partial matches of a model to an image, and then determines which partial

matches are adjacent in both the model and the image. In contrast, recognition

systems that use parameterized models generally find a match of one part of

a model to an image, and then extend that match by looking for connected

matching parts [Brooks8la]. It would be straightforward to similarly make the

adjacency matching method use one partial match to limit the search for other

partial matches. This, however, introduces a serial dependency of one match on

another. On a parallel machine, it is conceivable that all partial matches would

be found first, followed by determining which partial matches are adjacent.

N,11 lih MIatciing 140

7.3 Chapter Summary

:> , n t icu,<fJniatioi can b, used z,, 1ccugi1,. t objet .s that have been
1n:i- r1iily deformed. If an object model specifies a set of rigid subparts, then
;N .-'tate rigid alignment can be performed for each subpart, subject to the
ad(litioiial constraint that adjacent model parts are also adjacent in the image.

If a model does not specify the rigid subparts of an object, the non-rigid
(efoirmation can be recovered at recognition time. Two methods have been
presented which approximate a non-rigid deformation by a set of locally rigid
ali-mniiients. The first method uses triples of image features to tile an image
with triangles, and a separate rigid alignment is performed for each triangle.

The resulting match is used to find additional corresponding features, and a
finer triangulation is computed. The process iterates until either a sufficiently
g Vod march is obtained, or the triangles become small.

The second method recovers a non-rigid deformation by combining rigid
p)irtial matches. The verification stage of the standard alignment method is

modified to allow for partial matches of a model to an image. Partial matches are
then combined by checking for adjacent parts of a model that are also adjacent
in the image. This method has been implemented and tested on some simple

images of non-rigidly deformed objects.

Human Recognition 141

Chapter 8

Human and Machine Recognition

One of the strengths of machine vision research has been the ability to combine

independent computational and biological evidence for a given theory [Marr82].
For instance, the development of edge detection operators was based on both
computational tractability and physiological plausibility [Marr8O]. At higher

levels of processing, such as recognition, it has proven more difficult to relate
biological systems to computational theories. This chapter considers some psy-
chophysical results that are relevant to the alignment method of recognition.
These studies indicate that human recognition is characterized by a degree of

tolerance for matching error, and suggest that human recognition may involve

separate processes of alignment and comparison.

Unlike model-based recognition systems, human recognition does not seem
to simply involve finding a transformation that maps a geometrically accurate

model onto an instance in an image. In contrast, human recognition performance
is characterized by relatively relaxed matching criteria. For instance, the partial
pyramid in Figure 55 cannot actually be a projection of a solid object, even

though it appears to be one [Perkins83]. In order to correspond to a real object
the three numbered edges imust come together at a point, but they do not.
Nonetheless, we perceive this as a drawing of a solid object, exhibiting a degree

of tolerance in matching.

2

Figure 55. While appearing to be a partial pyramid, this cannot correspond
to an actual solid object.

Similarly, in deciding whether cube-like figures are actually possible projections
of a cube, people are only about 85% correct [Perkins83l. These errors appear to

be duc to error tolerance in the recognition process, rather than to limitations

111 lilan Rec(oM llitiOll 142

,4 viatl a('iijt". This is demonstrated by the fact that performance can bc

TratlV iniiproved using special tricks. In order for a figure to be a projection of
I rtCX I _1:3t _,I . at eaC st 90 dTTi e .

thi, rule. people can score nearly 100(7 correct on the cube classification task
PrkiiiS3l. Thus the human visual system apparently has the ability to extract

siiffcieiitly ,,curate information. however -uch information is not generally used

tjudge the correctness of a match.

Having a degree of tolerance in the matching process has two possible ben-

efits in both human and machine recognition. First., it. enables a system to

hndle sensory noise that causes a slight mismatch between a stored model and

an instance. Second, it allows a system to use simpler, but somewhat iinaccurate

methods. For example, the weak perspective imaging model is generally a rea-

sonable approximation to true perspective and thus results in slight errors that

would be within tolcrance.

While human recognition is more flexible than transforming a geometrically

accurate model to match an instance, there is evidence that human recognition

involves matching some kind of stored model to an unknown instance. The

remainder of this chapter considers some of the psychophysical data that are

relevant to the use of an alignment strategy in recognition.

8.1 Alignment in Human Recognition

There is a substantial amount of evidence that people judge the sameness or dif-

ference of two objects by first aligning them and then comparing them. These

studies either involve mentally rotating one object to match another [Shepard82],

or comparing two different images of objects [Rock63]. Some more recent stud-
ies show that an alignment strategy is used in recognition tasks as well as in

comparison tasks [Jolicoeur85] [Tarr88]. In particular, an alignment strategy

is observed in recognition tasks where there are several potentially confusable
shapes. An alignment strategy does not appear to be used in tasks where objects

can be reliably identified simply based on the presence or absence of a particular

feature.

This pattern of results suggests a two-stage matching process, where first

viewpoint invariant information is used to hypothesize potential objects, and

then alignment is performed when it is necessary to discriminate among more
than one possibility. This is similar to the structure proposed by various compu-

tational vision researchers (e.g., [Kalvin86]), of an initial viewpoint independent

model selection followed by determination of position and orientation.

A number of experiments [Shepard82) have established that in order to

HIuman Recognition 143

compare a model with an instance, people perform a mental rotation operation.

This mental rotation takes time proportional to the degree of orientation dif-

ference between the model and the instance. The process apparently involves

analog rotation of the object, as evidenced by tasks where people are unexpect-

edly probed with an instance of the object during the rotation process. If the

probe is at the correct intermediate orientation, then recognition of the probe is

much more rapid than otherwise.

Another task that exhibits linearly increasing response time with increasing

orientation difference is making a judgement about whether or not an instance

is a mirror image [Corballis84]. In these experiments, subjects judged whether a

two-dimensional character was a mirror image or a normal image. It was found

that the identification of a character is relatively independent of orientation,

whereas determining whether or not it is a mirror image takes time linear in the

difference from an upright orientation. Thus it appears that a character must

be rotated to upright before it is possible to determine whether or not it is a

i.rror image.

At first these results seem to suggest that alignment is not used in recog-

nition of characters, but only in determining mirror reversal after a character

has been identified. A follow-up set of experiments shows that there is an or-

entation effect on letter identification, but it is very rapid, on th, -)rder of 15

rneec. A set of studies using drawings of natural objects [Jolicoeur85] suggests
why the orientation effects are so small in the letter identification task. Recog-

nition times for the drawings were initially linear with the extent of rotation

from a canonical position. With practice, however, the effects of orientation
become reduced. The practice effects do not, however, transfer to new objects.

Thus, it appears that people are learning new models of each object at various
orientations. Hence the fairly small rotation effects for letters may be due to

the fact that they are highly familiar, and are often seen at other than upright

orientations (e.g., books on a shelf, things in a mirror, writing on signs and

billboards).

The most complete experiments investigating alignment in human recog-

nition have recently been reported by [Tarr88]. These experiments used novel

letter-like characters that contain similar local features. Thus the characters
cannot be recognized by simply checking for the presence or absence of a partic-

ular feature. Each character has an obvious axis and a clearly marked bottom,

as illustrated in Figure 56.

Each character was assigned a name, and was learned in its upright orienta-
tion. Subjects were then required to name instances of the characters presented

t variols orientations. The time to name the character was linearly related

t umian Recognition 144

Figure 56. Stimuli used in recognition experiments of [Tarr88].

to the degree of rotation from the upright orientation. With practice recogniz-

ing the characters at various orientations, recognition times eventually became

nearly the same across all the practiced orientations.

Following practice with the characters at various orientations, novel ori-

entations again produced longer response times. The latencies were linearly

related to the difference between the novel orientation and the nearest learned

orientation.

These results indicate that for objects that cannot be recognized simply on

the basis of presence or absence of a particular feature, people must first align an

instance with a stored model. Sufficient experience with a particular orientation
of an object causes a model to be formed of the object at that orientation. Once

such models have been formed, recognizing an instance of the object at novel
orientations requires alignment with the nearest stored model.

Human recognition involves an analog rotation process, and thus can gain a

speed advantage by storing multiple models at different orientations. In contrast,

the alignment method presented in this thesis is a constant-time operation. Thus

the machine alignment method only requires new models for orientations from

which different parts of the model are visible. For flat objects, a single model is

sufficient.

Overall, the psychophysical data seem to suggest that alignment is an im-
portant component of human recognition. While alignment does not always

appear to be necessary, it seems necessary whenever the spatial arrangement

of the parts of an object is important for recognizing that object. For many

objects, the spatial arrangement of parts would seem to be important defin-

ing characteristic. Further investigation is required, however, to determine the

importance of alignment in recognizing three-dimensional objects.

8.2 3D from 2D Alignment

Human recognition seems to to involve an automatic three-dimensional interpre-

tation of two-dimensional images. Shepard [Shepard82] found that in judging

IL m m m mm mmm

Human Recognition 145

the size of an object from a line-drawing of its contours, people perform three-

dimensional analysis of the shape contours. For instance, of the two blocks

shown in Figure 57, people judge the left block to be longer than the right one.

However, the two-dimensional length and width of the tops of the two blocks

are identical.

Figure 57. People seem to perform three-dimensional interpretation of the
edges in an image.

In fact, these drawings cannot be actual projections of blocks, because the distor-

tion of the different faces is not consistent with a single position and orientation.

Having been told this it is still very difficult to believe that the dimensions of
the tops are the same. Thus the three-dimensional interpretation appears to

happen at a fairly low level.

These results have been interpreted as indicating that three-dimensional

shape information is extracted from an image prior to processes such as recog-

nition. Another possibility, however, is that the three-dimensional alignment of

certain primitive shapes is used to interpret an image, independent of a particu-

lar model. For instance, the primitive shape "right angle" is enough to determine

that the right block in Figure 57 is longer than the left one, as illustrated below.

A three-dimensional alignment of a right angle with an image shows how
far out of the view plane a surface with a right agle must be rotated in order to

result in the image angle. For the block on the left of Figure 57, the front face

has right angles, indicating no rotation out of the view plane. Both the top and

right faces have non-right angles, however, and have thus been correspondingly

rotated out of the image plane. The right face has been rotated extremely,

whereas the top one has been rotated relatively little, as illustrated in Figure 58.

For the block on the right a similar analysis applies. The front face has right

angles, and the top and left faces have both been rotated out of the image plane.

Howo-ver, neither of these faces has been rotated out nearly as much as the right

face of the first block.

Ilillal Recognition 146

-'"- " v ,L -- L
Figure 58. A surface with a right angies must be rotated out of the plane
o yield a given image angle. The block on the left is rotated substantially

more than the one on the right.

Thus, performing the three-dimensional alignments to match right angles to
the image angles requires the left block to be more lifted out of the plane (more
foreshortened) than the right block. Hence, the left block must be longer since

the two images are the same size but one object is highly foreshortened. This

example illustrates that it is possible to use simple shape primitives to discover
three-dimensional alignments without the use of explicit models. Therefore it

need not be the case that three-dimensional interpretation happens prior to
matching operations.

8.3 Chapter Summary

This chapter has reviewed some of the relevant psychophysical literature on
human recognition performance. Unlike machine recognition, human recognition
is characterized by a substantial degree of tolerance in matching. This tolerance

may be useful for dealing with sensor error, and may also allow relatively simple
but somewhat error-prone matching processes to be employed.

Human recognition appears to involve both viewpoint independent match-

ing based on the presence or absence of a few features, and viewpoint dependent
matching that recovers the position and orientation of an object. The viewpoint

dependent matching process seems to involve an alignment operation, whereby
a stored model is transformed such that it matches the input. This transforma-
tion process involves analog rotation, similar to that found in mental rotation
experiments.

Summary 147

Chapter 9

Summary and Conclusions

This thesis has developed and implemented a method for recognizing solid ob-
jects at unknown three-dimensional positions and orientations, from a single
two-dimensional view. The objects may be partially occluded, and the image

may be highly cluttered.

Most model based recognition systems structure recognition as a search for
those transformations that map a large number of model features onto image
features. One drawback of this approach is that there can be a substantial chance
of falsely finding a match. It is possible to have a number of image features
accidentally positioned so that they are consistent with a transformation of a
model. The likelihood of this event increases with the simplicity of the features,
the amount of clutter in the image, and the difficulty of the recognition task.
For example, under projection a given set of model feature points can match
many different sets of image feature points.

A second drawback of the traditional approach is the amount of search
required to find large sets of features that are consistent with a given transfor-
mation. Two techniques are commonly used to find possible transformations.
The first method performs a pruned search of the exponential space of possible
corresponding model and image features. The second method searches for clus-
ters of similar transformations from a model to an image. In Chapter 3 both
of these search techniques were analyzed. The pruned search technique was
seen to consider the same transformation a number of times. The generalized
Hough transform clustering technique, on the other hand, is prone to finding
false clusters unless the clustering table is very large.

Rather than searching for large sets of corresponding features, the recogni-
tion method developed in this thesis uses the smallest possible sets of features to
hypothesize potential transformations that map a model onto an image. Each
transformation is then verified by aligning the model with the image, and com-
paring the aligned model edge contours with nearby image edge contours. Thus

the method uses a different representation to verify transformations than to
hypothesize possible transformations.

The central idea underlying the current approach is to separate the match
ing problem into the two stages of i) finding possible transformations from a
rnodel to an image, and ii) checking those transformations. Much of the power of

S 11iry v148

th, clr h is derived from the fact that these two operations require relatively

(liffericr representations of an object. The best representations for computing

a trai sforination are coarse, local and form a relatively sparse description of

an o, jet. Feature-s that are coarse and local are more reliably detectable than

arV fiiie-:.cale or global features. Sparse descriptions have fewer features, and

thus ther, are fewer possible matches between a model and an image. The best

representations for verification, on the other hand, are more complete but less

abstract, such as the edge contours of an object. A complete representation is

important for deciding whether a transformation is correct. An abstract rep-
resentation is not needed because a model has already been transformed into

image coordinates.

The secondary ideas underlying the approach are to reduce the amount
o)f search in recognition, and to simplify the problem of representing objects.

By identifying the smallest sets of features that are needed to hypothesize a
transformation, the method minimizes the number of transformations that must

be consi(lered. By representing objects as edge contours and features extracted

from edges, the models are very similar to the sensory data. This simplifies the
prolems of forming models and matching models to images.

A new method of computing a transformation from a solid model to a
two-dimensional image was developed in Chapter 4. The method is based on
the result that only three corresponding model and image points are needed to
(lefine a unique transformation, up to a reflective ambiguity. The computation
is simple, only involving solution of two linear systems in two unknowns, and a
second order system in two unknowns. Thus the method is fast and relatively

robust with respect to noise.

The ORA recognition system, described in Chapter 6, uses this method of
computing a transformation to hypothesize possible matches of a model to an

image, and then verifies the matches. ORA extracts simple local features from
the intensity edges in an image. Each feature defines either three points or a
point and an orientation, so only one or two corresponding model and image
features are needed to compute a transformation. Thus the system considers at

most O(m 2 i2) possible matches for in model features and i image features. Each
transformation is verified by aligning the model with the image, and comparing

the model edge contours to image edge contours.

The features used for computing transformations are relatively stable over
chaimges in viewpoint, and can be reliably extracted from noisy images. Stability

over changes in viewpoint is obtained by segmenting edge contours at zeroes

Of crvature. These points are preserved under projection, so the resulting

,,gtiiita t 1 ,ii i., rlativecly stable. The featurres are also local, in order to minimize

Summary 149

sensitivity to partial occlusion.

The verification stage compares the transformed contours of a model against
an image. By comparing an entire model with an image, the verification process
makes it unlikely that a false match will be accepted. The comparison is hier-
archical, first checking local model and image points and orientations, and then
checking entire contours. The contour comparison process takes into account
both positive and negative evidence of a match. Coterminating model and im-
age edges are strong positive evidence, whereas crossing model and image edges
are strong negative evidence.

The basic recognition method has been extended to the case of non-rigid
deformations. A non-rigid transformation from a model to an image is ap-
proximated by a set of locally rigid transformations. In contrast with existing
methods, the locally rigid parts can be recovered at recognition time, rather
than requiring them to be specified by the model. Chapter 7 presented two dif-
ferent methods for recovering the rigid subparts of a transformation. The first
method is a coarse-to-fine iterative process, and the second method performs a
bottom-up combination of partial matches.

The major technical contributions of the recognition method developed in
this thesis can be summarized as follows,

0 Separating matching into alignment and verification stages allows different
information to be used for each stage. Coarse-scale, local, sparse features
are the best representation for hypothesizing a transformation. In contrast,
for verification the best representation is a more complete but less abstract
description, such as the edge contours.

Rather than searching for large sets of corresponding model and image
features, the method uses the smallest possible sets of features to solve for
possible transformations, thus minimizing the size of the search space.

" It is shown that three corresponding model and image points determine a
unique (up to a reflection) transformation mapping a solid model in three-
space onto a two-dimensional image, assuming the weak perspective imaging

model.

* A simple, fast, robust method is developed for computing a transformation
from three matching model and image points, or from two points and two
orientations.

" A shape representation is developed that is relatively insensitive to partial
occlusion and stable over different viewpoints. Sensitivity to occlusion is
minimized by using local features. Stability over viewpoints is obtained by
segmenting edge contours at zeroes of curvature, which are preserved under

Summary 150

projection.

" The verification process compares aligned model edges with image edges,

and uses both positive and negative evidence of a match.

* Non-rigid deformations of objects are approximated by a set of local rigid

alignments. The rigid parts of an object can either be specified by the
object model, or can be recovered dynamically at recognition time.

The separation of recognition into distinct alignment and comparison stages is

also supported by psychophysical data, as discussed in Chapter 8. Some recent
studies indicate that human recognition involves rotating a stored representation

of an object in order to align it with an image [Tarr88] [Jolicoeur88]. One of the

strengths of machine vision research has been the ability to combine independent

computational and biological evidence for a given theory [Marr82]. At higher
levels of processing, such as recognition, this has proven difficult. Thus it is

encouraging to find independent support for the importance of alignment in

recognition.

Humans appear to employ an alignment strategy in tasks where the spatial
configuration of local features is important for recognizing an object, but not

when objects can be identified simply based on the presence or absence of a par-

ticular feature [Tarr88]. This pattern of results suggests a two-stage matching

process, where viewpoint invariant information is used to hypothesize potential

objects, and then alignment is performed in cases where more than one object

has been hypothesized. This is similar to the structure proposed by various
computational vision researchers (e.g., [Kalvin86]), of an initial viewpoint inde-

pendent model selection followed by determination of position and orientation.

9.1 Future Directions

The recognition method developed in this thesis can be viewed as performing
model based segmentation (as can several other methods [Grimson84] [Lam-

dan87] [Thompson87]), because little interpretation of an image is done before
the model matching stage. This type of approach may make the matching part

of recognition too difficult, by not first segmenting and classifying parts of an

image. That is not to say that the problems in model based vision are not real.

Even with better sensory input, it is important to have matching algorithr-,s

that are robust, have a low chance of finding a false match, and minimize the
amount of search needed to find instances of an object in an image. It is just

that the overall importance of these problems in recognition may be exaggerated

by the approach.

Summary 151

Unfortunately, attempts at developing methods for segmenting and classi-
fying an image have been relatively unsuccessful in comparison with the model
based segmentation approach. One major limitation of these attempts, however,

has been the use of one or two images as the starting point for segmentation and
classification. Recent suggestions about the use of "active vision" [Aloimonos87]
[Bajcsy88] [Ballard88] may lead the way to better input for recognition algo-
rithms, and new visual sensors may provide a computationally tractable means

of doing active vision [Mead88].

Recognition methods such as the one developed in this thesis do not require
highly accurate grouping mechanisms. Rather, it is only necessary to find parts
of an image that are likely to arise from the same object. Groups of features
in these regions can then be used to hypothesize potential matches, rather than

considering all n-tuples of features in the image.

Appendix 152

Appendix A

Computing the Transformation

The lisp code for computing the alignment transformation is included in
this appendix. The function vsub2 is two-dimensional vector subtraction. The

functions pt-x and pt-y select the x and y coordinates of a two-dimensional
point. The main function is 3d-alignment-transform, which takes three two-
dimensional image points, ai, bi, and ci, and three three-dimensional model

points, am, bm, and cm, and returns a transformation mapping the model to the
image.

;; Computing the 3d alignment transformation from a point triple

;; returns a list of the model transformation, the image translation

;; b, the scaled rotationmatrix sr, and the scale factor s.

(defun 3d-alignment-transform (ai bi ci am bm cm)

(destructuring-bind (model-trans bm* cm*)

;; transform-model takes three model points and returns the

;; transformation that puts am at the origin and bm and cm

;; in the z=O plane.

(transform-model am bm cm)
(destructuring-bind (b bi* ci*)

(translate-image ai bi ci)

(let* ((1 (2d-linear-transform bm* cm* bi* ci*))

(sr-and-s (3d-rotation-and-scale-from-2d-linear-transform 1)))

(cons model-trans (cons b sr-and-s))))))

(defun translate-image (ai bi ci)

(let ((trans ai))

(list trans (vsub2 bi trans) (vsub2 ci trans))))

;; computes a two-dimensional linear transform specified by two

;; corresponding points

(defun 2d-linear-transform (bm cm bi ci)

(let ((xb (pt-x bm))

(yb (pt-y bm))

(xc (pt-x cm))

(yc (pt-y cm))

(xlb (pt-x bi))

(ylb (pt-y bi))

(xlc (pt-x ci))

Appendix 153

(ylc (pt-y ci)))

(let ((dot (- (* xc yb) (* xb yc)))
(1 (make-array '(2 2))))

(if (zerop dot)

(signal 'math: singular-matrix)

(setf (are! 1 0 0) (IC-(*zc yb) (* rib yc)) dot))
(setf (aref 1 0 1) (-(-(* xlc xb) (* xlb xc)) dot)))
(setf (aref 1 1 0) (IC *ylc yb) (*ylb yc)) dot))
(sotf (arof 1 1 1) (IC *xc ylb) (*xb ylc)) dot))

1))))

,computes a three-dimensional scale and rotation from a two-dimensional
,linear transformation, as described in chapter 4.

(defun 3d-rotation-and-scale-from-2d-ljnear-transform (1)

(let ((lII (are! 1 0 0))

(112 (aref 1 0 1))

(121 (aref 1 1 0))

(122 (aref 1 11)

(sr (make-array '(3 3))))
(let ((v (- (+ (square 112) (square 122))

(+ (square 111) (square 121)
(q (4 (* 111 112) (* 121 122)

(let* ((ci (sqrt (* .5 (+ v (sqrt (+ (square w) (* 4 (square q))))))))
(c2 (if (-zerop ci) (sqrt (abs w)) UI (- q) ci)))
(s (sqrt (+ (square 111) (square 121) (square ci)))))

(setf (aref sr 0 0) 111)

(set! (aref sr 1 0) 121)

(set! (aref sr 2 0) ci)

(setf (aref sr 0 1) 112)

(setf (are! sr 1 1) 122)

(set! (aref sr 2 1) c2)

(setf (aref sr 0 2) UIC-(c2 121) (*ci 122)) s))
(setf (are! sr 1 2) (/ -(ci 112) (ec2 111)) s))
(setf (are! sr 2 2) UI(-(111 122) (*121 112)) s))

(list sr s))

Refer eces 154

References

1. Aloimonos, Y., Weiss, I. and Bandyopadhyay, A. 1987. Active Vision,
Pro. First International Conference on Computer Vision, IEEE Com-

puter Society Press, pp. 35-54.

2. Attneave, F. 1954. Some Informational Aspects of Visual Perception,
Psych. Review, Vol. 61., pp. 183-193.

3. Asada, H. and Brady, M. 1986. The Curvature Primal Sketch, IEEE
Trans. Pat. Anal. and Mach. Intel., Vol. 8, No. 1, pp. 2-14.

4. Augusteijn M.F. and Dyer, C.R. 1986. Recognition and Recovery of the
Three-Dimensional Orientation of Planar Point Patterns, Computer Vi-

sion, Graphics and Image Proc., Vol. 36, pp. 76-99.

5. Avache, N. and Faugeras, O.D. 1986. HYPER: A New Approach for the
Recognition and Positioning of Two-Dimensional Objects, IEEE Trans.
Pat. Anal. and Mach. Intel., Vol. 8, No. 1, pp. 44-54.

6. Bajcsy, R. 1988. Perception with Feedback, Proc. Image Understanding
Workshop, pp. 279-288, Morgan Kaufmann Publishers, San Mateo, Calif.

7. Ballard, D.H. 1988. Eye Movements and Spatial Cognition, AAAI Sympo-

sium on Phys. and Biol. Approaches to Comput. Vision, Stanford Univ.

8. Barr, A.H. 1981. Superquadrics and Angle-Preserving Transformations,

IEEE CG and A, pp. 11-23.

9. Barrow, H.G. and Tenenbaum, J.M. 1976. MSYS: A System for Reason-
ing About Scenes, SRI Al Center, Tech. Note 121.

10. Basri, R. 1988. The Visual Recognition of Smooth 3D Objects by Align-
ment, forthcoming Ph.D. thesis, the Weizmann Institute of Science, Israel.

11. Besl, P.J. and Jain, R.C. 1985. Three-Dimensional Object Recognition,

ACM Computing Surveys, Vol. 17, No. 1 pp. 75-154.

References 155

12. Biederman, I. 1985. Human Image Understanding: Recent Research and

a Theory, Comput. Vis., Graphics, and Image Proc., Vol. 32, pp. 29-73.

13. Blelloch, G. 1988. Scans as Primitive Parallel Operations. Proc. Int.

Conf. on Parallel Proc., 355-362.

14. Blum, H. and Nagel, R.N. 1978. Shape Description Using Weighted Sym-

metric Axis Features, Pattern Recognition, Vol. 10, pp. 167-180.

15. Bolles, R.C. and Cain, R.A. 1982. Recognizing and Locating Partially
Visible Objects: The Local Feature Focus Method, Int. J. Robotics Res.,

Vol. 1, No. 3, pp. 57-82.

16. Bolles, R.C. and Horaud, P. 1986. 3DPO: A Three-Dimensional Part Ori-

entation System, Int. J. Robotics Res., Vol. 5, No. 3, pp. 3-26.

17. Brady, M. and Asada, H. 1984. Smoothed Local Symmetries and Their
Implementation, Int. J. Robotics Res., Vol. 3, No. 3, pp. 36-61.

18. Brooks, R.A. 1981. Symbolic Reasoning Around 3-D Models and 2-D Im-

ages, Artificial Intelligence J. Vol. 17, pp. 285-348.

19. Brooks, R.A. 1981. Model-Based Computer Vision, UMI Research Press,

Ann Arbor, Mich.

20. Canny, J. 1986. A Computational Approach to Edge Detection, IEEE

Trans. Pat. Anal. and Mach. Intel., Vol. 8, No. 6, pp. 34-43.

21. Chin, R.T. and Dyer, C.R. 1986. Model-Based Recognition in Robot Vi-

sion, ACM Computing Surveys, Vol. 18, No. 1, pp. 67-108.

22. Clemens, D.T. 1986. The Recognition of Two-Dimensional Modeled Ob-

jects in Images, Master's Thesis, MIT Dept. of Elect. Eng. and Com-

puter Sci.

23. Corballis M.C. and McLaren, R. 1984. Winding One's Ps and Qs: Mental

Rotation and Mirror-Image Discrimination, J. Exper. Psych.: Human
Percep. and Perf., Vol. 10, No. 2, pp. 318-327.

11 feren<ce, 156

24. Curtis, S.R. 19S5. Reconstruction of Multidimensional Signals from Zero

Cro , ,Ings, MIT RLE Tech. Report No. 509.

25. Cyl,u>ki. D. and Orr, J.A. 1985. Applications of Tensor Theory to Ob-
,-.ct Recognition and Orientation Determination, IEEE Trans. on Pat.
Anal. aii.d Mach. Intel., Vol. PAMI-7, No. 6, pp. 662-673.

26 Davis. L.S. 1979. Shape Matching Using Relaxation Techniques, IEEE
Tran.. Pat. Anal. and Mach. Intel., Vol. 1, No. 1, pp. 60-72.

27. Duda. R.O. and Hart, P.E. 1973. Pattern Classification and Scene Analy-
i1., Wiley, New York.

28. Ettinger. G.J. 1987. Hierarchical Object Recognition Using Libraries of
Parameterized Model Sub-Parts, MIT AI Lab Tech. Report No. 963.

29. Feller. XV. 1968. An Introduction to Probebility Thoeory and Its Applica-
tions, Wiley, New York.

30. Fischler. M.A. and Bolles, R.C. 1981. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Au-
tomated Cartography, Comm. Assoc. Comput. Mach., Vol. 24, No. 6.,
pp. 3S1-393.

31. Fischler, M.A. and Bolles, R.C. 1986. Perceptual Organization and Curve
Partitioning, IEEE Trans. Pat. Anal. and Mach. Intel., Vol. 8, No. 1.

pp. 100-104.

32. Efimov. N.V. 1980. Higher Geometry, English translation from the Rus-
sian, Mir Publishers, Moscow.

33. Fleck. .M. 1985. Local Rotational Symmetries, MIT Artificial Intell.

Lab. Tech. Report, No. 852.

34. Ganapathy, S. 1985. Camera Location Determination Problem, unpub-
lished paper, A.T.&T. Bell Labs.

35. Gigas, Z. and Malik, J. 1988. Computing the Aspect Graph for Line Draw-
ing-: of Polyhedral Objects, Proc. IEEE Conf. Robotics and Autom., pp.
1360-1566.

References 157

36. Goad, C. 1986. Fast 3D Model-Based Vision in From Pixels to Predicates:
Recent Advances in Computational and Robotic Vision, edited by A.P.

Pentland. Ablex, Norwood N.J.

37. Grimson, W.E.L. and Lozano-P~rez, T. 1984. Model-Based Recognition
and Localization from Sparse Range or Tactile Data, Int. J. Robotics
Res., Vol. 3, No. 3, pp. 3-35.

38. Grimson, W.E.L. and Lozano-P~rez, T. 1987. Localizing Overlapping
Parts by Searching the Interpretation Tree, IEEE Trans. Pat. Anal. and
Mach. Intel., Vol. 9, No. 4, pp. 469-482.

39. Grimson, W.E.L. 1987. Recognition of Object Families Using Parameter-
ized Models, Proceedings of the First International Conference on Com-

puter Vision, IEEE Computer Society Press, pp. 93-100.

40. Grr Zon, W.E.L. 1988. The Combinatorics of Object Recognition in

Cluttered Environments, MIT Artificial Intelligence Laboratory, Memo
No. 1019.

41. Herman, M., Kanade, T. and Kurve, S. 1984. Incremental Acquisition of
a Three-Dimensional Scene Model from Images, IEEE Trans. Pat. Anal.
and Mach. Intell., Vol. 6., No. 3, pp. 331-339.

42. Hillis, W.D. 1986. The Connection Machine, MIT Press, Cambridge,

Mass.

43. Hoffman, D.D. and Richards, W.A. 1986. Parts of Recognition, in From

Pixels to Predicates: Recent Advances in Computational and Robotic Vi-

sion, edited by A.P. Pentland. Ablex, Norwood N.J.

44. Horn, B.K.P. and Weldon, E.J. 1985. Filtering Closed Curves, Proceed-

ings of the Conference on Computer Vision and Pattern Recognition, pp.

478-484.

45. Horn, B.K.P. 1986. Robot Vision, MIT Press, Cambridge, Mass.

46. Huttenlocher, D.P. and Ullman, S. 1987. Object Recognition Using Align-
ment, Proc. First International Conference on Computer Vision, IEEE

Computer Society Press, pp. 102-111.

(IV? ren ces 158

47. Ikcuchi. K. 1987. Precompiling a Geometrical Model into an Interpreta-
tion Tree for Object Recognition in Bin-Picking Tasks, Proc. Image Un-

derstanding Workshop, pp. 321-338, Morgan IKaufniann Publishers, San

Mateo. Calif.

48. Jolicoeur, P. 1985. The Time to Name Disoriented Natural Objects, Mem-

ory and Cognition, Vol. 13, No. 4, pp. 289-303.

49. Jacobs, D.W. 1988. The Use of Grouping in Visual Object Recognition,
Master's Thesis, MIT Dept. of Elect. Eng. and Computer Sci.

50. Kalvin, A., Schonberg, E., Schwartz, J.T. and Sharir, M. 1986. Two Di-
mensional Model Based Boundary Matching Using Footprints, Int. J.
Robotics Res., Vol. 5, No. 4, pp. 38-55.

51. Kanade, T. and Kender, J.R. 1983. Mapping Image Properties into Shape

Constraints: Skewed Symmetry, Affine Transformable Patterns, and the
Shape-from-Texture Paradigm, in J. Beck, et. al. (Eds) Human and Ma-

chine Vision, Academic Press, Orlando, Fla.

52. Koenderink, J.J and VanDoorn, A.J. 1979. Internal Representation of
Solid Shape with Respect to Vision, Biol. Cyber., Vol. 32, No. 4, pp.

211-216.

53. Linainmaa, S., Harwood. D. and Davis, L.S. 1985. Pose Determination of
a Three-Dimensional Object Using Triangle Pairs, CAR-TR-143, Center

for Automation Research, University of Maryland.

54. Lamdan. Y., Schwartz, J.T. and Wolfson, H.J. 1987. On Recognition of
3-D Objects from 2-D Images, New York University, Courant Institute

Robotics Report, No. 122.

55. Little, J.J., Blelloch, G. and Cass, T. 1987. Parallel Algorithms for Vision

on the Connection Machine, Proceedings of the First International Confer-
ence on Computer Vision, IEEE Computer Society Press, pp. 587-591.

56. Lowe, D.G. 1985. Perceptual Organization and Visual Recognition, Kluwer
Academic Publishers, Hingham, Mass.

References 159

57. Lowe, D.G. 1987. Three-Dimensional Object Recognition from Single

Two-Dimensional Images, Artificial Intelligence J, Vol. 31, pp. 355-395.

58. MaIhoney, J.V. 1987. Image Chunking: Defining Spatial Building Blocks
for Scene Analysis, MIT Artificial Intelligence Lab., Tech. Report 980.

59. Marr, D. and Nishihara, H.K. 1978. Representation and Recognition of
the Spatial Organization of Three-Dimensional Shapes, Proc. Royal Soci-
ety Lon., B200, pp. 269-294.

60. Marr, D. and Hildreth, E. 1980. Theory of Edge Detection, Proc. Royal

Society Lon., B207, pp. 187-217.

61. Marr, D. 1982. Vision Freeman, San Francisco.

62. Mead, C.A. 1988. Analog VLSI Models of Neural Systems AAAI Sympo-
sium on Phys. and Biol. Approaches to Comput. Vision, Stanford Univ.

63. Mokhtarian, F. and Mackworth, A. 1986. Scale-Based Description and
Recognition of Planar Curves and Two-Dimensional Shapes, IEEE Trans.
Pat. Anal. and Mach. Intel., Vol. 8, No. 1.

64 Nevatia, R. and Binford, T.O. 1977. Description and Recognition of Curved

Objects, Artificial Intell. J., Vol. 8., pp. 77-98.

65. Pentland, A. 1985. Perceptual Organization and the Representation of
Natural Form, SRI International Tech. Note No. 357.

66. Perkins, W.A. 1977. A Model-Based Vision System for Scenes Containing
Multiple Parts, Proc. 5th Int. Conf. on Artif. Intell., pp. 678-684.

67. Perkins, D.N. 1983. Why the Human Perceiver Is a Bad Machine, in Hu-
man and Machine Vision edited by J. Beck, B. Hope and A. Rosenfeld,
pp. 341-364. Academic Press, Orlando, Fla.

68. Poggio, T. 1988. The MIT Vision Machine Proc. of the Image Under-
standing Workshop, pp. 177-198, Morgan Kaufmann Publishers, San Ma-

teo, Calif.

e frefI) ces 160

69. Prepar t; , F.P. and Shamos, M.I. 1985. Computational Geometry An In-
troditction. Springer-Verlag, New York.

70. Roberts, L.G. 1965. Machine Perception of Three-Dimensional Solids, in

Tippett et. al. (Eds) Optical and Electro-Optical Information Processing,
MIT Press, Cambridge, Mass.

71. Rock. I. and Leaman, R. 1963. An Experimental Analysis of Visual Sym-
metry, Acta P.iychologica, Vol. 23., pp. 171-183.

72. Rosenfeld, A., Hummel, R. and Zucker, S. 1976. Scene Labeling by Relax-
ation, Operations, IEEE Trans. Sys., Man, Cyber., Vol. 7, pp. 420-433.

73. Sadaji, F.A. 1980. Three-Dimensional Moment Invariants, IEEE Trans.
Pat. Anal. Mach. Intel., Vol. 2, pp. 127-136.

74. Saund, E. 1988. Symbolic Construction of a 2D Scalespace Image, unpub-
lished paper, MIT AI Laboratory.

75. Shepard, R.N. and Cooper, L.A. 1982. Mental Images and Their Trans-

formations. MIT Press, Cambridge, Mass.

76. Silberberg, T.M., Harwood, D.A. and Davis, L.S. 1986. Object Recogni-
tion Using Oriented Model Points, Computer Vision, Graphics, and Image

Proc., Vol. 35, pp. 47-71.

77. Schwartz, J.T. and Sharir, M. 1987. Identification of Partially Obscured
Objects in Two and Three Dimensions by Matching of Noisy Characteris-
tic Curves, Int. J. Robotics Res., Vol. 6, No. 2, pp. 29-44.

78. Tarr, M.J. and Pinker, S. 1988. Mental Rotation and Orientation-Dependence
in Shape Recognition, unpublished paper, MIT Dept. of Brain and Cog-

nitive Science.

79. Teague, M.R. 1980. Image Analysis via the General Theory of Moments,
J. Opt. Soc. Amer., Vol. 70, pp. 920-930.

80. Thompson, D.W. and Mundy, J.L. 1987. Three-Dimensional Model Match-
ing from an Unconstrained Viewpoint, Proceedings of the International

References 161

Conference on Robotics and Automation, IEEE Computer Society Press,
pp. 208-220.

81. Turney, J.L. Mudge, T.N. and Voltz, R.A. 1985. Recognizing Partially
Occluded Parts, IEEE Trans. Pat. Anal. and Mach. Intel., Vol. 7, No.
4, pp. 410-421.

82. Ullman, S. 1987. An Approach to Object Recognition: Aligning Pictorial
Descriptions, MIT Artificial Intelligence Lab., Memo No. 931.

83. VanHove, P. 1987. Model-Based Silhouette Recognition, Proceedings of
the IEEE Computer Society Workshop on Computer Vision.

84. Watt, R.J. and Morgan, M.J. 1985. A Theory of the Primitive Spatial

Code in Human Vision, Vision Res., Vol. 25, No. 11, pp. 1661-1674.

85. Witkin, A.P. and Tenenbaum, J.M. 1983. On the Role of Structure in
Vision, in Human and Machine Vision edited by J. Beck, B. Hope and A.

Rosenfeld, pp. 481-544. Academic Press, Orlando, Fla.

86. Witkin, A.P. 1985. Scale-Space Filtering, in From Pixels to Predicates:
Recent Advances in Computational and Robotic Vision, edited by A.P.
Pentland, pp. 5-19. Ablex, Norwood, N.J.

87. Yuille, A.L. and Poggio, T. 1986. Scaling Theorems for Zero Crossings,
IEEE Trans. Pat. Anal. and Mach. Intell, Vol. 8, No. 1, pp. 15-25.

88. Yale, P.B. 1968. Geometry and Symmetry, Holden-Day Publishers, San

Francisco.

